
6 Deterministic equivalents

6.1 Introduction to deterministic equivalents

The first applications of random matrix theory to the field of wireless

communications, e.g., [Tse and Hanly, 1999; Tse and Verdú, 2000; Verdú and

Shamai, 1999], originally dealt with the limiting behavior of some simple random

matrix models. In particular, these results are attractive as these limiting

behaviors only depend on the limiting eigenvalue distribution of the deterministic

matrices of the model. This is in fact the case of all the results we have derived

and introduced so far; for instance, Theorem 3.13 unveils the limiting behavior of

the e.s.d. of BN = AN + XH
NTNXN when both e.s.d. of AN and TN converge

toward given deterministic distribution functions and XN is random with i.i.d.

entries. However, for practical applications, it might turn out that:

(i) the e.s.d. of AN or TN do not necessarily converge to a limiting distribution;

(ii) even if the e.s.d. of the deterministic matrices in the model do all converge to

their respective l.s.d., the e.s.d. of the output matrix BN might not converge.

This is of course not the case in Theorem 3.13, but we will show that this may

happen for more involved models, e.g. the models treated by [Couillet et al.,

2011a] and [Hachem et al., 2007].

Let us introduce a simple scenario for which the e.s.d. of the random matrix

does not converge. This example is borrowed from [Hachem et al., 2007]. Define

XN ∈ C2N×2N as

XN =

(
X′N 0

0 0

)
(6.1)

with the entries of X′N being i.i.d. with zero mean and variance 1
N . Consider in

addition the matrix TN ∈ C2N×2N defined as

TN =


(

IN 0

0 0

)
, N even(

0 0

0 IN

)
, N odd.

(6.2)

Then, taking BN = (TN + XN )(TN + XN )H, FB2N and FB2N+1 both

converge weakly towards limit distributions, as N →∞, but those distributions



114 6. Deterministic equivalents

0 1 2 3 4 5
0

1

2

3

4

5

Eigenvalues

D
en

si
ty

0 1 2 3 4 5
0

1

2

3

4

5

Eigenvalues

D
en

si
ty

Figure 6.1 Histogram of the eigenvalues of BN = (TN + XN )(TN + XN )H modeled in
(6.1)–(6.2), for N = 1000 (top) and N = 1001 (bottom).

differ. Indeed, for N even, half of the spectrum of BN is formed of zeros, while

for N odd, half of the spectrum of BN is formed of ones, the rest of the spectrum

being a weighted version of the Marc̆enko–Pastur law. And therefore there does

not exist a limit to FBN , while FXNXH
N tends to the uniformly weighted sum of

the Marc̆enko–Pastur law and a mass in zero, and FTNTH
N tends to the uniformly

weighted sum of two masses in zero and one. This is depicted in Figure 6.1.

In such situations, there is therefore no longer any interest in looking at

the asymptotic behavior of e.s.d. Instead, we will be interested in finding

deterministic equivalents for the underlying model.
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Definition 6.1. Consider a series of Hermitian random matrices B1,B2, . . .,

with BN ∈ CN×N and a series f1, f2, . . . of functionals of 1× 1, 2× 2, . . .

matrices. A deterministic equivalent of BN for the functional fN is a series

B◦1,B
◦
2, . . . where B◦N ∈ CN×N , of deterministic matrices, such that

lim
N→∞

fN (BN )− fN (B◦N )→ 0

where the convergence will often be with probability one. Note that fN (B◦N )

does not need to have a limit as N →∞. We will similarly call gN , fN (B◦N )

the deterministic equivalent of fN (BN ), i.e. the deterministic series g1, g2, . . .

such that fN (BN )− gN → 0 in some sense.

We will often take fN to be the normalized trace of (BN − zIN )−1, i.e. the

Stieltjes transform of FBN . When fN (B◦N ) does not have a limit, the Marc̆enko–

Pastur method, developed in Section 3.2, will fail. This is because, at some point,

all the entries of the underlying matrices will have to be taken into account and

not only the diagonal entries, as in the proof we provided in Section 3.2. However,

the Marc̆enko–Pastur method can be tweaked adequately into a technique that

can cope with deterministic equivalents. In the following, we first introduce this

technique, which we will call the Bai and Silverstein technique, and then discuss

an alternative technique, known as the Gaussian method, which is particularly

suited to random matrix models with Gaussian entries. Hereafter, we detail these

methods by successively proving two (similar) results of importance in wireless

communications, see further Chapters 13–14.

6.2 Techniques for deterministic equivalents

6.2.1 Bai and Silverstein method

We first introduce a deterministic equivalent for the model

BN =

K∑
k=1

R
1
2

kXkTkX
H
kR

1
2

k + A

where the K matrices Xk have i.i.d. entries for each k, mutually independent

for different k, and the matrices T1, . . . ,TK , R1, . . . ,RK and A are ‘bounded’

in some sense to be defined later. This is more general than the model of

Theorem 3.13 in several respects:

(i) left product matrices Rk, 1 ≤ k ≤ K, have been introduced. As an exercise,

it can already be verified that a l.s.d. for the model R
1
2
1 X1T1X

H
1 R

1
2
1 + A may

not exist even if FR1 and FA both converge vaguely to deterministic limits,

unless some severe additional constraint is put on the eigenvectors of R1 and

A, e.g. R1 and A are codiagonalizable. This suggests that the Marc̆enko–

Pastur method will fail to treat this model;
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(ii) a sum of K such models is considered (K does not grow along with N here);

(iii) the e.s.d. of the (possibly random) matrices Tk and Rk are not required to

converge.

While the result to be introduced hereafter is very likely to hold for X1, . . . ,XK

with non-identically distributed entries (as long as they have common mean and

variance and some higher order moment condition), we only present here the

result where these entries are identically distributed, which is less general than

the conditions of Theorem 3.13.

Theorem 6.1 ([Couillet et al., 2011a]). Let K be some positive integer. For

some integer N , let

BN =

K∑
k=1

R
1
2

kXkTkX
H
kR

1
2

k + A

be an N ×N matrix with the following hypotheses, for all k ∈ {1, . . . ,K}

1. Xk =
(

1√
nk
Xk,ij

)
∈ CN×nk is such that the Xk,ij are identically distributed

for all N , i, j, independent for each fixed N , and E|Xk,11 − EXk,11|2 = 1;

2. R
1
2

k ∈ CN×N is a Hermitian non-negative definite square root of the non-

negative definite Hermitian matrix Rk;

3. Tk = diag(τk,1, . . . , τk,nk) ∈ Cnk×nk , nk ∈ N∗, is diagonal with τk,i ≥ 0;

4. the sequences FT1 , FT2 , . . . and FR1 , FR2 , . . . are tight, i.e. for all ε > 0, there

exists M > 0 such that 1− FTk(M) < ε and 1− FRk(M) < ε for all nk, N ;

5. A ∈ CN×N is Hermitian non-negative definite;

6. denoting ck = N/nk, for all k, there exist 0 < a < b <∞ for which

a ≤ lim inf
N
ck ≤ lim sup

N
ck ≤ b. (6.3)

Then, as all N and nk grow large, with ratio ck, for z ∈ C \ R+, the Stieltjes

transform mBN (z) of BN satisfies

mBN (z)−mN (z)
a.s.−→ 0 (6.4)

where

mN (z) =
1

N
tr

(
A +

K∑
k=1

∫
τkdF

Tk(τk)

1 + ckτkeN,k(z)
Rk − zIN

)−1

(6.5)

and the set of functions eN,1(z), . . . , eN,K(z) forms the unique solution to the K

equations

eN,i(z) =
1

N
tr Ri

(
A +

K∑
k=1

∫
τkdF

Tk(τk)

1 + ckτkeN,k(z)
Rk − zIN

)−1

(6.6)

such that sgn(=[eN,i(z)]) = sgn(=[z]), if z ∈ C \ R, and eN,i(z) > 0 if z is real

negative.
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Moreover, for any ε > 0, the convergence of Equation (6.4) is uniform over

any region of C bounded by a contour interior to

C \ ({z : |z| ≤ ε} ∪ {z = x+ iv : x > 0, |v| ≤ ε}) .

For all N , the function mN is the Stieltjes transform of a distribution function

FN , and

FBN − FN ⇒ 0

almost surely as N →∞.

In [Couillet et al., 2011a], Theorem 6.1 is completed by the following result.

Theorem 6.2. Under the conditions of Theorem 6.1, the scalars

eN,1(z), . . . , eN,K(z) are also explicitly given by:

eN,i(z) = lim
t→∞

etN,i(z)

where, for all i, e0
N,i(z) = −1/z and, for t ≥ 1

etN,i(z) =
1

N
tr Ri

A +

K∑
j=1

∫
τjdF

Tj (τj)

1 + cjτje
t−1
N,j(z)

Rj − zIN

−1

.

This result, which ensures the convergence of the classical fixed-point

algorithm for an adequate initial condition, is of fundamental importance for

practical purposes as it ensures that the eN,1(z), . . . , eN,K(z) can be determined

numerically in a deterministic way. Since the proof of Theorem 6.2 relies heavily

on the proof of Theorem 6.1, we will prove Theorem 6.2 later.

Several remarks are in order before we prove Theorem 6.1. We have given

much detail on the conditions for Theorem 6.1 to hold. We hereafter discuss the

implications of these conditions. Condition 1 requires that theXk,ij be identically

distributed across N, i, j, but not necessarily across k. Note that the identical

distribution condition could be further released under additional mild conditions

(such as all entries must have a moment of order 2 + ε, for some ε > 0), see

Theorem 3.13. Condition 4 introduces tightness requirements on the e.s.d. of Rk

and Tk. Tightness can be seen as the probabilistic equivalent to boundedness

for deterministic variables. Tightness ensures here that no mass of the FRk and

FTk escapes to infinity as n grows large. Condition 6 is more general than the

requirement that ck has a limit as it allows ck, for all k, to wander between two

positive values.

From a practical point of view, R
1
2

KXkT
1
2

k will often be used to model a

multiple antenna N × nk channel with i.i.d. entries with transmit and receive

correlations. From the assumptions of Theorem 6.1, the correlation matrices Rk

and Tk are only required to be ‘bounded’ in the sense of tightness of their e.s.d.

This means that, as the number of antennas grows, the eigenvalues of Rk and Tk
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can only blow up with increasingly low probability. If we increase the number N

of antennas on a bounded three-dimensional space, then the rough tendency is

for the eigenvalues of Tk and Rk to be all small except for a few of them, which

grow large but have a probability of order O(1/N), see, e.g., [Pollock et al., 2003].

In that context, Theorem 6.1 holds, i.e. for N →∞, FBN − FN ⇒ 0.

It is also important to remark that the matrices Tk are constrained to be

diagonal. This is unimportant when the matrices Xk are assumed Gaussian in

practical applications, as the Xk, being bi-unitarily invariant, can be multiplied

on the right by any deterministic unitary matrix without altering the final

result. This limitation is linked to the technique used for proving Theorem 6.1.

For mathematical completion, though, it would be convenient for the matrices

Tk to be unconstrained. We mention that Zhang and Bai [Zhang, 2006]

derive the limiting spectral distribution of the model BN = R
1
2
1 X1T1X

H
1 R

1
2
1 for

unconstrained Hermitian T1, using a different approach than that presented

below.

For practical applications, it will be easier in the following to write (6.6) in a

more symmetric way. This is discussed in the following remark.

Remark 6.1. In the particular case where A = 0, the K implicit Equations (6.6)

can be developed into the 2K linked equations

eN,i(z) =
1

N
tr Ri

(
−z

[
IN +

K∑
k=1

ēk(z)Rk

])−1

ēN,i(z) =
1

ni
tr Ti (−z [Ini + cieN,i(z)Ti])

−1 (6.7)

whose symmetric aspect is both more readable and more useful for practical

reasons that will be evidenced later in Chapters 13–14. As a consequence, mN (z)

in (6.5) becomes

mN (z) =
1

N
tr

(
−z

[
IN +

K∑
k=1

ēN,k(z)Rk

])−1

.

In the literature and, as a matter of fact, in some deterministic equivalents

presented later in this chapter, the variables eN,i(z) may be normalized by 1
ni

instead of 1
N in order to avoid carrying the factor ci in front of eN,i(z) in the

second fixed-point equation of (6.7). In the application chapters, Chapters 12–15,

depending on the situation, either one or the other convention will be taken.

We present hereafter the general techniques, based on the Stieltjes transform,

to prove Theorem 6.1 and other similar results introduced in this section.

As opposed to the proof of the Marc̆enko–Pastur law, we cannot prove that

that there exists a space of probability one over which mBN (z)→ m(z) for

all z ∈ C \ R+, for a certain limiting function m. Instead, we prove that there

exists a space of probability one over which mBN (z)−mN (z)→ 0 for all z, for

a certain series of Stieltjes transforms m1(z),m2(z), . . .. There are in general
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two main approaches to prove this convergence. The first option is a point-

wise approach that consists in proving the convergence for all z in a compact

subspace of C \ R+ having a limit point. Invoking Vitali’s convergence theorem,

similar to the proof of the Marc̆enko–Pastur law, we then prove the convergence

for all z ∈ C \ R+. In the coming proof, we will take z ∈ C+. In the proof of

Theorem 6.17, we will take z real negative. The second option is a functional

approach in which the objects under study are not mBN (z) and mN (z) taken

at a precise point z ∈ C \ R+ but rather mBN (z) and mN (z) seen as functions

lying in the space of Stieltjes transforms of distribution functions with support

on R+. The convergence mBN (z)−mN (z)
a.s.−→ 0 is in this case functional and

Vitali’s convergence theorem is not called for. This is the approach followed in,

e.g., [Hachem et al., 2007]. The latter is not detailed in this book.

The first step of the general proof, for either option, consists in determining

mN (z). For this, similar to the Marc̆enko–Pastur proof, we develop the expression

of mBN (z), seeking for a limiting result of the kind

mBN (z)− hN (mBN (z); z)
a.s.−→ 0

for some deterministic function hN , possibly depending on N . Such an expression

allows us to infer the nature of a deterministic approximation mN (z) of mBN (z)

as a particular solution of the equation in m

m− hN (m; z) = 0. (6.8)

This equation rarely has a unique point-wise solution, i.e. for every z, but often

has a unique functional solution z → mN (z) that is the Stieltjes transform of a

distribution function. If the point-wise approach is followed, a unique point-wise

solution of (6.8) can often be narrowed down to a certain subspace of C for z lying

in some other subspace of C. In Theorem 6.1, there exists a single solution in C+

when z ∈ C+, a single solution in C− when z ∈ C−, and a single positive solution

when z is real negative. Standard holomorphicity arguments on the function

mN (z) then ensure that z → mN (z) is the unique Stieltjes transform satisfying

hN (mN (z); z) = mN (z). When using the functional approach, this fact tends to

be proved more directly. In the coming proof of Theorem 6.1, we will prove point-

wise uniqueness by assuming, as per standard techniques, the alleged existence

of two distinct solutions and prove a contradiction. An alternative approach is

to prove that the fixed-point algorithm

m0 ∈ D

mt+1 = hN (mt; z), t ≥ 0

always converges to mN (z), where D is taken to be either R−, C+ or C−. This

approach, when valid (in some involved cases, convergence may not always arise),

is doubly interesting as it allows both (i) to prove point-wise uniqueness for z

taken in some subset of C \ R+, leading to uniqueness of the Stieltjes transform

using again holomorphicity arguments, and (ii) to provide an explicit algorithm
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to compute mN (z) for z ∈ D, which is in particular of interest for practical

applications when z = −σ2 < 0. In the proof of Theorem 6.1, we will introduce

both results for completion. In the proof of Theorem 6.17, we will directly proceed

to proving the convergence of the fixed-point algorithm for z real negative.

When the uniqueness of the Stieltjes transform mN (z) has been made clear,

the last step is to prove that, in the large N limit

mBN (z)−mN (z)
a.s.−→ 0.

This step is not so immediate. To this point, we indeed only know that

mBN (z)− hN (mBN (z); z)
a.s.−→ 0 and mN (z)− hN (mN (z); z) = 0. This does not

imply immediately that mBN (z)−mN (z)
a.s.−→ 0. If there are several point-wise

solutions to m− hN (m; z) = 0, we need to verify that mN (z) was chosen to be

the one that will eventually satisfy mBN (z)−mN (z)
a.s.−→ 0. This will conclude

the proof.

We now provide the specific proof of Theorem 6.1. In order to determine the

above function hN , we first develop the Marc̆enko–Pastur method (for simplicity

for K = 2 and A = 0). We will realize that this method fails unless all Rk and

A are constrained to be co-diagonalizable. To cope with this limitation, we will

introduce the more powerful Bai and Silverstein method, whose idea is to guess

along the derivations the suitable form of hN . In fact, as we will shortly realize,

the problem is slightly more difficult here as we will not be able to find such

a function hN (which may actually not exist at all in the first place). We will

however be able to find functions fN,i such that, for each i

eBN ,i(z)− fN,i(eBN ,1(z), . . . , eBN ,K(z); z)
a.s.−→ 0

where eBN ,i(z) ,
1
N tr Ri(BN − zIN )−1. We will then look for a function eN,i(z)

that satisfies

eN,i(z) = fN,i(eN,1(z), . . . , eN,K(z); z).

From there, it will be easy to determine a further function gN such that

mBN (z)− gN (eBN ,1(z), . . . , eBN ,K(z); z)
a.s.−→ 0

and

mN (z)− gN (eN,1(z), . . . , eN,K(z); z) = 0.

We will therefore have finally

mBN (z)−mN (z)
a.s.−→ 0.

Proof of Theorem 6.1. In order to have a first insight on what the deterministic

equivalent mN of mBN may look like, the Marc̆enko–Pastur method will be

applied with the (strong) additional assumption that A and all Rk, 1 ≤ k ≤ K,

are diagonal and that the e.s.d. FTk , FRk converge for all k as N grows large.

In this scenario, mBN has a limit when N →∞ and the method, however more

tedious than in the proof of the Marc̆enko–Pastur law, leads naturally to mN .
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Consider the case when K = 2, A = 0 for simplicity and denote Hk =

R
1
2

kXkT
1
2

k . Following similar steps as in the proof of the Marc̆enko–Pastur law,

we start with matrix inversion lemmas(
H1H

H
1 + H2H

H
2 − zIN

)−1

11

=

[
−z − z[hH

1 hH
2 ]

([
UH

1

UH
2

]
[U1U2]− zIn1+n2

)−1 [
h1

h2

]]−1

with the definition HH
i = [hiU

H
i ]. Using the block matrix inversion lemma, the

inner inversed matrix in this expression can be decomposed into four submatrices.

The upper-left n1 × n1 submatrix reads:(
−zUH

1 (U2U
H
2 − zIN−1)−1U1 − zIn1

)−1

while, for the second block diagonal entry, it suffices to revert all ones in twos and

vice-versa. Taking the limits, using Theorem 3.4 and Theorem 3.9, we observe

that the two off-diagonal submatrices will not play a role, and we finally have(
H1H

H
1 + H2H

H
2 − zIN

)−1

11

'
[
−z − zr11

1

n1
tr T1

(
−zHH

1 (H2H
H
2 − zIN )−1H1 − zIn1

)−1

−zr21
1

n2
tr T2

(
−zHH

2 (H1H
H
1 − zIN )−1H1 − zIn2

)−1
]−1

where the symbol “'” denotes some kind of yet unknown large N

convergence and where we denoted rij the jth diagonal entry of Ri.

Observe that we can proceed to a similar derivation for the matrix

T1

(
−zHH

1 (H2H
H
2 − zIN )−1H1 − zIn1

)−1
that now appears. Denoting now Hi =

[h̃iŨi], we have indeed[
T1

(
−zHH

1 (H2H
H
2 − zIN )−1H1 − zIn1

)−1
]

11

= τ11

[
−z − zh̃H

1

(
Ũ1Ũ

H
1 + H2H

H
2 − zIN

)−1

h̃1

]−1

' τ11

[
−z − zc1τ11

1

N
tr R1

(
H1H

H
1 + H2H

H
2 − zIN

)−1
]−1

with τij the jth diagonal entry of Ti. The limiting result here arises from the trace

lemma, Theorem 3.4 along with the rank-1 perturbation lemma, Theorem 3.9.

The same result holds when changing ones in twos.

We now denote by ei and ēi the (almost sure) limits of the random quantities

eBN ,i =
1

N
tr Ri

(
H1H

H
1 + H2H

H
2 − zIN

)−1

and

ēBN ,i =
1

N
tr Ti

(
−zHH

1 (H2H
H
2 − zIN )−1H1 − zIn1

)−1
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respectively, as FTi and FRi converge in the large N limit. These limits exist

here since we forced R1 and R2 to be co-diagonalizable. We find

ei = lim
N→∞

1

N
tr Ri (−zēBN ,iR1 − zēBN ,iR2 − zIN )−1

ēi = lim
N→∞

1

N
tr Ti (−zcieBN ,iTi − zIni)

−1

where the type of convergence is left to be determined. From this short calculus,

we can infer the form of (6.7).

This derivation obviously only provides a hint on the deterministic equivalent

for mN (z). It also provides the aforementioned observation that mN (z) is not

itself solution of a fixed-point equation, although eN,1(z), . . . , eN,K(z) are. To

prove Theorem 6.1, irrespective of the conditions imposed on R1, . . . ,RK ,

T1, . . . ,TK and A, we will successively go through four steps, given below.

For readability, we consider the case K = 1 and discard the useless indexes.

The generalization to K ≥ 1 is rather simple for most of the steps but requires

cumbersome additional calculus for some particular aspects. These pieces of

calculus are not interesting here, the reader being invited to refer to [Couillet

et al., 2011a] for more details. The four-step procedure is detailed below.

• Step 1. We first seek a function fN , such that, for z ∈ C+

eBN (z)− fN (eBN (z); z)
a.s.−→ 0

as N →∞, where eBN (z) = 1
N tr R(BN − zIN )−1. This function fN was

already inferred by the Marc̆enko–Pastur approach. Now, we will make this

step rigorous by using the Bai and Silverstein approach, as is done in,

e.g., [Dozier and Silverstein, 2007a; Silverstein and Bai, 1995]. Basically, the

function fN will be found using an inference procedure. That is, starting

from a very general form of fN , i.e. fN = 1
N tr RD−1 for some matrix D ∈

CN×N (not yet written as a function of z or eBN (z)), we will evaluate the

difference eBN (z)− fN and progressively discover which matrix D will make

this difference increasingly small for large N .

• Step 2. For fixed N , we prove the existence of a solution to the implicit

equation in the dummy variable e

fN (e; z) = e. (6.9)

This is often performed by proving the existence of a sequence eN,1, eN,2, . . .,

lying in a compact space such that fN (eN,k; z)− eN,k converges to zero, in

which case there exists at least one converging subsequence of eN,1, eN,2, . . .,

whose limit eN satisfies (6.9).

• Step 3. Still for fixed N , we prove the uniqueness of the solution of (6.9)

lying in some specific space and we call this solution eN (z). This is classically

performed by assuming the existence of a second distinct solution and by

exhibiting a contradiction.
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• Step 4. We finally prove that

eBN (z)− eN (z)
a.s.−→ 0

and, similarly, that

mBN (z)−mN (z)
a.s.−→ 0

as N →∞, with mN (z) , gN (eN (z); z) for some function gN .

At first, following the works of Bai and Silverstein, a truncation, centralization,

and rescaling step is required to replace the matrices X, R, and T by truncated

versions X̂, R̂, and T̂, respectively, such that the entries of X̂ have zero mean,

‖X̂‖ ≤ k log(N), for some constant k, ‖R̂‖ ≤ log(N) and ‖T̂‖ ≤ log(N). Similar

to the truncation steps presented in Section 3.2.2, it is shown in [Couillet et al.,

2011a] that these truncations do not restrict the generality of the final result for

{FT} and {FR} forming tight sequences, that is:

F R̂
1
2 X̂T̂X̂HR̂

1
2 − FR

1
2 XTXHR

1
2 ⇒ 0

almost surely, as N grows large. Therefore, we can from now on work with these

truncated matrices. We recall that the main interest of this procedure is to be

able to derive a deterministic equivalent (or l.s.d.) of the underlying random

matrix model without the need for any moment assumption on the entries of X,

by replacing the entries of X by truncated random variables that have moments

of all orders. Here, the interest is in fact two-fold, since, in addition to truncating

the entries of X, also the entries of T and R are truncated in order to be able

to prove results for matrices T and R that in reality have eigenvalues growing

very large but that will be assumed to have entries bounded by log(N). For

readability in the following, we rename X, T, and R the truncated matrices.

Remark 6.2. Alternatively, expected values can be used to discard the stochastic

character. This introduces an additional convergence step, which is the approach

followed by Hachem, Najim, and Loubaton in several publications, e.g., [Hachem

et al., 2007] and [Dupuy and Loubaton, 2009]. This additional step consists in

first proving the almost sure weak convergence of FBN −GN to zero, for GN
some auxiliary deterministic distribution (such as GN = E[FBN ]), before proving

the convergence GN − FN ⇒ 0.

Step 1. First convergence step
We start with the introduction of two fundamental identities.

Lemma 6.1 (Resolvent identity). For invertible A and B matrices, we have the

identity

A−1 −B−1 = −A−1(A−B)B−1.
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This can be verified easily by multiplying both sides on the left by A and on

the right by B (the resulting equality being equivalent to Lemma 6.1 for A and

B invertible).

Lemma 6.2 (A matrix inversion lemma, (2.2) in [Silverstein and Bai, 1995]).

Let A ∈ CN×N be Hermitian invertible, then, for any vector x ∈ CN and any

scalar τ ∈ C, such that A + τxxH is invertible

xH(A + τxxH)−1 =
xHA−1

1 + τxHA−1x
.

This is verified by multiplying both sides by A + τxxH from the right.

Lemma 6.1 is often referred to as the resolvent identity, since it will be

mainly used to take the difference between matrices of type (X− zIN )−1 and

(Y − zIN )−1, which we remind are called the resolvent matrices of X and Y,

respectively.

The fundamental idea of the approach by Bai and Silverstein is to guess the

deterministic equivalent of mBN (z) by writing it under the form 1
N tr D−1 at first,

where D needs to be determined. This will be performed by taking the difference

mBN (z)− 1
N tr D−1 and, along the lines of calculus, successively determining the

good properties D must satisfy so that the difference tends to zero almost surely.

We then start by taking z ∈ C+ and D ∈ CN×N some invertible matrix whose

normalized trace would ideally be close to mBN (z) = 1
N tr(BN − zIN )−1. We

then write

D−1 − (BN − zIN )−1 = D−1(A + R
1
2 XTXHR

1
2 − zIN −D)(BN − zIN )−1

(6.10)

using Lemma 6.1.

Notice here that, since BN is Hermitian non-negative definite, and z ∈ C+, the

term (BN − zIN )−1 has uniformly bounded spectral norm (bounded by 1/=[z]).

Since D−1 is desired to be close to (BN − zIN )−1, the same property should also

hold for D−1. In order for the normalized trace of (6.10) to be small, we need

therefore to focus exclusively on the inner difference on the right-hand side. It

seems then interesting at this point to write D , A− zIN + pNR for pN left to

be defined. This leads to

D−1 − (BN − zIN )−1

= D−1R
1
2

(
XTXH

)
R

1
2 (BN − zIN )−1 − pND−1R(BN − zIN )−1

= D−1
n∑
j=1

τjR
1
2 xjx

H
j R

1
2 (BN − zIN )−1 − pND−1R(BN − zIN )−1

where in the second equality we used the fact that XTXH =
∑n
j=1 τjxjx

H
j ,

with xj ∈ CN the jth column of X and τj the jth diagonal element of T.

Denoting B(j) = BN − τjR
1
2 xjx

H
j R

1
2 , i.e. BN with column j removed, and using
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Lemma 6.2 for the matrix B(j), we have:

D−1 − (BN − zIN )−1

=

n∑
j=1

τj
D−1R

1
2 xjx

H
j R

1
2 (B(j) − zIN )−1

1 + τjxHR
1
2 (B(j) − zIN )−1R

1
2 xj
− pND−1R(BN − zIN )−1.

Taking the trace on each side, and recalling that, for a vector x and a matrix

A, tr(AxxH) = tr(xHAx) = xHAx, this becomes

1

N
tr D−1 − 1

N
tr(BN − zIN )−1

=
1

N

n∑
j=1

τj
xH
j R

1
2 (B(j) − zIN )−1D−1R

1
2 xj

1 + τjxHR
1
2 (B(j) − zIN )−1R

1
2 xj
− pN

1

N
tr R(BN − zIN )−1D−1

(6.11)

where quadratic forms of the type xHAx appear.

Remembering the trace lemma, Theorem 3.4, which can a priori be applied to

the terms xH
j R

1
2 (B(j) − zIN )−1D−1R

1
2 xj since xj is independent of the matrix

R
1
2 (B(j) − zIN )−1D−1R

1
2 , we notice that by setting

pN =
1

n

n∑
j=1

τj

1 + τjc
1
N tr R(BN − zIN )−1

.

Equation (6.11) becomes

1

N
tr D−1 − 1

N
tr(BN − zIN )−1

=
1

N

n∑
j=1

τj

[
xH
j R

1
2 (B(j) − zIN )−1D−1R

1
2 xj

1 + τjxHR
1
2 (B(j) − zIN )−1R

1
2 xj
−

1
n tr R(BN − zIN )−1D−1

1 + cτj
1
N tr R(BN − zIN )−1

]
(6.12)

which is suspected to converge to zero as N grows large, since both the

numerators and the denominators converge to one another. Let us assume

for the time being that the difference effectively goes to zero almost surely.

Equation (6.12) implies

1

N
tr(BN − zIN )−1 − 1

N
tr

A +
1

n

n∑
j=1

τjR

1 + τjc
1
N tr R(BN − zIN )−1

− zIN

−1

a.s.−→ 0

which determines mBN (z) = 1
N tr(BN − zIN )−1 as a function of the trace

1
N tr R(BN − zIN )−1, and not as a function of itself. This is the observation

made earlier when we obtained a first hint on the form of mN (z) using the

Marc̆enko–Pastur method, according to which we cannot find a function fN
such that mBN (z)− fN (mBN (z), z)

a.s.−→ 0. Instead, running the same steps as
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above, it is rather easy now to observe that

1

N
tr RD−1 − 1

N
tr R(BN − zIN )−1

=
1

N

n∑
j=1

τj

[
xH
j R

1
2 (B(j) − zIN )−1RD−1R

1
2 xj

1 + τjxH
j R

1
2 (B(j) − zIN )−1R

1
2 xj
−

1
n tr R(BN − zIN )−1RD−1

1 + τj
c
N tr R(BN − zIN )−1

]

where ‖R‖ ≤ logN . Then, denoting eBN (z) , 1
N tr R(BN − zIN )−1, we suspect

to have also

eBN (z)− 1

N
tr R

A +
1

n

n∑
j=1

τj
1 + τjceBN (z)

R− zIN

−1

a.s.−→ 0

and

mBN (z)− 1

N
tr

A +
1

n

n∑
j=1

τj
1 + τjceBN (z)

R− zIN

−1

a.s.−→ 0

which is exactly what was required, i.e. eBN (z)− fN (eBN (z); z)
a.s.−→ 0 with

fN (e; z) =
1

N
tr R

A +
1

n

n∑
j=1

τj
1 + τjce

R− zIN

−1

and mBN (z)− gN (eBN (z); z)
a.s.−→ 0 with

gN (e; z) =
1

N
tr

A +
1

n

n∑
j=1

τj
1 + τjce

R− zIN

−1

.

We now prove that the right-hand side of (6.12) converges to zero almost

surely. This rather technical part justifies the use of the truncation steps and

is the major difference between the works of Bai and Silverstein [Dozier and

Silverstein, 2007a; Silverstein and Bai, 1995] and the works of Hachem et al.

[Hachem et al., 2007]. We first define

wN ,
n∑
j=1

τj
N

[
xH
j R

1
2 (B(j) − zIN )−1RD−1R

1
2 xj

1 + τjxH
j R

1
2 (B(j) − zIN )−1R

1
2 xj
−

1
n tr R(BN − zIN )−1RD−1

1 + τj
c
N tr R(BN − zIN )−1

]

which we then divide into four terms, in order to successively prove the

convergence of the numerators and the denominators. Write

wN =
1

N

n∑
j=1

τj
(
d1
j + d2

j + d3
j + d4

j

)
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where

d1
j =

xH
j R

1
2 (B(j) − zIN )−1RD−1R

1
2 xj

1 + τjxH
j R

1
2 (B(j) − zIN )−1R

1
2 xj
−

xH
j R

1
2 (B(j) − zIN )−1RD−1

(j)R
1
2 xj

1 + τjxH
j R

1
2 (B(j) − zIN )−1R

1
2 xj

d2
j =

xH
j R

1
2 (B(j) − zIN )−1RD−1

(j)R
1
2 xj

1 + τjxH
j R

1
2 (B(j) − zIN )−1R

1
2 xj
−

1
n tr R(B(j) − zIN )−1RD−1

(j)

1 + τjxH
j R

1
2 (B(j) − zIN )−1R

1
2 xj

d3
j =

1
n tr R(B(j) − zIN )−1RD−1

(j)

1 + τjxH
j R

1
2 (B(j) − zIN )−1R

1
2 xj
−

1
n tr R(BN − zIN )−1RD−1

1 + τjxH
j R

1
2 (B(j) − zIN )−1R

1
2 xj

d4
j =

1
n tr R(BN − zIN )−1RD−1

1 + τjxH
j R

1
2 (B(j) − zIN )−1R

1
2 xj
−

1
n tr R(BN − zIN )−1RD−1

1 + cτjeBN

where we introduced D(j) = A + 1
n

∑n
k=1

τk
1+τkceB(j)

(z)R− zIN , i.e. D with

eBN (z) replaced by eB(j)
(z). Under these notations, it is simple to show that

wN
a.s.−→ 0 since every term dkj can be shown to go fast to zero.

One of the difficulties in proving that the dkj tends to zero at a sufficiently fast

rate lies in providing inequalities for the quadratic terms of the type yH(A−
zIN )−1y present in the denominators. For this, we use Corollary 3.2, which

states that, for any non-negative definite matrix A, y ∈ CN and for z ∈ C+∣∣∣∣ 1

1 + τjyH(A− zIN )−1y

∣∣∣∣ ≤ |z|
=[z]

. (6.13)

Also, we need to ensure that D−1 and D−1
(j) have uniformly bounded spectral

norm. This unfolds from the following lemma.

Lemma 6.3 (Lemma 8 of [Couillet et al., 2011a]). Let D = A + iB + ivIN ,

with A ∈ CN×N Hermitian, B ∈ CN×N Hermitian non-negative and v > 0. Then

‖D‖ ≤ v−1.

Proof. Noticing that DDH = (A + iB)(A− iB) + v2IN + 2vB, the smallest

eigenvalue of DDH is greater than or equal to v2 and therefore ‖D−1‖ ≤ v−1.

At this step, we need to invoke the generalized trace lemma, Theorem 3.12.

From Theorem 3.12, (6.13), Lemma 6.3 and the inequalities due to the truncation

steps, we can then show that

τj |d1
j | ≤ ‖xj‖2

c log7N |z|3

N=[z]7

τj |d2
j | ≤

logN
∣∣∣xH
j R

1
2 (B(j) − zIN )−1RD−1

(j)R
1
2 xj − 1

n tr R(B(j) − zIN )−1RD−1
(j)

∣∣∣
=[z]|z|−1

τj |d3
j | ≤

|z| log3N

=[z]N

(
1

=[z]2
+
c|z|2 log3N

=[z]6

)

τj |d4
j | ≤

log4N
(∣∣∣xH

j R
1
2 (B(j) − zIN )−1R

1
2 xj − 1

n tr R(B(j) − zIN )−1
∣∣∣+ logN

N=[z]

)
=[z]3|z|−1

.
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Applying the trace lemma for truncated variables, Theorem 3.12, and classical

inequalities, there exists K̄ > 0 such that we have simultaneously

E|‖xj‖2 − 1|6 ≤ K̄ log12N

N3

and

E|xH
j R

1
2 (B(j) − zIN )−1RD−1

(j)R
1
2 xj −

1

n
tr R(B(j) − zIN )−1RD−1

(j)|
6

≤ K̄ log24N

N3=[z]12

and

E|xH
j R

1
2 (B(j) − zIN )−1R

1
2 xj −

1

n
tr R

1
2 (B(j) − zIN )−1R

1
2 |6

≤ K̄ log18N

N3=[z]6
.

All three moments above, when summed over the n indexes j and multiplied by

any power of logN , are summable. Applying the Markov inequality, Theorem 3.5,

the Borel–Cantelli lemma, Theorem 3.6, and the line of arguments used in

the proof of the Marc̆enko–Pastur law, we conclude that, for any k > 0,

logkN maxj≤n τjdj
a.s.−→ 0 as N →∞, and therefore:

eBN (z)− fN (eBN (z); z)
a.s.−→ 0

mBN (z)− gN (eBN (z); z)
a.s.−→ 0.

This convergence result is similar to that of Theorem (3.22), although in the

latter each side of the minus sign converges, when the eigenvalue distributions

of the deterministic matrices in the model converge. In the present case, even if

the series {FT} and {FR} converge, it is not necessarily true that either eBN (z)

or fN (eBN (z), z) converges.

We wish to go further here by showing that, for all finite N , fN (e; z) = e

has a solution (Step 2), that this solution is unique in some space (Step 3)

and that, denoting eN (z) this solution, eN (z)− eBN (z)
a.s.−→ 0 (Step 4). This will

imply naturally that mN (z) , gN (eN (z); z) satisfies mBN (z)−mN (z)
a.s.−→ 0, for

all z ∈ C+. Vitali’s convergence theorem, Theorem 3.11, will conclude the proof

by showing that mBN (z)−mN (z)
a.s.−→ 0 for all z outside the positive real half-

line.

Step 2. Existence of a solution
We now show that the implicit equation e = fN (e; z) in the dummy variable e has

a solution for each finiteN . For this, we use a special trick that consists in growing

the matrices dimensions asymptotically large while maintaining the deterministic

components untouched, i.e. while maintaining FR and FT the same. The idea is

to fix N and consider for all j > 0 the matrices T[j] = T⊗ Ij ∈ Cjn×jn, R[j] =
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R⊗ Ij ∈ CjN×jN and A[j] = A⊗ Ij ∈ CjN×jN . For a given x

f[j](x; z) ,
1

jN
tr R[j]

(
A[j] +

∫
τdFT[j](τ)

1 + cτx
R[j] − zINj

)−1

which is constant whatever j and equal to fN (x; z). Defining

B[j] = A[j] + R
1
2

[j]XT[j]X
HR

1
2

[j]

for X ∈ CNj×nj with i.i.d. entries of zero mean and variance 1/(nj)

eB[j]
(z) =

1

jN
tr R[j](A[j] + R

1
2

[j]XT[j]X
HR

1
2

[j] − zINj)
−1.

With the notations of Step 1, wNj → 0 as j →∞, for all sequences B[1],B[2], . . .

in a set of probability one. Take such a sequence. Noticing that both eB[j]
(z)

and the integrand τ
1+cτeB[j]

(z) of f[j](x, z) are uniformly bounded for fixed N

and growing j, there exists a subsequence of eB[1]
, eB[2]

, . . . over which they both

converge, when j →∞, to some limits e and τ(1 + cτe)−1, respectively. But since

wjN → 0 for this realization of eB[1]
, eB[2]

, . . ., for growing j, we have that e =

limj f[j](e, z). But we also have that, for all j, f[j](e, z) = fN (e, z). We therefore

conclude that e = fN (e, z) and we have found a solution.

Step 3. Uniqueness of the solution
Uniqueness is shown classically by considering two hypothetical solutions e ∈ C+

and e ∈ C+ to (6.6) and by showing then that e− e = γ(e− e), where |γ| must

be shown to be less than one. Indeed, taking the difference e− e, we have with

the resolvent identity

e− e =
1

N
tr RD−1

e −
1

N
tr RD−1

e

=
1

N
tr RD−1

e

(∫
cτ2(e− e)dFT(τ)

(1 + cτe)(1 + cτe)

)
RD−1

e

in which De and De are the matrix D with eBN (z) replaced by e and e,

respectively. This leads to the expression of γ as follows.

γ =

∫
cτ2

(1 + cτe)(1 + cτe)
dFT(τ)

1

N
tr D−1

e RD−1
e R.

Applying the Cauchy–Schwarz inequality to the diagonal elements of
1
ND−1

e R
∫ √

cτ
1+cτedF

T(τ) and of 1
ND−1

e R
∫ √

cτ
1+cτedF

T(τ), we then have

|γ| ≤

√∫
cτ2dFT(τ)

|1 + cτe|2N
tr D−1

e R(DH
e )−1R

√∫
cτ2dFT(τ)

|1 + cτe|2N
tr D−1

e R(De
H)−1R

,
√
α
√
α.

We now proceed to a parallel computation of =[e] and =[e] in the hope

of retrieving both expressions in the right-hand side of the above equation.
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Introducing the product (DH
e )−1DH

e in the trace, we first write e under the form

e =
1

N
tr

(
D−1
e R(DH

e )−1

(
A +

[∫
τ

1 + cτe∗
dFT(τ)

]
R− z∗IN

))
. (6.14)

Taking the imaginary part, this is:

=[e] =
1

N
tr

(
D−1
e R(DH

e )−1

([∫
cτ2=[e]

|1 + cτe|2
dFT(τ)

]
R + =[z]IN

))
= =[e]α+ =[z]β

where

β ,
1

N
tr D−1

e R(DH
e )−1

is positive whenever R 6= 0, and similarly =[e] = α=[e] + =[z]β, β > 0 with

β ,
1

N
tr D−1

e R(DH
e )−1.

Notice also that

α =
α=[e]

=[e]
=

α=[e]

α=[e] + β=[z]
< 1

and

α =
α=[e]

=[e]
=

α=[e]

α=[e] + β=[z]
< 1.

As a consequence

|γ| ≤
√
α
√
α =

√
=[e]α

=[e]α+ =[z]β

√
=[e]α

=[e]α+ =[z]β
< 1

as requested. The case R = 0 is easy to verify.

Remark 6.3. Note that this uniqueness argument is slightly more technical when

K > 1. In this case, uniqueness of the vector e1, . . . , eK (under the notations of

Theorem 6.1) needs be proved. Denoting e , (e1, . . . , eK)T, this requires to show

that, for two solutions e and e of the implicit equation, (e− e) = Γ(e− e), where

Γ has spectral radius less than one. To this end, a possible approach is to show

that |Γij | ≤ α
1
2
ijα

1
2
ij , for αij and αij defined similar as in Step 3. Then, applying

some classical matrix lemmas (Theorem 8.1.18 of [Horn and Johnson, 1985] and

Lemma 5.7.9 of [Horn and Johnson, 1991]), the previous inequality implies that

‖Γ‖ ≤ ‖(α
1
2
ijα

1
2
ij)ij‖

where (α
1
2
ijα

1
2
ij)ij is the matrix with (i, j) entry α

1
2
ijα

1
2
ij and the norm is the matrix

spectral norm. We further have that

‖(α
1
2
ijα

1
2
ij)ij‖ ≤ ‖A‖

1
2 ‖A‖

1
2
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where A and A are now matrices with (i, j) entry αij and αij , respectively.

The multi-dimensional problem therefore boils down to proving that ‖A‖ < 1

and ‖A‖ < 1. This unfolds from yet another classical matrix lemma (Theorem

2.1 of [Seneta, 1981]), which states in our current situation that, if we have the

vectorial relation

=[e] = A=[e] + =[z]b

with =[e] and b vectors of positive entries and =[z] > 0, then ‖A‖ < 1. The above

relation generalizes, without much difficulty, the relation =[e] = =[e]α+ =[z]β

obtained above.

Step 4. Final convergence step
We finally need to show that eN − eBN (z)

a.s.−→ 0. This is performed using a

similar argument as for uniqueness, i.e. eN − eBN (z) = γ(eN − eBN (z)) + wN ,

where wN → 0 as N →∞ and |γ| < 1; this is true for any eBN (z) taken from

a space of probability one such that wN → 0. The major difficulty compared to

the previous proof is to control precisely wN .

The details are as follows. We will show that, for any ` > 0, almost surely

lim
N→∞

log`N(eBN − eN ) = 0. (6.15)

Let αN , βN be the values as above for which =[eN ] = =[eN ]αN + =[z]βN . Using

truncation inequalities

=[eN ]αN
βN

≤ =[eN ]c logN

∫
τ2

|1 + cτeN |2
dFT(τ)

= − logN=
[∫

τ

1 + cτeN
dFT(τ)

]
≤ log2N |z|=[z]−1.

Therefore

αN =
=[eN ]αN

=[eN ]αN + =[z]βN

=
=[eN ]αNβN

=[z] + =[eN ]αNβN

≤ log2N |z|
=[z]2 + log2N |z|

. (6.16)

We also have

eBN (z) =
1

N
tr D−1R− wN .
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We write as in Step 3

=[eBN ]

=
1

N
tr

(
D−1R(DH)−1

([∫
cτ2=[eBN ]

|1 + cτeBN |2
dFT(τ)

]
R + =[z]IN

))
−=[wN ]

, =[eBN ]αBN + =[z]βBN −=[wN ].

Similarly to Step 3, we have eBN − eN = γ(eBN − eN ) + wN , where now

|γ| ≤ √αBN

√
αN .

Fix an ` > 0 and consider a realization of BN for which wN log`
′
N → 0, where

`′ = max(`+ 1, 4) and N large enough so that

|wN | ≤
=[z]3

4c|z|2 log3N
. (6.17)

As opposed to Step 2, the term =[z]βBN −=[wN ] can be negative. The idea is to

verify that in both scenarios where =[z]βBN −=[wN ] is positive and uniformly

away from zero, or is not, the conclusion |γ| < 1 holds. First suppose βBN ≤
=[z]2

4c|z|2 log3N
. Then by the truncation inequalities, we get

αBN ≤ c=[z]−2|z|2 log3NβBN ≤
1

4

which implies |γ| ≤ 1
2 . Otherwise we get from (6.16) and (6.17)

|γ| ≤
√
αN

√
=[eBN ]αBN

=[eBN ]αBN + =[z]βBN −=[wN ]

≤

√
logN |z|

=[z]2 + logN |z|
.

Therefore, for all N large

log`N |eBN − eN | ≤
(log`N)wN

1−
(

log2N |z|
=[v]2+log2N |z|

) 1
2

≤ 2=[z]−2(=[z]2 + log2N |z|)(log`N)wN

→ 0

as N →∞, and (6.15) follows. Once more, the multi-dimensional case is much

more technical; see [Couillet et al., 2011a] for details.

We finally show

mBN −mN
a.s.−→ 0 (6.18)

as N →∞. Since mBN = 1
N tr D−1

N − w̃N (for some w̃N defined similar to wN ),

we have

mBN −mN = γ(eBN − eN )− w̃N
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where now

γ =

∫
cτ2

(1 + cτeBN )(1 + cτeN )
dFT(τ)

1

N
tr D−1RD−1

N .

From the truncation inequalities, we obtain |γ| ≤ c|z|2=[z]−4 log3N . From (6.15)

and the fact that log`Nw̃N
a.s.−→ 0, we finally have (6.18).

In the proof of Theorem 6.17, we will use another technique for this last

convergence part, which, instead of controlling precisely the behavior of wN ,

consists in proving the convergence on a subset of C \ R+ that does not

meet strong difficulties. Using Vitali’s convergence theorem, we then prove the

convergence for all z ∈ C \ R+. This approach is usually much simpler and is in

general preferred.

Returning to the original non-truncated assumptions on X, T, and R, for each

of a countably infinite collection of z with positive imaginary part, possessing a

limit point with positive imaginary part, we have (6.18). Therefore, by Vitali’s

convergence theorem, Theorem 3.11, and similar arguments as for the proof of

the Marc̆enko–Pastur law, for any ε > 0, we have exactly that with probability

one mBN (z)−mN (z)
a.s.−→ 0 uniformly in any region of C bounded by a contour

interior to

C \ ({z : |z| ≤ ε} ∪ {z = x+ iv : x > 0, |v| ≤ ε}) . (6.19)

This completes the proof of Theorem 6.1.

The previous proof is lengthy and technical, when it comes to precisely working

out the inequalities based on the truncation steps. Nonetheless, in spite of these

difficulties, the line of reasoning in this example can be generalized to more exotic

models, which we will introduce also in this section. Moreover, we will briefly

introduce alternative techniques of proof, such as the Gaussian method, which

will turn out to be based on similar approaches, most particularly for Step 2 and

Step 3.

We now prove Theorem 6.2, which we recall provides a deterministic way

to recover the unique solution vector eN,1(z), . . . , eN,K(z) of the implicit

Equation (6.6). The arguments of the proof are again very classical and can

be reproduced for different random matrix models.

Proof of Theorem 6.2. The convergence of the fixed-point algorithm follows the

same line of proof as the uniqueness (Step 2) of Theorem 6.1. For simplicity, we

consider also here that K = 1. First assume =[z] > 0. If we consider the difference

et+1
N − etN , instead of e− e, the same development as in the previous proof leads

to

et+1
N − etN = γt(e

t
N − et−1

N ) (6.20)

for t ≥ 1, with γt defined by

γt =

∫
cτ2

(1 + cτet−1
N )(1 + cτetN )

dFT(τ)
1

N
tr D−1

t−1RD−1
t R (6.21)
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where Dt is defined as D with eBN (z) replaced by etN (z). From the Cauchy–

Schwarz inequality and the different truncation bounds on the Dt, R, and T

matrices, we have:

γt ≤
|z|2c
=[z]4

log4N

N
. (6.22)

This entails (
et+1
N − etN

)
< K̄

|z|2c
=[z]4

log4N

N

(
etN − et−1

N

)
(6.23)

for some constant K̄.

Let 0 < ε < 1, and take now a countable set z1, z2, . . . possessing a limit point,

such that

K̄
|zk|2c
=[zk]4

log4N

N
< 1− ε

for all zk (this is possible by letting =[zk] > 0 be large enough). On this

countable set, the sequences e1
N , e

2
N , . . . are therefore Cauchy sequences on CK :

they all converge. Since the etN are holomorphic functions of z and bounded

on every compact set included in C \ R+, from Vitali’s convergence theorem,

Theorem 3.11, etN converges on such compact sets.

From the fact that we forced the initialization step to be e0
N = −1/z, e0

N is

the Stieltjes transform of a distribution function at point z. It now suffices to

verify that, if etN = etN (z) is the Stieltjes transform of a distribution function at

point z, then so is et+1
N . From Theorem 3.2, this requires to ensure that: (i) z ∈

C+ and etN (z) ∈ C+ implies et+1
N (z) ∈ C+, (ii) z ∈ C+ and zetN (z) ∈ C+ implies

zet+1
N (z) ∈ C+, and (iii) limy→∞−yetN (iy) <∞ implies that limy→∞−yetN (iy) <

∞. These properties follow directly from the definition of etN . It is not difficult

to show also that the limit of etN is a Stieltjes transform and that it is solution

to (6.6) when K = 1. From the uniqueness of the Stieltjes transform, solution

to (6.6) (this follows from the point-wise uniqueness on C+ and the fact that

the Stieltjes transform is holomorphic on all compact sets of C \ R+), we then

have that etN converges for all j and z ∈ C \ R+, if e0
N is initialized at a Stieltjes

transform. The choice e0
N = −1/z follows this rule and the fixed-point algorithm

converges to the correct solution.

This concludes the proof of Theorem 6.2.

From Theorem 6.1, we now wish to provide deterministic equivalents for other

functionals of the eigenvalues of BN than the Stieltjes transform. In particular,

we wish to prove that ∫
f(x)d(FBN − FN )(x)

a.s.−→ 0

for some function f . This is valid for all bounded continuous f from the

dominated convergence theorem, which we recall presently.
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Theorem 6.3 (Theorem 16.4 in [Billingsley, 1995]). Let fN (x) be a sequence of

real measurable functions converging point-wise to the measurable function f(x),

and such that |fN (x)| ≤ g(x) for some measurable function g(x) with
∫
g(x)dx <

∞. Then, as N →∞ ∫
fN (x)dx→

∫
f(x)dx.

In particular, if FN ⇒ F , the FN and F being d.f., for any continuous bounded

function h(x) ∫
h(x)dFN (x)→

∫
h(x)dF (x).

However, for application purposes, such as the calculus of MIMO capacity, see

Chapter 13, we would like in particular to take f to be the logarithm function.

Proving such convergence results is not at all straightforward since f is here

unbounded and because FBN may not have bounded support for all large N .

This requires additional tools which will be briefly evoked here and which will

be introduced in detail in Chapter 7.

We have the following result [Couillet et al., 2011a].

Theorem 6.4. Let x be some positive real number and f be some continuous

function on the positive half-line. Let BN be a random Hermitian matrix as

defined in Theorem 6.1 with the following additional assumptions.

1. There exists α > 0 and a sequence rN , such that, for all N

max
1≤k≤K

max(λTk
rN+1, λ

Rk
rN+1) ≤ α

where λX
1 ≥ . . . ≥ λX

N denote the ordered eigenvalues of the N ×N matrix X.

2. Denoting bN an upper-bound on the spectral norm of the Tk and Rk, k ∈
{1, . . . ,K}, and β some real, such that β > K(b/a)(1 +

√
a)2 (with a and b

such that a < lim infN ck ≤ lim supN ck < b for all k), then aN = b2Nβ satisfies

rNf (aN ) = o(N). (6.24)

Then, for large N , nk∫
f(x)dFBN (x)−

∫
f(x)dFN (x)

a.s.−→ 0

with FN defined in Theorem 6.1.

In particular, if f(x) = log(x), under the assumption that (6.24) is fulfilled,

we have the following corollary.
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Corollary 6.1. For A = 0, under the conditions of Theorem 6.4 with f(t) =

log(1 + xt), the Shannon transform VBN of BN , defined for positive x as

VBN (x) =

∫ ∞
0

log(1 + xλ)dFBN (λ)

=
1

N
log det (IN + xBN ) (6.25)

satisfies

VBN (x)− VN (x)
a.s.−→ 0

where VN (x) is defined as

VN (x) =
1

N
log det

(
IN + x

K∑
k=1

Rk

∫
τkdF

Tk(τk)

1 + ckeN,k(−1/x)τk

)

+
K∑
k=1

1

ck

∫
log (1 + ckeN,k(−1/x)τk) dFTk(τk)

+
1

x
mN (−1/x)− 1

with mN and eN,k defined by (6.5) and (6.6), respectively.

Again, it is more convenient, for readability and for the sake of practical

applications in Chapters 12–15 to remark that

VN (x) =
1

N
log det

(
IN +

K∑
k=1

ēN,k(−1/x)Rk

)

+

K∑
k=1

1

N
log det (Ink + ckeN,k(−1/x)Tk)

− 1

x

K∑
k=1

ēN,k(−1/x)eN,k(−1/x) (6.26)

with ēN,k defined in (6.7).

Observe that the constraint

max
1≤k≤K

max(λTk
rN+1, λ

Rk
rN+1) ≤ α

is in general not strong, as the FTk and the FRk are already known to form

tight sequences as N grows large. Therefore, it is expected that only o(N) largest

eigenvalues of the Tk and Rk grow large. Here, we impose only a slightly stronger

constraint that does not allow for the smallest eigenvalues to exceed a constant

α. For practical applications, we will see in Chapter 13 that this constraint is met

for all usual channel models, even those exhibiting strong correlation patterns

(such as densely packed three-dimensional antenna arrays).
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Proof of Theorem 6.4 and Corollary 6.1. The only problem in translating the

weak convergence of the distribution function FBN − FN in Theorem 6.1 to

the convergence of
∫
fd[FBN − FN ] in Theorem 6.4 is that we must ensure

that f behaves nicely. If f were bounded, no restriction in the hypothesis of

Theorem 6.1 would be necessary and the weak convergence of FBN − FN to zero

gives the result. However, as we are particularly interested in the unbounded,

though slowly increasing, logarithm function, this no longer holds. In essence, the

proof consists first in taking a realization B1,B2, . . . for which the convergence

FBN − FN ⇒ 0 is satisfied. Then we divide the real positive half-line in two

sets [0, d] and (d,∞), with d an upper bound on the 2KrN th largest eigenvalue

of BN for all large N , which we assume for the moment does exist. For any

continuous f , the convergence result is ensured on the compact [0, d]; if the largest

eigenvalue λ1 of BN is moreover such that 2KrNf(λ1) = o(N), the integration

over (d,∞) for the measure dFBN is of order o(1), which is negligible in the final

result for large N . Moreover, since FN (d)− FBN (d)→ 0, we also have that, for

all large N , 1− FN (d) =
∫∞
d dFN ≤ 2KrN/N , which tends to zero. This finally

proves the convergence of
∫
fd[FBN − FN ]. The major difficulty here lies in

proving that there exists such a bound on the 2KrN th largest eigenvalue of BN .

The essential argument that validates the result is the asymptotic absence of

eigenvalues outside the support of the sample covariance matrix. This is a result

of utmost importance (here, we cannot do without it) which will be presented

later in Section 7.1. It can be exactly proved that, almost surely, the largest

eigenvalue of XkX
H
k is uniformly bounded by any constant C > (1 +

√
b)2 for

all large N , almost surely. In order to use the assumptions of Theorem 6.4, we

finally need to introduce the following eigenvalue inequality lemma.

Lemma 6.4 ([Fan, 1951]). Consider a rectangular matrix A and let sAi denote

the ith largest singular value of A, with sAi = 0 whenever i > rank(A). Let m, n

be arbitrary non-negative integers. Then for A, B rectangular of the same size

sA+B
m+n+1 ≤ sAm+1 + sBn+1

and for A, B rectangular for which AB is defined

sAB
m+n+1 ≤ sAm+1s

B
n+1.

As a corollary, for any integer r ≥ 0 and rectangular matrices A1, . . . ,AK , all

of the same size

sA1+...+AK

Kr+1 ≤ sA1
r+1 + . . .+ sAK

r+1.

Since λTk
i and λRk

i are bounded by α for i ≥ rN + 1 and that ‖XkX
H
k‖ is

bounded by C, we have from Lemma 6.4 that the 2KrN th largest eigenvalue of

BN is uniformly bounded by CKα2. We can then take d any positive real, such

that d > CKα2, which is what we needed to show, up to some fine tuning on

the final bound.
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As for the explicit form of
∫

log(1 + xt)dFN (t) given in (6.26), it results

from a similar calculus as in Theorem 4.10. Precisely, we expect the Shannon

transform to be somehow linked to 1
N log det

(
IN +

∑K
k=1 ēN,k(−z)Rk

)
and

1
N log det (Ink + ckeN,k(−z)Tk). We then need to find a connection between the

derivatives of these functions along z and 1
z −mN (−z), i.e. the derivative of the

Shannon transform. Notice that

1

z
−mN (−z) =

1

N

(zIN )−1 −

(
z

[
IN +

K∑
k=1

ēN,kRk

])−1


=

K∑
k=1

ēN,k(−z)eN,k(−z).

Since the Shannon transform VN (x) satisfies VN (x) =
∫∞

1/x[w−1 −mN (−w)]dw,

we need to find an integral form for
∑K
k=1 ēN,k(−z)eN,k(−z). Notice now that

d

dz

1

N
log det

(
IN +

K∑
k=1

ēN,k(−z)Rk

)
= −z

K∑
k=1

eN,k(−z)ē′N,k(−z)

d

dz

1

N
log det (Ink + ckeN,k(−z)Tk) = −ze′N,k(−z)ēN,k(−z)

and

d

dz

(
z

K∑
k=1

ēN,k(−z)eN,k(−z)

)
=

K∑
k=1

ēN,k(−z)eN,k(−z)

− z
K∑
k=1

(
ē′N,k(−z)eN,k(−z) + ēN,k(−z)e′N,k(−z)

)
.

Combining the last three equations, we have:

K∑
k=1

ēN,k(−z)eN,k(−z)

=
d

dz

[
− 1

N
log det

(
IN +

K∑
k=1

ēN,k(−z)Rk

)

−
K∑
k=1

1

N
log det (Ink + ckeN,k(−z)Tk) + z

K∑
k=1

ēN,k(−z)eN,k(−z)

]
which after integration leads to∫ ∞

z

(
1

w
−mN (−w)

)
dw

=
1

N
log det

(
IN +

K∑
k=1

ēN,k(−z)Rk

)
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+

K∑
k=1

1

N
log det (Ink + ckeN,k(−z)Tk)− z

K∑
k=1

ēN,k(−z)eN,k(−z)

which is exactly the right-hand side of (6.26) for z = −1/x.

Theorem 6.4 and Corollary 6.1 have obvious direct applications in wireless

communications since the Shannon transform VBN defined above is the per-

dimension capacity of the multi-dimensional channel, whose model is given

by
∑K
k=1 R

1
2

kXkT
1
2

k . This is the typical model used for evaluating the rate

region of a narrowband multiple antenna multiple access channel. This topic

is discussed and extended in Chapter 14, e.g. to the question of finding the

transmit covariance matrix that maximizes the deterministic equivalent (hence

the asymptotic capacity).

6.2.2 Gaussian method

The second result that we present is very similar in nature to Theorem 6.1 but

instead of considering sums of matrices of the type

BN =

K∑
k=1

R
1
2

kXkTkX
H
kR

1
2

k

we treat the question of matrices of the type

BN =

(
K∑
k=1

R
1
2

kXkT
1
2

k

)(
K∑
k=1

R
1
2

kXkT
1
2

k

)H

.

To obtain a deterministic equivalent for this model, the same technique as before

could be used. Instead, we develop an alternative method, known as the Gaussian

method, when the Xk have Gaussian i.i.d. entries, for which fast convergence rates

of the functional of the mean e.s.d. can be proved.

Theorem 6.5 ([Dupuy and Loubaton, 2009]). Let K be some positive integer.

For two positive integers N,n, denote

BN =

(∑
k=1

R
1
2

kXkT
1
2

k

)(∑
k=1

R
1
2

kXkT
1
2

k

)H

where the notations are the same as in Theorem 6.1, with the additional

assumptions that n1 = . . . = nK = n, the random matrix Xk ∈ CN×nk has

independent Gaussian entries (of zero mean and variance 1/n) and the spectral

norms ‖Rk‖ and ‖Tk‖ are uniformly bounded with N . Note additionally that,

from the unitarily invariance of Xk, Tk is not restricted to be diagonal. Then,

denoting as above mBN the Stieltjes transform of BN , we have

N (E[mBN (z)]−mN (z)) = O (1/N)
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with mN defined, for z ∈ C \ R+, as

mN (z) =
1

N
tr

(
−z

[
IN +

K∑
k=1

ēN,k(z)Rk

])−1

where (ēN,1, . . . , ēN,K) is the unique solution of

eN,i(z) =
1

n
tr Ri

(
−z

[
IN +

K∑
k=1

ēN,k(z)Rk

])−1

ēN,i(z) =
1

n
tr Ti

(
−z

[
In +

K∑
k=1

eN,k(z)Tk

])−1

(6.27)

all with positive imaginary part if z ∈ C+, negative imaginary part if z ∈ C−,

and positive if z < 0.

Remark 6.4. Note that, due to the Gaussian assumption on the entries of

Xk, the convergence result N (E[mBN (z)]−mN (z))→ 0 is both (i) looser than

the convergence result mBN (z)−mN (z)
a.s.−→ 0 of Theorem 6.1 in that it is

only shown to converge in expectation, and (ii) stronger in the sense that a

convergence rate of O(1/N) of the Stieltjes transform is ensured. Obviously,

Theorem 6.1 also implies E[mBN (z)]−mN (z)→ 0. In fact, while this was not

explicitly mentioned, a convergence rate of 1/(log(N)p), for all p > 0, is ensured

in the proof of Theorem 6.1. The main applicative consequence is that, while

the conditions of Theorem 6.1 allow us to deal with instantaneous or quasi-

static channel models Hk = R
1
2

kXkT
1
2

k , the conditions of Theorem 6.5 are only

valid from an ergodic point of view. However, while Theorem 6.1 can only deal

with the per-antenna capacity of a quasi-static (or ergodic) MIMO channel,

Theorem 6.5 can deal with the total ergodic capacity of MIMO channels, see

further Theorem 6.8.

Of course, while this has not been explicitly proved in the literature, it is

to be expected that Theorem 6.5 holds also under the looser assumptions and

conclusions of Theorem 6.1 and conversely.

The proof of Theorem 6.5 needs the introduction of new tools, gathered

together into the so-called Gaussian method. Basically, the Gaussian method

relies on two main ingredients:

• an integration by parts formula, borrowed from mathematical physics [Glimm

and Jaffe, 1981]

Theorem 6.6. Let x = [x1, . . . , xN ]T ∼ CN(0,R) be a complex Gaussian

random vector and f(x) , f(x1, . . . , xN , x
∗
i , . . . , x

∗
N ) be a continuously

differentiable functional, the derivatives of which are all polynomially bounded.
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We then have the integration by parts formula

E[xkf(x)] =

N∑
i=1

rkiE

[
∂f(x)

∂x∗i

]
with rki the entry (k, i) of R.

This relation will be used to derive directly the deterministic equivalent, which

substitutes to the ‘guess-work’ step of the proof of Theorem 6.1. Note in

particular that it requires us to use all entries of R here and not simply its

eigenvalues. This generalizes the Marc̆enko–Pastur method that only handled

diagonal entries. However, as already mentioned, the introduction of the

expectation in front of xkf(x) cannot be avoided;

• the Nash–Poincaré inequality

Theorem 6.7 ([Pastur, 1999]). Let x and f be as in Theorem 6.6, and let

∇zf = [∂f/∂z1, . . . , ∂f/∂zN ]T. Then, we have the following Nash–Poincaré

inequality

var(f(x)) ≤ E
[
∇xf(x)TR(∇xf(x))∗

]
+ E

[
(∇x∗f(x))HR∇x∗f(x)

]
.

This result will be used to bound the deviations of the random matrices under

consideration.

For more details on Gaussian methods, see [Hachem et al., 2008a]. We now

give the main steps of the proof of Theorem 6.5.

Proof of Theorem 6.5. We first consider E(BN − zIN )−1. Noting that

−z(BN − zIN )−1 = IN − (BN − zIN )−1BN , we apply the integration by

parts, Theorem 6.6, in order to evaluate the matrix

E
[
(BN − zIN )−1BN

]
.

To this end, we wish to characterize every entry

E
[(

(BN − zIN )−1BN

)
aa′

]
=

∑
1≤k,k̄≤K

E
[(

(BN − zIN )−1R
1
2

k (XkT
1
2

kR
1
2

k̄
)(Xk̄T

1
2

k̄
)H
)
aa′

]
.

This is however not so simple and does not lead immediately to a nice form

enabling us to use the Gaussian entries of the Xk as the inputs of Theorem 6.6.

Instead, we will consider the multivariate expression

E
[
(BN − zIN )−1

ab (R
1
2

kXkT
1
2

k )cd(R
1
2

k̄
Xk̄T

1
2

k̄
)Hea′
]

for some k, k̄ ∈ {1, . . . ,K} and given a, a′, b, c, d, e. This enables us to somehow

unfold easily the matrix products before we set b = c and d = e, and simplify the

management of the Gaussian variables. This being said, we take the vector x of

Theorem 6.6 to be the vector whose entries are denoted

xk,c,d , x(k−1)Nn+(c−1)N+d = (R
1
2

kXkT
1
2

k )cd
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for all k, c, d. This is therefore a vector of total dimension KNn that collects

the entries of all Xk and accounts for the (Kronecker-type) correlation profile

due to Rk and Tk. The functional f(x) = fa,b(x) of Theorem 6.6 is taken to be

the KNn-dimensional vector y(a,b) with entry

y
(a,b)

k̄,a′,e
, y(a,b)

(k̄−1)Nn+(a′−1)N+e
= (BN − zIN )−1

ab (R
1
2

k̄
Xk̄T

1
2

k̄
)Hea′

for all k̄, e, a′. This expression depends on x through (BN − zIN )−1
ab and through

x∗
k̄,a′,e

= (R
1
2

k̄
Xk̄T

1
2

k̄
)Hea′ .

We therefore no longer take b = c or d = e as matrix products would require.

This trick allows us to apply seamlessly the integration by parts formula.

Applying Theorem 6.6, we have that the entry (k̄ − 1)Nn+ (a′ − 1)N + e of

E[xk,c,dfa,b(x)], i.e. E[xk,c,dy
(a,b)

k̄,a′,e
], is given by:

E[(BN − zIN )−1
ab (R

1
2

kXkT
1
2

k )cd(R
1
2

k̄
Xk̄T

1
2

k̄
)Hea′ ]

=
∑
k′,c′,d′

E
[
xk,c,dx

∗
k′,c′,d′

]
E

∂
(

(BN − zIN )−1
ab x

∗
k̄,a′,e

)
∂x∗k′,c′,d′


for all choices of a, b, c, d, e, a′. At this point, we need to proceed to cumbersome

calculus, that eventually leads to a nice form when setting b = c and d = e.

This gives an expression of E
[(

(BN − zIN )−1R
1
2

kXkT
1
2

kR
1
2

k̄
Xk̄T

1
2

k̄

)
aa′

]
, which

is then summed over all couples k, k̄ to obtain

E
[(

(BN − zIN )−1BN

)
aa′

]
= −z

K∑
k=1

ēBN ,k(z)E
[(

(BN − zIN )−1Rk

)
aa′

]
+ wN,aa′

where we defined

ēBN ,k(z) ,
1

n
tr Tk

(
−z

[
In +

K∑
k=1

eBN ,kTk

])−1

eBN ,k(z) , E

[
1

N
tr Rk(BN − zIN )−1

]
and wN,aa′ is a residual term that must be shown to be going to zero at a certain

rate for increasing N . Using again the formula −z(BN − zIN )−1 = IN − (BN −
zIN )−1BN , this entails

E
[
(BN − zIN )−1

]
= −1

z

(
IN +

K∑
k=1

ēBN ,k(z)Rk

)−1

[IN + WN ]

with WN the matrix of (a, a′) entry wN,aa′ . Showing that WN is negligible with

summable entries as N →∞ is then solved using the Nash–Poincaré inequality,

Theorem 6.7, which again leads to cumbersome but doable calculus.

The second main step consists in considering the system (6.27) (the uniqueness

of the solution of which is treated as for Theorem 6.1) and showing that, for any
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uniformly bounded matrix E

E
[
tr E(BN − zIN )−1

]
= tr E(−z[IN +

K∑
k=1

ēN,k(z)Rk])−1 +O

(
1

N

)
from which N(E[eBN ,k(z)]− eN,k(z)) = O(1/N) (for E = Rk) and finally

N(E[mBN (z)]−mN (z)) = O(1/N) (for E = IN ). This is performed in a similar

way as in the proof for Theorem 6.1, with the additional results coming from the

Nash–Poincaré inequality.

The Gaussian method, while requiring more intensive calculus, allows us to

unfold naturally the deterministic equivalent under study for all types of matrix

combinations involving Gaussian matrices. It might as well be used as a tool

to infer the deterministic equivalent of more involved models for which such

deterministic equivalents are not obvious to ‘guess’ or for which the Marc̆enko–

Pastur method for diagonal matrices cannot be used. For the latest results

derived from this technique, refer to, e.g., [Hachem et al., 2008a; Khorunzhy

et al., 1996; Pastur, 1999]. It is believed that Haar matrices can be treated using

the same tools, to the effort of more involved computations but, to the best of

our knowledge, there exists no reference of such a work, yet.

In the same way as we derived the expression of the Shannon transform of the

model BN of Theorem 6.1 in Corollary 6.1, we have the following result for BN

in Theorem 6.5.

Theorem 6.8 ([Dupuy and Loubaton, 2010]). Let BN ∈ CN×N be defined as in

Theorem 6.5. Then the Shannon transform VBN of BN satisfies

N(E[VBN (x)]− VN (x)) = O(1/N)

where VN (x) is defined, for x > 0, as

VN (x) =
1

N
log det

(
IN +

K∑
k=1

ēN,k(−1/x)Rk

)

+
1

N
log det

(
In +

K∑
k=1

eN,k(−1/x)Tk

)

− n

N

1

x

K∑
k=1

ēN,k(−1/x)eN,k(−1/x). (6.28)

Note that the expressions of (6.26) and (6.28) are very similar, apart from the

position of a summation symbol.

Both Theorem 6.1 and Theorem 6.5 can then be compiled into an even more

general result, as follows. This is however not a corollary of Theorem 6.1 and

Theorem 6.5, since the complete proof must be derived from the beginning.



144 6. Deterministic equivalents

Theorem 6.9. For k = 1, . . . ,K, denote Hk ∈ CN×nk the random matrix such

that, for a given positive Lk

Hk =

Lk∑
l=1

R
1
2

k,lXk,lT
1
2

k,l

for R
1
2

k,l a Hermitian non-negative square root of the Hermitian non-negative

Rk,l ∈ CN×N , T
1
2

k,l a Hermitian non-negative square root of the Hermitian non-

negative Tk,l ∈ Cnk×nk and Xk,l ∈ CN×nk with Gaussian i.i.d. entries of zero

mean and variance 1/nk. All Rk,l and Tk,l are uniformly bounded with respect

to N , nk. Denote also for all k, ck = N/nk.

Call mBN (z) the Stieltjes transform of BN =
∑K
k=1 HkH

H
k , i.e. for z ∈ C \ R+

mBN (z) =
1

N
tr

(
K∑
k=1

HkH
H
k − zIN

)−1

.

We then have

N (E[mBN (z)]−mN (z))→ 0

where mN (z) is defined as

mN (z) =
1

N
tr

(
−z

[
K∑
k=1

Lk∑
l=1

eN ;k,l(z)Rk,l + IN

])−1

and eN ;k,l solves the fixed-point equations

eN ;k,l(z) =
1

nk
tr Tk,l

(
−z

[
Lk∑
l′=1

ēN ;k,l′(z)Tk,l′ + Ink

])−1

ēN ;k,l(z) =
1

nk
tr Rk,l

−z
 K∑
k′=1

Lk′∑
l′=1

eN ;k′,l′(z)Rk′,l′ + IN

−1

.

We also have that the Shannon transform VBN (x) of BN satisfies

N (E[VBN (x)]− VN (x))→ 0

where

VN (x) =
1

N
log det

(
K∑
k=1

Lk∑
l=1

eN ;k,l(−1/x)Rk,l + IN

)

+

K∑
k=1

1

N
log det

(
Lk∑
l=1

ēN ;k,l(−1/x)Tk,l + Ink

)

− 1

x

K∑
k=1

nk
N

Lk∑
l=1

eN ;k,l(−1/x)ēN ;k,l(−1/x).
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For practical applications, this formula provides the whole picture for the

ergodic rate region of large MIMO multiple access channels, with K multiple

antenna users, user k being equipped with nk antennas, when the different

channels into consideration are frequency selective with Lk taps for user k, slow

fading in time, and for each tap modeled as Kronecker with receive and transmit

correlation Rk,l and Tk,l, respectively.

We now move to another type of deterministic equivalents, when the entries

of the matrix X are not necessarily of zero mean and have possibly different

variances.

6.2.3 Information plus noise models

In Section 3.2, we introduced an important limiting Stieltjes transform result,

Theorem 3.14, for the Gram matrix of a random i.i.d. matrix X ∈ CN×n with a

variance profile {σ2
ij/n}, 1 ≤ i ≤ N and 1 ≤ j ≤ n. One hypothesis of Girkos’s

law is that the profile {σij} converges to a density σ(x, y) in the sense that

σij −
∫ i

N

i−1
N

∫ j
n

j−1
n

σ(x, y)dxdy → 0.

It will turn out in practical applications that such an assumption is in general

unusable. Typically, suppose that σij is the channel fading between antenna i

and antenna j, respectively, at the transmitter and receiver of a multiple antenna

channel. As one grows N and n simultaneously, there is no reason for the σij
to converge in any sense to a density σ(x, y). In the following, we therefore

rewrite Theorem 3.14 in terms of deterministic equivalents without the need for

any assumption of convergence. This result is in fact a corollary of the very

general Theorem 6.14, presented later in this section, although the deterministic

equivalent is written in a slightly different form. A sketch of the proof using the

Bai and Silverstein approach is also provided.

Theorem 6.10. Let XN ∈ CN×n have independent entries xij with zero mean,

variance σ2
ij/n and 4 + ε moment of order O(1/N2+ε/2), for some ε. Assume

that the σij are deterministic and uniformly bounded, over n,N . Then, as N , n

grow large with ratio cn , N/n such that 0 < lim infn cn ≤ lim supn cn <∞, the

e.s.d. FBN of BN = XNXH
N satisfies

FBN − FN ⇒ 0

almost surely, where FN is the distribution function of Stieltjes transform mN (z),

z ∈ C \ R+, given by:

mN (z) =
1

N

N∑
k=1

1
1
n

∑n
i=1 σ

2
ki

1
1+eN,i(z)

− z
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where eN,1(z), . . . , eN,n(z) form the unique solution of

eN,j(z) =
1

n

N∑
k=1

σ2
kj

1
n

∑n
i=1 σ

2
ki

1
1+eN,i(z)

− z
(6.29)

such that all eN,j(z) are Stieltjes transforms of a distribution function.

The reason why point-wise uniqueness of the eN,j(z) is not provided here is due

to the approach of the proof of uniqueness followed by Hachem et al. [Hachem

et al., 2007] which is a functional proof of uniqueness of the Stieltjes transforms

that the applications z 7→ eN,i(z) define. This does not mean that point-wise

uniqueness does not hold but this is as far as this theorem goes.

Theorem 6.10 can then be written is a more compact and symmetric form by

rewriting eN,j(z) in (6.29) as

eN,j(z) = −1

z

1

n

N∑
k=1

σ2
kj

1 + ēN,k(z)

ēN,k(z) = −1

z

1

n

n∑
i=1

σ2
ki

1 + eN,i(z)
. (6.30)

In this case, mN (z) is simply

mN (z) = −1

z

1

N

N∑
k=1

1

1 + ēN,k(z)
.

Note that this version of Girko’s law, Theorem 3.14, is both more general

in the assumptions made, and more explicit. We readily see in this result that

fixed-point algorithms, if they converge at all, allow us to recover the 2n coupled

Equations (6.30), from which mN (z) is then explicit.

For the sake of understanding and to further justify the strength of the

techniques introduced so far, we provide hereafter the first steps of the proof

using the Bai and Silverstein technique. A complete proof can be found as a

particular case of [Hachem et al., 2007; Wagner et al., 2011].

Proof. Instead of studying mN (z), let us consider the more general eAN
(z), a

deterministic equivalent for

1

N
tr AN

(
XNXH

N − zIN
)−1

.

Using Bai and Silverstein approach, we introduce F ∈ CN×N some matrix yet

to be defined, and compute

eAN
(z) =

1

N
tr AN (F− zIN )−1 .
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Using the resolvent identity, Lemma 6.1, and writing XNXH
N =

∑n
i=1 xix

H
i ,

we have:

1

N
tr AN

(
XNXH

N − zIN
)−1 − 1

N
tr AN (F− zIN )−1

=
1

N
tr AN

(
XNXH

N − zIN
)−1

F (F− zIN )−1

− 1

N

n∑
i=1

tr AN

(
XNXH

N − zIN
)−1

xix
H
i (F− zIN )−1

from which we then express the second term on the right-hand side under the

form of sums for i ∈ {1, . . . , N} of xH
i (F− zIN )−1 AN

(
XNXH

N − zIN
)−1

xi and

we use Lemma 6.2 on the matrix
(
XNXH

N − zIN
)−1

to obtain

1

N
tr AN

(
XNXH

N − zIN
)−1 − 1

N
tr AN (F− zIN )−1

=
1

N
tr AN

(
XNXH

N − zIN
)−1

F (F− zIN )−1

− 1

N

n∑
i=1

xH
i (F− zIN )−1 AN

(
X(i)X

H
(i) − zIN

)−1

xi

1 + xH
i

(
X(i)X

H
(i) − zIN

)−1

xi

(6.31)

with X(i) = [x1, . . . ,xi−1,xi+1, . . . ,xn].

Under this form, xi and
(
X(i)X

H
(i) − zIN

)−1

have independent entries.

However, xi does not have identically distributed entries, so that Theorem 3.4

cannot be straightforwardly applied. We therefore define yi ∈ CN as

xi = Σiyi

with Σi ∈ CN×N a diagonal matrix with kth diagonal entry equal to σki, and yi
has identically distributed entries of zero mean and variance 1/n. Replacing all

occurrences of xi in (6.31) by Σiyi, we have:

1

N
tr AN

(
XNXH

N − zIN
)−1 − 1

N
tr AN (F− zIN )−1

=
1

N
tr AN

(
XNXH

N − zIN
)−1

F (F− zIN )−1

− 1

N

n∑
i=1

yH
i Σi (F− zIN )−1 AN

(
X(i)X

H
(i) − zIN

)−1

Σiyi

1 + yH
i Σi

(
X(i)X

H
(i) − zIN

)−1

Σiyi

. (6.32)

Applying the trace lemma, Theorem 3.4, the quadratic terms of the form

yH
i Yyi are close to 1

n tr Y. Therefore, in order for (6.32) to converge to zero, F

ought to take the form

F =
1

n

n∑
i=1

1

1 + eBN ,i(z)
Σ2
i



148 6. Deterministic equivalents

with

eBN ,i(z) =
1

n
tr Σ2

i

(
XNXH

N − zIN
)−1

.

We therefore infer that eN,i(z) takes the form

eN,i(z) =
1

n

N∑
k=1

σ2
ki

1
n

∑n
i=1 σ

2
ki

1
1+eN,i(z)

− z

by setting AN = Σ2
i .

From this point on, the result unfolds by showing the almost sure convergence

towards zero of the difference eN,i(z)− 1
n tr Σ2

i

(
XNXH

N − zIN
)−1

and the

functional uniqueness of the implicit equation for the eN,i(z).

The symmetric expressions (6.30) make it easy to derive also a deterministic

equivalent of the Shannon transform.

Theorem 6.11. Let BN be defined as in Theorem 6.10 and let x > 0. Then, as

N , n grow large with uniformly bounded ratio cn = N/n, the Shannon transform

VBN (x) of BN , defined as

VBN (x) ,
1

N
log det (IN + xBN )

satisfies

E[VBN (x)]− VN (x)→ 0

where VN (x) is given by:

VN (x) =
1

N

N∑
k=1

log

(
1 + ēN,k(− 1

x
)

)
+

1

N

n∑
i=1

log

(
1 + eN,i(−

1

x
)

)
− x

nN

∑
1≤k≤N
1≤i≤n

σ2
ki(

1 + ēN,k(− 1
x )
) (

1 + eN,i(− 1
x )
) .

It is worth pointing out here that the Shannon transform convergence result

is only stated in the mean sense and not, as was the case in Theorem 6.4, in the

almost sure sense. Remember indeed that the convergence result of Theorem 6.4

depends strongly on the fact that the empirical matrix BN can be proved to have

bounded spectral norm for all large N , almost surely. This is a consequence of

spectral norm inequalities and of Theorem 7.1. However, it is not known whether

Theorem 7.1 holds true for matrices with a variance profile and the derivation

of Theorem 6.4 can therefore not be reproduced straightforwardly.

It is in fact not difficult to show the convergence of the Shannon transform in

the mean via a simple dominated convergence argument. Indeed, remembering
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the Shannon transform definition, Definition 3.2, we have:

E[VBN (x)]− VN (x) =

∫ ∞
1
x

(
1

t
− E[mBN (−t)]

)
dt−

∫ ∞
1
x

(
1

t
−mN (−t)

)
dt

(6.33)

for which we in particular have∣∣∣∣(1

t
− E[mBN (−t)]

)
−
(

1

t
−mN (−t)

)∣∣∣∣
≤
∣∣∣∣1t − E[mBN (−t)]

∣∣∣∣+

∣∣∣∣1t −mN (−t)
∣∣∣∣

=

∣∣∣∣∫ (1

t
− 1

λ+ t

)
E[dFBN (λ)]

∣∣∣∣+

∣∣∣∣∫ (1

t
− 1

λ+ t

)
dFN (λ)

∣∣∣∣
≤ 1

t2

∫
λE[dFBN (λ)] +

1

t2

∫
λdFN (λ).

It is now easy to prove from standard expectation calculus that both integrals

above are upper-bound by lim supN supi ‖Ri‖ <∞. Writing Equation (6.33)

under the form of a single integral, we have that the integrand tends to zero

as N →∞ and is summable over the integration parameter t. Therefore, from

the dominated convergence theorem, Theorem 6.3, E[VBN (x)]− VN (x)→ 0.

Note now that, in the proof of Theorem 6.10, there is no actual need for the

matrices Σk to be diagonal. Also, there is no huge difficulty added by considering

the matrix XNXH
N + AN , instead of XNXH

N for any deterministic AN . As such,

Theorem 6.10 can be further generalized as follows.

Theorem 6.12 ([Wagner et al., 2011]). Let XN ∈ CN×n have independent

columns xi = Hiyi, where yi ∈ CNi has i.i.d. entries of zero mean, variance

1/n, and 4 + ε moment of order O(1/n2+ε/2), and Hi ∈ CN×Ni are such that

Ri , HiH
H
i has uniformly bounded spectral norm over n,N . Let also AN ∈

CN×N be Hermitian non-negative and denote BN = XNXH
N + AN . Then, as N ,

N1, . . . , Nn, and n grow large with ratios ci , Ni/n and c0 , N/n satisfying 0 <

lim infn ci ≤ lim supn ci <∞ for 0 ≤ i ≤ n, we have that, for all non-negative

Hermitian matrix CN ∈ CN×N with uniformly bounded spectral norm

1

n
tr CN (BN − zIN )−1 − 1

n
tr CN

(
1

n

n∑
i=1

1

1 + eN,i(z)
Ri + AN − zIN

)−1

a.s.−→ 0

where eN,1(z), . . . , eN,n(z) form the unique functional solution of

eN,j(z) =
1

n
tr Rj

(
1

n

n∑
i=1

1

1 + eN,i(z)
Ri + AN − zIN

)−1

(6.34)

such that all eN,j(z) are Stieltjes transforms of a non-negative finite measure on

R+. Moreover, (eN,1(z), . . . , eN,n(z)) is given by eN,i(z) = limk→∞e
(k)
N,i(z), where
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e
(0)
N,i = −1/z and, for k ≥ 0

e
(k+1)
N,j (z) =

1

n
tr Rj

(
1

n

n∑
i=1

1

1 + e
(k)
N,i(z)

Ri + AN − zIN

)−1

.

Also, for x > 0, the Shannon transform VBN (x) of BN , defined as

VBN (x) ,
1

N
log det (IN + xBN )

satisfies

E[VBN (x)]− VN (x)→ 0

where VN (x) is given by:

VN (x) =
1

N
log det

(
IN + x

[
1

n

n∑
i=1

1

1 + eN,i(− 1
x )

Ri + AN

])

+
1

N

n∑
i=1

log

(
1 + eN,i(−

1

x
)

)
− 1

N

n∑
i=1

eN,i(− 1
x )

1 + eN,i(− 1
x )
.

Remark 6.5. Consider the identically distributed entries x1, . . . ,xn in

Theorem 6.12, and take n1, . . . , nK to be K integers such that
∑
i ni = n. Define

R̃1, . . . , R̃K ∈ CN×N to be K non-negative definite matrices with uniformly

bounded spectral norm and T1 ∈ Cn1×n1 , . . . ,TK ∈ CnK×nK to be K diagonal

matrices with positive entries, Tk = diag(tk1, . . . , tknk). Denote Rk = R̃jtji,

k ∈ {1, . . . , n}, with j the smallest integer such that k − (n1 + . . .+ nj−1) > 0,

n0 = 0, and i = k − (n1 + . . .+ nj−1). Under these conditions and notations, up

to some hypothesis restrictions, Theorem 6.12 with Hi = R̃
1
2
i also generalizes

Theorem 6.1 applied to the sum of K Gram matrices with left correlation matrix

R̃1, . . . , R̃K and right correlation matrices T1, . . . ,TK .

From Theorem 6.12, taking AN = 0, we also immediately have that the

distribution function FN with Stieltjes transform

mN (z) =
1

N
tr

(
1

n

n∑
i=1

1

1 + eN,i(z)
Ri − zIN

)−1

(6.35)

where

eN,j(z) =
1

n
tr Rj

(
1

n

n∑
i=1

1

1 + eN,i(z)
Ri − zIN

)−1

(6.36)

is a deterministic equivalent for FXNXH
N . An interesting result with application

in low complex filter design, see Section 13.6 of Chapter 13, is the description in

closed-form of the successive moments of the distribution function FN .
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Theorem 6.13 ([Hoydis et al., 2011c]). Let FN be the d.f. associated with the

Stieltjes transform mN (z) defined by (6.35) with eN,i(z) given by (6.36). Further

denote MN,0,MN,1, . . . the successive moments of FN

MN,p =

∫
xpdFN (x).

Then, these moments are explicitly given by:

MN,p =
(−1)p

p!

1

N
tr Tp

with T0,T1, . . . defined iteratively from the following set of recursive equations

initialized with T0 = IN , fk,0 = −1 and δk,0 = 1
n tr Rk for k ∈ {1, . . . , n}

Tp+1 =

p∑
i=0

i∑
j=0

(
p

i

)(
i

j

)
Tp−iQi−j+1Tj

Qp+1 =
p+ 1

n

n∑
k=1

fk,pRk

fk,p+1 =

p∑
i=0

i∑
j=0

(
p

i

)(
i

j

)
(p− i+ 1)fk,jfk,i−jδk,p−i

δk,p+1 =
1

n
tr RkTp+1.

Moreover, with BN = XNXH
N , XN being defined in Theorem 6.12, we have for

all integer p ∫
xpE[dFBN (x)]−MN,p → 0

as N,n→∞.

Note that a similar result was established from a combinatorics approach in [Li

et al., 2004] which took the form of involved sums over non-crossing partitions,

when all Rk matrices are Toeplitz and of Wiener class [Gray, 2006]. The proof

of the almost sure convergence of
∫
xpdFBN (x) to MN,p, claimed in [Li et al.,

2004], would require proving that the support BN is almost surely uniformly

bounded from above for all large N . However, this fact is unknown to this day

so that convergence in the mean can be ensured, while almost sure convergence

can only be conjectured. It holds true in particular when the family {R1, . . . ,Rn}
is extracted from a finite set.

Proof. Note that FN is necessarily compactly supported as the ‖Ri‖ are

uniformly bounded and that the eN,i(z) are non-negative for z < 0. Reminding

then that the Stieltjes transform mN of FN can be written in that case under the

form of a moment generating function by (3.6), the expression of the successive

moments unfolds from successive differentiations of −z−1mN (−z−1), taken in
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z = 0. The convergence of the difference of moments is then a direct consequence

of the dominated convergence theorem, Theorem 6.3.

Another generalization of Theorem 6.10 is found in [Hachem et al., 2007],

where XN still has a variance profile but has non-zero mean. The result in the

latter is more involved and expresses as follows.

Theorem 6.14. Let XN = YN + AN ∈ CN×n be a random matrix where YN

has independent entries yij with zero mean, variance σ2
ij/n and finite 4 + ε

moment of order O(1/N2+ε/2), and AN is a deterministic matrix. Denote

Σj ∈ CN×N the diagonal matrix with ith diagonal entry σij and Σ̄i ∈ Cn×n the

diagonal matrix with jth diagonal entry σij. Suppose moreover that the columns

of AN have uniformly bounded Euclidean norm and that the σij are uniformly

bounded, with respect to N and n. Then, as N , n grow large with ratio cN = N/n,

such that 0 < lim infN cN ≤ lim supN cN <∞, the e.s.d. FBN of BN , XNXH
N

satisfies

FBN − FN ⇒ 0

almost surely, with FN the distribution function with Stieltjes transform mN (z),

z ∈ C \ R+, given by:

mN (z) =
1

N
tr
(
Ψ−1 − zANΨ̄AT

N

)−1

where Ψ ∈ CN×N is diagonal with ith entry ψi(z), Ψ̄ ∈ Cn×n is diagonal with jth

entry ψ̄j(z), with ψi(z) and ψ̄j(z), 1 ≤ i ≤ N , 1 ≤ j ≤ n, the unique solutions of

ψi(z) = −1

z

[
1 +

1

n
tr Σ̄2

i

(
Ψ̄−1 − zAT

NΨAN

)−1
]−1

ψ̄j(z) = −1

z

[
1 +

1

n
tr Σ2

j

(
Ψ−1 − zANΨ̄AT

N

)−1
]−1

which are Stieltjes transforms of distribution functions.

Besides, for x = − 1
z > 0, let VBN (x) = 1

N log det
(
IN + xXNXH

N

)
be the

Shannon transform of BN . Then

E[VBN (x)]− VN (x)→ 0

as N , n grow large, where VN (x) is defined by

VN (x) =
1

N
log det

[
xΨ−1 + ANΨ̄AT

N

]
+

1

N
log det

(
xΨ̄−1

)
− 1

x

1

nN

∑
i,j

σ2
ijtit̄j

with ti the ith diagonal entry of the diagonal matrix
(
Ψ−1 + xANΨ̄AT

N

)−1
and

t̄j the jth diagonal entry of the diagonal matrix
(
Ψ̄−1 + xAT

NΨAN

)−1
.

Remark 6.6. In [Hachem et al., 2008b], it is shown in particular that, if the

entries of YN are Gaussian distributed, then the difference between the Stieltjes
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transform of E[FBN ] and its deterministic equivalent, as well as the difference

between the Shannon transform of E[FBN ] and its deterministic equivalent

converge to zero at rate O(1/N2).

6.2.4 Models involving Haar matrices

As evidenced in the previous section, Hermitian random matrices with i.i.d.

entries or originating from general sums or products of such matrices are

convenient to study using Stieltjes transform-based methods. This is essentially

due to the trace lemma, Theorem 3.4, which provides an almost sure limit

to xH(XXH − xxH − zIN )−1x with x one of the independent columns of the

random matrix X. Such results can actually be found for more structured random

matrices, such as the random bi-unitarily invariant unitary N ×N matrices. We

recall from Definition 4.6 that these random matrices are often referred to as

Haar matrices or isometric matrices. Among the known properties of interest

here of Haar matrices [Petz and Réffy, 2004], we have the following trace lemma

[Chaufray et al., 2004; Debbah et al., 2003a], equivalent to Theorem 3.4 for i.i.d.

random matrices.

Theorem 6.15. Let W be n < N columns of an N ×N Haar matrix and

suppose w is a column of W. Let BN be an N ×N random matrix, which is

a function of all columns of W except w. Then, assuming that, for growing N ,

c = supn n/N < 1 and B = supN ‖BN‖ <∞, we have:

E

[∣∣∣∣wHBNw − 1

N − n
tr(ΠBN )

∣∣∣∣4
]
≤ C

N2
(6.37)

where Π = IN −WWH + wwH and C is a constant which depends only on

B and c. If supN ‖BN‖ <∞, by the Markov inequality, Theorem 3.5, and the

Borel–Cantelli lemma, Theorem 3.6, this entails

wHBNw − 1

N − n
tr(ΠBN )

a.s.−→ 0. (6.38)

Proof. We provide here an intuitive, yet non-rigorous, sketch of the proof. Let

U ∈ CN×(n−1) be n− 1 columns of a unitary matrix. We can write all unit-norm

vectors w in the space orthogonal to the space spanned by the columns of U

as w = Πx
‖Πx‖ , where Π = IN −UUH is the projector on the space orthogonal

to UUH (and thus ΠΠ = Π) and x is a Gaussian vector with zero mean and

covariance matrix E[xxH] = IN independent of U. This makes w uniformly

distributed in its space. Also, the vector x is independent of Π by construction.

We therefore have from Theorem 3.4 and for N large

wHBNw =
1

N
xHΠBNΠx

N

‖Πx‖2
' 1

N
tr (ΠBN )

N

‖Πx‖2
.
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where the symbol “'” stands for some approximation in the large N limit. Notice

then that Πx is, up to a basis change, a vector composed of N − n+ 1 i.i.d.

standard Gaussian entries and n− 1 zeros. Hence ‖Πx‖2
N−n → 1. Defining now W

such that WWH −wwH = UUH, the reasoning remains valid, and this entails

(6.38).

Since BN in Theorem 6.15 is assumed of uniformly bounded spectral norm,

wHBNw is uniformly bounded also. Hence, if N,n grow large with ratio n/N

uniformly away from one, the term 1
N−nwHBNw tends to zero. This therefore

entails the following corollary, which can be seen as a rank-1 perturbation of

Theorem 6.15.

Corollary 6.2. Let W and BN be defined as in Theorem 6.15, with N and n

such that lim supn
n
N < 1. Then, as N,n grow large, for w any column of W

wHBNw − 1

N − n
tr BN

(
IN −WWH

) a.s.−→ 0.

Corollary 6.2 only differs from Theorem 6.15 by the fact that the projector Π

is changed into IN −WWH.

Also, when BN is independent of W, we fall back on the same result as for

the i.i.d. case.

Corollary 6.3. Let W be defined as in Theorem 6.15, and let A ∈ CN×N be

independent of Wand have uniformly bounded spectral norm. Then, as N grows

large, for w any column of W, we have:

wHAw − 1

N
tr A

a.s.−→ 0.

Theorem 6.15 is the basis for establishing deterministic equivalents involving

isometric matrices. In the following, we introduce a result, based on Silverstein

and Bai’s approach, which generalizes Theorems 4.10, 4.11, and 4.12 to the case

when the Wi matrices are multiplied on the left by different non-necessarily co-

diagonalizable matrices. These models are the basis for studying the properties

of multi-user or multi-cellular communications both involving unitary precoders

and taking into account the frequency selectivity of the channel. From a

mathematical point of view, there exists no simple way to study such models

using tools extracted solely from free probability theory. In particular, it is

interesting to note that in [Peacock et al., 2008], the authors already generalized

Theorem 4.12 to the case where the left-product matrices are different but co-

diagonalizable. To do so, the authors relied on tools from free probability as

the basic instruments and then need some extra matrix manipulation to derive

their limiting result, in a sort of hybrid method between free probability and

analytical approach. In the results to come, though, no mention will be made to
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free probability theory, as the result can be derived autonomously from the tools

developed in this section.

The following results are taken from [Couillet et al., 2011b], where detailed

proofs can be found. We start by introducing the fundamental equations.

Theorem 6.16 ([Couillet et al., 2011b]). For i ∈ {1, . . . ,K}, let Ti ∈ Cni×ni be

nonnegative diagonal and let Hi ∈ CN×Ni . Define Ri , HiH
H
i ∈ CN×N , ci =

ni
Ni

< 1 and c̄i = Ni
N . Let z < 0. Then the following system of equations in

ē1(z), . . . , ēK(z):

ēi(z) =
1

N
tr Ti (ei(z)Ti + [c̄i − ei(z)ēi(z)]Ini)

−1

ei(z) =
1

N
tr Ri

 K∑
j=1

ēj(z)Rj − zIN

−1

(6.39)

has a unique solution ē1(z), . . . , ēK(z) satisfying 0 ≤ ei(z)ēi(z) < cic̄i for all i.

Moreover,

ēi(z) = lim
t→∞

ē
(t)
i (z)

where ē
(t)
i (z) is the unique solution of

ē
(t)
i (z) =

1

N
tr Ti

(
e

(t)
i (z)Ti + [c̄i − e(t)

i (z)ē
(t)
i (z)]Ini

)−1

within the interval [0, cic̄i/e
(t)
i (z)), e

(0)
i (z) can take any positive value and e

(t)
i (z)

is recursively defined by

e
(t)
i (z) =

1

N
tr Ri

 K∑
j=1

ē
(t−1)
j (z)Rj − zIN

−1

.

It is important in this result to note the condition ni < Ni. Counter examples

can be found with ni = Ni for which the result no longer holds. The main reason

is that, for ni = Ni, ēi(z) = c̄i/ei(z) is a second fixed-point solution of the first

equation in (6.39), which lives in the closure of [0, c̄i/ei(z)), and may become an

attractor of the fixed-point algorithm. We then have the following theorem on a

deterministic equivalent for the e.s.d. of the model BN =
∑K
k=1 HiWiTiW

H
i HH

i .

Theorem 6.17 ([Couillet et al., 2011b]). For i ∈ {1, . . . ,K}, let Ti ∈ Cni×ni
be a Hermitian non-negative matrix with spectral norm bounded uniformly along

ni and Wi ∈ CNi×ni be ni < Ni columns of a unitary Haar distributed random

matrix. Consider Hi ∈ CN×Ni a random matrix such that Ri , HiH
H
i ∈ CN×N

has uniformly bounded spectral norm along N , almost surely. Define ci = ni
Ni

and
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c̄i = Ni
N and denote

BN =

K∑
i=1

HiWiTiW
H
i HH

i .

Let z < 0. Then, as N , N1, . . . , NK , n1, . . . , nK grow to infinity with ratios c̄i
satisfying 0 < lim inf c̄i ≤ lim sup c̄i <∞ and 0 < lim inf ci ≤ lim sup 1 < for all

i,

eBN ,i(z)− ei(z)
a.s.−→ 0

where

eBN ,i(z) =
1

N
tr Ri (BN − zIN )−1

and ei(z) are given by Theorem 6.16.

Note that this result does not prove that 1
N tr(

∑K
k=1 ēj(z)Rj − zIN )−1 is a

deterministic equivalent of mBN (z) for z complex, and therefore we do not

have the classical deterministic equivalent for the eigenvalue distribution of BN .

The main reason is that, in the Haar case, the quantities ei(z) are not easily

extensible as holomorphic function in C \ R+, which is fundamental to ensure

the convergence in law of the eigenvalue distribution (recall Theorem 3.10). In

[Couillet et al., 2011b], the holomorphic extension, at the core of the proof of

Theorem 6.17, is only ensured on a cone of C ∩ {z ∈ C, <[z] < 0} including the

negative axis. This is sufficient for Theorem 6.17 for not for the convergence in

law.

Consider the case when, for each i, c̄i = 1 and Hi = R
1
2
i for some square

Hermitian non-negative square root R
1
2
i of Ri. We observe that the system of

Equations (6.39) is very similar to the system of Equations (6.7) established

for the case of i.i.d. random matrices. The noticeable difference here is the

addition of the extra term −eiēi in the expression of ēi. Without this term, we

fall back on the i.i.d. case. Notice also that the case K = 1 corresponds exactly

to Theorem 4.11, which was treated for c1 = 1 and for which simplifications help

discarding the limitation lim sup ci < 1.

The above limitation may appear particularly constraining for application

purposes as one traditionally considers SDMA or CDMA precoders with full

rank Haar matrices. Nonetheless, it is not so common to consider Ti different

from the identity matrix (see the applications in [Couillet et al., 2011b]). For

ci = 1, Ti = INi , the result is in fact trivial as all randomness disappears from

the identity WiW
H
i = INi . One therefore does not loose much in assuming

lim sup ci < 1 in general. Nonetheless, it is clear that the extension to ci = 1

must be possible although this is still an open question so far.

We hereafter provide both a sketch of the proof and a rather extensive

derivation, which explains how (6.39) is derived and how uniqueness is proved.

For readability, we take c̄i = 1. The main steps of the proof are similar to those
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developed for the proof of Theorem 6.1. In order to propose different approaches

than in previous derivations, and because this is more complicated here, we

will work almost exclusively with real negative z, instead of z with positive

imaginary part. We will also provide a shorter proof of the final convergence

step eBN ,i(z)− ei(z)
a.s.−→ 0, relying on restrictions of the domain of z along with

arguments from Vitali’s convergence theorem. These approaches are valid here

because upper bounds on the spectral norms of Ri and Ti are considered, which

was not the case for Theorem 6.1. Apart from these technical considerations,

the main noticeable difference between the deterministic equivalent approaches

proposed for matrices with independent entries and for Haar matrices lies in the

first convergence step, which is much more intricate.

Proof. We first provide a sketch of the proof for better understanding, which will

enhance the aforementioned main novelty. As usual, we wish to prove that there

exists a matrix F =
∑K
i=1 f̄iRi, such that, for all non-negative A with ‖A‖ <∞

1

N
tr A (BN − zIN )−1 − 1

N
tr A (F− zIN )−1 a.s.−→ 0.

Contrary to classical deterministic equivalent approaches for random matrices

with i.i.d. entries, finding a deterministic equivalent for 1
N tr A (BN − zIN )−1

is not straightforward. The reason is that, during the derivation, terms such

as 1
N−ni tr

(
IN −WiW

H
i

)
A

1
2 (BN − zIN )−1 A

1
2 , with the

(
IN −WiW

H
i

)
prefix

will naturally appear, as a result of applying the trace lemma, Theorem 6.15,

that will be required to be controlled. We proceed as follows.

• We first denote for all i, δi , 1
N−ni tr

(
IN −WiW

H
i

)
R

1
2
i (BN − zIN )−1 R

1
2
i

some auxiliary variable. Then, using the same techniques as in the proof of

Theorem 6.1, denoting further fi , 1
N tr Ri (BN − zIN )−1, we prove

fi −
1

N
tr Ri (G− zIN )−1 a.s.−→ 0

with G =
∑K
j=1 ḡjRj and

ḡi =
1

1− ci + 1
N

∑ni
l=1

1
1+tilδi

1

N

ni∑
l=1

til
1 + tilδi

where ti1, . . . , tini are the eigenvalues of Ti. Noticing additionally that

(1− ci)δi − fi +
1

N

ni∑
l=1

δi
1 + tilδi

a.s.−→ 0
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we have a first hint on a first deterministic equivalent for fi. Precisely, we

expect to obtain the set of fundamental equations

∆i =
1

1− ci

[
ei −

1

N

ni∑
l=1

∆i

1 + til∆i

]

ei =
1

N
tr Ri

 K∑
j=1

1

1− cj + 1
N

∑nj
l=1

1
1+tjl∆j

1

N

nj∑
l=1

tjl
1 + tjl∆j

Rj − zIN

−1

.

• The expressions of ḡi and their deterministic equivalents are however not very

convenient under this form. It is then shown that

ḡi −
1

N

ni∑
l=1

til
1 + tilfi − fiḡi

= ḡi −
1

N
tr Ti (fiTi + [1− fiḡi]Ini)

−1 a.s.−→ 0

which induces the 2K-equation system

fi −
1

N
tr Ri

 K∑
j=1

ḡjRj − zIN

−1

a.s.−→ 0

ḡi −
1

N
tr Ti (ḡiTi + [1− fiḡi])−1 a.s.−→ 0.

• These relations are sufficient to infer the deterministic equivalent but will be

made more attractive for further considerations by introducing F =
∑K
i=1 f̄iRi

and proving that

fi −
1

N
tr Ri

 K∑
j=1

f̄jRj − zIN

−1

a.s.−→ 0

f̄i −
1

N
tr Ti

(
f̄iTi + [1− fif̄i]

)−1
= 0

where, for z < 0, f̄i lies in [0, ci/fi) and is now uniquely determined by fi.

In particular, this step provides an explicit expression f̄i as a function of fi,

which will be translated into an explicit expression of ēi as a function of ei.

This is the very technical part of the proof. We then prove the existence and

uniqueness of a solution to the fixed-point equation

ei −
1

N
tr Ri

 K∑
j=1

ējRj − zIN

−1

= 0

ēi −
1

N
tr Ti (ēiTi + [1− eiēi])−1 = 0

for all finite N , z real negative, and for ēi ∈ [0, ci/fi). Here, instead of following

the approach of the proof of uniqueness for the fundamental equations of

Theorem 6.1, we use a property of so-called standard functions. We will show
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precisely that the vector application h = (h1, . . . , hK) with

hi : (x1, . . . , xK) 7→ 1

N
tr Ri

 K∑
j=1

x̄jRj − zIN

−1

where x̄i is the unique solution to

x̄i =
1

N
tr Ti (x̄iTi + [1− xix̄i])−1

lying in [0, ci/xi), is a standard function. It will unfold that the fixed-point

equation in (e1, . . . , eK) has a unique solution with positive entries and that this

solution can be determined as the limiting iteration of a classical fixed-point

algorithm.

The last step proves that the unique solution (e1, . . . , eN ) is such that

ei − fi
a.s.−→ 0

which is solved by arguments borrowed from the work of Hachem et al. [Hachem

et al., 2007], using a restriction on the definition domain of z, which simplifies

greatly the calculus.

We now turn to the precise proof. We use again the Bai and Silverstein

steps: the convergence fi − 1
N tr Ri(

∑K
j=1 f̄jRj − zIN )−1 a.s.−→ 0 in a first step,

the existence and uniqueness of a solution to ei = 1
N tr Ri(

∑K
j=1 ējRj − zIN )−1

in a second, and the convergence ei − fi
a.s.−→ 0 in a third. Although precise

control of the random variables involved needs be carried out, as is detailed

in [Couillet et al., 2011b], we hereafter elude most technical parts for simplicity

and understanding.

Step 1: First convergence step
In this section, we take z < 0, until further notice. Let us first introduce

the following parameters. We will denote T = maxi{lim sup ‖Ti‖}, R =

maxi{lim sup ‖Ri‖} and c = maxi{lim sup ci} < 1.

We start with classical deterministic equivalent techniques. Let A ∈ CN×N be

a Hermitian non-negative definite matrix with spectral norm uniformly bounded

by A. Taking G =
∑K
j=1 ḡjRj , with ḡ1, . . . , ḡK left undefined for the moment,

we have:

1

N
tr A(BN − zIN )−1 − 1

N
tr A(G− zIN )−1

=
1

N
tr

[
A(BN − zIN )−1

K∑
i=1

R
1
2
i

(
−WiTiW

H
i + ḡiIN

)
R

1
2
i (G− zIN )−1

]

=

K∑
i=1

ḡi
1

N
tr A(BN − zIN )−1Ri(G− zIN )−1
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− 1

N

K∑
i=1

ni∑
l=1

tilw
H
ilR

1
2
i (G− zIN )−1A(BN − zIN )−1R

1
2
i wil

=

K∑
i=1

ḡi
1

N
tr A(BN − zIN )−1Ri(G− zIN )−1

− 1

N

K∑
i=1

ni∑
l=1

tilw
H
ilR

1
2
i (G− zIN )−1A(B(i,l) − zIN )−1R

1
2
i wil

1 + tilwH
ilR

1
2
i (B(i,l) − zIN )−1R

1
2
i wil

, (6.40)

with ti1, . . . , tini the eigenvalues of Ti.

The quadratic forms wH
ilR

1
2
i (G− zIN )−1A(B(i,l) − zIN )−1R

1
2
i wil and

wH
ilR

1
2
i (B(i,l) − zIN )−1R

1
2
i wil are not asymptotically close to the trace of the

inner matrix, as in the i.i.d. case, but to the trace of the inner matrix multiplied

by (IN −WiW
H
i ), as suggested by Theorem 6.15. This complicates the calculus.

In the following, we will therefore study the following stochastic quantities,

namely the random variables δi, βi and fi, introduced below.

For every i ∈ {1, . . . ,K}, denote

δi ,
1

N − ni
tr
(
IN −WiW

H
i

)
R

1
2
i (BN − zIN )−1 R

1
2
i

fi ,
1

N
tr Ri (BN − zIN )−1

both being clearly non-negative.

Writing Wi = [wi,1, . . . ,wi,ni ] and WiW
H
i =

∑ni
l=1 wilw

H
il, we have from

standard calculus and the matrix inversion lemma, Lemma 6.2, that

(1− ci)δi = fi −
1

N

ni∑
l=1

wH
ilR

1
2
i (BN − zIN )−1 R

1
2
i wil

= fi −
1

N

ni∑
l=1

wH
ilR

1
2
i

(
B(i,l) − zIN

)−1
R

1
2
i wil

1 + tilwH
ilR

1
2
i

(
B(i,l) − zIN

)−1
R

1
2
i wil

(6.41)

with B(i,l) = BN − tilR
1
2
i wilw

H
ilR

1
2
i .

Since z < 0, δi ≥ 0, so that 1
1+tilδi

is well defined. We recognize already

from Theorem 6.15 that each quadratic term wH
ilR

1
2
i (B(i,l) − zIN )−1R

1
2
i wil is

asymptotically close to δi. By adding the term 1
N

∑ni
l=1

δi
1+tilδi

on both sides,

(6.41) can further be rewritten

(1− ci)δi − fi +
1

N

ni∑
l=1

δi
1 + tilδi

=
1

N

ni∑
l=1

 δi
1 + tilδi

−
wH
ilR

1
2
i

(
B(i,l) − zIN

)−1
R

1
2
i wil

1 + tilwH
ilR

1
2
i

(
B(i,l) − zIN

)−1
R

1
2
i wil

 .
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We now apply the trace lemma, Theorem 6.15, which ensures that

E

∣∣∣∣∣(1− ci)δi − fi +
1

N

ni∑
l=1

δi
1 + tilδi

∣∣∣∣∣
4
 = O

(
1

N2

)
. (6.42)

We do not provide the precise derivations of the fourth order moment inequalities

here and in all the equations that follow, our main purpose being concentrated

on the fundamental steps of the proof. Precise calculus and upper bounds can

be found in [Couillet et al., 2011b]. This is our first relation that links δi to

fi = 1
N tr Ri (BN − zIN )−1.

Introducing now an additional A(G− zIN )−1 matrix in the argument of the

trace of δi, with G,A ∈ CN×N any non-negative definite matrices, ‖A‖ ≤ A, we

denote

βi ,
1

N − ni
tr
(
IN −WiW

H
i

)
R

1
2
i (G− zIN )−1 A (BN − zIN )−1 R

1
2
i .

We then proceed similarly as for δi by showing

βi =
1

N − ni
tr R

1
2
i (G− zIN )−1 A (BN − zIN )−1 R

1
2
i

− 1

N − ni

ni∑
l=1

wH
ilR

1
2
i (G− zIN )−1 A

(
B(i,l) − zIN

)−1
R

1
2
i wil

1 + tilwH
ilR

1
2
i

(
B(i,l) − zIN

)−1
R

1
2
i wil

from which we have:

1

N − ni
tr R

1
2
i (G− zIN )−1 A (BN − zIN )−1 R

1
2
i −

1

N − ni

ni∑
l=1

βi
1 + tilδi

− βi

=
1

N − ni

ni∑
l=1

wH
ilR

1
2
i (G− zIN )−1 A

(
B(i,l) − zIN

)−1
R

1
2
i wil

1 + tilwH
ilR

1
2
i

(
B(i,l) − zIN

)−1
R

1
2
i wil

− βi
1 + tilδi

 .
Since numerators and denominators converge again to one another assuming

G independent of wil, we can show from Theorem 6.15 again that

E

∣∣∣∣∣∣w
H
ilR

1
2
i (G− zIN )−1 A

(
B(i,l) − zIN

)−1
R

1
2
i wil

1 + tilwH
ilR

1
2
i

(
B(i,l) − zIN

)−1
R

1
2
i wil

− βi
1 + tilδi

∣∣∣∣∣∣
4 = O

(
1

N2

)
.

(6.43)

Hence

E

∣∣∣∣∣ 1

N
tr Ri (G− zIN )−1 A (BN − zIN )−1 − βi

(
1− ci +

1

N

ni∑
l=1

1

1 + tilδi

)∣∣∣∣∣
4


= O

(
1

N2

)
. (6.44)

This provides us with the second relation that links βi to
1
N tr R

1
2
i (G− zIN )−1 A (BN − zIN )−1 R

1
2
i . That is, we have expressed
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both δi and βi as a function of the traces 1
N tr R

1
2
i (BN − zIN )−1 R

1
2
i and

1
N tr R

1
2
i (G− zIN )−1 A (BN − zIN )−1 R

1
2
i , which are more conventional to

work with.

We are now in position to determine adequate expressions for ḡ1, . . . , ḡK .

Anticipating on the coming equations, we choose

ḡi =
1

1− ci + 1
N

∑ni
l=1

1
1+tilδi

1

N

ni∑
l=1

til
1 + tilδi

.

Note however that ḡi is not independent of wil as it depends on δi, so that the

convergence (6.43) is not valid. However, it is easy to see that ḡi so defined is

within O(1/N) of the same quantity defined with column wil and til removed

from the expression of BN (and then of δi). The above convergence steps are

therefore still valid.

Going back to our original problem with the inferred value for ḡi, we have

1

N
tr A(BN − zIN )−1 − 1

N
tr A(G− zIN )−1

=

K∑
i=1

1
N

∑ni
l=1

til
1+tilδi

1
N tr Ri (G− zIN )−1 A (BN − zIN )−1

1− ci + 1
N

∑ni
l=1

1
1+tilδi

− 1

N

K∑
i=1

ni∑
l=1

tilw
H
ilR

1
2
i (G− zIN )−1A(B(i,l) − zIN )−1R

1
2
i wil

1 + tilwH
ilR

1
2
i (B(i,l) − zIN )−1R

1
2
i wil

=

K∑
i=1

1

N

ni∑
l=1

til

[
1
N tr Ri (G− zIN )−1 A (BN − zIN )−1

(1− ci + 1
N

∑ni
l′=1

1
1+ti,l′δi

)(1 + tilδi)

−
wH
ilR

1
2
i (G− zIN )−1A(B(i,l) − zIN )−1R

1
2
i wil

1 + tilwH
ilR

1
2
i (B(i,l) − zIN )−1R

1
2
i wil

 .
To show that this last difference tends to zero, notice that 1 + tilδi ≥ 1 and

1− ci ≤ 1− ci +
1

N

ni∑
l=1

1

1 + tilδi
≤ 1

which ensure that we can divide the term in the expectation in the left-hand

side of (6.44) by 1 + tilδi and 1− ci + 1
N

∑ni
l=1

1
1+tilδi

without risking altering

the order of convergence. This results in

E

∣∣∣∣∣∣ βi
1 + tilδi

−
1
N tr R

1
2
i (G− zIN )−1 A (BN − zIN )−1 R

1
2
i(

1− ci + 1
N

∑ni
l=1

1
1+tilδi

)
(1 + tilδi)

∣∣∣∣∣∣
4 = O

(
1

N2

)
.

(6.45)
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From (6.43) and (6.45), we finally have that

E

∣∣∣∣∣∣
1
N tr Ri (G− zIN )−1 A (BN − zIN )−1(

1− ci + 1
N

∑ni
l=1

1
1+tilδi

)
(1 + tilδi)

−
wH
ilR

1
2
i (G− zIN )−1 A

(
B(i,l) − zIN

)−1
R

1
2
i wil

1 + tilwH
ilR

1
2
i

(
B(i,l) − zIN

)−1
R

1
2
i wil

∣∣∣∣∣∣
4 = O

(
1

N2

)
(6.46)

from which we obtain finally

E

[∣∣∣∣ 1

N
tr A(BN − zIN )−1 − 1

N
tr A(G− zIN )−1

∣∣∣∣4
]

= O

(
1

N2

)
. (6.47)

This provides us with a first interesting result, from which we could infer a

deterministic equivalent of eBN ,j(z), which would be written as a function of

deterministic equivalents of the δi and deterministic equivalents of the fi, for

i = {1, . . . ,K}. However this form is impractical to work with and we need to

go further in the study of ḡi.

Observe that ḡi can be written under the form

ḡi =
1

N

ni∑
l=1

til

(1− ci + 1
N

∑ni
l=1

1
1+tilδi

) + tilδi(1− ci + 1
N

∑ni
l=1

1
1+tilδi

)
.

We will study the denominator of the above expression and show that it can be

synthesized into a much more attractive form.

From (6.42), we first have

E

∣∣∣∣∣fi − δi
(

1− ci +
1

N

ni∑
l=1

1

1 + tilδi

)∣∣∣∣∣
4
 = O

(
1

N2

)
.

Noticing that

1− ḡiδi

(
1− ci +

1

N

ni∑
l=1

1

1 + tilδi

)
= 1− ci +

1

N

ni∑
l=1

1

1 + tilδi

we therefore also have

E

∣∣∣∣∣(1− ḡifi)−
(

1− ci +
1

N

ni∑
l=1

1

1 + tilδi

)∣∣∣∣∣
4
 = O

(
1

N2

)
.

The two relations above lead to

E

∣∣∣∣∣ḡi − 1

N

ni∑
l=1

til
tilfi + 1− fiḡi

∣∣∣∣∣
4


= E

∣∣∣∣∣ 1

N

ni∑
l=1

til
til [fi − δiκi] + [1− fiḡi − κi]
[κi + tilδiκi] [tilfi + 1− fiḡi]

∣∣∣∣∣
4
 (6.48)
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where we denoted κi , 1− ci + 1
N

∑ni
l=1

1
1+tilδi

.

Again, all differences in the numerator converge to zero at a rate O(1/N2).

However, the denominator presents now the term tilfi + 1− fiḡi, which must

be controlled and ensured to be away from zero. For this, we can notice that

ḡi ≤ T/(1− c) by definition, while fi ≤ R/|z|, also by definition. It is therefore

possible, by taking z < 0 sufficiently small, to ensure that 1− fiḡi > 0. We

therefore from now on assume that such z are considered.

Equation (6.48) becomes in this case

E

∣∣∣∣∣ḡi − 1

N

ni∑
l=1

til
tilfi + 1− fiḡi

∣∣∣∣∣
4
 = O

(
1

N2

)
.

We are now ready to introduce the matrix F. Consider

F =

K∑
i=1

f̄iRi,

with f̄i defined as the unique solution to the equation in x

x =
1

N

ni∑
l=1

til
1− fix+ fitil

(6.49)

within the interval 0 ≤ x < ci/fi. To prove the uniqueness of the solution within

this interval, note simply that

ci
fi
≥ 1

N

ni∑
l=1

til
1− fi(ci/fi) + fitil

0 ≤ 1

N

ni∑
l=1

til
1− fi · 0 + fitil

and that the function x 7→ 1
N

∑ni
l=1

til
1−fix+fitil

is strictly increasing. Hence the

uniqueness of the solution in [0, ci/fi). We also show that this solution is an

attractor of the fixed-point algorithm, when correctly initialized. Indeed, let

x0, x1, . . . be defined by

xn+1 =
1

N

ni∑
l=1

til
1− fixn + fitil

with x0 ∈ [0, ci/fi). Then, xn ∈ [0, ci/fi) implies 1− fixn + fitil ≥ 1− ci +

fitil > fitil and therefore fixn+1 ≤ ci, so x0, x1, . . . are all contained in [0, ci/fi).

Now observe that

xn+1 − xn =
1

N

ni∑
l=1

fi(xn − xn−1)

(1 + tilfi − fixn)(1 + tilfi − fixn−1)

so that the differences xn+1 − xn and xn − xn−1 have the same sign. The

sequence x0, x1, . . . is therefore monotonic and bounded: it converges. Calling
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x∞ this limit, we have:

x∞ =
1

N

ni∑
l=1

til
1 + tilfi − fix∞

as required.

To finally prove that 1
N tr A(BN − zIN )−1 − 1

N tr A(F− zIN )−1 a.s.−→ 0, we

want now to show that ḡi − f̄i tends to zero at a sufficiently fast rate. For this,

we write

E
[∣∣ḡi − f̄i∣∣4] ≤ 8E

∣∣∣∣∣ḡi − 1

N

ni∑
l=1

til
tilfi + 1− fiḡi

∣∣∣∣∣
4


+ 8E

∣∣∣∣∣ 1

N

ni∑
l=1

til
tilfi + 1− fiḡi

− 1

N

ni∑
l=1

til
tilfi + 1− fif̄i

∣∣∣∣∣
4


= 8E

∣∣∣∣∣ḡi − 1

N

ni∑
l=1

til
tilfi + 1− fiḡi

∣∣∣∣∣
4


+ E

∣∣ḡi − f̄i∣∣4
∣∣∣∣∣ 1

N

ni∑
l=1

tilfi
(tilfi + 1− fif̄i)(tilfi + 1− fiḡi)

∣∣∣∣∣
4
 .
(6.50)

We only need to ensure now that the coefficient multiplying
∣∣ḡi − f̄i∣∣ in the

right-hand side term is uniformly smaller than one. This unfolds again from

noticing that the numerator can be made very small, with the denominator kept

away from zero, for sufficiently small z < 0. For these z, we can therefore prove

that

E
[∣∣ḡi − f̄i∣∣4] = O

(
1

N2

)
.

It is important to notice that this holds essentially because we took f̄i to be

the unique solution of (6.49) lying in the interval [0, ci/fi). For ci = 1, another

solution happens to be equal to 1/fi, which does not satisfy this fourth moment

inequality.

Finally, we can proceed to proving the deterministic equivalent relations.

1

N
tr A (G− zIN )−1 − 1

N
tr A (F− zIN )−1

=

K∑
i=1

1

N

ni∑
l=1

til

[
1
N tr RiA (G− zIN )−1 (F− zIN )−1

(1− ci + 1
N

∑ni
l′=1

1
1+ti,l′δi

)(1 + tilδi)

−
1
N tr RiA (G− zIN )−1 (F− zIN )−1

1− fif̄i + tilfi

]
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=

K∑
i=1

1

N

ni∑
l=1

til

[(
1

(1− ci + 1
N

∑ni
l′=1

1
1+ti,l′δi

)(1 + tilδi)
− 1

1− fiḡi + tilfi

)

+

(
1

1− fiḡi + tilfi
− 1

1− fif̄i + tilfi

)]
1

N
tr RiA (G− zIN )−1 (F− zIN )−1 .

The first difference in brackets is already known to be small from previous

considerations on the relations between ḡi and δi. As for the second difference,

it also goes to zero fast as E[|ḡi − f̄i|4] is summable. We therefore have

E

[∣∣∣∣ 1

N
tr A (G− zIN )−1 − 1

N
tr A (F− zIN )−1

∣∣∣∣4
]

= O

(
1

N2

)
.

Together with (6.47), we finally have

E

[∣∣∣∣ 1

N
tr A (BN − zIN )−1 − 1

N
tr A (F− zIN )−1

∣∣∣∣4
]

= O

(
1

N2

)
.

Applying the Markov inequality, Theorem 3.5, and the Borel–Cantelli lemma,

Theorem 3.6, this entails

1

N
tr A (BN − zIN )−1 − 1

N
tr A (F− zIN )−1 a.s.−→ 0 (6.51)

as N grows large. This holds however to this point for a restricted set of negative

z. In order to extend the convergence to all R−, we need to show that f̄i(z) can

be extended to an holomorphic function in a neighborhood of any segment of

R−. Proving the holomorphic extension is performed in [Couillet et al., 2011b] by

showing that, for z in the cone D = {z ∈ C, <[z] < 0, |=[z]| < <[z](1− ci)/ci},
the algorithm defining f̄i(z) keeps its successive iterations holomorphic and

bounded. Since these iterations are known to converge for z ∈ R−, the Vitali

convergence theorem, Theorem 3.11, ensures that the algorithm converges to

a holomorphic function on all D. This holomorphic function obviously extends

f̄i(z) to D, and we have the desired result.

The proof of the above statement is very technical and not of interest for this

book. Nonetheless, it is important to stress the fact that D is the “best” region

where the successive iterations defining f̄i(z) are maintained bounded, due to

the instability of the denominators defining the algorithm. Simulations suggest

that, outside D, the algorithm sometimes does no no longer converge. It therefore

remains an open problem to define an holomorphic extension outside D, and this

is the main reason why we cannot possibly state a result on the convergence in

law of FBN .

Applying the result for A = Rj , this is in particular

fj −
1

N
tr Rj

(
K∑
i=1

f̄iRi − zIN

)−1

a.s.−→ 0



6.2. Techniques for deterministic equivalents 167

where we recall that f̄i is the unique solution to

x =
1

N

ni∑
i=1

til
1− fix+ tilfi

within the set [0, ci/fi).

Step 2: Existence and uniqueness
The existence step unfolds similarly as in the proof of Theorem 6.1. It suffices

to consider the matrices T[p],i ∈ Cnip and R[p],i ∈ CNp for all i defined as the

Kronecker products T[p],i , Ti ⊗ Ip, R[p],i , Ri ⊗ Ip, which have, respectively,

the d.f. FTi and FRi for all p. Similar to the i.i.d. case, it is easy to see that ei
is unchanged by substituting the T[p],i and R[p],i to the Ti and Ri, respectively.

Denoting in the same way f[p],i the equivalent of fi for T[p],i and R[p],i, from the

convergence result of Step 1, we can choose f[1],i, f[2],i, . . . a sequence of the set of

probability one where convergence is ensured as p grows large (N and the ni are

kept fixed). The limit over this sequence satisfies the fixed-point equation, which

therefore proves existence. It is easy to see that the limit is also the Stieltjes

transform of a finite measure on R+ by verifying the conditions of Theorem 3.2.

We will prove uniqueness of positive solutions e1, . . . , eK > 0 for z < 0 and

the convergence of the classical fixed-point algorithm to these values. We first

introduce some notations and useful identities. Note that, similar to Step 1 with

the δi terms, we can define, for any pair of variables xi and x̄i, with x̄i defined as

the solution y to y = 1
N

∑ni
l=1

til
1+xjtil−xjy such that 0 ≤ y < cj/xj , the auxiliary

variables ∆1, . . . ,∆K , with the properties

xi = ∆i

(
1− ci +

1

N

ni∑
l=1

1

1 + til∆i

)
= ∆i

(
1− 1

N

ni∑
l=1

til∆i

1 + til∆i

)

and

1− xix̄i = 1− ci +
1

N

ni∑
l=1

1

1 + til∆i
= 1− 1

N

ni∑
l=1

til∆i

1 + til∆i
.

The uniqueness of the mapping between the xi and ∆i can be proved. In fact,

it turns out that ∆i is a monotonically increasing function of xi with ∆i = 0

for xi = 0. We take the opportunity of the above definitions to notice that, for

xi > x′i and x̄′i, ∆′i defined similarly as x̄i and ∆i

xix̄i − x′ix̄′i =
1

N

ni∑
l=1

til(∆i −∆′i)

(1 + til∆i)(1 + til∆′i)
> 0 (6.52)

whenever Ti 6= 0. Therefore xix̄i is a growing function of xi (or equivalently of

∆i). This will turn out a useful remark later.
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We are now in position to prove the step of uniqueness. Define, for i ∈
{1, . . . ,K}, the functions

hi : (x1, . . . , xK) 7→ 1

N
tr Ri

 K∑
j=1

x̄jRj − zIN

−1

with x̄j the unique solution of the equation in y

y =
1

N

nj∑
l=1

tjl
1 + xjtjl − xjy

(6.53)

such that 0 ≤ y ≤ cj/xj .
We will prove in the following that the multivariate function h = (h1, . . . , hK)

is a standard function, defined in [Yates, 1995], as follows.

Definition 6.2. A function h(x1, . . . , xK) ∈ RK , h = (h1, . . . , hK), with

arguments x1, . . . , xK ∈ R+, is said to be a standard function or a standard

interference function if it fulfills the following conditions

1. Positivity: for all j and all x1, . . . , xK ≥ 0, hj(x1, . . . , xK) > 0,

2. Monotonicity: if x1 ≥ x′1, . . . , xK ≥ x′K , then hj(x1, . . . , xK) ≥
hj(x

′
1, . . . , x

′
K), for all j,

3. Scalability: for all α > 1 and j, αhj(x1, . . . , xK) > hj(αx1, . . . , αxK).

The important result regarding standard functions [Yates, 1995] is given as

follows.

Theorem 6.18. If a K-variate function h(x1, . . . , xK) is standard and there

exists (x1, . . . , xK) such that, for all j, xj ≥ hj(x1, . . . , xK), then the fixed-point

algorithm that consists in setting

x
(t+1)
j = hj(x

(t)
1 , . . . , x

(t)
K )

for t ≥ 1 and for any initial values x
(0)
1 , . . . , x

(0)
K ≥ 0 converges to the unique

(nonnegative) solution of the system of K equations

xj = hj(x1, . . . , xK)

with j ∈ {1, . . . ,K}.

Proof. The existence is based on the monotonicity condition and the

boundedness xj ≥ hj(x1, . . . , xK) for some x1, . . . , xK . It is easily shown that,

starting from x
(0)
1 = . . . = x

(0)
K = 0, the sequences of x

(l)
i is monotonous. From

the boundedness, it results that the sequence converges. The proof of uniqueness

unfolds easily from the standard function assumptions. Take (x1, . . . , xK) and

(x′1, . . . , x
′
K) two sets of supposedly distinct all positive solutions. Then there

exists j such that xj < x′j , αxj = x′j , and αxi ≥ x′i for i 6= j. From monotonicity

and scalability, it follows that

x′j = hj(x
′
1, . . . , x

′
K) ≤ hj(αx1, . . . , αxK) < αhj(x1, . . . , xK) = αxj
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a contradiction. The convergence of the fixed-point algorithm from any point

(x1, . . . , xK) unfolds from similar arguments, see [Yates, 1995] for more details.

Therefore, by showing that h , (h1, . . . , hK) is standard, we will prove that the

classical fixed-point algorithm converges to the unique set of positive solutions

e1, . . . , eK , when z < 0.

The positivity condition is straightforward as x̄i is positive for xi positive and

therefore hj(x1, . . . , xK) is always positive whenever x1, . . . , xK are.

The scalability is also rather direct. Let α > 1, then:

αhj(x1, . . . , xK)− hj(αx1, . . . , αxK)

=
1

N
tr Rj

(
K∑
k=1

x̄k
α

Rk −
z

α
IN

)−1

− 1

N
tr Rj

(
K∑
k=1

x̄
(a)
k Rk − zIN

)−1

where we denoted x̄
(a)
j the unique solution to (6.53) with xj replaced by αxj ,

within the set [0, cj/(αxj)). Since αxi > xi, from the property (6.52), we have

αxkx̄
(α)
k > xkx̄k or equivalently x̄

(a)
k −

x̄k
α > 0. We now define the two matrices

A ,
∑k
k=1

x̄k
α Rk − z

αIN and A(α) ,
∑k
k=1 x̄

(α)
k Rk − zIN . For any vector a ∈

CN

aH
(
A−A(α)

)
a =

K∑
k=1

( x̄k
α
− x̄(α)

k

)
aHRka + z

(
1− 1

α

)
aHa ≤ 0

since z < 0, 1− 1
α > 0 and x̄k

α − x̄
(α)
k < 0. Therefore A−A(α) is non-positive

definite. Now, from [Horn and Johnson, 1985, Corollary 7.7.4], this implies that

A−1 − (A(α))−1 is non-negative definite. Writing

1

N
tr Rj

(
A−1 − (A(α))−1

)
=

1

N

N∑
i=1

rHj,i

(
A−1 − (A(α))−1

)
rj,i

with rj,i the ith column of Rj , this ensures αhj(x1, . . . , xK) > hj(αx1, . . . , αxK).

The monotonicity requires some more lines of calculus. This unfolds from

considering x̄i as a function of ∆i, by verifying that d
d∆i

x̄i is negative.

d

d∆i
x̄i =

1

∆2
i

(
1− 1

1− 1
N

∑ni
l=1

til∆i

1+til∆i

)
+

1

∆2
i

 1
N

∑ni
l=1

til∆i

(1+til∆i)2(
1− 1

N

∑ni
l=1

til∆i

1+til∆i

)2


=
− 1
N

∑ni
l=1

til∆i

1+til∆i

(
1− 1

N

∑ni
l=1

til∆i

1+til∆i

)
+ 1

N

∑ni
l=1

til∆i

(1+til∆i)2

∆2
i

(
1− 1

N

∑ni
l=1

til∆i

1+til∆i

)2

=

(
1
N

∑ni
l=1

til∆i

1+til∆i

)2

− 1
N

∑ni
l=1

til∆i

1+til∆i
+ 1

N

∑ni
l=1

til∆i

(1+til∆i)2

∆2
i

(
1− 1

N

∑ni
l=1

til∆i

1+til∆i

)2
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=

(
1
N

∑ni
l=1

til∆i

1+til∆i

)2

− 1
N

∑ni
l=1

(til∆i)
2

(1+til∆i)2

∆2
i

(
1− 1

N

∑ni
l=1

til∆i

1+til∆i

)2 .

From the Cauchy–Schwarz inequality, we have:(
ni∑
l=1

1

N

til∆i

1 + til∆i

)2

≤
ni∑
l=1

1

N2

ni∑
l=1

(til∆i)
2

(1 + til∆i)2

= ci
1

N

ni∑
l=1

(til∆i)
2

(1 + til∆i)2

<
1

N

ni∑
l=1

(til∆i)
2

(1 + til∆i)2

which is sufficient to conclude that d
d∆i

x̄i < 0. Since ∆i is an increasing function

of xi, we have that x̄i is a decreasing function of xi, i.e. d
dxi

x̄i < 0. This being

said, using the same line of reasoning as for scalability, we finally have that, for

two sets x1, . . . , xK and x′1, . . . , x
′
K of positive values such that xj > x′j

hj(x1, . . . , xK)− h(x′1, . . . , x
′
K)

=
1

N
tr Rj

( K∑
k=1

x̄kRk − zIN

)−1

−

(
K∑
k=1

x̄′kRk − zIN

)−1
 > 0

with x̄′j defined equivalently as x̄j , and where the terms (x̄′k − x̄k) are all positive

due to negativity of d
dxi

x̄i. This proves the monotonicity condition.

We finally have from Theorem 6.18 that (e1, . . . , eK) is uniquely defined

and that the classical fixed-point algorithm converges to this solution from

any initialization point (remember that, at each step of the algorithm, the set

ē1, . . . , ēK must be evaluated, possibly thanks to a further fixed-point algorithm).

We finally complete the proof by showing that the stochastic fi and the

deterministic ei are asymptotically close to one another as N grows large.

Step 3: Convergence of ei − fi
For this step, we follow the approach in [Hachem et al., 2007]. Denote

εiN , fi −
1

N
tr Ri

(
K∑
k=1

f̄kRk − zIN

)−1

and recall the definitions of fi, ei, f̄i and ēi:

fi =
1

N
tr Ri (BN − zIN )−1

ei =
1

N
tr Ri

 K∑
j−1

ējRj − zIN

−1
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f̄i =
1

N

ni∑
l=1

ti,l
1− fif̄i + ti,lfi

, f̄i ∈ [0, ci/fi]

ēi =
1

N

ni∑
l=1

ti,l
1− eiēi + ti,lei

, ēi ∈ [0, ci/ei].

From the definitions above, we have the following set of inequalities

fi ≤
R

|z|
, ei ≤

R

|z|
, f̄i ≤

T

1− ci
, ēi ≤

T

1− ci
. (6.54)

We will show in the sequel that

ei − fi
a.s.−→ 0 (6.55)

for all i ∈ {1, . . . , N}. Write the following differences

fi − ei =
K∑
j=1

(ēj − f̄j)
1

N
tr Ri

[
K∑
k=1

ēkRk − zIN

]−1

Rj

[
K∑
k=1

f̄kRk − zIN

]−1

+ εiN

ēi − f̄i =
1

N

ni∑
l=1

t2i,l(fi − ei)− ti,l
[
fif̄i − eiēi

]
(1 + ti,lei − ēiei)(1 + ti,lfi − f̄ifi)

and

fif̄i − eiēi = f̄i(fi − ei) + ei(f̄i − ēi).

For notational convenience, we define the following values

α , sup
i

E
[
|fi − ei|4

]
ᾱ , sup

i
E
[
|f̄i − ēi|4

]
.

It is thus sufficient to show that α is summable to prove (6.55). By applying

(6.54) to the absolute of the first difference, we obtain

|fi − ei| ≤
KR2

|z|2
sup
i
|f̄i − ēi|+ sup

i
|εiN |

and hence

α ≤ 8K4R8

|z|8
ᾱ+

8C

N2
(6.56)

for some constant C > 0 such that E[| supi ε
i
N |4] ≤ C/N2. This is possible since

E[| supi ε
i
N |4] ≤ 8K supi E[|εiN |4] and E[|εiN |4] has been proved to be of order

O(1/N2). Similarly, we have for the third difference

|fif̄i − eiēi| ≤ |f̄i||fi − ei|+ |ei||f̄i − ēi|

≤ T

1− c
sup
i
|fi − ei|+

R

|z|
sup
i
|f̄i − ēi|
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with c an upper bound on maxi lim supn ci, known to be inferior to one. This

result can be used to upper bound the second difference term, which writes

|f̄i − ēi| ≤
1

(1− c)2

(
T 2 sup

i
|fi − ei|+ T |fif̄i − eiēi|

)
≤ 1

(1− c)2

(
T 2 sup

i
|fi − ei|+ T

[
T

1− c
sup
i
|fi − ei|+

R

|z|
sup
i
|f̄i − ēi|

])
=
T 2(2− c)
(1− c)3

sup
i
|fi − ei|+

RT

|z|(1− c)2
sup
i
|f̄i − ēi|.

Hence

ᾱ ≤ 8T 8(2− c)4

(1− c)12
α+

8R4T 4

|z|4(1− c)8
ᾱ. (6.57)

For a suitable z, satisfying |z| > 2RT
(1−c)2 , we have 8R4T 4

|z|4(1−c)8 < 1/2 and, thus,

moving all terms proportional to α on the left

ᾱ <
16T 8(2− c)4

(1− c)12
α.

Plugging this result into (6.56) yields

α ≤ 128K4R8T 8(2− c)4

|z|8(1− c)12
α+

8C

N2
.

Take 0 < ε < 1. It is easy to check that, for |z| > 1281/8RT
√
K(2−c)

(1−c)3/2(1−ε)1/8 ,
128K4R8T 8(2−c)4

|z|8(1−c)12 < 1− ε and thus

α <
8C

εN2
. (6.58)

Since C does not depend on N , α is clearly summable which, along with the

Markov inequality and the Borel–Cantelli lemma, concludes the proof, for these

small values of z. To extend the proof to all z < 0, we need to prove that ei(z)

can be extended to an holomorphic function in a neighborhood of R−. For this,

we use the fact that f[p],i defined as fi but with Ti and Hi replaced by T[p],i =

Ti ⊗ Ip and H[p],i = Hi ⊗ Ip, respectively, f[p],i(z) converges for z ∈ D almost

surely. Taking a sequence from this probability one space, since the convergence

is towards ei(z) for z < 0, it entails from Vitali’s convergence theorem that ei(z)

can be extended to an holomorphic function on D. Therefore the convergence

fi − ei
a.s.−→ 0 is valid for all z < 0. This is our final result.

As a (not immediate) corollary of the proof above, we have the following result,

important for application purposes, see Section 12.2.

Theorem 6.19. Under the assumptions of Theorem 6.17 with Ti diagonal for

all i, denoting wij the jth column of Wi, tij the jth diagonal entry of Ti, and
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z ∈ C \ R+

wH
ijH

H
i

(
BN − tijHiwijw

H
ijH

H
i − zIN

)−1
Hiwij −

ei(z)

c̄i − ei(z)ēi(z)
a.s.−→ 0. (6.59)

where ei(z) and ēi(z) are defined in Theorem 6.17.

Similar to the i.i.d. case, a deterministic equivalent for the Shannon transform

can be derived. This is given by the following proposition.

Theorem 6.20. Under the assumptions of Theorem 6.17 with z = −1/x, for

x > 0, denoting

VBN (x) =
1

N
log det (xBN + IN )

the Shannon transform of BN , we have:

VBN (x)− VN (x)
a.s.−→ 0

where

VN (x) =
1

N
log det

(
IN + x

K∑
i=1

ēiRi

)
+

K∑
i=1

1

N
log det ([c̄i − eiēi]Ini + eiTi)

+

K∑
i=1

[(1− ci) log(c̄i − eiēi)− c̄i log(c̄i)] . (6.60)

The proof for the deterministic equivalent of the Shannon transform follows

from similar considerations as for the i.i.d. case, see Theorem 6.4 and Corollary

6.1, and is detailed below.

Proof. For the proof of Theorem 6.20, we again take c̄i = 1, Ri deterministic

of bounded spectral norm for simplicity. First note that the system of

Equations (6.39) is unchanged if we extend the Ti matrices into N ×N diagonal

matrices filled with N − ni zero eigenvalues. Therefore, we can assume ci = 1 and

that all Ti have size N ×N , although we restrict the FTi to have a mass in zero.

Since this does not alter the Equations (6.39), we have in particular ēi < 1/ei.

This being said, (6.60) now needs to be rewritten

VN (x) =
1

N
log det

(
IN + x

K∑
i=1

ēiRi

)
+

K∑
i=1

1

N
log det ([1− eiēi]IN + eiTi) .

Calling V the function

V : (x1, . . . , xK , x̄1, . . . , x̄K , x) 7→ 1

N
log det

(
IN + x

K∑
i=1

x̄iRi

)

+

K∑
i=1

1

N
log det ([1− xix̄i]IN + xiTi)



174 6. Deterministic equivalents

we have:

∂V

∂xi
(e1, . . . , eK , ē1, . . . , ēK , x) = ēi − ēi

1

N

N∑
l=1

1

1− eiēi + eitil

∂V

∂x̄i
(e1, . . . , eK , ē1, . . . , ēK , x) = ei − ei

1

N

N∑
l=1

1

1− eiēi + eitil
.

Noticing now that

1 =
1

N

N∑
l=1

1− eiēi + eitil
1− eiēi + eitil

= (1− eiēi)
1

N

N∑
l=1

1

1− eiēi + eitil
+ eiēi

we have:

(1− eiēi)

(
1− 1

N

N∑
l=1

1

1− eiēi + eitil

)
= 0.

But we also know that 0 ≤ ēi < 1/ei and therefore 1− eiēi > 0. This entails

1

N

N∑
l=1

1

1− eiēi + eitil
= 1. (6.61)

From (6.61), we conclude that

∂V

∂xi
(e1, . . . , eK , ē1, . . . , ēK , x) = 0

∂V

∂x̄i
(e1, . . . , eK , ē1, . . . , ēK , x) = 0.

We therefore have that

d

dx
VN (x) =

K∑
i=1

[
∂V

∂ei

∂ei
∂x

+
∂V

∂ēi

∂ēi
∂x

]
+
∂V

∂x

=
∂V

∂x

=

K∑
i=1

ēi
1

N
tr Ri

IN + x

K∑
j=1

ējRj

−1

=
1

x
− 1

x2

1

N
tr

 1

x
IN +

K∑
j=1

ējRj

−1

.

Therefore, along with the fact that VN (0) = 0, we have:

VN (x) =

∫ x

0

(
1

t
− 1

t2
mN

(
−1

t

))
dt

and therefore VN (x) is the Shannon transform of FN , according to Definition

3.2.
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In order to prove the almost sure convergence VBN (x)− VN (x)
a.s.−→ 0, we need

simply to notice that the support of the eigenvalues of BN is bounded. Indeed, the

non-zero eigenvalues of WiW
H
i have unit modulus and therefore ‖BN‖ ≤ KTR.

Similarly, the support of FN is the support of the eigenvalues of
∑K
i=1 ēiRi,

which are bounded by KTR as well.

As a consequence, for B1,B2, . . . a realization for which FBN − FN ⇒ 0, we

have, from the dominated convergence theorem, Theorem 6.3∫ ∞
0

log (1 + xt) d[FBN − FN ](t)→ 0.

Hence the almost sure convergence.

Applications of the above results are found in various telecommunication

systems employing random isometric precoders, such as random CDMA, SDMA

[Couillet et al., 2011b]. A specific application to assess the optimal number

of stream transmissions in multi-antenna interference channels is in particular

provided in [Hoydis et al., 2011a], where an extension of Theorem 6.17 to

correlated i.i.d. channel matrices Hi is provided. It is worth mentioning that

the approach followed in [Hoydis et al., 2011a] to prove this extension relies

on an “inclusion” of the deterministic equivalent of Theorem 6.12 into the

deterministic equivalent of Theorem 6.17. The final result takes a surprisingly

simple expression and the proof of existence, uniqueness, and convergence of

the implicit equations obtained do not require much effort. This “deterministic

equivalent of a deterministic equivalent” approach is very natural and is expected

to lead to very simple results even for intricate communication models; recall e.g.

Theorem 6.9.

We conclude this chapter on deterministic equivalents by a central limit

theorem for the Shannon transform of the non-centered random matrix with

variance profile of Theorem 6.14.

6.3 A central limit theorem

Central limit theorems are also demanded for more general models than the

sample covariance matrix of Theorem 3.17. In wireless communications, it

is particularly interesting to study the limiting distribution of the Shannon

transform of doubly correlated random matrices, e.g. to mimic Kronecker models,

or even more generally matrices of i.i.d. entries with a variance profile. Indeed,

the later allows us to study, in addition to the large dimensional ergodic capacity

of Rician MIMO channels, as provided by Theorem 6.14, the large dimensional

outage mutual information of such channels. In [Hachem et al., 2008b], Hachem

et al. provide the central limit theorem for the Shannon transform of this model.
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Theorem 6.21 ([Hachem et al., 2008b]). Let YN be N × n whose (i, j)th entry

is given by:

YN,ij =
σij(n)√

n
XN,ij

with {σij(n)}ij uniformly bounded with respect to n, and XN,ij is the (i, j)th

entry of an N × n matrix XN with i.i.d. entries of zero mean, unit variance, and

finite eighth order moment. Denote BN = YNYH
N . We then have, as N,n→∞

with limit ratio c = limN N/n, that the Shannon transform

VBN (x) ,
1

N
log det(IN + xBN )

of BN satisfies

N

θn
(VBN (x)− E[VBN (x)])⇒ X ∼ N(0, 1)

with

θ2
n = − log det(In − Jn) + κ tr(Jn)

κ = E[(XN,11)4]− 3E[(XN,11)3] for real XN,11, κ = E[|XN,11|4]− 2E[|XN,11|2]

for complex XN,11, and Jn the matrix with (i, j)th entry

Jn,ij =
1

n

1
n

∑N
k=1 σ

2
ki(n)σ2

kj(n)tk(−1/x)2(
1 + 1

n

∑N
k=1 σ

2
ki(n)tk(−1/x)

)2

with ti(z) such that (t1(z), . . . , tN (z)) is the unique Stieltjes transform vector

solution of

ti(z) =

−z +
1

n

n∑
j=1

σ2
ij(n)

1 + 1
n

∑N
l=1 σ

2
lj(n)tl(z)

−1

.

Observe that the matrix Jn is in fact the Jacobian matrix associated with the

fundamental equations in the eN,i(z), defined in the implicit relations (6.29) of

Theorem 6.10 as

eN,i(z) =
1

n

N∑
k=1

σ2
ki(n)tk(z) =

1

n

N∑
k=1

σ2
ki(n)

1

−z + 1
n

∑n
l=1

σ2
kl(n)

1+eN,l(z)

.
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Indeed, for all eN,k(−1/x) fixed but eN,j(−1/x), we have:

∂

∂eN,j(−1/x)

 1

n

N∑
k=1

σ2
ki(n)

1

1
x + 1

n

∑n
l=1

σ2
kl(n)

1+eN,l(−1/x)


=

1

n

N∑
k=1

σ2
ki(n)

1
nσ

2
kj(n)

(1 + eN,j(−1/x))2

1(
1
x + 1

n

∑n
l=1

σ2
kl(n)

1+eN,l(−1/x)

)2

=
1

n

N∑
k=1

1
nσ

2
ki(n)σ2

kj(n)tk(−1/x)2

(1 + eN,j(−1/x))2

= Jn,ji.

So far, this observation seems to generalize to all central limits derived

for random matrix models with independent entries. This is however only an

intriguing but yet unproven fact.

Similar to Theorem 3.17, [Hachem et al., 2008b] provides more than an

asymptotic central limit theorem for the Shannon transform of the information

plus noise model VBN − E[VBN ], but also the fluctuations for N large of the

difference between VBN and its deterministic equivalent VN , provided in [Hachem

et al., 2007]. In the case where XN has Gaussian entries, this takes a very compact

expression.

Theorem 6.22. Under the conditions of Theorem 6.21 with the additional

assumption that the entries of XN are complex Gaussian, we have:

N√
− log det (In − Jn)

(VBN (x)− VN (x))⇒ X ∼ N(0, 1)

where VN is defined as

VN (x) =
1

N

N∑
i=1

log

(
x

ti(−1/x)

)
+

1

N

n∑
j=1

log

(
1 +

1

n

N∑
l=1

σ2
lj(n)tl(−1/x)

)

− 1

Nn

∑
1≤i≤N
1≤j≤n

σ2
ij(n)ti(−1/x)

1 + 1
n

∑N
l=1 σ

2
lj(n)tl(−1/x)

with t1, . . . , tN and Jn defined as in Theorem 6.21.

The generalization to distributions of the entries of XN with a non-zero

kurtosis κ introduces an additional bias term corresponding to the limiting

variations of N(E[VBN (x)]− VN (x)). This converges instead to zero in the

Gaussian case or, as a matter of fact, in the case of any distribution with null

kurtosis.

This concludes this short section on central limit theorems for deterministic

equivalents.
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This also closes this chapter on the classical techniques used for deterministic

equivalents, when there exists no limit to the e.s.d. of the random matrix under

study. Those deterministic equivalents are seen today as one of the most powerful

tools to evaluate the performance of large wireless communication systems

encompassing multiple antennas, multiple users, multiple cells, random codes,

fast fading channels, etc. which are studied with scrutiny in Part II. In order

to study complicated system models involving e.g. doubly-scattering channels,

multi-hop channels, random precoders in random channels, etc., the current trend

is to study nested deterministic equivalents; that is, deterministic equivalents

that account for the stochasticity of multiple independent random matrices, see

e.g. [Hoydis et al., 2011a,b].

In the following, we turn to a rather different subject and study more deeply

the limiting spectra of the sample covariance matrix model and of the information

plus noise model. For these, much more than limiting spectral densities is

known. It has especially been proved that, under some mild conditions, the

extreme eigenvalues for both models do not escape the support of the l.s.d.

and that a precise characterization of the position of some eigenvalues can be

determined. Some additional study will characterize precisely the links between

the population covariance matrix (or the information matrix) and the sample

covariance matrix (or the information plus noise matrix), which are fundamental

to address the questions of inverse problems and more precisely statistical eigen-

inference for large dimensional random matrix models. These questions are at

the core of the very recent signal processing tools, which enable novel signal

sensing techniques and (N,n)-consistent estimation procedures adapted to large

dimensional networks.


