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Abstract—In this paper, we revisit the philosophical founda-
tions of the field of channel estimation. Our main intention
is to come up with a partial answer to the question: “given
some available sensed signals, how should cognitive radios ideally
perform channel estimation?”. We specifically introduce a general
framework to provide optimal channel estimates under any prior
knowledge at the sensing device. Our discussion is articulated as
a top-down approach, introducing successively (i) a discussion on
the philosophical foundations of channel estimation as a simplifi-
cation means for the general problem of wireless detection, (ii) an
information theoretically optimal approach to channel detection
assuming the sensing device has infinite memory, and (iii) a
derived optimal approach when limited memory size is accounted
for. The key mathematical tools used in this discussion emerge
from Bayesian probability theory and are known as the maximum
entropy principle and the minimum update principle. Derivations
are carried out for the particular case of channel estimation
in orthogonal frequency division multiplexing (OFDM) systems.
While some theoretical results will be proven to match already
known techniques, such as Kalman filters, another set of novel
results will be shown by simulations to perform better than
known channel estimation schemes.

I. INTRODUCTION

Channel estimation, along with most synchronization pro-
cedures, is itself a major and historical field of research in
the realm of wireless communications . As such, thousands
of novel channel estimators are proposed and compared to
previous estimators every year. One of the obvious reasons for
such an activity around channel estimation is that there does
not exist a universal measure of performance to rate any given
scheme with respect to any other; instead, several different
selection criteria are considered, such as computational com-
plexity, mean square error of the estimate, robustness against
outage channel conditions, required processing memory etc.
In this work, we wish to propose a framework to encompass
the aforementioned selection conditions into a unique channel
estimation framework. In some cases, we shall generate the
optimal channel estimators for this framework. The sought
for a general framework for channel estimation is motivated
by the recent trend towards cognitive radios, and in particular
by the trend towards developing terminal-centered intelligence
in future wireless flexible networks. In the framework of
cognitive radios, terminals are required to learn from their
environment and take optimal decisions based on a constantly

updated knowledge: performing optimal channel estimation
from limited side information is part of the requirements
demanded of cognitive radios.

The prior requirement for channel estimators is to help
signal decoders as best as possible. The decision to consider
a particular measure of performance for a given channel
estimators should only reflect the subsequent effects on the
eventual signal decoding process. For instance, minimizing
the mean square error of channel estimators has no theoret-
ical ground; it is merely a convenient mathematical way to
compare estimators. In Section II, we shall briefly remind the
foundations of signal decoding and channel estimation, which
we shall review on a cognitive radio viewpoint. This study
naturally follows the theoretical ideas introduced in [5], in
which the authors introduce a new look on cognitive radios,
and in [6], where the specific problem of blind source detection
is addressed. Section II will conclude that today’s theoretical
and technological advances does not yet allow smart devices to
perform optimal signal decoding without considering channel
estimation as an independent entity.

In Section IV, we shall therefore treat channel estimation as
a self-contained process, independent of the problem of signal
detection, as is conventionally the case. We shall introduce
a complete framework to derive optimal channel estimators
under any prior state of knowledge at the signal receiver.
While the conventional approach is to treat specific channel
models and develop estimators for those models, we shall
here instead consider prior knowledge about the environment
at the receiver, and develop consistent estimators for this
knowledge. We wish indeed to insist on the fact that smart
devices should be able to come up with an ideal channel
estimator for any given prior information on the channel. The
approach addressed here is based on conventional Bayesian
probability theory and on the maximum entropy principle
[8]. In this section, we shall essentially remind the results
originally derived in [7]. However, the practical finite memory
size of the processing devices will not be taken into account
in this section.

To answer the problem of optimal channel estimation under
finite memory-size constraint, we shall subsequently introduce
a novel aspect of the maximum entropy principle, known as the
minimal update principle [9]. The major difference between



both is the fact that the maximum entropy principle assumes
an initial starting point and performs optimal decisions for
data collected from this starting point on, while the minimal
update principle assumes that one might be oblivious of old
data and performs optimal decisions for a finite window of
“remembrance”. In our specific channel estimation consid-
erations, this means that estimation based on the maximum
entropy principle assume infinite memory at the receiving
device, while the minimal update principle does only assume
finite-time data recollection. From this novel approach, we
derive optimal decisions, which will be shown in simulations
to be often as good as those provided by the infinite memory
size process.

Indeed, while Shannon [10] allows us to derive the capacity
of a channel for which all synchronization parameters, plus
the noise variance, are perfectly known, no such theory exists
when the knowledge of some of these parameters is missing.
More precisely, for a scalar communication y = hx+n, x ∈ X,
for some codebook X, if h is unknown, then the maximum a
posteriori estimate for x is

x̂ = arg max
x∈X

∫
h

∫
n

p(x|h, n)p(h)p(n)dhdn (1)

which requires to have an a priori p(h) for h. But this a priori
is too impractical to obtain and would require to know all
possible channel realizations and their respective probability.
As a consequence to this strong difficulty, most contributions
in the synchronization field have provided various empirical
models based on field observations in order either to give
an expression to p(h) or, more practically, to propose good
channel estimators ĥ to h. Among those solutions, we mention
[1] [2] [3] [4].

The difficulty of handling estimation problems when little
side information is available is treated by Jaynes, through the
Bayesian probability field, thanks to the maximum entropy
principle [8]. However MaxEnt does not allow to perform
updates of probability when new information, such as new
pilots in the channel estimation problem, is available. In this
case, the complete set of past symbols along with a prior
distribution for the channel h0 at time t = 0. This question was
treated in [12] for the OFDM framework, when the channel
delay spread, the channel time correlation and the signal-to-
noise ratio (SNR) are alternatively known or unknown. When
these parameters are not perfectly known, MaxEnt provides
channel estimates minimizing the estimate mean square error
(MMSE estimates) that outperform classical estimates which
use empirical (often erroneous) models. Recent contributions
in the Bayesian probability field enable one to perform prob-
ability updates, in particular based minimum cross entropy
considerations [9]. In this work, we will then provide a channel
estimation method, using the ME principle, which allows
to assign probability distributions for the channel, when the
estimator only knows the last past inferred channel distribution
and the new received pilot symbols.

The remainder of this article unfolds as follows: in Section
II, we discuss the foundations of channel estimation under

a Bayesian point of view; in Section III, we introduce the
OFDM model that shall be used as a toy example to illustrate
in practice the theoretical ideas elaborated in the following
sections. In Section IV, we discuss optimal infinite memory
channel estimation, while in Section V, we introduce the
minimal update principle and extend the previous optimality
framework to finite-time memory channel estimation; also in
this section, technical comparison is made against classical
techniques. In Section VI, simulation and results are pro-
posed, which compare the new method to the aforementioned
classical algorithms. Finally, in Section VII, we draw our
conclusions.

Notations: In the following, boldface lower case symbols
represent vectors, capital boldface characters denote matrices
(IN is the N×N identity matrix). The transposition operation
is denoted (·)T. The Hermitian transpose is denoted (·)H. The
operator diag(x) turns the vector x into a diagonal matrix.
The symbol det(X) is the determinant of matrix X. The
symbol E[·] denotes expectation. The Kronecker delta function
is denoted δx that equals 1 if x = 0 and equals 0 otherwise.

II. FOUNDATIONS OF CHANNEL ESTIMATION

In 1948, Shannon [10] provided the expression for the
capacity of a communication channel between a transmitter
and a receiver, modelled as

y = x+ n (2)

where x ∈ X is the input signal sent by the transmitter, which
the receiver aims at recovering, n some additive noise process
and y the effective signal captured by the receiver. In the
conventional case when n and x are random variables with
zero mean Gaussian distributions, the rate C to which the
sequence of x can be decoded with infinitely low decoding
error takes the simple form

C = log

(
1 +

E[|x|2]

E[|n|2]

)
(3)

but Shannon does not provide any way to achieve such a
decoding rate. Although, for appropriate coding schemes, it
is possible to get an estimate x̂ of x with as low decoding
error rate as desired. The estimate x̂ is based on the posterior
probability p(x|y) of any candidate x ∈ X given the output y,

p(x|y, I) =

∫
n

p(x|y, n, I)p(n|I)dn (4)

where we denote by I all prior information known by the
receiver at the moment it receives y.

In particular, we often take x̂ to be the maximum likelihood
estimator for x,

x̂ = arg max
x∈X

∫
n

p(x|y, n, I)p(n|I)dn (5)

which is easily derived for Gaussian n and I bringing no
information to n, as

x̂ = arg min
x∈X
‖y − x‖2 (6)



When the signal x is filtered by a channel h, i.e. y = hx+n,
the previous derivation is still valid, and we get the posterior
probability p(x|I) as,

p(x|y, I) =

∫
h

∫
n

p(x|y, n, h, I)p(n|I)p(h|I)dndh (7)

If h is known, this boils down to a scaled version of the
previous scenario, and the maximum likelihood estimator for
Gaussian n and uninformative I becomes

x̂ = arg min
x∈X
‖y − hx‖2 (8)

However, one rarely has access to the exact value for h and
then the true maximum likelihood estimate for x is simply

x̂ = arg max
x∈X

∫
h

∫
n

p(x|y, n, h, I)p(n|I)p(h|I)dndh (9)

When one performs channel estimation, one gets some
estimate ĥ of the true channel h from previously received
pilots, gathered in the information I . Classically, this estimate
is then directly used in (9) by replacing the term p(h|I)
by δ(h − ĥ). This substitution however constitutes a major
mathematical flaw, unless some (possibly malevolent) genie
ensured the receiver that the true channel is ĥ with probability
one. As such, the whole field of channel estimation has
no information theoretical grounds. However, solving (9) in
general is an extremely involved problem, which requires
integration over all possible h channels. Note by the way that
h might be a multi-dimensional vector channel, so that the
integration over h might in truth be a multi-variate integral. It
seems therefore natural to approximate the integration (9) by
substituting ĥ to p(h|I). Or, more exactly, it seems natural to
approximate (9) by replacing the function h 7→ p(h|I) by

h 7→
∑n
i=1 p(hi|I)1h=hi(h)∑n

i=1 p(hi|I)
(10)

for a finite set of n candidates h1, . . . , hn with high probabil-
ity.

The question of the choice of n and h1, . . . , hn is a rather
involved problem, which, to the authors’ knowledge has not
yet been addressed. This is however not the purpose of the
current work. Instead, we shall focus on the case n = 1,
where h1 is an estimate of the true channel h, based on
cogent information provided from pilots and previous data,
all captured in I . The question that now arises is: what
measure should the channel estimator minimize? What are the
grounds for performing minimum mean square error (MMSE),
maximum likelihood (ML) estimation? The correct estimator
for h should be that estimator ĥ, which is such that the
posterior probability p(x|y, h, I) when h is known is “close” to
p(x|y, ĥ, I) when h is unknown. Taking the classical Kullback-
Liebler distance to compare distances between probability
distributions, we may then consider

ĥ = arg min
h1

p(x|y, h1, I) log
p(x|y, h, I)

p(x|y, h1, I)
(11)

The computational difficulty of the above expression how-
ever leads one to consider more tractable channel estimate

minimization functionals, such as MMSE or ML channel esti-
mators. The other difficulty arises from a consistent evaluation
of p(h|I) when I encompasses pilots, prior data and overall
prior information about the channel at the receiver. It is indeed
rather intricate to provide a mathematically sound description
of I . The purpose of the subsequent sections will be to
cast some light on a general Bayesian framework to evaluate
p(h|I), applied to the concrete case of channel estimators for
OFDM systems based on pilots. The next section is dedicated
to introducing the model for OFDM transmission channels.

III. CASE STUDY: OFDM CHANNEL MODEL

Consider a single cell OFDM system with N subcarriers.
The cyclic prefix (CP) length is NCP samples. In the time-
frequency OFDM symbol grid, pilots are found in the symbol
positions indexed by the function φt(n) ∈ {0, 1} which equals
1 if a pilot symbol is present at subcarrier n, at symbol time
index t, and 0 otherwise. We further denote Pt ∈ RN×N
a diagonal matrix with (i, i) entry Pt,ii = φt(i). The time-
frequency grid is depicted in Figure 1. Both data and pilots at
time t are modeled by the frequency-domain vector st ∈ CN
with pilot entries of zero mean and amplitude |st,k|2 = 1. The
transmission channel is denoted ht ∈ CN in the frequency-
domain and is known only to have overall power 1. The
additive noise is denoted nt ∈ CN with entries known to
have total variance σ2. The time-domain representation of ht
is denoted νt ∈ CL with L the channel length, i.e. the channel
delay spread expressed in OFDM-sample unit. The frequency-
domain received signal yt ∈ CN is then

yt = diag(ht)st + nt (12)

We will also denote, ∀k ∈ {1, . . . , N}, h′k = yk/sk = hk +
nk/sk and h′ = (h′1, . . . , h

′
N )T (here, the time index t is

implicit).
The channel ht evolves in time with coherence time func-

tion λ(τ) such that, independently of the channel delay spread
index

E[νi,tν
∗
i,t+τ ] =

λ(τ)

L
(13)

Along this study, we might consider the different system
parameters, such as λ(τ) to be either exactly known at the
receiver (and then fully part of the prior information I) or only
partially known. In the following section, we establish, under
partial or total knowledge of the different system parameters,
an optimal framework for channel estimation. For the OFDM
example, this section mainly recalls the results of [7].

IV. MAXIMUM ENTROPY CHANNEL ESTIMATION

The essential derivations of this section will consist in
establishing, at time t, the posterior probability

p(ht|yt,yt−1, . . . ,y1, I) (14)

For readability we only treat the case t = 2, the general case
being a trivial extension. Assume only pilots are transmitted
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Fig. 1. Time-frequency OFDM grid with pilot positions enhanced

or, at least, that the information about I carried by the non-
pilot signals are rather uninformative. Discarding the terms I
for readability, we have in that case

p(h2|y2,y1, I)

= p(h2|h′2,h′1, I) (15)

=
p(h2)p(h′2|h2)p(h′1|h2)

p(h′1h
′
2)

(16)

=
p(h2)p(h′2|h2)

∫
h1
p(h′1|h1)p(h1|h2)dh1

p(h′1h
′
2)

(17)

When the exact time evolution model for ht is known,
p(h1|h2) has an explicit expression which allows then to
perform the above calculus. In practice however, it is rarely the
case that such a time-evolution model be perfectly known. One
then needs here an automatic method to provide a consistent
expression for p(h1|h2, I) when little is known about the
interaction between h1 and h2. The method we shall use here
is referred to as the maximum entropy principle [8].

Consider a given parameter x, whose knowledge is limited
to the information contained in I . The maximum entropy
principle allows one to assign a unique probability distribution
p(x|I) as follows,

1) among the set of all probability distributions, consider
those distributions that satisfy the constraints about x
given in I . This is, we exclude all distributions that do
not satisfy the prior information I . The remaining set of
probability distributions is denoted Q.

2) in this remaining set of acceptable distributions Q,
p(x|I) is assign the distribution which has maximum
entropy, i.e.

p(x|I) = arg max
q∈Q
−
∫
q(y) log q(y)dy (18)

Choosing the distribution that has maximum entropy allows
one not to make undesired assumptions on the unknown

system variables, and as such allows one to remain neutral with
regard to unaccessible information; see [11] for further details
on the maximum entropy principle. In the model described
in Section III, since only the total power is known about
both the channel delay profile and the additive noise, both are
assigned Gaussian distributions with zero mean and variance
consistent with prior knowledge, as required by the maximum
entropy principle. We then have nt ∼ CN(0, σ2IN ) and
νt ∼ CN(0, 1

LIL), which in the frequency domain, applying
Fourier transform, translates into ht ∼ CN(0,Q), with Q
defined as

Qnm = E

[
L−1∑
k=0

L−1∑
l=0

νkν
∗
l e
−2πi kn−lmN

]
=

1

L

L−1∑
k=0

e−2πik
n−m
N

(19)

Note that Q is singular, since L < N as OFDM requires.
If the coherence time function λ(τ) is perfectly known,

the maximum entropy principle then assign to p(ht|ht+τ ) a
Gaussian distribution of mean λ(τ)ht+τ and variance

E[hth
H
t+τ ] = (1− λ(τ)2)Q (20)

In the problem with t = 2, we denote λ = λ(1). We then find
that p(h1|h2, I) is Gaussian and satisfies

p(h1|h2) = lim
Φ̃→Φ

1

πN det(Φ̃)
e−(h1−λh2)

HΦ̃−1(h1−λh2) (21)

for {Φ̃} any sequence converging to Φ. This allows then to
compute the full expression of p(h2|y2,y1, I) and a closed-
form expression of some conventional estimators. In particular,
the MMSE estimator ĥ

(MMSE)
2 for h2, defined as

ĥ
(MMSE)
2 = E [h2|y] (22)

in this case expresses as [7]

ĥ
(MMSE)
2 = M−1

2

(
P2h

′
2

σ2
+ (IN +

1− λ2

σ2
P1Q)−1

λ

σ2
P1h

′
1

)
(23)

with M2 satisfying

QM2 =
IN

1− λ2
− λ2

1− λ2
(IN +

1− λ2

σ2
QP1)−1 +

QP2

σ2

(24)
This expression generalizes to t ≥ 1, for which we have the

MMSE estimator ĥ
(MMSE)
t given in Equation (25).

However it often occurs that the assumption that L and
λ(1), λ(2), . . . are known a priori at the receiver is not
realistic. In truth, rather limited information is known a priori
on these parameters. We may then reconsider (17) to include
the uncertainty on L and/or λ(1), λ(2), . . .. In the previous
t = 2 setup, we have in particular

ĥ
(MMSE)
2 = E[h2|y2,y1, I] (26)

=

∫
λ

p(λ|I)p(L|I)E[h2|y2,y1, λ, L, I]dλdL (27)

which leads to yet other expressions derived thoroughly in [7].
Through the OFDM example, we therefore developed a

rather automatic method to derive consistent estimators under



ĥ
(MMSE)
t =

((
1 +

t∑
k=1

λ(k)2

1− λ(k)2

)
IN −

t∑
k=1

λ(k)2

1− λ(k)2

(
IN +

1− λ(k)2

σ2
QPk

)−1
)−1

Q

(
t∑

k=1

λ(k)

(
IN +

1− λ(k)2

σ2
PkQ

)−1
1

σ2
Pkh

′
k

)
(25)

any prior knowledge at the receiver which we claim optimal
on an information theoretic viewpoint, i.e. those estimators are
taking into consideration all prior information I and are made
such that no ad-hoc assumption is taken regarding imperfectly
known parameters, while being compliant with the Bayesian
principles.

However, an underlying assumption of the previous ap-
proach is that infinite storage is available at the receiver.
Indeed, for large t, we still need to consider all events from
time instants 1 to t; if we decide to discard the oldest data,
we then depart from the optimality of the proposed scheme.
We then need to reconsider the whole framework to include
an additional feature: the receiver is oblivious to part of the
past events. The natural way to handle this modification of the
current maximum entropy framework is to consider updated
distribution assignments for posterior probabilities instead of
absolute distribution assignments. This is the topic of the next
and our main section.

V. MINIMAL CHANNEL ESTIMATION UPDATE

A. Introduction to Bayesian minimal update

When it comes to update probability assignments, Caticha
proposes an extension of the maximum entropy principle,
namely the minimum cross entropy principle (ME) [9]. When
p(ht|I1) has been assigned for some side information I1, and
new cogent information I2 is later available, then the ME
principle consists in assigning to p(ht|I2) the distribution

p(ht|I2) = arg min
q
S[q, p(ht|I1)] (28)

where

S[q, p] =

∫
q(x) log

(
p(x)

q(x)

)
dx (29)

The functional S[q, p] is referred to as the cross-entropy
between the probability distributions q and p.

This method is based on a minimal update requirement,
which in essence assigns to p(ht|I2) the unique distribution
which minimizes the changes brought to p(ht|I1) while sat-
isfying the new constraints given by I2. In the following,
additional side information on ht (which possibly varies
over time) will come from new available pilots at later time
positions.

B. Perfect system parameters knowledge

We assume here that channel estimation is performed at
different time instants t = 1, 2, . . .. Denote Ik the knowledge
at time k. Since memory restrictions impose to discard past
received data, we decide here only to consider at time k the
last received pilot data symbols, the last assigned probability
p(hk|Ik−1), and the supposedly known time correlation λ =

λ(1) between the current channel hk and the past channel
hk−1.

Assume prior assigned distribution p(hk−1|Ik−1) at time
index k − 1. We have in general

p(hk|yk, Ik) (30)

=
p(yk|hk, Ik) · p(hk|Ik)

p(yk|Ik)
(31)

=
p(yk|hk, Ik) ·

∫
p(hk|hk−1, Ik) · p(hk−1|Ik)dhk−1

p(yk|Ik)
(32)

We use Caticha’s ME principle [9] and set p(hk−1|Ik) to the
previous p(hk−1|yk−1, Ik−1). The reason lies in the minimal
update principle: if no additional information is given in Ik,
compared to Ik−1, then p(hk−1|yk−1, Ik−1) is the distribution
q that minimizes the cross-entropy S[q, p(hk−1|yk−1, Ik−1)]1.

Let us now perform a recursive reasoning over the
channel estimates at time indexes k ∈ N. Assume that
p(hk−1|yk−1, Ik−1) is Gaussian CN(kk−1,Mk−1). We will
show that this implies p(hk|yk, Ik) is still Gaussian. This will
therefore be denoted CN(kk,M

−1
k ). We have

p(hk|yk, Ik) (33)

= α1p(yk|hk, Ik) ·
∫
p(hk|hk−1, Ik) · p(hk−1, Ik)dhk−1

(34)

= lim
Q̃→Q

e(hk−h′k)
H Pk
σ2

(hk−h′k)

∫
e
(hk−λhk−1)

H Q̃−1

1−λ2
(hk−λhk−1)

× α2e
(hk−1−kk−1)

HM−1
k−1(hk−1−kk−1)dhk−1 (35)

where the Q̃’s are taken from a set of invertible matrices in
the neighborhood of Q, and the αi’s are constants.

First we need to write the exponents of the Gaussian
products in the integrand in a single Gaussian exponent form
of the vector hk−1 times a constant independent of hk−1. By
expansion and simplification, this is

(hk − λhk−1)H
Q̃−1

1− λ2
(hk − λhk−1)

+ (hk−1 − kk−1)HM−1
k−1(hk−1 − kk−1)

= (hk−1 − l)HN(hk−1 − l) + C(hk) (36)

1if new statistical information comes in, the minimum cross-entropy distri-
bution with p(hk−1|Ik) satisfying those new constraints should be computed
and used instead.



with

N = λ2Q̃−1

1−λ2 + M−1
k−1

l = N−1( λ
1−λ2 Q̃−1hk + M−1

k−1kk−1)

C = hH
k

Q̃−1

1−λ2 hk + kH
k−1M

−1
k−1kk−1−

(hk + 1−λ2

λ Q̃M−1
k−1kk−1)H λ2

(1−λ2)2 Q̃−1(
λ2Q̃−1

1−λ2 + M−1
k−1

)−1
Q̃−1(hk + 1−λ2

λ Q̃M−1
k−1kk−1)

The integral (35) is then a constant times eC , which depends
on hk. The term C must then be written again into a quadratic
expression of hk. This is

C = (hk − j)HR(hk − j) +B (37)

with 
R =

(
λ2Mk−1 + (1− λ2)Q̃

)−1
j = λkk−1
B = 0

(38)

Together with the term outside the integral (35), this is

p(hk|yk, Ik) = α · e(hk−kk)
HM−1

k (hk−kk) (39)

with α = (
∫
p(hk|yk, Ik)dhk)−1. Finally, after some arith-

metic derivation, in the limit Q̃→ Q,
Mk = λ2

(
Mk−1 + 1−λ2

λ2 Q
)

×
(
λ2

σ2 Pk(Mk−1 + 1−λ2

λ2 Q) + IN

)−1
kk = λkk−1 + 1

σ2 MkPk(h′k − λkk−1)

(40)

And the MMSE estimator ĥk for the channel at time index k
is the first order moment of a Gaussian distribution centered
in kk, which is ĥk = kk. At initial time instant t0, if nothing
but the channel delay spread L is known, M0 = Q from the
maximum entropy principle, as shown in [12], and k0 = 0.
Therefore, we prove by the above recursion that, under this
state of initial knowledge, for all k ∈ N, p(hk|Ik) is Gaussian
with mean kk and variance Mk, and ĥk = kk. Note that, while
regularized inverses of Q were used along the derivations, the
final formulas are properly conditioned with respect to Q.

Note that the solution in (40) coincides with the classical
structure of adaptive filters [16] such as the Kalman filter
[15], for the problem of dynamic estimation of hk from the
observed yk, when hk is assumed to evolve in time as an
order-1 auto-regressive model. As such, Kalman filters are
compliant with our current framework and are developped in
section V-D for the sake of comparison. However, when some
system parameters are not perfectly known, Kalman filters
depart from our general minimal update framework as it will
be further detailed.

C. Imperfect system parameter knowledge

In practical applications, contrary to what was stated in
Section V-B, the different parameters λ, σ2 and L especially,
are not perfectly known. For simplicity we assume those
parameters are constant over the duration of the channel
estimation process. Following the maximum entropy principle,

these parameters must be assigned an a priori distribution. Let
us focus on the time correlation λ, which is typically the most
difficult parameter to track. In this respect, one has

p(hk|yk, Ik) =

∫
p(hk|yk, λ, Ik)p(λ|yk, Ik)dλ (41)

Since yk cannot bring alone any cogent information on λ,
p(λ|yk, Ik) = p(λ|Ik). The probability p(hk|yk, λ, Ik) was
computed in Section V-B and is given by the right-hand side
of Equation (39), in which α depends on λ and must therefore
be made explicit.

Further computation leads to

p(hk|yk, Ik) =

∫
p(λ|Ik)α(λ)e(hk−k

(λ)
k )H(M

(λ)
k )−1(hk−k

(λ)
k )dλ

(42)
with M

(λ)
k and k

(λ)
k given by Equation (40) for the λ in

question and

α(λ) = βe−x(λ) det[X(λ)] (43)

with X(λ) =
(
I + Pk

σ2 (λ2M
(λ)
k−1 + (1− λ2)Q)

)−1
x(λ) = (λk

(λ)
k−1 − h′k)HX(λ)Pk

σ2 (λk
(λ)
k−1 − h′k)

(44)

and β = (
∫
p(hk|yk, Ik)dhk)−1, independent of λ.

In particular, the conventional MMSE estimate ĥ
(MMSE)
k is

then the weighted sum

ĥ
(MMSE)
k =

∫
p(λ|Ik)e−x(λ) det[X(λ)]k

(λ)
k dλ∫

p(λ|Ik)e−x(λ) det[X(λ)]dλ
(45)

This integral is however very involved. In practice, it must
be broken into a finite sum over a set of potential values for λ.
Denoting S this set and |S| its cardinality, the recursive algo-
rithm that provides the successive estimates ĥk, k = 1, . . . ,K,
requires that at every step, the values for M

(λ)
k and k

(λ)
k , λ ∈ S

are kept in memory.
Note that the MMSE estimator (45) is no longer linear in

h′k and, as such, does no longer enter the conventional linear
Kalman filters. In the next section, we propose simulation
results for the proposed minimum update channel estimators,
and compare them to maximum entropy channel estimators
derived in [7]. We study hereafter classical approaches and
show how they differ from or are special cases of our derived
techniques.

D. Comparison with classical channel estimation techniques

The channel estimation problem is related to the channel
model assumed, mainly determined by the electromagnetic
propagation characteristics of the wireless transmission such as
transmission bandwidth, carrier frequency, relative speed and
spatial configuration of the propagation environment which
itself rules the multipath.

These conditions characterize the channel correlation func-
tion in a two-dimensional space comprising frequency and
time domains. In the general case, each multipath channel



component can experience different but related spatial scat-
tering conditions leading to a full bi-dimensional correlation
function across these domains.

Nevertheless, classical Clarke and Jakes derivations [18]
[19] are based on the assumption that the physical scattering
environment is chaotic and therefore the angle of arrival of the
electromagnetic wave at the receiver is a uniformly distributed
random variable in the angular domain. As a consequence, the
time-correlation function is strictly real-valued and governed
by the well known expression rν(∆t) = J0(2πfd∆t) where
J0 is the zeroth-order Bessel function. In addition, the Doppler
spectrum is symmetric and interestingly there is a delay-
temporal separability property in the general bi-dimensional
scattering function.

Under this light, the Wide-Sense Stationary Uncorrelated
Scattering (WSSUS) channel model has been proposed [17]
and commonly employed for the multipath channels experi-
enced in mobile communications.

This framework might be suboptimal in general. For exam-
ple, when the mobile is moving in a fixed and known direction,
as for example in rural or suburban areas, the WSSUS model
would be non applicable. Instead, it can be considered to be
separable when the direction of motion averages out because
each multipath component is the result of omnidirectional
scattering from objects surrounding the mobile, as one would
expect in urban and indoor propagation scenarios. Separability
is a very important assumption for reducing the complexity of
channel estimation, allowing the problem to be separated into
two one-dimensional operations.

Hence, for the sake of comparison with the methods pro-
posed in previous paragraphs and which do not make the
separability assumption, the channel can be estimated using
a two step approach. First, pilot sub-carriers are used to es-
timate the whole channel impulse response (CIR) performing
frequency-smoothing on each OFDM symbol where pilots are
present. Secondly, the smoothed impulse response functions
corresponding to a set of of OFDM symbols is used in order
to improve the channel transfer (CTF) function estimate at the
symbol of interest.

Even-though TD filtering could be applied remaining in the
frequency domain to CTF estimates rather than to the CIR in
the time domain because of the linearity relationship between
the two, we prefer this option to limit the complexity of the
operation.

Thus, for the first step, the Frequency-Domain (FD) optimal
MMSE estimator under the assumption of uniform channel
power delay profile of known length L is linear and given by

ν̂
(FD)
k = (FH

LPH
kPkFL + σ2IL)−1FH

LPH
kh′k (46)

For the second step, Time-Domain (TD) filtering to exploit
time correlation with the channel at previous OFDM symbols
containing pilots can be approximated in the form of a finite
impulse response filter.

The channel CIR at the lth tap position and at time instant
k is estimated as

ν̂l,k = wH
l ν̂

M
l,k (47)

where we exploit the vector ν̂Ml,k = [ν̂
(FD)
l,k , . . . , ν̂

(FD)
l,k−M+1]T

of length M of l-th tap estimates across M time instants.
Finite length filter approximation seems reasonable as the

correlation between consecutive symbols decreases as the
terminal speed increases. The fact that the TD correlation is
inversely proportional to the terminal speed sets a limit on the
possibilities for TD filtering in high-mobility conditions.

The statistical TD filter which is optimal in terms of Mean
Square Error (MSE) [16] is the M × 1 vector wl given by

wl = (Rνk + σ2I)−1rνk (48)

where Rνk = E[νMl,k(νMl,k)H] is the lth channel tap M ×M
correlation matrix and rνk = E[νMl ν

∗
l,n] the M×1 correlation

vector between the lth tap of the current channel tap realization
and M previous realizations including the current one.

In practical cases, the FIR filter length M is dimensioned
according to a performance-complexity trade-off as a function
of the terminal speed.

As an alternative to FIR TD-MMSE channel smoothing
coefficient computation, an adaptive estimation approach can
be considered which does not require knowledge of second-
order statistics of both channel and noise. A feasible solution
is the Normalized Least-Mean-Square (NLMS) estimator.

It can be expressed exactly as in Equation (47) but with the
M × 1 vector of filter coefficients w updated according to

wl,k = wl,k−1 + ul,k−1el,k (49)

where M here denotes the NLMS filter order. The M × 1
update gain vector is computed according to the well-known
NLMS adaption

ul,k =
µ

‖ν̂Ml,k‖2
ν̂Ml,k (50)

where µ is an appropriately-chosen step adaptation and

el,k = ν̂l,k − ν̂l,k−1 (51)

It can be observed that the TD-NLMS estimator requires
much lower complexity compared to TD-MMSE as no matrix
inversion is required, as well as not requiring any a priori
statistical knowledge.

Finally, using both MMSE or NLMS approaches, the CTF
channel estimate at kth symbol can then be retrieved by

ĥk = FLν̂k (52)

When the channel hk is modelled in a similar manner as
previous paragraph, i.e. the channel evolution across time is
expressed by the following state-space model

hk = λhk−1 +
√

1− λ2wk

h′k = hk + nk
(53)

where wk ∼ CN(0,Q) is known as the channel innovation
term and nk ∼ CN(0, σ2IN ) is the additive white Gaussian
noise on pilot (and data) symbols. It is to be noted that this 1st

order auto-regressive model still complies with the statistical
assumption on hk ∼ CN(0,Q) made so far.



Under these assumptions, one can easily come up with the
expression of a channel estimator according to the classical
Kalman form [15]. In fact, letting (FL)nm = e−2πi

nm
N with

0 ≤ n ≤ N− 1 and 0 ≤ m ≤ L− 1, this can be written as
Mk = FL

(
λ2Ck−1 + 1−λ2

L IL

)
FH
LPH

k

×
(
PkFL

(
λ2Ck−1 + 1−λ2

L IL

)
FH
LPH

k + σ2IN

)−1
kk = λkk−1 + MkPk(h′k − λkk−1)

Ck = (IL −KkPkFL)
(
λ2Ck−1 + 1−λ2

L IL

)
(54)

Interestingly, as previously pointed out in Section V-B, Equa-
tion (54) is somewhat consistent with (40) derived using
the minimal update approach. Nevertheless, both expressions
differ in the adaption mechanism which, in the case of the
Kalman estimation algorithm, relies on the Kalman-gain Mk

and the error estimate covariance matrix Ck update. Notice
importantly that the estimation process assumes the knowledge
of noise statistics σ2 and the channel length L. In case the
latter is not provided, it would be necessary to assume L
as the largest channel length allowed by the OFDM system
parameters in use. Therefore in practice, one should dimension
it as L = bN/Mc [2] in case of imperfect knowledge. In
spite of these limitations, the Kalman estimator is often chosen
because of the well know robustness against non-stationarity
of the signal statistics via the adaptation of the estimate
covariance matrix. In order to counter the intrinsic need of
parameter knowledge, one could think of using Expectation
Maximization in conjunction with Kalman or plain MMSE
techniques. Indeed, with an additional complexity cost, any
of such channel estimator can be coupled with parameter
estimation (speed or channel length) in an iterative fashion.
Nevertheless, contrary to the original methods presented based
on Maximum Entropy principle and then constructed to be
robust with respect to parameter knowledge, they would need
the necessary amount of data to converge to construct the
correct a-priori information. Such methods are then well suited
only in those cases where the channel is stationary.

Note that other classical adaptive estimators such as (nor-
malized) least mean squares and recursive least squares, that
discard most a priori knowledge, perform much less accurately
than optimal 2-D MMSE optimal filter [16].

VI. SIMULATION AND RESULTS

In this section, we provide simulation plots to compare,
at time t, the minimal channel estimation update method
against (i) the one-dimensional MMSE [3], [2], taken at time
t, which takes only into account the last past pilot symbols
and uses a fixed empirical covariance matrix, (ii) the optimum
two-dimensional MMSE provided in [12], (iii) the 1D+1D
optimum MMSE, (iii) the 1D+NLMS and (v) the Kalman
provided as reference in the section of classical channel
estimation techniques, with K = 4 pilot time indexes. The
OFDM DFT size is N = 64, the channel length L = 6 is
known to the receiver, the vehicular speed is v = 120 km/h,

pilot sequences are transmitted every 0.29 ms (as in 3GPP-
LTE [14]), and the induced Jake’s time correlation λ be-
tween t and the past pilot sequence arrival time is known
to the receiver. In scenario (ii), all K past received pilot
sequences and time correlations are perfectly known. The
channel time correlation model is a K-order autoregressive
model following [13]. A performance comparison is proposed
in Figure 2. We notice here that the minimal update algorithm
does not show significant performance decay compared to
the optimal two-dimensional MMSE estimator, while the one-
dimensional MMSE estimator, also relying on the last past
pilot sequence, shows large performance impairment. Kalman
estimation shows to be comparable in performance only when
the channel length parameter is perfectly known but heavily
impaired when the maximum channel length assumption is
taken instead. The 1D+1D MMSE shows to behave exactly
as optimal 2D as well, only when perfect knowledge of
parameters is assumed. Interestingly, the NLMS method shows
to fail because of the extremely little adaptation lag used in
this comparison. Anyway, results not presented here show that
NLMS can only be useful if allowed to train over long periods
of hundreds of symbols.

In Figure 3, with the same assumptions as previously, we
consider the hypothesis where the vehicular speed v is a priori
known to be (with equal probabilities) either 5, 50, 120 km/h.
The performance is compared against the optimal 2-D al-
gorithm where v is known but erroneously estimated (v =
5, 50, 100 km/h). It is observed that, again, even when λ,
or equivalently v, is a priori unknown, the Bayesian minimal
update framework manages to ideally recover the channel with
no performance decay. On the opposite, when λ is erroneously
estimated, the performance decay of the optimal estimator
might be dramatic.

In Figure 4, we show the Block Error Rate (BLER) perfor-
mance comparison of a realistic LTE OFDM setup with Turbo
Codes and actual signal detection and channel decoding. The
BLER plots are obtained for classical OFDM detection per-
formed using the minimal update and Kalman (with imperfect
knowledge of channel length parameter) channel estimation.
The case where detection is performed using ideal channel
knowledge is also presented for the sake of completeness. The
minimal update channel estimation provides performances that
lies in between the other two cases. Moreover, it shows to
offer the same performance as for the optimal 2D estimation
although the plot has been omitted for clarity. Hence, the
robust minimal update estimation method reveals to be an
excellent choice with respect to a method of similar structure
and complexity such as Kalman but avoiding the bargain of
estimating side information.

VII. CONCLUSION

In this paper, we proposed a novel framework to channel
estimation, applied to OFDM-based systems. We successively
discussed the fundamental nature of channel estimation, un-
der a Bayesian point of view. This approach allowed us
to redefine channel estimation as a technique allowing one
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to infer the posterior probability distribution p(h|y, I) of a
channel h given some input data y and prior information
I . Assuming the receiver is allowed to store as much past
information as desired, we then discussed optimal channel
estimators under various levels of prior information at the
receiver; the optimality emerges from a systematic usage of
the maximum entropy principle. Then we proposed a novel
approach to extend the maximum entropy setup when the
receiver is oblivious of past received data. In a particular case,
the latter was shown to be equivalent to the classical Kalman
filter. Simulations suggest that the proposed novel technique
is indistinguishable in performance from the optimal infinite
time maximum entropy approach.
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Fig. 4. Turbo Coding BLER performance comparison using the minimal
updateand Kalman channel estimation against perfect channel knowledge,
vehicular speed 120 km/h, LTE OFDM model.
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