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Consider the random matrix Σ = D1/2X eD1/2 where D and eD are deterministic Hermi-
tian nonnegative matrices with respective dimensions N × N and n × n, and where X
is a random matrix with independent and identically distributed centered elements with
variance 1/n. Assume that the dimensions N and n grow to infinity at the same pace,
and that the spectral measures of D and eD converge as N, n → ∞ towards two proba-
bility measures. Then it is known that the spectral measure of ΣΣ∗ converges towards a
probability measure µ characterized by its Stieltjes transform. In this paper, it is shown
that µ has a density away from zero, this density is analytical wherever it is positive,

and it behaves in most cases as
p|x − a| near an edge a of its support. In addition, a

complete characterization of the support of µ is provided. Aside from its mathematical
interest, the analysis underlying these results finds important applications in a certain
class of statistical estimation problems.

Keywords: Large random matrix theory; limit spectral measure; separable covariance
ensemble.
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1. Introduction and Problem Statement

Consider the N × n random matrix Σn = D
1/2
n XnD̃

1/2
n where Xn is an N × n real

or complex random matrix having independent and identically distributed elements
with mean zero and variance 1/n, the N×N matrix Dn is deterministic, Hermitian
and nonnegative, and the n × n matrix D̃n is also deterministic, Hermitian and
nonnegative. We assume that n → ∞ and N/n → c > 0, and we denote this
asymptotic regime as “n → ∞”. We also assume that the spectral measures of
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Dn and D̃n converge respectively towards the probability measures ν and ν̃ as
n → ∞. We assume that ν �= d0 and ν̃ �= d0 where dx is the Dirac measure at
{x}. Many contributions showed that the spectral measure of ΣnΣ∗

n converges to
a deterministic probability measure µ and provided a characterization of this limit
measure under various assumptions [8, 19, 4, 11], the weakest being found in [22].
In this work, we show that µ has a density away from zero, this density is analytical
wherever it is positive, and it behaves as

√|x− a| near an edge a of its support for
a large class of measures ν, ν̃. We also provide a complete characterization of this
support along with a thorough analysis of the master equations relating µ to ν and
ν̃. To that end, we follow the general ideas already provided in the classical paper
of Marchenko and Pastur [15] and further developed in [20, 5].

In [20], Silverstein and Choi performed this study in the so-called sample covari-
ance matrix case where D̃n = In. The outline of the present paper closely follows
that of [20] although at multiple occasions our proofs depart from those of [20],
making the paper more self-contained. In particular, while Silverstein and Choi
benefited from the existence of an explicit expression for the inverse of the Stieltjes
transform of µ when D̃n = In, this is no longer the case in the general setting
requiring the use of more fundamental analytical tools. In the setting of [20], it has
been further shown in [1] that under some conditions, no closed interval outside the
support of µ contains an eigenvalue of ΣnΣ∗

n, with probability one, for all large n.
In [2], a finer result on the so-called exact separation of the eigenvalues of ΣnΣ∗

n

between the connected components of the support of µ is shown. Recently, it has
been discovered that the characterization in [20] of the support of µ and the results
on the master equations relating µ to ν, beside their own interest, lead in conjunc-
tion with the results of [1, 2] to the design of consistent statistical estimators of
some linear functionals of the eigenvalues of Dn or projectors on the eigenspaces of
this matrix. Such estimators have been developed by Mestre in [16, 17], the initial
idea dating back to the work of Girko (see, e.g., [9]).

In [5], Brent Dozier and Silverstein studied the properties of the limit spec-
tral measure of the so-called Information plus Noise ensemble. A first result on
the absence of eigenvalues outside the support of the limit spectral measure has
been established in [3]. In [14, 10, 21] other separation results as well as statistical
estimation algorithms along the lines of [16, 17] were proposed.

Turning to the separable covariance matrix ensemble of interest here, the absence
of eigenvalues outside the support of µ has been established by Paul and Silverstein
in [18] without characterizing this support. The results of this paper therefore com-
plement those of [18]. More importantly, similar to the case D̃n = In, these results
are a necessary first step to devise statistical estimation algorithms of, e.g., linear
functionals of the eigenvalues of one of the matrices Dn or D̃n. Work on this subject
is currently in progress.

Finally, it has been noticed in the large random matrix community that there is
an intimate connection between the square root behavior of the density of the limit
spectral measure at the edges of the support and the Tracy–Widom fluctuations of
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the eigenvalues near those edges (see [6] dealing with the sample covariance matrix
case). It can be conjectured that such behavior still holds (with some assumptions
on the probability law of the elements of Xn) in the separable covariance case
considered here. In this regard, Theorem 3.3 may help guessing the exact form of
the Tracy–Widom law at the edges of the support of µ.

We now recall the results describing the asymptotic behavior of the spectral
measure of ΣnΣ∗

n.

1.1. The master equations

We recall that the Stieltjes transform of a probability measure π on R is the function

f(z) =
∫

1
t− z

π(dt)

defined on C+. The function f(z) is (i) holomorphic on C+ = {z : �(z) > 0}, (ii)
it satisfies f(z) ∈ C+ for any z ∈ C+, and (iii) limy→∞ |yf(ıy)| = 1. In addition, if
π is supported by R+ = [0,∞), then (iv) zf(z) ∈ C+ for any z ∈ C+. Conversely,
it is well known that any function f(z) satisfying (i)–(iv) is the Stieltjes transform
of a probability measure supported by R+ [13]. Finally, observe that the Stieltjes
transform of π can be trivially extended from C+ to C − supp(π) where supp(π) is
the support of π.

In this paper, a small generalization of this result will be needed [13,
Appendix A]: The three following statements are equivalent:

• The function f(z) satisfies the properties (i), (ii) and (iv),
• It admits the representation

f(z) = a+
∫ ∞

0

1
t− z

π(dt),

where a ≥ 0 and where π is a Radon positive measure on R+ such that 0 <∫∞
0

(1 + t)−1π(dt) <∞.
• The function f(z) satisfies the properties (i) and (ii), and furthermore, it is ana-

lytical and nonnegative on the negative real axis (−∞, 0).

We now recall the first order result.

Proposition 1.1 ([22], see also [12] for similar notations). Let the probability
measures ν �= d0 and ν̃ �= d0 be the limit spectral measures of the matrices Dn and
D̃n respectively. For any z ∈ C+, the system of equations

δ = c

∫
t

−z(1 + δ̃t)
ν(dt), (1)

δ̃ =
∫

t

−z(1 + δt)
ν̃(dt) (2)
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admits a unique solution (δ, δ̃) ∈ C2
+. Let δ(z) and δ̃(z) be these solutions. The

function

m(z) =
∫

1
−z(1 + δ̃(z)t)

ν(dt), z ∈ C+ (3)

is the Stieltjes transform of a probability measure µ supported by R+. The function

m̃(z) =
∫

1
−z(1 + δ(z)u)

ν̃(du), z ∈ C+

is the Stieltjes transform of the probability measure µ̃ = cµ + (1 − c)d0. Moreover,
denoting by µn the spectral measure of ΣnΣ∗

n and by µ̃n = (N/n)µn + (1−N/n)d0

the spectral measure of Σ∗
nΣn, it holds that∫

ϕ(λ)µn(dλ) a.s.−−−−→
n→∞

∫
ϕ(λ)µ(dλ) and

∫
ϕ(λ)µ̃n(dλ) a.s.−−−−→

n→∞

∫
ϕ(λ)µ̃(dλ)

for any continuous and bounded real function ϕ.

Before going further, we collect some simple facts and identities that will be
often used in the paper:

• Define the function

F (δ̃, z) =
∫

t

−z + ct
∫

u
1+uδ̃

ν(du)
ν̃(dt) − δ̃, (δ̃, z) ∈ C

2
+. (4)

By plugging Eq. (1) into Eq. (2), we obtain that the function δ̃(z) can also be
defined as the unique solution of the equation F (δ̃, z) = 0. It will be sometimes
more convenient to work on this equation instead of the “split” form (1)–(2).

• The functions m(z) and m̃(z) satisfy the identities

m(z) =
∫

1 + δ̃(z)t− δ̃(z)t
−z(1 + δ̃(z)t)

ν(dt) = −z−1 − c−1δ(z)δ̃(z) and

m̃(z) = −z−1 − δ(z)δ̃(z).

(5)

• For any z1, z2 ∈ C+, define

γ(z1, z2) = c

∫
t2

z1z2(1 + δ̃(z1)t)(1 + δ̃(z2)t)
ν(dt) and

γ̃(z1, z2) =
∫

t2

z1z2(1 + δ(z1)t)(1 + δ(z2)t)
ν̃(dt)

(6)

(since |(1 + δ̃(z1)t)(1 + δ̃(z2)t)| ≥ �δ̃(z1)�δ̃(z2)t2 and |(1 + δ(z1)t)(1 + δ(z2)t)| ≥
�δ(z1)�δ(z2)t2, the integrability is guaranteed). By the definition of δ̃(z),
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we have

δ̃(z1) − δ̃(z2) =
∫

(z1 − z2)t+ (z1δ(z1) − z2δ(z2))t2

z1z2(1 + δ(z1)t)(1 + δ(z2)t)
ν̃(dt)

and by developing the expression of z1δ(z1) − z2δ(z2) using (1), we obtain

(1 − z1z2γ(z1, z2)γ̃(z1, z2))(δ̃(z1) − δ̃(z2))

= (z1 − z2)
∫

t

z1z2(1 + δ(z1)t)(1 + δ(z2)t)
ν̃(dt). (7)

Similarly,

γ(z, z∗) = c

∫
t2

|z|2|1 + δ̃(z)t|2 ν(dt) and

γ̃(z, z∗) =
∫

t2

|z|2|1 + δ(z)t|2 ν̃(dt).

are defined for any z ∈ C+ since |z(1 + δ̃(z)t)|2 ≥ (�(zδ̃(z)))2t2. By a derivation
similar to above, we have for any z ∈ C+

�δ̃(z) = δ̃(z)−δ̃(z)∗

2ı = �(zδ(z))γ̃(z, z∗) + �z∫ t
|z|2|1+δ(z)t|2 ν̃(dt).

By writing �(zδ(z)) = (zδ(z) − z∗δ(z)∗)/(2ı) and by developing this expression
using (1), we get

(1 − |z|2γ(z, z∗)γ̃(z, z∗))�δ̃(z) = �z
∫

t

|z|2|1 + δ(z)t)|2 ν̃(dt). (8)

On C+, �δ̃(z) > 0. Moreover, the integral at the right-hand side is strictly posi-
tive. Hence

∀z ∈ C+, 1 − |z|2γ(z, z∗)γ̃(z, z∗) > 0.

This inequality will be of central importance in the sequel.

The two measures introduced by the following proposition share many properties
with µ as it will be seen below. They will play an essential role in the paper.

Proposition 1.2. The functions δ(z) and δ̃(z) admit the representations

δ(z) =
∫ ∞

0

1
t− z

ρ(dt) and δ̃(z) =
∫ ∞

0

1
t− z

ρ̃(dt), z ∈ C+

where ρ and ρ̃ are two Radon positive measures on R+ such that

0 <
∫ ∞

0

1
1 + t

ρ(dt) <∞ and 0 <
∫ ∞

0

1
1 + t

ρ̃(dt) <∞.
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Proof. One can observe that the function F (δ̃, z) defined in (4) is holomorphic on
C2

+. Fixing z0 ∈ C+, a small calculation shows that∣∣∣∣∂F∂δ̃ (δ̃, z0)
∣∣∣∣ = |1 − z2

0γ(z0, z0)γ̃(z0, z0)|

≥ 1 − |z2
0γ(z0, z0)γ̃(z0, z0)|

≥ 1 − |z0|2γ(z0, z∗0)γ̃(z0, z∗0) > 0

by inequality (8). The holomorphic implicit function theorem [7, Chap. 1, Theo-
rem 7.6] shows then that δ̃(z) is holomorphic in a neighborhood of z0. Since z0
is chosen arbitrarily in C+, we get that δ̃(z) is holomorphic in C+. Recall that
�δ̃(z) > 0 on C+. Since we furthermore have

�(zδ̃(z)) = �δ(z)
∫

t2

|1 + δ(z)t|2 ν̃(dt) > 0

on C+, we get the representation

δ̃(z) = ã+
∫

1
t− z

ρ̃(dt)

where ã ≥ 0 and where ρ̃ satisfies the properties given in the statement. Let us show
that ã = 0. Observe that δ̃(x) ↓ ã when x is a real negative number converging to
−∞. By a continuation argument, F (δ̃(x), x) = 0 for any negative value of x. As
x→ −∞, we get by the monotone convergence theorem

I(δ̃(x)) =
∫

u

1 + uδ̃(x)
ν(du) ↑ I(ã) =

∫
u

1 + uã
ν(du) ∈ (0,∞].

When x < 0 is far enough from zero, I(δ̃(x)) ≥ C where C > 0 is a constant, and
the Dominated Convergence Theorem (DCT) shows that

δ̃(x) =
∫

t

−x+ ctI(δ̃(x))
ν(dt) −−−−−→

x→−∞ 0.

A similar argument can be applied to δ(z).

2. Some Elementary Properties of µ

Before entering the core of the paper, it might be useful to establish some elementary
properties of µ.

In the asymptotic regime where N is fixed and n → ∞, the matrix ΣnΣ∗
n −

(n−1 Tr D̃n)Dn will converge to zero when the assumptions of the law of large
numbers are satisfied. In our asymptotic regime, the following result can therefore
be expected. Note that this result has its own interest and has no relation with the
rest of the paper.
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Proposition 2.1. Assume that Mν =
∫
tν(dt) and Mν̃ =

∫
tν̃(dt) are both finite.

Then

µ(dt) ⇒ ν(M−1
ν̃ dt) as c→ 0

where ⇒ denotes the weak convergence of probability measures.

Proof. For any u ≥ 0 and any z ∈ C+, |z(1 + δ̃(z)u)| ≥ �(z(1 + δ̃(z)u)) ≥
�(z), hence |δ(z)| ≤ cMν/�(z), which implies that δ(z) → 0 as c → 0. Similarly,
|z(1 + δ(z)t)| ≥ �(z) for any t ≥ 0 and any z ∈ C+, hence δ̃(z) → −Mν̃/z by the
DCT. Invoking the DCT again, we get that

m(z) −−−→
c→0

∫
1

Mν̃t− z
ν(dt) =

∫
1

t− z
ν(M−1

ν̃ dt)

which shows the result.

We now characterize µ({0}). Intuitively, rank(Σn) � min[N(1 − ν({0})), n(1 −
ν̃({0}))] and µ({0}) � 1− rank(Σn)/N for large n. The following result is therefore
expected.

Proposition 2.2. µ({0}) = 1 − min[1 − ν({0}), c−1(1 − ν̃({0}))].

Proof. From the general expression of a Stieltjes transform of a probability mea-
sure, it is easily seen using the DCT that µ({0}) = limy↓0(−ıym(ıy)). Moreover,
since |y(t− ıy)−1| ≤ (t2 + 1)−1/2 when |y| ≤ 1, the DCT and Proposition 1.2 show
that ρ̃({0}) = limy↓0(−ıyδ̃(ıy)).

Let us write ν = ν({0})d0 + ν′ and ν̃ = ν̃({0})d0 + ν̃′, and let us assume that
1 − ν({0}) < c−1(1 − ν̃({0})), or equivalently, that ν′(R+) < c−1ν̃′(R+). In this
case, we will show that ρ̃({0}) > 0. That being true, we get

µ({0}) = lim
y↓0

(−ıym(ıy)) = ν({0}) + lim
y↓0

∫
1

1 + δ̃(ıy)t
ν′(dt) = ν({0})

(since (δ̃(ıy)) > 0, see below, the integrand above is bounded in absolute value by
1, and furthermore, it converges to 0 for any t > 0 due to the fact that ρ̃({0}) > 0).
We assume that ρ̃({0}) = 0 and raise a contradiction. The equation F (δ̃, ıy) = 0
for y > 0 can be rewritten as∫

t

−ıyδ̃(ıy) + ct
∫ uδ̃(ıy)

1+uδ̃(ıy)
ν′(du)

ν̃′(dt) = 1.

We have

(δ̃(ıy)) = 
∫

1
t− ıy

ρ̃(dt) =
∫

t

t2 + y2
ρ̃(dt) > 0,

and limy→0 (δ̃(ıy)) ∈ (0,∞] by the monotone convergence theorem. Let

I(y) =
∫

uδ̃(ıy)
1 + uδ̃(ıy)

ν′(du).

1450016-7



2nd Reading

November 5, 2014 14:10 WSPC/S2010-3263 RMTA 1450016

R. Couillet & W. Hachem

Writing δ̃ = δ̃(ıy), we have

(I(y)) =
∫
u(δ̃)(1 + uδ̃) + (u�δ̃)2

(1 + uδ̃)2 + (u�δ̃)2 ν′(du)

whose lim inf is positive as y ↓ 0. Furthermore, we have for y > 0

(−ıyδ̃(ıy)) = 
∫ −ıy
t− ıy

ρ̃(dt) =
∫

y2

t2 + y2
ρ̃(dt) > 0

hence lim infy↓0 | − ıyδ̃(ıy)+ ctI(y)| ≥ ct lim infy↓0 I(y). Consequently, we have by
the assumption ρ̃({0}) = 0 and the DCT∫

t

−ıyδ̃(ıy) + ctI(y)
ν̃′(dt) − ν̃′(R+)

cI(y)
−−→
y↓0

0.

This shows that limy↓0 I(y) = c−1ν̃′(R+). But since (δ̃(ıy)) > 0, |uδ̃(ıy)(1 +
uδ̃(ıy))−1| ≤ 1 for u ≥ 0 hence |I(y)| ≤ ν′(R+). Therefore, c−1ν̃′(R+) ≤ ν′(R+)
which contradicts the assumption.

If ν′(R+) > c−1ν̃′(R+), we replace µ, m(z) and δ̃(z) with µ̃, m̃(z) and δ(z)
respectively in the previous argument.

To deal (briefly) with the case ν′(R+) = c−1ν̃′(R+), we use the fact that µ is
continuous with respect to ν̃ in the weak convergence topology (see [22, Chap. 4]).
By approximating ν̃ by a sequence ν̃k = ν̃k({0})+ ν̃′k such that ν′(R+) < c−1ν̃′k, we
are led back to the first part of the proof. The result is obtained by continuity.

3. Density and Support

3.1. Existence of a continuous density

This paragraph is devoted to establishing the following theorem.

Theorem 3.1. For all x ∈ R∗ = R− {0}, the nontangential limit limz∈C+→xm(z)
exists. Denoting by m(x) this limit, the function �m(x) is continuous on R∗, and
µ has a continuous derivative f(x) = π−1�m(x) on R∗.

Similarly, the nontangential limits limz∈C+→x δ(z) and limz∈C+→x δ̃(z) exist.
Denoting respectively by �δ(x) and �δ̃(x) these limits, the functions �δ(x) and
�δ̃(x) are both continuous on R∗, and both ρ and ρ̃ have continuous derivatives on
R+. Finally supp(ρ) ∩ R∗ = supp(ρ̃) ∩ R∗ = supp(µ) ∩ R∗.

Since µ̃ = cµ + (1 − c)d0, it is obvious that we can replace m with m̃ in the
statement of the theorem.

As soon as the existence of the three limits as z ∈ C+ → x are established, we
know from the so-called Stieltjes inversion formula that the densities exist (see [20,
Theorem 2.1]). By a simple passage to the limit argument (see [20, Theorem 2.2]),
we also know that these densities are continuous.
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To prove the theorem, we first prove that limz∈C+→x δ(z) and limz∈C+→x δ̃(z)
both exist for all x ∈ R∗ (Lemmas 3.1–3.3). This shows that both ρ and ρ̃ have den-
sities on R∗. Lemma 3.4 shows then that limz∈C+→xm(z) exists, and furthermore,
that the intersections of the supports of µ, ρ and ρ̃ with R∗ coincide.

Lemma 3.1. |δ(z)| and |δ̃(z)| are bounded on any bounded region of C+ lying at a
positive distance from the imaginary axis.

Proof. We first observe that for any z ∈ C+,

|δ(z)| ≤ c

(∫
t2

|z|2|1 + δ̃(z)t|2 ν(dt)
)1/2

=
√
cγ(z, z∗)1/2,

|δ̃(z)| ≤ γ̃(z, z∗)1/2,

and we recall that 0 < |z|2γ(z, z∗)γ̃(z, z∗) < 1. Using (5), we therefore get that
supz∈R |m̃(z)| < ∞ where R is the region alluded to in the statement of the
lemma. We now assume that supz∈R |δ̃(z)| = ∞ and raise a contradiction, the
case where supz∈R |δ(z)| being treated similarly. By assumption, there exists a
sequence z0, z1, . . . ∈ R such that |δ̃(zk)| → ∞. By the inequalities above, we
get that γ̃(zk, z

∗
k) → ∞, hence γ(zk, z

∗
k) → 0 and therefore δ(zk) → 0. In parallel,

we have

z0m̃(z0) − zkm̃(zk) =
∫ ( −1

1 + δ(z0)t
+

1
1 + δ(zk)t

)
ν̃(dt)

= (δ(z0) − δ(zk))
∫

t

(1 + δ(z0)t)(1 + δ(zk)t)
ν̃(dt).

Using identity (7), we obtain

(1 − z0zkγ(z0, zk)γ̃(z0, zk))(δ̃(z0) − δ̃(zk))

= (z−1
k − z−1

0 )
z0m̃(z0) − zkm̃(zk)

δ(z0) − δ(zk)
.

By what precedes, supk |(z−1
k − z−1

0 )(z0m̃(z0) − zkm̃(zk))| < ∞. Moreover,
lim infk |δ(z0) − δ(zk)| > 0 since �δ(z0) > 0. Cauchy–Schwarz inequality shows
that |γ(z0, zk)| ≤ γ(z0, z∗0)1/2γ(zk, z

∗
k)1/2 and |γ̃(z0, zk)| ≤ γ̃(z0, z∗0)1/2γ̃(zk, z

∗
k)1/2.

Therefore,

inf
k
|1 − z0zkγ(z0, zk)γ̃(z0, zk)| ≥ 1 − sup

k
|z0zkγ(z0, zk)γ̃(z0, zk)|

≥ 1 − (|z0|2γ(z0, z∗0)γ̃(z0, z∗0))1/2

× sup
k

(|zk|2γ(zk, z
∗
k)γ̃(zk, z

∗
k))1/2 > 0

which shows that supk |δ̃(zk)| <∞.

1450016-9



2nd Reading

November 5, 2014 14:10 WSPC/S2010-3263 RMTA 1450016

R. Couillet & W. Hachem

Lemma 3.2. For 	 = 1, 2, the integrals∫
t�

|1 + δ̃(z)t|2 ν(dt) and
∫

t�

|1 + δ(z)t|2 ν̃(dt)

are bounded on any bounded region R of C+ lying at a positive distance from the
imaginary axis.

Proof. We observe that for 	 = 2, the integrals given in the statement of the
lemma are equal to c−1|z|2γ(z, z∗) and to |z|2γ̃(z, z∗) respectively. We know that
supz∈R |z|4γ(z, z∗)γ̃(z, z∗) ≤ supz∈R |z|2 < ∞. Assume that γ̃(zn, z

∗
n) → ∞ along

some sequence zn ∈ R. Then γ(zn, z
∗
n) → 0, which implies that the integrand

of |zn|2γ(zn, z
∗
n) converges to zero ν-almost everywhere. This implies in turn that

|δ̃(zn)| → ∞ which contradicts Lemma 3.1. The result is proven for 	 = 2.
We now consider the case 	 = 1, focusing on the first integral that we write

as
∫∞
0
tI(t)−1ν(dt). Since

∫∞
0
tI(t)−1ν(dt) ≤ ∫ 1

0
tI(t)−1ν(dt) +

∫∞
1
t2I(t)−1ν(dt), we

only need to bound the first term at the right-hand side. Denoting by � the indicator
function, we have∫ 1

0

t

I(t)
ν(dt) =

∫ 1

0

t

I(t)
�[0,|2�δ̃|−1](t)ν(dt) +

∫ 1

0

t

I(t)
�(|2�δ̃|−1,∞)(t)ν(dt)

≤ 4
∫ 1

0

tν(dt) + |2δ̃|
∫ ∞

0

t2

I(t)
ν(dt)

which is bounded.

Lemma 3.3. For any x ∈ R∗, limz∈C+→x δ(z) and limz∈C+→x δ̃(z) exist.

Proof. If both ν and ν̃ are Dirac probability measures, one can see that δ(z) and
δ̃(z) are the Stieltjes transforms of Marchenko–Pastur distributions and the result
is straightforward. We shall assume without loss of generality that ν is not a Dirac
measure.

We showed that δ and δ̃ are bounded on any bounded region of C+ lying away
from the imaginary axis. Let zn ∈ C+ be a sequence converging to an x ∈ R∗,
and along which δ̃(zn) converges to some δ̃ and δ(zn) converges to some δ. Since
|zn|2γ(zn, z

∗
n)γ̃(zn, z

∗
n) < 1, by passing to the limit we get that x2Γ(x, δ̃)Γ̃(x, δ) ≤ 1

where

Γ(x, δ̃) = c

∫
t2

x2|1 + δ̃t|2 ν(dt) and

Γ̃(x, δ) =
∫

t2

x2|1 + δt|2 ν̃(dt).

Take two sequences zn and zn in C+ which converge to the same x ∈ R∗, and such
that δ̃(zn) and δ̃(zn) converge towards δ̃ and δ̃ respectively, and δ(zn) and δ(zn)
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converge towards δ and δ respectively. We shall show that δ̃ = δ̃. Writing

(1 − znznγ(zn, zn)γ̃(zn, zn))(δ̃(zn) − δ̃(zn))

= (zn − zn)
∫

t

znzn(1 + δ(zn)t)(1 + δ(zn)t)
ν̃(dt),

the sequence of integrals at the right-hand side is bounded by Cauchy–Schwarz and
by Lemma 3.2. Passing to the limit, we obtain (1 − x2ΓΓ̃)(δ̃ − δ̃) = 0 where

Γ = c

∫
t2

x2(1 + δ̃t)(1 + δ̃t)
ν(dt) and

Γ̃ =
∫

t2

x2(1 + δt)(1 + δt)
ν̃(dt).

Assume that δ̃ �= δ̃. By Cauchy–Schwarz, |Γ| ≤ Γ(x, δ̃)1/2Γ(x, δ̃)1/2, the equality
being achieved if and only if 1 + δ̃t = α(1 + δ̃t) ν-almost everywhere for some
α �= 0. Since ν is different from a Dirac measure, this is impossible, so |Γ| <
Γ(x, δ̃)1/2Γ(x, δ̃)1/2. By Cauchy–Schwarz, we also have |Γ̃| ≤ Γ̃(x, δ)1/2Γ̃(x, δ)1/2.
Consequently,

|1 − x2ΓΓ̃| ≥ 1 − x2|ΓΓ̃| > 1 −
√
x2Γ(x, δ̃)Γ(x, δ̃)

√
x2Γ̃(x, δ)Γ̃(x, δ) ≥ 0.

This contradicts (1 − x2ΓΓ̃)(δ̃ − δ̃) = 0. Hence δ̃ = δ̃. We prove similarly that
δ = δ.

Lemma 3.4. For any x ∈ R∗, limz∈C+→xm(z) exists. Let m(x) = limz∈C+→xm(z),
δ(x) = limz∈C+→x δ(z) and δ̃(x) = limz∈C+→x δ̃(z). Then

�δ(x) > 0 ⇔ �δ̃(x) > 0 ⇔ �m(x) > 0.

Proof. The fact that limz∈C+→xm(z) exists can be immediately deduced from
the first identity in (5) and the previous lemma. Let us show that �δ(x) > 0 ⇔
�δ̃(x) > 0. We have

�δ̃(z) =
1

|z|2
∫ �zt+ �(zδ(z))t2

|1 + δ(z)t|2 ν̃(dt)

Assume that limz∈C+→x �δ(z) = �δ(x) > 0. By Fatou’s lemma, we get

lim inf
z∈C+→x

�δ̃(z) ≥ 1
x2

∫
x�δ(x)t2

(1 + δ(x)t)2 + t2(�δ(x))2 ν̃(dt) > 0.

Using this same argument with the roles of δ and δ̃ interchanged, we get that
�δ(x) > 0 ⇔ �δ̃(x) > 0.

Using (3) and Fatou’s lemma again, we also obtain that �δ̃(x) > 0 ⇒ �m(x) >
0. Conversely, �m(x) = −c−1�(δ(x)δ̃(x)) = −c−1(δ(x)�δ̃(x) + �δ(x)δ̃(x)).
Therefore, �m(x) > 0 ⇒ (�δ(x) > 0 or �δ̃(x) > 0) ⇔ �δ̃(x) > 0.
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3.2. Determination of supp(µ)

In the remainder, we characterize supp(µ) ∩ R∗ = supp(ρ̃) ∩ R∗, focusing on the
measure ρ̃. In the following, we let

D =

{
{0} ∪ {δ ∈ R∗ : −δ−1 �∈ supp(ν̃)} if supp(ν̃) is compact,

{δ ∈ R∗ : −δ−1 �∈ supp(ν̃)} otherwise

and

D̃ =

{0} ∪ {δ̃ ∈ R∗ : −δ̃
−1 �∈ supp(ν)} if supp(ν) is compact,

{δ̃ ∈ R∗ : −δ̃
−1 �∈ supp(ν)} otherwise.

Notice that D and D̃ are both open.

Proposition 3.1. If x ∈ R∗ does not belong to supp(µ), then δ(x) ∈ D, δ̃(x) ∈ D̃,
and 1 − x2γ(x,x)γ̃(x,x) > 0.

Proof. Since supp(µ) ∩ R∗ = supp(ρ) ∩ R∗ = supp(ρ̃) ∩ R∗ and since the Stieltjes
transform of a positive measure is real and increasing on the real axis outside the
support of this measure, δ(x) ∈ R, δ̃(x) ∈ R and δ̃′(x) > 0. Extending Eq. (7) to a
neighborhood of x, we get

δ̃′(x) =
1

1 − x2γ(x,x)γ̃(x,x)

∫
t

x2(1 + δ(x)t)2
ν̃(dt);

hence 1 − x2γ(x,x)γ̃(x,x) > 0.
We now show that δ(x) ∈ D. Assume δ(x) �= 0. Denoting by mν̃ the Stieltjes

Transform of ν̃, Eq. (2) can be rewritten as mν̃(−δ(z)−1) = δ(z) + zδ2(z)δ̃(z).
Making z converge from C+ to a point x lying in a small neighborhood of x in
R, the right-hand side of this equation converges to a real number, and −δ(z)−1

converges from C+ to a point in a neighborhood of −δ(x)−1 in R. Since mν̃ is real
on this neighborhood, the load of this neighborhood by ν̃ is zero, which implies that
δ(x) ∈ D. Assume now that δ(x) = 0. Then there exists x0 �∈ supp(ρ) such that
x0 < x and δ(x) increases from δ(x0) to zero on [x0,x]. The argument above shows
that ν̃([−δ−1(x0),−δ−1(x)]) = 0 for any x ∈ [x0,x). Making x ↑ x, we obtain that
ν̃([−δ−1(x0),∞)) = 0, in other words, ν̃ is compactly supported. It results that
δ(x) ∈ D. The same argument shows that δ̃(x) ∈ D̃.

Proposition 3.2. Given δ̃ ∈ D̃, assume there exists x ∈ R∗ for which

δ = c

∫
t

−x(1 + δ̃t)
ν(dt) ∈ D, δ̃ =

∫
t

−x(1 + δt)
ν̃(dt), (9)

and

1 − x2γ(x, δ̃)γ̃(x, δ) > 0, (10)
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where

γ(x, δ̃) = c

∫
t2

x2(1 + δ̃t)2
ν(dt) and γ̃(x, δ) =

∫
t2

x2(1 + δt)2
ν̃(dt).

Then x �∈ supp(µ).

Proof. Let (δ̃,x) be a solution of Eq. (9) such that δ̃ ∈ D̃, δ ∈ D, and inequal-
ity (10) is satisfied. Define on a small enough open neighborhood of (δ̃,x) in R2 the
function

F (δ̃, x) =
∫

t

−x+ ct
∫

u
1+uδ̃

ν(du)
ν̃(dt) − δ̃. (11)

Clearly, F (δ̃,x) = 0, and a small calculation shows that

∂F

∂δ̃
(δ̃,x) = −1 + x2γ(x, δ̃)γ̃(x, δ) < 0

(in this calculation, integration and differentiation can be exchanged since δ̃ ∈ D̃
and δ ∈ D). By the implicit function theorem, there is a real function δ̃(x) defined
on a real neighborhood V of x such that δ̃(x) = δ̃ and every couple (x, δ̃(x)) for
x ∈ V satisfies the assumptions of the statement of the proposition. To establish the
proposition, it will be enough to show that for any x ∈ V , δ̃(x) = limz∈C+→x δ̃(z).
Fix x ∈ V . For z ∈ C+, let

A(z) =
∫

t

xz(1 + δ(z)t)(1 + δ(x)t)
ν̃(dt).

By the Cauchy–Schwarz inequality, Lemma 3.2 and the fact that δ ∈ D, |A(z)|
remains bounded as z → x. Let (δ(x), δ̃(x)) be the limit of (δ(z), δ̃(z)) as z ∈ C+ →
x. Repeating the derivations made in the proof of Lemma 3.3, using the fact that
|A(z)| is bounded, and letting z → x, we obtain that (1 − x2ΓΓ̃)(δ̃(x) − δ̃(x)) = 0
where

Γ = c

∫
t2

x2(1 + δ̃(x)t)(1 + δ̃(x)t)
ν(dt),

Γ̃ =
∫

t2

x2(1 + δ(x)t)(1 + δ(x)t)
ν̃(dt)

and δ(x) = −cx−1
∫
t(1+ δ̃(x)t)−1ν(dt). As in the proof of Lemma 3.3, we show that

1 − x2ΓΓ̃ > 0, resulting in δ̃(x) = δ̃(x).

3.3. Practical procedure for determining supp(µ)

Proposition 3.1 shows that for any x ∈ supp(µ)c ∩R∗, there exists a couple
(δ, δ̃) that satisfies the assumptions of Proposition 3.2. The reverse is shown by
Proposition 3.2.
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These observations suggest a practical procedure for determining the support
of µ. We let δ̃ run through D̃. For every one of these δ̃, we compute

ψ(δ̃) = c

∫
t

1 + δ̃t
ν(dt)

then we find numerically the solutions of the equation in x

δ̃ =
∫

t

−x + ψ(δ̃)t
ν̃(dt).

for which −x−1ψ(δ̃) ∈ D. Among these solutions, we retain those points x for which

1 − c

∫
t2

(1 + δ̃t)2
ν(dt)

∫
t2

(x − ψ(δ̃)t)2
ν̃(dt) > 0.

What is left after making δ̃ run through D̃ is supp(µ) ∩ R∗. Figure 1 gives an idea
of the result.

3.4. Properties of the graph of x versus δ̃ and the consequences

The following two propositions will help us bring out some of the properties of the
graph of x versus δ̃. In their statements, we assume that the triples (δ̃1, δ1,x1) and
(δ̃2, δ2,x2) satisfy both the statement of Proposition 3.2.

Lemma 3.5. δ̃1 �= δ̃2 ⇒ x1 �= x2 and δ1 �= δ2 ⇒ x1 �= x2.

Fig. 1. xI,eI(δ̃) for each component pairs I of D and eI of eD. In thick line, positions for which

1 − x2γ(x, δ̃)γ̃(x, δ) > 0. On the vertical axis, in black dashes, empirical eigenvalue positions for
N = 1000. Setting: c = 10, ν = 1/2(δ1 + δ2), ν̃ = 1/2(δ1 + δ10).
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Proof. We know that δ̃i = limz∈C+→xi δ̃(z) for i = 1, 2. Assume that δ̃1 �= δ̃2.
Then having x1 = x2 would violate this convergence.

Lemma 3.6. If δ̃1 < δ̃2, if x1x2 > 0, and if [δ1 ∧ δ2, δ1 ∨ δ2] ⊂ D, then x1 < x2.

Proof. We use the identity

(1 − x1x2γ(x1,x2)γ̃(x1,x2))(δ̃1 − δ̃2)

= (x1 − x2)
∫

t

x1x2(1 + δ1t)(1 + δ2t)
ν̃(dt),

see (7). By the Cauchy–Schwarz inequality, 1−x1x2γ(x1,x2)γ̃(x1,x2) > 0. Let us
show that the integral I at the right-hand side of the equation above is positive.
Assume that for some t ∈ supp(ν̃), the numbers 1 + δ1t and 1 + δ2t do not have
the same sign. Then there exists δ ∈ (δ1 ∧ δ2, δ1 ∨ δ2) such that 1 + δt = 0. But
this contradicts [δ1 ∧ δ2, δ1 ∨ δ2] ⊂ D. Hence I > 0, which shows that x1 − x2 and
δ̃1 − δ̃2 have the same sign.

In order to better understand the incidence of these propositions, let us describe
more formally the procedure for determining the support of µ. Equations (9) can
be rewritten as −xδδ̃ = g(δ̃) = g̃(δ) where

g(δ̃) = c

∫
δ̃t

1 + δ̃t
ν(dt) and g̃(δ) =

∫
δt

1 + δt
ν̃(dt)

are both increasing on any interval of D̃ and D respectively. Let I and Ĩ be two
connected components of D and D̃ respectively.a Assume that g̃(I)∩g(Ĩ) �= ∅. Since
g̃ is increasing, it has a local inverse g̃−1

I,eI on g(Ĩ). Let δ = g̃−1

I,eI ◦ g(δ̃) and consider
the function

xI,eI(δ̃) = −g(δ̃)
δδ̃

= − g(δ̃)
δ̃ × g̃−1

I,eI ◦ g(δ̃)
, (12)

with domain the open set dom(xI,eI) = {δ̃ ∈ Ĩ : ∃δ ∈ I such that g̃(δ) =

g(δ̃) and δ �= 0}. Computing xI,eI(δ̃) on all connected components I and Ĩ and
dropping the values of x for which 1 − x2γ(x, δ̃)γ̃(x, δ) > 0, we are of course left
with supp(µ) ∩ R∗.

Thanks to Lemmas 3.5 and 3.6, the functions xI,eI have the following properties:

(1) For any x0 ∈ R∗, at most one function xI,eI satisfies xI,eI(δ̃) = x0 and x′
I,eI(δ̃) >

0 by Lemma 3.5.
Note that more than one function xI,eI can be possibly increasing at a given

δ̃ ∈ D̃, as the figure shows.

aTo give an example, assume that supp(ν) ∩ R∗ = [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [aK , bK ] where
0 < a1 ≤ b1 < a2 ≤ b2 < · · · < aK ≤ bK < ∞. Then the connected components of eD are
(−∞,−a−1

1 ), (−b−1
1 ,−a−1

2 ), . . . , (−b−1
K−1,−a−1

K−1), and (−b−1
K ,∞).

1450016-15



2nd Reading

November 5, 2014 14:10 WSPC/S2010-3263 RMTA 1450016

R. Couillet & W. Hachem

(2) We show below that there is exactly one couple (I, Ĩ) for which xI,eI has neg-
ative values and is increasing from −∞ to zero where it is negative. Moreover,
for any couple (I, Ĩ) and for any [δ̃1, δ̃2] ∈ Ĩ such that xI,eI(δ̃i) > 0 and
x′
I,eI(δ̃i) > 0, i = 1, 2, the function xI,eI(δ̃) never decreases between δ̃1 and δ̃2

by Lemma 3.6.
In summary, if a branch of a xI,eI(δ̃) is increasing at two points δ̃1 and δ̃2,

then it never decreases between these two points.
(3) Let b = sup(supp(ν)) ∈ (0,∞] and b̃ = sup(supp(ν̃)) ∈ (0,∞], and let us

study the behavior of xI,eI when Ĩ = (−b−1,∞) and I = (−b̃−1,∞). Assume
b = b̃ = ∞. By the fact that the functions δ(x) and δ̃(x) are both positive and
increasing on (−∞, 0) and by Lemma 3.5, the branch xI,eI(δ̃) is increasing where
it is negative, it is the only branch having this property, and xI,eI(δ̃) → −∞ as
δ̃ ↓ 0.

Assume now that b = ∞ and b̃ < ∞. Here it is easy to notice that
g((−b̃−1, 0)) ∩ g̃((0,∞)) = ∅ which implies that we can replace I with (0,∞).
As in the former case, the graph of xI,eI consists in one branch that has the
same properties as regards the negative values of x. The same conclusion holds
when b <∞ and b̃ = ∞.

Finally, assume that b, b̃ < ∞. Here g(δ̃)/δ̃ ≈ C and δ ≈ C′δ̃ near zero,
where C,C′ > 0. Consequently, the graph of xI,eI(δ̃) consists in two branches,
one on (−b−1, 0) and one on (0,∞). The first branch converges to infinity as
δ̃ ↑ 0, showing that µ is compactly supported, and the second branch behaves
below zero as its analogues above. These two branches appear on the figure.

(4) Assume that a = inf(supp(ν) ∩ R∗) > 0 and let Ĩ = (−∞,−a−1). Then g(δ̃)
increases from c as δ̃ increases from −∞. If δ < 0, then xI,eI(δ̃) < 0 since
g(δ̃)/δ̃ < 0, and the conclusions of item (3) show that the branches xI,eI need
not be considered for determining supp(µ) when I ⊂ (−∞, 0). It remains to
study xI,eI for I = (−b̃−1,∞). On (0,∞), the function g̃(δ) increases from 0

to 1, hence g̃((0,∞)) ∩ g(Ĩ) �= ∅ if and only if c < 1. In that case, it can be
checked that xI,eI(δ̃) increases from 0 as δ̃ increases from −∞. In conclusion, if
a > 0 and c < 1, then inf(supp(µ) ∩ R∗) > 0, and the location of this infimum
is provided by the branch xI,eI .

Similarly, if ã = inf(supp(ν̃) ∩ R∗) > 0, I = (−∞,−ã−1) and Ĩ ⊂ (−∞, 0),
then the branches xI,eI need not be considered. If in addition c > 1, then
inf(supp(µ) ∩ R∗) > 0, and the location of this infimum is provided by the
branch xI,eI for I = (−∞,−ã−1) and Ĩ = (−b−1,∞).

We terminate this paragraph with the following two results.

Proposition 3.3. Assume that supp(ν) ∩ R∗ and supp(ν̃) ∩ R∗ consist in K and
K̃ connected components respectively. Then supp(µ) ∩ R∗ consists in at most KK̃
connected components.
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Proof. When ν is compactly supported, supp(ν − ν({0})d0) = [a1, b1] ∪ [a2, b2] ∪
· · · ∪ [aK , bK ] where 0 < a1 ≤ b1 < a2 ≤ b2 < · · · < aK ≤ bK < ∞ or 0 = a1 <

b1 < a2 ≤ b2 < · · · < aK ≤ bK < ∞. In the first case, the connected components
of D̃ are Ĩ0 = (−∞,−a−1

1 ), Ĩ1 = (−b−1
1 ,−a−1

2 ), . . . , ĨK = (−b−1
K ,∞). In the second

case, these connected components are Ĩ1, . . . , ĨK . If ν is not compactly supported,
aK < bK = ∞ and the expressions of the connected components of D̃ are unchanged.
With similar notations, the connected components of D are I0, . . . , I eK or I1, . . . , I eK

according to whether inf(supp(ν̃)∩R∗) is positive or not. Let s = inf(supp(µ)∩R∗)
and S = sup(supp(µ)). Following the observations we just made, we notice that
the only possible xIk,eIk̃

(δ̃) ∈ (s, S) such that x′
Ik,eIk̃

(δ̃) > 0 are those for which

1 ≤ k ≤ K, 1 ≤ k̃ ≤ K̃, and (k, k̃) �= (K, K̃). Therefore, the number of intervals of
supp(µ)c ∩ (s, S) is upper bounded by KK̃ − 1, hence the result.

Proposition 3.4. supp(µ) is compact if and only if supp(ν) and supp(ν̃) are
compact.

Proof. The “if” part has been shown by item (3) above. Assume supp(µ) is com-
pact. The fact that supp(ρ) ∩ R∗ = supp(ρ̃) ∩ R∗ = supp(µ) ∩ R∗ and the equation
mν̃(−δ(z)−1) = δ(z) + zδ2(z)δ̃(z) show that mν̃(z) can be analytically extended to
(A,∞) for A large enough, hence the compactness of supp(ν̃). A similar conclusion
holds for supp(ν).

3.5. Properties of the density of µ on R∗

Theorem 3.2. The density f(x) specified in the statement of Theorem 3.1 is ana-
lytic for every x �= 0 for which f(x) > 0.

Proof. As in the proof of Lemma 3.3, we assume that ν is not a Dirac measure. Let
x0 �= 0 be such that f(x0) > 0. We start by showing that δ̃(z) can be analytically
extended from C+ to a neighborhood of x0 in C. Write

γ(x0, x0) = lim
z∈C+→x0

γ(z, z), γ̃(x0, x0) = lim
z∈C+→x0

γ̃(z, z),

Γ(x0, x0) = lim
z∈C+→x0

γ(z, z∗), Γ̃(x0, x0) = lim
z∈C+→x0

γ̃(z, z∗).

Making z ∈ C+ converge to x0 in Eq. (8) and recalling that the integral at the
right-hand side of this equation remains bounded and that �δ̃(x0) > 0, we get that
x2

0Γ(x0, x0)Γ̃(x0, x0) = 1. Any integrable random variable X satisfies |EX | ≤ E|X |,
the equality being achieved if and only if X = θ|X | almost everywhere, where θ is a
modulus one constant. Consequently, |γ(x0, x0)| < Γ(x0, x0) since ν is not a Dirac
measure, and |γ̃(x0, x0)| ≤ Γ̃(x0, x0). Therefore, |x2

0γ(x0, x0)γ̃(x0, x0)| < 1. Now,
since �δ̃(x0) > 0, it is easy to see by inspecting Eq. (4) that the function F (δ̃, z)
which is holomorphic on C2

+ can be analytically extended to a neighborhood of
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(δ̃(x0), x0) in C+ × C∗ where C∗ = C − {0}. Observing that

∂F

∂δ̃
(δ̃(x0), x0) = −1 + x2

0γ(x0, x0)γ̃(x0, x0) �= 0

and invoking the holomorphic implicit function theorem, we get that there exists a
neighborhood V ⊂ C∗ of x0, a neighborhood V ′ ⊂ C+ of δ̃(x0) and a holomorphic
function δ̃ : V → V ′ such that

{(z, δ̃) ∈ V × V ′ : F (δ̃, z) = 0} = {(z, δ̃(z)) : z ∈ V }.
Since δ̃(z) and δ̃(z) coincide on V ∩ C+, the function δ̃(z) is an analytic extension
of δ̃(z) on V .

This result shows in conjunction with Eq. (3) that m(z) can be extended ana-
lytically to V . Therefore, writing m(z) =

∑
�≥0 a�(z − x0)� we get that f(x) =

π−1
∑

�≥0 �a� (x− x0)� near x0.

We now study the behavior of the density f(x) near a boundary point a > 0
of supp(µ). The observations made above show that when a is a left end point
(respectively a right end point) of supp(µ), it is a local supremum (respectively a
local infimum) of one of the functions xI,eI . Paralleling the assumptions made in
[15, 20, 5], we restrict ourselves to the case where a = xI,eI(δ̃a) for some δ̃a ∈
dom(xI,eI). In that case, xI,eI is of course analytical around δ̃a and x′

I,eI(δ̃a) = 0.
Note that this assumption might not be satisfied for some choices of the measures

ν and ν̃. Assuming a > 0 is a left end point of supp(µ), it is for instance possible
that the function xI,eI(δ̃) increases to a as δ̃ ↑ δ̃a with −δ̃

−1

a ∈ ∂ν. We however
note that our assumption is valid when the measures ν and ν̃ are both discrete.

Theorem 3.3. Let I and Ĩ be two connected components of D and D̃ respectively,
and assume that xI,eI reaches a maximum at a point δ̃a ∈ dom(xI,eI). Then
x′′
I,eI(δ̃a) < 0. Furthermore, for ε > 0 small enough, f(x) = H(

√
x− a) on (a, a+ε)

where H(x) is a real analytical function near zero, H(0) = 0, and

H ′(0) =
1
πa

√ −2
x′′
I,eI(δ̃a)

∫
t

(1 + δ̃at)2
ν(dt).

Assume now that xI,eI reaches a minimum at a point δ̃a ∈ dom(xI,eI). Then
x′′
I,eI(δ̃a) > 0. Furthermore, for ε > 0 small enough, f(x) = H(

√
a− x) on (a−ε, a)

where H(x) is a real analytical function near zero, H(0) = 0, and

H ′(0) =
1
πa

√
2

x′′
I,eI(δ̃a)

∫
t

(1 + δ̃at)2
ν(dt).

To prove the theorem, we start with the following lemma which is proven in the
Appendix.
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Lemma 3.7. Assume that either ν or ν̃ is not a Dirac measure. Let (δ̃a, a) with
a �= 0 satisfy

F (δ̃a, a) = 0,
∂F

∂δ̃
(δ̃a, a) = 0

where the function F (δ̃,x) is defined by Eq. (11). Then

∂2F

∂δ̃
2 (δ̃a, a) = 0 ⇒ ∂3F

∂δ̃
3 (δ̃a, a) �= 0.

Proof of Theorem 3.3. We follow the argument of [15]. We first assume that
xI,eI reaches a maximum at δ̃a ∈ Ĩ and prove that x′′

I,eI(δ̃a) < 0. Observe that

xI,eI(δ̃) satisfies F (δ̃,xI,eI(δ̃)) = 0, and that ∂F /∂x =
∫
t(x(1 + δt))−2ν̃(dt) > 0.

By the chain rule for differentiation,

0 =
∂F

∂δ̃
+
∂F

∂x
x′
I,eI(δ̃), 0 =

∂2F

∂δ̃
2 +

(
∂2F

∂x2
+ 2

∂2F

∂δ̃∂x

)
x′
I,eI(δ̃) +

∂F

∂x
x′′
I,eI(δ̃).

If we assume that x′′
I,eI(δ̃a) = 0, then (∂2F /∂δ̃

2
)(δ̃a, a) = 0 and it is furthermore

easy to check that

x(3)(δ̃a) = −∂
3F /∂δ̃

3

∂F /∂x
(δ̃a, a).

By Lemma 3.7, x(3)(δ̃a) �= 0, but this contradicts the fact that the first nonzero
derivative of a function at a local extremum is of even order. Hence x′′

I,eI(δ̃a) < 0.
Equation (12) shows that xI,eI can be analytically extended to a function zI,eI in
a neighborhood of δ̃a in the complex plane. Since x′

I,eI(δ̃a) = 0 and x′′
I,eI(δ̃a) < 0,

we can write zI,eI(δ̃) − a = ϕ(δ̃)2 in this neighborhood where ϕ is an analytical
function satisfying ϕ(δ̃a) = 0 and (ϕ′(δ̃a))2 = x′′

I,eI(δ̃a)/2. We choose ϕ such that

ϕ′(δ̃a) = −ı(−x′′
I,eI(δ̃a)/2)1/2. If we choose x > a such that x − a is small enough,

then zI,eI(δ̃(x))− a = ϕ(δ̃(x))2, and moreover zI,eI(δ̃(x)) = x. Considering the local
inverse Φ of ϕ in a neighborhood of δ̃a, we get that δ̃(x) = Φ(

√
x− a) where the

analytic function Φ satisfies Φ(0) = δ̃a and Φ′(0) = 1/ϕ′(δ̃a) = ı(−2/x′′
I,eI(δ̃a))1/2

(thus the choice of ϕ′(δ̃a) ensures that �δ̃(x) > 0). Using the equation �m(x) =
−x−1

∫�((1 + δ̃(x)t)−1)ν(dt), we get the result. The case where xI,eI reaches a
minimum at δ̃a is treated similarly.

Appendix. Proof of Lemma 3.7

First recall that

∂F

∂δ̃
(δ̃,x) = x2γ(x, δ̃)γ̃(x, δ) − 1 (A.1)

1450016-19



2nd Reading

November 5, 2014 14:10 WSPC/S2010-3263 RMTA 1450016

R. Couillet & W. Hachem

so that a2γaγ̃a = 1, with γa = γ(a, δ̃a), γ̃a = γ̃(a, δa), and

δa = c

∫
t

−a(1 + δ̃at)
ν(dt).

Differentiating (A.1), the equation (∂2F /∂δ̃
2
)(δ̃a, a) = 0 reads

γ̃ac

∫
t3

(1 + δ̃at)3
ν(dt) + aγ2

a

∫
t3

(1 + δat)3
ν̃(dt) = 0 (A.2)

where we used

∂

∂δ̃

(
c

∫
t

−x(1 + δ̃t)
ν(dt)

)
(δ̃a, a) = aγa.

Assume now that (∂3F /∂δ̃
3
)(δ̃a, a) = 0. A second differentiation of (A.1) leads

then to

0 = 2
γa

a
c

∫
t3

(1 + δat)3
ν̃(dt)

∫
t3

(1 + δ̃at)3
ν(dt)

+ γ̃ac

∫
t4

(1 + δ̃at)4
ν(dt) + a2γ3

a

∫
t4

(1 + δat)4
ν̃(dt).

Using a2γaγ̃a = 1, replace now γa/a by 1/(a3γ̃a) in the leftmost term and a2γ3
a

by γ2
a/γ̃a in the rightmost term. Multiplying the result by γ̃a leads to

0 = 2
c

a3

∫
t3

(1 + δat)3
ν̃(dt)

∫
t3

(1 + δ̃at)3
ν(dt)

+ γ̃2
ac

∫
t4

(1 + δ̃at)4
ν(dt) + γ2

a

∫
t4

(1 + δat)4
ν̃(dt). (A.3)

We now use (A.2) and a2γaγ̃a = 1 to write the two equations:

2
c

a3

∫
t3

(1 + δ̃at)3
ν(dt) = − 2

a2

γ2
a

γ̃a

∫
t3

(1 + δat)3
ν̃(dt),

2
c

a3

∫
t3

(1 + δat)3
ν̃(dt) = −2c2

a2

γ̃2
a

γa

∫
t3

(1 + δ̃at)3
ν(dt).
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Replacing the corresponding terms in the leftmost term of (A.3) leads to the two
equations

2
a2

γ2
a

γ̃a

(∫
t3

(1 + δat)3
ν̃(dt)

)2

− γ̃2
ac

∫
t4

(1 + δ̃at)4
ν(dt)

−γ2
a

∫
t4

(1 + δat)4
ν̃(dt) = 0,

2
a2

γ̃2
a

γa

(
c

∫
t3

(1 + δ̃at)3
ν(dt)

)2

− γ̃2
ac

∫
t4

(1 + δ̃at)4
ν(dt)

−γ2
a

∫
t4

(1 + δat)4
ν̃(dt) = 0.

Multiplying each equation by γaγ̃a and averaging then gives:

0 =
1
a2

γ3
a

(∫
t3

(1 + δat)3
ν̃(dt)

)2

+
1
a2

γ̃3
a

(
c

∫
t3

(1 + δ̃at)3
ν(dt)

)2

− γ̃3
aγac

∫
t4

(1 + δ̃at)4
ν(dt) − γ3

aγ̃a

∫
t4

(1 + δat)4
ν̃(dt). (A.4)

Remark now, by expanding the definition of γ̃a that

1
a2

γ3
a

(∫
t3

(1 + δat)3
ν̃(dt)

)2

− γ3
aγ̃a

∫
t4

(1 + δat)4
ν̃(dt)

=
γ3

a

a2

[(∫
t3

(1 + δat)3
ν̃(dt)

)2

−
∫

t2

(1 + δat)2
ν̃(dt)

∫
t4

(1 + δat)4
ν̃(dt)

]
≤ 0

with the inequality arising from Cauchy–Schwarz. The case of equality holds only
if ν̃ is a Dirac measure. Similarly,

1
a2

γ̃3
a

(
c

∫
t3

(1 + δ̃at)3
ν(dt)

)2

− γ̃3
aγac

∫
t4

(1 + δ̃at)4
ν(dt)

=
γ̃3

a

a2

(c∫ t3

(1 + δ̃at)3
ν(dt)

)2

−
(
c

∫
t2

(1 + δ̃at)2
ν(dt)

)(
c

∫
t4

(1 + δ̃at)4
ν(dt)

)]
≤ 0

with equality only if ν is a Dirac measure. Therefore, to ensure (A.4), both ν and
ν̃ must be Dirac measures, which goes against the hypothesis.
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