
7 Spectrum analysis

In this chapter, we further study the spectra of the important random matrix

models for wireless communications that are the sample covariance matrix and

the information plus noise models. It has already been shown in Chapter 3

that, as the e.s.d. of the population covariance matrix (or of the information

matrix) converges, the e.s.d. of the sample covariance matrix (or the information

plus noise matrix) converges almost surely. The limiting d.f. can then be fully

characterized as a function of the l.s.d. of the population covariance matrix (or of

the information matrix). It is however not convenient to invert the problem and

to describe the l.s.d. of the population covariance matrix (or of the information

matrix) as a function of the l.s.d. of the observed matrices. The answer to this

inverse problem is provided in Chapter 8, which however requires some effort

to be fully accessible. The development of the tools necessary for the statistical

eigen-inference methods of Chapter 8 is one of the motivations of the current

chapter.

The starting motivation, initiated by the work of Silverstein and Choi

[Silverstein and Choi, 1995], which resulted in the important Theorem 7.4

(accompanied later by an important corollary, due to Mestre [Mestre, 2008a],

Theorem 7.5), was to characterize the l.s.d. of the sample covariance matrix in

closed-form. Remember that, up to this point, we can only characterize the l.s.d.

F of a sample covariance matrix through the expression of its Stieltjes transform,

as the unique solution mF (z) of some fixed-point equation for all z ∈ C \ R+.

To obtain an explicit expression of F , it therefore suffices to use the inverse

Stieltjes transform formula (3.2). However, this suggests having a closer look at

the limiting behavior of mF (z) as z approaches the positive real half-line, about

which we do not know much yet. Therefore, up to this point in our analysis, it

is impossible to describe the support of the l.s.d., apart from rough estimations

based on the expression of =[mF (z)], for z = x+ iy, y being small. It is also

not convenient to depict F ′(x): the solution is to take z = x+ iy, with y small

and x spanning from zero to infinity, and to draw the curve z 7→ 1
π=[mF (z)] for

such z. In the following, we will show that, as z tends to x > 0, mF (z) has a

limit which can be characterized in two different ways, depending on whether x

belongs to the support of F or not. In any case, this limit is also characterized as

the solution to an implicit equation, although particular care must be taken as to

which of the multiple solutions of this implicit equation needs to be considered.
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Before we detail this advanced spectrum characterization, we provide a

different set of results, fundamental to the validation of the eigen-inference

methods proposed in Chapter 8. These results, namely the asymptotic absence

of eigenvalues outside the support of F , Theorem 7.1, and the exact separation

of the support into disjoints clusters, Theorem 7.2, are once more due to Bai

and Silverstein [Bai and Silverstein, 1998, 1999]. Their object is the analysis, on

top of the characterization of F , of the behavior of the particular eigenvalues

of the e.s.d. of the sample covariance matrix as the dimensions grow large.

It is fundamental to understand here, and this will be reminded again in the

next section, that the convergence of the e.s.d. toward F , as the matrix size

N grows large, does not imply the convergence of the largest eigenvalue of

the sample covariance matrix towards the right edge of the support. Indeed,

the largest eigenvalues, having weight 1/N in the spectrum, do not contribute

asymptotically to the support of F . As such, it may well be found outside the

support of F for all finite N , without invalidating Theorem 3.13. This particular

case in the Marc̆enko–Pastur model where eigenvalues are found outside the

support almost surely when the entries of the random i.i.d. matrix XN in

Theorem 3.13, TN = IN , have infinite fourth order moment. In this scenario,

it is even proved in [Silverstein et al., 1988] that the largest eigenvalue grows

without bound as the system dimensions grow to infinity, while all the mass

of the l.s.d. is asymptotically kept in the support; if the fourth order moment

is finite. Under finite fourth moment assumption though [Bai and Silverstein,

1998; Yin et al., 1988], the important result to be detailed below is that no

eigenvalue is to be found outside the limiting support and that the eigenvalues

are found where they ought to be. This last statement is in fact slightly erroneous

and will be adequately corrected when discussing the spiked models that lead

some eigenvalues to leave the limiting support. To be more precise, when the

moment of order four of the entries of XN exists, we can characterize exactly

the subsets of R+ where no eigenvalue is asymptotically found, almost surely.

Further discussions on the extreme eigenvalues of sample covariance matrices are

provided in Chapter 9, where (non-central) limiting theorems for the distribution

of these eigenvalues are provided.

7.1 Sample covariance matrix

7.1.1 No eigenvalues outside the support

As observed in the previous sections, most early results of random matrix theory

dealt with the limiting behavior of e.s.d. For instance, the Marc̆enko–Pastur

law ensures that the e.s.d. of the sample covariance matrix RN of vectors with

i.i.d. entries of zero mean and unit variance converges almost surely towards

a limit distribution function F . However, the Marc̆enko–Pastur law does not

say anything about the behavior of any specific eigenvalue, say for instance the
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extreme lowest and largest eigenvalues λmin and λmax of RN . It is relevant in

particular to wonder whether λmin and λmax can be asymptotically found outside

the support of F . Indeed, if all eigenvalues but the extreme two are in the support

of F , then the l.s.d. of RN is still F , which is still consistent with the Marc̆enko–

Pastur law. It turns out that this is not the case in general. Under some mild

assumption on the entries of the sample covariance matrix, no eigenvalue is found

outside the support. We specifically have the following theorem.

Theorem 7.1 ([Bai and Silverstein, 1998; Yin et al., 1988]). Let the matrix

XN =
(

1√
n
XN,ij

)
∈ CN×n have i.i.d. entries, such that XN,11 has zero mean,

unit variance, and finite fourth order moment. Let TN ∈ CN×N be non-random,

with uniformly bounded spectral norm ‖TN‖, whose e.s.d. FTN converge weakly

to H. From Theorem 3.13, the e.s.d. of BN = T
1
2

NXNXH
NT

1
2

N ∈ CN×N converges

weakly and almost surely towards some distribution function F , as N , n go

to infinity with ratio cN = N/n→ c, 0 < c <∞. Similarly, the e.s.d. of BN =

XH
NTNXN ∈ Cn×n converges towards F given by:

F (x) = cF (x) + (1− c)1[0,∞)(x).

Denote FN the distribution with Stieltjes transform mFN (z), which is solution,

for z ∈ C+, of the following equation in m

m = −
(
z − N

n

∫
τ

1 + τm
dFTN (τ)

)−1

(7.1)

and define FN the d.f. such that

FN (x) =
N

n
FN (x) +

(
1− N

n

)
1[0,∞)(x).

Let N0 ∈ N, and choose an interval [a, b], a, b ∈ (0,∞], lying in an open interval

outside the union of the supports of F and FN for all N ≥ N0. For ω ∈ Ω,

the random space generating the series X1,X2, . . ., denote LN (ω) the set of

eigenvalues of BN (ω). Then

P ({ω,LN (ω) ∩ [a, b] 6= ∅ i.o.}) = 0.

This means concretely that, given a segment [a, b] outside the union of

the supports of F and FN0
, FN0+1, . . ., for all series B1(ω),B2(ω), . . ., with

ω in some set of probability one, there exists M(ω) such that, for all N ≥
M(ω), there will be no eigenvalue of BN (ω) in [a, b]. By definition, FK is

the l.s.d. of an hypothetical BN with H = FTK . The necessity to consider

the supports of FN0
, FN0+1, . . . is essential when a few eigenvalues of TN are

isolated and eventually contribute with probability zero to the l.s.d. H. Indeed,

it is rather intuitive that, if the largest eigenvalue of TN is large compared

to the rest, at least one eigenvalue of BN will also be large compared to

the rest (take n� N to be convinced). Theorem 7.1 states exactly here that
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there will be neither any eigenvalue outside the support of the main mass

of FBN , nor any eigenvalue around the largest one. Those models in which

some eigenvalues of TN are isolated are referred to as spiked models. These

are thoroughly discussed in Chapter 9. In wireless communications and modern

signal processing, Theorem 7.1 is of key importance for signal sensing and

hypothesis testing methods since it allows us to verify whether the eigenvalues

empirically found in sample covariance matrix spectra originate either from noise

contributions or from signal sources. In the simple case where signals sensed at

an antenna array originate either from white noise or from a coherent signal

source impaired by white noise, this can be performed by simply verifying if

the extreme eigenvalue of the sample covariance matrix is inside or outside the

support of the Marc̆enko–Pastur law (Figure 1.1); see further Chapter 16.

We give hereafter a sketch of the proof, which again only involves the Stieltjes

transform.

Proof. Surprisingly, the proof unfolds from a mere (though non-trivial)

refinement of the Stieltjes transform relation proved in Theorem 3.13. Let FN
be defined as above and let mN be its Stieltjes transform. It is possible to show

that, for z = x+ ivN , with vN = N−1/68

sup
x∈[a,b]

|mBN (z)−mN (z)| = o

(
1

N
vN

)

almost surely. This result is in fact also true when =[z] equals
√

2vN ,
√

3vN , . . .

or
√

34vN . Note that this refines the known statement that the difference is of

order o(1). We take this property, which requires more than ten pages of calculus,

for granted. We now have that

max
1≤k≤34

sup
x∈[a,b]

∣∣∣mBN (x+ ik
1
2 vN )−mN (x+ ik

1
2 vN )

∣∣∣ = o(v67
N )

almost surely. Expanding the Stieltjes transforms and considering only the

imaginary parts, we obtain

max
1≤k≤34

sup
x∈[a,b]

∣∣∣∣∫ d(FBN (λ)− FN (λ))

(x− λ)2 + kv2
N

∣∣∣∣ = o(v66
N )

almost surely. Taking successive differences over the 34 values of k, we end up

with

sup
x∈[a,b]

∣∣∣∣∣
∫

(v2
N )33d(FBN (λ)− FN (λ))∏34
k=1((x− λ)2 + kv2

N )

∣∣∣∣∣ = o(v66
N ) (7.2)

almost surely, from which the term v66
N simplifies on both sides. Consider now

a′ < a and b′ > b such that [a′, b′] is outside the support of F . We then divide
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(7.2) into two terms, as (remember that 1/N = v68
N )

sup
x∈[a,b]

∣∣∣∣∣∣
∫

1R+\[a′,b′](λ)d(FBN (λ)− FN (λ))∏34
k=1((x− λ)2 + kv2

N )
+

∑
λj∈[a′,b′]

v68
N∏34

k=1((x− λj)2 + kv2
N )

∣∣∣∣∣∣
= o(1)

almost surely. Assume now that, for a subsequence φ(1), φ(2), . . . of 1, 2, . . ., there

always exists at least one eigenvalue of Bφ(N) in [a, b]. Then, for x taken equal

to this eigenvalue, one term of the discrete sum above (whose summands are

all non-negative) is exactly 1/34!, which is uniformly bounded away from zero.

This implies that the integral must also be bounded away from zero. However

the integrand of the integral is clearly uniformly bounded on [a′, b′] and, from

Theorem 3.13, FBN − F ⇒ 0. Therefore the integral tends to zero as N →∞.

This is a contradiction. Therefore, the probability that there is an eigenvalue

of BN in [a, b] infinitely often is null. Now, from [Yin et al., 1988], the largest

eigenvalue of 1
nXNXH

N is almost surely asymptotically bounded. Therefore, since

‖TN‖ is also bounded by hypothesis, the theorem applies also to b =∞.

Note that the finiteness of the fourth order moment of the entries XN,ij is

fundamental for the validity of Theorem 7.1. It is indeed proved in [Yin et al.,

1988] and [Silverstein et al., 1988] that:

• if the entries XN,ij have finite fourth order moment, with probability one, the

largest eigenvalue of XNXH
N tends to the edge (1 +

√
c)2, c = limN N/n of

the support of the Marc̆enko–Pastur law, which is an immediate corollary of

Theorem 7.1 with TN = IN ;

• if the entries XN,ij do not have a finite fourth order moment then, with

probability one, the limit superior of the largest eigenvalue of XNXH
N is

infinite, i.e. with probability one, for all A > 0, there exists N such that the

largest eigenvalue of XNXH
N is larger than A. It is therefore important never

to forget the underlying assumption made on the tails of the distribution of

the entries in XN .

We now move to an extension of Theorem 7.1.

7.1.2 Exact spectrum separation

Now assume that the e.s.d. of TN converges to the distribution function of,

say, three evenly weighted masses in λ1, λ2, and λ3. For not-too-large ratios

cN = N/n, it is observed that the support of F is divided into up to three

clusters of eigenvalues. In particular, when n becomes large while N is kept

fixed, the clusters consist of three punctual masses in λ1, λ2, and λ3, as required

by classical probability theory. This is illustrated in Figure 7.1 in the case of a

three-fold clustered and a two-fold clustered support of F . The reason why we

observe sometimes three and sometimes less clusters is linked to the spreading
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of each cluster due to the limiting ratio c; the smaller c, the thinner the clusters,

as already observed in the simple case of the Marc̆enko–Pastur law, Figure 2.2.

Considering Theorem 7.1, it is tempting to assume that, in addition to each

cluster of F being composed of one third of the total spectrum mass, each cluster

of BN contains exactly one third of the eigenvalues of BN . However, Theorem 7.1

only ensures that no eigenvalue is found outside the support of F for all N larger

than a given M , and does not say how the eigenvalues of BN are distributed

in the various clusters. The answer to this question is provided in [Bai and

Silverstein, 1999] in which the exact separation properties of the l.s.d. of such

matrices BN is discussed.

Theorem 7.2 ([Bai and Silverstein, 1999]). Assume the hypothesis of

Theorem 7.1 with TN non-negative definite. Consider similarly 0 < a < b <∞
such that [a, b] lies in an open interval outside the support of F and FN for all

large N . Denote additionally λk and τk, k ∈ {1, . . . , iN} the eigenvalues of BN

and TN , respectively. Then we have:

1. If c(1−H(0)) > 1, then the smallest value x0 in the support of F is positive

and λN → x0 almost surely, as N →∞.

2. If c(1−H(0)) ≤ 1, or c(1−H(0)) > 1 but [a, b] is not contained in [0, x0],

then, with probability one, and for all large N1

# {k, λk < a} = # {k, τk < −1/mF (a)}
# {k, λk > b} = # {k, τk > −1/mF (b)} .

The original statement of [Bai and Silverstein, 1999], equivalent to the above

but less explicit, is that, with the ordering τ1 ≥ . . . ≥ τN and λ1 ≥ . . . ≥ λN ,

P (λiN > b, λiN+1 < a for all large N) = 1

where iN is the unique integer such that

τiN > −1/mF (b),

τiN+1 < −1/mF (a).

To understand this statement, consider for instance the first plot in Figure 7.1

and an interval [a, b] comprised between the second and third clusters. What the

above statement claims is that, if iN and iN + 1 are the indexes of the right

and left eigenvalues when FBN jumps from one cluster to the next, and N is

1 The expression “the set (or event) AN ⊂ Ω holds with probability one, for all large N” is

used in place of “there exists B ⊂ Ω, with P (B) = 1, such that, for ω ∈ B, there exists N0(ω)
for which N > N0(ω) implies ω ∈ AN .” It is particularly important to note that “for all large
N” is somewhat misleading as it does not indicate the existence of a universal N0 such that
N > N0 implies ω ∈ AN for all ω ∈ B, but rather the existence of an N0(ω) for each such ω.

Here, for instance, AN = {ω, #{λk(ω) < a} = #{τk(ω) < −1/mF (a)}} and the space Ω is
the generator of the series B1(ω),B2(ω), . . ..
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Figure 7.1 Histogram of the eigenvalues of BN = T
1
2
NXNXH

NT
1
2
N , N = 300, n = 3000,

with TN diagonal composed of three evenly weighted masses in (i) 1, 3, and 7 on top,
(ii) 1, 3, and 4 on the bottom.

large enough, then there is an associated jump from the corresponding iN th and

(iN + 1)th eigenvalues of TN (for instance, at the position of the discontinuity

from eigenvalue 7 to eigenvalue 3).

This bears some importance for signal detection. Indeed, consider the problem

of the transmission of information plus noise. Given the dimension p of the signal

space and n− p of the noise space, for large c, Theorem 7.2 allows us to isolate

the eigenvalues corresponding to the signal space from those corresponding to

the noise space. If both eigenvalue spaces are isolated in two distinct clusters,

then we can exactly determine the dimension of each space and infer, e.g. the
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number of transmitting entities. The next question that then naturally arises is

to determine for which values of c = limN n/N the support of F separates into

1, 2, or more clusters.

7.1.3 Asymptotic spectrum analysis

For better understanding in the following, we will take the convention that the

(hypothetical) single mass at zero in the spectrum of F is not considered as

a ‘cluster’. We will number the successive clusters from left to right, from one

to KF with KF the number of clusters in F , and we will denote kF the cluster

generated by the population eigenvalue tk, to be introduced shortly. For instance,

if two sample eigenvalues ti and ti+1 6= ti generate a unique cluster in F (as in the

bottom graph in Figure 7.1, where t2 = 3 and t3 = 4 generate the same cluster),

then iF = (i+ 1)F ). The results to come will provide a unique way to define

kF mathematically and not only visually. To this end, we need to study in more

depth the properties of the limiting spectrum F of the sample covariance matrix.

Remember first that, for the model BN = XH
NTNXN ∈ Cn×n of l.s.d. F , where

XN ∈ CN×n has i.i.d. entries of zero mean and variance 1/n, TN has l.s.d. H

and N/n→ c, mF (z), z ∈ C+, Equation (3.22) has an inverse formula, given by:

zF (m) = − 1

m
+ c

∫
t

1 + tm
dH(t) (7.3)

for m ∈ C+. The equation zF (m) = z ∈ C+ has a unique solution m with positive

imaginary part and this solution equals mF (z) by Theorem 3.13. Of course, BN

and BN only differ from |N − n| zero eigenvalues, so it is equivalent to study the

l.s.d. of BN or that of BN . The link between their respective Stieltjes transforms

is given by:

mF (z) = cmF (z) + (c− 1)
1

z

from (3.16). Since F turns out to be simpler to study, we will focus on BN

instead of the sample covariance matrix BN itself.

Now, according to the Stieltjes inversion formula (3.2), for every continuity

points a, b of F

F (b)− F (a) = lim
y→0+

1

π

∫ b

a

=[mF (x+ iy)]dx.

To determine the distribution F , and therefore the distribution F , we must

determine the limit of mF (z) as z ∈ C+ tends to x ∈ R∗. It can in fact be shown

that this limit exists.

Theorem 7.3 ([Silverstein and Choi, 1995]). Let BN ∈ Cn×n be defined as

previously, with almost sure l.s.d. F . Then, for x ∈ R∗

lim
z→x
z∈C+

mF (z) , m◦(x) (7.4)
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exists and the function m◦ is continuous on R∗. For x in the support of F , the

density f(x) , F ′(x) equals 1
π=[m◦(x)]. Moreover, f is analytic for all x ∈ R∗

such that f(x) > 0.

The study of m◦ makes it therefore possible to describe the complete support

SF of F as well as the limiting density f . Since SF equals SF but for an additional

mass in zero, this is equivalent to determining the support of SF . Choi and

Silverstein provided an accurate description of the function m◦, as follows.

Theorem 7.4 ([Silverstein and Choi, 1995]). Let B = {m |m 6= 0,−1/m ∈ ScH},
with ScH the complementary of SH , and xF be the function defined on B by

xF (m) = − 1

m
+ c

∫
t

1 + tm
dH(t). (7.5)

For x ∈ R∗, we can determine the limit m◦(x) of mF (z) as z → x, z ∈ C+, along

the following rules:

1. If x ∈ SF , then m◦(x) is the unique solution in B with positive imaginary part

of the equation x = xF (m) in the dummy variable m.

2. If x ∈ ScF , then m◦(x) is the unique real solution in B of the equation x =

xF (m) in the dummy variable m such that x′F (m0) > 0. Conversely, for m ∈
B, if x′F (m) > 0, then xF (m) ∈ ScF .

From rule 1, along with Theorem 7.3, we can evaluate for every x > 0 the

limiting density f(x), hence F (x), by finding the complex solution with positive

imaginary part of x = xF (m).

Rule 2 makes it simple to determine analytically the exact support of F . It

indeed suffices to draw xF (m) for −1/m ∈ ScH . Whenever xF is increasing on

an interval I, xF (I) is outside SF . The support SF of F , and therefore of F

(modulo the mass in zero), is then defined exactly by the complementary set

SF = R \
⋃
a,b∈R
a<b

{
xF ((a, b)) | ∀m ∈ (a, b), x′F (m) > 0

}
.

This is depicted in Figure 7.2 in the case when H is composed of three evenly

weighted masses t1, t2, t3 in {1, 3, 5} or {1, 3, 10} and c = 1/10. Notice that, in

the case where t3 = 10, F is divided into three clusters, while, when t3 = 5, F is

divided into only two clusters, which is due to the fact that xF is non-increasing

in the interval (−1/3,−1/5). For applicative purposes, we will see in Chapter 17

that it might be essential that the consecutive clusters be disjoint. This is one

reason why Theorem 7.6 is so important.

We do not provide a rigorous proof of Theorem 7.4. In fact, while thoroughly

proved in 1995, this result was already intuited by Marc̆enko and Pastur in

1967 [Marc̆enko and Pastur, 1967]. The fact that xF (m) increases outside the

spectrum of F and is not increasing elsewhere is indeed very intuitive, and is not
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Figure 7.2 xF (m) for m real, TN diagonal composed of three evenly weighted masses
in 1, 3, and 10 (top) and 1, 3, and 5 (bottom), c = 1/10 in both cases. Local extrema
are marked in circles, inflexion points are marked in squares. The support of F can be
read on the right vertical axises.

actually limited to the sample covariance matrix case. Observe indeed that, for

any F , and any x0 ∈ R∗ outside the support of F , mF (x0) is clearly well defined

and

m′F (x0) =

∫
1

(λ− x0)2
dF (λ) > 0.

Therefore mF (x) is continuous and increasing on an open neighborhood of x0.

This implies that it is locally a one-to-one mapping on this neighborhood and

therefore admits an inverse xF (m), which is also continuous and increasing. This

explains why xF (m) increases when its image is outside the spectrum of F .
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Now, if for some real m0, xF (m0) is continuous and increasing, then it is locally

invertible and its inverse ought to be mF (x), continuous and increasing, in which

case x is outside the spectrum of F . Obviously, this reasoning is far from being

a proof (at least the converse requires much more work).

From Figure 7.2 and Theorem 7.4, we now observe that, when the e.s.d. of

population matrix is composed of a few masses, x′F (m) = 0 has exactly 2KF

solutions with KF the number of clusters in F . Denote these roots in increasing

order m−1 < m+
1 ≤ m−2 < m+

2 < . . . ≤ m−KF < m+
KF

. Each pair (m−j ,m
+
j ) is such

that xF ([m−j ,m
+
j ]) is the jth cluster in F . We therefore have a way to determine

the support of the asymptotic spectrum through the function x′F . This is

presented in the following result.

Theorem 7.5 ([Couillet et al., 2011c; Mestre, 2008a]). Let BN ∈ CN×N be

defined as in Theorem 7.1. Then the support SF of the l.s.d. F of BN is

SF =

KF⋃
j=1

[x−j , x
+
j ]

where x−1 , x
+
1 , . . . , x

−
KF
, x+
KF

are defined by

x−j = − 1

m−j
+

K∑
r=1

cr
tr

1 + trm
−
j

x+
j = − 1

m−j
+

K∑
r=1

cr
tr

1 + trm
+
j

with m−1 < m+
1 ≤ m−2 < m+

2 ≤ . . . ≤ m−KF < m+
KF

the 2KF (possibly counted

with multiplicity) real roots of the equation in m

K∑
r=1

cr
t2rm

2

(1 + trm2)2
= 1.

Note further from Figure 7.2 that, while x′F (m) might not have roots on some

intervals (−1/tk−1,−1/tk), it always has a unique inflexion point there. This is

proved in [Couillet et al., 2011c] by observing that x′′F (m) = 0 is equivalent to

K∑
r=1

cr
t3rm

3

(1 + trm)3
− 1 = 0

the left-hand side of which has always positive derivative and shows asymptotes

in the neighborhood of tr; hence the existence of a unique inflexion point on

every interval (−1/tk−1,−1/tk), for 1 ≤ k ≤ K, with convention t0 = 0+. When

xF increases on an interval (−1/tk−1,−1/tk), it must have its inflexion point

in a point of positive derivative (from the concavity change induced by the

asymptotes). Therefore, to verify that cluster kF is disjoint from clusters (k − 1)F
and (k + 1)F (when they exist), it suffices to verify that the (k − 1)th and kth
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roots mk−1 and mk of x′′F (m) are such that x′F (mk−1) > 0 and x′F (mk) > 0. From

this observation, we therefore have the following result.

Theorem 7.6 ([Couillet et al., 2011c; Mestre, 2008b]). Let BN be defined

as in Theorem 7.1, with TN = diag(τ1, . . . , τN ) ∈ RN×N , diagonal containing

K distinct eigenvalues 0 < t1 < . . . < tK , for some fixed K. Denote Nk the

multiplicity of the kth largest distinct eigenvalue (assuming ordering of the τi,

we may then have τ1 = . . . = τN1
= t1, . . . , τN−NK+1 = . . . = τN = tK). Assume

also that, for all 1 ≤ r ≤ K, Nr/n→ cr > 0, and N/n→ c, with 0 < c <∞.

Then the cluster kF associated with the eigenvalue tk in the l.s.d. F of BN is

distinct from the clusters (k − 1)F and (k + 1)F (when they exist), associated

with tk−1 and tk+1 in F , respectively, if and only if

K∑
r=1

cr
t2rm

2
k

(1 + trm2
k)2

< 1

K∑
r=1

cr
t2rm

2
k+1

(1 + trm2
k+1)2

< 1 (7.6)

where m1, . . . ,mK are such that mK+1 = 0 and m1 < m2 < . . . < mK are the K

solutions of the equation in m

K∑
r=1

cr
t3rm

3

(1 + trm)3
= 1.

For k = 1, this condition ensures 1F = 2F − 1. For k = K, this ensures KF =

(K − 1)F + 1. For 1 < k < K, this ensures (k − 1)F + 1 = kF = (k + 1)F − 1.

Remark now that the conditions of Equation (7.6) are left unchanged if all

t1, . . . , tK are scaled by a common constant. Indeed, if tj becomes αtj for all

j, then m1, . . . ,mK become m1/α, . . . ,mK/α and the scaling effects cancel out

in Equation (7.6). Therefore, in the case K = 2, the separability condition only

depends on the ratios c1, c2 and on t1/t2. If c1 = c2 = c/2, then we can depict the

plot of the critical ratio 1/c as a function of t1/t2 for which cluster separability

happens. This is depicted in Figure 7.3. Since 1/c is the limit of the ratio n/N ,

Figure 7.3 determines, for a fixed observation size N , the limiting number of

samples per observation size required to achieve cluster separability. Observe

how steeply the plot of 1/c increases when t1 gets close to t2; this suggests

that the tools to be presented later that require this cluster separability will

be very inefficient when it comes to separate close sources (the definition of

‘closeness’ depending on each specific study, e.g. close directions of signal arrivals

in radar applications, close transmit powers in signal sensing, etc.). Figure 7.4

depicts the regions of separability of all clusters in the case K = 3, for fixed

c = 0.1, c1 = c2 = c3, as a function of the ratios t3/t1 and t2/t1. Observe that the

triplets (1, 3, 7) and (1, 3, 10) are well inside the separability region as suggested,

respectively, by Figure 7.1 (top) and Figure 7.2 (top); on the contrary, notice that
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Figure 7.3 Limiting ratio c to ensure separability of (t1, t2), t1 ≤ t2, K = 2, c1 = c2.

0 1 3 5 10
0

1

3

5

10

t2/t1

t 3
/
t 1

Figure 7.4 Subset of (t1, t2, t3) that satisfy cluster separability condition, c1 = c2 = c3,
c = 0.1, in crosshatched pattern.

the triplets (1, 3, 4) and (1, 3, 5) are outside the separability region, confirming

then the observations of Figure 7.1 (bottom) and Figure 7.2 (bottom).

After establishing these primary results for the sample covariance matrix

models, we now move to the information plus noise model. According to the

previous remark borrowed from Marc̆enko and Pastur in [Marc̆enko and Pastur,

1967], we infer that it will still be the case that the Stieltjes transform mF (x),

extended to the real axis, has a local inverse xF (m), which is continuous
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and increasing, and that the range where xF (m) increases is exactly the

complementary to the support of F . This statement will be shown to be

somewhat correct. The main difference with the sample covariance matrix

model is that there does not exist an explicit inverse xF (m), as in (7.5) and

therefore mF (x) may have various inverses xF (m) for different subsets in the

complementary of the support of F .

7.2 Information plus noise model

The asymptotic absence of eigenvalues outside the support of unconstrained

information plus noise matrices (when the e.s.d. of the information matrix

converges), i.e. with i.i.d. noise matrix components, is still at the stage of

conjecture. While promising developments are being currently carried out, there

exists to this day no proof of this fact, let alone a proof of the exact separation

of information plus noise clusters. Nonetheless, in the particular case where the

noise matrix is Gaussian, the two results have been recently proved [Vallet et al.,

2010]. Those results are given hereafter.

7.2.1 Exact separation

We recall that an information plus noise matrix BN is defined by

BN =
1

n
(AN + σXN )(AN + σXN )H (7.7)

where AN is deterministic, representing the deterministic signal, XN is random

and represents the noise matrix, and σ > 0.

We start by introducing the theorem which states that, for all large N , no

eigenvalue is found outside the asymptotic spectrum of the information plus

noise model.

Theorem 7.7. Let BN be defined as in (7.7), with AN ∈ CN×n such that HN ,
F

1
nANAH

N ⇒ H and supN ‖ 1
nANAH

N‖ <∞, XN ∈ CN×n with entries XN,ij

independent for all i, j, N , Gaussian with zero mean and unit variance. Further

denote cN = N/n and assume cN → c, positive and finite. From Theorem 3.15,

we know that FBN converges almost surely to a limit distribution F with Stieltjes

transform mF (z) solution of the equation in m

m

1 + σ2cNm
= mH

(
z(1 + σ2cm)2 − σ2(1− c)(1 + σ2cm)

)
(7.8)

this solution being unique for z ∈ C+, m ∈ C+ and =[zm] ≥ 0. Denote now

mN (z) this solution when mH is replaced by mHN and c by cN , and denote

FN the distribution function with Stieltjes transform mN (z).

Let N0 ∈ N, and choose an interval [a, b] outside the union of the supports

of F and FN for all N ≥ N0. For ω ∈ Ω, the probability space generating the
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sequences X1,X2, . . ., denote LN (ω) the set of eigenvalues of BN (ω). Then

P (ω,LN (ω) ∩ [a, b] 6= ∅ i.o.) = 0.

In fact, an even stronger result is proved in [Vallet, 2011]. It is precisely shown

there that the probability that there exists an eigenvalue of BN in [a, b] if of

order O(N−l) for every integer l. The next theorem ensures that the repartition

of the eigenvalues in the consecutive clusters is exactly as expected.

Theorem 7.8 ([Vallet et al., 2010]). Let BN be as in Theorem 7.7. Let a < b be

such that [a, b] lies outside the support of F . Denote λk and ak the kth eigenvalues

smallest of BN and 1
nANAH

N , respectively. Also denote

wN (z) = z(1 + σ2cNmN (z))2 − σ2(1− cN )(1 + σ2cNmN (z))

with mN and cN as in Theorem 7.7. Then, with probability one, for all large N ,

# {k, λk < a} = # {k, ak < wN (a)}
# {k, λk > b} = # {k, ak > wN (b)} .

Similarly to Theorem 7.2, the above result merely says that each cluster of

eigenvalues of BN possesses as many eigenvalues as in the clusters of eigenvalues

of 1
nANA

H
N which generated them (up to cluster overlaps as shown in Figure 7.5).

We provide hereafter a sketch of the proofs of both Theorem 7.7 and

Theorem 7.8 where considerations of complex integration play a fundamental

role. In the following chapter, Chapter 8, we introduce in detail the methods

of complex integration for random matrix theory and particularly for statistical

inference. The stronger proof of [Vallet, 2011] is slightly different and uses more

fundamentally the Gaussian tools that are the integration by part formula and

the Nash–Poincaré inequality.

Proof of Theorem 7.7 and Theorem 7.8. As already mentioned, these results are

only known to hold for the Gaussian case for the time being. The way these

results are achieved is similar to the way Theorem 7.1 and Theorem 7.2 were

obtained, although the techniques are radically different. Indeed, somewhat

similarly to Theorem 7.1, the first objective is to show that the difference

mN (z)− E[mBN (z)] between the deterministic equivalentmN (z) of the empirical

Stieltjes transform mBN (z) and E[mBN (z)] goes to zero at a sufficiently fast rate.

In the Gaussian case, this rate is of order O(1/N2). Remember from Theorem 6.5

that such a convergence rate was already observed for doubly correlated Gaussian

models and allowed us to ensure that N(mN (z)− E[mBN (z)])→ 0. Using the

fact, established precisely in Chapter 8, that, for holomorphic functions f and a

distribution function G∫
f(x)dG(x) = − 1

2πi

∮
f(z)mG(z)dz
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on a positively oriented contour encircling the support of F , we can infer the

recent result from [Haagerup et al., 2006]

E

[∫
f(x)[FBN − FN ](dx)

]
= O

(
1

N2

)
.

Take f any infinitely differentiable function that is identically one on [a, b] ⊂ R
and identically zero outside (a− ε, b+ ε) for some small positive ε, such that

(a− ε, b+ ε) is outside the support of F . From the convergence rate above, we

first have.

E

[
N∑
k=1

λk1(a−ε,b+ε)(λk)

]
= N(FN (b)− FN (a)) +O

(
1

N

)
and therefore, for large N , we have in expectation the correct mass of eigenvalues

in (a− ε, b+ ε). But we obviously want more than that: i.e., we want to

determine the asymptotic exact number of these eigenvalues. Using the Nash–

Poincaré inequality, Theorem 6.7, we can in fact show that, for this choice of

f

E

[(∫
f(x)[FBN − FN ](dx)

)2
]

= O

(
1

N4

)
.

This is enough to prove, thanks to the Markov inequality, Theorem 3.5, that

P

(∣∣∣∣∫ f(x)[FBN − FN ](dx)

∣∣∣∣ > 1

N
4
3

)
<

K

N
4
3

for some constant K. From there, the Borel–Cantelli lemma, Theorem 3.6,

ensures that the above event is infinitely often true with probability zero; i.e.

the event ∣∣∣∣∣
N∑
k=1

λk1(a−ε,b+ε)(λk)−N(FN (b)− FN (a))

∣∣∣∣∣ > K

N
1
3

is infinitely often true with probability zero. Therefore, with probability one,

there exists N0 such that, for N > N0 there is no eigenvalue in (a− ε, b+ ε).

This proves the first result.

Take now [a, b] not necessarily outside the support of F and ε such that (a−
ε, a) ∪ (b, b+ ε) is outside the support of F . Then, repeating the same procedure

as above but to characterize now∣∣∣∣∣
N∑
k=1

λk1[a,b](λk)−N(FN (b)− FN (a))

∣∣∣∣∣
we find that this term equals∣∣∣∣∣

N∑
k=1

λk1(a−ε,b+ε)(λk)−N(FN (b)− FN (a))

∣∣∣∣∣
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Figure 7.5 Empirical and limit eigenvalue distribution of the information plus noise

model BN = 1
n

(AN + σXN )(AN + σXN )H, N = 300, n = 3000 (c = 1/10), F
1
N

ANAH
N

has three evenly weighted masses at 1, 3, 4 (top) and 1, 3, 10 (bottom).

almost surely in the large N limit since there is asymptotically no eigenvalue in

(a− ε, a) ∪ (b, b+ ε). This now says that the asymptotic number of eigenvalues

in [a, b] is N(FN (b)− FN (a)) almost surely. The fact that the indexes of these

eigenvalues are those expected is obvious. If it were not the case, then we can

always find an interval on the left or on the right of [a, b] which does not contain

the right amount of eigenvalues, which is contradictory from this proof. This

completes the proof of both results.
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7.2.2 Asymptotic spectrum analysis

A similar spectrum analysis as in the case of sample covariance matrices when

the population covariance matrix has a finite number of distinct eigenvalues can

be performed for the information plus noise model. As discussed previously, the

extension ofmF (z) to the real positive half-line is locally invertible and increasing

when outside the support of F . The semi-converse is again true: if xF (m) is an

inverse function for mF (x) continuous with positive derivative, then its image is

outside the support of F . However here, xF (m) is not necessarily unique, as will

be confirmed by simulations. Let us first state the main result.

Theorem 7.9 ([Dozier and Silverstein, 2007b]). Let BN = 1
n (AN +

σXN )(AN + σXN )H, with AN ∈ CN×n such that HN , F
1
nANAH

N ⇒ H and

supN ‖ 1
nANAH

N‖ <∞, XN = (XN,ij) ∈ CN×n with XN,ij independent for all

i, j, N with zero mean and unit variance (we release here the non-necessary

Gaussian hypothesis). Denote SF and SH the supports of F and H, respectively.

Take (h1, h2) ⊂ ScH . Then there is a unique interval (mF,1,mF,2) ⊂ (− 1
σ2c ,∞)

such that the function

m 7→ m

1 + σ2cm

maps (mF,1,mF,2) to (mH,1,mH,2) ⊂ (−∞, 1
σ2c ), where we introduced

(mH,1,mH,2) = mH((h1, h2)). On (h1, h2), mH is invertible, and then we

can define

xF (m) =
1

b2
m−1
H

(
1

σ2c

(
1− 1

b

))
+

1

b
σ2(1− c)

with b = 1 + σ2cm.

Then:

1. if for m ∈ (mF,1,mF,2), x(m) ∈ ScF , then x′(m) > 0;

2. if x′F (m) > 0 for b ∈ (mF,1,mF,2), then xF (m) ∈ ScF and m = mF (xF (m)).

Similar to the sample covariance matrix case, Theorem 7.9 gives readily a

way to determine the support of F : for m varying in (mF,1,mF,2), whenever

xF (m) increases, its image is outside the support of F . The support of F is

therefore the complementary set to the union of all such intervals. We must

nonetheless be aware that the definition of xF (m) is actually linked to the choice

of the interval (h1, h2) ⊂ ScH . In Theorem 7.4, we had a unique explicit inverse

for xF (m) as a function of m, whatever the choice of the pre-image of mH

(the Stieltjes transform of the l.s.d. of the population covariance matrix); this

statement no longer holds here.

In fact, if SH is subdivided into KH clusters, we can expect at most KH + 1

different local inverses for xF (m) as m varies along R. This is in fact exactly

what is observed. Figure 7.6 depicts the situation when H is composed of three
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Figure 7.6 Information plus noise model, xF (m) for m real, F
1
N

ANAH
N ⇒ H, where H

has three evenly weighted masses in 1, 3, and 10 (top) and 1, 3, and 4 (bottom),
c = 1/10, σ = 0.1 in both cases. The support of F can be read on the central vertical
axises.

evenly weighted masses in (1, 3, 4), then (1, 3, 10). Observe that KH + 1 different

inverses exist that have the aforementioned behavior.

Now, also similar to the sample covariance matrix model, a lot more can be

said in the case where H is composed of a finite number of masses. The exact

determination of the boundary of F can be determined. The result is summarized

as follows.

Theorem 7.10 ([Vallet et al., 2010]). Let BN be defined as in Theorem 7.9,

where F
1
nANAH

N = H is composed of K eigenvalues h1, . . . , hK (we implicitly
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assume N takes only values consistent with F
1
nANAH

N = H). Let φ be the function

on R \ {h1, . . . , hK} defined by

φ(w) = w(1− σ2cmH(w))2 + (1− c)σ2(1− σ2cmH(w)).

Then φ(w) has 2KF , KF ≤ K, local maxima, such that 1− σ2cmH(w) > 0 and

φ(w) > 0. We denote these maxima w−1 , w
+
1 , w

−
2 , w

+
2 , . . . , w

−
KF
, w+

KF
in the order

w−1 < 0 < w+
1 ≤ w−2 < w+

2 ≤ . . . ≤ w−KF < w+
KF
.

Furthermore, denoting x−k = φ(w−k ) and x+
k = φ(w+

k ), we have:

0 < x−1 < x+
1 ≤ x−2 < x+

2 ≤ . . . ≤ x−KF < x+
KF
.

The support SF of F is the union of the compact sets [x−k , x
+
k ], k ∈ {1, . . . ,KF }

SF =

KF⋃
k=1

[x−k , x
+
k ].

Note that this alternative approach, via the function φ(w), allows us to give

a deterministic expression of the subsets [x−k , x
+
k ] without the need to explicitly

invert mH in K + 1 different inverses, which is more convenient.

A cluster separability condition can also be established, based on the results

of Theorem 7.10. Namely, we say that the cluster in F corresponding to the

eigenvalue hk is disjoint from the neighboring clusters if there exists kF ∈
{1, . . . ,KF } such that

hk−1 < w−kF < hk < w+
kF

< hk+1

with convention h0 = 0, hK+1 =∞, and we say that kF is the cluster associated

with hk in F .

This concludes this chapter on spectral analysis of the sample covariance

matrix and the information plus noise models. As mentioned in the Introduction

of this chapter, these results will be applied to solve eigen-inference problems,

i.e. inverse problems concerning the eigenvalue or eigenvector structure of the

underlying matrix models. We will then move to the last chapter, Chapter 9,

of the theoretical part, which is concerned with limiting results on the extreme

eigenvalues for both the sample covariance matrix and information plus noise

models. These results will push further the theorems of exact separation by

establishing the limiting distributions of the extreme eigenvalues (although solely

in the Gaussian case) and also some properties on the corresponding eigenvectors.


