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Abstract

This article studies the limiting behavior of a class of robust population covariance matrix estimators, originally due to
Maronna in 1976, in the regime where both the number of available samples and the population size grow large. Using tools
from random matrix theory, we prove that, for sample vectors made of independent entries having some moment conditions, the
difference between the sample covariance matrix and (a scaled version of) such robust estimator tends to zero in spectral norm,
almost surely. This result can be applied to various statistical methods arising from random matrix theory that can be made robust
without altering their first order behavior.

I. INTRODUCTION

Many multi-variate signal processing detection and estimation techniques are based on the empirical covariance matrix of a
sequence of samples x1, . . . , xn from a random population vector x ∈ CN . Assuming E[x] = 0 and E[xx∗] = CN , the strong
law of large numbers ensures that, for independent and identically distributed (i.i.d.) samples,

ŜN =
1

n

n∑
i=1

xix
∗
i → CN

almost surely (a.s.), as the number n of samples increases. Many subspace methods, such as the multiple signal classifier
(MUSIC) algorithm and its derivatives [1], [2], heavily rely on this property by identifying CN with ŜN , leading to appropriate
approximations of functionals of CN in the large n regime. However, this standard approach has two major limitations: the
inherent inadequacy to small sample sizes (when n is not too large compared to N ) and the lack of robustness to outliers or
heavy-tailed distribution of x. Although the former issue was probably the first historically recognized, it is only recently that
significant advances have been made using random matrix theory [3]. As for the latter, it has spurred a strong wave of interest
in the seventies, starting with the works from Huber [4] on robust M-estimation. The objective of this article is to provide a
first bridge between the two disciplines by introducing new fundamental results on robust M-estimates in the random matrix
regime where both N and n grow large at the same rate.

Aside from its obvious simplicity of analysis, the sample covariance matrix (SCM) ŜN is an object of primal interest since
it is the maximum likelihood estimator of CN for x Gaussian. When x is not Gaussian, the SCM as an approximation of
CN may however perform very poorly. This problem was identified in multiple areas such as multivariate signal processing
or financial asset management, but was particularly recognized in adaptive radar and sonar processing where the signals under
study are characterized by impulsive noise and outlying data. Robust estimation theory aims at tackling this problem [5].
Among other solutions, the so-called robust M-estimators of the population covariance matrix, originally introduced by Huber
[4] and investigated in the seminal work of Maronna [6], have imposed themselves as an appealing alternative to the SCM.
This estimator, which we denote ĈN , is defined implicitly as a solution of1

ĈN =
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i (1)

for u a nonnegative function with specific properties. These estimators are particularly appropriate as they are the maximum
likelihood estimates of CN for specific distributions of x and some specific choices of u, such as the family of elliptical
distributions [7]. For any such u, ĈN is, up to a scalar, a consistent estimate for CN for N fixed and n → ∞, see e.g. [8].
The robust estimators are also used to cope with distributions of x with heavy tails or showing a tendency to produce outliers,
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1Our expression differs from the standard convention where x∗
i Ĉ

−1
N xi is traditionally not scaled by 1/N . The current form is however more convenient

for analysis in the large N,n regime.
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such as when ‖x‖2 has a K-distribution often met in the context of adaptive radar processing with impulsive clutter [9]. In
this article, the concept of robustness is to be understood along this general theory.

A second angle of improvement of subspace methods has recently emerged due to advances in random matrix theory. The
latter aims at studying the statistical properties of matrices in the regime where both N and n grow large. It is known in
particular that, if x = ANy with y ∈ CM , M ≥ N , a vector of independent entries with zero mean and unit variance, then,
under some conditions on CN = ANA

∗
N and y, in the large N,n (and M ) regime, the eigenvalue distribution of (almost every)

ŜN converges weakly to a limiting distribution described implicitly by its Stieltjes transform [10]. When CN is the identity
matrix for all N , this distribution takes an explicit form known as the Marc̆enko-Pastur law [11]. Under some additional
moment conditions on the entries of y, it has also been shown that the eigenvalues of ŜN cannot lie infinitely often away from
the support of the limiting distribution [12]. In the past ten years, these two results and subsequent works have been applied
to revisit classical signal processing techniques such as signal detection schemes [13] or subspace methods [14], [15]. In these
works, traditional n-consistent detection and estimation methods were improved into (N,n)-consistent approaches, i.e. they
provide estimates that are consistent in the large N,n regime rather than in the fixed N and large n regime. These improved
estimators are often referred to as G-estimators.

In this article, we study the asymptotic first order properties of the robust M-estimate ĈN of CN , given by (1), in the regime
where N , n (and M ) grow large simultaneously, hereafter referred to as the random matrix regime. Although the study of the
SCM ŜN for vectors x with rather general distributions is accessible to random matrix theory, as in e.g. the case of elliptical
distributions [16], the equivalent analysis for ĈN is often very challenging. In the present article, we restrict ourselves to vectors
x of the type x = ANy with y having independent zero-mean entries. One important technical challenge brought by the matrix
ĈN , usually not met in random matrix theory, lies in the dependence structure between the vectors {u( 1

N x
∗
i Ĉ
−1
N xi)

1
2xi}ni=1

(as opposed to the independent vectors {xi}ni=1 for the matrix ŜN ). We fundamentally rely on the set of assumptions on the
function u taken by Maronna in [6] to overcome this difficulty. Our main contribution consists in showing that, in the large
N,n regime, and under some mild assumptions, ‖ĈN − αŜN‖ → 0, a.s., for some constant α > 0 dependent only on u.
This result is in particular in line with the conjecture made in [17] according to which ‖ĈN − αŜN‖

a.s.−→ 0 for the function
u(s) = 1/s studied extensively by Tyler [18], [19]; however, the function u(s) = 1/s does not enter our present scheme as it
creates additional difficulties which leave the conjecture open.

A major practical consequence of our result is that the matrix ŜN , at the core of many random matrix-based estimators,
can be straightforwardly replaced by ĈN without altering the first order properties of these estimators. We generically call
the induced estimators robust G-estimators. As an application example, we shall briefly introduce an application to robust
direction-of-arrival estimation accounting for large N,n based on the earlier estimator [20].

The remainder of the article is structured as follows. Section II provides our theoretical results along with an application to
direction-of-arrival estimation. Section III then concludes the article. All technical proofs are detailed in the appendices.

Notations: The arrow ‘ a.s.−→’ denotes almost sure convergence. For A ∈ CN×N Hermitian, λ1(A) ≤ . . . ≤ λN (A) are its
ordered eigenvalues. The norm ‖ · ‖ is the spectral norm for matrices and the Euclidean norm for vectors. For A,B Hermitian,
A � B means that A − B is nonnegative definite. The notation A∗ denotes the Hermitian transpose of A. We also write
ı =
√
−1.

II. MAIN RESULTS

A. Theoretical results

Let X = [x1, . . . , xn] ∈ CN×n, where xi = ANyi ∈ CN , with yi = [yi1, . . . , yiM ]T ∈ CM having independent entries with
zero mean and unit variance, AN ∈ CN×M , and CN , ANA

∗
N ∈ CN×N be a positive definite matrix. We denote cN , N/n,

c̄N ,M/N , and define the sample covariance matrix ŜN of the sequence x1, . . . , xn by

ŜN ,
1

n
XX∗ =

1

n

n∑
i=1

xix
∗
i .

Let u : R+ → R+ (R+ = [0,∞)) be a function fulfilling the following conditions:
(i) u is nonnegative, nonincreasing, and continuous on R+;

(ii) the function φ : R+ → R+, s 7→ su(s) is nondecreasing and bounded, with supx φ(x) = φ∞ > 1. Moreover, φ is
increasing in the interval where φ(s) < φ∞.

Classical M-estimators ĈN defined by (1) for such function u include the Huber estimator, with φ(s) = φ∞
φ∞−1s for

s ∈ [0, φ∞ − 1], φ∞ > 1, and φ(s) = φ∞ for s ≥ φ∞ − 1. Since u(s) is constant for s ≤ φ∞ − 1 and decreases for
s ≥ φ∞− 1, this estimator weights the majority of the samples x1, . . . , xn by a common factor and reduces the impact of the
outliers. The widely used function u(s) = (1 + t)(t+ x)−1 for some t > 0 shows similar properties, here with φ∞ = 1 + t.2

2Note that this function intervenes in the maximum-likelihood estimator of the scatter matrix of Student-t distributed random vectors [8]. Here we do not
make any such maximum-likelihood consideration for the selection of u.
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Other classical u functions, adapted to specific distributions of the samples, can be found in the survey [8]. In any of these
scenarios, robustness can be controlled by properly setting φ∞.

To pursue, we need the following statistical assumptions on the large dimensional random matrices under study.

A1. The random variables yij , i ≤ n, j ≤M , are independent either real or circularly symmetric complex (i.e. E[y2ij ] = 0)
with E[yij ] = 0 and E[|yij |2] = 1. Also, there exists η > 0 and α > 0, such that, for all i, j, E[|yij |8+η] < α.

A2. c̄N ≥ 1 and, as n→∞,

0 < lim inf
n
cN ≤ lim sup

n
cN < 1, lim sup

n
c̄n <∞.

A3. There exists C−, C+ > 0 such that

C− < lim inf
N
{λ1(CN )} ≤ lim sup

N
{λN (CN )} < C+.

Note that the assumptions neither request the entries of y to be identically distributed nor impose the existence of a continuous
density. This assumption is adequate for a large range of application scenarios such as factor models in finance or general
signal processing models with independent entry-wise non-Gaussian noise (e.g. distributed antenna array processing), although
the requirement of independence in the entries of y is somewhat uncommon in the classical applications of robust estimation
theory. The entry-wise independence is however central in this article for the emergence of a concentration of the quadratic
forms 1

N x
∗
i Ĉ
−1
N xi, i = 1, . . . , n. Further generalizations, e.g. to elliptical distributions for x, would break this effect and would

certainly entail a much different asymptotic behavior of ĈN . These important considerations are left to future work.
Technically, A1–A3 mainly ensure that the eigenvalues of ŜN and ĈN lie within a compact set away from zero, a.s., for

all N,n large, which is a consequence (although non immediate) of [12], [15]. Note also that A2 demands lim infN cN > 0,
so that the following results do not contain the results from [6], [19], in which N is fixed and n→∞, as special cases. With
these assumptions, we are now in position to provide the main technical result of this article.

Theorem 1: Assume A1–A3 and consider the following matrix-valued fixed-point equation in Z ∈ CN×N ,

Z =
1

n

n∑
i=1

u

(
1

N
x∗iZ

−1xi

)
xix
∗
i . (2)

Then, we have the following results.
(I) There exists a unique solution to (2) for all large N a.s. We denote ĈN this solution, defined as

ĈN = lim
t→∞

Z(t)

where Z(0) = IN and, for t ∈ N,

Z(t+1) =
1

n

n∑
i=1

u

(
1

N
x∗i (Z

(t))−1xi

)
xix
∗
i .

(II) Defining ĈN arbitrarily when (2) does not have a unique solution, we also have∥∥∥φ−1(1)ĈN − ŜN
∥∥∥ a.s.−→ 0.

Proof: The proof is provided in Appendix A.

An immediate corollary of Theorem 1 is the asymptotic closeness of the ordered eigenvalues of φ−1(1)ĈN and ŜN .

Corollary 1: Under the assumptions of Theorem 1,

max
i≤N

∣∣∣φ−1(1)λi(ĈN )− λi(ŜN )
∣∣∣ a.s.−→ 0.

Proof: The proof is provided in Appendix A.

Some comments are called for to understand Theorem 1 in the context of robust M-estimation.
Theorem 1–(I) can be first compared to the result from Maronna [6, Theorem 1] which states that a solution to (2) exists

for each set {x1, . . . , xn} under certain conditions on the dimension of the space spanned by the n vectors, as well as on
u(s), N , and n (in particular u(s) must satisfy φ∞ > n/(n −N) in [6]). Our result may be considered more interesting in
practice in the sense that the system sizes N and n no longer condition φ∞ and therefore do not constrain the definition of
u(s). Theorem 1–(I) can also be compared to the results on uniqueness [6], [19] which hold for all N,n under some further
conditions on u(s), such as φ(s) is strictly increasing [6]. The latter assumption is particularly demanding as it may reject some
M-estimators such as the Huber M-estimator for which φ(s) is constant for large s. Theorem 1–(I) trades these assumptions
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against a requirement for N and n to be “sufficiently large” and for {x1, . . . , xn} to belong to a probability one sequence.
Precisely, we demand that there exists an integer n0 depending on the random sequence {(x1, . . . , xn)}∞n=1, such that for all
n ≥ n0, existence and uniqueness are established under no further condition than the definition (i)–(ii) of u(s) and A1–A3.

Theorem 1–(II), which is our main result, states that, as N and n grow large with a non trivial limiting ratio, the fixed-
point solution ĈN (either always defined under the assumptions of [6], [19] or defined a.s. for large enough N ) is getting
asymptotically close to the sample covariance matrix, up to a scaling factor. This implies in particular that, while ĈN is an
n-consistent estimator of (a scaled version of) CN for n→∞ and N fixed, in the large N,n regime it has many of the same
first order statistics as ŜN . This suggests that many results holding for ŜN in the large N,n regime should also hold for ĈN ,
at least concerning first order convergence. For instance, as will be seen through Corollary 2, one expects consistent estimators
(in the large N,n regime) based on functionals of ŜN to remain consistent when using φ−1(1)ĈN in place of ŜN in the
expression of the estimator. However, it is important to note that, in general, one cannot say much on second order statistics,
i.e. regarding the comparison of the asymptotic performance of both estimators. The matrices ĈN , parametrizable through u,
should then be seen as a class of alternatives for ŜN which may possibly improve estimators based on ŜN in the large (but
finite) N,n regime. Note also that Theorem 1 is independent of the choice of the distribution of the entries of y (as long as
the moment conditions are satisfied) or of the choice of the function u, which is in this sense similar to the equivalent result
in the classical fixed-N large-n regime [8].

In a similar context, it is shown in [12] and [21] that the eigenvalues of ŜN are asymptotically contained in the support of
their limiting compactly supported distribution if and only if the entries of y have finite fourth order moment. This first suggests
that the technical assumption A1 which requires y to have uniformly bounded 8 + η moment may be relaxed to yij having
only finite fourth order moments for Theorem 1 to hold. This being said, since most of the aforementioned (N,n)-consistent
estimators involving ĈN or ŜN rely on a non-degenerate behavior of these eigenvalues (see e.g. [22, Chapters 16–17] for
details), the finite fourth order moment condition cannot possibly be further relaxed for these estimators to be usable. As a
consequence, although A1 might seem very restrictive in a robust estimation framework as it discards the possibility to consider
distributions of x with heavy tail behavior, it is a close to necessary condition for robust estimation in the random matrix
regime to be meaningful.

In terms of applications to signal processing, recall first that the n-consistency results on robust estimation [6], [19] imply
that many metrics based on functionals of CN can be consistently estimated by replacing CN by ĈN . The inconsistency of the
sample covariance matrix to the population covariance in the random matrix regime, along with Theorem 1, suggest instead
that this approach will lead in general to inconsistent estimators in the large N,n regime, and therefore to inaccurate estimates
for moderate values of N,n,M . However, any metric based on CN , and for which an (N,n)-consistent estimator involving
ŜN exists, is very likely to be (N,n)-consistently estimated by replacing ŜN by φ−1(1)ĈN . The interest of this replacement
obviously lies in the possibility to improve the metric through an appropriate choice of u, in particular when y exhibits outlier
behavior or has heavy tails.

B. Application example

A specific example can be found in the context of MUSIC-like estimation methods for array processing. In this example, K
signal sources imping on a collection of N collocated sensors with angles of arrival θ1, . . . , θK . The data xi ∈ CN received
at time i at the array is modeled as

xi =

K∑
k=1

√
pks(θk)zk,i + σwi

where s(θ) ∈ CN is the deterministic unit norm steering vector for signals impinging the sensors at angle θ, zk,t ∈ C is the signal
source modeled as a zero mean, unit variance, and finite 8 + η order moment random variable, i.i.d. across t and independent
across k, pk > 0 is the transmit power of source k (pk < pmax for some pmax > 0) and σwi ∈ CN is the received noise at
time t, independent across t, with i.i.d. zero mean, variance σ2 > 0, and finite 8 + η order moment entries. Write xi = ANyi,
with AN , [S(Θ)P

1
2 , σIN ], S(Θ) = [s(θ1), . . . , s(θK)], P = diag(p1, . . . , pK), and yi = (z1,t, . . . , zK,t, w

T
i )T ∈ CN+K .

Then, with N,n large and K finite, Assumptions A1–A3 are met and Theorem 1 can be applied. This yields the following
corollary of Theorem 1.

Corollary 2 (Robust G-MUSIC): Denote EW ∈ CN×(N−K) a matrix containing in columns the eigenvectors of CN with
eigenvalue σ2 and êk the eigenvector of ĈN with eigenvalue λ̂k , λk(ĈN ) (recall that λ̂1 ≤ . . . ≤ λ̂N ), with ĈN defined as
in Theorem 1. Then, as N,n→∞ in the regime of Assumption A2, and K fixed,

γ(θ)− γ̂(θ)
a.s.−→ 0
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where

γ(θ) = s(θ)∗EWE
∗
W s(θ)

γ̂(θ) =

N∑
i=1

βis(θ)
∗êiê

∗
i s(θ)

and

βi =

 1 +
∑N
k=N−K+1

(
λ̂k

λ̂i−λ̂k
− µ̂k

λ̂i−µ̂k

)
, i ≤ N −K

−
∑N−K
k=1

(
λ̂k

λ̂i−λ̂k
− µ̂k

λ̂i−µ̂k

)
, i > N −K

with µ̂1 ≤ . . . ≤ µ̂N the eigenvalues of diag(λ̂)− 1
n

√
λ̂
√
λ̂
T

, λ̂ = (λ̂1, . . . , λ̂N )T.
Proof: The Corollary is exactly the algorithm [14] with ŜN replaced by ĈN . The validity of this operation is proved in

Appendix E.

The function γ(θ) is the defining metric for the MUSIC algorithm [1], the zeros of which contain the θi, i ∈ {1, . . . ,K}.
Corollary 2 proves that the N,n-consistent G-MUSIC estimator of γ(θ) proposed by Mestre in [14] can be extended into a
robust G-MUSIC method. The latter merely consists in replacing the sample covariance matrix ŜN as in [14] by the robust
estimator ĈN . The angles θi are then estimated as the deepest minima of γ̂(θ). This technique can be seen through simulations
to perform better than either MUSIC or G-MUSIC in the finite (N,n) regime in the case of impulsive noise in the sense of
A1, for an appropriate choice of the function u. However, proving so requires the study of the second order statistics of γ(θ),
which goes beyond the reach of the present article and is left to future work.

III. CONCLUSION

We have proved that a large family of robust estimates of population covariance matrices is consistent with the sample
covariance matrix in the regime of both large population N and sample n sizes, this being valid irrespective of the sample
distribution. This result opens up a new area of research for robust estimators in the random matrix regime. The results can
be applied to improve a variety of signal processing techniques relying on random matrix methods but not accounting for
noise impulsiveness yet. The exact performance gain of such improved methods however often relies on second order statistics
which will be investigated in future work.

APPENDIX A
PROOF OF THEOREM 1 AND COROLLARY 1

Proof of Theorem 1: In order to prove the existence and uniqueness of a solution to (2) for all large n, we use the
framework of standard interference functions from [23].

Definition 1: A function h = (h1, . . . , hn) : Rn+ → Rn+ is said to be a standard interference function if it fulfills the following
conditions:

1) Positivity: if q1, . . . , qn ≥ 0, then hj(q1, . . . , qn) > 0, for all j.
2) Monotonicity: if q1 ≥ q′1, . . . , qn ≥ q′n, then for all j, hj(q1, . . . , qn) ≥ hj(q′1, . . . , q′n).
3) Scalability: for all α > 1 and for all j, αhj(q1, . . . , qn) ≥ hj(αq1, . . . , αqn).

Theorem 2: If an n-variate function h(q1, . . . , qn) is a standard interference function and there exists (q1, . . . , qn) such that
for all j, qj ≥ hj(q1, . . . , qn), then the system of equations

qj = hj(q1, . . . , qn) (3)

for j = 1, . . . , n, has at least one solution, given by limt→∞(q
(t)
1 , . . . , q

(t)
n ), where

q
(t+1)
j = hj(q

(t)
1 , . . . , q(t)n )

for t ≥ 1 and any initial values q(0)1 , . . . , q
(0)
n ≥ 0.

Proof: The proof is provided in Appendix D.
Remark 1: Note that our definition of a standard interference function differs from that of [23] in which the scalability

requirement reads: for all j, αhj(q1, . . . , qn) > hj(αq1, . . . , αqn). Changing the strict inequality to a loose one alters the
consequences for the theorem above, where only existence is ensured. However, for our present purposes with φ(s) possibly
possessing a flat region, requesting a strict inequality would be too demanding.
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Since {x1, . . . , xn} spans CN for all large n a.s. (as a consequence of Proposition 2 in Appendix F), we can define for
these n the functions hj , j = 1, . . . , n,

hj(q1, . . . , qn) ,
1

N
x∗j

(
1

n

n∑
i=1

u(qi)xix
∗
i

)−1
xj . (4)

We first show that h = (h1, . . . , hn) meets the conditions of Theorem 2 for all large n a.s. Due to A1, from standard
arguments using the Markov inequality and the Borel Cantelli lemma, we have that mini≤n ‖xi‖ 6= 0 for all large n a.s. (this
is also a corollary of Lemma 2 below). Therefore, we clearly have hj > 0 for all j, for all large n a.s. Also, since u is
non-increasing, taking q1, . . . , qn and q′1, . . . , q

′
n such that q′i ≥ qi ≥ 0 for all i, u(q′i) ≤ u(qi) and then

1

n

n∑
i=1

u(qi)xix
∗
i �

1

n

n∑
i=1

u(q′i)xix
∗
i

From [24, Corollary 7.7.4], this implies(
1

n

n∑
i=1

u(q′i)xix
∗
i

)−1
�

(
1

n

n∑
i=1

u(qi)xix
∗
i

)−1
from which hj(q′1, . . . , q

′
n) ≥ hj(q1, . . . , qn), proving the monotonicity of h.

For α > 1, φ(αqi) ≥ φ(qi), so that u(αqi) ≥ u(qi)
α . Therefore

1

n

n∑
i=1

u(αqi)xix
∗
i �

1

α

1

n

n∑
i=1

u(qi)xix
∗
i

From [24, Corollary 7.7.4] again, we then have

α

(
1

n

n∑
i=1

u(qi)xix
∗
i

)−1
�

(
1

n

n∑
i=1

u(αqi)xix
∗
i

)−1
so that αhj(q1, . . . , qn) ≥ hj(αq1, . . . , αqn). Therefore h is a standard interference function. In order to prove that (4) admits
a solution, from Theorem 2, we now need to prove that there exists (q1, . . . , qn) such that for all j, qj ≥ hj(q1, . . . , qn). Note
that this may not hold for all fixed N,n as discussed in [6, pp. 54]. We will prove instead that a solution exists for all large
n a.s.

To pursue, we need random matrix results and additional notations. Take c−, c+ such that 0 < c− < lim infN cN and
lim supN cN < c+ < 1, and denote X(i) = [x1, . . . , xi−1, xi+1, . . . , xn] ∈ CN×(n−1). We start with the following fundamental
lemmas, which allow for a control of the joint convergence of the quadratic forms 1

N x
∗
i Ŝ
−1
N xi − 1.

Lemma 1: Assume A1–A3. There exists ε > 0 such that

min
i≤n

{
λ1

(
1

n
X(i)X

∗
(i)

)}
> ε

for all large n a.s.
Proof: The proof is provided in Appendix B.

Lemma 2: Assume A1–A3. Then, a.s.,

max
i≤n

{∣∣∣∣ 1

N
x∗i Ŝ

−1
N xi − 1

∣∣∣∣}→ 0.

Proof: The proof is provided in Appendix C.

Let q1 = . . . = qn , q > 0. Then,

hi(q1, . . . , qn) =
1

u(q)

1

N
x∗i Ŝ

−1
N xi =

q

φ(q)

1

N
x∗i Ŝ

−1
N xi.

Take ε > 0 such that (1 + ε)/(φ∞ − ε) < 1. This is always possible since φ∞ > 1. Choose now q such that φ(q) = φ∞ − ε,
which also exists since φ is increasing on [0, φ−1(φ∞−)) with image [0, φ∞). From Lemma 2, for all large n a.s.,

sup
i

∣∣∣∣1q hi(q1, . . . , qn)(φ∞ − ε)− 1

∣∣∣∣ < ε.
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Therefore,
1

q
hi(q1, . . . , qn) <

1 + ε

φ∞ − ε
< 1

from which hi(q, . . . , q) < q for all i. From Theorem 2, we therefore prove the existence of a solution to (3) with hj given
in (4). Since these quadratic forms define the solutions of the fixed-point equation (2), this proves the existence of a solution
ĈN for all large n a.s. Note that Lemma 2 is crucial here and that, for φ∞ close to one, there is little hope to prove existence
for all fixed N,n, consistently with the results [6], [19].

We now prove uniqueness. Take a solution ĈN and denote di = 1
N x
∗
i Ĉ
−1
N xi, which we order as d1 ≤ . . . ≤ dn without loss

of generality. Denote also D = diag({u(di)}ni=1). By definition

di =
1

N
x∗i

(
1

n
XDX∗

)−1
xi.

From the non increasing property of u, we have the inequality

XDX∗ � u(dn)XX∗

which implies after inversion

1

u(dn)
(XX∗)

−1 � (XDX∗)
−1

and therefore, recalling that n−1XX∗ = ŜN ,

dn ≤
1

u(dn)

1

N
x∗nŜ

−1
N xn

or equivalently, since u(dn) > 0,

φ(dn) ≤ 1

N
x∗nŜ

−1
N xn.

Similarly,

d1 ≥
1

u(d1)

1

N
x∗1Ŝ

−1
N x1

from which we also have

φ(d1) ≥ 1

N
x∗1Ŝ

−1
N x1.

Since φ is non-decreasing, we also have φ(d1) ≤ φ(di) ≤ φ(dn) for i ≤ n, and we therefore obtain

1

N
x∗1Ŝ

−1
N x1 ≤ φ(di) ≤

1

N
x∗nŜ

−1
N xn.

Take 0 < ε < min{1, (φ∞ − 1)}. From Lemma 2, for all large n a.s.,

0 < 1− ε < φ(di) < 1 + ε < φ∞.

Since φ is continuous and increasing on (0, φ−1(φ∞−)) with image contained in (0, φ∞), φ is invertible there and we
obtain that for all large n a.s.,

φ−1 (1− ε) < di < φ−1 (1 + ε) . (5)

We can now prove the almost sure uniqueness of ĈN for all large n. Take ε in (5) to satisfy the previous conditions and to
be such that (φ−1(1 + ε))2/φ−1(1− ε) < φ−1(φ∞−), which is always possible as the left-hand side expression is continuous
in ε with limit φ−1(1) < φ−1(φ∞−) as ε→ 0.

We now follow the arguments of [23, Theorem 1]. Assume (d
(1)
1 , . . . , d

(1)
n ) and (d

(2)
1 , . . . , d

(2)
n ) are two distinct solutions of

the fixed-point equation dj = hj(d1, . . . , dn) for j = 1, . . . , n, where hj is defined by (4). Then (up to a change in the indices
1 and 2), there exists k such that, for some α > 1, αd(1)k = d

(2)
k and αd(1)i ≥ d

(2)
i for i 6= k. From (5), for sufficiently large

n a.s. the ratio α = d
(1)
k /d

(2)
k is also constrained to satisfy α < φ−1(1 + ε)/φ−1(1− ε). Using this inequality and the upper

bound in (5), we have for all j

0 < αd
(1)
j <

(φ−1(1 + ε))2

φ−1(1− ε)
< φ−1(φ∞−).
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Since φ is increasing on (0, φ−1(φ∞−)), we have in particular φ(αd
(1)
j ) > φ(d

(1)
j ) from which αu(αd

(1)
j ) > u(d

(1)
j ), for all j

and then, with similar arguments as previously, αhj(d
(1)
1 , . . . , d

(1)
n ) > hj(αd

(1)
1 , . . . , αd

(1)
n ) for all j. Using the monotonicity

of h, we conclude in particular

d
(2)
k = hk(d

(2)
1 , . . . , d(2)n ) ≤ hk(αd

(1)
1 , . . . , αd(1)n )

< αhk(d
(1)
1 , . . . , d(1)n ) = αd

(1)
k

which contradicts αd(1)k = d
(2)
k and proves the uniqueness of ĈN and Part (I) of Theorem 1.

We now prove Part (II) of the theorem. In order to proceed, we start again from (5). Since ε is arbitrary, we conclude that

max
i≤n

∣∣di − φ−1(1)
∣∣ a.s.−→ 0.

Applying the continuous mapping theorem, we then have

max
i≤n

∣∣u(di)− u(φ−1(1))
∣∣ a.s.−→ 0.

Noticing that φ−1(1)u(φ−1(1)) = φ(φ−1(1)) = 1, and therefore that u(φ−1(1)) = 1/φ−1(1), this can be rewritten

max
i≤n

∣∣∣∣u(di)−
1

φ−1(1)

∣∣∣∣ a.s.−→ 0. (6)

Now, we also have the matrix inequalities

min
i≤n

{
u(di)−

1

φ−1(1)

}
1

n
XX∗

� 1

n

n∑
i=1

(
u(di)−

1

φ−1(1)

)
xix
∗
i

� max
i≤n

{
u(di)−

1

φ−1(1)

}
1

n
XX∗.

From Proposition 2 in Appendix F, ‖ 1nXX
∗‖ < K for some K > 0 and for all n a.s. From (6), we then conclude that∥∥∥∥∥ 1

n

n∑
i=1

(
u(di)−

1

φ−1(1)

)
xix
∗
i

∥∥∥∥∥ =

∥∥∥∥∥ĈN − ŜN
φ−1(1)

∥∥∥∥∥ a.s.−→ 0

which completes the proof of Theorem 1.
Proof of Corollary 1: The identity follows from [24, Theorem 4.3.7], according to which, for 1 ≤ i ≤ N ,

λi

(
ŜN

)
≤ λi

(
φ−1(1)ĈN

)
+ λN

(
ŜN − φ−1(1)ĈN

)
λi

(
ŜN

)
≥ λi

(
φ−1(1)ĈN

)
− λN

(
ŜN − φ−1(1)ĈN

)
.

The result follows by noticing that the second term in both right-hand sides tends to zero a.s. according to Theorem 1.

APPENDIX B
PROOF OF LEMMA 1

If the set of the eigenvalues of 1
nX(i)X

∗
(i) is contained within the set of the eigenvalues of 1

nXX
∗, then the result is

immediate from Proposition 2 in Appendix F. We can therefore assume the existence of eigenvalues of 1
nX(i)X

∗
(i) which are

not eigenvalues of 1
nXX

∗. By definition, the eigenvalues of 1
nX(i)X

∗
(i) solve the equation in λ

det

(
1

n
X(i)X

∗
(i) − λIN

)
= 0.

Take λ not to be also an eigenvalue of 1
nXX

∗. Then, developing the above expression, we get

det

(
1

n
X(i)X

∗
(i) − λIN

)
= det

(
1

n
XX∗ − 1

n
xix
∗
i − λIN

)
= detQ(λ) det

(
IN −Q(λ)−

1
2

1

n
xix
∗
iQ(λ)−

1
2

)
= detQ(λ)

(
1− 1

n
x∗iQ(λ)−1xi

)
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with the notation Q(λ) , 1
nXX

∗ − λIN , where we used det(IN +AB) = det(Ip +BA) in the last line, for A ∈ CN×p and
B ∈ Cp×N , with p = 1 here.

Therefore, since λ cannot cancel the first determinant,

1

n
x∗iQ(λ)−1xi =

1

n
x∗i

(
1

n
XX∗ − λIN

)−1
xi = 1.

Let us study the function

x 7→ fn,i(x) ,
1

n
x∗i

(
1

n
XX∗ − xIN

)−1
xi.

First note, from a basic study of the asymptotes and limits of fn,i(x), that the eigenvalues of 1
nX(i)X

∗
(i) are interleaved

with those of 1
nXX

∗ (a property known as Weyl’s interlacing lemma) and in particular that

λ1

(
1

n
X(i)X

∗
(i)

)
≤ λ1

(
1

n
XX∗

)
≤ λ2

(
1

n
X(i)X

∗
(i)

)
. (7)

Since λ1( 1
nXX

∗) is a.s. away from zero for all large N (Proposition 2), only λ1( 1
nX(i)X

∗
(i)) may remain in the neighborhood

of zero for at least one i ≤ n, for all large n.
We will show that this is impossible. Precisely, for all large n a.s., we will show that fn,i(x) < 1 for any i ≤ n and for all

x in some interval [0, ξ), ξ > 0, confirming that no eigenvalue of 1
nX(i)X

∗
(i) can be found there. For this, we first use the fact

that the fn,i(x) can be uniformly well estimated for all x < 0 through Proposition 1 in Appendix F by a quantity strictly less
than one. We then show that the growth of the fn,i(x) for x in a neighborhood of zero can be controlled, so to ensure that
none of them reaches 1 for all x < ξ. This will conclude the proof.

We start with the study of fn,i(x) on R−. From Lemma 3,

fn,i(x) =

1
nx
∗
i

(
1
nX(i)X

∗
(i) − xIN

)−1
xi

1 + 1
nx
∗
i

(
1
nX(i)X

∗
(i) − xIN

)−1
xi

.

Define

f̄n(x) ,
cNeN (x)

1 + cNeN (x)

with eN (x) the unique positive solution of (see Proposition 1)

eN (z) =

∫
t

(1 + cNeN (z))−1t− z
dFCN (t). (8)

Then, with Q(x) , 1
nXX

∗ − xIN , Qi(x) , 1
nX(i)X

∗
(i) − xIN ,

∣∣fn,i(x)− f̄n(x)
∣∣ =

∣∣∣∣ 1
nx
∗
iQi(x)−1xi

1 + 1
nx
∗
iQi(x)−1xi

− cNeN (x)

1 + cNeN (x)

∣∣∣∣
≤
∣∣∣∣ 1nx∗iQi(x)−1xi − cNeN (x)

∣∣∣∣
≤
∣∣∣∣ 1nx∗iQi(x)−1xi −

1

n
trCNQi(x)−1

∣∣∣∣
+

∣∣∣∣ 1n trCNQi(x)−1 − 1

n
trCNQ(x)−1

∣∣∣∣
+

∣∣∣∣ 1n trCNQ(x)−1 − cNeN (x)

∣∣∣∣ (9)

Using (a+ b+ c)p ≤ 3p(ap + bp + cp) for a, b, c > 0, and p ≥ 1 (Hölder’s inequality), and applying Lemma 5, Lemma 4,
and Proposition 1 to the right-hand side terms of (9), respectively, with p = 4 + η/2, we obtain

E
[∣∣fn,i(x)− f̄n(x)

∣∣4+ η
2

]
≤ K

n2+
η
4
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for some constant K independent of i, where we implicitly used A1. Therefore, using Boole’s inequality on the above event
for i ≤ n, and the Markov inequality, for all ζ > 0,

P

(
max
i≤n

∣∣fn,i(x)− f̄n(x)
∣∣ > ζ

)
≤

n∑
i=1

P
(∣∣fn,i(x)− f̄n(x)

∣∣ > ζ
)
<

K

ζ4+
η
2 n1+

η
4

.

The Borel Cantelli lemma therefore ensures, for all x < 0,

max
i≤n

∣∣fn,i(x)− f̄n(x)
∣∣ a.s.−→ 0. (10)

We now extend the study of fn,i(x) to x in a neighborhood of zero. From Proposition 2, λ1( 1
nXX

∗) > C−(1 − √c+)2

for all large n a.s. (recall that lim supN cN < c+ < 1) so that fn,i(x) is well-defined and continuously differentiable on
U = (−ε, ε) for 0 < ε < C−(1−√c+)2, for all large n a.s. Take x ∈ U . Since the smallest eigenvalue of 1

nXX
∗ − xIN is

lower bounded by C−(1−√c+)2 − ε for all large n, and that

max
i≤n

∣∣∣∣ 1n‖xi‖2 − 1

n
trCN

∣∣∣∣ a.s.−→ 0

(using similar arguments based on the Boole and Markov inequality reasoning as above), we also have that for all large n a.s.

0 < f ′n,i(x) <
c+C+

(C−(1−√c+)2 − ε)2
, K ′

where we used lim supN
1
n trCN < c+C+.

From this result, along with the continuity of fn,i, for x ∈ U and for all large n a.s.,

fn,i(x) < fn,i(−x) + 2xK ′.

In particular, for ξ = min{ε/2, (1− c+)/(2K ′)},

fn,i(ξ) < fn,i(−ξ) + (1− c+). (11)

Since eN (0) = 1 + cNeN (0) by definition (15),

f̄n(0) = cN < c+

and f̄n(x) is continuous and increasing on U , so that

f̄n(−ξ) < c+.

Recalling (10), we then conclude that, for all large n a.s.

max
i≤n

fn,i(−ξ) < c+

which, along with (11), gives, for all large n a.s.

max
i≤n

fn,i(ξ) < 1.

Since fn,i(x) is continuous and increasing on [0, ξ), the equation fn,i(x) = 1 has no solution on this interval for any i ≤ n,
for all large n a.s., which concludes the proof.

APPENDIX C
PROOF OF LEMMA 2

Define ŜN,(i) = ŜN− 1
nxix

∗
i and denote Ŝ−1N,(i) its inverse when it exists or the identity matrix otherwise. Take 2 ≤ p ≤ 4+η/2

(see A1) and ε > 0 as in Lemma 1. Denoting Exi the expectation with respect to xi and φi = 1{λ1(ŜN,(i))>ε},

Exi

[
φi

∣∣∣∣∣
1
nx
∗
i Ŝ
−1
N,(i)xi

1 + 1
nx
∗
i Ŝ
−1
N,(i)xi

−
1
n trCN Ŝ

−1
N,(i)

1 + 1
n trCN Ŝ

−1
N,(i)

∣∣∣∣∣
p]

= Exi

φi
∣∣∣∣∣∣

1
nx
∗
i Ŝ
−1
N,(i)xi −

1
n trCN Ŝ

−1
N,(i)(

1 + 1
nx
∗
i Ŝ
−1
N,(i)xi

)(
1 + 1

n trCN Ŝ
−1
N,(i)

)
∣∣∣∣∣∣
p

≤ Exi

[
φi

∣∣∣∣ 1nx∗i Ŝ−1N,(i)xi − 1

n
trCN Ŝ

−1
N,(i)

∣∣∣∣p] .
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Recalling that xi = ANyi with yi having independent zero mean and unit variance entries, from Lemma 5, we have

Exi

[
φi

∣∣∣∣∣
1
nx
∗
i Ŝ
−1
N,(i)xi

1 + 1
nx
∗
i Ŝ
−1
N,(i)xi

−
1
n trCN Ŝ

−1
N,(i)

1 + 1
n trCN Ŝ

−1
N,(i)

∣∣∣∣∣
p]

≤ φiKp

n
p
2

[(ν4
n

tr(CN Ŝ
−1
N,(i))

2
) p

2

+
ν2p

n
p
2

tr
(

(CN Ŝ
−1
N,(i))

2
) p

2

]
for some constant Kp depending only on p, with ν` any value such that E[|yij |`] ≤ ν` (well defined from A1). Using
1
nk

trAk ≤ ( 1
n trA)k for A ∈ CN×N nonnegative definite and k ≥ 1, with here A = (CN Ŝ

−1
N,(i))

2, k = p/2, this gives

Exi

[
φi

∣∣∣∣∣
1
nx
∗
i Ŝ
−1
N,(i)xi

1 + 1
nx
∗
i Ŝ
−1
N,(i)xi

−
1
n trCN Ŝ

−1
N,(i)

1 + 1
n trCN Ŝ

−1
N,(i)

∣∣∣∣∣
p]

≤ φiKp

n
p
2

(
ν
p
2
4 + ν2p

)( 1

n
tr(CN Ŝ

−1
N,(i))

2

) p
2

≤ Kp

n
p
2

(
ν
p
2
4 + ν2p

)
(c+C

2
+ε
−2)

p
2 ,

K ′p

n
p
2

(12)

where, in (12), we used trAB ≤ ‖A‖ trB for A,B � 0, φi ≤ 1, ‖Ŝ−1N,(i)‖ ≤ ε
−1 when φi = 1, and 1

n trC2
N ≤ c+C2

+.
This being valid irrespective of X(i), we can take the expectation of the above expression over X(i) to obtain

E

[
φi

∣∣∣∣∣
1
nx
∗
i Ŝ
−1
N,(i)xi

1 + 1
nx
∗
i Ŝ
−1
N,(i)xi

−
1
n trCN Ŝ

−1
N,(i)

1 + 1
n trCN Ŝ

−1
N,(i)

∣∣∣∣∣
p]
≤
K ′p

n
p
2

.

Therefore, from Lemma 3,

E

[
φi

∣∣∣∣∣ 1nx∗i Ŝ−1N xi −
1
n trCN Ŝ

−1
N,(i)

1 + 1
n trCN Ŝ

−1
N,(i)

∣∣∣∣∣
p]
≤
K ′p

n
p
2

.

Using Boole’s inequality on the n events above with i = 1, . . . , n, and Markov inequality, for ζ > 0,

P

(
max
i≤n

{
φi

∣∣∣∣∣ 1nx∗i Ŝ−1N xi −
1
n trCN Ŝ

−1
N,(i)

1 + 1
n trCN Ŝ

−1
N,(i)

∣∣∣∣∣
}
> ζ

)

≤
K ′pζ

−p

n
p
2−1

.

Choosing 4 < p ≤ 4 + η/2, the right-hand side is summable. The Borel-Cantelli lemma then ensures that

max
i≤n

{
φi

∣∣∣∣∣ 1nx∗i Ŝ−1N xi −
1
n trCN Ŝ

−1
N,(i)

1 + 1
n trCN Ŝ

−1
N,(i)

∣∣∣∣∣
}

a.s.−→ 0.

But, from Lemma 1, mini{φi} = 1 for all large n a.s. Therefore, we conclude

max
i≤n

{∣∣∣∣∣ 1nx∗i Ŝ−1N xi −
1
n trCN Ŝ

−1
N,(i)

1 + 1
n trCN Ŝ

−1
N,(i)

∣∣∣∣∣
}

a.s.−→ 0. (13)

Since ŜN,(i) − εIN � 0 for these large n, we also have

max
i≤n

∣∣∣∣∣
1
n trCN Ŝ

−1
N,(i)

1 + 1
n trCN Ŝ

−1
N,(i)

−
1
n trCN Ŝ

−1
N

1 + 1
n trCN Ŝ

−1
N

∣∣∣∣∣
= max

i≤n

∣∣∣∣∣∣
1
n trCN Ŝ

−1
N −

1
n trCN Ŝ

−1
N,(i)(

1 + 1
n trCN Ŝ

−1
N,(i)

)(
1 + 1

n trCN Ŝ
−1
N

)
∣∣∣∣∣∣ ≤ 1

n

C+

ε

where, in the last inequality, we used Lemma 4 with B = CN , A = ŜN,(i) − εIN and x = ε, along with the fact that
(1 + x)−1 ≤ 1 for x ≥ 0.

From Proposition 1, since λ1(ŜN ) ≥ λ1(ŜN,(i)) > ε for these large n (see (7)), we also have∣∣∣∣ 1n trCN Ŝ
−1
N −

cN
1− cN

∣∣∣∣ a.s.−→ 0
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and thus, from cN (1− cN )−1/(1 + cN (1− cN )−1) = cN ,∣∣∣∣∣ 1
n trCN Ŝ

−1
N

1 + 1
n trCN Ŝ

−1
N

− cN

∣∣∣∣∣ a.s.−→ 0.

Putting things together, this finally gives

max
i≤n

{∣∣∣∣ 1nx∗i Ŝ−1N xi − cN
∣∣∣∣} a.s.−→ 0

an expression which, since cN > c− > 0 for all large N , can be divided by cN , concluding the proof.

APPENDIX D
PROOF OF THEOREM 2

The proof immediately follows from the arguments of [23]. When the scalability assumption is satisfied with strict inequality,
the result is exactly [23, Theorem 2]. When the scalability assumption is reduced to a loose inequality, [23, Theorem 1] does
not hold, and therefore uniqueness cannot be satisfied. Nonetheless, the existence of a solution follows from the proof of [23,
Lemma 1] which does not call for the scalability assumption. Indeed, since there exists (q1, . . . , qn) such that qi ≥ h(q1, . . . , qn)
for all i, the algorithm

q
(t+1)
j = hj(q

(t)
1 , . . . , q(t)n )

with q
(0)
j = qj , satisfies q(1)j ≤ q

(0)
j for all j. Assuming q

(t+1)
j ≤ q

(t)
j for all j, the monotonicity assumption ensures that

q
(t+2)
j ≤ q

(t+1)
j which, by recursion, means that q(t)j is a non-increasing sequence. Now, since q(t)j is in the image of hj ,

q
(t)
j > 0 by positivity, and therefore q(t)j converges to a fixed-point (not necessarily unique). Such a fixed-point therefore exists.

Note that [23, Lemma 2] provides an algorithm for reaching this fixed-point, starting with q(0)j = 0 for all j.

APPENDIX E
PROOF OF COROLLARY 2

If ĈN is replaced by ŜN in the statement of the result, then Theorem 2 is exactly [20, Theorem 2], which is a direct
consequence of [14, Theorem 3] with some updated remarks on the µ̂i found in the discussion around [22, Theorem 17.1].
In order to prove Theorem 2, we need to justify the substitution of ŜN by ĈN . First observe that the result is independent
of a scaling of ŜN , and therefore we can freely substitute ŜN by φ−1(1)ĈN instead of ĈN . Using the notations of Mestre
in [14], we first need to extend [14, Proposition 4]. Call ĝCM (z) the equivalent of ĝM (z) designed from the eigenvectors of
φ−1(1)ĈN instead of those of ŜN (referred to as R̂M in [14] with M in place of N , and N in place of n). Then, on the
chosen rectangular contour ∂R−y (m), both ĝCM (z) and ĝM (z) are a.s. bounded holomorphic functions for all large N ; this is
due to the exact separation [15, Theorem 3] of the eigenvalues of ŜN and the fact that Corollary 1 ensures the convergence
between the eigenvalues of φ−1(1)ĈN and of ŜN .

From [14, Equation (29)], ĝM (z) consists of the functions b̂M (z) and m̂M (z) for which we also call b̂CM (z) and m̂C
M (z)

their equivalents for φ−1(1)ĈN . We need to show that the respective differences of these functions go to zero. From the
definition [14, Equation (4)] of b̂M (z), Theorem 1 and the fact that

∣∣ 1
N tr(A−1 −B−1)

∣∣ ≤ ‖A−1‖‖B−1‖‖A−B‖ for invertible
A,B ∈ CN×N , we have immediately that

sup
z∈∂R−y (m)

∣∣∣b̂M (z)− b̂CM (z)
∣∣∣ a.s.−→ 0.

Similarly, using [14, Equation (6)], and
∣∣a∗(A−1 −B−1)b

∣∣ ≤ |a∗b|‖A−1‖‖B−1‖‖A−B‖ for a, b ∈ CN , we find

sup
z∈∂R−y (m)

∣∣m̂M (z)− m̂C
M (z)

∣∣ a.s.−→ 0.

By the dominated convergence theorem, this gives∮
∂R−y (m)

(
ĝCM (z)− ĝM (z)

)
dz

a.s.−→ 0

which then immediately extends [14, Proposition 4] to the present scenario. The second step to be proved is that the residue
calculus performed in [14, Equations (32)–(33)] carries over to the present scenario. The poles within the contour ∂R−y (m)

are the λ̂k and the µ̂k found in the contour. The indices k such that the λ̂k and µ̂k are within ∂R−y (m) are the same for ŜN
and φ−1(1)ĈN for all large N , due to the exact separation property and Corollary 1. This completes the proof.
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APPENDIX F
USEFUL LEMMAS AND RESULTS

Lemma 3 (A matrix-inversion lemma): Let x ∈ CN , A ∈ CN×N , and t ∈ R. Then, whenever the inverses exist

x∗ (A+ txx∗)
−1
x = x∗A−1x(1 + tx∗A−1x)−1.

Lemma 4 (Rank-one perturbation): Let v ∈ CN , A,B ∈ CN×N nonnegative definite, and x > 0. Then

trB (A+ vv∗ + xIN )
−1 − trB (A+ xIN )

−1 ≤ x−1‖B‖.

Lemma 5 (Trace lemma): [25, Lemma B.26] Let A ∈ CN×N be non-random and y = [y1, . . . , yN ]T ∈ CN be a vector of
independent entries with E[yi] = 0, E[|yi|2] = 1, and E[|yi|`] ≤ ν` for all ` ≤ 2p, with p ≥ 2. Then,

E [|y∗Ay − trA|p] ≤ Cp
(

(ν4 trAA∗)
p
2 + ν2p tr(AA∗)

p
2

)
for Cp a constant depending on p only.

Proposition 1 (A random matrix result): Let X = [x1, . . . , xn] ∈ CN×n with xi = ANyi, AN ∈ CN×M , M ≥ N ,
where yi = [yi1, . . . , yiM ] ∈ CM has independent entries satisfying E[yij ] = 0, E[|yij |2] = 1, E[|yij |`] < ν` for all ` ≤ 2p
and CN , ANA

∗
N is nonnegative definite with ‖CN‖ < C+ < ∞. Assume cN = N/n and c̄N = M/N ≥ 1 satisfy

lim supN cN <∞ and lim supN c̄N <∞, as N,n,M →∞. Then, for z < 0, and p > 2,

E

[∣∣∣∣∣ 1

N
trCN

(
1

n
XX∗ − zIN

)−1
− eN (z)

∣∣∣∣∣
p]
≤ Kp

N
p
2

(14)

for Kp a constant depending only on p, ν` for ` ≤ 2p, and z, while eN (z) is the unique positive solution of

eN (z) =

∫
t

(1 + cNeN (z))−1t− z
dFCN (t) (15)

where FCN is the eigenvalue distribution of CN . The function R− → R+, z 7→ eN (z) is increasing.
Moreover, for any N0, as N,n→∞ with lim supN cN <∞, for z ∈ R \ SN0

, where SN0
is the union of the supports of

the eigenvalue distributions of 1
nXX

∗ for all N ≥ N0,

1

N
trCN

(
1

n
XX∗ − zIN

)−1
− eN (z)

a.s.−→ 0. (16)

Proof: To prove the first part of Proposition 1, we follow the steps of the proof of [26]. Note first that we can append AN
into an M ×M matrix by adding rows of zeros, without altering the left-hand side of (14). Using the notations of [26], we
consider the simple case where An = 0 and σnij = Cni , where Cni denotes the i-th eigenvalue of CN . Although this updated
proof of [26] would impose CN to be diagonal, it is rather easy to generalize to non-diagonal CN (see e.g. [27], [28]). The
proof then extends to the non i.i.d. case when using Lemma 5 instead of [26, (B.1)]. The second part follows from the first part
immediately for z < 0. In order to extend the result to z ∈ R \ SN0 , note that both left-hand side terms in (16) are uniformly
bounded in any compact D away from SN0 and including part of R−, and are holomorphic on D. From Vitali’s convergence
theorem [29], their difference therefore tends to zero on D, which is what we need.

Proposition 2 (No eigenvalue outside the support): Let X = [x1, . . . , xn] ∈ CN×n with xi = ANyi, AN ∈ CN×M , where
yi = [yi1, . . . , yiM ] ∈ CM has independent entries satisfying E[yij ] = 0, E[|yij |2] = 1 and E[|yij |4+η] < α for some η, α > 0,
CN , ANA

∗
N has bounded spectral norm, and N,n,M →∞ with lim supN N/n < 1, and 1 ≤ lim supN M/N <∞. Let N0

be an integer and [a, b] ⊂ R ∪ {±∞}, b > a, a segment outside the closure of the union of the supports FN/n,CN , N ≥ N0,
with F t,A the limiting support of the eigenvalues of 1

nXX
∗ when CN has the same spectrum as A for all N and N/n→ t.

Then, for all large n a.s., no eigenvalue of 1
nXX

∗ is found in [a, b].
Proof: Appending AN into an M ×M matrix filled with zeros, this unfolds from [15, Theorem 3] (for which conditions

1)-3) are met), with the supports FN/n,CN appended with the singleton {0}. Now, for AN ∈ CN×M , such that ANA∗N is
positive definite, zero is not an eigenvalue of 1

nXX
∗ for all N , a.s., which gives the result. Condition 1) of [15, Theorem 3]

holds here by definition. Condition 3) is obtained by taking ψ(x) = x2+η . Condition 2) is obtained by taking z a random
variable with Pareto distribution P (z ≤ x) = (1− ap−1x1−p)1x≥a for p = 5 + η and a = α

1
4+η ; by Markov inequality,

1

n1n2

∑
i≤n1,j≤n2

P (yij > x) ≤ αx−4−η = P (z > x).

This z has finite 4 + η order moment, which therefore enforces Condition 2).
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