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Statistical Inference in Large Antenna Arrays
under Unknown Noise Pattern

Julia Vinogradova, Romain Couillet, and Walid Hachem

Abstract—In this article, a general information-plus-noise
transmission model is assumed, the receiver end of which is com-
posed of a large number of sensors and is unaware of the noise
pattern. For this model, and under reasonable assumptions, a set
of results is provided for the receiver to perform statistical eigen-
inference on the information part. In particular, we introduce new
methods for the detection, counting, and the power and subspace
estimation of multiple sources composing the information part of
the transmission. The theoretical performance of some of these
techniques is also discussed. An exemplary application of these
methods to array processing is then studied in greater detail,
leading in particular to a novel MUSIC-like algorithm assuming
unknown noise covariance.

Index Terms—Random matrix theory, sensor arrays, corre-
lated noise, source detection, power estimation, MUSIC algo-
rithm.

I. INTRODUCTION

A. Motivation

Consider the very general information-plus-noise transmis-
sion model with multivariate output yt ∈ CN at time t

yt = Hxt + vt (1)

where xt ∈ CK is the vector of transmitted symbols at time
t, H ∈ CN×K is the linear communication medium, and vt ∈
CN the noise experienced by the receiver at time t.

Array processing consists in a set of tools to perform
statistical inference on the information part composing yt.
The first tool is the mere detection of this information (called
then a signal source), that is the question whether K > 0.
Once source signals are detected, the next operation consists
in the evaluation of their number, i.e. estimating K. When the
existence of these sources is guaranteed, several of their pa-
rameters can then be retrieved. One of these parameters is the
transmission power of the source, or alternatively, the distance
from the source to the receiver. Denoting H = [h1, . . . , hK ], it
is also of interest to retrieve information from the individual hk
vectors. In wireless communications, these represent channel
beams which the receiver may want to identify in order to
decode the entries of xt. In array processing, they stand for
steering vectors parameterized by the angle-of-arrival of the
source signals.

In order to perform these tasks, one assumes the observation
of T (non-necessarily independent) samples y1, . . . , yT of
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the process yt. Denoting YT = T−1/2[y1, . . . , yT ], the first
mentioned estimators are often based on the eigenvalues of
YTY

H
T . When it comes to vector identification, the interest

is rather on the eigenvectors of YTY H
T . The standard eigen-

inference approaches in the literature often rely on two strong
assumptions: (i) T is large compared to N and (ii) the statistics
of vt are partially or perfectly known due to independent
(information-free) observations of the process vt. This article
revisits these methods by proposing alternative algorithms to
perform eigen-inference for the model (1) accounting for the
aforementioned limitations (i) and (ii).

B. Literature review

Assuming T → ∞, N fixed, and vt white Gaussian
with known variance, the energy detection procedure [1]
allows for the detection of signal sources by evaluating the
total received power which is compared to a threshold that
ensures a maximum false alarm rate. If the signal structure
is known, the parameters composing H can be recovered
from the eigenvalues and eigenvectors of E[yty

H
t ], which can

be estimated through the sample covariance matrix YTY
H
T ,

YT = T−1/2[y1, . . . , yT ] ∈ CN×T . To estimate the number of
sources K, the Akaike information criterion (AIC) [2] and the
minimum description length (MDL) [3], [4] were historically
proposed, which rely on functions of the eigenvalues of YTY H

T .
The MDL is T -consistent while the AIK tends to overestimate
the number of sources as T → ∞. In terms of power
estimation, since YTY H

T
a.s.−→ E[yty

H
t ], a T -consistent estimate

of the powers is easily obtained by mapping the eigenvalues
of YTY H

T to those of E[yty
H
t ]. When the vectors hk = h(θk)

are steering vectors and the one aims at retrieving θk for
k = 1, . . . ,K, the multiple signal classification (MUSIC)
algorithm [5] allows for a T -consistent estimation of the
angles θ1, . . . , θK by determining the local maxima of the
quadratic forms γ(θ) = h(θ)HΠh(θ) where Π is a projector
on the eigenspace of E[yty

H
t ] corresponding to its K largest

eigenvalues (assuming ‖h(θ)‖ constant with θ).
Due to the increase of the antenna array sizes and the need

for faster detection and estimation dynamics, modern antenna
array technologies have to deal with the scenario where the
condition T � N is no longer met. Under this condition,
since YTY H

T becomes a poor estimator for E[yty
H
t ], most of

the above techniques collapse. New methods, based on the
field of large dimensional random matrix theory, have therefore
emerged, which assume that both N and T are large and that
the ratio N/T is non-trivial. The AIC and MDL algorithms
are in particular improved in [6] using better estimators for
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functionals of the eigenvalues of E[yty
H
t ]. In terms of power

estimation, N,T -consistent techniques were proposed in [7].
The MUSIC algorithm was improved on the same grounds in
[8] into the so-called G-MUSIC estimator.

A second difficulty faced by antenna array technologies is
that the interfering environment may be far from white Gaus-
sian. The v1, . . . , vT may not be independent or the spatial
correlation of vt may not be white. When the noise is not
white, the energy detection procedure is not valid as no false
alarm threshold can be set. When the noise is close-to-white
Gaussian with unknown variance, the generalized likelihood-
ratio test (GLRT) [9] copes with the indetermination of the
variance. Similar schemes are analyzed in the large N,T
regime in [10], [11], [12], [13]. If the noise is not white,
it is difficult to derive any test for detection. The power
and direction estimation techniques equally suffer from this
indetermination, because too little is a priori known of the
eigenstructure of VTV H

T with VT = T−1/2[v1, . . . , vT ]. To
circumvent this issue, one generally assumes the existence
of a sequence of T ′ pure-noise test samples which are used
to “whiten” the observations. For T ′ large compared to N ,
after whitening, the noise becomes white Gaussian with unit
variance, leading back to traditional schemes. For N,T ′ si-
multaneously large, the whitening procedure gives rise to a
noise matrix of the F -matrix type [14], [15].

However, the requirement to possess observations purely
composed of noise may be impractical in real systems. As
such, in this article, we address the problems of detection,
counting, and parameter estimation of multiple sources without
resorting to a pre-whitening of the received data matrix YT .
Since the problem may not be well-posed in its generality, we
assume a set of reasonable conditions:
• N,T →∞, N/T → c > 0, K constant. This allows for
YTY

H
T to be seen as a small rank perturbation of VTV H

T .
• VT = WTR

1/2
T (i.e. white in space, correlated in time),

where WT ∈ CN×T is standard complex Gaussian and
RT is a deterministic unknown Hermitian nonnegative, or
VT = R

1/2
T WT (i.e. white in time, correlated in space).1

• As N/T → c, the eigenvalues of VTV H
T tend to cluster in

a compact interval. This assumption is satisfied by most
noise models used in practice, e.g. auto-regressive moving
average (ARMA) noise processes (see Section III-B).

• The source signals in xt are random, independent and
identically distributed (i.i.d.), even though this assump-
tion can be relaxed in many cases.

Under these assumptions, we show that a maximum of K
isolated eigenvalues of YTY H

T can be found for all large N,T
beyond the right edge of the limiting eigenvalue distribution
support of VTV H

T . This phenomenon is at the origin of the
detection and estimation procedures developed in this paper.
Precisely, we show that the isolated eigenvalues of YTY H

T can
be uniquely mapped to individual signal sources. The presence
of these eigenvalues will be used to detect signal sources as
well as to estimate their number K while their values will
be exploited to estimate the source powers. The associated

1Assuming the general correlated noise in both time and space would lead
to too much indetermination and is so far too difficult to address.

eigenvectors will then be used to retrieve information on the
vectors hk.

The remainder of the article is structured as follows. In
Section II, we introduce the system model and recall important
results from the random matrix literature. In Section III, we
introduce the source detector and parameter estimators for
the generic model (1) and for a specific array processing
scenario with an ARMA noise process. In Section IV, we
study the second order statistics of some of these estimators.
Simulations are then provided in Section V. The article is
concluded by Section VI. Some technical lemmas are proved
in the appendix.

Notations: The superscript (·)H is the Hermitian transpose of
a matrix and ‖·‖ denotes the spectral norm. The symbols a.s.−→,
P−→, and L−→ stand respectively for the almost sure conver-

gence, the convergence in probability, and the convergence in
law, while “w.p. 1” means “with probability one”. We denote
by N (a, σ2) the real Gaussian distribution with mean a and
variance σ2 and by CN (a, σ2) the complex circular Gaussian
distribution with mean a and variance σ2. We denote by δk`
the Kronecker delta function (= 1 if k = ` and 0 otherwise)
and by δx the Dirac measure at x.

II. ASSUMPTIONS AND KNOWN RESULTS

Consider a sequence of integers N = N(T ), T = 1, 2, . . .

and matrices YT = AT +WTR
1/2
T ∈ CN×T where AT stands

for the signal matrix and VT = WTR
1/2
T for the noise matrix.2

We assume the following asymptotic regime:

Assumption 1. As T →∞, cT , N/T → c > 0.

A. Hypotheses on the noise matrix

We first characterize the assumptions on VT ,WTR
1/2
T .

Assumption 2. WT = T−1/2[wn,t]
N,T
n,t=1, with (wn,t)n,t≥1 an

infinite array of independent CN (0, 1) variables.

Assumption 3. RT ∈ CT×T is Hermitian nonnegative with
eigenvalues σ2

1,T , . . . , σ
2
T,T satisfying:

1) With νT = T−1
∑T
t=1 δσ2

t,T
, νT

L−→ ν, a probability mea-
sure with support supp(ν) = [aν , bν ] ⊂ R+ , [0,∞).
Moreover, ν({0}) = 0.

2) The distances from the σ2
t,T to supp(ν) satisfy:

max
t∈{1,...,T}

d
(
σ2
t,T , supp(ν)

)
−−−−→
T→∞

0.

Let λ1,T ≥ . . . ≥ λN,T be the eigenvalues of VTV H
T =

WTRTW
H
T and let τT = N−1

∑N
i=1 δλi,T be its spectral mea-

sure. The asymptotic behavior of τT is of prime importance
in this paper. We recall some well known results describing
this behavior (see [16], [17] for Items 1–6, [18] for Item 4,
and [19] for Item 5):

Theorem 1. Under Assumptions 1–3, the following hold true:

2Up to studying Y H
T instead of YT , the noise correlation can be either in

time or in space.
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1) For any z ∈ C+ , {z ∈ C, =z > 0}, the equation

m =

(
−z +

∫
t

1 + cmt
ν(dt)

)−1
(2)

has a unique solution m ∈ C+. The function m(z) = m
so defined on C+ is the Stieltjes transform (ST)3 of a
probability measure µ.

2) For every bounded and continuous real function f ,∫
f(t)τT (dt)

a.s.−−−−→
T→∞

∫
f(t)µ(dt)

and therefore µ, defined by (2), is the limiting spectral
measure of VTV H

T .
3) The function

m̃(z) =

∫
−1

z(1 + cm(z)t)
ν(dt)

is defined on C+ and is the ST of the probability measure
µ̃ = cµ+ (1− c)δ0, limiting spectral measure of V H

T VT .
As such, m̃(z) = cm(z)− (1− c)/z.

4) µ is of the form µ(dt) = max(0, 1 − c−1)δ0 + f(t)dt
where f(t) is a continuous density on (0,∞). The support
of f(t)dt is a compact interval [a, b] ⊂ R+, and f(t) > 0
on (a, b).

5) For any interval [x1, x2] ⊂ (0, a) ∪ (b,∞),

]{i : λi,T ∈ [x1, x2]} = 0 w.p. 1 for large T.

6) The function mT (x) = N−1
∑N
n=1(λn,T − x)−1 con-

verges w.p. 1 to m(x), and uniformly so on the compact
subsets of (b,∞).

A procedure for determining the interval [a, b] from the
knowledge of c and ν is provided in [18]. We are interested
here in the determination of the upper bound b, to which
λ1,T converges. This can be done with the help of the
following proposition. Observe that m(z) can be extended to
C − ({0} ∪ [a, b]) and that m(x) =

∫
(t − x)−1µ(dt), its

restriction to R, is negative and increases to zero on (b,∞).
Recall that supp(ν) = [aν , bν ] ⊂ R+.

Proposition 1 (see [18]). The point b defined in Theorem 1-4)
coincides with the infimum of the function

x(m) = − 1

m
+

∫
t

1 + cmt
ν(dt)

on the interval (−(cbν)−1, 0). On this interval, there is a
unique mb (mb < 0) such that x(m) → b as m ↓ mb. The
restriction of x(m) to the interval (mb, 0) coincides with the
inverse with respect to composition of the restriction of m(x)
to (b,∞).

In order to easily characterize the value of b, it will be
convenient to make an assumption on the measure ν which
will not be restrictive in practice:

Assumption 4. If ν({bν}) = 0, then there exists ε > 0 and a
function fν(t) ≥ C(bν − t) on [bν − ε, bν ] with C > 0 such

3We recall that the ST mµ of a probability measure µ with support in R
is defined by mµ(z) =

∫
(t−z)−1µ(dt). It is analytic on C− supp(µ) and

completely characterizes the measure µ.

that for any Borel set A of [aν , bν ],

ν(A ∩ [bν − ε, bν ]) =

∫
A∩[bν−ε,bν ]

fν(t) dt.

This assumption leads to the following corollary to Propo-
sition 1, proven in Appendix A:

Corollary 1. Under Assumption 4,

b = − 1

mb
+

∫
t

1 + cmbt
ν(dt)

where mb is the unique solution in (−(cbν)−1, 0) to the
equation in m ∫ (

mt

1 + cmt

)2

ν(dt) =
1

c
. (3)

B. Hypotheses on the signal matrix

We now turn to the hypotheses on the signal matrix AT :

Assumption 5. Let K ≥ 0 be a fixed integer. The matrix AT ∈
CN×T is random, independent of WT , with rank rank(AT ) =
K w.p. 1 for all large T . In addition, supT ‖AT ‖ < ∞ w.p.
1.

In the remainder of the paper, when K ≤ min(N,T ), the
notation AT = UTB

H
T refers to any factorization of AT where

UT ∈ CN×K satisfies UH
T UT = IK . By Assumption 5, the

rank of BT ∈ CT×K is equal to K, w.p. 1.

Assumption 6. There exists a factorization AT = UTB
H
T such

that, for any z ∈ C− supp(ν),

BH
T (RT − zIT )

−1
BT

a.s.−−−−→
T→∞

mν(z)P

for some P = diag(p1Ij1 , . . . , ptIjt), p1 > . . . > pt > 0,
j1 + . . .+ jt = K and where it is recalled that mν(z) is the
ST of the probability measure ν.

Remark 1. Assumption 6 is in general very strong. It basically
requires that either the right eigenvectors of AT or the
eigenvectors of RT be sufficiently isotropic. It is however often
met in practice:
Array Processing: Consider the model AT = HTP

1/2SH
T ,

with HT = [h(θ1), · · · , h(θK)] (θk distinct) the matrix
of steering vectors, P = diag(a21, . . . , a

2
K) the ma-

trix of source powers, and ST = T−1/2[s∗t,k]T,Kt,k=1 the
matrix of source signals, and take VT = WTR

1/2
T .

Assume the sk,t i.i.d. of zero mean and unit variance
and [

√
Nh(θ)]n = e−2πın sin(θ) as in a uniform linear

array. In this setting, decomposing AT = UTB
H
T with

UT = HT (HTH
H
T )−1/2 and BT = STP

1/2(HTH
H
T )1/2,

we can show (HTH
H
T )−1/2

a.s.−→ IK while SH
T (RT −

zIT )−1ST
a.s.−→ mν(z)P so that Assumption 6 holds. See

the proof of Lemma 1 for details.
MIMO Communication: Let AT = HTP

1/2SH
T , with now

HT = [h1, . . . , hK ] the wireless channels with i.i.d. zero
mean and unit variance entries of K transmitters, P their
diagonal power matrix and ST their matrix of transmitted
zero mean unit variance i.i.d. signals. Taking now VT =

R
1/2
T WT , i.e. spatially correlated noise, and considering



4

Y H
T instead of YT , we may write AH

T = UTB
H
T with

UT = ST (STS
H
T )−1/2 and BT = HTP

1/2(STS
H
T )1/2

to obtain BH
T (RT − zIN )−1BT

a.s.−→ mν(z)P .

Section III-A will introduce the main results of the article,
and in particular the new detection and estimation procedures
under the general hypothesis of Assumption 6. Since the
results of Section III-A may be difficult to grasp in the
full generality of the set of hypotheses, we will then devote
Section III-B to the specific study of Item 1) in Remark 1
with vt an ARMA process for which an improved MUSIC
algorithm to estimate the angles θk will be proposed.

C. Results on the information-plus-noise matrix
Before moving to these applications, we first recall the main

results concerning the eigenvalue distribution of YTY H
T . Since

YTY
H
T is at most a rank 2K perturbation of VTV H

T with K
fixed, Weyl’s interlacing inequalities [20, Th. 4.3.6] show, in
conjunction with Theorem 1, that the spectral measure of
YTY

H
T also converges to µ in the sense of Theorem 1-2).

However, a finite number of eigenvalues of YTY H
T might stay

isolated away from the support of µ [21, Th. 2.2]:

Theorem 2. Under Assumptions 1–6, let µ and [a, b] be as
in Theorem 1. Let λ̂1,T ≥ · · · ≥ λ̂N,T be the eigenvalues of
YTY

H
T with spectral measure τ̂T = N−1

∑N
i=1 λ̂i,T . Then:

1) For every bounded and continuous real function f ,∫
f(t)τ̂T (dt)

a.s.−−−−→
T→∞

∫
f(t)µ(dt).

2) For any interval [x1, x2] ⊂ (0, a)

]{i : λ̂i,T ∈ [x1, x2]} = 0 w.p. 1 for all large T.

3) The function g(x) , xm(x)m̃(x) is positive and de-
creases from g(b+) to zero on (b,∞). If p1g(b+) ≤ 1,
then λ̂1,T

a.s.−→ b. Otherwise, let s ∈ {1, . . . , t} be the
largest index for which psg(b+) > 1 (see Assumption 6).
For k = 1, . . . , s, let ρk be the unique solution x in
(b,∞) of pkg(x) = 1. Then, for i = 1, . . . , s and with
j0 = 0,

λ̂j1+···+ji−1+1,T , . . . , λ̂j1+···+ji,T
a.s.−−−−→

T→∞
ρi

λ̂j1+···+js+1,T
a.s.−−−−→

T→∞
b.

4) The condition pkg(b+) > 1 is equivalent to

pk >

(∫
−mb

1 + cmbt
ν(dt)

)−1
(4)

with mb the solution in (−(cbν)−1, 0) to Equation (3).

Proof: The first two items in this theorem are proved in
[21] in a more general setting than in this paper. To obtain the
last item, observe that g(x) = −

∫
m(x)(1+cm(x)t)−1ν(dt)

from the definition of m̃ in Theorem 1-3) and recall that
m(x) ↓ mb as x ↓ b, where mb is defined in Corollary 1.

This theorem shows in particular that the number of isolated
eigenvalues of YTY H

T is upper bounded by the rank K of AT
and it reaches this rank if pt is large enough.

Remark 2. In the white noise setting, i.e. RT = IT (hence,
ν = δ1), µ is the celebrated Marchenko-Pastur law, and
Equation (4) boils down to pk >

√
c (see e.g. [22]). The

source detection approaches studied in [11], [12], [13] rely
on this condition.

III. SOURCE DETECTION AND PARAMETER ESTIMATION

We start by stating the results in the general context of
Assumptions 1–6. We shall then deal more specifically with
the model of Remark 1-1).

A. General results

Theorem 2 gives the following signal dimension estimator:

Theorem 3. Under Assumptions 1–6 hold true, let s ≥ 0 be
the largest integer for which Equation (4) holds. Let 0 < ε <
(ρs/b)− 1 (take ρ0 =∞). Given L ≥ K, define

k̂T = arg max
k∈{0,...,L}

λ̂k,T

λ̂k+1,T

> 1 + ε

(take λ̂0,T =∞). Then, for all T large, w.p. 1,

k̂T = j1 + . . .+ js.

Proof: Writing k = j1 + . . . + js, Items 1) and 3) of
Theorem 2 ensure λ̂k,T

a.s.−→ ρs > b and λ̂`,T
a.s.−→ b for

` = k + 1, . . . , L.
Theorem 3 allows in practice to evaluate the number of

strong sources when T is large. This however requires ε to be
taken such that ε < (ρs/b)−1, a value which is practically not
known. An empirical approach consists in taking ε sufficiently
small (but not too small to avoid counting noise eigenvalues),
see Section V. Theorem 3 also assumes that the receiver knows
an upper bound L on K, which is less problematic in practice.

In the sequel, for i ∈ {1, . . . ,K}, we let K(i) = 1 if 1 ≤
i ≤ j1, K(i) = 2 if j1 + 1 ≤ i ≤ j1 + j2, . . ., K(i) = t if
j1 + · · ·+ jt−1 + 1 ≤ i ≤ K. The following theorem provides
a means for estimating consistently p1, . . . , ps:

Theorem 4. In the setting of Theorem 3, let

m̂T (x) ,
1

N − k̂T

N∑
n=k̂T+1

1

λ̂n,T − x

ĝT (x) , m̂T (x)(xcT m̂T (x) + cT − 1)

p̂i,T ,
1

ĝT (λ̂i,T )
, i = 1, . . . , k̂T .

Then
p̂i,T − pK(i)

a.s.−−−−→
T→∞

0.

Proof: Recall that λ1,T ≥ . . . ≥ λN,T are the eigenval-
ues of WTRTW

H
T . In the proof, we restrict the elementary

events to belong to the probability one set where λ1,T → b,
mT (x)→m(x) uniformly on the compact subsets of (b,∞)
(see Theorem 1–6), λ̂i,T → ρK(i) for i = 1, . . . , j1 + · · ·+ js,
λ̂j1+···+js+1,T → b, and k̂T → j1+ · · ·+js from Theorems 1,
2, and 3. Observe that YTY H

T is at most a (nonnegative)
rank 2K perturbation of VTV H

T . In these conditions, Weyl’s
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inequalities [20, Th. 4.3.6] ensure λ̂n,T ≤ λn−2K,T and
λn,T ≤ λ̂n−2K,T for = 2K + 1, . . . , N . For any x > b and T
large, we then obtain

m̂T (x) ≥ 1

N − k̂T

N−2K∑
n=1

1

λn,T − x
+

2K∑
n=k̂T+1

1

λ̂n,T − x


, mT (x) + eT (x)

where eT (x)→ 0 uniformly on compact sets of (b,∞), and

m̂T (x)

≤ 1

N − k̂T

 N∑
n=k̂T+1+2K

1

λn,T − x
+

N∑
n=N−2K+1

1

λ̂n,T − x


, mT (x) + e′T (x)

where e′T (x)→ 0 uniformly on compact sets of (b,∞). Con-
sequently, ĝT (λ̂i,T )−g(λ̂i,T )→ 0 for i = 1, . . . , k̂T . Clearly,
g(λ̂i,T ) − g(ρK(i)) → 0 so that ĝT (λ̂i,T ) − g(ρK(i)) → 0
which, along with g(ρK(i)) = 1/pK(i), gives the result.

Let now AT = UTB
H
T following Assumption 6 and write

UT = [U1,T , . . . , Ut,T ], U`,T ∈ CN×j` . We introduce the
orthogonal projection matrix Π`,T = U`,TU

H
`,T ∈ CN×N .

Similarly, we denote Π̂`,T the orthogonal projection matrix
on the eigenspace corresponding to the set of eigenvalues
{λ̂j1+...+j`−1+1,T , . . . , λ̂j1+...+j`} in YTY

H
T , for ` = 1, . . . , t

(j0 = 0). With these notations, we have the following estimate
of bilinear forms of the type aHTΠ`,T bT :

Theorem 5. Under Assumptions 1–6, let aT , bT ∈ CN be two
sequences of deterministic vectors with bounded norms and let
K(i) ≤ s with s the largest integer for which (4) holds. Then:

aHTΠK(i),T bT −
ĝ′T (λ̂i,T )

m̂T (λ̂i,T )ĝT (λ̂i,T )
aHT Π̂K(i),T bT

a.s.−−−−→
T→∞

0.

Proof: From Assumption 6, BH
TBT

a.s.−→ P (multiply each
side of the convergence by −z and take z large). Therefore,
p1, . . . , pt are the limiting positive eigenvalues of ATAH

T . For
RT = IN , the theorem thus coincides with [22, Theorem 2]
since then VT = WT is a bi-unitarily invariant (here Gaussian)
matrix as requested by [22, Assumption 2]. We now reproduce
the steps of [22, Theorem 2] under our set of assumptions.
[22, Equation (8)] remains valid in our setting which, under
the present notations, reads

aHT Π̂`,T bT = − 1

ıπ

∮
C`,T

ãHTQT (z)b̃T dz

+
1

ıπ

∮
C`,T

âHT ĤT (z)−1b̂T dz (5)

for C`,T a complex positively oriented contour enclosing only
the eigenvalues λ̂j1+...+j`−1+1,T , . . . , λ̂j1+...+j`,T , with

ãTT = [aTk,T , 0, . . . , 0], b̃TT = [bTk,T , 0, . . . , 0]

QT (z) = (VTV
H
T − zIN )−1, Q̃T (z) = (V H

T VT − zIT )−1

Q
T

(z) =

[
zQT (z2) VT Q̃T (z2)

Q̃T (z2)V H
T zQ̃T (z2)

]

âT =

[
zUH

T Q̃T (z2)

BH
T Q̃T (z2)V H

T

]
aT , b̂T =

[
zUH

T Q̃T (z2)

BH
T Q̃T (z2)V H

T

]
bT

ĤT (z) =

[
zUH

TQT (z2)UT UH
T VT Q̃T (z2)BT + IK

BH
T Q̃T (z2)V H

T UT + IK zBH
T Q̃T (z2)BT

]
.

Let ` ≤ s. From Theorem 2-2), for all large T w.p. 1, the
first term on the right-hand side of (5) is null (no pole of Q

T
lies in C`,T for large T ), while in the second term C`,T can be
replaced by a contour C` enclosing ρ` but no ρk, k 6= `. We
must now prove âHT ĤT (z)b̂T − āHT H̄T (z)b̄T

a.s.−→ 0 where

āT =

[
zm(z2)UH

T

0

]
aT , b̄T =

[
zm(z2)UH

T

0

]
bT

H̄T (z) =

[
zm(z2)IK IK

IK zm̃(z2)P

]
.

By [21, Lemmas 4.1–4.6], ‖âT−āT ‖
a.s.−→ 0, ‖b̂T− b̄T ‖

a.s.−→ 0,∥∥∥∥∥ĤT (z)−

[
zm(z2)IK IK

IK
BH
T (IT+cm(z2)RT )

−1
BT

−z

]∥∥∥∥∥ a.s.−→ 0.

Assumption 6 and the definition of m̃(z) then imply
‖−1z B

H
T

(
IT + cm(z2)RT

)−1
BT − zm̃(z2)P‖ a.s.−→ 0, which

finally gives âHT ĤT (z)b̂T − āHT H̄T (z)b̄T
a.s.−→ 0. For z ∈ C`,

zm(z2) and zm̃(z2) are bounded by [d(C`, supp(µ))]−1. Take
0 < ε < d(C`, supp(µ)). Then, for all large T , zQT (z2)
and zQ̃(z2) are bounded by ε−1 w.p. 1. The dominated
convergence theorem therefore ensures that

aHT Π̂`,T bT −
1

ıπ

∮
C`
āHT H̄T (z)−1b̄T dz

a.s.−→ 0.

Residue calculus of the right-hand side integrand as in [22,
Equations (10)-(11)] then gives

aHT Π̂`,T bT −
m(ρ`)g(ρ`)

g′(ρ`)
aHTΠ`,T bT

a.s.−−−−→
T→∞

0.

Take i such that K(i) = `. Using λ̂i,T
a.s.−→ ρ`, m̂T (x)

a.s.−→
m(x), ĝT (x)

a.s.−→ g(x), and ĝ′T (x)
a.s.−→ g′(x) for x outside

the support of µ then concludes the proof.

B. Narrowband array processing

We now apply the results of Section III-A to the array
processing model of Remark 1. Consider a uniform linear
array of N antennas which captures T successive realizations
y1, . . . , yT of the random process:

yt =

K∑
k=1

akh(θk)sk,t + vt (6)

with a1 ≥ . . . ≥ aK > 0 the amplitude of sources 1, . . . ,K,
h(θ) ∈ CN the steering-vector function

h(θ) =
1√
N

[
1, e−2ıπ sin θ, . . . , e−2ıπ(N−1) sin θ

]T
(7)

with θk the angle-of-arrival of the signal from source k (the θk
are assumed distinct), sk,t ∈ C the signal emitted by source
k at time t such that (st,k)∞,Kt,k=1 is an infinite array of circular
complex i.i.d. random variables with Es1,1 = 0, E|s1,1|2 = 1,
and E|s1,1|8 < ∞, and vt ∈ CN the noise received at the
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sensor array at time t.
Denoting YT = [y1, . . . , yT ] ∈ CN×T , (6) takes the form

YT = HTP
1/2SH

T + VT (8)

where HT = [h(θ1), h(θ2), . . . , h(θK)] ∈ CN×K , ST =
T−1/2[s∗t,k]T,Kt,k=1 ∈ CT×K , P = diag(a21, . . . , a

2
K), and VT =

T−1/2[v1, . . . , vT ] ∈ CN×T . We assume the rows of
√
TVT

to be independent snapshots of a complex Gaussian circular
causal ARMA(m,n) stationary process. This process can be
represented as the output of a filter with transfer function
p(z) = (1+α1z

−1+. . .+αmz
−m)/(1+β1z

−1+. . .+βnz
−n)

driven by a standard complex Gaussian circular white noise.
For |z| ≥ 1, p(z) =

∑∞
`=0 ψ`z

−` where
∑
|ψ`| <∞, and we

can write VT = WTR
1/2
T with WT as in Assumption 2 and

RT =


r0 r1 . . . rT−1

r−1
. . . . . .

...
...

. . . . . . r1
r1−T . . . r−1 r0


with rk =

∑
`≥0 ψ`+kψ

∗
` for any k ∈ N, the matrix being

nonnegative.

Lemma 1. Under Assumption 1, the model (8) satisfies
Assumptions 2–6 with ν defined by∫

g(t)ν(dt) =

∫ 1

0

g(|p(exp(2ıπu))|2) du (9)

for every positive measurable function g, and with P in
Assumption 6 the matrix of the source powers a2k.

Proof: We start with Assumptions 3 and 4. If m = n = 0,
then ν = δ1 and these assumptions are trivially satisfied.
Assume min(m,n) > 0. Then Assumption 3–1) is a well
known result on the spectral behavior of large Toeplitz ma-
trices [23], [24]. The support of ν is the compact interval
[aν , bν ] = [minu q(u),maxu q(u)], q(u) , |p(exp(2ıπu))|2.
It is also well known [23, §4.2] that aν ≤ σ2

t,T ≤ bν , so that
Assumption 3–2) is satisfied. Since p(z) is ARMA, for g(t)
the indicator function on a set of Lebesgue measure zero, the
right hand side of (9) is zero. Hence ν has a density fν with
respect to the Lebesgue measure. Let us provide the expression
of fν at a point s ∈ (aν , bν) such that for any u for which
q(u) = s, q′(u) 6= 0. In a neighborhood of any of these u,
q has a local inverse that we denote q(−1)u . Then, for ε > 0
small enough,

ν(s− ε, s+ ε) =

∫
t : q(t)∈[s−ε,s+ε]

dt

=
∑

u : q(u)=s

∫
[s−ε,s+ε]

1∣∣∣q′(q(−1)u (v))
∣∣∣ dv

by the variable change q(t) = v. Letting ε ↓ 0, we obtain

lim
ε↓0

ν(s− ε, s+ ε)

2ε
=

∑
u : q(u)=s

1

|q′(u)|
= fν(s).

This proves fν(s)→∞ as s ↑ bν , implying Assumption 4.
We now turn to Assumptions 5 and 6. Since the θi are

distinct (modulo π), HH
THT → IK . By the law of large

numbers, SH
TST

a.s.−−−−→
T→∞

IK . Hence rank(AT ) = K w.p. 1
for all large T , and supT ‖AT ‖ < ∞ w.p. 1. Let us write
AT = UTB

H
T where UT = HT (HH

THT )−1/2 and where BT =
STP

1/2(HH
THT )1/2. By [19, Lemma 2.7] and E|s1,1|8 <∞,

for any z ∈ C+ and any 1 ≤ i, j ≤ K,

E
∣∣∣[SH

T (RT−zIT )−1ST−
Tr[(RT − zIT )−1]

T
IK

]
i,j

∣∣∣4 ≤ C

T 2

for some C > 0. By Markov’s inequality, the argument of E|·|4
converges to zero w.p. 1, and this convergence can be extended
to C − supp(µ). Since T−1 Tr[(RT − zIT )−1] → mν(z) for
z ∈ C− supp(ν), Assumption 6 is satisfied.

With these results, Lemma 1 and Theorems 3 and 4 lead to
the following inference methods:

Proposition 2. Consider the model (8). Let k ≥ 0 be the
largest integer for which (take a0 =∞)

a2k >

(∫ 1

0

−mb

1 + cmb |p(exp(2ıπu))|2
du

)−1
(10)

with mb ∈ (−(c maxu |p(exp(2ıπu))|2)−1, 0) the solution of∫ 1

0

(
m |p(exp(2ıπu))|2

1 + cm |p(exp(2ıπu))|2

)2

du =
1

c
.

Given L ≥ K and ε > 0, define (with λ̂0,T =∞)

k̂T = arg max
m∈{0,...,L}

λ̂m,T

λ̂m+1,T

> 1 + ε.

Then k̂T = k w.p. 1 for all large T and ε small enough.
Moreover, for i = 1, . . . , k̂T let â2i,T , (ĝT (λ̂i,T ))−1 with
ĝT (λ̂i,T ) as in Theorem 4. Then

â2i,T
a.s.−→ a2i .

Based on Theorem 5, we now provide a source localization
method based on MUSIC [5]. Recall that MUSIC exploits the
fact that h(θi)

H(IN − Π`
1,T )h(θi) = 0 with Π`

1,T a projector
on the subspace generated by h(θ1), . . . , h(θ`) for any i ≤
` ≤ K. Since ‖h(θ)‖ = 1, θ1, . . . , θ` are the arguments of the
local maxima of

γ`T (θ) , h(θ)HΠ`
1,Th(θ).

Proposition 3. Let k and k̂T be as in Proposition 2 and denote
û1,T , . . . , ûk̂T ,T the eigenvectors of YTY H

T with respective
eigenvalues λ̂1,T , . . . , λ̂k̂T ,T . Then, for θ ∈ [−π/2, π/2],

γkT (θ)− γ̂k̂TT (θ)
a.s.−→ 0

where

γkT (θ) , h(θ)HΠk
1,Th(θ)

γ̂k̂TT (θ) ,
k̂T∑
j=1

ĝ′T (λ̂j,T )

m̂T (λ̂j,T )ĝT (λ̂j,T )
h(θ)Hûj,T û

H
j,Th(θ).

Proof: Lemma 1 ensures that Assumptions 1–6 are satis-
fied, so Theorem 5 can be applied for each i ≤ k. Taking aT =
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bT = h(θ) and UT = HT (HH
THT )−1/2 as in Theorem 5, we

obtain the desired result for UTJUH
T , J = diag(Ik, 0), instead

of Πk
1,T . As (HH

THT )−1/2J(HH
THT )−1/2

a.s.−→ J and HTJH
H
T

is the same projector as Πk
1,T , we have h(θ)HΠk

1,Th(θ) −
h(θ)HUTJU

H
T h(θ)

a.s.−→ 0, completing the proof.
Proposition 3 ensures that γ̂k̂TT (θ) is a consistent estimator

of the localization function γkT (θ). The alternative MUSIC al-
gorithm we therefore propose consists in estimating θ1, . . . , θk
as the arguments of the k̂T highest maxima of γ̂k̂TT (θ). Observe
that, although the system models differ in both articles, the
MUSIC estimator proposed here exactly corresponds to that
provided in [22]. This remark would not hold if it were not
for Assumption 6.

IV. SECOND ORDER PERFORMANCE ANALYSIS

In this section, we discuss the asymptotic (second order)
performance of the detection and estimation schemes derived
in Section III. The model of Section III-B is considered.
Following the notations of Section III-A, we gather the source
powers a2k in groups of equal powers p1 > ... > pt with
respective multiplicities j1, . . . , jt.

A. Main results

We start by studying the fluctuations of the isolated eigen-
values of YTY H

T . Recall the definition of νT in Assumption 3
and recall that cT = N/T . Replacing ν and c with νT and
cT , respectively, in Theorem 1, we obtain that

mT (z) =

(
−z +

∫
t

1 + cTmT (z)t
νT (dt)

)−1
(11)

uniquely defines the ST mT (z) of a probability measure µT
supported by R+. In addition, µT converges weakly to µ as
T →∞; the Hausdorff distance between the supports of these
two measures converges to zero [17], [19] and, for each b′ > b,
mT (z) is analytic on C− [0, b′] for all large T . Let

m̃T (z) =

∫
−1

z(1 + cTmT (z)t)
νT (dt)

=
−1

zT
Tr(IT + cTmT (z)RT )−1.

Similarly to Theorem 1-3), m̃T (z) satisfies m̃T (z) =
cTmT (z)−(1−cT )/z. Consequently, for all T large, gT (x) ,
xmT (x)m̃T (x) is defined on (b′,∞), b′ > b, and, for any k
such that pkg(b+) > 1, pkgT (x) = 1 has a unique solution
ρk,T in (b,∞).

The main result of this section (Theorem 6) describes the
fluctuations of λ̂i,T −ρK(i),T , i ≤ s, with s the largest integer
satisfying (4).

Lemma 2. Consider the model (8). Then the function

∆(x) = 1− c

∫ (
m(x)t

1 + cm(x)t

)2

ν(dt)

is defined and positive on (b,∞). Furthermore, ∆(x)→ 0 as
x ↓ b and ∆(x)→ 1 as x→∞.

Proof: See Appendix B.

Theorem 6. Consider (8) with the assumptions of Sec-
tion III-B. Assume in addition E[su1,1(s∗1,1)v] = 0 for u+v ≤ 4

and u 6= v, and let κ , E|s1,1|4 − 2. Let s be the largest
integer (assumed ≥ 1) for which (10) holds. For k = 1, . . . , s
and all T large, let ρk,T be the unique solution in (b,∞) of
pkgT (x) = 1. Define (with j0 = 0)

ηk,T =
√
T


λ̂j1+···+jk−1+1,T

...
λ̂j1+···+jk,T

− ρk,T
1

...
1


 ,

αk =
m2(ρk)

∆(ρk)

[∫
t2 + 2pkt

(1 + cm(ρk)t)2
ν(dt)

+ c
(∫ pkm(ρk)t

(1 + cm(ρk)t)2
ν(dt)

)2]
,

βk =

∫
p2km(ρk)2

(1 + cm(ρk)t)2
ν(dt), and

φk =

(∫
pkm(ρk)

1 + cm(ρk)t
ν(dt)

)2

.

Let M1, . . . ,Ms, Mk = [M`,m,k]1≤`,m≤jk , be random in-
dependent Hermitian matrices such that {M`,m,k}`≤m are
independent, M`,`,k ∼ N (0, αk + βk + κφk), and M`,m,k ∼
CN (0, αk + βk) for 1 ≤ ` < m ≤ jk. Let χk be the
Rjk−valued vector of the decreasingly ordered eigenvalues
of (pkg

′(ρk))−1Mk. Then

(η1,T , . . . , ηs,T )
L−−−−→

T→∞
(χ1, . . . , χs).

Proof: The proof of the theorem is given in Section IV-B.

Theorem 6 shows that, after appropriate centering and
scaling, the vector of the isolated eigenvalues of YTY H

T that
converge to ρk > b tends to fluctuate like the eigenvalues of
a certain Hermitian matrix with Gaussian elements. If κ = 0,
this matrix is a scaled Gaussian Unitary Ensemble (GUE)
matrix.4 When K = 0, sT 2/3(λ̂1,T − bT ) converges in law
to the Tracy-Widom probability distribution TW(·), where
bT is the finite horizon equivalent to b and s is a scaling
parameter that depends on c and ν [25]. This result can be
generalized to show that for any fixed integer r, the vector
T 2/3(λ̂1,T − bT , . . . , λ̂r,T − bT ) converges in distribution to
a multidimensional version of the Tracy-Widom law. These
results and Theorem 6 can then be used to evaluate the error
probabilities of the source detection schemes described in
Theorem 3 and Proposition 2.

Remark 3. We note without proof that for the specific ARMA
model considered here, the measure νT can be freely replaced
with ν in Equation (11). The error incurred on mT (z) by this
replacement is negligible in the ARMA context.

Theorem 6 can also be used to characterize the fluctuations
of the source power estimates:

4We recall that a GUE matrix is a random Hermitian matrix M = [Mij ]
such that Mii ∼ N (0, 1), Mij ∼ CN (0, 1) for i < j, these random
variables being independent.
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Theorem 7. Consider the setup of Theorem 6 and let p̂i,T =
(ĝT (λ̂i,T ))−1 for i = 1, . . . , j1 + · · · + js. For k = 1, . . . , s,
define (with j0 = 0)

ξk,T =
√
T


p̂j1+···+jk−1+1,T

...
p̂j1+···+jk,T

− pk
1

...
1


 .

Let Mk be defined as in Theorem 6 and let χ̌k be the
Rjk−valued vector of the decreasingly ordered eigenvalues
of pkMk. Then

(ξ1,T , . . . , ξs,T )
L−−−−→

T→∞
(χ̌1, . . . , χ̌s).

Proof: A sketch of the proof is provided in Appendix C.

As a corollary of Theorem 7, the following proposition
provides the behavior of the power estimates for extreme
values of pk, i.e. for pk → ∞ and for pk close to the
detectability limit given by (10):

Proposition 4. Consider the setting of Theorem 7. Let plim
be the infimum of the pk satisfying (10), Mk be defined as in
Theorem 6, and ψk , αk + βk + κφk, ψ̆k , αk + βk. Then

ψk −−−−−→
pk↓plim

∞, ψ̆k −−−−−→
pk↓plim

∞

ψk −−−−→
pk→∞

1 + κ, ψ̆k −−−−→
pk→∞

1.

Proof: See Appendix D.

B. Proof of Theorem 6

The proof relies on two ingredients: an adaption of
[21, Th. 2.3] and a result on fluctuations of quadratic
forms. Let AT = UTB

H
T with UT = HT (HH

THT )−1/2

and BT = STP
1/2(HH

THT )1/2 = [B1,T , . . . , Bt,T ],
Bk,T ∈ CT×jk . In [21], it is shown that the ηk,T
fluctuate like the ordered eigenvalues of the matri-
ces (pkg(ρk)′)−1(

√
αkGk +

√
TFk,T ) where Fk,T =

mT (ρk,T )BH
k,T (IT+cTmT (ρk,T )RT )−1Bk,T+Ijk and the Gk

are GUE matrices independent of the Fk,T . Using HH
THT

a.s.−→
IK , the law of large numbers and the definition of ρk,T
informally give

Fk,T '
(pk
T

Tr
[
mT (ρk,T )(IT + cTmT (ρk,T )RT )−1

]
+ 1
)
Ijk

= 0.

We thus need to study the fluctuations of
√
TFk,T , which is

the purpose of the following lemmas, proved in Appendices E,
F, and G, respectively:

Lemma 3. Let DT ∈ CT×T be a sequence of deterministic
Hermitian matrices with supT ‖DT ‖ <∞. Assume that

1

T
TrD2

T −−−−→
T→∞

β and
1

T
Tr(diag(DT ))2 −−−−→

T→∞
φ.

Consider the matrices ST defined by (8). Then
√
T
(
SH
TDTST −

TrDT

T
IK

)
L−−−−→

T→∞
G

where G = [Gij ]1≤i,j≤K is random Hermitian such that

{Gij}i≤j are independent, Gii ∼ N (0, β + κφ) for 1 ≤ i ≤
K, and Gij ∼ CN (0, β) for 1 ≤ i < j ≤ K.

Lemma 4. Let 1 ≤ k ≤ s and

DT = pkmT (ρk,T )(IT + cTmT (ρk,T )RT )−1.

Then lim supT ‖DT ‖ <∞,

1

T
Tr(D2

T ) −−−−→
T→∞

βk , and
1

T
Tr(diag(DT ))2 −−−−→

T→∞
φk

where βk and φk are given in Theorem 6.

Lemma 5. Let M1, . . . ,Mt, Mk = [M`,m,k]1≤`,m≤jk ,
be random independent Hermitian matrices such that the
{M`,m,k}`≤m are independent, M`,`,k ∼ N (0, βk + κφk),
and M`,m,k ∼ CN (0, βk) for 1 ≤ ` < m ≤ jk. Then

(
√
TFk,T )k=1,...,t

L−−−−→
T→∞

(Mk)k=1,...,t.

The proof ends with the adapted statement of [21, Th. 2.3]:5

Proposition 5. In the setting of Theorem 6, let G1, . . . , Gs,
Gk ∈ Cjk×jk , be independent GUE matrices. Then, for any
bounded and continuous f : Rj1+···+js → R,

E[f(η1,T , . . . , ηs,T )]− E[f(ζ1, . . . , ζs)]→ 0

where ζk is the random vector of the decreasingly ordered
eigenvalues of (pkg(ρk)′)−1(

√
αkGk +

√
TFk,T ).

V. SIMULATION RESULTS

We consider the setting of Section III-B, with signals st,k
drawn from a QPSK constellation for which κ = −1 and K =
1. The signal power a21 defines the signal-to-noise ratio (SNR).
The noise is issued from an autoregressive (AR) process of
order 1 and parameter a, so that [RT ]k,l = a|k−l|. All other
parameters are given in the figure captions.

In Figure 1, the false alarm rate (FAR) and correct detection
rate (CDR) performance of the detector proposed in Propo-
sition 2 (consisting in estimating k̂T = 1 among 0, . . . , L)
is compared against the MDL and AIC detectors (consisting
also in finding exactly one source). We observe that the
proposed detector uniformly outperforms the MDL and the
AIC detectors, consistently with the known inappropriateness
of the latter. Note that the AIC particularly fails to detect
any source, in spite of N growing, demonstrating the inherent
inconsistency of this estimator.

In Figure 2, the receiver cooperation characteristics (ROC),
parameterized by ε, for different values of a are depicted.
We compare here our proposed detection scheme against an
oracle method which assumes perfect knowledge of RT that
is used to whiten YT before applying the proposed schemes
in the white noise case. We observe that the proposed detector
deteriorates with growing a, which can be explained by the

5In fact, [21, Th. 2.3] characterizes the asymptotic fluctuations of the
random variables

√
T (λ̂i,T −ρK(i)) instead of the

√
T (λ̂i,T −ρK(i),T ), so

that the speed of convergence of νT towards ν and of cT towards c had to be
controlled through [21, Assumption 7]. By replacing ρk with ρk,T , the proof
of [21, Th. 2.3] goes on without the need for that assumption. Replacing ρk
by ρk,T is enough for the present purpose.
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natural spread of supp(µ) with a large, implying larger inter-
eigenvalue spacings within the noise subspace and therefore
reduced efficiency of the detection test. On the opposite, the
oracle estimator benefits from increased values of a, due to
the SNR gain obtained by the whitening procedure. Observe
that both approaches perform identically for a = 0, which is
expected since the system models in both cases are identical.

Figure 3 depicts the normalized mean square error (NMSE)
E[(â21 − a21)2a−41 ] of the power estimation of Proposition 2
against its theoretical value obtained from Theorem 6. For
the purpose of analysis, we assume that the source is always
detected, i.e. k̂T = 1, irrespective of the SNR. As confirmed
by Proposition 4, the theoretical variance diverges as pk ↓
plim. We however observe that in the finite N,T regime, the
power estimator errors remain bounded at low SNR. This is
explained by the fact that, while the theoretical error diverges
due to ∆ ↓ 0 (see Lemma 2) as pk ↓ plim, its estimator for
each N,T (obtained by replacing m by m̂T ) is always non-
zero even for pk = plim. In the high SNR regime, here with
κ = −1, the NMSE becomes linear (in dB scale) with slope
−10 dB/decade. It is easily shown that the limiting SNR gap
between the proposed and oracle estimators is exactly

10 log
(∫ 1

0

|p(exp(2ıπu))|2du·
∫ 1

0

|p(exp(2ıπu))|−2du
)

dB

which is merely due to a gain in SNR after whitening. In
particular, the larger the correlation parameter a, the bigger
the limiting gap.

In Figure 4, the mean square error E[(γ̂(θ1) − γ(θ1))2]
of the localization function at position θ1 = 10◦ is com-
pared against the performances of the oracle estimator (which
performs pre-whitening prior to using the estimator of [22]
or equivalently that of Proposition 3) and of the traditional
MUSIC estimator with localization function γ̂trad,T (θ) ,∑k̂T
k=1 h(θ)Hûk,T û

H
k,Th(θ) in the notations of Proposition 2.

The source is again supposed always detected so that k̂T = 1
throughout the experiment. The proposed estimator outper-
forms greatly the traditional MUSIC approach here, which
is both due to the large N,T regime improvement and to
the consideration of the non-white noise setting. The oracle
estimator shows a huge performance improvement in the low
SNR regime, which translates the fact that condition (4) (which
needs to be fulfilled for either method to be valid) is extremely
demanding when a = 0.6 (due to supp(µ) being large). In
the large SNR regime, a constant gap is maintained which,
although we do not provide theoretical support, appears as a
similar SNR-gap phenomenon as observed in Figure 3.

In Figure 5, we now take K = 2 sources, with a1 = a2
the amplitude of which define the SNR, and again assuming
k̂T = 2. Here are compared the performances of resolution
of two close sources located at θ1 = 10◦ and θ2 = 12◦

for the localization method proposed in Proposition 3, for
the oracle estimator, and for the traditional MUSIC estimator.
The figure of merit, referred to as resolution probability, is
the probability of identifying exactly two local minima of the
localization function in the window [5◦, 17◦]. We observe that
the proposed algorithm performs significantly better than the

traditional MUSIC method, confirming the results of [22] for
the current model.
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Figure 1. CDR (plain curve) and FAR (dashed curves) versus N with K = 1,
SNR= 10 dB, L = 5, ε = 0.75, cT = 0.5, and a = 0.6.
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Figure 2. ROC curves with K = 1, SNR= 2 dB, L = 5, N = 20, and
cT = 0.5.
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Figure 3. NMSE of the estimated power versus SNR with K = 1, N = 20,
cT = 0.5, and a = 0.6.
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Figure 4. MSE of the localization function versus SNR with K = 1, N =
20, cT = 0.2, and a = 0.6.

10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

SNR (dB)

R
es

ol
ut

io
n

pr
ob

ab
ili

ty

Proposed
Traditional
Oracle

Figure 5. Resolution probability versus SNR with K = 2, N = 20, cT =
0.2, and a = 0.6.

VI. CONCLUSION AND RESEARCH PROSPECTS

This article introduced a novel set of statistical inference
methods for large dimensional information-plus-noise models
with multiple sources and unknown colored noise. These
techniques were proved consistent in the limiting regime where
both the system size and the number of observations go
large. The approach pursued here relies on the asymptotic
spectral separation between noise and signal in the observed
sample covariance matrix. Under the same hypotheses, using
instead prior information on the noise structure, an alternative
approach could consist in estimating the noise covariance
in the presence of signals, similar to [26] which treats the
noise-only case. It is expected that this approach performs
better in the low SNR regime, resurrecting signals unseen by
our current method. In the high SNR regime, the covariance
estimation will instead be too degraded for this method to
be beneficial. A trade-off is therefore expected between both
approaches, which we shall study in a future work.

In the specific problem of signal detection, the choice of
the eigenvalue “gap parameter” ε does not account for the
observation of the small eigenvalues of YTY H

T as for the power
and direction-of-arrival estimation techniques (through m̂T ).

It seems nonetheless natural to be able to evaluate the right-
edge of supp(µ) from these eigenvalues, thus resulting in a
test to compare λ̂i,T , i = 1, . . . , L, to the estimated edge.
To finely tune the test, one can then use the results from
[25] which proves Tracy-Widom fluctuations at the edge with
scaling coefficient x′′(mb) (mb given by Corollary 1). How-
ever, estimating both the edge and this coefficient constitute a
challenging problem so far.

APPENDIX

A. Proof of Corollary 1

The derivative

x′(m) =
1

m2
− c

∫ (
t

1 + cmt

)2

ν(dt)

of x(m) is continuous and increasing on (−(cbν)−1, 0), and
x′(m)→∞ as m ↑ 0. To establish the proposition, it will be
enough to show that x′(m)i → −∞ as m ↓ −(cbν)−1. This
is obvious when ν(bν) > 0. Assume then ν(bν) = 0. When
m ↓ −(cbν)−1, by the monotone convergence theorem∫

t2

(1 + cmt)2
ν(dt) ↑

∫
t2

(1− t/b)2
ν(dt)

≥
∫
[bν−ε,bν ]

b2t2

(b− t)2
fν(t) dt =∞

from the behavior of fν(t) near bν , which proves the result.

B. Proof of Lemma 2

Considering Equation (2), we obtain after some calculus that
m′(x) = m2(x)/∆(x) on (b,∞). Since m(x) is negative and
increasing on (b,∞), both m′(x) and m2(x) are positive on
this interval so that ∆(x) > 0 on (b,∞).
Proposition 1 shows that b coincides with the minimum of
x(m) on ((−cbν)−1, 0). Moreover, when Assumption 4 is
satisfied (which is the case for the model (8) by Lemma 1),
the proof of Corollary 1 shows that x(m) attains its minimum
at a unique point mb ∈ ((−cbν)−1, 0), and x′(mb) = 0.
Finally, Proposition 1 shows that x(m) is the inverse of
m(x) on (b,∞). It results that m(x) → mb and m′(x) =
1/x′(m(x))→∞ as x ↓ b. This proves ∆(x)→ 0 as x ↓ b.
When x → ∞, both (xm(x))2 = (

∫
x(t − x)−1µ(dt))2

and x2m′(x) =
∫
x2(t − x)−2µ(dt) converge to 1. Hence,

∆(x) = (xm(x))2(x2m′(x))−1 → 1, concluding the proof.

C. Theorem 7: main steps of the proof

For simplicity, we focus on the fluctuations of
√
T (p̂1,T −

p1). Recall that p̂1,T = ĝT (λ̂1,T )−1 and p1 = gT (ρ1,T )−1.
Define g

T
(x) = mT (x)(xcTmT (x) + cT − 1) with mT (x)

defined in Theorem 1-6). We have
√
T (p̂1,T − p1) =

√
T (ĝT (λ̂1,T )−1 − gT (ρ1,T )−1)

=
√
T (ĝT (λ̂1,T )−1 − g

T
(λ̂1,T )−1)

+
√
T (g

T
(λ̂1,T )−1 − gT (λ̂1,T )−1)

+
√
T (gT (λ̂1,T )−1 − gT (ρ1,T )−1)

, f1,T (λ̂1,T ) + f2,T (λ̂1,T ) + f3,T (λ̂1,T ).
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As λ1,T
a.s.−−→ ρ1, we can replace f1,T (λ̂1,T ) by

f1,T (λ̂1,T )1I(λ1,T ) where 1I is the indicator function on a
small compact interval I in a neighborhood of ρ1. Mimicking
the proof of Theorem 4, we can show that supx∈I f1,T (x)

P−→
0. We similarly restrict f2,T to I . On this set, it is possible
to show that the random process T (mT (x)−mT (x)) valued
in the set C(I) of the continuous functions on I , converges
in distribution towards a Gaussian process in C(I). This
result was shown in [27] for I a compact path of C+;
this can be generalized to the interval I of interest in this
proof by using the Gaussian tools used in e.g. [21]. As a
result, supx∈I f2,T (x)

P−→ 0. To deal with f3,T , we start
by observing that gT (ρk,T ) → g(ρk) and (1/gT (ρk,T ))′ →
−g′(ρk)/g2(ρk) = −p2kg′(ρk). Using the result of Theorem
6 and applying the Delta method [28, Prop. 6.1.6], we can
show that f3,T (λ̂1,T )

L−→ p1[M1]11. The generalization to the
vectors ξk,T defined in the theorem shows no major difficulty.

D. Proof of Proposition 4

From Theorem 2, ρk ↓ b as pk ↓ plim. Hence, by Lemma 2,
∆(ρk) → 0 as pk ↓ plim. Moreover, the proof of this lemma
shows that |m(ρk)| remains bounded as ρk ↓ b. Hence, since
ν 6= δ0 by Assumption 3, the integrals in the expression of αk
are lower bounded by a positive number as pk ↓ plim. Thus,
αk →∞ which proves the first part of the lemma.
When pk → ∞, ρk/pk → 1 and ρkm(ρk) → −1. Taking
pk → ∞ into the expressions of the integrals on the right
hand sides of the expressions of αk, βk, and φk and recalling
that ∆(ρk) → 1, we get αk → 0, βk → 1, and φk → 1,
which proves the lemma.

E. Lemma 3: sketch of the proof

The fluctuations of quadratic forms of the type sHT DT sT
where sT ∈ CT has i.i.d. entries have been well studied (e.g.
[29, Th. 2.1], [30, Th. 3]). Here, the vector sT is replaced by
the matrix ST ∈ CT×K which introduces some differences in
the proof. We follow here the lines of the proof of [30, Th. 3]
and stress the main differences.

Let
√
TSH

T = [s1, · · · , sT ] where st = [s∗t,1, . . . , s
∗
t,K ]T and

let C = [cij ] ∈ CK×K Hermitian matrix. Showing that
√
T TrC

(
SH
TDTST −

1

T
TrDT IK

)
L−−−−→

T→∞
N
(
0, β Tr(C2) + καTr[(diag(C))2]

)
and invoking the Cramér-Wold device establishes the lemma.
Consider the sequence of increasing σ-fields Ft =
σ(s1, . . . , st), t = 1, . . . , T , and denote Et the expectation
conditional to Ft. Then, with E0 = E,

√
T TrC

(
SH
TDTST −

1

T
TrDT IK

)
=
√
T

T−1∑
t=0

(Et+1 − Et) TrCSH
TDTST

which is a sum of martingale increments, so that the key tool
for establishing Lemma 3 is martingale CLT [31, Th. 35.12].
Writing Zt = (Et+1 − Et) TrCSH

TDTST , we need to show:

• Lyapunov’s condition : there exists δ > 0 for which

T 1+δ/2
T−1∑
t=0

EZ2+δ
t −−−−→

T→∞
0.

• The following convergence holds

T

T−1∑
t=0

EtZ2
t

P−−−−→
T→∞

β Tr(C2) + καTr[(diag(C))2].

Taking δ = 2 and mimicking the calculus of [30, page 5058]
(based on Burkholder’s inequality and E|s1,1|8 < ∞) gives
T 2
∑T−1
t=0 E[|(Et+1 − Et)[SH

TDTST ]i,j |4]→ 0, 1 ≤ i, j ≤ K,
which proves Lyapunov’s condition. Denoting DT = [dij ],

TZt = dt+1,t+1 TrC(st+1s
H
t+1 − IK)

+ 2<
( K∑
i,j=1

ci,j

t∑
k=1

s∗k,j st+1,i dk,t+1

)
.

Using the independence of the si,j and the moments Es1,1 =
0, E|s1,1|2 = 1, and E[su1,1(s∗1,1)v] = 0 for u 6= v, we obtain

T 2EtZ2
t = d2t+1,t+1

(
TrC2 + κ

K∑
k=1

c2kk

)
+ 2

K∑
i,j,n=1

ci,jcn,i

t∑
k,`=1

s∗k,j s`,n dk,t+1dt+1,`.

Letting ĎT = [dij1i>j ], we have

T

T−1∑
t=0

EtZ2
t =

(
TrC2 + κ

K∑
k=1

c2kk

) 1

T
Tr(diag(DT ))2

+
2

T
TrCSH

T Ď
H
T ĎTSTC.

Using [19, Lemma 2.7] and [30, Lemma 3] (or [32, P. 278]),
we then get

1

T
TrCSH

T Ď
H
T ĎTSTC − TrC2 1

T
Tr ĎH

T ĎT
P−−−−→

T→∞
0.

We finally get the result by observing that

2

T
Tr ĎH

T ĎT =
1

T
TrD2

T −
1

T
Tr(diag(DT ))2.

F. Proof of Lemma 4

[21, Lemma 3.1] shows that for any compact K ⊂ R −
supp(µ), there exists C > 0 such that

∀T large, ∀t ∈ supp(νT ), inf
x∈K
|1 + cTmT (x)t| > C

and hence lim infT inft∈supp(νT ) |1 + cTmT (ρk,T )t| > 0. It
results that lim supT ‖DT ‖ <∞. Furthermore, since

1

T
Tr(D2

T ) =

∫
p2kmT (ρk,T )2

(1 + cTmT (ρk,T )t)2
νT (dt)

the first convergence in the statement of Lemma 4 holds true.
As for the second convergence, recall that RT =
[rt−n]1≤t,n≤T , with

∑
t |rt| < ∞, and define the Toeplitz

matrix ΓT , [γt−n]1≤t,n≤T where γ` = δ` + cm(ρk)r`.
Observe that DT = pkmT (ρk,T )Γ−1T . Let [·]T be the modulo-
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T operator, and let Γ̃T = [γ[t−n]T ]1≤t,n≤T be a circu-
lant matrix associated with ΓT . By [21, Lemma 3.1] again,
lim infT infu∈[0,1](1 + cTmT (ρk,T )|p(exp(2ıπu))|2) > 0,
hence supT ‖Γ̃T ‖ <∞. It results that T−1‖Γ−1T − Γ̃−1T ‖2fro →
0, with ‖ · ‖fro the Frobenius norm [23, Th. 5.2]. On the
other hand, since Γ̃T is circulant, its eigenvector matrix is
the Fourier T × T matrix, so that we can show

diag(Γ̃−1T ) =
( 1

T

T−1∑
t=0

1

1 + cTmT (ρk,T )|p(exp(2ıπt/T ))|2
)
IT .

The lemma is obtained by combining these last two results.

G. Proof of Lemma 5

We essentially show that we can replace the Bk,T by√
pkSk,T with ST = [S1,T , . . . , St,T ], similar to BT . Since

θi 6= θj if i 6= j, from the definition of the vector func-
tion a(θ), we have [HH

THT ]k,` − δk` = aT (θk)HaT (θ`) −
δk` = O(1/T ). Hence, (HH

THT )1/2 , IK + ET where
‖ET ‖ = O(1/T ). Given any sequence DT of deterministic
matrices such that supT ‖DT ‖ < ∞, it can be seen by
a moment derivation with respect to the law of ST that
E|[BH

TDTBT − P 1/2SH
TDTSTP

1/2]k,`| = O(1/T ) for any
k, ` ≤ K. Hence, by Markov’s inequality,

√
T (BH

TDTBT −
P 1/2SH

TDTSTP
1/2)

P−→ 0. Replacing DT with any of the
matrices pkmT (ρk,T )(IT + cTmT (ρk,T )RT )−1, we get from
Lemma 4 that supT ‖DT ‖ < ∞. Therefore, the Bk,T can be
replaced with the

√
pkSk,T . The result is then obtained upon

applying Lemmas 3 and 4 and recalling that, for k = 1, . . . , t,
the Sk,T are independent.
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