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Abstract

A central limit theorem for bilinear forms of the type a∗ĈN (ρ)−1b, where a, b ∈
CN are unit norm deterministic vectors and ĈN (ρ) a robust-shrinkage estima-
tor of scatter parametrized by ρ and built upon n independent elliptical vector
observations, is presented. The fluctuations of a∗ĈN (ρ)−1b are found to be of

order N−
1
2 and to be the same as those of a∗ŜN (ρ)−1b for ŜN (ρ) a matrix of a

theoretical tractable form. This result is exploited in a classical signal detection
problem to provide an improved detector which is both robust to elliptical data
observations (e.g., impulsive noise) and optimized across the shrinkage param-
eter ρ.

Keywords: random matrix theory, robust estimation, central limit theorem,
GLRT.

1. Introduction

As an aftermath of the growing interest for large dimensional data analy-
sis in machine learning, in a recent series of articles (Couillet et al., 2013a,b;
Couillet and McKay, 2013; Zhang et al., 2014; El Karoui, 2013), several esti-
mators from the field of robust statistics (dating back to the seventies) started
to be explored under the assumption of commensurably large sample (n) and
population (N) dimensions. Robust estimators were originally designed to turn
classical estimators into outlier- and impulsive noise-resilient estimators, which
is of considerable importance in the recent big data paradigm. Among these
estimation methods, robust regression was studied in (El Karoui, 2013) which
reveals that, in the large N,n regime, the difference in norm between estimated
and true regression vectors (of size N) tends almost surely to a positive constant
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which depends on the nature of the data and of the robust regressor. In parallel,
and of more interest to the present work, (Couillet et al., 2013a,b; Couillet and
McKay, 2013; Zhang et al., 2014) studied the limiting behavior of several classes
of robust estimators ĈN of scatter (or covariance) matrices CN based on inde-
pendent zero-mean elliptical observations x1, . . . , xn ∈ CN . Precisely, (Couillet
et al., 2013a) shows that, letting N/n < 1 and ĈN be the (almost sure) unique
solution to

ĈN =
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i

under some appropriate conditions over the nonnegative function u (correspond-

ing to Maronna’s M-estimator (Maronna, 1976)), ‖ĈN − ŜN‖
a.s.−→ 0 in spec-

tral norm as N,n → ∞ with N/n → c ∈ (0, 1), where ŜN follows a stan-
dard random matrix model (such as studied in (Silverstein and Choi, 1995;
Couillet and Hachem, 2013)). In (Zhang et al., 2014), the important scenario
where u(x) = 1/x (referred to as Tyler’s M-estimator) is treated. It is in par-
ticular shown for this model that for identity scatter matrices the spectrum
of ĈN converges weakly to the Marc̆enko–Pastur law (Marc̆enko and Pastur,
1967) in the large N,n regime. Finally, for N/n → c ∈ (0,∞), (Couillet and
McKay, 2013) studied yet another robust estimation model defined, for each
ρ ∈ (max{0, 1− n/N}, 1], by ĈN = ĈN (ρ), unique solution to

ĈN (ρ) =
1

n

n∑
i=1

xix
∗
i

1
N x
∗
i Ĉ
−1
N (ρ)xi

+ ρIN . (1)

This estimator, proposed in (Pascal et al., 2013), corresponds to a hybrid robust-
shrinkage estimator reminding Tyler’s M-estimator of scale (Tyler, 1987) and
Ledoit–Wolf’s shrinkage estimator (Ledoit and Wolf, 2004). This estimator is
particularly suited to scenarios where N/n is not small, for which other esti-
mators are badly conditioned if not undefined. For this model, it is shown in
(Couillet and McKay, 2013) that supρ ‖ĈN (ρ)− ŜN (ρ)‖ a.s.−→ 0 where ŜN (ρ) also
follows a classical random matrix model.

The aforementioned approximations ŜN of the estimators ĈN , the structure
of which is well understood (as opposed to ĈN which is only defined implicitly),
allow for both a good apprehension of the limiting behavior of ĈN and more
importantly for a better usage of ĈN as an appropriate substitute for sample
covariance matrices in various estimation problems in the large N,n regime.
The convergence in norm ‖ĈN − ŜN‖

a.s.−→ 0 is indeed sufficient in many cases to
produce new consistent estimation methods based on ĈN by simply replacing
ĈN by ŜN in the problem defining equations. For example, the results of (Couil-
let et al., 2013b) led to the introduction of novel consistent estimators based
on functionals of ĈN (of the Maronna type) for power and direction-of-arrival
estimation in array processing in the presence of impulsive noise or rare outliers
(Couillet, 2014). Similarly, in (Couillet and McKay, 2013), empirical methods
were designed to estimate the parameter ρ which minimizes the expected Frobe-
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nius norm tr[(ĈN (ρ) − CN )2], of interest for various outlier-prone applications
dealing with non-small ratios N/n.1

Nonetheless, when replacing ĈN for ŜN in deriving consistent estimates, if
the convergence ‖ĈN − ŜN‖

a.s.−→ 0 helps in producing novel consistent esti-
mates, this convergence (which comes with no particular speed) is in general
not sufficient to assess the performance of the estimator for large but finite
N,n. Indeed, when second order results such as central limit theorems need be
established, say at rate N−

1
2 , to proceed similarly to the replacement of ĈN

by ŜN in the analysis, one would ideally demand that ‖ĈN − ŜN‖ = o(N−
1
2 );

but such a result, we believe, unfortunately does not hold. This constitutes a
severe limitation in the exploitation of robust estimators as their performance as
well as optimal fine-tuning often rely on second order performance. Concretely,
for practical purposes in the array processing application of (Couillet, 2014),
one may naturally ask which choice of the u function is optimal to minimize
the variance of (consistent) power and angle estimates. This question remains
unanswered to this point for lack of better theoretical results.

The main purpose of the article is twofold. From a technical aspect, taking
the robust shrinkage estimator ĈN (ρ) defined by (1) as an example, we first

show that, although the convergence ‖ĈN (ρ) − ŜN (ρ)‖ a.s.−→ 0 (from (Couillet
and McKay, 2013, Theorem 1)) may not be extensible to a rate O(N1−ε), one

has the bilinear form convergence N1−εa∗(ĈkN (ρ) − ŜkN (ρ))b
a.s.−→ 0 for each

ε > 0, each a, b ∈ CN of unit norm, and each k ∈ Z. This result implies that, if√
Na∗ŜkN (ρ)b satisfies a central limit theorem, then so does

√
Na∗ĈkN (ρ)b with

the same limiting variance. This result is of fundamental importance to any
statistical application based on such quadratic forms. Our second contribution
is to exploit this result for the specific problem of signal detection in impulsive
noise environments via the generalized likelihood-ratio test, particularly suited
for radar signals detection under elliptical noise (Conte et al., 1995; Pascal
et al., 2013). In this context, we determine the shrinkage parameter ρ which
minimizes the probability of false detections and provide an empirical consistent
estimate for this parameter, thus improving significantly over traditional sample
covariance matrix-based estimators.

The remainder of the article introduces our main results in Section 2 which
are proved in Section 3. Technical elements of proof are provided in the ap-
pendix.

Notations: In the remainder of the article, we shall denote λ1(X), . . . , λn(X)
the real eigenvalues of n×n Hermitian matrices X. The norm notation ‖·‖ being
considered is the spectral norm for matrices and Euclidean norm for vectors.
The symbol ı is the complex

√
−1.

1Other metrics may also be considered as in e.g. (Yang et al., 2014) with ρ chosen to
minimize the return variance in a portfolio optimization problem.
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2. Main Results

Let N,n ∈ N, cN , N/n, and ρ ∈ (max{0, 1−c−1
N }, 1]. Let also x1, . . . , xn ∈

CN be n independent random vectors defined by the following assumptions.

Assumption 1 (Data vectors). For i ∈ {1, . . . , n}, xi =
√
τiANwi =

√
τizi,

where

• wi ∈ CN is Gaussian with zero mean and covariance IN/N , independent
across i;

• ANA∗N , CN ∈ CN×N is such that νN , 1
N

∑N
i=1 δλi(CN ) → ν weakly,

lim supN ‖CN‖ <∞, and 1
N trCN = 1;

• τi > 0 are random or deterministic scalars.

Under Assumption 1, letting τi = τ̃i/‖wi‖ for some τ̃i independent of wi, xi
belongs to the class of elliptically distributed random vectors. Note that the
normalization 1

N trCN = 1 is not a restricting constraint since the scalars τi
may absorb any other normalization.

It has been well-established by the robust estimation theory that, even if
the τi are independent, independent of the wi, and that limn

1
n

∑n
i=1 τi = 1

a.s., the sample covariance matrix 1
n

∑n
i=1 xix

∗
i is in general a poor estimate

for CN . Robust estimators of scatter were designed for this purpose (Maronna,
1976; Tyler, 1987). In addition, if N/n is non trivial, a linear shrinkage of these
robust estimators against the identity matrix often helps in regularizing the
estimator as established in e.g., (Pascal et al., 2013; Chen et al., 2011). The
robust estimator of scatter considered in this work, which we denote ĈN (ρ), is
defined (originally in (Pascal et al., 2013)) as the unique solution to

ĈN (ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
N xiĈ

−1
N (ρ)xi

+ ρIN .

2.1. Theoretical Results

The asymptotic behavior of this estimator was studied recently in (Couillet
and McKay, 2013) in the regime where N,n→∞ in such a way that cN → c ∈
(0,∞). We first recall the important results of this article, which shall lay down
the main concepts and notations of the present work. First define

ŜN (ρ) =
1

γN (ρ)

1− ρ
1− (1− ρ)cN

1

n

n∑
i=1

ziz
∗
i + ρIN

where γN (ρ) is the unique solution to

1 =

∫
t

γN (ρ)ρ+ (1− ρ)t
νN (dt).
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For any κ > 0 small, define Rκ , [κ + max{0, 1 − c−1}, 1]. Then, from
(Couillet and McKay, 2013, Theorem 1), as N,n→∞ with cN → c ∈ (0,∞),

sup
ρ∈Rκ

∥∥∥ĈN (ρ)− ŜN (ρ)
∥∥∥ a.s.−→ 0.

A careful analysis of the proof of (Couillet and McKay, 2013, Theorem 1)
(which is performed in Section 3) reveals that the above convergence can be
refined as

sup
ρ∈Rκ

N
1
2−ε

∥∥∥ĈN (ρ)− ŜN (ρ)
∥∥∥ a.s.−→ 0 (2)

for each ε > 0. This suggests that (well-behaved) functionals of ĈN (ρ) fluctu-

ating at a slower speed than N−
1
2 +ε for some ε > 0 follow the same statistics

as the same functionals with ŜN (ρ) in place of ĈN (ρ). However, this result is
quite weak as most limiting theorems (starting with the classical central limit

theorems for independent scalar variables) deal with fluctuations of order N−
1
2

and sometimes in random matrix theory of order N−1. In our opinion, the
convergence speed (2) cannot be improved to a rate N−

1
2 . Nonetheless, thanks

to an averaging effect documented in Section 3, the fluctuation of special forms
of functionals of ĈN (ρ) can be proved to be much slower. Although among
these functionals we could have considered linear functionals of the eigenvalue
distribution of ĈN (ρ), our present concern (driven by more obvious applica-
tions) is rather on bilinear forms of the type a∗ĈkN (ρ)b for some a, b ∈ CN with
‖a‖ = ‖b‖ = 1, k ∈ Z.

Our first main result is the following.

Theorem 1 (Fluctuation of bilinear forms). Let a, b ∈ CN with ‖a‖ =
‖b‖ = 1. Then, as N,n → ∞ with cN → c ∈ (0,∞), for any ε > 0 and
every k ∈ Z,

sup
ρ∈Rκ

N1−ε
∣∣∣a∗ĈkN (ρ)b− a∗ŜkN (ρ)b

∣∣∣ a.s.−→ 0.

Some comments and remarks are in order. First, we recall that central limit
theorems involving bilinear forms of the type a∗ŜkN (ρ)b are classical objects
in random matrix theory (see e.g. (Kammoun et al., 2009; Mestre, 2008) for
k = −1), particularly common in signal processing and wireless communica-

tions. These central limit theorems in general show fluctuations at speed N−
1
2 .

This indicates, taking ε < 1
2 in Theorem 1 and using the fact that almost sure

convergence implies weak convergence, that a∗ĈkN (ρ)b exhibits the same fluctu-

ations as a∗ŜkN (ρ)b, the latter being classical and tractable while the former is

quite intricate at the onset, due to the implicit nature of ĈN (ρ).
Of practical interest to many applications in signal processing is the case

where k = −1. In the next section, we present a classical generalized maximum
likelihood signal detection in impulsive noise, for which we shall characterize
the shrinkage parameter ρ that meets minimum false alarm rates.
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2.2. Application to Signal Detection

In this section, we consider the hypothesis testing scenario by which an N -
sensor array receives a vector y ∈ CN according to the following hypotheses

y =

{
x , H0

αp+ x , H1

in which α > 0 is some unknown scaling factor constant while p ∈ CN is
deterministic and known at the sensor array (which often corresponds to a
steering vector arising from a specific known angle), and x is an impulsive noise
distributed as x1 according to Assumption 1. For convenience, we shall take
‖p‖ = 1.

Under H0 (the null hypothesis), a noisy observation from an impulsive source
is observed while under H1 both information and noise are collected at the
array. The objective is to decide on H1 versus H0 upon the observation y and
prior pure-noise observations x1, . . . , xn distributed according to Assumption 1.
When τ1, . . . , τn and CN are unknown, the corresponding generalized likelihood
ratio test, derived in (Conte et al., 1995), reads

TN (ρ)
H1

≷
H0

Γ

for some detection threshold Γ where

TN (ρ) ,
|y∗Ĉ−1

N (ρ)p|√
y∗Ĉ−1

N (ρ)y
√
p∗Ĉ−1

N (ρ)p
.

More precisely, (Conte et al., 1995) derived the detector TN (0) only valid when
n ≥ N . The relaxed detector TN (ρ) allows for a better conditioning of the
estimator, in particular for n ' N . In (Pascal et al., 2013), TN (ρ) is used
explicitly in a space-time adaptive processing setting but only simulation results
were provided. Alternative metrics for similar array processing problems involve
the signal-to-noise ratio loss minimization rather than likelihood ratio tests; in
(Abramovich and Besson, 2012; Besson and Abramovich, 2013), the authors
exploit the estimators ĈN (ρ) but restrict themselves to the less tractable finite
dimensional analysis.

Our objective is to characterize the false alarm performance of the detector.
That is, provided H0 is the actual scenario (i.e. y = x), we shall evaluate

P (TN (ρ) > Γ). Since it shall appear that, under H0, TN (ρ)
a.s.−→ 0 for every

fixed Γ > 0 and every ρ, by dominated convergence P (TN (ρ) > Γ) → 0 which
does not say much about the actual test performance for large but finite N,n. To
avoid such empty statements, we shall then consider the non-trivial case where
Γ = N−

1
2 γ for some fixed γ > 0. In this case our objective is to characterize

the false alarm probability

P

(
TN (ρ) >

γ√
N

)
.
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Before providing this result, we need some further reminders from (Couillet
and McKay, 2013). First define

ŜN (ρ) , (1− ρ)
1

n

n∑
i=1

ziz
∗
i + ρIN .

Then, from (Couillet and McKay, 2013, Lemma 1), for each ρ ∈ (max{0, 1 −
c−1}, 1],

ŜN (ρ)

ρ+ 1
γN (ρ)

1−ρ
1−(1−ρ)c

= ŜN (ρ)

where

ρ ,
ρ

ρ+ 1
γN (ρ)

1−ρ
1−(1−ρ)c

.

Moreover, the mapping ρ 7→ ρ is continuously increasing from (max{0, 1 −
c−1}, 1] onto (0, 1].

From classical random matrix considerations (see e.g. (Silverstein and Bai,
1995)), letting Z = [z1, . . . , zn] ∈ CN×n, the empirical spectral distribution2

of (1 − ρ) 1
nZ
∗Z almost surely admits a weak limit µ. The Stieltjes transform

m(z) ,
∫

(t− z)−1µ(dt) of µ at z ∈ C \ Supp(µ) is the unique complex solution
with positive (resp. negative) imaginary part if =[z] > 0 (resp. =[z] < 0) and
unique real positive solution if =[z] = 0 and <[z] < 0 to

m(z) =

(
−z + c

∫
(1− ρ)t

1 + (1− ρ)tm(z)
ν(dt)

)−1

.

We denote m′(z) the derivative of m(z) with respect to z (recall that the Stieltjes
transform of a positively supported measure is analytic, hence continuously
differentiable, away from the support of the measure).

With these definitions in place and with the help of Theorem 1, we are now
ready to introduce the main result of this section.

Theorem 2 (Asymptotic detector performance). Under hypothesis H0, as
N,n→∞ with cN → c ∈ (0,∞),

sup
ρ∈Rκ

∣∣∣∣P (TN (ρ) >
γ√
N

)
− exp

(
− γ2

2σ2
N (ρ)

)∣∣∣∣→ 0

where ρ 7→ ρ is the aforementioned mapping and

σ2
N (ρ) ,

1

2

p∗CNQ
2
N (ρ)p

p∗QN (ρ)p · 1
N trCNQN (ρ) ·

(
1− c(1− ρ)2m(−ρ)2 1

N trC2
NQ

2
N (ρ)

)
with QN (ρ) , (IN + (1− ρ)m(−ρ)CN )−1.

2That is the normalized counting measure of the eigenvalues.
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Otherwise stated,
√
NTN (ρ) is uniformly well approximated by a Rayleigh dis-

tributed random variable RN (ρ) with parameter σN (ρ). Simulation results are
provided in Figure 1 and Figure 2 which corroborate the results of Theorem 2
for N = 20 and N = 100, respectively (for a single value of ρ though). Com-
paratively, it is observed, as one would expect, that larger values for N induce
improved approximations in the tails of the approximating distribution.
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Figure 1: Histogram distribution function of the
√
NTN (ρ) versus RN (ρ), N = 20, p =

N−
1
2 [1, . . . , 1]T, [CN ]ij = 0.7|i−j|, cN = 1/2, ρ = 0.2.
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Figure 2: Histogram distribution function of the
√
NTN (ρ) versus RN (ρ), N = 100, p =

N−
1
2 [1, . . . , 1]T, [CN ]ij = 0.7|i−j|, cN = 1/2, ρ = 0.2.

The result of Theorem 2 provides an analytical characterization of the per-
formance of the GLRT for each ρ which suggests in particular the existence
of values for ρ which minimize the false alarm probability for given γ. Note
in passing that, independently of γ, minimizing the false alarm rate is asymp-
totically equivalent to minimizing σ2

N (ρ) over ρ. However, the expression of

σ2
N (ρ) depends on the covariance matrix CN which is unknown to the array and

therefore does not allow for an immediate online choice of an appropriate ρ. To
tackle this problem, the following proposition provides a consistent estimate for
σ2
N (ρ) based on ĈN (ρ) and p.
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Proposition 1 (Empirical performance estimation). For ρ ∈ (max{0, 1−
c−1
N }, 1) and ρ defined as above, let σ̂2

N (ρ) be given by

σ̂2
N (ρ) ,

1

2

1− ρ · p
∗Ĉ−2

N (ρ)p

p∗Ĉ−1
N (ρ)p

· 1
N tr ĈN (ρ)(

1− c+ cρ 1
N tr Ĉ−1

N (ρ) · 1
N tr ĈN (ρ)

)(
1− ρ 1

N tr Ĉ−1
N (ρ) · 1

N tr ĈN (ρ)
) .

Also let σ̂2
N (1) , limρ↑1 σ̂

2
N (ρ). Then we have

sup
ρ∈Rκ

∣∣σ2
N (ρ)− σ̂2

N (ρ)
∣∣ a.s.−→ 0.

Since both the estimation of σ2
N (ρ) in Proposition 1 and the convergence in

Theorem 2 are uniform over ρ ∈ Rκ, we have the following result.

Corollary 1 (Empirical performance optimum). Let σ̂2
N (ρ) be defined as

in Proposition 1 and define ρ̂∗N as any value satisfying

ρ̂∗N ∈ argminρ∈Rκ
{
σ̂2
N (ρ)

}
(this set being in general a singleton). Then, for every γ > 0,

P
(√

NTN (ρ̂∗N ) > γ
)
− inf
ρ∈Rκ

{
P
(√

NTN (ρ) > γ
)}
→ 0.

This last result states that, for N,n sufficiently large, it is increasingly close-
to-optimal to use the detector TN (ρ̂∗N ) in order to reach minimal false alarm
probability. A practical graphical confirmation of this fact is provided in Fig-
ure 3 where, in the same scenario as in Figures 1–2, the false alarm rates for
various values of γ are depicted. In this figure, the black dots correspond
to the actual values taken by P (

√
NTN (ρ) > γ) empirically obtained out of

106 Monte Carlo simulations. The plain curves are the approximating values
exp(−γ/(2σN (ρ))). Finally, the white dots with error bars correspond to the
mean and standard deviations of exp(−γ/(2σ̂N (ρ))) for each ρ, respectively.
It is first interesting to note that the estimates σ̂N (ρ) are quite accurate, es-
pecially so for N large, with standard deviations sufficiently small to provide
good estimates, already for small N , of the false alarm minimizing ρ. How-
ever, similar to Figures 1–2, we observe a particularly weak approximation in
the (small) N = 20 setting for large values of γ, corresponding to tail events,
while for N = 100, these values are better recovered. This behavior is obviously
explained by the fact that γ = 3 is not small compared to

√
N when N = 20.

Nonetheless, from an error rate viewpoint, it is observed that errors of order
10−2 are rather well approximated for N = 100. In Figure 4, we consider this
observation in depth by displaying P (TN (ρ) > Γ) and its approximations for
N = 20 and N = 100, for various values of Γ. This figures shows that even
errors of order 10−4 are well approximated for large N , while only errors of
order 10−2 can be evaluated for small N .3

3Note that a comparison against alternative algorithms that would use no shrinkage (i.e.,
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Figure 3: False alarm rate P (
√
NTN (ρ) > γ), N = 20 (left), N = 100 (right), p =

N−
1
2 [1, . . . , 1]T, [CN ]ij = 0.7|i−j|, cN = 1/2.
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Figure 4: False alarm rate P (TN (ρ) > Γ) for N = 20 and N = 100, p = N−
1
2 [1, . . . , 1]T,

[CN ]ij = 0.7|i−j|, cN = 1/2.

3. Proof

In this section, we shall successively prove Theorem 1, Theorem 2, Propo-
sition 1, and Corollary 1. Of utmost interest is the proof of Theorem 1 which

by setting ρ = 0) or that would not implement a robust estimate is not provided here, being
of little relevance. Indeed, a proper selection of cN to a large value or CN with condition
number close to one would provide an arbitrarily large gain of shrinkage-based methods, while
an arbitrarily heavy-tailed choice of the τi distribution would provide a huge performance gain
for robust methods. It is therefore not possible to compare such methods on fair grounds.
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shall be the concern of most of the section and of Appendix Appendix A for the
proof of a key lemma.

Before delving into the core of the proofs, let us introduce a few nota-
tions that shall be used throughout the section. First recall from (Couillet
and McKay, 2013) that we can write, for each ρ ∈ (max{0, 1− c−1

N }, 1],

ĈN (ρ) =
1− ρ

1− (1− ρ)cN

1

n

n∑
i=1

ziz
∗
i

1
N z
∗
i Ĉ
−1
(i) (ρ)zi

+ ρIN

where Ĉ(i)(ρ) = ĈN (ρ)− (1− ρ) 1
n

ziz
∗
i

1
N z
∗
i Ĉ
−1
N (ρ)zi

.

Now, we define

α(ρ) =
1− ρ

1− (1− ρ)cN

di(ρ) =
1

N
z∗i Ĉ

−1
(i) (ρ)zi =

1

N
z∗i

α(ρ)
1

n

∑
j 6=i

zjz
∗
j

dj(ρ)
+ ρIN

−1

zi

d̃i(ρ) =
1

N
z∗i Ŝ

−1
(i) (ρ)zi =

1

N
z∗i

α(ρ)
1

n

n∑
j 6=i

zjz
∗
j

γN (ρ)
+ ρIN

−1

zi

Clearly by uniqueness of ĈN and by the relation to Ĉ(i) above, d1(ρ), . . . , dn(ρ)
are uniquely defined by their n implicit equations. We shall also discard the
parameter ρ for readability whenever not needed.

3.1. Bilinear form equivalence

In this section, we prove Theorem 1. As shall become clear, the proof unfolds
similarly for each k ∈ Z \ {0} and we can therefore restrict ourselves to a single
value for k. As Theorem 2 relies on k = −1, for consistency, we take k = −1 from
now on. Thus, our objective is to prove that, for a, b ∈ CN with ‖a‖ = ‖b‖ = 1,
and for any ε > 0,

sup
ρ∈Rκ

N1−ε
∣∣∣a∗Ĉ−1

N (ρ)b− a∗Ŝ−1
N (ρ)b

∣∣∣ a.s.−→ 0.

For this, forgetting for some time the index ρ, first write

a∗Ĉ−1
N b− a∗Ŝ−1

N b = a∗Ĉ−1
N

(
α

n

n∑
i=1

[
1

γN
− 1

di

]
ziz
∗
i

)
Ŝ−1
N b (3)

=
α

n

n∑
i=1

a∗Ĉ−1
N zi

di − γN
γNdi

z∗i Ŝ
−1
N b. (4)

In (Couillet and McKay, 2013), where it is shown that ‖ĈN − ŜN‖
a.s.−→ 0 (that

is the spectral norm of the inner parenthesis in (3) vanishes), the core of the

11



proof was to show that max1≤i≤n |di − γN |
a.s.−→ 0 which, along with the conver-

gence of γN away from zero and the almost sure boundedness of ‖ 1
n

∑n
i=1 ziz

∗
i ‖

for all large N (from e.g. (Bai and Silverstein, 1998)), gives the result. A
thorough inspection of the proof in (Couillet and McKay, 2013) reveals that

max1≤i≤n |di−γN |
a.s.−→ 0 may be improved into max1≤i≤nN

1
2−ε|di−γN |

a.s.−→ 0

for any ε > 0 but that this speed cannot be further improved beyond N
1
2 . The

latter statement is rather intuitive since γN is essentially a sharp determinis-
tic approximation for 1

N tr Ĉ−1
N while di is a quadratic form on Ĉ−1

(i) ; classical

random matrix results involving fluctuations of such quadratic forms, see e.g.
(Kammoun et al., 2009), indeed show that these fluctuations are of order N−

1
2 .

As a consequence, max1≤i≤nN
1−ε|di − γN | and thus N1−ε‖ĈN − ŜN‖ are not

expected to vanish for small ε.
This being said, when it comes to bilinear forms, for which we shall naturally

have N
1
2−ε|a∗Ĉ−1

N b− a∗Ŝ−1
N b| a.s.−→ 0, seeing the difference in absolute values as

the n-term average (4), one may expect that the fluctuations of di−γN are suf-
ficiently loosely dependent across i to further increase the speed of convergence
from N

1
2−ε to N1−ε (which is the best one could expect from a law of large

numbers aspect if the di − γN were truly independent). It turns out that this
intuition is correct.

Nonetheless, to proceed with the proof, it shall be quite involved to work
directly with (4) which involves the rather intractable terms di (as the ran-
dom solutions to an implicit equation). As in (Couillet and McKay, 2013),
our approach will consist in first approximating di by a much more tractable
quantity. Letting γN be this approximation is however not good enough this
time since γN − di is a non-obvious quantity of amplitude O(N−

1
2 ) which, due

to intractability, we shall not be able to average across i into a O(N−1) quan-
tity. Thus, we need a refined approximation of di which we shall take to be d̃i
defined above. Intuitively, since d̃i is also a quadratic form closely related to
di, we expect di − d̃i to be of order O(N−1), which we shall indeed observe.
With this approximation in place, di can be replaced by d̃i in (4), which now
becomes a more tractable random variable (as it involves no implicit equation)
that fluctuates around γN at the expected O(N−1) speed.

Let us then introduce the variable d̃i in (3) to obtain

a∗Ĉ−1
N b− a∗Ŝ−1

N b = a∗Ĉ−1
N

(
α

n

n∑
i=1

[
1

γN
− 1

d̃i

]
ziz
∗
i

)
Ŝ−1
N b

+ a∗Ĉ−1
N

(
α

n

n∑
i=1

[
1

d̃i
− 1

di

]
ziz
∗
i

)
Ŝ−1
N b

, ξ1 + ξ2.

We will now show that ξ1 = ξ1(ρ) and ξ2 = ξ2(ρ) vanish at the appropriate
speed and uniformly so on Rκ.

Let us first progress in the derivation of ξ1(ρ) from which we wish to discard

12



the explicit dependence on ĈN . We have

ξ1 = a∗Ĉ−1
N

(
α

n

n∑
i=1

[
1

γN
− 1

d̃i

]
ziz
∗
i

)
Ŝ−1
N b

= a∗Ŝ−1
N

(
α

n

n∑
i=1

[
1

γN
− 1

d̃i

]
ziz
∗
i

)
Ŝ−1
N b

+ a∗(Ĉ−1
N − Ŝ

−1
N )

(
α

n

n∑
i=1

[
1

γN
− 1

d̃i

]
ziz
∗
i

)
Ŝ−1
N b

= a∗Ŝ−1
N

(
α

n

n∑
i=1

d̃i − γN
γ2
N

ziz
∗
i

)
Ŝ−1
N b

− a∗Ŝ−1
N

(
α

n

n∑
i=1

(d̃i − γN )2

γ2
N d̃i

ziz
∗
i

)
Ŝ−1
N b

+ a∗(Ĉ−1
N − Ŝ

−1
N )

(
α

n

n∑
i=1

[
1

γN
− 1

d̃i

]
ziz
∗
i

)
Ŝ−1
N b

, ξ11 + ξ12 + ξ13.

The terms ξ12 and ξ13 exhibit products of two terms that are expected to be
of order O(N−

1
2 ) and which are thus easily handled. As for ξ11, it no longer

depends on ĈN and is therefore a standard random variable which, although
involved, is technically tractable via standard random matrix methods. In order
to show that N1−ε max{|ξ12|, |ξ13|}

a.s.−→ 0 uniformly in ρ, we use the following
lemma.

Lemma 1. For any ε > 0,

max
1≤i≤n

sup
ρ∈Rκ

N
1
2−ε|d̃i(ρ)− γN (ρ)| a.s.−→ 0

max
1≤i≤n

sup
ρ∈Rκ

N
1
2−ε|di(ρ)− γN (ρ)| a.s.−→ 0.

Note that, while the first result is a standard, easily established, random matrix
result, the second result is the aforementioned refinement of the core result in
the proof of (Couillet and McKay, 2013, Theorem 1).

Proof (Proof of Lemma 1). We start by proving the first identity. From
(Couillet and McKay, 2013, p. 17) (taking w = −γNρα−1), we have, for each
p ≥ 2 and for each 1 ≤ k ≤ n,

E
[∣∣∣d̃k(ρ)− γN (ρ)

∣∣∣p] = O(N−
p
2 )

where the bound does not depend on ρ > max{0, 1−1/c}+κ. Let now max{0, 1−
1/c}+ κ = ρ0 < . . . < ρd

√
ne = 1 be a regular sampling of Rκ in d

√
ne intervals.

13



We then have, from Markov inequality and the union bound on n(d
√
ne + 1)

events, for C > 0 given,

P

(
max

1≤k≤n,0≤i≤d
√
ne

∣∣∣N 1
2−ε(d̃k(ρi)− γN (ρi))

∣∣∣ > C

)
≤ KN−pε+ 3

2

for some K > 0 only dependent on p and C. From the Borel Cantelli lemma,
we then have maxk,i |N

1
2−ε(d̃k(ρi)− γN (ρi))|

a.s.−→ 0 as long as −pε+ 3/2 < −1,
which is obtained for p > 5/(2ε). Using |γN (ρ) − γN (ρ′)| ≤ K|ρ − ρ′| for
some constant K and each ρ, ρ′ ∈ Rκ (see (Couillet and McKay, 2013, top of
Section 5.1)) and similarly max1≤k≤n |d̃k(ρ) − d̃k(ρ′)| ≤ K|ρ − ρ′| for all large
n a.s. (obtained by explicitly writing the difference and using the fact that
‖zk‖2/N is asymptotically bounded almost surely), we get

max
1≤i≤n

sup
ρ∈Rκ

N
1
2−ε|d̃i(ρ)− γN (ρ)| ≤ max

k,i
N

1
2−ε|d̃k(ρi)− γN (ρi)|+KN−ε

a.s.−→ 0.

The second result relies on revisiting the proof of (Couillet and McKay, 2013,
Theorem 1) incorporating the convergence speed on d̃k − γN . For convenience
and compatibility with similar derivations that appear later in the proof, we
slightly modify the original proof of (Couillet and McKay, 2013, Theorem 1).
We first define fi(ρ) = di(ρ)/γN (ρ) and relabel the di(ρ) in such a way that
f1(ρ) ≤ . . . ≤ fn(ρ) (the ordering may then depend on ρ). Then, we have by
definition of dn(ρ) = γN (ρ)fn(ρ)

γN (ρ)fn(ρ) =
1

N
z∗n

(
α(ρ)

1

n

∑
i<n

ziz
∗
i

γN (ρ)fi(ρ)
+ ρIN

)−1

zn

≤ 1

N
z∗n

(
α(ρ)

1

fn(ρ)

1

n

∑
i<n

ziz
∗
i

γN (ρ)
+ ρIN

)−1

zn

where we used fn(ρ) ≥ fi(ρ) for each i. The above is now equivalent to

γN (ρ) ≤ 1

N
z∗n

(
α(ρ)

1

n

∑
i<n

ziz
∗
i

γN (ρ)
+ fn(ρ)ρIN

)−1

zn.

We now make the assumption that there exists η > 0 and a sequence {ρ(n)} ∈ Rκ
such that fn(ρ(n)) > 1 + Nη− 1

2 infinitely often, which is equivalent to saying

dn(ρ(n)) > γN (ρ(n))(1+Nη− 1
2 ) infinitely often (i.o.). Then, from these assump-
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tions and the above first convergence result

γN (ρ(n)) ≤ 1

N
z∗n

(
α(ρ(n))

1

n

∑
i<n

ziz
∗
i

γN (ρ(n))
+ ρ(n)(1 +Nη− 1

2 )IN

)−1

zn

= d̃n(ρ(n))−Nη− 1
2

1

N
z∗n

(
1

n

∑
i<n

α(ρ(n))ziz
∗
i

ρ(n)γN (ρ(n))
+ (1 +Nη− 1

2 )IN

)−1

×

(
1

n

∑
i<n

α(ρ(n))ziz
∗
i

γN (ρ(n))
+ ρ(n)IN

)−1

zn. (5)

Now, by the first result of the lemma, letting 0 < ε < η, we have∣∣∣d̃n(ρ(n))− γN (ρ(n))
∣∣∣ ≤ max

ρ∈Rκ

∣∣∣d̃n(ρ)− γN (ρ)
∣∣∣ ≤ Nε− 1

2

for all large n a.s., so that, for these large n, d̃n(ρ(n)) ≤ γN (ρ(n)) + Nε− 1
2 .

Applying this inequality to the first right-end side term of (5) and using the
almost sure boundedness of the rightmost right-end side term entails

0 ≤ Nε− 1
2 −KNη− 1

2

for some K > 0 for all large n a.s. But, Nε/2−1/2−KNη/2−1/2 < 0 for all large
N , which contradicts the inequality. Thus, our initial assumption is wrong
and therefore, for each η > 0, we have for all large n a.s., dn(ρ) < γN (ρ) +

Nη− 1
2 uniformly on ρ ∈ Rκ. The same calculus can be performed for d1(ρ) by

assuming that f1(ρ′(n)) < 1−Nη− 1
2 i.o. over some sequence ρ′(n); by reverting

all inequalities in the derivation above, we similarly conclude by contradiction
that d1(ρ) > γN (ρ)−Nη− 1

2 for all large n, uniformly so in Rκ. Together, both
results finally lead, for each ε > 0, to

max
1≤k≤n

sup
ρ∈Rκ

∣∣∣N 1
2−ε (dk(ρ)− γN (ρ))

∣∣∣ a.s.−→ 0

obtained by fixing ε, taking η such that 0 < η < ε, and using maxk supρ |dk(ρ)−
γN (ρ)| < Nη− 1

2 for all large n a.s.

Thanks to Lemma 1, expressing Ĉ−1
N (ρ) − Ŝ−1

N (ρ) as a function of di(ρ) −
γN (ρ) and using the (almost sure) boundedness of the various terms involved,

we finally get N1−εξ12
a.s.−→ 0 and N1−εξ13

a.s.−→ 0 uniformly on ρ.

It then remains to handle the more delicate term ξ11, which can be further
expressed as

ξ11 =
α

γ2
N

a∗Ŝ−1
N

(
1

n

n∑
i=1

(d̃i − γN )ziz
∗
i

)
Ŝ−1
N b

=
α

γ2
N

1

n

n∑
i=1

a∗Ŝ−1
N ziz

∗
i Ŝ
−1
N b

(
d̃i − γN

)
.
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For that, we will resort to the following lemma, whose proof is postponed to
Appendix Appendix A.

Lemma 2. Let c and d be random or deterministic vectors, independent of
z1, · · · , zn, such that max

(
E[‖c‖k],E[‖d‖k]

)
≤ K for some K > 0 and all integer

k. Then, for each integer p,

E

∣∣∣∣∣ 1n
n∑
i=1

c∗Ŝ−1
N ziz

∗
i Ŝ
−1
N d

(
1

N
z∗i Ŝ

−1
(i) zi − γN (ρ)

)∣∣∣∣∣
2p
 = O

(
N−2p

)

By the Markov inequality and the union bound, similar to the proof of
Lemma 1, we get from Lemma 2 (with a = c and d = b) that, for each η > 0
and for each integer p ≥ 1,

P

(
sup

ρ∈{ρ0<...<ρd√ne}
N1−ε|ξ11| > η

)
≤ KN−pε+ 1

2

with K only function of η and ρ0 < . . . < ρd
√
ne a regular sampling of Rκ.

Taking p > 3/(2ε), we finally get from the Borel Cantelli lemma that

N1−εξ11
a.s.−→ 0

uniformly on {ρ0, . . . , ρd
√
ne} and finally, using Lipschitz arguments as in the

proof of Lemma 1, uniformly on Rκ. Putting all results together, we finally
have

sup
ρ∈Rκ

N1−ε|ξ1(ρ)| a.s.−→ 0

which concludes the first part of the proof.

We now continue with ξ2(ρ). In order to prove N1−εξ2(ρ)
a.s.−→ 0 uniformly

on ρ ∈ Rκ, it is sufficient (thanks to the boundedness of the various terms
involved) to prove that

max
1≤i≤n

sup
ρ∈Rκ

∣∣∣N1−ε
(
d̃i(ρ)− di(ρ)

)∣∣∣ a.s.−→ 0.

To obtain this result, we first need the following fundamental proposition.

Proposition 2. For any ε > 0,

max
1≤k≤n

sup
ρ∈Rκ

∣∣∣∣∣∣∣N1−ε

d̃k(ρ)− 1

N
z∗k

α(ρ)
1

n

∑
i 6=k

ziz
∗
i

d̃i(ρ)
+ ρIN

−1

zk


∣∣∣∣∣∣∣ a.s.−→ 0.
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Proof. By expanding the definition of d̃k, first observe that

d̃k −
1

N
z∗k

α 1

n

∑
i 6=k

ziz
∗
i

d̃i
+ ρIN

−1

zk

= α
1

n

∑
i6=k

1

N
z∗kŜ

−1
(k)ziz

∗
i

γN − d̃i
γN d̃i

α 1

n

∑
j 6=k

zjz
∗
j

d̃j
+ ρIN

−1

zk.

Similar to the derivation of ξ1, we now proceed to approximating d̃i in the central
denominator and each d̃j in the rightmost inverse matrix by the non-random
γN . We obtain (from Lemma 1)

d̃k −
1

N
z∗k

α 1

n

∑
i 6=k

ziz
∗
i

d̃i
+ ρIN

−1

zk

=
α

γ2
N

1

n

∑
i 6=k

1

N
z∗kŜ

−1
(k)ziz

∗
i (γN − d̃i)Ŝ−1

(k)zk + o(Nε−1)

almost surely, for ε > 0 and uniformly so on ρ.
The objective is then to show that the first right-hand side term is o(Nε−1)

almost surely and that this holds uniformly on k and ρ. This is achieved by
applying Lemma 2 with c = d = zk. Indeed, Lemma 2 ensures that, for each
integer p,4

E

∣∣∣∣∣∣ 1n
∑
i 6=k

1

N
z∗kS

−1
(k)(ρ)ziz

∗
i S
−1
(k)(ρ)zk

(
1

N
z∗i S

−1
(i,k)(ρ)zi − γN (ρ)

)∣∣∣∣∣∣
p = O(N−p)

From this lemma, applying Markov’s inequality, we have for each k,

P

N1−ε

∣∣∣∣∣∣ 1n
∑
i 6=k

1

N
z∗kŜ

−1
(k)ziz

∗
i Ŝ
−1
(k)zk

(
1

N
z∗i Ŝ

−1
(i,k)zi − γN

)∣∣∣∣∣∣ > η

 ≤ KN−pε
for some K > 0 only dependent on η > 0. Applying the union bound on the
n(n+1) events for k = 1, . . . , n and for ρ ∈ {ρ0, . . . , ρn}, regular n-discretization
of Rκ, we then have

P

max
k,j

N1−ε

∣∣∣∣∣∣ 1n
∑
i 6=k

1

N
z∗kŜ

−1
(k)ziz

∗
i Ŝ
−1
(k)zk

(
1

N
z∗i Ŝ

−1
(i,k)zi − γN (ρj)

)∣∣∣∣∣∣ > η


≤ KN−pε+2.

4Note that Lemma 2 can strictly be applied here for n − 1 instead of n; but since 1/n −
1/(n− 1) = O(n−2), this does not affect the result.
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Taking p > 3/ε, by the Borel Cantelli lemma the above convergence holds almost
surely, we finally get

max
k,j

∣∣∣∣∣∣∣N1−ε

d̃k(ρj)−
1

N
z∗k

α(ρj)
1

n

∑
i 6=k

ziz
∗
i

d̃i(ρj)
+ ρjIN

−1

zk


∣∣∣∣∣∣∣ a.s.−→ 0.

Using the ρ-Lipschitz property (which holds almost surely so for all large n a.s.)
on both terms in the above difference concludes the proof of the proposition.

The crux of the proof for the convergence of ξ2 starts now. In a similar
manner as in the proof of Lemma 1, we define f̃i(ρ) = di(ρ)/d̃i(ρ) and reorder
the indexes in such a way that f̃1(ρ) ≤ . . . ≤ f̃n(ρ) (this ordering depending on
ρ). Then, by definition of dn(ρ) = f̃i(ρ)d̃i(ρ),

d̃n(ρ)f̃n(ρ) =
1

N
z∗n

(
α(ρ)

1

n

∑
i<n

ziz
∗
i

d̃i(ρ)f̃i(ρ)
+ ρIn

)−1

zn

≤ 1

N
z∗n

(
α(ρ)

1

f̃n(ρ)

1

n

∑
i<n

ziz
∗
i

d̃i(ρ)
+ ρIn

)−1

zn

where we used f̃n(ρ) ≥ f̃i(ρ) for each i. This inequality is equivalent to

d̃n(ρ) ≤ 1

N
z∗n

(
α(ρ)

1

n

∑
i<n

ziz
∗
i

d̃i(ρ)
+ f̃n(ρ)ρIn

)−1

zn.

Assume now that, over some sequence {ρ(n)} ∈ Rκ, f̃n(ρ(n)) > 1 + Nη−1 in-
finitely often for some η > 0 (or equivalently, dn(ρ(n)) > d̃n(ρ(n)) +Nη−1 i.o.).
Then we would have

d̃n(ρ(n)) ≤ 1

N
z∗n

(
α(ρ(n))

1

n

∑
i<n

ziz
∗
i

d̃i(ρ(n))
+ ρ(n)(1 +Nη−1)IN

)−1

zn

= d̃n(ρ(n))−Nη−1 1

N
z∗n

(
1

n

∑
i<n

α(ρ(n))ziz
∗
i

ρ(n)d̃i(ρ(n))
+ (1 +Nη−1)IN

)−1

×

(
1

n

∑
i<n

α(ρ(n))ziz
∗
i

d̃i(ρ(n))
+ ρIN

)−1

zn.

But, by Proposition 2, letting 0 < ε < η, we have, for all large n a.s.,

1

N
z∗n

(
α(ρ(n))

1

n

∑
i<n

ziz
∗
i

d̃i(ρ(n))
+ ρ(n)In

)−1

zn ≤ d̃n(ρ(n)) +Nε−1
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which, along with the uniform boundedness of the d̃i away from zero, leads to

d̃n(ρ(n)) ≤ d̃n(ρ(n)) +Nε−1 −KNη−1

for some K > 0. But, as Nε−1 − KNη−1 < 0 for all large N , we obtain a
contradiction. Hence, for each η > 0, we have for all large n a.s., dn(ρ) < d̃n(ρ)+
Nη−1 uniformly on ρ ∈ Rκ. Proceeding similarly with d1(ρ), and exploiting
lim supn supρ maxi |d̃i(ρ)| = O(1) a.s., we finally have, for each 0 < ε < 1

2 , that

max
1≤k≤n

sup
ρ∈Rκ

∣∣∣N1−ε
(
dk(ρ)− d̃k(ρ)

)∣∣∣ a.s.−→ 0

(for this, take an η such that 0 < η < ε and use maxk supρ |dk(ρ)−d̃k(ρ)| < Nη−1

for all large n a.s.).
Getting back to ξ2, we now have

N1−ε|ξ2(ρ)| = N1−ε

∣∣∣∣∣a∗Ĉ−1
N (ρ)

(
α(ρ)

n

n∑
i=1

di(ρ)− d̃i(ρ)

di(ρ)d̃i(ρ)
ziz
∗
i

)
Ŝ−1
N (ρ)b

∣∣∣∣∣ .
But, from the above result,

N1−ε

∥∥∥∥∥α(ρ)

n

n∑
i=1

di(ρ)− d̃i(ρ)

di(ρ)d̃i(ρ)
ziz
∗
i

∥∥∥∥∥ ≤ N1−ε max
1≤k≤n

∣∣∣∣∣dk(ρ)− d̃k(ρ)

dk(ρ)d̃k(ρ)

∣∣∣∣∣
∥∥∥∥∥α(ρ)

n

n∑
i=1

ziz
∗
i

∥∥∥∥∥
a.s.−→ 0

uniformly so on ρ ∈ Rκ which, along with the boundedness of ‖Ĉ−1
N ‖, ‖Ŝ

−1
N ‖,

‖a‖, and ‖b‖, finally gives N1−εξ2
a.s.−→ 0 uniformly on ρ ∈ Rκ as desired.

We have then proved that for each ε > 0,

sup
ρ∈Rκ

∣∣∣N1−ε
(
a∗Ĉ−1

N (ρ)b− a∗Ŝ−1
N (ρ)b

)∣∣∣ a.s.−→ 0

which proves Theorem 1 for k = −1. The generalization to arbitrary k is rather
immediate. Writing recursively ĈkN−ŜkN = Ĉk−1

N (ĈN−ŜN )+(Ĉk−1
N −Ŝk−1

N )ŜN ,

for positive k or ĈkN−ŜkN = ĈkN (ŜN−ĈN )Ŝ−1
N +(Ĉk−1

N −Ŝk−1
N )Ŝ−1

N , (3) becomes
a finite sum of terms that can be treated almost exactly as in the proof. This
concludes the proof of Theorem 1.

3.2. Fluctuations of the GLRT detector

This section is devoted to the proof of Theorem 2, which shall fundamentally
rely on Theorem 1. The proof will be established in two steps. First, we shall
prove the convergence for each ρ ∈ Rκ, which we then generalize to the uniform
statement of the theorem.

Let us then fix ρ ∈ Rκ for the moment. In anticipation of the eventual
replacement of ĈN (ρ) by ŜN (ρ), we start by studying the fluctuations of the
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bilinear forms involved in TN (ρ) but with ĈN (ρ) replaced by ŜN (ρ) (note that

TN (ρ) remains constant when scaling ĈN (ρ) by any constant, so that replacing
ĈN (ρ) by ŜN (ρ) instead of by ŜN (ρ) · 1

N tr ŜN (ρ) as one would expect comes
with no effect).

Our first goal is to show that the vector
√
N(<[y∗Ŝ

−1

N (ρ)p],=[y∗Ŝ
−1

N (ρ)p]) is
asymptotically well approximated by a zero mean Gaussian vector with given
covariance matrix. To this end, let us denote A = [y p] ∈ CN×2 and QN =
QN (ρ) = (IN+(1−ρ)m(−ρ)CN )−1. Then, from (Chapon et al., 2012, Lemma 5.3)
(adapted to our current notations and normalizations), for any Hermitian B ∈
C2×2 and for any u ∈ R,

E

[
exp

(
ı
√
Nu trBA∗

[
ŜN (ρ)−1 − 1

ρ
QN (ρ)

]
A

) ∣∣∣ y]
= exp

(
−1

2
u2∆2

N (B; y; p)

)
+O(N−

1
2 ) (6)

where we denote by E[·|y] the conditional expectation with respect to the ran-
dom vector y and where

∆2
N (B; y; p) ,

cm(−ρ)2(1− ρ)2 tr
(
ABA∗CNQ

2
N (ρ)

)2
ρ2
(
1− cm(−ρ)2(1− ρ)2 1

N trC2
NQ

2
N (ρ)

) .
Also, we have from classical central limit results on Gaussian random vari-

ables

E
[
exp

(
ı
√
Nu trB

[
A∗QN (ρ)A− ΓN

])]
= exp

(
−1

2
u2∆′2N (B; p)

)
+O(N−

1
2 )

where

ΓN ,
1

ρ

[
1
N trCNQN (ρ) 0

0 p∗QN (ρ)p

]
∆′2N (B; p) ,

B2
11

ρ2

1

N
trC2

NQ
2
N (ρ) +

2|B12|2

ρ2
p∗CNQ

2
N (ρ)p.

Besides, the O(N−
1
2 ) terms in the right-hand side of (6) remains O(N−

1
2 ) under

expectation over y (for this, see the proof of (Chapon et al., 2012, Lemma 5.3)).
Altogether, we then have

E
[
exp

(
ı
√
Nu trB

[
A∗Ŝ

−1

N (ρ)A− ΓN

])]
= E

[
exp

(
−1

2
u2∆2

N (B; y; p)

)]
exp

(
−1

2
u2∆′2N (B; p)

)
+O(N−

1
2 ).

Note now that

A∗CNQ
2
N (ρ)A−ΥN

a.s.−→ 0
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where

ΥN ,

[
1
N trC2

NQ
2
N (ρ) 0

0 p∗CNQ
2
N (ρ)p

]
so that, by dominated convergence, we obtain

E
[
exp

(
ı
√
Nu trB

[
A∗Ŝ

−1

N (ρ)A− ΓN

])]
= exp

(
−1

2
u2
[
∆2
N (B; p) + ∆′2N (B; p)

])
+ o(1)

where we defined

∆2
N (B; p) ,

cm(−ρ)2(1− ρ)2 tr (BΥN )
2

ρ2
(
1− cm(−ρ)2(1− ρ)2 1

N trC2
NQ

2
N (ρ)

) .
By a generalized Lévy’s continuity theorem argument (see e.g. (Hachem

et al., 2008, Proposition 6)) and the Cramer-Wold device, we conclude that

√
N
(
y∗Ŝ

−1

N (ρ)y,<[y∗Ŝ
−1

N (ρ)p],=[y∗Ŝ
−1

N (ρ)p]
)
− ZN = oP (1)

where ZN is a Gaussian random vector with mean and covariance matrix pre-

scribed by the above approximation of
√
N trBA∗Ŝ

−1

N A for each Hermitian B.

In particular, taking B1 ∈
{[

0 1
2

1
2 0

]
,
[

0 ı
2

− ı
2 0

]}
to retrieve the asymptotic vari-

ances of
√
N<[y∗Ŝ

−1

N (ρ)p] and
√
N=[y∗Ŝ

−1

N (ρ)p], respectively, gives

∆2
N (B1; p) =

1

2ρ2
p∗CNQ

2
N (ρ)p

cm(−ρ)2(1− ρ)2 1
N trC2

NQ
2
N (ρ)

1− cm(−ρ)2(1− ρ)2 1
N trC2

NQ
2
N (ρ)

∆′2N (B1; p) =
1

2ρ2
p∗CNQ

2
N (ρ)p

and thus
√
N(<[y∗Ŝ

−1

N (ρ)p],=[y∗Ŝ
−1

N (ρ)p]) is asymptotically equivalent to a
Gaussian vector with zero mean and covariance matrix

(∆2
N (B1; p) + ∆′2N (B1; p))I2 =

1

2ρ2

p∗CNQ
2
N (ρ)p

1− cm(−ρ)2(1− ρ)2 1
N trC2

NQ
2
N (ρ)

I2.

We are now in position to apply Theorem 1. Reminding that Ŝ−1
N (ρ)(ρ +

1
γN (ρ)

1−ρ
1−(1−ρ)c ) = Ŝ

−1

N (ρ), we have by Theorem 1 for k = −1

√
NA∗

[
Ĉ−1
N (ρ)−

ŜN (ρ)−1

ρ+ 1
γN (ρ)

1−ρ
1−(1−ρ)c

]
A

a.s.−→ 0.

Since almost sure convergence implies weak convergence,
√
NA∗Ĉ−1

N (ρ)A has

the same asymptotic fluctuations as
√
NA∗Ŝ

−1

N (ρ)A/( 1
N tr ŜN (ρ)). Also, as
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TN (ρ) remains identical when scaling Ĉ−1
N (ρ) by 1

N tr ŜN (ρ), only the fluctua-

tions of
√
NA∗Ŝ

−1

N (ρ)A are of interest, which were previously derived. We then
finally conclude by the delta method (or more directly by Slutsky’s lemma) that√

N

y∗Ĉ−1
N (ρ)yp∗Ĉ−1

N (ρ)p

< [y∗Ĉ−1
N (ρ)p

]
=
[
y∗Ĉ−1

N (ρ)p
]− σN (ρ)Z ′ = oP (1)

for some Z ′ ∼ N(0, I2) and

σ2
N (ρ) ,

1

2

p∗CNQ
2
N (ρ)p

p∗QN (ρ)p · 1
N trCNQN (ρ) ·

(
1− cm(−ρ)2(1− ρ)2 1

N trC2
NQ

2
N (ρ)

) .
It unfolds that, for γ > 0,

P

(
TN (ρ) >

γ√
N

)
− exp

(
− γ2

2σ2
N (ρ)

)
→ 0 (7)

as desired.

The second step of the proof is to generalize (7) to uniform convergence
across ρ ∈ Rκ. To this end, somewhat similar to above, we shall transfer the
distribution P (

√
NTN (ρ) > γ) to P (

√
NTN (ρ) > γ) by exploiting the uniform

convergence of Theorem 1, where we defined

TN (ρ) ,

∣∣∣y∗ŜN (ρ)p
∣∣∣√

y∗ŜN (ρ)y
√
p∗ŜN (ρ)p

and exploit a ρ-Lipschitz property of
√
NTN (ρ) to reduce the uniform conver-

gence over Rκ to a uniform convergence over finitely many values of ρ.
The ρ-Lipschitz property we shall need is as follows: for each ε > 0

lim
δ→0

lim
N→∞

P

 sup
ρ,ρ′∈Rκ
|ρ−ρ′|<δ

√
N |TN (ρ)− TN (ρ′)| > ε

 = 0. (8)

Let us prove this result. By Theorem 1, since almost sure convergence implies
convergence in distribution, we have

P

(
sup
ρ∈Rκ

√
N |TN (ρ)− TN (ρ)| > ε

)
→ 0.

Applying this result to (8) induces that it is sufficient to prove (8) for TN (ρ) in

place of TN (ρ). Let η > 0 small and A
η
N , {∃ρ ∈ Rκ, y

∗Ŝ
−1

N (ρ)yp∗Ŝ
−1

N (ρ)p <
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η}. Developing the difference TN (ρ) − TN (ρ′) and isolating the denominator
according to its belonging to A

η
N or not, we may write

P

 sup
ρ,ρ′∈Rκ
|ρ−ρ′|<δ

√
N |TN (ρ)− TN (ρ′)| > ε



≤ P (AηN ) + P

 sup
ρ,ρ′∈Rκ
|ρ−ρ′|<δ

√
NVN (ρ, ρ′) > εη


where

VN (ρ, ρ′) ,
∣∣∣y∗Ŝ−1

N (ρ)p
∣∣∣√y∗Ŝ−1

N (ρ′)y

√
p∗Ŝ

−1

N (ρ′)p

−
∣∣∣y∗Ŝ−1

N (ρ′)p
∣∣∣√y∗Ŝ−1

N (ρ)y

√
p∗Ŝ

−1

N (ρ)p.

From classical random matrix results, P (AηN ) → 0 for a sufficiently small

choice of η. To prove that limδ lim supn P (sup|ρ−ρ′|<δ
√
NVN (ρ, ρ′) > εη) = 0,

it is then sufficient to show that

lim
δ→0

lim sup
n

P

 sup
ρ,ρ′∈Rκ
|ρ−ρ′|<δ

√
N |y∗ŜN (ρ)−1p− y∗ŜN (ρ′)−1p| > ε′

 = 0 (9)

for any ε′ > 0 and similarly for y∗ŜN (ρ)−1y − y∗ŜN (ρ′)−1y and p∗ŜN (ρ)−1p−
p∗ŜN (ρ′)−1p. Let us prove (9), the other two results following essentially the
same line of arguments. For this, by (Kallenberg, 2002, Corollary 16.9) (see also
(Billingsley, 1968, Theorem 12.3)), it is sufficient to prove, say

sup
ρ,ρ′∈Rκ
ρ6=ρ′

sup
n

E

[√
N
∣∣∣y∗ŜN (ρ)−1p− y∗ŜN (ρ′)−1p

∣∣∣2]
|ρ− ρ′|2

<∞.

But then, remarking that
√
Ny∗ŜN (ρ)−1p− y∗ŜN (ρ′)−1p

= (ρ′ − ρ)
√
Ny∗ŜN (ρ)−1

(
IN −

1

n

n∑
i=1

ziz
∗
i

)
ŜN (ρ′)−1p

this reduces to showing that

sup
ρ,ρ′∈Rκ

sup
n

E

N ∣∣∣∣∣y∗ŜN (ρ)−1

(
IN −

1

n

n∑
i=1

ziz
∗
i

)
ŜN (ρ′)−1p

∣∣∣∣∣
2
 <∞.
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Conditioning first on z1, . . . , zn, this further reduces to showing

sup
ρ,ρ′∈Rκ

sup
n

E

∥∥∥∥∥ŜN (ρ)−1

(
IN −

1

n

n∑
i=1

ziz
∗
i

)
ŜN (ρ′)−1p

∥∥∥∥∥
2
 <∞.

But this is yet another standard random matrix result, obtained e.g., by noticing
that ∥∥∥∥∥ŜN (ρ)−1

(
IN −

1

n

n∑
i=1

ziz
∗
i

)
ŜN (ρ′)−1p

∥∥∥∥∥
2

≤ 1

κ4

∥∥∥∥∥IN − 1

n

n∑
i=1

ziz
∗
i

∥∥∥∥∥
2

which remains of uniformly finite expectation (left norm is vector Euclidean
norm, right norm is matrix spectral norm). This completes the proof of (8).

Getting back to our original problem, let us now take ε > 0 arbitrary, ρ1 <
. . . < ρK be a regular sampling of Rκ, and δ = 1/K. Then by (7), K being
fixed, for all n > n0(ε),

max
1≤k≤K

∣∣∣∣P (TN (ρi) >
γ√
N

)
− exp

(
− γ2

2σ2
N (ρi)

)∣∣∣∣ < ε. (10)

Also, from (8), for small enough δ,

max
1≤k≤K

P

 sup
ρ∈Rκ
|ρ−ρk|<δ

√
N |TN (ρ)− TN (ρk)| > γζ


≤ P

 sup
ρ,ρ′∈Rκ
|ρ−ρ′|<δ

√
N |TN (ρ)− TN (ρ′)| > γζ


< ε

for all large n > n′0(ε, ζ) > n0(ε) where ζ > 0 is also taken arbitrarily small.
Thus we have, for each ρ ∈ Rκ and for n > n′0(ε, ζ)

P

(
TN (ρ) >

γ√
N

)
≤ P

(
TN (ρi) >

γ(1− ζ)√
N

)
+ P

(√
N |TN (ρ)− TN (ρi)| > γζ

)
≤ P

(
TN (ρi) >

γ(1− ζ)√
N

)
+ ε

for i ≤ K the unique index such that |ρ−ρi| < δ and where the inequality holds
uniformly on ρ ∈ Rκ. Similarly, reversing the roles of ρ and ρi,

P

(
TN (ρ) >

γ√
N

)
≥ P

(
TN (ρi) >

γ(1 + ζ)√
N

)
− ε.
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As a consequence, by (10), for n > n′0(ε, ζ), uniformly on ρ ∈ Rκ,

P

(
TN (ρ) >

γ√
N

)
≤ exp

(
−γ

2(1− ζ)2

2σ2
N (ρi)

)
+ 2ε

P

(
TN (ρ) >

γ√
N

)
≥ exp

(
−γ

2(1 + ζ)2

2σ2
N (ρi)

)
− 2ε

which, by continuity of the exponential and of ρ 7→ σN (ρ),5 letting ζ and δ small
enough (up to growing n′0(ε, ζ)), leads to

sup
ρ∈Rκ

∣∣∣∣P (√NTN (ρ) > γ
)
− exp

(
− γ2

2σ2
N (ρ)

)∣∣∣∣ ≤ 3ε

for all n > n′0(ε, ζ), which completes the proof.

3.3. Around empirical estimates

This section is dedicated to the proof of Proposition 1 and Corollary 1.
We start by showing that σ̂2

N (1) is well defined. It is easy to observe that the
ratio defining σ̂2

N (ρ) converges to an undetermined form (zero over zero) as ρ ↑ 1.

Applying l’Hospital’s rule to the ratio, using the differentiation d
dρ Ŝ

−1

N (ρ) =

−Ŝ
−2

N (ρ)(IN − 1
n

∑
i ziz

∗
i ) and the limit Ŝ

−1

N (ρ)→ IN as ρ ↑ 1, we end up with

σ̂2
N (ρ)→ 1

2

p∗
(

1
n

∑n
i=1 ziz

∗
i

)
p

1
N tr

(
1
n

∑n
i=1 ziz

∗
i

) .
Letting ε > 0 arbitrary, since p∗ 1

n

∑
i ziz

∗
i p−p∗CNp

a.s.−→ 0, 1
N tr 1

n

∑
i ziz

∗
i

a.s.−→ 1
as n→∞, we immediately have, by continuity of both σ2

N (ρ) and σ̂2
N (ρ),

sup
ρ∈(1−κ,1]

∣∣σ̂2
N (ρ)− σ2

N (ρ)
∣∣ ≤ ε

for all large n almost surely. From now on, it then suffices to prove Proposition 1
on the complementary set R′κ , [κ + min{0, 1 − c−1}, 1 − κ]. For this, we first
recall the following results borrowed from (Couillet and McKay, 2013):

sup
ρ∈Rκ

∥∥∥∥∥ ĈN (ρ)
1
N tr ĈN (ρ)

− ŜN (ρ)

∥∥∥∥∥ a.s.−→ 0.

Also, for z ∈ C \ R+, defining

Ŝ
N

(z) , (1− ρ)
1

n

n∑
i=1

ziz
∗
i − zIN

5Note that it is unnecessary to ensure lim infN σN (ρ) > 0 as the exponential would tend
to zero anyhow in this scenario.
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(so in particular Ŝ
N

(−ρ) = ŜN (ρ), for all ρ ∈ Rκ), we have, with C a compact

set of C \ R+ and any integer k,

sup
z̄∈C

∣∣∣∣ dkdzk
{

1

N
tr Ŝ

−1

N
(z)− 1

N
tr
(
−z
[
IN + (1− ρ)mN (z)CN

])−1
}
z=z̄

∣∣∣∣ a.s.−→ 0

sup
z̄∈C

∣∣∣∣ dkdzk {p∗Ŝ−1

N
(z)p− p∗

(
−z
[
IN + (1− ρ)mN (z)CN

])−1
p
}
z=z̄

∣∣∣∣ a.s.−→ 0

where mN (z) is defined as the unique solution with positive (resp. negative)
imaginary part if =[z] > 0 (resp. =[z] < 0) or unique positive solution if z < 0
of

mN (z) =

(
−z + c

∫
(1− ρ)t

1 + (1− ρ)tmN (z)
νN (dt)

)−1

(this follows directly from (Silverstein and Bai, 1995)).
This expression of mN (z) can be more rewritten under the more convenient

form

mN (z) = −1− c
z

+ c

∫
νN (dt)

−z − z(1− ρ)tmN (z)

= −1− c
z

+ c
1

N
tr
(
−z
[
IN + (1− ρ)mN (z)CN

])−1

so that, from the above relations

sup
ρ∈R′κ

∣∣∣∣mN (−ρ)−
(

1− cN
ρ

+ cN
1

N
tr Ĉ−1

N (ρ) · 1

N
tr ĈN (ρ)

)∣∣∣∣ a.s.−→ 0

sup
ρ∈R′κ

∣∣∣∣∣
∫

tνN (dt)

1 + (1− ρ)mN (−ρ)t
−

1− ρ 1
N tr Ĉ−1

N (ρ) · 1
N tr ĈN (ρ)

(1− ρ)mN (−ρ)

∣∣∣∣∣ a.s.−→ 0.

Differentiating along z the first defining identity of mN (z), we also recall that

m′N (z) =
m2
N (z)

1− c
∫ mN (z)2(1−ρ)2t2νN (dt)

(1−(1−ρ)tmN (−ρ))2
.

Now, remark that

p∗Ŝ
N

(ρ)−2p =
d

dz

[
p∗Ŝ

N
(z)−1p

]
z=−ρ

which (by analyticity) is uniformly well approximated by

d

dz

[
p∗
(
−z
[
IN + (1− ρ)mN (z)CN

])−1
p
]
z=−ρ

=
1

ρ2
p∗QN (ρ)p− 1

ρ
(1− ρ)m′N (−ρ)p∗CNQ

2
N (ρ)p

=
1

ρ2
p∗QN (ρ)p− 1

ρ
(1− ρ)

m2
N (−ρ)p∗CNQ

2
N (ρ)p

1− cmN (−ρ)2(1− ρ)2 1
N trQ2

N (ρ)
.
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(recall that QN (ρ) =
(
IN + (1− ρ)mN (−ρ)CN

)−1
). We then conclude

sup
ρ∈R′κ

∣∣∣∣∣ p∗CNQ
2
N (ρ)p

1− cmN (−ρ)2(1− ρ)2 1
N trQ2

N (ρ)

−
p∗Ĉ−1

N (ρ)p · 1
N tr ĈN (ρ)− ρp∗Ĉ−2

N (ρ)p ·
(

1
N tr ĈN (ρ)

)2

(1− ρ)mN (−ρ)2

∣∣∣∣∣∣∣ a.s.−→ 0.

Putting all results together, we obtain the expected result.

It now remains to prove Corollary 1. This is easily performed thanks to
Theorem 2 and Proposition 1. From these, we indeed have the three relations

P
(√

NTN (ρ̂∗N ) > γ
)
− exp

(
− γ2

2σ2
N (ρ̂∗

N
)

)
a.s.−→ 0

P
(√

NTN (ρ∗N ) > γ
)
− exp

(
− γ2

2σ2
N (ρ∗

N
)

)
→ 0

exp

(
− γ2

2σ2
N (ρ̂∗

N
)

)
− exp

(
− γ2

2σ∗2N

)
a.s.−→ 0

where we denoted ρ∗N any element in the argmin over ρ of P (
√
NTN (ρ) > γ)

(and ρ∗
N

its associated value through the mapping ρ 7→ ρ) and σ∗2N the minimum

of σN (ρ) (i.e. the minimizer for exp(− γ2

2σ2
N (ρ)

)). Note that the first two relations

rely fundamentally on the uniform convergence supρ∈Rκ |P
(√

NTN (ρ) > γ
)
−

exp
(
−γ2/(2σ2

N (ρ))
)
| a.s.−→ 0. By definition of ρ∗N and σ∗2N , we also have

exp

(
− γ2

2σ∗2N

)
≤ min

{
exp

(
− γ2

2σ2
N (ρ̂∗

N
)

)
, exp

(
− γ2

2σ2
N (ρ∗

N
)

)}
P
(√

NTN (ρ∗N ) > γ
)
≤ P

(√
NT (ρ̂∗N ) > γ

)
.

Putting things together then gives

P
(√

NT (ρ̂∗N ) > γ
)
− P

(√
NTN (ρ∗N ) > γ

)
a.s.−→ 0

which is the expected result.

Appendix A. Proof of Lemma 2

This section is devoted to the proof of the key Lemma 2. The proof relies on
an appropriate decomposition of the quantity under study as a sum of martin-
gale differences. Before delving into the core of the proofs, we introduce some
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notations along with some of the key-lemmas that will be extensively used in
this section.

In this section, Ej will denote the conditional expectation with respect to
the σ− field Fj generated by the vectors (z`, 1 ≤ ` ≤ j). By convention, E0 = E.

Useful lemmas. We shall review two key lemmas that will be extensively used,
namely the generalized Hölder inequality as well as an instance of Jensen’s
inequality.

Lemma 3 (Jensen Inequality, (Boyd and Vandenberghe, 2004)). Let I
be a discrete set of elements of {1, . . . , n} with finite cardinality denoted by |I|.
Let (θi)i∈I be a sequence of complex scalars indexed by the set I. Then, for any
p ≥ 1, ∣∣∣∣∣∑

i∈I

θi

∣∣∣∣∣
p

≤ |I|p−1
n∑
i=1

|θi|p

Lemma 4 (Generalized Hölder inequality,(Karoui, 2008)). Let X1, · · · , Xk

be k complex random variables with finite moments of order k. Then,∣∣∣∣∣E
[
k∏
i=1

Xi

]∣∣∣∣∣ ≤
k∏
i=1

(
E
[
|Xi|k

]) 1
k

.

It remains to introduce the Burkhölder inequalities on which the proof relies.

Lemma 5 (Burkhölder inequality (Burkholder, 1973)). Let (Xk)
n
k=1 be

a sequence of complex martingale differences sequence. For every p ≥ 1, there
exists Kp dependent only on p such that:

E

∣∣∣∣∣
n∑
k=1

Xk

∣∣∣∣∣
2p
 ≤ Kpn

p max
k

E
[
|Xk|2p

]
.

Letting Xk = (Ek − Ek−1) z∗kAkzk where Ak is independent of zk and noting

that E
[
|Xk|2p

]
≤ E

[
‖Ak‖2pFro

]
, with ‖A‖Fro ,

√
trAA∗, we get in particular.

Lemma 6 (Burkhölder inequality for quadratic forms). Let z1, · · · , zn ∈
CN×1 be n independent random vectors with mean 0 and covariance CN . Let
(Aj)

n
j=1 be a sequence of N × N random matrices where for all j, Aj is inde-

pendent of zj. Define Xj as

Xj = (Ej − Ej−1) z∗jAjzj = z∗jEjAjzj − tr Ej−1CNAj .

Then,

E


∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
2p
 ≤ Kp ‖CN‖2pFro n

p max
j

E
[
‖AjCN‖2pFro

]
.
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Preliminaries.. We start the proof by some preliminary results.

Lemma 7. Let z1, · · · , zn be as in Assumption 1. Let c ∈ CN×1 be independent
of z1, · · · , zn and such that E‖c‖k is bounded uniformly in N for all order k.
Then, for any integer p, there exists Kp such that

E
[∣∣∣z∗i Ŝ−1

N c
∣∣∣p] ≤ E

[∣∣∣z∗i Ŝ−1
(i) c
∣∣∣p] ≤ Kp.

Proof. The first inequality can be obtained from the following decomposition:

Ŝ−1
N zi =

Ŝ−1
(i) zi

1 + α(ρ)
γN (ρ)

1
nz
∗
i Ŝ
−1
(i) zi

while the second follows by noticing that E |z∗i c|
p ≤ E (c∗CNc)

p
2 .

Using the same kind of calculations, we can also control the order of magnitude
of some interesting quantities.

Lemma 8. The following statements hold true:

1. Denote by ∆i,j the quantity:

∆i,j =
1

n
z∗j Ŝ

−1
(i,j)zj −

1

n
trCN Ŝ

−1
(i,j).

Then, for any p ≥ 2.

E |∆i,j |p = O(n−
p
2 ).

2. Let i and j be two distinct integers from {1, · · · , n}. Then,

E
∣∣∣z∗i Ŝ−1

(i,j)zj

∣∣∣p = O(n
p
2 ).

3. Let zi ∈ CN×1 be as in Assumption 1 and A be a N ×N random matrix
independent of zi and having a bounded spectral norm. Then,

E |z∗iAzi|
p

= O(np).

4. Let j ∈ {1, · · · , n} and i and k two distinct integers different from j.
Then:

E
∣∣∣z∗i Ŝ−1

(i,j)Ŝ
−1
(j,k)zk

∣∣∣p = O(n
p
2 ).
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Proof. Item 1) and 3) are standard results that are a by-product of (Bai
and Silverstein, 2009, Lemma B.26), while Item 2) can be easily obtained from
Lemma 7. As for item 4), it follows by first decomposing Ŝ−1

(i,j) and Ŝ−1
(j,k) as:

Ŝ−1
(i,j) = Ŝ−1

(i,j,k) −
1

n

α(ρ)

γN (ρ)

Ŝ−1
(i,j,k)zkz

∗
kŜ
−1
(i,j,k)

1 + 1
n
α(ρ)
γN (ρ)z

∗
kŜ
−1
(i,j,k)zk

Ŝ−1
(j,k) = Ŝ−1

(i,j,k) −
1

n

α(ρ)

γN (ρ)

Ŝ−1
(i,j,k)ziz

∗
i Ŝ
−1
(i,j,k)

1 + 1
n
α(ρ)
γN (ρ)z

∗
i Ŝ
−1
(i,j,k)zi

The above relations serve to better control the dependencies of Ŝ−1
(i,j) and Ŝ−1

(j,k)

on zk and zi. Plugging the above decompositions on z∗i Ŝ
−1
(i,j)Ŝ

−1
(j,k)zk, we obtain

z∗i Ŝ
−1
(i,j)Ŝ

−1
(j,k)zk = z∗i Ŝ

−2
(i,j,k)zk −

1

n

α(ρ)

γN (ρ)

z∗i Ŝ
−1
(i,j,k)zkz

∗
kŜ
−2
(i,j,k)zk

1 + 1
n
α(ρ)
γN (ρ)z

∗
kŜ
−1
(i,j,k)zk

− 1

n

α(ρ)

γN (ρ)

z∗i Ŝ
−2
(i,j,k)ziz

∗
i Ŝ
−1
(i,j,k)zk

1 + 1
n
α(ρ)
γN (ρ)z

∗
i Ŝ
−1
(i,j,k)zi

+
1

n2

(
α(ρ)

γN (ρ)

)2 z∗i Ŝ
−1
(i,j,k)zkz

∗
kŜ
−2
(i,j,k)ziz

∗
i Ŝ
−1
(i,j,k)zk(

1 + 1
n
α(ρ)
γN (ρ)z

∗
kŜ
−1
(i,j,k)zk

)(
1 + 1

n
α(ρ)
γN (ρ)z

∗
i Ŝ
−1
(i,j,k)zi

) .
The control of these four terms follows from a direct application of item 2) and
3) along with possibly the use of the generalized Hölder inequality in Lemma 4.

Core of the proof.. With these preliminaries results at hand, we are now in
position to get into the core of the proof. Let βN be given by

βN =
1

n

n∑
i=1

c∗Ŝ−1
N ziz

∗
i Ŝ
−1
N d

(
1

N
z∗i Ŝ

−1
(i) zi − γN (ρ)

)
.

Decompose βN as

βN =
1

n

n∑
i=1

c∗Ŝ−1
N ziz

∗
i Ŝ
−1
N d

(
1

N
z∗i Ŝ

−1
(i) zi −

1

N
trCN Ŝ

−1
(i)

)

+
1

n

n∑
i=1

c∗Ŝ−1
N ziz

∗
i Ŝ
−1
N d

(
1

N
trCN Ŝ

−1
(i) − γN (ρ)

)
, βN,1 + βN,2.
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The control of βN,2 follows from a direct application of Lemma 3 and Lemma 4,
that is

E
[
|βN,2|2p

]
≤ n2p−1

n2p

n∑
i=1

E
∣∣∣c∗Ŝ−1

N zi

∣∣∣2p ∣∣∣z∗i Ŝ−1
N d

∣∣∣2p ∣∣∣∣ 1

N
trCN Ŝ

−1
(i) − γN (ρ)

∣∣∣∣2p

≤ n2p−1

n2p

n∑
i=1

(
E
∣∣∣c∗Ŝ−1

N zi

∣∣∣6p) 1
3
(

E
∣∣∣z∗i Ŝ−1

N d
∣∣∣6p) 1

3

(
E

∣∣∣∣ 1

N
trCN Ŝ

−1
(i) − γN (ρ)

∣∣∣∣6p
) 1

3

By standard results from random matrix theory (e.g. (Najim and Yao, 2013,
Prop. 7.1)), we know that

E

∣∣∣∣ 1

N
trCN Ŝ

−1
(i) − γN (ρ)

∣∣∣∣6p = O(n−6p)

Hence, by Lemma 7, we finally get:

E |βN,2|2p = O(n−2p).

While the control of βN,2 requires only the manipulation of conventional moment

bounds due to the rapid convergence of 1
N trCN Ŝ

−1
(i) − γN (ρ), the analysis of

βN,1 is more intricate since

E

∣∣∣∣ 1

N
z∗i Ŝ

−1
(i) zi −

1

N
trCN Ŝ

−1
(i)

∣∣∣∣p = O(n−
p
2 )

a convergence rate which seems insufficient at the onset. The averaging occur-
ring in βN,2 shall play the role of improving this rate. To control βN,1, one needs
to resort to advanced tools based on Burkhölder inequalities. First, decompose
βN,1 as

βN,1 =
o

βN,1 +E [βN,1] .

As in Lemma 8, define ∆i , 1
nz
∗
i Ŝ
−1
(i) zi −

1
n trCN Ŝ

−1
(i) . Using the relation

Ŝ−1
N zi =

Ŝ−1
(i) zi

1 + 1
n
α(ρ)
γN (ρ)z

∗
i Ŝ
−1
(i) zi
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we get

E [βN,1] = E

 1

N

n∑
i=1

c∗Ŝ−1
(i) ziz

∗
i Ŝ
−1
(i) d(

1 + 1
n
α(ρ)
γN (ρ)z

∗
i Ŝ
−1
(i) zi

)2 ∆i


= E

 1

N

n∑
i=1

c∗Ŝ−1
(i) ziz

∗
i Ŝ
−1
(i) d(

1 + 1
n
α(ρ)
γN (ρ) trCN Ŝ

−1
(i)

)2 ∆i


− α(ρ)

γN (ρ)
E

 1

N

n∑
i=1

c∗Ŝ−1
(i) ziz

∗
i Ŝ
−1
(i) d∆2

i

(
2 +

(
α(ρ)
γN (ρ)

)(
1
nz
∗
i Ŝ
−1
(i) zi + 1

n trCN Ŝ
−1
(i)

))
(

1 + 1
n
α(ρ)
γN (ρ) trCN Ŝ

−1
(i)

)2 (
1 + α(ρ)

γN (ρ)
1
nz
∗
i Ŝ
−1
(i) zi

)2


, βN,1,1 + βN,1,2

Since E [w∗Aw (w∗Bw − trB)] = E trAB when w is standard complex Gaussian
vector and A,B random matrices independent of w, we have

E [βN,1,1] =
1

Nn
E

tr
CN Ŝ

−1
(i) CN Ŝ

−1
(i) dc

∗Ŝ−1
(i)(

1 + α(ρ)
γN (ρ)

1
n trCN Ŝ

−1
(i)

)2

 = O(n−1).

As for βN,1,2, we have for some K > 0, again by Lemma 8

|βN,1,2| ≤
K

n

n∑
i=1

(
E
∣∣∣c∗Ŝ−1

(i) zi

∣∣∣4) 1
4
(

E
∣∣∣z∗i Ŝ−1

(i) d
∣∣∣4) 1

4 (
E |∆i|8

) 1
4

×

(
E

∣∣∣∣2 +
α(ρ)

γN (ρ)

(
1

n
z∗i Ŝ

−1
(i) zi +

1

n
trCN Ŝ

−1
(i)

)∣∣∣∣4
) 1

4

= O(
1

n
).

We therefore have

|E [βN,1]|2p = O(n−2p).

Let’s turn to the control of
o

βN,1. For that, we decompose
o

βN,1 as a sum of
martingale differences as

o

βN,1=

n∑
j=1

(Ej − Ej−1)βN,1

The control of E

[∣∣∣∣ oβN,1∣∣∣∣p] requires the convergence rate of two kinds of mar-

tingale differences:

• Sum of martingale differences with a quadratic form representation of the
form

n∑
j=1

(Ej − Ej−1) z∗jAjzj .
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For these terms, from Lemma 6, it will be sufficient to show that maxj E‖Aj‖2pFro =
O(n−3p) in order to obtain the required convergence rate.

• Sum of martingale differences with more than one occurrence of zj and
z∗j . In this case, this sum is given by:

n∑
j=1

(Ej − Ej−1)

n∑
i=1,i6=j

εi

where εj are small random quantities depending on z1, · · · , zn. According
to Lemma 5, we have∣∣∣∣∣∣

n∑
j=1

(Ej − Ej−1)

n∑
i=1,i6=j

εi

∣∣∣∣∣∣
2p

= O(n−2p)

provided that

E

∣∣∣∣∣∣
∑

i=1,i6=j

εi

∣∣∣∣∣∣
2p

= O(n−3p).

The control of the above sum will rely on successively using Lemma 3 to
get

E

∣∣∣∣∣∣
∑

i=1,i6=j

εi

∣∣∣∣∣∣
2p

≤ n2p−1
n∑
i=1

E |εi|2p

and controlling maxi E |εi|2p.

With this explanation at hand, we will now get into the core of the proofs.
We first have

o

βN,1 =

n∑
j=1

(Ej − Ej−1)
1

N

n∑
i=1

c∗Ŝ−1
N ziz

∗
i d∆i

=

n∑
j=1

(Ej − Ej−1)c∗Ŝ−1
N zjz

∗
j d∆j

+

n∑
j=1

(Ej − Ej−1)
1

N

n∑
i=1,i6=j

c∗Ŝ−1
N ziz

∗
i d∆i

,
n∑
j=1

Wj,1 +

n∑
j=1

Wj,2.

In order to prove that E
∣∣∣∑n

j=1Wj,1

∣∣∣ = O(n−2p), it is sufficient to show

E |Wj,1| = O(n−3p)
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a statement which holds true since, by Lemma 4

E |Wj,1|2p ≤
K

n2p
E
∣∣∣c∗Ŝ−1

N zj

∣∣∣2p ∣∣∣z∗j Ŝ−1
N d

∣∣∣2p ∆2p
j

≤ K

n2p

(
E
∣∣∣c∗Ŝ−1

N zj

∣∣∣6p) 1
3
(

E
∣∣∣z∗j Ŝ−1

N d
∣∣∣6p) 1

3 (
E∆6p

j

) 1
3

= O(n−3p).

We now consider the more involved term
∑n
j=1Wj,2. Using the relation

Ŝ−1
N = Ŝ−1

(j) −
α(ρ)

γN (ρ)

1

n

Ŝ−1
(j)zjz

∗
j Ŝ
−1
(j)

1 + α(ρ)
γN (ρ)

1
nz
∗
j Ŝ
−1
(j)zj

to let the independent Ŝ−1
(j) and zj variables appear, we write

n∑
j=1

Wj,2 =

n∑
j=1

(Ej − Ej−1)
1

n

n∑
i=1,i6=j

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d

(
1

N
z∗i Ŝ

−1
(i) zi −

1

N
trCN Ŝ

−1
(i)

)

−
n∑
j=1

(Ej − Ej−1)
α(ρ)

γN (ρ)

1

n2

n∑
i=1,i6=j

c∗Ŝ−1
(j)zjz

∗
j Ŝ
−1
(j)ziz

∗
i Ŝ
−1
(j)d

1 + 1
n
α(ρ)
γN (ρ)z

∗
j Ŝ
−1
(j)zj

(
1

N
z∗i Ŝ

−1
(i) zi −

1

N
trCN Ŝ

−1
(i)

)

−
n∑
j=1

(Ej − Ej−1)
α(ρ)

γN (ρ)

1

n2

n∑
i=1,i6=j

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)zjz

∗
j Ŝ
−1
(j)d

1 + 1
n
α(ρ)
γN (ρ)z

∗
j Ŝ
−1
(j)zj

(
1

N
z∗i Ŝ

−1
(i) zi −

1

N
trCN Ŝ

−1
(i)

)

+

n∑
j=1

(Ej − Ej−1)

(
α(ρ)

γN (ρ)

)2
1

n3

n∑
i=1,i6=j

c∗Ŝ−1
(j)zjz

∗
j Ŝ
−1
(j)ziz

∗
i Ŝ
−1
(j)zjz

∗
j Ŝ
−1
(j)d(

1 + 1
n
α(ρ)
γN (ρ)z

∗
j Ŝ
−1
(j)zj

)2

(
1

N
z∗i Ŝ

−1
(i) zi −

1

N
trCN Ŝ

−1
(i)

)
, χ1 + χ2 + χ3 + χ4.

Next, we will sequentially control χi, i = 1, · · · , 4.

Control of χ1.. Using the relation

Ŝ−1
(i) = Ŝ−1

(i,j) −
α(ρ)

γN (ρ)

1

n

Ŝ−1
(i,j)zjz

∗
j Ŝ
−1
(i,j)

1 + 1
n
α(ρ)
γN (ρ)z

∗
j Ŝ
−1
(i,j)zj

the quantity χ1 can be decomposed as

χ1 =

n∑
j=1

−(Ej − Ej−1)
α(ρ)

γN (ρ)

1

n2N

n∑
i=1,i6=j

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d

∣∣∣z∗i Ŝ−1
(i,j)zj

∣∣∣2
1 + 1

n
α(ρ)
γN (ρ)z

∗
j Ŝ
−1
(i,j)zj

+

n∑
j=1

α(ρ)

γN (ρ)
(Ej − Ej−1)

1

n2N

n∑
i=1,i6=j

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)dz

∗
j Ŝ
−1
(i,j)CN Ŝ

−1
(i,j)zj

1 + 1
n
α(ρ)
γN (ρ)z

∗
j Ŝ
−1
(i,j)zj

, χ1,1 + χ1,2.
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where we used the fact that for rj random quantity independent of zj , (Ej −
Ej−1)(rj) = 0. We will begin by controlling χ1,1. To handle the quadratic forms
in the denominator, we further develop χ1,1 as

χ1,1 = −
n∑
j=1

(Ej − Ej−1)
α(ρ)

γN (ρ)

1

n2N

n∑
i=1,i6=j

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d

∣∣∣z∗i Ŝ−1
(i,j)zj

∣∣∣2
1 + 1

n
α(ρ)
γN (ρ) trCN Ŝ

−1
(i,j)

+

n∑
j=1

(Ej − Ej−1)

(
α(ρ)

γN (ρ)

)2
1

n2N

n∑
i=1,i6=j

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)

∣∣∣z∗i Ŝ−1
(i,j)zj

∣∣∣2 ∆i,j(
1 + 1

n
α(ρ)
γN (ρ) trCN Ŝ

−1
(i,j)

)(
1 + 1

n
α(ρ)
γN (ρ)z

∗
j Ŝ
−1
(i,j)zj

)
=

n∑
j=1

Xj,1 +

n∑
j=1

Xj,2.

To control
∑n
j=1Xj,1, we resort to Lemma 6. Indeed, Xj,1 can be written as

Xj,1 = − α(ρ)

γN (ρ)
(Ej − Ej−1)z∗jAjzj

where Aj is given by

Aj =
1

n2N

n∑
i=1,i6=j

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d

1 + 1
n
α(ρ)
γN (ρ) trCN Ŝ

−1
(i,j)

Ŝ−1
(i,j)ziz

∗
i Ŝ
−1
(i,j).
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According to Lemma 6, it is sufficient to prove that E ‖Aj‖2pFro = O(n−3p).

Expanding E ‖Aj‖2pFro, we indeed get

E ‖Aj‖2pFro ≤
K

n6p
E

∣∣∣∣∣∣∣
∑
i 6=j

∑
k 6=j

∣∣∣z∗kŜ−1
(j,k)Ŝ

−1
(i,j)zi

∣∣∣2 c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)dd

∗Ŝ−1
(j)zkz

∗
kŜ
−1
(j) c(

1 + α(ρ)
γN (ρ)

1
n trCN Ŝ

−1
(i,j)

)(
1 + 1

n
α(ρ)
γN (ρ) trCN Ŝ

−1
(j,k)

)
∣∣∣∣∣∣∣
p

≤ K

n6p
E

∣∣∣∣∣∣
∑
i 6=j

∣∣∣z∗i Ŝ−2
(i,j)zi

∣∣∣2 ∣∣∣c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d

∣∣∣2
∣∣∣∣∣∣
p

+
K

n6p
E

∣∣∣∣∣∣∣∣
∑
i 6=j

∑
k 6=j
k 6=i

∣∣∣z∗kŜ−1
(j,k)Ŝ

−1
(i,j)zi

∣∣∣2 c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)dd

∗Ŝ−1
(j)zkz

∗
kŜ
−1
(j) c(

1 + α(ρ)
γN (ρ)

1
n trCN Ŝ

−1
(i,j)

)(
1 + 1

n
α(ρ)
γN (ρ) trCN Ŝ

−1
(j,k)

)
∣∣∣∣∣∣∣∣
p

≤ Knp−1

n6p
E
∣∣∣z∗i Ŝ−2

(i,j)zi

∣∣∣2p ∣∣∣c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d

∣∣∣2p
+
Kn2(p−1)

n6p

∑
i 6=j

∑
k 6=j
k 6=i

E
∣∣∣z∗kŜ−1

(j,k)Ŝ
−1
(i,j)zi

∣∣∣2p ∣∣∣c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d

∣∣∣p ∣∣∣d∗Ŝ−1
(j,k)zkz

∗
kŜ
−1
(j,k)c

∣∣∣p

≤ Knp−1

n6p

∑
i 6=j

(
E
∣∣∣z∗i Ŝ−2

(i,j)zi

∣∣∣6p) 1
3
(∣∣∣c∗Ŝ−1

(j)zi

∣∣∣6p) 1
3
(∣∣∣z∗i Ŝ−1

(j)d
∣∣∣6p) 1

3

+
Kn2(p−1)

n6p

∑
i 6=j

∑
k 6=j
k 6=i

(
E
∣∣∣z∗kŜ−1

(j,k)Ŝ
−1
(i,j)zi

∣∣∣10p
) 1

5
(

E
∣∣∣c∗Ŝ−1

(i,j)zi

∣∣∣5p) 1
5

×
(

E
∣∣∣z∗i Ŝ−1

(j)d
∣∣∣5p) 1

5
(

E
∣∣∣d∗Ŝ−1

(j,k)zk

∣∣∣5p) 1
5
(

E
∣∣∣z∗kŜ−1

(j,k)c
∣∣∣5p) 1

5

= O(n−3p).

As for Xj,1, we can show that E |Xj,1|2p = O(n−3p). Indeed, we have

E |Xj,2|2p ≤
Kn2p−1

n6p

∑
i 6=j

(
E
∣∣∣c∗Ŝ−1

(j)zi

∣∣∣8p) 1
4
(

E
∣∣∣z∗i Ŝ−1

(j)d
∣∣∣8p) 1

4
(

E
∣∣∣z∗i Ŝ−1

(j)zj

∣∣∣16p
) 1

4 (
E |∆i,j |8p

) 1
4

= O(n−3p).

The Burkhölder inequality shows that this rate of convergence of the moment
of Xj,1 and Xj,2 is sufficient to finally ensure that E |χ1,1|2p = O(n−2p).
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We study next χ1,2. First, decompose χ1,2 as

χ1,2 =

n∑
j=1

(Ej − Ej−1)
1

n2N

∑
i 6=j

α(ρ)

γN (ρ)

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)dz

∗
j Ŝ
−1
(i,j)CN Ŝ

−1
(i,j)zj

1 + 1
n
α(ρ)
γN (ρ) trCN Ŝ

−1
(i,j)

−
n∑
j=1

(Ej − Ej−1)
1

n2N

∑
i 6=j

α(ρ)

γN (ρ)

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d∆i,jz

∗
j Ŝ
−1
(i,j)CN Ŝ

−1
(i,j)zj(

1 + α(ρ)
γN (ρ)

1
nz
∗
j Ŝ
−1
(i,j)zj

)(
1 + 1

n
α(ρ)
γN (ρ) trCN Ŝ

−1
(i,j)

)
,

n∑
j=1

Yj,1 +

n∑
j=1

Yj,2.

The quantities
∑n
j=1 Yj,1 and

∑n
j=1 Yj,2 are differences of martingales whose

controls follow the same procedure as above. While
∑n
j=1 Yj,1 can be controlled

using Lemma 6, the convergence of
∑n
j=1 Yj,2 is faster due to the term ∆i,j .

Details are thus omitted.

Control of χ2.. The control of χ2 cannot be exactly dealt with using the same
procedure. As for χ1, one works out χ2 by substituting 1

nz
∗
j Ŝ
−1
(j)zj by its approx-

imate 1
n trCN Ŝ

−1
(j) and using the decomposition of Ŝ−1

(i) as a function of Ŝ−1
(i,j) to

get

χ2 = − α(ρ)

γN (ρ)

n∑
j=1

(Ej − Ej−1)
1

n2

∑
i=1
i 6=j

c∗Ŝ−1
(j)zjz

∗
j Ŝ
−1
(j)ziz

∗
i Ŝ
−1
(j)d

(
1
N z
∗
i Ŝ
−1
(i,j)zi −

1
N trCN Ŝ

−1
(i,j)

)
1 + 1

n
α(ρ)
γN (ρ) trCN Ŝ

−1
(j)

+ ε

where we easily obtain that E[|ε|2p] = O(n−2p). We omit the details of this
step, since the calculations are the same as those used for the control of χ1.
The control of the Frobenius norm of the underlying matrices using the same
techniques as above does not yield the required convergence rate. We will thus
pursue a different approach. Precisely, we write χ2 as

χ2 = − α(ρ)

γN (ρ)

n∑
j=1

(Ej − Ej−1)Tj + ε

with

Tj =
1

n2

c∗Ŝ−1
(j)zjz

∗
j Ŝ
−1
(j)ZjDjZ

∗
j Ŝ
−1
(j)d

1 + 1
n
α(ρ)
γN (ρ) tr Ŝ−1

(j)

where Zj = [z1, · · · , zj−1, zj+1, · · · , zn] and Dj is a diagonal matrix with diag-
onal elements: [Dj ]i,i = n

N∆j,i. Hence, by Lemma 5

E |Tj |2p ≤
1

n4p
E
∣∣∣c∗Ŝ−1

(j)zj

∣∣∣2p ∣∣∣z∗j Ŝ−1
(j)ZjDjZ

∗
j Ŝ
−1
(j)d

∣∣∣2p
≤ 1

n4p

(
E
∣∣∣c∗Ŝ−1

(j)zj

∣∣∣4p) 1
2
(

E
∣∣∣z∗j Ŝ−1

(j)ZjDjZ
∗
j d
∣∣∣4p) 1

2
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Since Dj is independent of zj , applying the inequality E
∣∣z∗j u∣∣p ≤ E (u∗CNu)

p
2 ,

we finally get

E |Tj |2p ≤
K

n4p

(
E
∣∣∣d∗Ŝ−1

(j)ZjDjZ
∗
j Ŝ
−1
(j)CN Ŝ

−1
(j)ZjDjZ

∗
j Ŝ
−1
(j)d

∣∣∣2p) 1
2

=
K

n3p

E

∣∣∣∣∣d∗Ŝ−1
(j)ZjDj

Z∗j Ŝ
−1
(j)CN Ŝ

−1
(j)Zj

n
DjZ

∗
j Ŝ
−1
(j)d

∣∣∣∣∣
2p


1
2

(a)

≤ K

n3p

(
E
∥∥∥DjZ

∗
j Ŝ
−1
(j)d

∥∥∥4p
) 1

2

where (a) follows since

∥∥∥∥Z∗j Ŝ−1
(j)
CN Ŝ

−1
(j)
Zj

n

∥∥∥∥ is bounded. In order to prove that

E[|Tj |2p] = O(n−3p), it suffices to check that E[
∥∥∥DjZ

∗
j Ŝ
−1
(j)d

∥∥∥4p

] is uniformly

bounded in N . Expanding this quantity, we indeed get

E
∥∥∥DjZ

∗
j Ŝ
−1
(j)d

∥∥∥4p

= E

∣∣∣∣∣∣∣
n∑
i=1
i 6=j

(
1

N
z∗i Ŝ

−1
(i,j)zi −

1

N
trCN Ŝ

−1
(i,j)

)2 ∣∣∣z∗i Ŝ−1
(j)d

∣∣∣2
∣∣∣∣∣∣∣
2p

≤ n2p−1
n∑
i=1

E

(
1

N
z∗i Ŝ

−1
(i,j)zi −

1

N
trCN Ŝ

−1
(i,j)

)4p ∣∣∣z∗i Ŝ−1
(j)d

∣∣∣4p

≤ n2p−1
n∑
i=1

(
E

(
1

N
z∗i Ŝ

−1
(i,j)zi −

1

N
trCN Ŝ

−1
(i,j)

)8p
) 1

2 (
E
∣∣∣z∗i Ŝ−1

(j)d
∣∣∣8p) 1

2

= O(1).

The control of χ3 is similar to that of χ2, while that of χ4 follows immediately
by using sequentially Lemma 3 along with the generalized Hölder inequality in
Lemma 4. This completes the proof.
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