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Abstract

This article studies two regularized robust estimators of scatter matrices pro-
posed (and proved to be well defined) in parallel in (Chen et al., 2011) and
(Pascal et al., 2013), based on Tyler’s robust M-estimator (Tyler, 1987) and
on Ledoit and Wolf’s shrinkage covariance matrix estimator (Ledoit and Wolf,
2004). These hybrid estimators have the advantage of conveying (i) robustness
to outliers or impulsive samples and (ii) small sample size adequacy to the clas-
sical sample covariance matrix estimator. We consider here the case of i.i.d.
elliptical zero mean samples in the regime where both sample and population
sizes are large. We demonstrate that, under this setting, the estimators under
study asymptotically behave similar to well-understood random matrix models.
This characterization allows us to derive optimal shrinkage strategies to esti-
mate the population scatter matrix, improving significantly upon the empirical
shrinkage method proposed in (Chen et al., 2011).

Keywords: random matrix theory, robust estimation, linear shrinkage.

1. Introduction

Many scientific domains customarily deal with (possibly small) sets of large
dimensional data samples from which statistical inference is performed. This is
in particular the case in financial data analysis where few stationary monthly
observations of numerous stock indexes are used to estimate the joint covari-
ance matrix of the stock returns (Laloux et al., 2000; Ledoit and Wolf, 2003;
Rubio et al., 2012), bioinformatics where clustering of genes is obtained based
on gene sequences sampled from a small population (Schäfer and Strimmer,
2005), computational immunology where correlations among mutations in viral
strains are estimated from sampled viral sequences and used as a basis of novel
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vaccine design (Dahirel et al., 2011; Quadeer et al., 2013), psychology where the
covariance matrix of multiple psychological traits is estimated from data col-
lected on a group of tested individuals (Steiger, 1980), or electrical engineering
at large where signal samples extracted from a possibly short time window are
used to retrieve parameters of the signal (Scharf, 1991). In many such cases,
the number n of independent data samples x1, . . . , xn ∈ CN (or RN ) may not
be large compared to the size N of the population, suggesting that the empir-
ical sample covariance matrix C̄N = 1

n

∑n
i=1(xi − x̄)(xi − x̄)∗, x̄ = 1

n

∑n
i=1 xi,

is a poor estimate for CN = E[(x1 − E[x1])(x1 − E[x1])∗]. Several solutions
have been proposed to work around this problem. If the end application is not
to retrieve CN but some metric of it, recent works on random matrix theory
showed that replacing CN in the metric by C̄N often leads to a biased esti-
mate of the metric (Mestre, 2008b), but that this estimate can be corrected by
an improved estimation of the metric itself via the samples x1, . . . , xn (Mestre,
2008a). However, when the object under interest is CN itself and N ' n, there
is little hope to retrieve any consistent estimate of CN . A popular alternative
proposed originally in (Ledoit and Wolf, 2004) is to “shrink” C̄N , i.e., consider
instead C̄N (ρ) = (1 − ρ)C̄N + ρIN for an appropriate ρ ∈ [0, 1] that minimizes
the average distance E[tr((C̄N (ρ) − CN )2)]. The interest of ρ here is to give
more or less weight to C̄N depending on the relevance of the n samples, so that
in particular ρ is better chosen close to zero when n is large and close to one
when n is small.

In addition to the problem of scarcity of samples, it is often the case that
outliers are present among the set of samples. These outliers may arise from
erroneous or inconsistent data (e.g., individuals under psychological or biolog-
ical tests incorrectly identified to fit the test pattern), or from the corruption
of some samples by external events (e.g., interference by ambient electromag-
netic noise in signal processing). These outliers, if not correctly handled, may
further corrupt the statistical inference and in particular the estimation of CN .
The field of robust estimation intends to deal with this problem (Huber, 1981;
Maronna et al., 2006) by proposing estimators that have the joint capability
to naturally attenuate the effect of outliers (Huber, 1964) as well as to appro-
priately handle samples of an impulsive nature (Tyler, 1987), e.g., elliptically
distributed data. A common denominator of such estimators is their belong-
ing to the class of M-estimators, therefore taking the form of the solution to
an implicit equation. This poses important problems of analysis in small N,n
dimensions, resulting mostly in only asymptotic results in the regime N fixed
and n → ∞ (Maronna, 1976; Kent and Tyler, 1991). This regime is however
inconsistent with the present scenario of scarce data where N ' n. Nonethe-
less, recent works based on random matrix theory have shown that a certain
family of such robust covariance matrix estimators asymptotically behave as
N,n → ∞ and N/n → c ∈ (0, 1) similar to classical random matrices taking
(almost) explicit forms. Such observations were made for the class of Maronna’s
M-estimators of scatter (Maronna, 1976) for sample vectors whose independent
entries can contain outliers (Couillet et al., 2013a) and for elliptically distributed
samples (Couillet et al., 2013b), as well as for Tyler’s M-estimator (Tyler, 1987)
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in (Zhang et al., 2014).
In this article, we study two hybrid robust shrinkage covariance matrix esti-

mates ĈN (ρ) (hereafter referred to as the Abramovich–Pascal estimate) and
ČN (ρ) (hereafter referred to as the Chen estimate) proposed in parallel in
(Abramovich and Spencer, 2007; Pascal et al., 2013)1 and in (Chen et al., 2011),
respectively. Both matrices, whose definition is introduced in Section 2 below,
are empirically built upon Tyler’s M-estimate (Tyler, 1987) originally designed
to cope with elliptical samples whose distribution is unknown to the experi-
menter and upon the Ledoit–Wolf shrinkage estimator (Ledoit and Wolf, 2004).
This allows for an improved degree of freedom for approximating the popula-
tion covariance matrix and importantly allows for N > n, which Maronna’s
and Tyler’s estimators do not. In (Pascal et al., 2013) and (Chen et al., 2011),
ĈN (ρ) and ČN (ρ) were proved to be well-defined as the unique solutions to
their defining fixed-point matrices. However, little is known of their perfor-
mance as estimators of CN in the regime N ' n of interest here. Some progress
in this direction was made in (Chen et al., 2011) but this work does not man-
age to solve the optimal shrinkage problem consisting of finding ρ such that
E[tr((ČN (ρ)−CN )2)] is minimized and resorts to solving an approximate prob-
lem instead.

The present article studies the matrices ĈN (ρ) and ČN (ρ) from a random
matrix approach, i.e., in the regime where N,n → ∞ with N/n → c ∈ (0,∞),
and under the assumption of the absence of outliers. Our main results are as
follows:

• we show that, under the aforementioned setting, both ĈN (ρ) and ČN (ρ)
asymptotically behave similar to well-known random matrix models and
prove in particular that both have a well-identified limiting spectral dis-
tribution;

• we prove that, up to a change in the variable ρ, the matrices ČN (ρ) and
ĈN (ρ)/( 1

N tr ĈN (ρ)) are essentially the same for N,n large, implying that
both achieve the same optimal shrinkage performance;

• we determine the optimal shrinkage parameters ρ̂? and ρ̌? that mini-
mize the almost sure limits limN

1
N tr[(ĈN (ρ)/( 1

N tr ĈN (ρ)) − CN )]2 and

limN
1
N tr[(ČN (ρ) − CN )]2, respectively, both limits being the same. We

then propose consistent estimates ρ̂N and ρ̌N for ρ̂? and ρ̌? which achieve
the same limiting performance. We finally show by simulations that a sig-
nificant gain is obtained using ρ̂? (or ρ̂N ) and ρ̌? (or ρ̌N ) compared to the
solution ρ̌O of the approximate problem developed in (Chen et al., 2011).

In practice, these results allow for a proper use of ĈN (ρ) and ČN (ρ) in anticipa-
tion of the absence of outliers. In the presence of outliers, it is then expected that

1To the authors’ knowledge, the first instance of the estimator dates back to (Abramovich

and Spencer, 2007) although the non-obvious proof of ĈN (ρ) being well-defined is only found
later in (Pascal et al., 2013).
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both Abramovich–Pascal and Chen estimates will exhibit robustness properties
that their asymptotic random matrix equivalents will not. Note in particular
that, although ĈN (ρ) and ČN (ρ) are shown to be asymptotically equivalent in
the absence of outliers, it is not clear at this point whether one of the two es-
timates will show better performance in the presence of outliers. The study of
this interesting scenario is left to future work.

The remainder of the article is structured as follows. In Section 2, we in-
troduce our main results on the large N,n behavior of the matrices ĈN (ρ) and
ČN (ρ). In Section 3, we develop the optimal shrinkage analysis, providing in
particular asymptotically optimal empirical shrinkage strategies. Concluding
remarks are provided in Section 4. All proofs of the results of Section 2 and
Section 3 are then presented in Section 5.

General notations: The superscript (·)∗ stands for Hermitian transpose in
the complex case or transpose in the real case. The notation ‖ · ‖ stands for
the spectral norm for matrices and the Euclidean norm for vectors. The Dirac
measure at point x is denoted δx. The ordered eigenvalues of a Hermitian (or
symmetric) matrixX of sizeN×N are denoted λ1(X) ≤ . . . ≤ λN (X). For ` > 0
and a positive and positively supported measure ν, we define Mν,` =

∫
t`ν(dt)

(may be infinite). The arrow “
a.s.−→” designates almost sure convergence. The

statement X , Y defines the new notation X as being equal to Y .

2. Main results

We start by introducing the main assumptions of the data model under
study. We consider n sample vectors x1, . . . , xn ∈ CN (or RN ) having the
following characteristics.

Assumption 1 (Growth rate). Denoting cN = N/n, cN → c ∈ (0,∞) as
N →∞.

Assumption 2 (Population model). The vectors x1, . . . , xn ∈ CN (or RN )
are independent with

a. xi =
√
τ iANyi, where yi ∈ CN̄ (or RN̄ ), N̄ ≥ N , is a random zero

mean unitarily (or orthogonally) invariant vector with norm ‖yi‖2 = N̄ ,
AN ∈ CN×N̄ is deterministic, and τ1, . . . , τn is a collection of positive
scalars. We shall denote zi = ANyi.

b. CN , ANA
∗
N is nonnegative definite, with trace 1

N trCN = 1 and spectral
norm satisfying lim supN ‖CN‖ <∞.

c. νN , 1
N

∑N
i=1 δλi(CN ) satisfies νN → ν weakly with ν 6= δ0 almost every-

where.

Since all considerations to come are equally valid over C or R, we will con-
sider by default that x1, . . . , xn ∈ CN . As the analysis will show, the positive
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scalars τi have no impact on the robust covariance estimates; with this defini-
tion, the distribution of the vectors xi contains in particular the class of elliptical
distributions. Note that the assumption that yi is zero mean unitarily invariant
with norm N̄ is equivalent to saying that yi =

√
N̄ ỹi
‖ỹi‖ with ỹi ∈ CN̄ standard

Gaussian. This, along with AN ∈ CN×N̄ and lim supN ‖CN‖ < ∞, implies in
particular that ‖xi‖2 is of order N . The assumption that ν 6= δ0 almost every-
where avoids the degenerate scenario where an overwhelming majority of the
eigenvalues of CN tend to zero, whose practical interest is quite limited. Fi-
nally note that the constraint 1

N trCN = 1 is inconsequential and in fact defines
uniquely both terms in the product τiCN .

The following two theorems introduce the robust shrinkage estimators ĈN (ρ)
and ČN (ρ), and constitute the main technical results of this article.

Theorem 1 (Abramovich–Pascal Estimate). Let Assumptions 1 and 2 hold.
For ε ∈ (0,min{1, c−1}), define R̂ε = [ε + max{0, 1 − c−1}, 1]. For each
ρ ∈ (max{0, 1− c−1

N }, 1], let ĈN (ρ) be the unique solution to

ĈN (ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
N x
∗
i ĈN (ρ)−1xi

+ ρIN .

Then, as N →∞,

sup
ρ∈R̂ε

∥∥∥ĈN (ρ)− ŜN (ρ)
∥∥∥ a.s.−→ 0

where

ŜN (ρ) =
1

γ̂(ρ)

1− ρ
1− (1− ρ)c

1

n

n∑
i=1

ziz
∗
i + ρIN

and γ̂(ρ) is the unique positive solution to the equation in γ̂

1 =

∫
t

γ̂ρ+ (1− ρ)t
ν(dt).

Moreover, the function ρ 7→ γ̂(ρ) thus defined is continuous on (0, 1].

Proof. The proof is deferred to Section 5.1.

Theorem 2 (Chen Estimate). Let Assumptions 1 and 2 hold. For ε ∈ (0, 1),
define Řε = [ε, 1]. For each ρ ∈ (0, 1], let ČN (ρ) be the unique solution to

ČN (ρ) =
B̌N (ρ)

1
N tr B̌N (ρ)

where

B̌N (ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
N x
∗
i ČN (ρ)−1xi

+ ρIN .
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Then, as N →∞,

sup
ρ∈Řε

∥∥ČN (ρ)− ŠN (ρ)
∥∥ a.s.−→ 0

where

ŠN (ρ) =
1− ρ

1− ρ+ Tρ

1

n

n∑
i=1

ziz
∗
i +

Tρ
1− ρ+ Tρ

IN

in which Tρ = ργ̌(ρ)F (γ̌(ρ); ρ) with, for all x > 0,

F (x; ρ) =
1

2
(ρ− c(1− ρ)) +

√
1

4
(ρ− c(1− ρ))

2
+ (1− ρ)

1

x

and γ̌(ρ) is the unique positive solution to the equation in γ̌

1 =

∫
t

γ̌ρ+ 1−ρ
(1−ρ)c+F (γ̌;ρ) t

ν(dt).

Moreover, the function ρ 7→ γ̌(ρ) thus defined is continuous on (0, 1].

Proof. The proof is deferred to Section 5.2.

Theorem 1 and Theorem 2 show that, as N,n → ∞ with N/n → c, the
matrices ĈN (ρ) and ČN (ρ), defined as the non-trivial solution of fixed-point
equations, behave similar to matrices ŜN (ρ) and ŠN (ρ), respectively, whose
characterization is well-known and much simpler than that of ĈN (ρ) and ČN (ρ)
themselves. Indeed, ŜN (ρ) and ŠN (ρ) are random matrices of the sample co-
variance matrix type thoroughly studied in e.g., (Marc̆enko and Pastur, 1967;
Silverstein and Bai, 1995; Silverstein and Choi, 1995).

Note that these results are similar in statement to the results of (Couillet
et al., 2013a,b) for robust estimators of the Maronna-type. Technically speaking,
the proof of both Theorem 1 and Theorem 2 unfold from the same technique
as produced in these articles. However, while the proof of Theorem 1 comes
with no major additional difficulty compared to these works, due to the scale
normalization imposed in the definition of ČN (ρ), the proof of Theorem 2 re-
quires a more elaborate approach than used in (Couillet et al., 2013b). Another
difference to previous works lies here in that, unlike Maronna’s estimator that
only attenuates the effect of the scale parameters τi, the proposed Tyler-based
estimators discard this effect altogether. Also, the technical study of Maronna’s
estimator can be made under the assumption that CN = IN (from a natural
variable change) while here, because of the regularization term ρIN , CN does
intervene in an intricate manner in the results.

As a side remark, it is shown in (Pascal et al., 2013) that for each N,n fixed
with n ≥ N + 1, ĈN (ρ)→ ĈN (0) as ρ→ 0 with ĈN (0) defined (almost surely)
as one of the (uncountably many) solutions to

ĈN (0) =
1

n

n∑
i=1

xix
∗
i

1
N x
∗
i ĈN (0)−1xi

. (1)
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In the regime where N,n→∞ and N/n→ c, this result is difficult to generalize
as it is challenging to handle the limit ‖ĈN (ρN ) − ŜN (ρN )‖ for a sequence
{ρN}∞N=1 with ρN → 0. The requirement that ρN → ρ0 > 0 on any such
sequence is indeed at the core of the proof of Theorem 1 (see Equations (5) and
(6) in Section 5.1 where ρ0 > 0 is necessary to ensure e+ < 1). This explains
why the set R̂ε in Theorem 1 excludes the region [0, ε). Similar arguments hold
for ČN (ρ). As a matter of fact, the behavior of any solution ĈN (0) to (1) in the
large N,n regime, recently derived in (Zhang et al., 2014), remains difficult to
handle with our proof technique.

An immediate consequence of Theorem 1 and Theorem 2 is that the empirical
spectral distributions of ĈN (ρ) and ČN (ρ) converge to the well-known respective
limiting distributions of ŜN (ρ) and ŠN (ρ), characterized in the following result.

Corollary 1 (Limiting spectral distribution). Under the settings of The-
orem 1 and Theorem 2,

1

N

N∑
i=1

δλi(ĈN (ρ))

a.s.−→ µ̂ρ, ρ ∈ R̂ε

1

N

N∑
i=1

δλi(ČN (ρ))
a.s.−→ µ̌ρ, ρ ∈ Řε

where the convergence arrow is understood as the weak convergence of probability
measures, for almost every sequence {x1, . . . , xn}∞n=1, and where

µ̂ρ = max{0, 1− c−1}δρ + µ̂
ρ

µ̌ρ = max{0, 1− c−1}δ Tρ
1−ρ+Tρ

+ µ̌
ρ

with µ̂
ρ

and µ̌
ρ

continuous finite measures with compact support in [ρ,∞) and

[Tρ(1−ρ+Tρ)
−1,∞) respectively, real analytic wherever their density is positive.

The measure µ̂ρ is the only measure with Stieltjes transform mµ̂ρ(z) defined, for
z ∈ C with =[z] > 0, as

mµ̂ρ(z) = γ̂
1− (1− ρ)c

1− ρ

∫
1

ẑ(ρ) + t
1+cδ̂(z)

ν(dt)

where ẑ(ρ) = (ρ − z)γ̂(ρ) 1−(1−ρ)c
1−ρ and δ̂(z) is the unique solution with positive

imaginary part of the equation in δ̂

δ̂ =

∫
t

ẑ(ρ) + t
1+cδ̂

ν(dt).

The measure µ̌ρ is the only measure with Stieltjes transform mµ̌ρ(z) defined, for
=[z] > 0 as

mµ̌ρ(z) =
1− ρ+ Tρ

1− ρ

∫
1

ž(ρ) + t
1+cδ̌(z)

ν(dt)
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with ž(ρ) = 1
1−ρTρ(1−z)−z and δ̌(z) the unique solution with positive imaginary

part of the equation in δ̌

δ̌ =

∫
t

ž(ρ) + t
1+cδ̌

ν(dt).

Proof. This is an immediate application of (Silverstein and Bai, 1995; Silver-
stein and Choi, 1995) and Theorems 1 and 2.
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Figure 1: Histogram of the eigenvalues of ĈN (Abramovich–Pascal type) for n = 2048, N =
256, CN = 1

3
diag(I128, 5I128), ρ = 0.2, versus limiting eigenvalue distribution.

From Corollary 1, µ̂ρ is continuous on (ρ,∞) so that µ̂ρ(dx) = p̂ρ(x)dx
where, from the inverse Stieltjes transform formula (see e.g., (Bai and Silver-
stein, 2009)) for all x ∈ (ρ,∞),

p̂ρ(x) = lim
ε→0

1

π
=
[
mµ̂ρ(x+ ıε)

]
.

Letting ε > 0 small and approximating p̂ρ(x) by 1
π=[mµ̂ρ(x+ ıε)] allows one to

depict p̂ρ approximately. Similarly, µ̌ρ(dx) = p̌ρ(x)dx for all x ∈ (Tρ(1 − ρ +
Tρ)
−1,∞) which can be obtained equivalently. This is performed in Figure 1

and Figure 2 which depict the histogram of the eigenvalues of ĈN (ρ) and ČN (ρ)
for ρ = 0.2, N = 256, n = 2048, CN = diag(I128, 5I128), versus their limiting
distributions for c = 1/8. Figure 3 depicts ČN (ρ) for ρ = 0.8, N = 1024,
n = 512, CN = diag(I128, 5I128) versus its limiting distribution for c = 2. Note
that, when c = 1/8, the eigenvalues of ČN (ρ) concentrate in two bulks close to
1/3 and 5/3, as expected. Due to the different trace normalization of ĈN (ρ),
the same reasoning holds up to a multiplicative constant. However, when c = 2,
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Figure 2: Histogram of the eigenvalues of ČN (Chen type) for n = 2048, N = 256, CN =
1
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diag(I128, 5I128), ρ = 0.2, versus limiting eigenvalue distribution.
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Figure 3: Histogram of the eigenvalues of ČN (Chen type) for n = 512, N = 1024, CN =
1
3

diag(I128, 5I128), ρ = 0.8, versus limiting eigenvalue distribution.

the eigenvalues of ČN (ρ) are quite remote from masses in 1/3 and 5/3, an
observation known since (Marc̆enko and Pastur, 1967).

Another corollary of Theorem 1 and Theorem 2 is the joint convergence (over
both ρ and the eigenvalue index) of the individual eigenvalues of ĈN (ρ) to those
of ŜN (ρ) and of the individual eigenvalues of ČN (ρ) to those of ŠN (ρ), as well as
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the joint convergence over ρ of the moments of the empirical spectral distribu-
tions of ĈN (ρ) and ČN (ρ). These joint convergence properties are fundamental
in problems of optimization of the parameter ρ as discussed in Section 3.

Corollary 2 (Joint convergence properties). Under the settings of Theo-
rem 1 and Theorem 2,

sup
ρ∈R̂ε

max
1≤i≤n

∣∣∣λi(ĈN (ρ))− λi(ŜN (ρ))
∣∣∣ a.s.−→ 0

sup
ρ∈Řε

max
1≤i≤n

∣∣λi(ČN (ρ))− λi(ŠN (ρ))
∣∣ a.s.−→ 0.

This result implies

lim sup
N

sup
ρ∈R̂ε

‖ĈN (ρ)‖ <∞

lim sup
N

sup
ρ∈Řε

‖ČN (ρ)‖ <∞.

almost surely. This, and the weak convergence of Corollary 1, in turn induce
that, for each ` ∈ N,

sup
ρ∈R̂ε

∣∣∣∣ 1

N
tr
(
ĈN (ρ)`

)
−Mµ̂ρ,`

∣∣∣∣ a.s.−→ 0

sup
ρ∈Řε

∣∣∣∣ 1

N
tr
(
ČN (ρ)`

)
−Mµ̌ρ,`

∣∣∣∣ a.s.−→ 0

where we recall that Mµ,` =
∫
t`µ(dt) ∈ (0,∞] for any probability measure µ

with support in R+; in particular, Mµ̂ρ,1 = 1
γ̂(ρ)

1−ρ
1−(1−ρ)c + ρ and Mµ̌ρ,1 = 1.

Proof. The proof is provided in Section 5.3.

3. Application to optimal shrinkage

We now apply Theorems 1 and 2 to the problem of optimal linear shrinkage,
originally considered in (Ledoit and Wolf, 2004) for the simpler sample covari-
ance matrix model. The optimal linear shrinkage problem consists in choosing
ρ to be such that a certain distance metric between ĈN (ρ) (or ČN (ρ)) and CN
is minimized, therefore allowing for a more appropriate estimation of CN via
ĈN (ρ) or ČN (ρ). The metric selected here is the squared Frobenius norm of
the difference between the (possibly scaled) robust estimators and CN , which
has the advantage of being a widespread matrix distance (e.g., as considered
in (Ledoit and Wolf, 2004)) and a metric amenable to mathematical analysis.2

2Alternative metrics (such as the geodesic distance on the cone of nonnegative definite
matrices) can be similarly considered. The appropriate choice of such a metric heavily depends
on the ultimate problem to optimize.
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In (Chen et al., 2011), the authors studied this problem in the specific case of
ČN (ρ) but did not find an expression for the optimal theoretical ρ due to the
involved structure of ČN (ρ) for all finite N,n and therefore resorted to solving
an approximate problem, the solution of which is denoted here ρ̌O. Instead, we
show that for large N,n values the optimal ρ under study converges to a limiting
value ρ̌? that takes an extremely simple explicit expression and a similar result
holds for ĈN (ρ) for which an equivalent optimal ρ̂? is defined.

Our first result is a lemma of fundamental importance which demonstrates
that, up to a change in the variable ρ, ŜN (ρ)/Mµ̂ρ,1 and ŠN (ρ) (constructed from
the samples x1, . . . , xn) are completely equivalent to the original Ledoit–Wolf
linear shrinkage model for the (non observable) samples z1, . . . , zn.

Lemma 1 (Model Equivalence). For each ρ ∈ (0, 1], there exist unique ρ̂ ∈
(max{0, 1− c−1}, 1] and ρ̌ ∈ (0, 1] such that

ŜN (ρ̂)

Mµ̂ρ̂,1
= ŠN (ρ̌) = (1− ρ)

1

n

n∑
i=1

ziz
∗
i + ρIN .

Besides, the maps (0, 1]→ (max{0, 1−c−1}, 1], ρ 7→ ρ̂ and (0, 1]→ (0, 1], ρ 7→ ρ̌
thus defined are continuously increasing and onto.

Proof. The proof is provided in Section 5.4.

Along with Theorem 1 and Theorem 2, Lemma 1 indicates that, up to a
change in the variable ρ, ĈN (ρ) and ČN (ρ) can be somewhat viewed as asymp-
totically equivalent (but there is no saying whether they can be claimed equiv-
alent for all finite N,n). As such, thanks to Lemma 1, we now show that the
optimal shrinkage parameters ρ for both ĈN (ρ)/( 1

N tr ĈN (ρ)) and ČN (ρ) lead
to the same asymptotic performance, which corresponds to the asymptotically
optimal Ledoit–Wolf linear shrinkage performance but for the vectors z1, . . . , zn.

Proposition 1 (Optimal Shrinkage). For each ρ ∈ (0, 1], define3

D̂N (ρ) =
1

N
tr

( ĈN (ρ)
1
N tr ĈN (ρ)

− CN

)2


ĎN (ρ) =
1

N
tr
((
ČN (ρ)− CN

)2)
.

Also denote D? = c
Mν,2−1
c+Mν,2−1 , ρ? = c

c+Mν,2−1 , and ρ̂? ∈ (max{0, 1 − c−1}, 1],

ρ̌? ∈ (0, 1] the unique solutions to

ρ̂?

1
γ̂(ρ̂?)

1−ρ̂?
1−(1−ρ̂?)c + ρ̂?

=
Tρ̌?

1− ρ̌? + Tρ̌?
= ρ?.

3Recall that, for A Hermitian, 1
N

tr(A2) = 1
N

tr(AA∗) = 1
N
‖A‖2F with ‖ ·‖F the Frobenius

norm for matrices.
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Then, letting ε < min(ρ̂?−max{0, 1− c−1}, ρ̌?), under the setting of Theorem 1
and Theorem 2,

inf
ρ∈R̂ε

D̂N (ρ)
a.s.−→ D?, inf

ρ∈Řε
ĎN (ρ)

a.s.−→ D?

and

D̂N (ρ̂?)
a.s.−→ D?, ĎN (ρ̌?)

a.s.−→ D?.

Moreover, letting ρ̂N and ρ̌N be random variables such that ρ̂N
a.s.−→ ρ̂? and

ρ̌N
a.s.−→ ρ̌?,

D̂N (ρ̂N )
a.s.−→ D?, ĎN (ρ̌N )

a.s.−→ D?.

Proof. The proof is provided in Section 5.5.

The last part of Proposition 1 states that, if consistent estimates ρ̂N and
ρ̌N of ρ̂? and ρ̌? exist, then they have optimal shrinkage performance in the
large N,n limit. Such estimates may of course be defined in multiple ways. We
present below a simple example based on ĈN (ρ) and ČN (ρ).

Proposition 2 (Optimal Shrinkage Estimate). Under the setting of Propo-
sition 1, let ρ̂N ∈ (max{0, 1 − c−1}, 1] and ρ̌N ∈ (0, 1] be solutions (not neces-
sarily unique) to

ρ̂N
1
N tr ĈN (ρ̂N )

=
cN

1
N tr

[(
1
n

∑n
i=1

xix∗i
1
N ‖xi‖2

)2
]
− 1

ρ̌N
1
n

∑n
i=1

x∗i ČN (ρ̌N )−1xi
‖xi‖2

1− ρ̌N + ρ̌N
1
n

∑n
i=1

x∗i ČN (ρ̌N )−1xi
‖xi‖2

=
cN

1
N tr

[(
1
n

∑n
i=1

xix∗i
1
N ‖xi‖2

)2
]
− 1

defined arbitrarily when no such solutions exist. Then ρ̂N
a.s.−→ ρ̂? and ρ̌N

a.s.−→ ρ̌?,
so that D̂N (ρ̂N )

a.s.−→ D? and ĎN (ρ̌N )
a.s.−→ D?.

Proof. The proof is deferred to Section 5.6.

Figure 4 illustrates the performance in terms of the metric ĎN of the em-
pirical shrinkage coefficient ρ̌N introduced in Proposition 2 versus the optimal
value infρ∈(0,1]{ĎN (ρ)}, averaged over 10 000 Monte Carlo simulations. We

also present in this graph the almost sure limiting value D? of both ĎN (ρ̌N )
and infρ∈Řε{ĎN (ρ)} for some sufficiently small ε, as well as ĎN (ρ̌O) of ρ̌O
defined in (Chen et al., 2011, Equation (12)) as the minimizing solution of
E[ 1

N tr(ČO(ρ)− CN )2] with ČO(ρ) the so-called “clairvoyant estimator”

ČO(ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
N x
∗
iC
−1
N xi

+ ρIN .
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We consider in this graph N = 32 constant, n ∈ {2k, k = 1, . . . , 7}, and CN =
[CN ]Ni,j=1 with [CN ]ij = r|i−j|, r = 0.7, which is the same setting as considered
in (Chen et al., 2011, Section 4).

It appears in Figure 4 that a significant improvement is brought by ρ̌N over
ρ̌O, especially for small n, which translates the poor quality of ČO(ρ) as an
approximation of ČN (ρ) for large values of cN (obviously linked to 1

N x
∗
iC
−1
N xi

being then a bad approximation for 1
N x
∗
i ČN (ρ)−1xi). Another important re-

mark is that, even for so small values of N,n, infρ∈(0,1] ĎN (ρ) is extremely close
to the limiting optimal, suggesting here that the limiting results of Proposition 1
are already met for small practical values. The approximation ρ̌N of ρ̌?, trans-
lated here through ĎN (ρ̌N ), also demonstrates good practical performance at
small values of N,n.

We additionally mention that we produced similar curves for ĈN (ρ) in place
of ČN (ρ) which happened to show virtually the same performance as the equiv-
alents curves for ČN (ρ). This is of course expected (with exact match) for
infρ∈(0,1] D̂N (ρ) which, up to the region [0, ε), matches infρ∈(0,1] ĎN (ρ) for large

enough N,n, and similarly for D̂N (ρ̂N ) since ρ̂N was designed symmetrically to
ρ̌N .

Associated to Figure 4 is Figure 5 which provides the shrinkage parameter
values, optimal and approximated, for both the Abramovich–Pascal and Chen
estimates, along with the clairvoyant ρ̌O of (Chen et al., 2011). Recall that the

(̂·) values must only be compared to one another, and similarly for the (̌·) values
(so in particular ρ̌O only compares against the (̌·) values). It appears here that
ρ̌O is a rather poor estimate for argminρ∈(0,1] ĎN (ρ) for a large range of values
of n. It tends in particular to systematically overestimate the weight to be put
on the sample covariance matrix.

4. Concluding remarks

The article shows that, in the large dimensional random matrix regime,
the Abramovich–Pascal and Chen estimators for elliptical samples x1, . . . , xn
are (up to a variable change) asymptotically equivalent, so that both can be
used interchangeably. They are also equivalent to the classical Ledoit–Wolf
estimator for the samples z1, . . . , zn or, as can be easily verified, for the samples√
Nx1/‖x1‖, . . . ,

√
Nxn/‖xn‖. This means that for elliptical samples, at least

as far as first order convergence is concerned, the Abramovich–Pascal and Chen
estimators perform similar to a normalized version of Ledoit–Wolf.

Recalling that robust estimation theory aims in particular at handling sam-
ple sets corrupted by outliers, the performance of the Abramovich–Pascal and
Chen estimators given in this paper (not considering outliers) can be seen as
a base reference for the “clean data” scenario which paves the way for future
work in more advanced scenarios. In the presence of outliers, it is expected that
the Abramovich–Pascal and Chen estimates exhibit robustness properties that
the normalized Ledoit–Wolf scheme does not possess by appropriately weight-
ing good versus outlying data. The study of this scenario is currently under

13
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Figure 4: Performance of optimal shrinkage averaged over 10 000 Monte Carlo simulations,
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14



investigation. Also, the extension of this work to second order analysis, e.g., to
central limit theorems on linear statistics of the robust estimators, is a direction
of future work that will allow to handle more precisely the gain of robust versus
non-robust schemes in the not-too-large dimensional regime.

In terms of applications, Proposition 2 allows for the design of covariance ma-
trix estimators, with minimal Frobenius distance to the population covariance
matrix for impulsive i.i.d. samples but in the absence of outliers, and having
robustness properties in the presence of outliers. This is fundamental to those
scientific fields where the covariance matrix is the object of central interest.
More generally though, Theorems 1 and 2 can be used to design optimal covari-
ance matrix estimators under other metrics than the Frobenius norm. This is
in particular the case in applications to finance where a possible target consists
in the minimization of the risk induced by portfolios built upon such covariance
matrix estimates, see e.g., (Ledoit and Wolf, 2003; Rubio et al., 2012; Yu et al.,
2013). The possibility to let the number of samples be less than the population
size (as opposed to robust estimators of the Maronna-type (Maronna, 1976)) is
also of interest to applications where optimal shrinkage is not a target but where
robustness is fundamental, such as array processing with impulsive noise (e.g.,
multi-antenna radar) where direction-of-arrival estimates are sought for (see
e.g., (Mestre and Lagunas, 2008; Couillet et al., 2013a)). These considerations
are also left to future work.

5. Proofs

This section successively introduces the proofs of Theorem 1, Theorem 2,
Corollary 2, Lemma 1, Proposition 1, and Proposition 2. The methodology of
proof of Theorem 1 closely follows that of (Couillet et al., 2013b). The proof
of Theorem 2 also relies on the same ideas but is more technical due to the
imposed normalization of ČN (ρ) to be of trace N . The proofs of the corollary,
lemma, and propositions then rely mostly on the important joint convergence
over ρ proved in Theorem 1 and Theorem 2, and on standard manipulations of
random matrix theory and fixed-point equation analysis.

5.1. Proof of Theorem 1

The proof of existence and uniqueness of ĈN (ρ) is given in (Pascal et al.,
2013).

The existence and uniqueness of γ̂(ρ) is quite immediate as the right-hand
side integral in the definition of γ̂(ρ) is a decreasing function of γ̂ (since ρ > 0)
with limits 1/(1 − ρ) > 1 as γ̂ → 0 (since ν 6= δ0 almost everywhere) and zero
as γ̂ → ∞. We now prove the continuity of γ̂ on (0, 1]. Let ρ0, ρ ∈ (0, 1] and
γ̂0 = γ̂(ρ0), γ̂ = γ̂(ρ). Then∫

t

γ̂ρ+ (1− ρ)t
ν(dt)−

∫
t

γ̂0ρ0 + (1− ρ0)t
ν(dt) = 0.
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Setting the difference into a common integral and isolating the term γ̂0− γ̂, this
becomes, after some calculus,

(γ̂0 − γ̂)ρ0 = −γ̂(ρ0 − ρ) + (ρ− ρ0)

∫
t2

(γ̂ρ+(1−ρ)t)(γ̂0ρ0+(1−ρ0)t)ν(dt)∫
t

(γ̂ρ+(1−ρ)t)(γ̂0ρ0+(1−ρ0)t)ν(dt)
.

Since the support of ν is bounded by lim supN ‖CN‖ < ∞ and in particular
γ̂(ρ) ≤ ρ−1 lim supN ‖CN‖ by definition of γ̂, the ratio of integrals above is
uniformly bounded on ρ in a certain small neighborhood of ρ0 > 0. Taking the
limit ρ→ ρ0 then brings γ̂0 − γ̂ → 0, which proves the continuity.

From now on, for readability, we discard all unnecessary indices ρ when no
confusion is possible.

Note first that xi can be equivalently replaced by zi from the definition of
ĈN (ρ) which is independent of τ1, . . . , τn. Consider ρ ∈ R̂ε fixed and assume
ĈN exists for all N on the realization {z1, . . . , zn}∞n=1 (a probability one event).
We start by rewriting ĈN in a more convenient form. Denoting Ĉ(i) , ĈN −
(1− ρ) 1

n
ziz
∗
i

1
N z
∗
i Ĉ
−1
N zi

and using (A+ tvv∗)−1v = A−1v/(1 + tv∗A−1v) for positive

definite Hermitian A, vector v, and scalar t > 0, we have

1

N
z∗i Ĉ

−1
N zi =

1
N z
∗
i Ĉ
−1
(i) zi

1 + (1− ρ)c
1
N z
∗
i Ĉ
−1
(i)
zi

1
N z
∗
i Ĉ
−1
N zi

so that

1

N
z∗i Ĉ

−1
N zi = (1− (1− ρ)cN )

1

N
z∗i Ĉ

−1
(i) zi

and we can rewrite ĈN as

ĈN =
1− ρ

1− (1− ρ)cN

1

n

n∑
i=1

ziz
∗
i

1
N z
∗
i Ĉ
−1
(i) zi

+ ρIN .

The interest of this rewriting is detailed in (Couillet et al., 2013b) and mostly
lies in the intuition that 1

N z
∗
i Ĉ
−1
(i) zi should be close to 1

N tr(Ĉ−1
N ) for all i, while

1
N z
∗
i Ĉ
−1
N zi is a priori more involved.

To proceed with the proof, for i ∈ {1, . . . , n}, denote d̂i(ρ) , 1
N z
∗
i Ĉ
−1
(i) zi and,

up to relabeling, assume d̂1(ρ) ≤ . . . ≤ d̂n(ρ). Then, usingA � B ⇒ B−1 � A−1

for positive Hermitian matrices A,B,

d̂n(ρ) =
1

N
z∗n

(
1− ρ

1− (1− ρ)cN

1

n

n−1∑
i=1

ziz
∗
i

d̂i(ρ)
+ ρIN

)−1

zn

≤ 1

N
z∗n

(
1− ρ

1− (1− ρ)cN

1

n

n−1∑
i=1

ziz
∗
i

d̂n(ρ)
+ ρIN

)−1

zn.
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Since zn 6= 0, this implies

1 ≤ 1

N
z∗n

(
1− ρ

1− (1− ρ)cN

1

n

n−1∑
i=1

ziz
∗
i + d̂n(ρ)ρIN

)−1

zn. (2)

Similarly, with the same derivations, but with opposite inequalities

1 ≥ 1

N
z∗1

(
1− ρ

1− (1− ρ)cN

1

n

n∑
i=2

ziz
∗
i + d̂1(ρ)ρIN

)−1

z1.

Our objective is to show that supρ∈R̂ε max1≤i≤n |d̂i(ρ) − γ̂(ρ)| a.s.−→ 0 where

γ̂(ρ) is given in the statement of the theorem. This is proved via a contradiction
argument.

For this, assume that there exists a sequence {ρn}∞n=1 over which d̂n(ρn) >
γ̂(ρn)+ ` infinitely often, for some ` > 0 fixed. Since {ρn}∞n=1 is bounded, it has
a limit point ρ0 ∈ R̂ε. Let us restrict ourselves to such a subsequence on which
ρn → ρ0 and d̂n(ρn) > γ̂(ρn) + `. On this sequence, from (2)

1 ≤ 1

N
z∗n

(
1− ρn

1− (1− ρn)cN

1

n

n−1∑
i=1

ziz
∗
i + (γ̂(ρn) + `)ρnIN

)−1

zn , ên. (3)

Assume first ρ0 6= 1. From standard random matrix results, we have

ên =
1− (1− ρn)cN

1− ρn
1

N
z∗n

(
1

n

n−1∑
i=1

ziz
∗
i + (γ̂(ρn) + `)ρn

1− (1− ρn)cN
1− ρn

IN

)−1

zn

a.s.−→ 1− (1− ρ0)c

1− ρ0
δ

(
−(γ̂(ρ0) + `)ρ0

1− (1− ρ0)c

1− ρ0

)
, e+ (4)

where, for x > 0, δ(x) is the unique positive solution to the equation

δ(x) =

∫
t

−x+ t
1+cδ(x)

ν(dt).

The convergence (4) follows from several classical ingredients. For this, we first
use the fact that, for each p ≥ 2, w > 0, and j ∈ {1, . . . , n}, (see e.g., (Silverstein
and Bai, 1995; Couillet et al., 2013a) for similar arguments)

E


∣∣∣∣∣∣∣

1

N
z∗j

 1

n

∑
i6=j

ziz
∗
i + wIN

−1

zj − δ(−w)

∣∣∣∣∣∣∣
p = O

(
N−p/2

)
which, taking p ≥ 4 along with Boole’s inequality, Markov inequality, and Borel–
Cantelli lemma, ensures that

max
1≤j≤n

∣∣∣∣∣∣∣
1

N
z∗j

 1

n

∑
i 6=j

ziz
∗
i + wIN

−1

zj − δ(−w)

∣∣∣∣∣∣∣ a.s.−→ 0.
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Using successively A−1−B−1 = A−1(B−A)B−1 for invertible A,B matrices and
the fact that ‖( 1

n

∑
i 6=j ziz

∗
i +wIN )−1‖ < w−1 and lim supn max1≤i≤n

1
N ‖zi‖

2 =
Mν,1 = 1 <∞ a.s., we then have, for any positive sequence wn → w > 0,

max
1≤j≤n

∣∣∣∣∣∣∣
1

N
z∗j

 1

n

∑
i6=j

ziz
∗
i + wnIN

−1

zj −
1

N
z∗j

 1

n

∑
i 6=j

ziz
∗
i + wIN

−1

zj

∣∣∣∣∣∣∣
= |wn − w| max

1≤j≤n

∣∣∣∣∣∣∣
1

N
z∗j

 1

n

∑
i 6=j

ziz
∗
i + wnIN

−1 1

n

∑
i6=j

ziz
∗
i + wIN

−1

zj

∣∣∣∣∣∣∣
≤ |wn − w|

1

wnw
max

1≤j≤n

1

N
‖zj‖2

a.s.−→ 0

from which the convergence (4) unfolds.
Developing the expression of e+ then leads to e+ being the unique positive

solution of the equation

e+ =

∫
t

(γ̂(ρ0) + `)ρ0 + t
1−(1−ρ0)c

1−ρ0
+ce+

ν(dt)

which we write equivalently

1 =

∫
t

(γ̂(ρ0) + `)ρ0e+ + te+
1−(1−ρ0)c

1−ρ0
+ce+

ν(dt). (5)

Note that the right-hand side term is a decreasing function f of e+. From the
definition of γ̂(ρ0), we can in parallel write

1 =

∫
t

γ̂(ρ0)ρ0 × 1 + t×1
1−(1−ρ0)c

1−ρ0
+c×1

ν(dt) (6)

where we purposely made the terms 1 explicit. Now, since both integrals above
equal 1, since ` > 0, and since f is decreasing, we must have e+ < 1. But this
is in contradiction with ên ≥ 1 and the convergence (4).

If instead, ρ0 = 1, then from the definition of ên in (3), and since 1
N ‖zn‖

2 a.s.−→
Mν,1 = 1 (from limn max1≤i≤n | 1

N ‖zi‖
2−Mν,1|

a.s.−→ 0), lim supn ‖ 1
n

∑n
i=1 ziz

∗
i ‖ <

∞ a.s. (from Assumption 2–b. and (Bai and Silverstein, 1998)), and γ̂(1) =
Mν,1 = 1, we have

ên
a.s.−→ Mν,1

Mν,1 + `
=

1

1 + `
< 1

again contradicting ên ≥ 1.
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Hence, for all large n, there is no sequence of ρn for which d̂n(ρn) > γ̂(ρn)+`

infinitely often and therefore d̂n(ρ) ≤ γ̂(ρ) + ` for all large n a.s., uniformly on
ρ ∈ R̂ε.

The same reasoning holds for d̂1(ρ) which can be proved greater than γ̂(ρ)−`
for all large n uniformly on ρ ∈ R̂ε. Consequently, since ` > 0 is arbitrary,
from the ordering of the d̂i(ρ), we have proved that supρ∈R̂ε max1≤i≤n |d̂i(ρ)−
γ̂(ρ)| a.s.−→ 0.

From there, we then find that

sup
ρ∈R̂ε

∥∥∥ŜN (ρ)− ĈN (ρ)
∥∥∥ ≤ ∥∥∥∥∥ 1

n

n∑
i=1

ziz
∗
i

∥∥∥∥∥ sup
ρ∈R̂ε

max
1≤i≤n

1− ρ
1− (1− ρ)cN

∣∣∣∣∣ d̂i(ρ)− γ̂(ρ)

γ̂(ρ)d̂i(ρ)

∣∣∣∣∣
a.s.−→ 0

where we used the fact that lim supn
∥∥ 1
n

∑n
i=1 ziz

∗
i

∥∥ < ∞ a.s. from Assump-
tion 2–b. and (Bai and Silverstein, 1998), and the fact that 0 < ε < c−1.

5.2. Proof of Theorem 2

The proof of existence and uniqueness is given in (Chen et al., 2011). The
proof of Theorem 2 unfolds similarly as the proof of Theorem 1 but it slightly
more involved due to the difficulty brought by the normalization of ČN (ρ) by
its trace. For this reason, we first introduce some preliminary results needed in
the main core of the proof. Note also that, similar to the proof of Theorem 1,
we may immediately consider zi in place of xi in the expression of ČN (ρ) from
the independence of ČN (ρ) with respect to τ1, . . . , τn.

From now on, for the sake of readability, we discard the unnecessary indices
ρ.

5.2.1. Some preliminaries

We start by some considerations on γ̌(ρ) and FN (x) defined as the unique
positive solution to the equation in FN

FN = (1− ρ)
1

x

1

FN
+ ρ− cN (1− ρ). (7)

Note first that, for x > 0, (7) can be written as a second order polynomial whose
solutions have opposite signs, the positive one being explicitly given by

FN (x) =
1

2
(ρ− cN (1− ρ)) +

√
1

4
(ρ− cN (1− ρ))

2
+ (1− ρ)

1

x
.

The function FN (x) is decreasing with limx→0 FN (x) =∞ and limx→∞ FN (x) =
max{ρ − cN (1 − ρ), 0}. As N → ∞, cN → c, and FN (x) → F (x) = F (x; ρ)
defined in the statement of the theorem which therefore satisfies F (x) = (1 −
ρ) 1
x

1
F (x)+ρ−c(1−ρ) and is decreasing with limx→0 F (x) =∞ and limx→∞ F (x) =

max{ρ− c(1− ρ), 0}. This implies in particular that the function

G : x 7→
∫

t

xρ+ 1−ρ
(1−ρ)c+F (x) t

ν(dt) (8)
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is decreasing with limx→0G(x) =∞ and limx→∞G(x) = 0. Hence the existence
and uniqueness of γ̌(ρ) as defined in the theorem.

Now consider the function HN : x 7→ xFN (x) for x > 0 and ρ < 1. Then,
for x > 0,

H ′N (x) =
1

2

A(x) +B(x)√(
ρ−(1−ρ)cN

2

)2

x2 + (1− ρ)x

where

A(x) = 2

(
ρ− (1− ρ)cN

2

)√(
ρ− (1− ρ)cN

2

)2

x2 + (1− ρ)x

B(x) = 1− ρ+ 2

(
ρ− (1− ρ)cN

2

)2

x.

Although A(x) may be negative, it is easily verified that B(x)2 = A(x)2+(1−ρ)2

for all x ≥ 0. Therefore, if ρ < 1, for each w0 > 0, there exists ε > 0 such that

lim inf
N

sup
w0−ε<x<w0+ε

H ′N (x) > 0 (9)

a relation which will be useful in the core of the proof of Theorem 2.
To prove continuity of γ̌, the same arguments as in the proof of Theorem 1

hold. That is, take ρ0, ρ ∈ (0, 1] and denote γ̌0 = γ̌(ρ0) and γ̌ = γ̌(ρ). Then, by
definition of γ̌(ρ), using F (x) = (1− ρ) 1

x
1

F (x) + ρ− c(1− ρ),∫
t

γ̌0ρ0 + (1−ρ0)γ̌0F (γ̌0)
1−ρ0+ρ0γ̌0F (γ̌0) t

ν(dt)−
∫

t

γ̌ρ+ (1−ρ)γ̌F (γ̌)
1−ρ+ργ̌F (γ̌) t

ν(dt) = 0.

Setting these to a common denominator gives, after some calculus,

[(γ̌0 − γ̌)ρ0 + γ̌(ρ0 − ρ)]

∫
t

D(t)
ν(dt)

=
(1− ρ)(1− ρ0)(γ̌F (γ̌)− γ̌0F (γ̌0)) + (ρ0 − ρ)γ̌γ̌0F (γ̌)F (γ̌0)

(1− ρ+ ργ̌F (γ̌))(1− ρ0 + ρ0γ̌0F (γ̌0))

∫
t2

D(t)
ν(dt)

(10)

where

D(t) =

(
γ̌0ρ0 +

(1− ρ0)γ̌0F (γ̌0)

1− ρ0 + ρ0γ̌0F (γ̌0)
t

)(
γ̌ρ+

(1− ρ)γ̌F (γ̌)

1− ρ+ ργ̌F (γ̌)
t

)
> 0.

Note now that γ̌(ρ) ≤ ρ−1 lim supN ‖CN‖ and, on a small neighborhood of
ρ0 ∈ (0, 1], γ̌ = γ̌(ρ) is uniformly away from zero. Indeed, if this were not the
case, on some subsequence ρk → ρ0 such that γ̌(ρk) → 0, the definition of γ̌
would imply

1 =

∫
t

γ̌(ρk)ρk + 1−ρ
(1−ρk)c+F (γ̌(ρk))

ν(dt)→ 0
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which is a contradiction. This implies as a consequence that F (γ̌) is bounded
on a neighborhood of ρ0. All this implies that all terms proportional to ρ0 − ρ
in (10) tend to zero as ρ→ ρ0, so that, in the limit ρ→ ρ0,

(γ̌0 − γ̌)ρ0

∫
tν(dt)

D(t)
+

(1− ρ)(1− ρ0)(γ̌0F (γ̌0)− γ̌F (γ̌))

(1− ρ+ ργ̌F (γ̌))(1− ρ0 + ρ0γ̌0F (γ̌0))

∫
t2ν(dt)

D(t)
→ 0.

But, since x 7→ xF (x) is increasing, γ̌0F (γ̌0) − γ̌F (γ̌) is of the same sign as
γ̌0 − γ̌. As D(t) is uniformly bounded for ρ in a small neighborhood of ρ0, this
induces γ̌0 − γ̌ → 0, which concludes the proof of continuity.

5.2.2. Main proof

Let us now work on the matrix B̌N . From the definition of ČN ,

B̌N =
1− ρ

1
N tr B̌N

1

n

n∑
i=1

ziz
∗
i

1
N z
∗
i B̌
−1
N zi

+ ρIN .

Denoting B̌(i) = B̌N − 1−ρ
1
N tr B̌N

1
n

ziz
∗
i

1
N z
∗
i B̌
−1
N zi

and using again (A+ txx∗)−1x =

A−1x/(1 + tx∗A−1x), we have this time

1

N
z∗i B̌

−1
N zi =

1
N z
∗
i B̌
−1
(i) zi

1 + (1− ρ)cN
1
N z
∗
i B̌
−1
(i)
zi

1
N z
∗
i B̌
−1
N zi

1
1
N tr B̌N

so that

1

N
z∗i B̌

−1
N zi =

1

N
z∗i B̌

−1
(i) zi

(
1− cN (1− ρ)

1
1
N tr B̌N

)
. (11)

From the positivity of both quadratic forms above, this implies in particular
that 1

N tr B̌N − c(1− ρ) > 0.

Replacing the quadratic forms 1
N z
∗
i B̌
−1
N zi in the expression of B̌N , we can

now rewrite B̌N as

B̌N =
1− ρ

1
N tr B̌N − cN (1− ρ)

1

n

n∑
i=1

ziz
∗
i

1
N z
∗
i B̌
−1
(i) zi

+ ρIN . (12)

Denote now ďi , 1
N z
∗
i B̌
−1
(i) zi and assume, up to relabeling, that ď1 ≤ . . . ≤ ďn

for all n. Then, with the definition of B̌(i), we have

ďn =
1

N
z∗n

(
1− ρ

1
N tr B̌N − cN (1− ρ)

1

n

n−1∑
i=1

ziz
∗
i

ďi
+ ρIN

)−1

zn

≤ 1

N
z∗n

(
1− ρ

1
N tr B̌N − cN (1− ρ)

1

n

n−1∑
i=1

ziz
∗
i

ďn
+ ρIN

)−1

zn

=
1
N tr B̌N − cN (1− ρ)

1− ρ
1

N
z∗n

(
1

n

n−1∑
i=1

ziz
∗
i

ďn
+ ρ

1
N tr B̌N − cN (1− ρ)

1− ρ
IN

)−1

zn
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where the inequality follows from the initial quadratic form being increasing
when seen as a function of ďi for each i. This can be equivalently written

1 ≤
1
N tr B̌N − cN (1− ρ)

1− ρ
1

N
z∗n

(
1

n

n−1∑
i=1

ziz
∗
i + ďnρ

1
N tr B̌N − cN (1− ρ)

1− ρ
IN

)−1

zn.

(13)

At this point, it is convenient to express (13) as a function of FN defined in
(7). From (12), note indeed that

1

N
tr B̌N =

1− ρ
1
N tr B̌N − cN (1− ρ)

1

n

n∑
i=1

1
N ‖zi‖

2

ďi
+ ρ

so that, since 1
N tr B̌N − cN (1− ρ) > 0,

1

N
tr B̌N − cN (1− ρ) = FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1
 . (14)

Since FN is decreasing, the term on the right-hand side is decreasing in ďi for
each i. Hence

FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1
 ≥ FN

ďn [ 1

n

n∑
i=1

1

N
‖zi‖2

]−1
 .

This implies, returning to (13)

1 ≤ 1

1− ρ
FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1


× 1

N
z∗n

 1

n

n−1∑
i=1

ziz
∗
i + ďn

ρ

1− ρ
FN

ďn [ 1

n

n∑
i=1

1

N
‖zi‖2

]−1
 IN

−1

zn.

(15)

With this, similar to the proof of Theorem 1, we will now show via a con-
tradiction argument that supρ∈Řε max1≤i≤n |ďi(ρ) − γ̌(ρ)| a.s.−→ 0. Let us then

assume that, on a sequence {ρn}∞n=1, ďn = ďn(ρn) > γ̌(ρn) + ` = γ̌+ ` infinitely
often, for some ` > 0, and let us consider a subsequence on which ρn → ρ0 ∈ Řε
and ďn(ρn) > γ̌(ρn)+`. Then, from the fact that HN (x) = xFN (x) is increasing
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for x > 0, we have

1 ≤ 1

1− ρ
FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1


× 1

N
z∗n

 1

n

n−1∑
i=1

ziz
∗
i +

(γ̌ + `)ρ

1− ρ
FN

(γ̌ + `)

[
1

n

n∑
i=1

1

N
‖zi‖2

]−1
 IN

−1

zn.

(16)

Assume first that ρ0 < 1. We will deal with each factor involving FN
on the right-hand side of (16). We start with the right-most factor. Using

max1≤i≤n{ 1
N ‖zi‖

2} a.s.−→ 1 since 1
N trCN = 1 for each N , γ̌(ρn) → γ̌(ρ0) (by

continuity of γ̌) and also the fact that limN inf{γ̌(ρ0)−η<x<γ̌(ρ0)+η}H
′
N (x) > 0

for some η > 0 small (from (9)), from classical random matrix theory results,
e.g., (Silverstein and Bai, 1995), we obtain, with probability one

lim
n

1

N
z∗n

 1

n

n−1∑
i=1

ziz
∗
i +

(γ̌ + `)ρn
1− ρn

FN

(γ̌ + `)

[
1

n

n∑
i=1

1

N
‖zi‖2

]−1
 IN

−1

zn

< lim
n

1

N
z∗n

 1

n

n−1∑
i=1

ziz
∗
i +

γ̌ρn
1− ρn

FN

γ̌ [ 1

n

n∑
i=1

1

N
‖zi‖2

]−1
 IN

−1

zn (17)

= δ

where δ is the unique positive solution to

δ =

∫
t

ρ0γ̌(ρ0)F (γ̌(ρ0))
1−ρ0 + t

1+cδ

ν(dt).

Note here the fundamental importance of having H ′N uniformly positive in a
neighborhood of γ̌(ρ0) to ensure the inequality sign in (17) remains strict when

passing to the limit over n. We will now show that e , F (γ̌(ρ0))
1−ρ0 δ = 1. Indeed,

from the above equation,

e =

∫
t

ρ0γ̌(ρ0) + (1−ρ0)t
F (γ̌(ρ0))+(1−ρ0)ce

ν(dt)

or equivalently

1 =

∫
t

eρ0γ̌(ρ0) + (1−ρ0)te
F (γ̌(ρ0))+(1−ρ0)ce

ν(dt). (18)

The right-hand side of (18) is a decreasing function of e with limits ∞ as e→ 0
and 0 as e → ∞. As an equation of e, (18) therefore has a unique positive
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solution which happens to be 1 by definition of γ̌(ρ0) in the theorem statement.
Therefore, e = 1.

Now consider the leading factor involving FN in (16). We will show that
this factor is uniformly bounded. For this, proceeding similarly as above with
ď1 instead of ďn, note that (15), with ρ = ρn, becomes (this is obtained by
reverting all inequality signs in the preceding derivations)

1 ≥ 1

1− ρn
FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1


× 1

N
z∗1

 1

n

n−1∑
i=1

ziz
∗
i + ď1

ρn
1− ρn

FN

ď1

[
1

n

n∑
i=1

1

N
‖zi‖2

]−1
 IN

−1

z1.

(19)

Assume 1
n

∑n
i=1

1
N ‖zi‖

2

ďi
→ ∞ on some subsequence (of probability one) over

which maxi
1
N ‖zi‖

2 → 1. In particular ď1 → 0. Then, from the limiting values
taken by FN and HN , the quadratic form in (19) has positive limit (even infinite
if c > 1) while the first term on the right-hand side tends to infinity. This

contradicts (19) altogether and therefore lim supn
1
n

∑n
i=1

1
N ‖zi‖

2

ďi
<∞.

Since in addition ďi ≤ ρ−1
n

1
N ‖zi‖

2 (using ‖(A + ρnIN )−1‖ ≤ ρ−1
n for non-

negative Hermitian A) is uniformly bounded a.s. for all large n, it follows that
1
n

∑n
i=1

1
N ‖zi‖

2

ďi
is uniformly bounded and bounded away from zero. This implies

that FN

([
1
n

∑n
i=1

1
N ‖zi‖

2

ďi

]−1
)

is uniformly bounded, as desired.

Getting back to (16) with ρ = ρn, we can therefore extract a further subse-
quence on which the latter converges to F∞ and ď1 converges to ď∞1 (ď∞1 can
be zero) and we then have along this subsequence

1 <
F∞

1− ρ0
δ =

F∞

F (γ̌(ρ0))
(20)

with the equality arising from F (γ̌(ρ0))δ = 1− ρ0.
Since FN is increasing,

FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1
 ≤ FN

ďi [ 1

n

n∑
i=1

1

N
‖zi‖2

]−1


so that, taking the limit over n, F∞ ≤ F (ď∞1 ) (set equal to ∞ if ď∞1 = 0). This
further implies

F (γ̌(ρ0)) < F (ď∞1 )

so that, if ď∞1 > 0, inverting the above inequality, gives ď∞1 < γ̌(ρ0). Obviously,
if ď∞1 = 0, this is still true. Therefore ď1(ρn) < γ̌(ρ0) − `′ infinitely often for
some `′ > 0 along the considered subsequence.
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Conserving the same subsequence and reproducing the same steps for the
sequence ď1(ρn) instead of ďn(ρn) (from (19), use ď1(ρn) < γ̌(ρn)− `′ infinitely
often and the growth of HN similar to before), we obtain this time

1 >
F∞

F (γ̌(ρ0))

which contradicts (20).
Assume now ρ0 = 1. Starting from (13) with ρ = ρn and the expression of

FN , we have

1 ≤ lim sup
N

FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1


× 1

N
z∗n

(1− ρn)
1

n

n−1∑
i=1

ziz
∗
i + ďnρnFN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1
 IN

−1

zn

≤ lim sup
N

FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1


× 1

N
z∗n

(1− ρn)
1

n

n−1∑
i=1

ziz
∗
i + (γ̌ + `)ρnFN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1
 IN

−1

zn

=
1

γ̌(ρ0) + `

since ρn → ρ0 = 1, since 1
n

∑n
i=1

1
N ‖zi‖

2

ďi
is uniformly away from zero (as shown

previously), and since lim supn ‖ 1
n

∑n
i=1 ziz

∗
i ‖ <∞ (Bai and Silverstein, 1998).

But then, the fact that γ̌(ρ0) = 1 by definition along with the above relation
leads to 1 ≤ 1/(1 + `), again a contradiction.

Therefore, gathering the results, our very initial hypothesis that there exists
a subsequence of n and ρn over which ďn(ρn) > γ(ρn) + ` infinitely often is
invalid and we conclude that, instead, supρ∈Řε ďn(ρ) − γ̌(ρ) ≤ ` for all large n
a.s.

The same procedure works similarly when starting over with ď1 and assuming
with the same contradiction argument that ď1(ρ′n) < γ̌(ρ′n) − ` infinitely often
on some sequence ρ′n. Taking a subsequence over which ρ′n → ρ′0, this will imply
this time that ďn(ρ′0) > γ̌(ρ′0) + `′ for some `′ > 0 for all large n a.s. which we
now know is invalid.

Gathering the results, we finally obtain

sup
ρ∈Řε

max
1≤i≤n

|ďi(ρ)− γ̌(ρ)| a.s.−→ 0 (21)
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as desired. This implies from (14) that

sup
ρ∈Řε

∣∣∣∣ 1

N
tr B̌N − c(1− ρ)− F (γ̌(ρ))

∣∣∣∣ a.s.−→ 0

with infρ∈Řε F (γ̌(ρ)) > 0 so that, from (12), Assumption 2–b., and (Bai and
Silverstein, 1998),

sup
ρ∈Řε

∥∥∥∥∥B̌N −
[

1− ρ
F (γ̌(ρ))γ̌(ρ)

1

n

n∑
i=1

ziz
∗
i + ρIN

]∥∥∥∥∥ a.s.−→ 0.

Dividing the expression inside the norm by 1
N tr B̌N and taking the limit finally

gives

sup
ρ∈Řε

∥∥∥∥∥ČN −
[

1− ρ
ρF (γ̌)γ̌ + (1− ρ)

1

n

n∑
i=1

ziz
∗
i +

ργ̌F (γ̌)

ργ̌F (γ̌) + (1− ρ)
IN

]∥∥∥∥∥ a.s.−→ 0

with γ̌ = γ̌(ρ), which is the expected result.

5.3. Proof of Corollary 2

We only give the proof for ĈN (ρ). Similar arguments hold for ČN (ρ). The
joint eigenvalue convergence is an application of (Horn and Johnson, 1985,
Theorem 4.3.7) on the spectral norm convergence of Theorems 1 and 2. The

norm boundedness results from supρ∈R̂ε |‖ĈN (ρ)‖ − ‖ŜN (ρ)‖| a.s.−→ 0 and from

lim supN supρ∈R̂ε ‖ŜN (ρ)‖ <∞ by an application of (Bai and Silverstein, 1998).

The joint convergence of moments over R̂ε follows first from the convergence
m̂N (z; ρ) −mµ̂ρ(z)

a.s.−→ 0 for each z with =[z] > 0 and for each ρ ∈ R̂ε where

mN (z; ρ) = 1
N tr((ŜN (ρ) − zIN )−1) (as a consequence of Corollary 1). Since

this holds for each such z, the almost sure convergence is also valid uniformly
on a countable set of z with =[z] > 0 having a limit point away from the union
U over ρ ∈ R̂ε of the limiting spectra of ŜN (ρ), U being a bounded set since
lim supN supρ∈R̂ε ‖ŜN (ρ)‖ <∞. But then, since

(1− ρ)mN (z; ρ)

γ̂(ρ)(1− (1− ρ)c)
=

1

N
tr

( 1

n

n∑
i=1

ziz
∗
i +

ρ− z
1− ρ

γ̂(ρ)(1− (1− ρ)c)IN

)−1


is analytic in ẑ(ρ) = ρ−z
1−ρ γ̂(ρ)(1− (1− ρ)c) and bounded on all bounded regions

away from U , by Vitali’s convergence theorem (Titchmarsh, 1939), the conver-

gence m̂N (z; ρ) −mµ̂ρ(z)
a.s.−→ 0 is uniform on such bounded sets of (z, ρ). Us-

ing the Cauchy integrals
∮
zkmN (z; ρ)dz = 1

N tr(ŜN (ρ)`) and
∮
zkmµ̂ρ(z)dz =

Mµ̂ρ,k for each k ∈ N on a contour that circles around (but sufficiently away

from) U implies supρ∈R̂ε |
1
N tr(ŜN (ρ)`) −Mµ̂ρ,`|

a.s.−→ 0, from which the result
unfolds.
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5.4. Proof of Lemma 1

We start with ŜN . Remark first that, for ρ ∈ (max{0, 1− c−1}, 1],

ŜN (ρ)

Mµ̂ρ,1
=

(
1− ρ

1
γ̂(ρ)

1−ρ
1−(1−ρ)c + ρ

)
1

n

n∑
i=1

ziz
∗
i +

ρ
1

γ̂(ρ)
1−ρ

1−(1−ρ)c + ρ
IN .

Denoting

f̂ : (max{0, 1− c−1}, 1]→ (0, 1]

ρ 7→ ρ
1

γ̂(ρ)
1−ρ

1−(1−ρ)c + ρ
=

1
1

ργ̂(ρ)
1−ρ

1−(1−ρ)c + 1

we have ŜN (ρ)
Mµ̂ρ,1

= (1 − f̂(ρ)) 1
n

∑n
i=1 ziz

∗
i + f̂(ρ)IN and it therefore suffices to

show that f̂ is continuously increasing and onto. The continuity of f̂ unfolds
immediately from the continuity of γ̂. By the definition of γ̂, the function
ρ 7→ ργ̂(ρ) is increasing and nonnegative (since ν is distinct from δ0 almost

everywhere) while ρ 7→ 1−ρ
1−(1−ρ)c is decreasing and nonnegative. Therefore, f̂ is

increasing and nonnegative. It remains to show that f̂ is onto. Clearly f̂(1) = 1
since γ̂(1) = Mν,1 = 1. To handle the lower limit, let us rewrite

f̂(ρ) =
ργ̂(ρ)(1− (1− ρ)c)

1− ρ+ ργ̂(ρ)(1− (1− ρ)c)

which we aim to show approaches zero as ρ ↓ max{0, 1− c−1}. For this, assume
ρkγ̂(ρk)(1− (1− ρk)c)→ ` ∈ (0,∞] for a sequence ρk ↓ max{0, 1− c−1}. Then,
from the defining equation of γ̂(ρ) in Theorem 1,

1 =

∫
(1− (1− ρk)c)t

ρkγ̂(ρk)(1− (1− ρk)c) + (1− ρk)(1− (1− ρk)c)t
ν(dt)

≤ (1− (1− ρk)c) lim supN ‖CN‖
ρkγ̂(ρk)(1− (1− ρk)c) + (1− ρk)(1− (1− ρk)c) lim supN ‖CN‖

→ limk(1− (1− ρk)c) lim supN ‖CN‖
`+ limk(1− ρk)(1− (1− ρk)c) lim supN ‖CN‖

< 1

since the limit is either zero (when c ≥ 1) or (1 − c) lim supN ‖CN‖/(` + (1 −
c) lim supN ‖CN‖) < 1 (when c < 1). But this is a contradiction. This implies

that ργ̂(ρ)(1− (1−ρ)c)→ 0 and consequently f̂(ρ)→ 0 as ρ ↓ max{0, 1− c−1},
which completes the proof for Ŝ(ρ).

Similarly, for Š(ρ), define

f̌ : (0, 1]→ (0, 1]

ρ 7→ Tρ
1− ρ+ Tρ
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where we recall that Tρ = ργ̌(ρ)F (γ̌(ρ); ρ) and which is such that ŠN (ρ) = (1−
f̌(ρ)) 1

n

∑n
i=1 ziz

∗
i + f̌(ρ)IN . We will show that f̌ is continuously increasing and

onto. The continuity arises from the continuity of γ̌. We first show that γ̌ is onto.
For the upper limit, f̌(1) = 1. For the lower limit, assume Tρk → ` ∈ (0,∞] over
a sequence ρk → 0, so that in particular Tρkρ

−1
k →∞. Then, by the definition

of γ̌(ρ) and since F (x; ρ) = (1− ρ) 1
xF (x;ρ) + ρ− c(1− ρ),

1 =

∫
1

γ̌(ρk)ρkt−1 + Tρkρ
−1
k

1−ρk
1−ρk+Tρk

ν(dt)→ 0

by dominated convergence (recall that ν has bounded support), which is a con-
tradiction. This implies f̌(ρ) → 0 as ρ → 0. It remains to show that f̌ is
increasing. For this, we will rewrite the equation defining γ̌(ρ) as a function of
f̌(ρ). Using again F (x; ρ) = (1− ρ) 1

xF (x;ρ) + ρ− c(1− ρ), we first have, for each
t ≥ 0,

γ̌(ρ)ρ+
1− ρ

(1− ρ)c+ F (γ̌(ρ); ρ)
t = γ̌(ρ)ρ+

1− ρ
(1− ρ) 1

γ̌(ρ)F (γ̌(ρ);ρ) + ρ
t

= γ̌(ρ)ρ+
(1− ρ)γ̌(ρ)F (γ̌(ρ); ρ)

1− ρ+ ργ̌(ρ)F (γ̌(ρ); ρ)
t

=
ργ̌(ρ)F (γ̌(ρ); ρ)

F (γ̌(ρ); ρ)
+

1− ρ
ρ

f̌(ρ)t

=
1

F (γ̌(ρ); ρ)

(1− ρ)f̌(ρ)

1− f̌(ρ)
+

1− ρ
ρ

f̌(ρ)t

where in the last equality we used (1− ρ)f̌(ρ) = (1− f̌(ρ))ργ̌(ρ)F (γ̌(ρ); ρ). We
now work on F (γ̌(ρ); ρ). By its implicit definition,

1

F (γ̌(ρ); ρ)
=

1

(1− ρ) 1
γ̌(ρ)F (γ̌(ρ);ρ) + ρ− c(1− ρ)

=
ργ̌(ρ)F (γ̌(ρ); ρ)

ρ(1− ρ) + ρ2γ̌(ρ)F (γ̌(ρ); ρ)− c(1− ρ)ργ̌(ρ)F (γ̌(ρ); ρ)

=
(1− ρ)f̌(ρ)

1− f̌(ρ)

1

ρ(1− ρ) + ρ (1−ρ)f̌(ρ)

1−f̌(ρ)
− c(1− ρ) (1−ρ)f̌(ρ)

1−f̌(ρ)

=
f̌(ρ)

ρ− c(1− ρ)f̌(ρ)

where the last equation follows from standard algebraic simplification. Note
here in particular that, by positivity of F (x; ρ) for x > 0, ρ− c(1− ρ)f̌(ρ) > 0.
Plugging the two results above in the defining equation for γ̌(ρ), we obtain

1 =

∫
t

f̌(ρ)

ρ−c(1−ρ)f̌(ρ)

(1−ρ)f̌(ρ)

ρ(1−f̌(ρ))
+ 1−ρ

ρ f̌(ρ)t
ν(dt). (22)
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Now assume that f̌(ρ) is decreasing on an open neighborhood of ρ0 ∈ (0, 1).

Then ρ 7→ 1−ρ
ρ f̌(ρ) and ρ 7→ (1−ρ)f̌(ρ)

ρ(1−f̌(ρ))
are also decreasing. This follows from

the fact that, on this neighborhood, ρ 7→ (1 − ρ)/ρ = 1/ρ − 1, ρ 7→ 1 − ρ, and
ρ 7→ f̌(ρ)/(1 − f̌(ρ)) = −1 + 1/(1 − f̌(ρ)) are all positive decreasing functions
of ρ. Finally,

f̌(ρ)

ρ− c(1− ρ) ˇf(ρ)
=

1
ρ

f̌(ρ)
+ c(ρ− 1)

which is also positive decreasing, since ρ 7→ ρ/f̌(ρ) and ρ 7→ c(ρ−1) are both in-
creasing and of positive sum. But then, the right-hand side of (22) is increasing
on a neighborhood of ρ0 while being constant equal to one, which is a contra-
diction. Therefore, our initial assumption that f̌(ρ) is locally decreasing around
ρ0 does not hold, and therefore f̌(ρ) is increasing there and thus increasing on
(0, 1]. This completes the proof.

5.5. Proof of Proposition 1

We only prove the result for ĈN , the treatment for ČN being the same. First

observe that, denoting AN (ρ̂) = ĈN (ρ̂)
1
N tr ĈN (ρ̂)

− ŜN (ρ̂)
Mµ̂ρ̂,1

,

sup
ρ̂∈R̂ε

∣∣∣∣∣∣D̂N (ρ̂)− 1

N
tr

( ŜN (ρ̂)

Mµ̂ρ̂,1
− CN

)2
∣∣∣∣∣∣

= sup
ρ̂∈R̂ε

∣∣∣∣∣ 1

N
tr

(
AN (ρ̂)

[
ĈN (ρ̂)

1
N tr ĈN (ρ̂)

+
ŜN (ρ̂)

Mµ̂ρ̂,1
− 2CN

])∣∣∣∣∣
≤ sup
ρ̂∈R̂ε

{
2

∣∣∣∣ 1

N
tr(AN (ρ̂)CN )

∣∣∣∣+

∣∣∣∣∣ 1

N
tr

(
AN (ρ̂)

[
ĈN (ρ̂)

1
N tr ĈN (ρ̂)

+
ŜN (ρ̂)

Mµ̂ρ̂,1

])∣∣∣∣∣
}

≤ sup
ρ̂∈R̂ε

‖AN (ρ̂)‖ sup
ρ̂∈R̂ε

(
3 +

1
N tr ŜN (ρ̂)

Mµ̂ρ̂,1

)

where we used | tr(AB)| ≤ trA‖B‖ for nonnegative definite A along with
1
N trCN = 1. Now,

sup
ρ̂∈R̂ε

‖AN (ρ̂)‖ ≤
supρ̂∈R̂εMµ̂ρ̂,1 supρ̂∈R̂ε ‖ĈN (ρ̂)− ŜN (ρ̂)‖

inf ρ̂∈R̂ε
1
N tr ĈN (ρ̂)Mµ̂ρ̂,1

+
supρ̂∈R̂ε ‖ŜN (ρ̂)‖ supρ̂∈R̂ε

∣∣∣ 1
N tr ĈN (ρ̂)−Mµ̂ρ̂,1

∣∣∣
inf ρ̂∈R̂εMµ̂ρ̂,1

1
N tr

(
ĈN (ρ̂)

) .

Since Mµ̂ρ̂,1 = 1
γ̂(ρ̂)

1−ρ̂
1−(1−ρ̂)c is uniformly bounded across ρ̂ ∈ R̂ε, this finally

implies from Theorem 1 and Corollary 2 that both right-hand side terms tend
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almost surely to zero in the large N,n limit (in particular since the denominators
are bounded away from zero), and finally

sup
ρ̂∈R̂ε

∣∣∣∣∣∣D̂N (ρ̂)− 1

N
tr

( ŜN (ρ̂)

Mµ̂ρ̂,1
− CN

)2
∣∣∣∣∣∣ a.s.−→ 0.

Moreover, from Lemma 1, for each ρ̂ ∈ (max{0, 1− c−1}, 1],

1

N
tr

( ŜN (ρ̂)

Mµ̂ρ̂,1
− CN

)2
 =

1

N
tr
[(
S̄N (ρ)− CN

)2]

with ρ = ρ̂( 1
γ̂(ρ̂)

1−ρ̂
1−(1−ρ̂)c+ρ̂)−1 ∈ (0, 1] and with S̄N = (1−ρ) 1

n

∑n
i=1 ziz

∗
i +ρIN .

Also, using 1
N tr

(
1
n

∑n
i=1 ziz

∗
i

) a.s.−→Mν,1 = 1, 1
N tr

[(
1
n

∑n
i=1 ziz

∗
i

)2] a.s.−→Mν,2+

c, and basic arithmetic derivations

sup
ρ∈[0,1]

∣∣∣∣ 1

N
tr
[(
S̄N (ρ)− CN

)2]− D̄(ρ)

∣∣∣∣ a.s.−→ 0

where

D̄(ρ) = (Mν,2 − 1)ρ2 + c(1− ρ)2.

Note importantly that, from the Cauchy-Schwarz inequality, 1 = M2
ν,1 ≤ Mν,2

and therefore Mν,2 − 1 ≥ 0 with equality if and only if ν = δa for some a ≥ 0
almost everywhere. From the above convergence, we then have, for any ε > 0
small,

sup
ρ̂∈R̂ε

∣∣∣D̂N (ρ̂)− D̄(ρ)
∣∣∣ a.s.−→ 0. (23)

Now, call ρ? the minimizer of D̄(ρ) over [0, 1]. It is easily verified that
ρ? ∈ (0, 1] is as defined in the theorem. Also denote ρ̂? the unique value such that

ρ? = ρ̂?( 1
γ̂(ρ̂?)

1−ρ̂?
1−(1−ρ̂?)c+ρ̂

?)−1, which is well defined according to Lemma 1. Call

also ρ̂◦N the minimizer of D̂N (ρ̂) over R̂ε and ρ◦N = ρ̂◦N ( 1
γ̂(ρ̂◦N )

1−ρ̂◦N
1−(1−ρ̂◦N )c + ρ̂◦N )−1.

If ε is as given in the theorem statement, ρ̂? ∈ R̂ε and then

D̄(ρ?) ≤ D̄(ρ◦N )

D̂N (ρ̂◦N ) ≤ D̂N (ρ̂?)

D̂N (ρ̂?)− D̄(ρ?)
a.s.−→ 0

D̂N (ρ̂◦N )− D̄(ρ◦N )
a.s.−→ 0

the last two equations following from (23) (the joint convergence in (23) is
fundamental since ρ◦N and ρ̂◦N are not constant with N). These four relations
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together ensure that

D̂N (ρ̂◦N )− D̄(ρ?)
a.s.−→ 0

D̂N (ρ̂◦N )− D̂N (ρ̂?)
a.s.−→ 0.

These and the fact that D̄(ρ?) = D? as defined in the theorem statement con-
clude the proof of the first part of the theorem.

For the second part, denoting ρN = ρ̂N ( 1
γ̂(ρ̂N )

1−ρ̂N
1−(1−ρ̂N )c + ρ̂N )−1, we have

that D̄(ρN ) − D̄(ρ?)
a.s.−→ 0 by continuity of D̄ since ρN

a.s.−→ ρ? and therefore,

since D̂N (ρ̂N ) − D̄(ρN )
a.s.−→ 0 by (23), D̂N (ρ̂N ) − D̄(ρ?)

a.s.−→ 0 which is the
expected result.

5.6. Proof of Proposition 2

We first show the following identities

1

n
tr

( 1

n

n∑
i=1

xix
∗
i

1
N ‖xi‖2

)2
− cN a.s.−→Mν,2 (24)

sup
ρ∈Řε

∣∣∣∣∣Tρ − ρ 1

n

n∑
i=1

x∗i ČN (ρ)−1xi
‖xi‖2

∣∣∣∣∣ a.s.−→ 0. (25)

Identity (24) unfolds from 1
n tr

[
( 1
n

∑n
i=1 ziz

∗
i )2
] a.s.−→ Mν,2 + cM2

ν,1 = Mν,2 + c

and from max1≤i≤n | 1
N ‖zi‖

2−1| a.s.−→ 0. As for Equation (25), it is a consequence
of the elements of the proof of Theorem 2. Indeed, from (11),

ρ
1

N
x∗i ČN (ρ)−1xi = ρ

1

N
x∗i B̌(i)(ρ)−1xi

(
1

N
tr B̌N (ρ)− cN (1− ρ)

)
where B̌(i)(ρ) = B̌N (ρ)− 1

n
1−ρ

1
N tr B̌N

xix
∗
i

1
N x
∗
i B̌N (ρ)−1xi

, which according to (14) further

reads

ρ
1

N
x∗i ČN (ρ)−1xi = ρ

1

N
x∗i B̌(i)(ρ)−1xiFN

[ 1

n

n∑
i=1

‖xi‖2
1
N x
∗
i B̌(i)(ρ)−1xi

]−1

; ρ


with FN (x; ρ) the same function as F but with cN in place of c (recall that
in (14), ďi = 1

N z
∗
i B̌(i)(ρ)−1zi). Since the τi normalization is irrelevant in the

expression above, xi can be replaced by zi. Using the convergence result (21)
and the continuity and boundedness of x 7→ xFN (x), we then have

sup
ρ∈Řε

max
1≤i≤n

∣∣∣∣ρ 1

N
z∗i ČN (ρ)−1zi − ργ̌(ρ)F (γ̌(ρ); ρ)

∣∣∣∣ a.s.−→ 0.
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As a consequence,

sup
ρ∈Řε

∣∣∣∣∣ρ 1

n

n∑
i=1

1

N
z∗i ČN (ρ)−1zi − ργ̌(ρ)F (γ̌(ρ); ρ)

∣∣∣∣∣
≤ sup
ρ∈Řε

max
1≤i≤n

∣∣∣∣ρ 1

N
z∗i ČN (ρ)−1zi − ργ̌(ρ)F (γ̌(ρ); ρ)

∣∣∣∣
a.s.−→ 0.

This, and the fact that max1≤i≤n | 1
N ‖zi‖

2 − 1| a.s.−→ 0 gives the result.

It remains to prove that ρ̂N
a.s.−→ ρ̂? and ρ̌N

a.s.−→ ρ̌?. We only prove the first
convergence, the second one unfolding along the same lines. First observe from
Corollary 2 that the defining equation of ρ̂N implies

f̂(ρ̂N ) =
c

Mν,2 + c− 1
+ `n

for some sequence `n
a.s.−→ 0, with f̂ : x 7→ x( 1

γ̂(x)
1−x

1−(1−x)c + x))−1. Since f̂ is

a one-to-one growing map from (max{0, 1− c−1}, 1] onto (0, 1] (Lemma 1) and
c

Mν,2+c−1 ∈ (0, 1), such a ρ̂N exists (not necessarily uniquely though) for all

large N almost surely. Taking such a ρN , by definition of ρ̂?, we further have

f̂(ρ̂N )− f̂(ρ̂?)
a.s.−→ 0

which, by the continuous growth of f̂ , ensures that ρ̂N
a.s.−→ ρ̂?. The convergence

D̂N (ρ̂N )
a.s.−→ D? is then an application of Proposition 1.
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