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Abstract. In this article, a study of the mean-square error (MSE) performance of linear
echo-state neural networks is performed, both for training and testing tasks. Consider-
ing the realistic setting of noise present at the network nodes, we derive deterministic
equivalents for the aforementioned MSE in the limit where the number of input data T
and network size n both grow large. Specializing then the network connectivity matrix to
specific random settings, we further obtain simple formulas that provide new insights on
the performance of such networks.

1. Introduction

Echo State Networks (ESN) are a class of recurrent neural networks (RNN) designed
for performing supervised learning tasks, such as time-series prediction [Jaeger, 2001,
Jaeger and Haas, 2004] or more generally any supervised learning task involving sequences.
The ESN architecture is a special case of the general framework of reservoir computing
[Lukoševičius and Jaeger, 2009]. The ESN reservoir is a fixed (generally randomly de-
signed) recurrent neural network, driven by a (usually time dependent) input. Since the
internal connectivity matrix is not modified during learning, the number of parameters to
learn is much smaller than in a classical RNN setting and the system is as such less prone
to overfitting. However, the prediction performance of ESN often depends significantly on
several hyper-parameters controlling the law of the internal connectivity matrix.

It has in particular been understood that the spectral radius and spectral norm of the
connectivity matrix play a key role on the stability of the network [Jaeger, 2001] and that
the structure of the connectivity matrix may be adapted to trade memory capacities ver-
sus task complexity [Verstraeten et al., 2010, Rodan and Tiňo, 2011, Strauss et al., 2012,
Ozturk et al., 2007]. Nonetheless, to date, and to the best of the authors’ knowledge, the
understanding of echo-state networks has progressed mostly through extensive empirical
studies and lacks solid theoretical foundations.

In the present article, we consider linear ESN’s with a general connectivity matrix and
internal network noise. By leveraging tools from the field of random matrix theory, we shall
attempt to provide a first theoretical study of the performance of ESN’s. Beyond the ob-
vious advantage of exploiting theoretical formulas to select the optimal hyper-parameters,
this mathematical study reveals key quantities that intimately relate the internal network
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memory to the input-target relationship, therefore contributing to a better understanding
of short-term memory properties of RNNs.

More specifically, we shall consider an n-node ESN trained with an input of size T
and shall show that, assuming the internal noise variance η2 remains large compared to
1/
√
n, the training and testing performances of the network can be well approximated by

a deterministic quantity which is a function of the training and test data as well as the
connectivity matrix. Under the further assumption that the connectivity matrix is random,
we shall then obtain closed-form formulas of the aforementioned performances for a large
class of connectivity structures. The reach of our study so far only addresses ESN’s with
linear activation functions, a limitation which we anticipate to work around with more
elaborate methods in the future, as discussed in Section 4.

At this point, we wish to highlight the specificity of our approach regarding (i) the intro-
duction of noise perturbing the internal dynamics of the reservoir and (ii) the restriction
to linear networks.

The introduction of internal noise is inspired both by it being a natural assumption in
modelling biological neural networks [Ganguli et al., 2008, Toyoizumi and Abbott, 2011]
and by the observation in [Jaeger, 2001] that ESN’s are very sensitive to low variance noise
and thus likely unstable in this regime. From the neuro-computational perspective, we
shall observe tight connections between the ESN performance and the reservoir information
processing capacities discussed in [Ganguli et al., 2008]. As for the artificial neural network
viewpoint, it shall be noticed that the internal noise regularizes the network in a way sharing
interesting similarities with the well-known connection between noise at the network output
and Tikhonov regularization [Bishop, 1995]. It is, as a matter of fact, already mentioned
in [Lukoševičius and Jaeger, 2009, Section 8.2] that internal noise behaves as a natural
regularization option (similar to what input or output noise would) although this aspect
was not deeply investigated. More importantly, while in-network noise necessarily leads
to random outputs (a not necessarily desirable feature on the onset), we shall show that
all these outputs (almost surely) asymptotically have the same performance, thus inducing
random but equally useful innovation; this we believe is a more desirable feature than
deterministic biases as innovation noise, beyond additionally bringing closer neuroscientific
and artificial neural network considerations.

As for the choice of studying linear activation functions, rarely considered in the practical
side of RNNs, it obviously follows first from a mathematical tractability of the problem
under study. Nonetheless, while being clearly a strong limitation of our study (recall that
the non-linearity is the main driver for the network to perform complex tasks), we believe it
brings sufficient insights and exploitable results when it comes to parametrizing non-linear
network counterparts. This belief is mainly motivated by the fact that, as the network
size grows, if the reservoir connections are drawn at random, the reservoir mixing of the
internal states should keep most of these states small in amplitude, thus being for most
of them in the linear part of the activation function support. This should be all the more
adequate that the network inputs are not too erratic.
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Among other results, the main findings of our study are as follows:

(1) we retrieve a deterministic implicit expression for the mean-square error (MSE)
performance of training and testing for any fixed connectivity matrix W ∈ Rn×n

which, for every given internal noise variance η2 > 0, is all the more accurate that
the network size n is large

(2) the aforementioned expression reveals fundamental quantities which generalize sev-
eral known qualitative notions of ESN’s, such as the memory capacity and the
Fisher memory curve [Jaeger, 2001, Ganguli et al., 2008];

(3) we obtain more tractable closed-form expressions for the same quantities for simple
classes of random normal and non-normal matrices; these two classes exhibit a
strikingly different asymptotic performance behavior;

(4) from the previous analysis, we shall also introduce a novel multi-modal connectivity
matrix that adapts to a wider scope of memory ranges and that is reminiscent to
the long short-term memory ESNs designed in [Xue et al., 2007];

(5) an important interplay between memory and internal noise will be shed light on,
by which the questions of noise-induced stability are better understood.

The remainder of the article is organized as follows. In Section 2, we introduce the ESN
model and the associated supervised learning problem and we give our main theoretical
results in Theorems 1 and 2 (technical proofs are deferred to the Appendix). Then, in Sec-
tion 3, we apply our theoretical results for various choices of specific connectivity matrices
and discuss their consequences in terms of prediction performance. Finally, in Section 4,
we discuss our findings and their limitations.

Notations: In the remainder of the article, uppercase characters will stand for matri-
ces, lowercase for scalars or vectors. The transpose operation will be denoted (·)T. The
multivariate Gaussian distribution of mean µ and covariance C will be denoted N (µ,C).

The notation V = {Vij}n,Ti=1,j=1 denotes the matrix with (i, j)-entry Vij (scalar or matrix),
1 ≤ i ≤ n, 1 ≤ j ≤ T , while {Vi}ni=1 is the row-wise concatenation of the Vi’s and
{Vj}Tj=1 the column-wise concatenation of the Vj’s. We further introduce the notation
(x)+ ≡ max(x, 0). For random or deterministic matrices Xn and Yn ∈ Rn×n, the notation
Xn ↔ Yn stands for 1

n
trAn(Xn − Yn) → 0 and aTn(Xn − Yn)bn → 0, almost surely, for

every deterministic matrix An and vectors an, bn having bounded norm (spectral norm for
matrices and Euclidean norm for vectors); for Xn, Yn ∈ R scalar, the notation will simply
mean that Xn−Yn → 0 almost surely. The notation ρ(X) will denote the spectral radius of
matrix X, while ‖X‖ will denote its operator norm (and for vectors, ‖x‖ is the Euclidean
norm).

2. Main Results

We consider here an echo-state neural network constituted of n nodes, with state xt ∈ Rn

at time instant t, connectivity matrixW 6= 0, and input source sequence . . . , u−1, u0, u1, . . . ∈
R. The state evolution is given by the linear recurrent equation

xt+1 = Wxt +mut+1 + ηεt+1
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for all t ∈ Z, in which η > 0 and εt ∼ N (0, In), while m ∈ Rn is the input-to-network
connectivity.

Our first objective is to understand the training performance of such a network. To
this end, we shall focus on a (training) time window {0, . . . , T − 1} and will denote X =
{xj}T−1

j=0 ∈ Rn×T as well as A = MU , M ∈ Rn×T , U ∈ RT×T , where

M ≡
{
W jm

}T−1

j=0

U ≡ 1√
T
{uj−i}Ti,j=1 .

With these notations, we especially haveX =
√
T (A+Z), where Z = η√

T
{
∑∞

k=0 W
kεj−k}T−1

j=0 .

For X to be properly defined (at least almost surely so), we shall impose the following
hypothesis.

Assumption 1 (Spectral Norm). The spectral norm ‖W‖ of W satisfies ‖W‖ < 1.

Note that this constraint is in general quite strong and it is believed (following the
insights of previous works [Jaeger, 2001]) that for many model choices of W , it can be
lighten to merely requiring that the spectral radius ρ(W ) be smaller than one. Nonetheless,
in the course of the article, we shall often take W to be such that both its spectral norm
and spectral radius coincide.

2.1. Training Performance. The training step consists in teaching the network to obtain
a specific output sequence r = {rj}T−1

j=0 out of the network, when fed by a corresponding

input vector u = {uj}T−1
j=0 over the time window. To this end, unlike conventional neural

networks, where W is adapted to u and r, ESN’s adopt the strategy to solely enforce an
output link from the network to a sink (or readout). Letting ω = {ωi}ni=1 be the network-
to-sink connectivity vector, we shall consider here that ω is obtained as the (least-square)
minimizer of ‖XTω − r‖2. When T > n, we have

ω ≡
(
XXT

)−1
Xr (1)

which is almost surely well-defined (since η > 0) or, when T ≤ n,

ω ≡ X
(
XTX

)−1
r. (2)

The per-input mean-square error in training associated with the couple (u, r) for the ESN
under study is then defined as

Eη(u, r) ≡
1

T

∥∥r −XTω
∥∥2

(3)

which is identically zero when T ≤ n.
Our first objective is to study precisely the random quantity Eη(u, r) for every given W

and noise variance η2 in the limit where n→∞. Our scaling hypotheses are as follows.

Assumption 2 (Random Matrix Regime). The following conditions hold:

(1) lim supn n/T <∞
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(2) lim supn ‖AAT‖ <∞.

That is, according to Item 1, we allow n to grow with T . Also, from Item 2, we essentially
allow ut to be of order O(1) (unless u is sparse and then ut may be as large as O(

√
T )) when

m remains of bounded Euclidean norm. Under this setting, and along with Assumption 1,
we shall thus essentially require all neural connections to be of order O(n−

1
2 ) while all input

and output data (constituents of u and r) shall be in general of order O(1).
For every square symmetric matrix B ∈ Rn×n, a central quantity in random matrix

theory is the resolvent (B − zIn)−1 defined for every z ∈ C \ SB, with SB ⊂ R the support
of the eigenvalues of B. Here, letting z = −γ for some γ > 0, it is particularly convenient
to make the following observation.

Lemma 1 (Training MSE and resolvent). For γ > 0, let Q̃γ ≡ ( 1
T
XTX + γIT )−1. Then

we have, for Eη(u, r) defined as in (3),

Eη(u, r) = lim
γ↓0

γ
1

T
rTQ̃γr.

Our first technical result provides an asymptotically tight approximation for Q̃γ for
every γ > 0. Recall that, for Xn, Yn ∈ Rn×n, the notation Xn ↔ Yn means that, for every
deterministic and bounded norm matrix An or vector an, bn, 1

n
trAn(Xn − Yn) → 0 and

aTn(Xn − Yn)bn → 0, almost surely.

Theorem 1 (Deterministic Equivalent). Let Assumptions 1–2 hold. For γ > 0, let also
Qγ ≡ ( 1

T
XXT + γIn)−1 and Q̃γ ≡ ( 1

T
XTX + γIT )−1. Then, as n → ∞, the following

approximations hold:

Qγ ↔ Q̄γ ≡
1

γ

(
In + η2R̃γ +

1

γ
A
(
IT + η2Rγ

)−1
AT

)−1

Q̃γ ↔ ¯̃Qγ ≡
1

γ

(
IT + η2Rγ +

1

γ
AT
(
In + η2R̃γ

)−1

A

)−1

where Rγ ∈ RT×T and R̃γ ∈ Rn×n are solutions to the system of equations

Rγ =

{
1

T
tr
(
Si−jQ̄γ

)}T
i,j=1

R̃γ =
∞∑

q=−∞

1

T
tr
(
Jq ¯̃Qγ

)
Sq

with [Jq]ij ≡ δi+q,j and Sq ≡
∑

k≥0W
k+(−q)+(W k+q+)T.1

Remark 1 (On Theorem 1). Theorem 1 is in fact valid under more general assumptions
than in the present setting. In particular, A may be any deterministic matrix satisfying
Assumption 2. However, when A = MU , an important phenomenon arises, which is that

1Note that tr(JqB) is merely tr(JqB) =
∑T−q+

i=1+q+ [Bi,i+q].
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A behaves similar to a low-rank matrix, since, by Assumption 1, only o(n) columns of M
have non-vanishing norm. As such, by a low-rank perturbation argument, it can be shown

that the term Q̄γ in the expression of Rγ and the term ¯̃Qγ in the expression of R̃γ can be

replaced by γ−1(In+η2R̃γ)
−1 and γ−1(IT +η2Rγ)

−1, respectively. As such, Rγ and R̃γ only
depend on the matrix W and the parameter η2, and are thus asymptotically independent
of the input data matrix U . Note also in passing that, while R̃γ is defined with a sum over
q = −∞ to ∞, this summation is empty for all |q| ≥ T .

In order to evaluate the training mean-square error Eη(u, r) from Lemma 1, one must
extend Theorem 1 uniformly over γ approaching zero. This can be guaranteed under the
following additional assumption.

Assumption 3 (Network size versus training time). As n→∞, n/T → c ∈ [0, 1)∪(1,∞).

Under Assumption 3, two scenarios must be considered. Either c < 1 or c > 1. In the
former case, we can show that, as γ ↓ 0, Rγ and γR̃γ have well defined limits. Besides, it

appears that the limit of η2Rγ does not depend on η2, so that we shall denote R and R̃ the

limits of η2Rγ and γR̃γ, as γ ↓ 0, respectively. Similarly, η2Q̄γ and γ ¯̃Qγ converge to well

defined limits, denoted respectively Q and Q̃. Symmetrically, for c > 1, as γ ↓ 0, γRγ and

η2R̃γ have well-behaved limits which we shall also refer to as R and R̃; similarly, γQ̄γ and

η2 ¯̃Qγ converge to non trivial limits again denoted Q and Q̃. These results are gathered in
the following proposition.

Proposition 1 (Small γ limit of Theorem 1). Let Assumptions 1–3 hold. For all large n,
define R and R̃ a pair of solutions of the system

R = c

{
1

n
tr

(
Si−j

(
δc>1In + R̃

)−1
)}T

i,j=1

R̃ =
∞∑

q=−∞

1

T
tr
(
Jq(δc<1IT +R)−1

)
Sq.

Subsequently define

Q̃ ≡
(
δc<1IT +R+

1

η2
AT
(
δc>1In + R̃

)−1

A

)−1

Q ≡
(
δc>1In + R̃+

1

η2
A (δc<1IT +R)−1AT

)−1

.

Then, with the definitions of Theorem 1, we have the following results.

(1) If c < 1, then in the limit γ ↓ 0, η2Rγ → R, γR̃γ → R̃, η2Q̄γ → Q, and γ ¯̃Qγ → Q̃.

(2) If c > 1, then in the limit γ ↓ 0, γRγ → R, η2R̃γ → R̃, γQ̄γ → Q, and η2 ¯̃Qγ → Q̃.

With these notations, we now have the following result.
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Corollary 1 (Training MSE for n < T ). Let Assumptions 1–3 hold and let r ∈ RT be of

O(
√
T ) Euclidean norm. Then, with Eη(u, r) defined in (3), as n→∞,

Eη(u, r)↔
{

(1/T )rTQ̃r , c < 1
0 , c > 1.

It is interesting at this point to discuss the a priori involved expression of Proposition 1
and Corollary 1. Let us concentrate on the interesting c < 1 case. To start with, observe
that R and R̃ are deterministic matrices which only depend on W through the Sq matrices
so that the only dependence of Eη(u, r) on the noise variance η2 lies explicitly in the

expression of Q̃. Now, making ATR̃−1A explicit, we have the following telling limiting
expression for Eη(u, r)

Eη(u, r)↔
1

T
rT
(
IT +R+

1

η2
UT
{
mT(W i)TR̃−1W jm

}T−1

i,j=0
U

)−1

r. (4)

Recalling that R̃ is a linear combination of the matrices Sq = W (−q)+S0W
(q+), with S0 =∑

k≥0W
k(W k)T, the expression 1

η2
mT(W i)TR̃−1W jm is strongly reminiscent of the Fisher

memory curve f : N → R of the ESN, introduced in [Ganguli et al., 2008] and defined by
f(k) = 1

η2
mT(W k)TS−1

0 W km. The Fisher memory curve f(k) qualifies the ability of a k-

step behind past input to influence the ESN at present time. Correspondingly, it appears
here that the ability of the ESN to retrieve the desired expression of r from input u is
importantly related to the matrix { 1

η2
mT(W i)TR̃−1W jm}T−1

i,j=0. As a matter of fact, for

c = 0 (thus for a long training period), note that R = 0 while R̃ = S0 and we then find in
particular

Eη(u, r)↔
1

T
rT
(
IT +

1

η2
UT
{
mT(W i)TS−1

0 W jm
}T−1

i,j=0
U

)−1

r.

Pushing further our discussion on R and R̃, it is interesting to intuit their respective
structures. Observe in particular that Rij depends only on i− j and thus R is a Toeplitz
matrix. Besides, since trB = trBT for square matrices B, from ST

i−j = Sj−i it comes that
Rij = Rji. Also note that, since ρ(W q) = ρ(W )q decays exponentially as q → ∞, it is
expected that Ri,i+q decays exponentially fast for large q. As a consequence, R is merely
defined by o(n) first entries of its first row.

From the results of [Gray, 2006] on Toeplitz versus circulant matrices, it then appears
that, for every deterministic matrix B, 1

T
trBR−1 is well approximated by 1

T
trBR−1

c for
Rc a circulant matrix approximation of R. Since circulant matrices are diagonalizable in
a Fourier basis, so are their inverses and then, as far as normalized traces are concerned,
(IT +R)−1 can be seen as approximately Toeplitz with again decaying behavior away from
the main diagonals. Although slightly ambiguous, this approximation still makes it that
the trace 1

T
tr Jq(IT +R)−1 appearing in the expression of R̃, is well approximated by any

value [(IT +R)−1]i,i+q for i sufficiently far from 1 and T , and decays to zero as q grows large.
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This, and the fact that Sq also decays exponentially fast in norm allows us to conclude

that R̃ can be seen as a decaying weighted sum of o(n) matrices Sq.

As shall be shown in Section 3, for W taken random with sufficient invariance properties,
fundamental differences appear in the structure of R and R̃ depending on whether W is
taken normal or not. In particular, for W non-normal with left and right independent
isotropic eigenvectors and m deterministic or random independent of W , R is well approx-
imated by a scaled identity matrix and {mT(W i)TR̃−1W jm}T−1

i,j=0 well approximated by a
diagonal matrix with exponential decay along the diagonal.

Having a clearer understanding of Corollary 1, a few key remarks are in order.

Remark 2 (On the ESN stability to low noise levels). It is easily seen by differentiation
along η2 that rTQ̃r is an increasing function of η2, thus having a minimum as η2 ↓ 0.
It is thus tempting to suppose that Eη(u, r) converges to this limit in the noiseless case
(i.e., for η2 = 0). Such a reasoning is however hazardous and incorrect in most cases.
Indeed, Corollary 1 only ensures an appropriate approximation of Eη(u, r) for given η > 0
in the limit where n → ∞. Classical random matrix considerations allow one to assert
slightly stronger results. In particular, for the approximation of Eη(u, r) to hold, one may

allow η2 to depend on n in such a way that η2 � n−
1
2 . This indicates that n must be

quite large for the ESN behavior at moderate noise levels to be understood through the
random matrix method. What seems like a defect of the tool on the onset in fact sheds
some light on a deeper feature of ESN’s. When η2 is of the same order of magnitude or
smaller than n−

1
2 , Corollary 1 may become invalid due to the resurgence of randomness

from · · · , ε−1, ε0, ε1, . . . Precisely, when η2 gets small and thus the training MSE variance
should decay, an opposite effect makes the MSE more random and thus possibly no longer
tractable; this means in particular that, for any two independent runs of the ESN (with
different noise realizations), all other parameters being fixed, the resulting MSE’s might
be strikingly different, making the network quite unstable. In practice, the opposition of
the reduced noise variance η2 and the resurgence of noise effects lead to various behaviors
depending on the task and input data under considerations, ranging from largely increased
MSE fluctuations at low η2 to reduced fluctuations, through stabilisation of the fluctua-
tions. In some specific cases discussed later, it might nonetheless be accepted to let η2 → 0
irrespective of n while keeping the random matrix approximation valid.

Remark 3 (Memory capacity revisited). For c < 1, letting uk =
√
Tδk and rk =

√
Tδk−τ

(that is, all input-output energy is gathered in a single entry), for τ ∈ N, makes the ESN
fill a pure delay task of τ time-steps. In this case, we find that

Eη(u, r)↔

[(
IT +R+

1

η2

{
mT(W i)TR̃−1W jm

}T−1

i,j=0

)−1
]
τ+1,τ+1

.

In the particular case where, for all i 6= j, Rij = o(1) and mT(W i)TR̃−1W jm = o(1) (see
Section 3.1 for a practical application with random non-normal W ), by a uniform control
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argument due to the fast decaying far off-diagonal elements ofR and {mT(W i)TR̃−1W jm},
the training MSE is further (almost surely) well approximated as

Eη(u, r)↔
η2

η2(1 +R11) +mT(W τ )TR̃−1W τm
.

If the quantity mT(W τ )TR̃−1W τm remains away from zero as n → ∞, then it is allowed
here to say (as opposed to the general case discussed in Remark 2) that Eη(u, r) → 0 as

η → 0 and that η2/Eη(u, r) ∼ mT(W τ )TR̃−1W τm, where we recover again a generalized
form of the Fisher information curve at delay τ . From this discussion and Remark 2, we
propose to define a novel network memory capacity metric MC(τ), representing the inverse

slope of decay of Eη(
√
Tδk,

√
Tδk−τ ) for small η2:

MC(τ) ≡ lim
η↓0

lim inf
n

[(
η2(IT +R) +

{
mT(W i)TR̃−1W jm

}T−1

i,j=0

)−1

τ+1,τ+1

]−1

.

Practical applications of Corollary 1 to specific matrix models for W shall be derived
in Section 3. Beforehand, we will study the more involved question of the test MSE
performance.

2.2. Test Performance. In this section, we assume ω ≡ ω(X;u, r) has been obtained as
per (1) or (2), depending on whether c < 1 or c > 1. We now consider the test performance

of the ESN that corresponds to its ability to map an input vector û ∈ RT̂ to an expected

output vector r̂ ∈ RT̂ of duration T̂ in such a way to fulfill the same task that links u to
r. For notational convenience, all test data will be denoted with a hat mark on top.

As opposed to the training mean square error, the testing MSE, defined as

Êη(u, r; û, r̂) ≡
1

T̂

∥∥∥r̂ − X̂Tω
∥∥∥2

(5)

where X̂ = {x̂j}T̂−1
j=0 ∈ Rn×T̂ is defined by the recurrent equation x̂t+1 = Wx̂t + mût+1 +

ηε̂t+1, with ε̂t ∼ N (0, In) independent of the εt’s, does not assume a similar simple form
as the training MSE. Precisely, we merely have the following result.

Lemma 2 (Testing MSE). For γ > 0, Qγ = ( 1
T
XXT+γIn)−1, and Q̃γ = ( 1

T
XTX+γIT )−1,

we have

Êη(u, r; û, r̂) = lim
γ↓0

1

T̂
‖r̂‖2 +

1

T 2T̂
rTXTQγX̂X̂

TQγXr −
2

T T̂
r̂TX̂TQγXr

= lim
γ↓0

1

T̂
‖r̂‖2 +

1

T 2T̂
rTQ̃γX

TX̂X̂TXQ̃γr −
2

T T̂
r̂TX̂TXQ̃γr

with Êη(u, r; û, r̂) defined in (5).

If n < T , Qγ is well-defined in the limit γ ↓ 0, while if instead n ≥ T , then one may

observe that XTQγ = Q̃γX
T with Q̃γ having well defined limit as γ ↓ 0.



10 ROMAIN COUILLET, GILLES WAINRIB, HARRY SEVI, AND HAFIZ TIOMOKO ALI

Technically, estimating Ê requires to retrieve, in a similar fashion as for Theorem 1, a de-
terministic approximation of quantities of the type QγX and XTQγBQγX = Q̃γX

TBXQ̃γ

for B a matrix independent of X. We precisely obtain the following result.

Theorem 2 (Second order deterministic equivalent). Let Assumptions 1–2 hold and let
B ∈ Rn×n be a deterministic symmetric matrix of bounded spectral norm. Then, recalling
the notations of Theorem 1, for every γ > 0,

Qγ
1√
T
X ↔ Q̄γA(In + η2Rγ)

−1

1

T
XTQγBQγX ↔ η2γ2 ¯̃QγG

[B]
γ

¯̃Qγ + (In + η2Rγ)
−1ATQ̄γ

[
B + G̃[B]

γ

]
Q̄γA(In + η2Rγ)

−1

where G
[B]
γ ∈ RT×T and G̃

[B]
γ ∈ Rn×n are solutions to the system of equations

G[B]
γ =

{
1

T
tr
(
Si−jQ̄γ

[
B + G̃[B]

γ

]
Q̄γ

)}T
i,j=1

G̃[B]
γ =

∞∑
q=−∞

η4γ2 1

T
tr
(
Jq ¯̃QγG

[B]
γ

¯̃Qγ

)
Sq.

With these results at hand, we may then determine limiting approximations of the test
mean-square error under both n < T and n > T regimes. As in Section 2.1, one may

observe here that, under Assumption 3 with, say c < 1, η4G
[B]
γ and G̃

[B]
γ both have well

defined limits as γ ↓ 0 which we shall subsequently refer to as G [B] and G̃ [B], respectively,
and the symmetrical result holds for c > 1. Precisely, we have the following result.

Proposition 2 (Small γ limit of Theorem 2). Let Assumptions 1–3 hold and let B ∈ Rn×n

be a deterministic symmetric matrix of bounded spectral norm. For all large n, define G [B]

and G̃ [B] a pair of solutions of the system

G [B] = c

{
1

n
tr

(
Si−j

(
δc>1In + R̃

)−1 [
B + G̃ [B]

] (
δc>1In + R̃

)−1
)}T

i,j=1

G̃ [B] =
∞∑

q=−∞

1

T
tr
(
Jq(δc<1IT +R)−1G [B](δc<1IT +R)−1

)
Sq.

Then, with the definitions of Theorem 2, we have the following results.

(1) If c < 1, then in the limit γ ↓ 0, η4G
[B]
γ → G[B] and G̃

[B]
γ → G̃ [B].

(2) If c > 1, then in the limit γ ↓ 0, γ2G
[B]
γ → G [B] and G̃

[B]
γ → G̃ [B].

Proposition 2 will be exploited on the deterministic matrix 1

T̂
E[X̂X̂T] = η2S0 + ÂÂT.

Rather than taking B = η2S0 + ÂÂT, which would induce an implicit dependence of G [B]

and G̃ [B] on η2, we shall instead split η2S0 + ÂÂT into η2 times S0 and ÂÂT. Noticing

then that G [ÂÂT] is asymptotically the same as G [0], with 0 the all zero matrix, we may
then obtain an approximation for the test mean square error. Prior to this, we need the
following growth control assumptions.
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Assumption 4 (Random Matrix Regime for Test Data). The following conditions hold:

(1) lim supn n/T̂ <∞
(2) lim supn ‖ÂÂT‖ <∞.

Note in passing here that the min(T, T̂ ) first columns of M̂ ∈ Rn×T̂ in the definition of Â

and M ∈ Rn×T in the definition of A are identical. As such, only Û actually particularizes
the data matrix Â.

With this condition, we have the following corollary of Theorem 2.

Corollary 2 (Test MSE). Let Assumptions 1–4 hold and let r̂ ∈ RT̂ be a vector of Euclidean

norm O(
√
T̂ ). Then, as n→∞, both for c < 1 and c > 1, we have, with the notations of

Propositions 1–2,

Êη(u, r; û, r̂)↔

∥∥∥∥∥ 1

η2
√
T
ÂTQA(δc<1IT +R)−1r − 1√

T̂
r̂

∥∥∥∥∥
2

+
1

T
rTQ̃GQ̃r

+
1

η2T
rT(δc<1IT +R)−1ATQ

[
S0 + G̃

]
QA(δc<1IT +R)−1r (6)

where G ≡ G [S0] and G̃ ≡ G̃ [S0].

The form of Corollary 2 is more involved than that of Corollary 1 but is nonetheless
quite interpretable. To start with, observe that G and G̃ are again only function of W and
therefore quantify the network connectivity only. Then, note that only the first right-hand
side term of the approximation of Êη(u, r; û, r̂) depends on û and r̂. As such, the quality
of the learned task relies mostly on this term.

If c = 0, for all B, G [B] = 0 and G̃ [B] = 0, so we have here the simplified expression

Êη(u, r; û, r̂)↔

∥∥∥∥∥ 1√
T
ÂT
(
η2S0 + AAT

)−1
Ar − 1√

T̂
r̂

∥∥∥∥∥
2

+
1

T
rTAT

(
η2S0 + AAT

)−2
Ar.

Some remarks are in order to appreciate these results.

Remark 4 (Noiseless case). As a follow-up on Remark 2, note that some alternative
approaches to ESN normalization assume instead that η = 0 but that ω is taken to be
the regularized least-square (or ridge-regression) estimator ω = X(XTX + γIT )−1r with
γ > 0. In this case, it is easily seen that the corresponding mean-square error performance
in training is given by Eγ(u, r) ≡ γ2 1

T
rTQ̃2

γr, which is precisely

Eγ(u, r) =
1

T
rT
(
IT +

1

γ
UT
{
mT(W i)TW jm

}T−1

i,j=0
U

)−2

r.

It is interesting to parallel this (exact) expression to the approximation (4) in which the
noise variance η2 plays the role of the regularization γ, but (i) where the two additional
quantities R and R̃ are present, and (ii) where the power factor of the matrix inverse is
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1 in place of 2. As for the testing performance, we are here comparing Corollary 2 to the
noiseless regularized MSE

Eγ(u, r; û, r̂) =

∥∥∥∥∥ 1√
T
ÂT
(
γIn + AAT

)−1
Ar − 1√

T̂
r̂

∥∥∥∥∥
2

.

This is again easily paralleled with the first right-hand side term in (6) which, for say c < 1,
reads ∥∥∥∥∥ 1√

T
ÂT
(
η2R̃+ A(IT +R)−1AT

)−1

A(IT +R)−1r − 1√
T̂
r̂

∥∥∥∥∥
2

.

Again, it is clear that η2 plays a similar role as that of γ, and that the matrices R and R̃
capture the behavior of the in-network noise.

3. Applications

In this section, we shall further estimate the results of Corollary 1 and Corollary 2 in
specific settings for the network connectivity matrix W and the input weights m. By
leveraging specific properties of certain stochastic models for W (such as invariance by or-
thogonal matrix product or by normality), the results of Section 2 will be greatly simplified,
by then providing further insights on the network performance.

3.1. Bi-orthogonally invariant W . We first consider the scenario where W is random
with distribution invariant to left- and right-multiplication by orthogonal matrices, which
we refer to as bi-orthogonal invariance. Precisely, in singular-value decomposition form,
we shall write W = UΩV T, where U , V , and Ω are independent and U , V are real
Haar distributed (that is, orthogonal with bi-orthogonally invariant distribution) and shall
impose that the eigenvalues of W remain bounded by σ < 1 for all large n. Two classical
examples of such a scenario are (i) W is itself a scaled Haar matrix, in which case Ω =

√
σIn

and the eigenvalues of W all have modulus σ, or (ii) W has independent N (0, σ2) entries, in
which case, according to standard random matrix results, for any ε > 0, the eigenvalues of
W have modulus less than σ+ ε for all large n almost surely and W is clearly orthogonally
invariant by orthogonal invariance of the real multivariate Gaussian distribution.

In this scenario, one can exploit the fact (arising for instance from free probability
considerations [Biane, 2003]) that, for all i 6= j fixed, the moments 1

n
trW i(W j)T vanish

as n → ∞. In our setting, i and j may however be growing with n, but then the fact
that ρ(W i) ≤ σi shall easily ensure an exponential decay of these moments. All in all, in
the large n setting, only the first few moments 1

n
trW i(W i)T, i = 1, 2, . . ., do not vanish.

Although the implication is not immediate, this remark leads naturally to the intuition that
the Toeplitz matrix R defined in Proposition 1 should be diagonal and thus proportional
to the identity matrix.

At this point, we need to differentiate the cases where c < 1 and c > 1.
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3.1.1. Case c < 1. Based on the remarks above, we may explicitly solve for R and R̃ to
find that, in the large n limit

R ↔ c

1− c
IT

R̃ ↔ (1− c)S0

G [B] ↔ c

(1− c)3

1

n
tr(S−1

0 B)IT

G̃ [B] ↔ c

1− c
1

n
tr(S−1

0 B)S0.

Replacing in the expressions of both Corollaries 1–2, we obtain the further corollary

Corollary 3 (Orthogonally invariant case, c < 1). Let W be random and left and right
independently orthogonally invariant. Then, under Assumptions 1–4 and with c < 1, the
following hold

Eη(u, r)↔ (1− c) 1

T
rT
(
IT +

1

η2
UTDU

)−1

r

Êη(u, r; û, r̂)↔

∥∥∥∥∥ 1

η2
√
T
ÛTD̂U

(
IT +

1

η2
UTDU

)−1

r − 1√
T̂
r̂

∥∥∥∥∥
2

+
1

1− c
1

T
rT
(
IT +

1

η2
UTDU

)−1

r − 1

T
rT
(
IT +

1

η2
UTDU

)−2

r

where we defined D ≡
{
mT(W i)TS−1

0 W jm
}T−1

i,j=0
and D̂ ≡

{
mT(W i)TS−1

0 W jm
}T̂−1,T−1

i,j=0
.

We see here that the matrix D plays a crucial role in the ESN performance. First, from
its Gram structure and the positive definiteness of S0, D is symmetric and nonnegative
definite. This matrix has an exponential decaying profile down its rows and columns. As
such, the dominating coefficients of the matrix UTDU lie in its upper-left corner. Recalling
that the j-th column of

√
TUT is {ui−j}Ti=1, UTDU is essentially a linear combination of

the outer products {ui−j}Ti=1({ui−j′}Ti=1)T for small j, j′, that is of combinations of (outer-
products of) short-time delayed versions of the input vector u.

Now, it is interesting to particularize the vector m and study its impact on D. It
may be thought that taking m to be one of the dominant eigenvectors of W could drive
the inputs towards interesting memory-capacity levels of W ; this aspect is discussed in
[Ganguli et al., 2008] where it is found that such an m maximizes the integrated Fisher-
memory curve. If such a real eigenvector having eigenvalue close to σ exists, then we would
find that Dij ' σi+jmTS−1

0 m and thus D would essentially be a rank-one matrix. As we
shall discuss below, this would lead to extremely bad MSE performance in general.

If instead m is chosen deterministic or random independent of W with say ‖m‖ = 1
(or tending to one) for simplicity, then by the trace lemma [Bai and Silverstein, 2009,
Lemma B.26], one can show that mT(W i)TS−1

0 W jm ↔ 1
n

trW j(W i)TS−1
0 . According to
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our earlier discussion, this quantity vanishes for all i 6= j as n → ∞, and thus D would
now essentially be diagonal. Besides, it is clear that trD ↔ 1 and thus D here plays the
role of affecting a short-term memorization ability, that can be seen as a total load 1, to
the successive delayed versions of u. In particular, from our definition in Remark 3, we
have precisely here

MC(τ) =
1

1− c
lim inf

n

1

n
tr
(
W τ (W τ )TS−1

0

)
which, for the chosen m, is precisely the Fisher memory curve [Ganguli et al., 2008], up to
the factor 1− c.

Remark 5 (Haar W and independent m). For W = σZ with Z Haar distributed (or-
thogonal and orthogonally invariant) and m independent of Z and of unit norm, D is
asymptotically diagonal and we find precisely

Dii ↔ (1− σ2)σ2(i−1)

and in particular

MC(τ) =
1− σ2

1− c
σ2τ .

Remark 5 can be extended to design an interesting multiple memory-mode network as
follows.

Remark 6 (Multiple memory modes). Take W to be the block diagonal matrix W =
diag(W1, . . . ,Wk) where, for j = 1, . . . , k, Wj = σjZj, σj > 0, and Zj ∈ Rnj×nj is Haar
distributed, independent across j. Take then m independent of W with unit norm. Also
assume that nj/n→ cj > 0 as n→∞ and

∑
j nj = n. Then we find that

Dii ↔
∑k

j=1 cjσ
2(i−1)
j∑k

j=1 cj(1− σ2
j )
−1

and in particular, with MC(τ) defined in Remark 3,

MC(τ) =
1

1− c

∑k
j=1 cjσ

2τ
j∑k

j=1 cj(1− σ2
j )
−1
.

A graph of MC(τ) for k = 3 is depicted in Figure 1, where it clearly appears that the
memory curve follows successively each one of the three modes, giving in particular more
weight to short-term past inputs at first, and then smoothly providing increasingly more
importance to longer term past inputs. This is reminiscent of the long short-term memory
framework devised in [Xue et al., 2007].

It is next interesting to study Corollary 3 more deeply. Let us first assume that the
task to be performed, both in training and testing, consists in retrieving a mere linear
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1 )
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2 )
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3 )

Figure 1. Memory curve for W = diag(W1,W2,W3), Wj = σjZj, Zj ∈
Rnj×nj Haar distributed, σ1 = .99, n1/n = .01, σ2 = .9, n2/n = .1, and
σ3 = .5, n3/n = .89. The matrices W+

i are defined by W+
i = σiZ

+
i , with

Z+
i ∈ Rn×n Haar distributed.

combination of latest past inputs ut, ut−1, . . . , ut−(k−1) for k fixed. Then we may write

r =
√
TUTb for some vector b ∈ RT with bj = 0 for all j ≥ k. We then have

Eη(u, r)↔ (1− c)bTU
(
IT +

1

η2
UTDU

)−1

UTb.

For D positive diagonal with exponential decaying profile, D−1 is extremely ill-conditioned
and may only be used with extreme care. However, for k fixed, D−

1
2 b is well behaved as

its norm is bounded by ‖b‖D−
1
2

k−1,k−1. We may thus write b = D
1
2 (D−

1
2 b) to obtain, after

basic algebraic manipulations

Eη(u, r)↔ η2(1− c)(D−
1
2 b)T

1

η2
D

1
2UUTD

1
2

(
IT +

1

η2
D

1
2UUTD

1
2

)−1

(D−
1
2 b).

Since ‖A(I+A)−1‖ ≤ 1 for any symmetric nonnegative definite matrix A, we thus conclude
that, for every η, ε > 0, Eη(u, r) ≤ (1− c)η2bTD−1b+ ε for all large n almost surely. Thus,
for sufficiently large n, Eη(u, r) can be made arbitrarily small in the limit where η → 0

and thus the task can be performed accurately. As for Êη, note that, since D̂ and D are

essentially zero away from the upper left corner and otherwise equal, if r̂ =
√
T̂ Û b̂, for
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b̂ ∈ RT̂ having the same first k entries as b and zeroes next, then we find

Êη(u, r; û, r̂)↔
η2

1− c
(D−

1
2 b)T

1

η2
D

1
2UUTD

1
2

(
IT +

1

η2
D

1
2UUTD

1
2

)−1

(D−
1
2 b)

+ (D−
1
2 b)T

(
IT +

1

η2
D

1
2UUTD

1
2

)−1

D
1
2 ∆D

1
2

(
IT +

1

η2
D

1
2UUTD

1
2

)−1

(D−
1
2 b)

(7)

where ∆ ≡ [Û ÛT]T×T − UUT, with the operator [X]T×T extending (or reducing) X to a
T × T matrix by filling it with zeroes (or discarding last rows and columns). Note here

that, for U = Û , ∆ = 0 and we find that

Êη(u, r;u, r)↔
1

(1− c)2
Eη(u, r). (8)

When ∆ 6= 0, observe first that ‖(IT + η−2D
1
2UUTD

1
2 )−1‖ ≤ 1 and thus Êη(u, r; û, r̂)

remains bounded. Now, with a more subtle analysis, note that, since the product BD−
1
2 b

for any matrix B only concerns the first k columns of B, the behavior of Êη as η → 0

merely depends on the behavior of the top-left k×k submatrix of (IT +η−2D
1
2UUTD

1
2 )−1.

A block matrix inverse then reveals that the second right-hand side term of (7) goes to zero

as η → 0 provided that the k-th largest eigenvalue of D
1
2UUTD

1
2 remains away from zero

as T → ∞. From the structure of U , we thus conclude that, for Êη to vanish as η → 0,
it is sufficient for the vector u to be sufficiently “diverse” in its constituents (that is, so
that the first columns of U remain linearly independent). An obvious counter-example is
when the sequence . . . , u−1, u0, u1, . . . ∈ R is periodic of period less than k. Note that the
specific choice of û does not alter this behavior.

The discussion above leads to interesting practical considerations that may help improve
the design of an ESN.

Remark 7 (Selecting W based on delayed correlations). Note that, in the aforementioned
formulas, the quantity bTD−1b with b defined by r = UTb appears as a fundamental quantity
bounding the training and testing MSE. In practical settings where r is not a pure linear
combinations of delayed versions of u, it may nonetheless be useful to obtain an estimate b̂
of the closest approximation of r by delays of u, in such a way that b̂TD−1b be small. One
may for instance let

b̂ = (UUT + γIT )−1Ur

for some regularization parameter γ ≥ 0 (if needed), and parametrize W so that b̂TD−1b̂

is minimal. For instance, if b̂i = αi−1 for some α ∈ (−1, 1), it is easily shown that an
optimal choice for W = σZ with Z Haar is to take σ2 = |α|. This scenario is illustrated
in Figure 2, where the theoretical approximations for the testing and training normalized
MSE are depicted for various choices of σ2. For less obvious values of b̂, a more elaborate
multi-memory matrix W , as introduced in Remark 6, can be used, with proper setting of
the parameters ni and σi.
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Figure 2. Optimal σ choice for rt =
∑

i≥0 ut−ibi, bi = αi−1 with α = −.25,

u i.i.d. zero mean Gaussian, W Haar distributed, n = 200, T = T̂ = 400.

Remark 8 (Memory Capacity for Stationary Inputs). Let W be orthogonally invariant
and m random, so that D is diagonal in the limit. Further assume the sequence u is an auto-
regressive Gaussian process, so that we may write u = C

1
2 ũ with ũ having independent zero

mean unit variance Gaussian entries and C a Toeplitz covariance matrix with Cab = q|b−a|

for some q ∈ [0, 1). Then, for the τ -delay memory task, i.e., rt = ut−τ with τ fixed, we find
that

Eη(u, r)↔ η2 1− c
Dτ+1,τ+1

1−

[(
IT +

1

η2

{√
Diiq

|i−j|√Djj

}T−1

i,j=0

)−1
]
τ+1,τ+1

 .
Since q < 1, the matrix {q|i−j|}ij has its smallest eigenvalue asymptotically far from zero
(see e.g., [Gray, 2006] for arguments) so that the right-hand side inner bracket vanishes as
η2 → 0 and we thus have, for small η2

η−2Eη(u, r)↔
1− c

Dτ+1,τ+1

+ o(η2).

As a consequence, the memory task is performed irrespective of the smoothness of u, so
that u can be assumed composed of i.i.d. elements (i.e., q = 0). Observe that this leads

to the same performance as the memory task considering u =
√
Tδ0 defining the memory

capacity in Remark 3. Of course, if instead q = 1, then the matrix in curly brackets would
have unit rank and the previous conclusions would fail (in this case u is a constant vector).

Expression (8) also provides us an opportunity to open a short parenthesis on the effect
of c on the training and testing MSE. From Corollary 3, it appears that, while Eη is minimal
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for c = 1, Êη is minimal for c = 0. The former observation is clear from the fact that ω
is a least-square regressor, but the latter observation is less trivial. As a matter of fact,
note that, even if Û = U and r̂ = r, in the limit of η > 0 fixed and c → 1, Êη becomes
arbitrarily large. The reason for this seemingly counter-intuitive effect (after all, we merely
ask the ESN to reproduce the exact learned sequence) lies in the fact that ω is built upon
the network noise realization during training, while during testing a new noise realization
is produced. As such, training an ESN of size almost equal to T produces dramatic effects
on testing. However, this has the positive effect of strongly reducing over fitting. Of course,
in practical settings, there exists an interplay between η2 that drives both MSE’s to zero
as η → 0 and c that reduces overfitting as it tends to 1.

Coming back to the approximations of Eη and Êη, note now that if D is a rank-one
matrix, then we may write D = ddT for some vector d ∈ RT having exponentially vanishing
entries. In this case, we find, again after standard algebraic calculus, that

Eη(u, r)↔ (1− c)
(

1

T
‖r‖2 −

1
T
|dTUr|2

η2 + |dTU |2

)
.

Taking as above r =
√
TUb, this is Eη(u, r)↔ (1−c)

(
bTUUTb− |dTUUTb|2

η2+dTUUTd

)
. By Cauchy-

Schwarz inequality, this quantity, even in the limit η2 → 0, cannot vanish unless b = d.
As such, the ESN will only adequately fulfill a single task, which depends on the network
configuration itself through d. A similar reasoning can be made on Êη revealing the same
shortcomings.

As a practical example, we provide in Figure 3 Monte Carlo simulations versus theory
curves of the training and testing performances of networks of n = 200 and n = 400
nodes, for training and testing times T = T̂ = 2n, on the Mackey Glass one-step ahead
anticipation task [Glass and Mackey, 1979]. The network is chosen to be the multi-memory
model introduced in Remark 6 and following the description of Figure 1. The NMSE is
defined here as the ratio between the MSE and the output vector squared norm ‖r‖2/T or

‖r̂‖2/T̂ . Simulations are run for a single W but different noise realizations and comparison
is made against theory for either this W or its approximated asymptotic limit. Observe
the extremely accurate match between theory and practice, with increasing precision as
n, T grow large.

3.1.2. Case c > 1. The case c > 1 is slightly more involved as it does not lend itself to a
purely explicit expression. Precisely, following the same steps as for c < 1, we find that in
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Figure 3. Training and testing (normalized) MSE for the Mackey Glass

one-step ahead task, W fixed and defined as in Figure 1, n = 200, T = T̂ =
400 (left) and n = 400, T = T̂ = 800 (right). Comparison between Monte
Carlo simulations (Monte Carlo), deterministic approximation assuming W
fixed (Th. (fixed W )) as per Corollaries 1 and 2, and assuming W random
in the large n limit (Th. (limit)) as per Corollary 3. Error bars indicate one
standard deviation of the Monte Carlo simulations.

the large n limit

R ↔ αIT

R̃ ↔ 1

α
S0

G [B] ↔ cα2
1
n

trS0 (αIn + S0)−1B (αIn + S0)−1

1− c 1
n

trS2
0 (αIn + S0)−2 IT

G̃ [B] ↔ c
1
n

trS0 (αIn + S0)−1B (αIn + S0)−1

1− c 1
n

trS2
0 (αIn + S0)−2 S0

where α > 0 is the unique solution to the equation

1 = c
1

n
trS0 (αIn + S0)−1 .

With these notations, we have the following counterpart to Corollary 3.

Corollary 4 (Orthogonally invariant case, c > 1). Let W be random and left and right in-
dependently orthogonally invariant and let α > 0 be the unique solution to 1 = c 1

n
trS0 (αIn + S0)−1.
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Then, under Assumptions 1–4 and with c > 1, the following holds

Êη(u, r; û, r̂)↔

∥∥∥∥∥η−2ÛTD̂U
(
IT + η−2UTDU

)−1 r√
T
− 1√

T̂
r̂

∥∥∥∥∥
2

− 1

T
rT
(
IT + η−2UTDU

)−1
r

+
1
T
rT
(
IT + η−2UTDU

)−1 [
IT + η−2UTD2U

] (
IT + η−2UTDU

)−1
r

1− c 1
n

trS2
0 (αIT + S0)−2

where D ≡
{
mT(W i)T(αIn + S0)−1W jm

}T−1

i,j=0
, D̂ ≡

{
mT(W i)T(αIn + S0)−1W jm

}T̂−1,T−1

i,j=0
,

and D2 ≡
{
mT(W i)T(αIn + S0)−1S0(αIn + S0)−1W jm

}T−1

i,j=0
.

Of course here Eη(u, r) = 0.

Remark 9 (Haar W , random m for c > 1). Although seemingly less tractable, for W
following a Haar model, Corollary 4 takes a much simpler form. Indeed, for W and m as
defined in Remark 5, we find that α = (c− 1)(1− σ2)−1 and S0 = (1− σ2)−1In which then
leads to

Êη(u, r; û, r̂)↔

∥∥∥∥∥(cη2)−1ÛTD̂U
(
IT + (cη2)−1UTDU

)−1 r√
T
− 1√

T̂
r̂

∥∥∥∥∥
2

+
1

c− 1

1

T
rT
(
IT + (cη2)−1UTDU

)−1
r

where D is diagonal with Dii ≡ (1− σ2)σ2(i−1).

Aside from obtaining a shorter form expression for D and D2, the multi memory model
of Remark 6 does not lead to an explicit formulation as in Remark 9, but it is nonetheless
instructive to observe the performance achieved on the Mackey Glass model from Figure 3,
now in the setting where c > 1. This is depicted here in Figure 4.

3.2. Normal W . We now turn to the case of normal matrices. Let then W be normal
(i.e., diagonalizable in orthogonal basis) and having an eigenvalue decomposition of the
type W = V ΛV T with V orthogonal and Λ diagonal with largest absolute entry less than
one. For simplicity, we shall further assume that, as n → ∞, the normalized counting
measure of the diagonal elements of Λ (n−1

∑
i δΛii

) converges in law to a probability
measure µ. We do not make any assumption here on V .

For instance, real Gaussian Wigner matrices W , that is with i.i.d. zero mean variance
1
4
σ2 Gaussian entries on and above the diagonal, and symmetrized below the diagonal,

is an example of such a matrix. In this case, µ corresponds (almost surely) to the well-

known semi-circular distribution, with density µ(dλ) = 2(πσ2)−1
√

(σ2 − λ2)+dλ. Another
example is when µ(dλ) = 1

2
[δσ +δ−σ]dλ, so that W is the sum of two (σ-scaled) projection

matrices on orthogonal subspaces. In particular here, W 2 = σ2In, so that W 2k = σ2kIn
and W 2k+1 = σ2kW , for all k ≥ 0.

Because of the symmetry property, it is no longer true that 1
n

trW i(W j)T = 1
n

trW i+j

vanished for i 6= j, and we then obtain more involved results. To keep this discussion short
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Figure 4. Testing (normalized) MSE for the Mackey Glass one-step ahead

task, W fixed and defined as in Figure 1, n = 400, T = T̂ = 200. Error bars
indicate one standard deviation of the Monte Carlo simulations.

and since the results take here more involved forms, we shall only deal here with the case
c < 1 and focus on the training performance. In this case, solving Proposition 1 for R and
R̃, we have the following result. As n → ∞, R has a limit (which for simplicity we keep
calling R) which is solution to

Rab = c

∫
t|a−b|µ(dt)∑∞

q=−∞
1
T

tr(Jq(IT +R)−1)t|q|
(9)

for all a, b ∈ {1, . . . , T}. Remember that R is Toeplitz with fast decaying values off the
diagonal, so that (9) is computationally easy to solve. Similar conclusions can be drawn
on the matrices G [B] and G̃ [B], that however do not lead to simple expressions.

Remark 10 (Symmetric µ). An interesting scenario is when µ is symmetric, i.e., µ(−t) =
µ(t), which is the case of both aforementioned (Wigner and projection matrix) examples.
From (9), we find in this case that [R]ab is zero if a− b is odd and positive if a− b is even.
As such, R, takes the form of a checkerboard matrix. Figure 5 provides a representation
of R in both normal and non-normal Gaussian W cases.

Remark 11 (Projection W ). Let W = V ΛV T with the normalized counting measure of
Λ converging to µ(dλ) = 1

2
[δσ + δ−σ]dλ and c < 1. Then, Rab ↔ σ|b−a|r0δ|b−a|∈2N and

R̃ ↔ −(1− σ2)−1cr−1
0 In where

r0 = c

(
∞∑

q=−∞

1

T
tr Jq (IT +R)−1

)−1

.
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R [Wigner]

Figure 5. Upper 9× 9 part of R for c = 1/2 and σ = 0.9 for W with i.i.d.
zero mean Gaussian entries (left) and W Gaussian Wigner (right). Linear
grayscale representation with black being 1 and white being 0.

As a consequence, letting m be random, we find that

Eη(u, r)↔
1

T
rT
(
IT + r0

{
σ|j−i|δ|j−i|∈2N

}T−1

i,j=0
+
r0(1− α2)

η2c
UT
{
σj+iδ|j−i|∈2N

}T−1

i,j=0
U

)−1

r.

Note in particular that the matrix {σj+iδ|j−i|∈2N}T−1
i,j=0 can be decomposed as the sum of

two matrices: (i) the rank-one matrix vvT with v = (1, 0, α2, 0, α4, . . .)T and the diagonal
matrix diag(0, α2, 0, α4, . . .). Recalling that rank-one matrices in this position do not allow
for efficient training (see the final discussions in Section 3.1, c < 1 case), only the diagonal
component diag(0, α2, 0, α4, . . .) really matters here. This diagonal misses half its entries
and thus intuitively does not allow for efficient retrieval of odd past steps. This remark
generally prefigures a weaker performance of normal matrices with symmetric spectrum
than their non-normal counterparts.

The final discussion in Remark 11 motivates a deeper comparative study of the perfor-
mances of non-normal versus normal connectivity matrices. From (9), we may in particular
evaluate the memory curve (as defined here in Remark 3) for W a Wigner random ma-
trix. The performance figures are displayed in Table 1, which show a dramatic decay of
the memory curve for the Wigner connectivity matrix as compared to an i.i.d. Gaussian
non-normal matrix. In Figure 6, a practical scenario of a τ -delay task is depicted compara-
tively for Haar versus Wigner matrices (the input data being extracted from Mackey-Glass
processes but the general results hold for any non-trivial input dataset); there we confirm
that, for increasing values of the delay τ , the ESN performance strongly decays for Wigner
matrices as compared to Haar matrices, as predicted by the theoretical results of Table 1.

An application example in a less artificial context is devised in Figure 7, where, on a
real dataset of daily pollution (PM10) records, we provide the one-day ahead interpolation
performance of neural networks assuming m random i.i.d. and either (i) W with i.i.d.
Gaussian entries or (ii) W Gaussian Wigner. We observe again a better performance
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τ i.i.d. Wigner

0 5.2 · 10−1 4.8 · 10−1

1 2.0 · 10−1 1.6 · 10−2

2 1.0 · 10−1 1.3 · 10−3

3 6.0 · 10−2 2.0 · 10−4

4 3.9 · 10−2 5.7 · 10−5

Table 1. Memory curve MC(τ) for i.i.d. versus Wigner matrices, c = .5.
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τ = 1, . . . , 4

η2

N
M

S
E

Wigner W

i.i.d. W

10−5 10−4 10−3 10−2 10−1 100 101

τ = 1, . . . , 4

η2

Wigner W

i.i.d. W

Figure 6. Training (left) and testing (right) performance of a τ -delay task
for τ ∈ {1, . . . , 4} compared for i.i.d. W versus Wigner W , σ = .9 and

n = 200, T = T̂ = 400 in both cases (here on the Mackey-Glass dataset).

achieved by the ESN with non-normal matrix W which, accordingly with the fact that
ESN’s rely heavily on past input retrieval, is coherent with the previous remark.

3.3. Further Experiments. In this section, we provide further noticeable results of in-
terest to neural network optimization.

To start with, we consider a scenario where the testing dataset is polluted by an ad-
ditional impulsive white Gaussian noise arising independently with probability p. This is
depicted in Figure 8 for the Mackey–Glass one-step ahead task. It is observed here that the
in-network noise is valuable in bringing the normalized MSE down to acceptable values. It
is in particular seen that the more the noise impulsion probability the larger the variance
η2 should be chosen. A particular realization of the noisy Mackey-Glass output is provided
in Figure 9, where it is observed that a visually small noise impulsion in the input vector
drives a large fluctuation of the output for a too small-η2 ESN.

This phenomenon can be theoretically anticipated in simple settings. Let us consider the
scenario of Section 3.1 with W orthogonally invariant, where r = UTb for a vector b ∈ RT

having only its last T − k entries identically zero for some fixed k; let us now assume that



24 ROMAIN COUILLET, GILLES WAINRIB, HARRY SEVI, AND HAFIZ TIOMOKO ALI

10−4 10−3 10−2 10−1 100 101

10−2

10−1.8

10−1.6

10−1.4

W normal

W non-normal

η2

N
M

S
E

Monte Carlo

Theory (limit)

Figure 7. Testing (normalized) MSE for the PM10 one-step ahead task,

W i.i.d. Gaussian or Gaussian Wigner (σ = .9), n = 200, T = T̂ = 400.

û = û0 + ê for some noise vector ê made of i.i.d. zero mean and variance s2 entries, and
suppose that r̂ = Û0 for {Û0}ij = [û0]i−j. Then, an application of Corollary 3 leads to

Êη(u, r, û, r̂) asymptotically equal to (7) plus an additional term given by (after calculus)

s2

∥∥∥∥(η2IT +D
1
2UUTD

1
2

)−1

D
1
2UUTD

1
2 (D−

1
2 b)

∥∥∥∥2

. (10)

From the inequality ‖(η2IT + D
1
2UUTD

1
2 )−1‖ ≤ η−2 and the fact that ‖D− 1

2 b‖ remains
bounded, we get that the term (10) can be made arbitrarily small by letting η2 → ∞.
Therefore, η2 induces robustness in this scenario. Since η2 → 0 was shown to be optimal
in the scenario where s2 = 0, there must exist an MSE minimizing choice of η2 ∈ (0,∞).

In a second experiment, we shall illustrate the “noise resurgence” effect discussed earlier
in Remark 2. In Figure 10, we specifically draw the curves of the testing MSE variances
for various experiments conducted earlier in the article. It is observed, as discussed in
Remark 2 that, somewhat counter-intuitively, smaller η2 values may lead to increased vari-
ances solely due to the in-network noise realization itself (recall that in all our experiments,
the connectivity matrix W and the input-output pairs (u, r) and (û, r̂) are fixed across all
Monte Carlo realizations). It is even more interesting to observe here each of the three
possible behaviors: a “natural” MSE variance decay as η2 → 0, a surprising MSE increase,
and even an MSE stabilization. Further theoretical analysis to understand those strikingly
different behaviors would be appreciable, which would demand more advanced technical
considerations.

We complete this section by a last comparative experiment of the performance of the
multi-memory matrix W defined in Remark 6 specialized to the setting of Figure 1 (that
is, with three rates σ1 = .99, σ2 = .9, and σ3 = .5) versus Haar matrices for the different σi
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Figure 8. Testing (normalized) MSE for the Mackey-Glass one-step ahead
task with 1% or 10% impulsive N (0, .01) noise pollution in test data inputs,

W Haar with σ = .9, n = 400, T = T̂ = 1000. Circles indicate the NMSE
theoretical minima. Error bars indicate one standard deviation of the Monte
Carlo simulations.

ût r̂t Output (optimal η2) Output (η2 = 10−5)ût r̂t Output (optimal η2) Output (η2 = 10−5)

ût r̂t Output (optimal η2) Output (η2 = 10−5)

Figure 9. Realization of a 1% N (0, .01)-noisy Mackey-Glass sequence ver-

sus network output, W Haar with σ = .9, n = 400, T = T̂ = 1000. In
magnifying lenses, points of added impulsive noise.

values, for the Mackey-Glass model. This is depicted in Figure 11, which shows a valuable
performance gain versus ill-chosen individual hypotheses of σ and a rather fair match to
the best individual σ value.

4. Concluding Remarks

One of the main outcomes of the present study is a better understanding of the ESN
instability to low internal noise variance described by Jaeger in [Jaeger, 2001]. We made it
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Figure 10. Standard deviation of testing NMSE for different testbeds (ex-
emplifying the resurgence of noise effect). MG in legend stands for Mackey–

Glass. In all scenarios, n = 200, T = T̂ = 400.
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Figure 11. Testing (normalized) MSE for the Mackey Glass one-step ahead
task, W (multimemory) versus W+

1 = .99Z+
1 , W+

2 = .9Z+
2 , W+

3 = .5Z+
3 (with

Z+
i Haar distributed) all defined as in Figure 1, n = 400, T = T̂ = 800.

clear here that, when the noise variance is sufficiently large compared to the inverse square
root of the network size, the ESN tends to have a deterministic behavior (that is, indepen-
dent of the noise realization) as both time and network size grow large. This deterministic
behavior was characterized here through new results from random matrix theory, with the
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main consequences to ESN’s being encapsulated in Corollary 1 and Corollary 2. When the
noise variance is however too small, random matrix theory cannot guarantee in general the
aforementioned deterministic network behavior in the large system asymptotic. Although
difficult to read, the asymptotic performances revolve around a critical matrix that con-
tains the exponential memory decay information and may be use to generalize Ganguli’s
notion of memory curve (see Remark 3). This generalized memory curve draws improved
conclusions on the ESN performance (with sometimes opposite outcomes as compared to
the conclusions drawn upon the former memory curve notion).

In the particular case of some standard random matrix models for the neural connectiv-
ity matrix, we further simplified the rather involved generic expressions from Corollary 1
and Corollary 2. Of particular interest is the case of bi-orthogonally invariant random
connectivity matrices for which the mean square error performances of learning and test-
ing take on the explicit expressions of Corollary 3 or Corollary 4 from which much can be
inferred. Among other results, we understood the importance of random input weights for
the network performance as compared to input weights that match the leading eigenvec-
tors of the connectivity matrix and we made it clear that the ESN testing performance
is asymptotically optimal for arbitrary low noise variances when the task to fulfill is a
mere linear combination of the last few past inputs. In additional experiments, we also
understood the role of a non-trivial noise level as a robustness-to-outliers enhancer.

Beyond their theoretical value, note also that the results of this article may be used
in practice to anticipate the behavior of ESN’s on real-life datasets, thereby saving one
from the painstaking task of running long Monte Carlo simulations. For instance, one may
consider retrieving the theoretical MSE outputs corresponding to successive sequences of
training and testing inputs so to better tune the ESN parameters. This is all the more
precious that the network size and time windows are large since then the formulas of, say
Corollary 3, can be retrieved extremely fast.

One frustrating aspect of the work nonetheless remains that, for low noise variances
(typically of practical interest), our analysis leads to large mismatches when the network
size is kept moderate. This is observed in Figure 3 in particular. There is as such no
theoretical control of this regime. This being said, in some scenarios where the limiting
singularity at zero noise can be avoided, we showed an accurate fit of our theoretical findings
at all noise levels. But the main limitation of the analysis so far lies in its dealing with
linear activation functions only. We believe that the (much more interesting) question
of non-linear activation functions may be addressed by the exploitation of results from
the mean field theory which prefigures an asymptotic joint Gaussian behavior of the state
vectors at each time instant, which may allow for an adaptation of the present random
matrix analysis; alternatively, the Gaussian tools presented here may be adapted to Taylor
expansions of the activation functions. This investigation is left to future work.
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Appendix A. Proof of Theorem 1

The present and next sections are dedicated to the proofs of the main results Theo-
rems 1–2 of the article. The proofs rely on now well-established tools from random matrix
theory, with an additional specificity due to the “infinitely long” time dependence be-
tween the columns of the random matrices involved; however, as the time dependence is
effectively short (of order o(Tα) for any α > 0), these matrices can be handled as if depen-
dence was among only a few next and previous columns. We shall not deeply elaborate
on all technical arguments for the sake of readability and concision. The reader more
interested in the proof techniques and in more advanced time dependence considerations
may refer to [Pastur and Ŝerbina, 2011, Hachem et al., 2008] on the Gaussian methods and
[Banna and Merlevede, 2013] for stationary processes in random matrix theory.

In the present section, W is considered a deterministic matrix with operator norm less
than unity. We recall thatX = {xj}T−1

j=0 ∈ Rn×T , for the infinite time series . . . , x−1, x0, x1, . . . ∈
Rn, defined recursively through

xt+1 = Wxt +mut+1 + ηεt+1

with m of bounded norm and . . . , u−1, u0, u1, . . . ∈ R some time series. We addition-

ally denote A = MU where M = {W jm}T−1
j=0 and U = T−

1
2{uj−i}T−1

i,j=0. Also, let Z =

ηT−
1
2{
∑

k≥0W
kεj−k}T−1

j=0 the concatenated noise vectors, with εi ∼ N (0, In). With these

notations and normalization, we have X =
√
T (A + Z), where A and Z are expected to

have operator norm of order O(1) with respect to n, T →∞ as per Assumption 3 and thus
so should 1

T
XXT.

For γ > 0, denoting Qγ = ( 1
T
XXT +γIn)−1, our objective is to obtain an approximation

of Qγ in the sense of the equivalence ↔ using the so-called Gaussian method introduced

by Pastur in [Pastur and Ŝerbina, 2011]. This method consists in two ingredients: (i) an
integration by parts formula for Gaussian random variables (also called Stein’s lemma) that
stipulates that, for x ∼ N (0, 1) and a polynomially bounded differentiable f , E[xf(x)] =
E[f ′(x)], and (ii) concentration inequalities or moment based bounds (such as the Nash–
Poincaré inequality) to control small terms. The idea here is to expand terms of the
type E[[εi]j[Qγ]kl] using the Gaussian integration by parts formula in order to retrieve an
implicit but deterministic expression for Qγ, up to small random terms. Then, thanks to
concentration or moment bounds, the aforementioned small terms are shown to vanish at
a sufficient speed to ensure almost sure convergence of Qγ to the deterministic solution of
the implicit equation in the sense of the equivalence ↔.

We start by noticing that Qγ = 1
γ
In − 1

γ
1
T
XXTQγ, a relation often referred to as the

resolvent identity. This allows one to write E[Qγ] as a function of E[XXTQγ] which lends
itself to the integration by parts approach since X is a linear function of the Gaussian
variables [εi]j.
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In what follows, for readability, we shall denote Q = Qγ (and thus Qij = [Qγ]ij) and
εij = [εi]j. Then we have

E[Qij] =
1

γ
δij −

1

γ

(
E[[ZZTQ]ij]︸ ︷︷ ︸

(I)

+ E[[ZATQ]ij]︸ ︷︷ ︸
(II)

+ E[[AZTQ]ij]︸ ︷︷ ︸
(III)

+ E[[AATQ]ij]︸ ︷︷ ︸
(IV )

)
. (11)

Each of the four braced terms needs be treated independently. Note first that term (IV )
is simply

∑
k[AA

T]ikE[Qkj] and is thus treated similar to E[Qij] itself. It then remains to
handle terms (I)–(III). Before handling each term, let us first introduce a few elementary
results of constant use in what follows. First, by a mere development, we have

Zab =
η√
T

∑
k≥0

n∑
p=1

[W k]apεp,b−k

from which

∂Zab
∂εil

=
η√
T

∑
k≥0

n∑
p=1

δpiδl,b−k[W
k]ap. (12)

Expanding X in the expression of Q and using ∂Q = −Q(∂Q−1)Q, we then find

∂Qmj

∂εil
= − η√

T

n∑
p=1

δl≤p

(
[Q(Z + A)]mp

[
(W p−l)TQ

]
ij

+
[
(Z + A)TQ

]
pj

[
QW p−l]

mi

)
.

(13)

It is important at this point to bring some insight from random matrix theory. If εil
were a complex rather than real standard Gaussian random variable, the second term in
the right-hand side parenthesis would not have appeared. Since first order deterministic
equivalents (which is what we are proceeding to here) are usually valid irrespective of the
i.i.d. distribution (real or complex) of the εil’s, it is expected that this second term will
lead to vanishing terms in what follows.

With these preliminary results and this remark in mind, we can tackle the calculus of
terms (I)–(III) from (11). Let us first focus on term (I). Developing E[[ZZTQ]ij] as a
function of the εkl’s and applying the Gaussian integration-by-parts formula, we find

E[[ZZTQ]ij] = η
T∑
l=1

n∑
m=1

n∑
o=1

∑
k≥0

E [εo,l−kZm,lQmj]
[
W k
]
io

= η

T∑
l=1

n∑
m=1

n∑
o=1

∑
k≥0

(
E

[
∂Zm,k
∂εo,l−k

Qmj

]
+ E

[
∂Qmj

∂εo,l−k
Zml

]) [
W k
]
io
.
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Substituting the derivatives by the forms (12) and (13), we obtain after full development
and simplifications

E[[ZZTQ]ij] = η2
∑
k≥0

E
[[
W k(W k)TQ

]
ij

]

− η2
∑
k≥0

T−1∑
q=−k

T−q+∑
l=1

E

[[
W k(W k+q)TQ

]
ij

1

T
[ZT(Z + A)Q̃]l,q+l

]
+ E[ζ

[1]
ij ]

where we defined Q̃ = Q̃γ = ( 1
T
XTX + γIn)−1 and where the term ζ

[1]
ij arises from the

development of the aforementioned second term in the parentheses of (13) and can be
shown to satisfy ζ [1] ↔ 0. Similarly, addressing the term (II) in (11), we find

E[[ZATQ]ij] = −η2
∑
k≥0

T−1∑
q=−k

T−q+∑
l=1

E

[
1

T

[
AT(Z + A)Q̃

]
l,q+l

[
W k(W k+q)TQ

]
ij

]
+ E[ζ

[2]
ij ]

where again we can show that ζ [2] ↔ 0. Summing the approximations for (I) and (II),
from the resolvent identity (Z + A)T(Z + A)Q̃ = In − γQ̃, we find

E[[Z(Z + A)TQ]ij] = η2
∑
k≥0

E
[[
W k(W k)TQ

]
ij

]

− η2
∑
k≥0

T−1∑
q=−k

T−q+∑
l=1

E

[[
W k(W k+q)TQ

]
ij

1

T
[In − γQ̃]l,q+l

]
+ E[ζ

[1]
ij + ζ

[2]
ij ].

Since [In]l,q+l = δq=0, the first right-hand side term cancels with the part of the second
term involved with matrix 1

T
In, and we find

E[[Z(Z + A)TQ]ij] = η2γ
∑
k≥0

T−1∑
q=−k

T−q+∑
l=1

E

[[
W k(W k+q)TQ

]
ij

1

T
Q̃l,q+l

]
+ E[ζ

[1]
ij + ζ

[2]
ij ].

(14)

Moving to term (III) in (11), since A is deterministic, we first find the interesting expres-
sion

E[[ZTQ]ij] = −η2
∑
k≥0

T−1∑
q=−k

T−q+∑
l=1

E

[
1

T
tr(W k(W k+q)TQ)[(Z + A)TQ]q+i,j

]
+ E[ζ

[3]
ij ] (15)

with ζ [3] ↔ 0 from which immediately we get

E[[AZTQ]ij] = −η2
∑
k≥0

T−1∑
q=−k

T−q+∑
l=1

E

[
1

T
tr(W k(W k+q)TQ)Ail[(Z + A)TQ]q+l,j

]
+ E[[Aζ [3]]ij]

and we of course still have Aζ [3] ↔ 0.
We must discuss at this point the next key idea of the Gaussian method. In term (III),

the right-hand side expectation is taken over the product of the trace 1
T

tr(W k(W k+q)TQ)
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and of the quantityAil[(Z+A)TQ]q+l,j. Writing 1
T

tr(W k(W k+q)TQ) = E[ 1
T

tr(W k(W k+q)TQ)]+

( 1
T

tr(W k(W k+q)TQ)−E[ 1
T

tr(W k(W k+q)TQ)]), it can be shown, using Cauchy–Schwarz and

the Nash–Poicaré inequalities [Pastur and Ŝerbina, 2011], along with the Borel–Cantelli
lemma [Billingsley, 1995], that

∑
k≥0

T−1∑
q=−k

T−q+∑
l=1

(
1

T
tr(W k(W k+q)TQ)− E

[
1

T
tr(W k(W k+q)TQ)

])
Ail[(Z + A)TQ]q+l,j ↔ 0

which unfolds from 1
T

tr(W k(W k+q)TQ) concentrating around its mean in the large n, T
regime, a standard result of random matrix theory. The main non-classical difficulty in
showing this result lies here in the fact that the summation over up to T values of the
dummy variable q involves both terms in and outside the bracket. Nonetheless, since
ρ(W ) < 1, ‖W q‖ vanishes at exponential speed and thus only O(log(T )) values of q are
effectively playing a role. The aforementioned Nash–Poicaré inequality argument ensures
a control of the residual terms with a O(1/T 2) variance for each q-summand which can
then be summed over the non-trivial values of q to bring a total variance bounded by
O(log(T )/T 2), which is summable, and then allows for Borel–Cantelli to be applied.

The same reasoning applies to the main expectation in the expression of (I) + (II),

where here the term that concentrates around its mean is 1
T

∑T−q+
l=1 Q̃l,q+l, which is more

easily seen as 1
T

tr(JqQ̃).
The relation (15) in itself is quite instructive. Indeed, with the previous remark on the

concentration of 1
T

tr(W k(W k+q)TQ), we may break the right-hand expectation as well as

the term (Z+A)TQ into ZTQ+ATQ to retrieve a connection between left- and right-hand
sides. Precisely, we find that[(

IT + η2
∑
k≥0

T−1∑
q=−k

E

[
1

T
tr
(
W kW k+q)TQ

)]
Jq

)
E
[
XTQ

]]
ij

= −η2
∑
k≥0

T−1∑
q=−k

E

[
1

T
tr(W k(W k+q)TQ)

]
E
[
[JqATQ]i,j

]
+ o(1)

where we used [B]q+i,j = [JqB]i,j. Remark now that∑
k≥0

T−1∑
q=−k

1

T
tr
(
W k(W k+q)TQ

)
Jq =

∑
k≥0

{
1

T
tr
(
W k+(b−a)+(W k+(a−b)+)TQ

)}T
a,b=1

=

{
1

T
tr (Sa−bQ)

}T
a,b=1

.

Denoting R̄ = E[{ 1
T

tr(Sa−bQ)}Ta,b=1] and using concentration arguments (Nash–Poincaré
inequality in particular) entails

ZTQ↔ −η2
(
IT + η2R̄

)−1
R̄ATQ. (16)
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From the definition of the equivalence relation ↔, this entails

AZTQ↔ −η2A
(
IT + η2R̄

)−1
R̄ATQ. (17)

Similarly, recalling (14), we have

Z(Z + A)TQ↔ η2γ
∑
k≥0

T−1∑
q=−k

1

T
tr(JqQ̃)W k(W k+q)TQ

= η2γ
∞∑

q=−∞

1

T
tr(JqQ̃)SqQ.

We may then define ¯̃R =
∑∞

q=−∞ E[ 1
T

tr(JqQ̃)Sq]. Added to (17) and AATQ, this is

(Z + A)(Z + A)TQ↔ −η2γ ¯̃R− η2A(IT + η2R̄)−1R̄ATQ+ AATQ.

With AAT = A(IT + η2R̄)−1(IT + ηR̄)AT and (Z + A)(Z + A)TQ = In − γQ, this further
reads

Q↔ 1

γ
In − η2 ¯̃RQ− 1

γ
A(IT + η2R̄)−1ATQ.

which, after gathering the factors of Q together, finally gives the first identity

Q↔ 1

γ

(
In + η2 ¯̃R +

1

γ
A(IT + η2R̄)−1AT

)−1

. (18)

To pursue our investigation, we need to proceed to the same development for the matrix

Q̃ which appears in the definition of ¯̃R. The idea is to express Q̃ under a form involving
Q itself, then closing the loop. The analysis is extremely similar to that of Q and it is not
surprising (from the symmetry between Q and Q̃) to finally obtain

Q̃↔ 1

γ

(
IT + η2R̄ +

1

γ
AT(In + η2 ¯̃R)−1AT

)−1

. (19)

At this point, however, both R̄ and ˜̄R are non explicit quantities that depend on the
statistics of Q and Q̃. From (18), we get that, for each a, b,

1

T
tr(Sa−bQ)↔ 1

γ

1

T
trSa−b

(
In + η2 ¯̃R +

1

γ
A(IT + η2R̄)−1AT

)−1

and this relation is shown to be uniform across a, b, as it involves only O(log(T )) non-trivial

coefficients. To freely identify R̄ with { 1
γT

trSa−b(In + η2 ¯̃R + 1
γ
A(IT + η2R̄)−1AT)−1}Ta,b=1,

one may ensure that the difference between both matrices vanishes in spectral norm almost
surely (here the relation ↔ may not be enough).2 Here the result holds true because both
{ 1
T

tr(Sa−bQ)}Ta,b=1 and R̄ are Toeplitz matrices with exponentially decaying coefficients
away from the main diagonal. Hence, we may essentially see each matrix as the sum of a

2A typical counter-example is the case of Z ∈ Rn×T with i.i.d. zero mean and unit variance entries for
which [ 1T ZZ

T]ab → δa−b uniformly over a, b while clearly ( 1
T ZZ

T + γIn)−1 6↔ (1 + γ)−1IT .
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circulant matrix and of a matrix with O(log(T )) non-vanishing upper-right and lower-left
entries (see [Gray, 2006] for such a construction). Circulant matrices being diagonalizable
in the Fourier basis with eigenvalues equal to the Fourier transform of the concatenated first
column and row, that the difference in spectral norm vanishes boils down to the convergence
of the difference between these Fourier transforms, which is easily obtained through the
joint entry convergence and exponential decrease. As for the remaining corner entries,
being of log(T ) number, we deal here with the difference in spectral norm of small rank
matrices, which is obtained by direct uniform convergence. As such, generally speaking,
if the entries of a Toeplitz matrix with exponentially vanishing profile converge jointly to
given limits, then the limiting Toeplitz matrix is equivalent in the spectral norm sense.

Similarly, to identify ¯̃R with
∑

q
1
γT

tr(Jq(IT +η2R̄+ 1
γ
AT(In+η2 ¯̃R)−1AT)−1)Sq, we need

to show the spectral norm difference of these matrices vanishes almost surely. This is here
obtained from the uniform convergence across the O(log(T )) first trace coefficients (say for
all |q| ≤ C log(T )) and from the corresponding exponentially vanishing spectral norm of
Sq.

All said, we may then define Rγ, R̄γ, Q̄γ, and ¯̃Qγ as in Theorem 1 and the results above

ensure that Qγ ↔ Q̄γ and Q̃γ ↔ ¯̃Qγ.

Remark 12 (Result without washout period). Theorem 1 assumes an infinite noise time
series (. . . , ε−1, ε0, ε1, . . .). One might have alternatively considered a scenario without
washout period, that is, with x−1 = 0 and first time instant being t = 0. In this case,
Theorem 1 remains valid but for the following updated expressions of Rγ and R̃γ

Rγ =


max(i,j)−1∑

k=0

1

T
trW k+(j−i)+(W k+(i−j)+)TQ̄γ


T

i,j=1

R̃γ =
T−1∑

q=−(T−1)

1

T
tr
(
Jq ¯̃Qγ

) T−1−|q|∑
k=0

W k+(−q)+(W k+q+)T.

In particular, Rγ is no longer Toeplitz. Nonetheless the non-Toeplitz behavior is essentially
concentrated in the top-left corner of size O(log(T )) since the remainder of the matrix
behaves essentially as Toeplitz (for i, j ≥ C log(T ) for some large enough constant C).
This modification may alter the behavior of the associated train and test MSE, especially
if r and r̂ concentrate their energy in their first entries.

Appendix B. Proof of Theorem 2

The first part of Theorem 2 is directly obtained from (16) along with Qγ ↔ Q̄γ. Indeed,
from these relations, we have

Qγ
1√
T
X = QγZ +QγA↔ −η2Q̄γARγ(IT + η2Rγ)

−1 + Q̄γA

= Q̄γA(IT + η2Rγ)
−1.
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The proof of the second part of Theorem 2 is not as straightforward as it involves twice
the matrix Qγ and thus results from Theorem 1 cannot be immediately applied. To handle
this term, first write

1

T
XTQγBQγX = ZTQγBQγZ︸ ︷︷ ︸

(I)

+ZTQγBQγA︸ ︷︷ ︸
(II)

+ATQγBQγZ︸ ︷︷ ︸
(III)

+ATQγBQγA︸ ︷︷ ︸
(IV )

. (20)

Since B is assumed symmetric, (III) is the transposed version of (II), so that only one of
the two needs be studied.

Similar to Appendix A, we shall from now on simply write Qγ as Q, Q̃γ as Q̃, etc.
We start by addressing term (I). We use again the Gaussian tools centered around the

Gaussian integration by parts formula. We shall also benefit from the results of Theorem 1.
Since B is deterministic, it needs not be included early in calculations so we merely start
by evaluating, for given indices i, j, k, l,

E
[
[ZTQ]ij[QZ]kl

]
=

n∑
m,m′,p,p′=1

∑
q,q′≥0

η2E [εp,i−qεp′,l−q′QmjQkm′ ] [W q]mp[W
q′ ]m′p′

=
n∑

m,m′,p,p′=1

∑
q,q′≥0

η2E

[
∂(εp,i−qQmjQkm′)

∂εp′,l−q′

]
[W q]mp[W

q′ ]m′p′

where the second line follows from the Gaussian integration-by-parts formula. Develop-
ing the derivative based on (13) and on the fact that ∂εab/∂εcd = δacδbd, we get after
simplification

E
[
[ZTQ]ij[QZ]kl

]
= η2

∑
q,q′≥0

E

[
1

T
[QW q(W q′)TQ]jkδi−q,l−q′

]

− η3
∑
q,q′≥0

T∑
s=l−q′

E

[
[

1√
T
εT(W q)TQ(Z + A)]i−q,s

1

T
[QW q′(W q′+s−l)TQ]kj

]

− η3
∑
q,q′≥0

T∑
s=l−q′

E

[
[

1√
T
εT(W q)TQ]i−q,j[Q(Z + A)]k,s

1

T
tr(W q′(W q′+s−l)TQ)

]
+ E[ζ

[1]
ijkl] (21)

for some ζ
[1]
ijkl ↔ 0 (arising from terms consistent with the remark following (13) in Ap-

pendix A) and where ε = {εij}n,Tij=1. Inserting Bjk, summing over j and k, we obtain after
simplifications

E
[
[ZTQBQZ]il

]
= η2Ḡil − η2E

[
[ZTQ(Z + A)Ḡ]il

]
− η2E

[
[ZTQBQ(Z + A)R̄]il

]
+ o(1)

where R̄ was introduced in Appendix A and we defined Ḡ the matrix with

Ḡij =
∑
k≥0

E

[
1

T
tr
(
BQW k+(j−i)+(W k+(i−j)+)TQ

)]
.
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Gathering the terms in ZTQBQZ together along with concentration arguments, we finally
obtain

ZTQBQZ ↔ η2Ḡ(IT + η2R̄)−1 − η2ZTQ(Z + A)Ḡ(IT + η2R̄)−1 − η2ZTQBQAR̄(IT + η2R̄)−1.

In the right-hand side formulation, the second term can be approximated from the results
of Theorem 1 as well as the first part of Theorem 2; indeed, note from (Z+A)TQ(Z+A) =
Q̃(Z + A)T(Z + A) = IT − γQ̃ that ZTQ(Z + A) = IT − γQ̃− ATQ(Z + A), so that

ZTQBQZ ↔ η2γ ¯̃QḠ(IT + η2R̄)−1 + η2ATQ̄A(IT + η2R̄)−1Ḡ(IT + η2R̄)−1

− η2ZTQBQAR̄(IT + η2R̄)−1. (22)

In this expression, the last right-hand side term still involves ZTQBQA, yet to be charac-
terized. This is the objective of the next step, which coincides with the study of the term
(II) in (20).

Following the derivation of term (I), terms (II) and (III) are easily obtained (indeed,
they somewhat boil down to (21) without the first right-hand side term and without the
components εT(W q)T in the subsequent terms). Precisely, all calculus made, we find that

QBQZ ↔ −η2Q(Z + A)Ḡ− η2QBQ(Z + A)R̄

from which

QBQZ ↔ −η2Q(Z + A)Ḡ(IT + η2R̄)−1 − η2QBQAR̄(IT + η2R̄)−1.

Again, the first right-hand side term is easily expressed by Theorem 1 and the first result
of Theorem 2, from which

QBQZ ↔ −η2Q̄A(IT + η2R̄)−1Ḡ(IT + η2R̄)−1 − η2QBQAR̄(IT + η2R̄)−1. (23)

but the second term now involves the quantity QBQ which is our next target. Since
studying QBQ entails studying ATQBQA, this shall provide us with the term (IV ) in
(20). To address QBQ, it suffices to estimate E[QijQkl]; from the resolvent identity Qij =
1
γ
δij − 1

γ
[ 1
T
XXTQ]ij, this is developed as

E [QijQkl] = −1

γ

(
E[[ZTZQ]ijQkl] + E[[ZATQ]ijQkl] + E[[AZTQ]ijQkl] + E[[AATQ]ijQkl]

)
+

1

γ
δijE[Qkl].

The deterministic equivalent for E[Qkl] is already known, and we are then left to evaluate
the first four terms, some of which can be retrieved from previous calculus. Developing
each term, integrating the previously developed equivalents, while introducing the matrix
B and summing, after some tedious calculus, we finally obtain

QBQ↔ 1

γ
BQ̄+

η2

γ
A(IT + η2R̄)−1Ḡ(IT + η2R̄)−1ATQ̄

− η2 ¯̃RQBQ+
1

γ
¯̃GQ̄− 1

γ
A(IT + η2R̄)−1ATQBQ
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where we introduced the notation

¯̃G =
∞∑

q=−∞

η2E

[
1

T
tr
(
Jq(A+ Z)TQBQ(Z + A)

)]∑
k≥0

W k+(−q)+(W k+q+)T.

Gathering all terms proportional to QBQ, we finally obtain

QBQ↔ Q̄(B + ¯̃G)Q̄+ η2Q̄A(IT + η2R̄)−1Ḡ(IT + η2R̄)−1ATQ̄. (24)

Substituting (24) in (23), then substituting the result in (22), we may now completely
characterize 1

T
XTQBQX (after simplification) as

1

T
XTQBQX ↔ η2γ2 ¯̃QḠ ¯̃Q+ (IT + η2R̄)−1ATQ̄[B + ¯̃G]Q̄A(IT + η2R̄)−1.

It remains to evaluate E[ 1
T

tr(Jq(A + Z)TQBQ(Z + A))] in the expression of ¯̃G. For
this, we shall exploit the fact that A = MU which, since M has columns of exponentially
decreasing norm, can be considered as a matrix of rank “essentially of order O(log(T ))”;
that is, while being full rank, A can be well approximated in spectral norm by the product
M̌Ǔ of the first O(log(T )) columns M̌ of M and first O(log(T )) rows Ǔ of U . This entails
that, in the deterministic approximation for (A + Z)TQBQ(Z + A), only the terms not
involving a product with A or AT will remain after taking the normalized trace. And thus
we get, after development and simplification∥∥∥∥∥ ¯̃G−

∞∑
q=−∞

γ2η4 1

T
tr
(
Jq ¯̃QḠ ¯̃Q

)∑
k≥0

W k+(−q)+(W k+q+)T

∥∥∥∥∥→ 0.

It then suffices to use concentration identities and the results of Appendix A to finally

substitute R̄ with R, ¯̃R with R̃, and Ḡ, ¯̃G with G and G̃, respectively. This concludes the
proof of Theorem 2.

Remark 13 (On the speed of convergence). To better appreciate the interplay between η2

and n, T , note that all convergences discussed in Appendices A–B involve either quadratic
forms of the type aTQa for Q ∈ Rn×n a random matrix based on some ε ∈ Rn×T , matrix
with independent entries, or normalized traces 1

n
trQ. It is a standard central limit result in

random matrix theory that the former quadratic form aTQa fluctuates at speed O(n−
1
2 ),

that is, var(aTQa) = O(n−1), and that normalized traces fluctuate at the faster speed
O(n−1). As such, the results of Theorems 1–2 and Proposition 1–2 can be trusted with

high probability within a O(n−
1
2 ) error bound.

With respect to η2, the bounds between random quantities and deterministic equivalents,
say Q and Q̄, are proportional to 1/η2. This is why η2 is assumed fixed and not decaying
in our results. Nonetheless, as both bounds in n and η2 multiply, it is expected that
convergence is maintained in general so long that n−

1
2/η2 → 0, i.e., when η2 � n−

1
2 .
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