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Abstract

In this article, we introduce iterative deterministic equivalents as a novel technique for the perfor-

mance analysis of communication systems whose channels are modeled by complex combinations of

independent random matrices. This technique extends the deterministic equivalent approach for the study

of functionals of large random matrices to a broader class of random matrix models which naturally

arise as channel models in wireless communications. We present two specific applications: First, we

consider a multi-hop amplify-and-forward (AF) MIMO relay channel with noise at each stage and

derive deterministic approximations of the mutual information after the Kth hop. Second, we study a

MIMO multiple access channel (MAC) where the channel between each transmitter and the receiver

is represented by the double-scattering channel model. We provide deterministic approximations of

the mutual information, the signal-to-interference-plus-noise ratio (SINR) and sum-rate with minimum-

mean-square-error (MMSE) detection and derive the asymptotically optimal precoding matrices. In both

scenarios, the approximations can be computed by simple and provably converging fixed-point algorithms

and are shown to be almost surely tight in the limit when the number of antennas at each node grows

infinitely large. Simulations suggest that the approximations are accurate for realistic system dimensions.

The technique of iterative deterministic equivalents can be easily extended to other channel models of

interest and is, therefore, also a new contribution to the field of random matrix theory.
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I. INTRODUCTION

Since the pioneering work of Tse and Hanly [1] on the capacity of code division multiple access

(CDMA) technologies assuming long spreading sequences, the theory of large dimensional random

matrices (RMT) has drawn an increasing interest from researchers in wireless communications and related

fields [2], [3]. RMT is in particular convenient for the study of multiple-input multiple-output (MIMO)

channels [4], [5], (random) linear precoders [1], [6], [7], multi-user systems [8], [9], multi-cellular systems

[10], [11], [12], etc. In the early contributions, it was systematically assumed that the dimensions of the

system under study could grow infinitely large and that the system performance admitted a deterministic

limit that RMT can provide [1], [4], [13]. It then became rapidly clear that, for most systems of practical

interest, either the former assumption is not natural or the latter condition is not met. However, even for

systems of large but finite size, the inherently random performance (e.g. instantaneous mutual information,

signal-to-interference-plus-noise ratio (SINR)), can often be well approximated by deterministic quantities.

Such quantities are called deterministic equivalents, and can be derived by various techniques, such as

the Stieltjes transform method [5], [14], the Gaussian method [15], [16], or the replica method [17], [18].

Deterministic equivalents are convenient to study the performance of wireless communication systems

when a single system parameter can be modeled by a random matrix, e.g. the fading channel or the

spreading codes. In order to tackle the performance analysis of more complex systems, such as multi-

hop communications, random beamforming over random fading channels, or double-scattering channels,

it is necessary to extend the notion of deterministic equivalents. In the present article, which is inspired

by the original idea of [7], where the performance of random isometric precoders over random fading

channels is analyzed, we develop a systematic approach to generalize deterministic equivalents to iterative

deterministic equivalents. To this end, we introduce a generic definition of deterministic equivalents of

functionals of random matrices, which we extend, based on the Fubini theorem [19], to a definition of

iterative deterministic equivalents.

As application examples, we then provide deterministic equivalents of the mutual information of the

multi-hop amplify-and-forward (AF) MIMO relay channel [20], [21], [22] (Section III-A) and of the

ergodic capacity as well as the sum-rate with minimum-mean-square-error (MMSE) detection of double-

scattering multiple access channels (MACs) [23], [24] (Section III-B). An overview of related research

to both topics is provided in the respective sections. Our analysis is based on the Stieltjes transform

method, documented in detail in [3].

The remainder of this article is structured as follows. In Section II, we recall the fundamentals
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of deterministic equivalents in RMT and develop the notion of iterative deterministic equivalents. In

Section III, we study applications of iterative deterministic equivalents to the performance analysis of

multi-hop relay channels and double-scattering MACs. The paper is concluded with Section IV. All

proofs, related results, and some exemplary Matlab codes are provided in the appendices.

Notations: Boldface lower and upper case symbols represent vectors and matrices, respectively. IN

is the size-N identity matrix and diag(x1, . . . , xN ) is a diagonal matrix with elements xi. The trace,

transpose, and Hermitian transpose operators are denoted by tr (·), (·)T, and (·)H, respectively. The

spectral norm of a matrix A is denoted by ‖A‖, and, for two matrices A and B, the notation A � B

means that A − B is positive-definite. For a vector x = [x1 . . . xN ]T, x ≥ 0 denotes xi ≥ 0 for all i.

The notations ⇒ and a.s.−→ denote weak and almost sure convergence, respectively. We use CN (m,R)

to denote the circular symmetric complex Gaussian distribution with mean m and covariance matrix R.

We denote by R+ the set [0,∞), by R− the set (−∞, 0], and by i =
√
−1. 1A(x) is the indicator

function, i.e., 1A(x) = 1 iff x ∈ A and 1A(x) = 0 otherwise. E [·] denotes the expectation operator. For

(an)n≥1 and (bn)n≥1 two sequences of random variables, we denote an � bn the equivalence relation

an − bn
a.s.−→ 0 for n→∞.

II. ITERATIVE DETERMINISTIC EQUIVALENTS

In this section, we will first recall the notion of deterministic equivalents in probability theory before we

explain their connections to RMT and the performance analysis of communication systems. We will then

introduce the Fubini theorem, which is the key ingredient to extend classical deterministic equivalents to

iterative deterministic equivalents.

A. Deterministic equivalents and random matrices

Definition 1: Consider the probability space (Ω,F , P ). Let (fn)n≥1 be a series of measurable complex-

valued functions, fn : Ω×C→ C, and let (gn)n≥1 be a series of complex-valued functions, gn : C→ C.

Then (gn)n≥1 is a deterministic equivalent of (fn)n≥1 on D ⊂ C, if there exists a set A ⊂ Ω with

P (A) = 1, such that

fn(ω, z)− gn(z) −−−→
n→∞

0

for all ω ∈ A and for all z ∈ D.

Otherwise stated, a deterministic equivalent for (fn)n≥1 is a series (gn)n≥1 such that gn(z) approx-

imates fn(ω, z) arbitrarily closely as n grows, for every z ∈ D and almost every ω. In particular, if
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(fn)n≥1 converges almost surely to a limiting function f , i.e., for all (ω, z) ∈ A × D with A ⊂ Ω,

P (A) = 1 and D ⊂ C, we have

fn(ω, z) −−−→
n→∞

f(z) (1)

then (gn)n≥1 defined by gn = f , for all n, is also a deterministic equivalent of (fn)n≥1. In many cases,

one can further show that
∫

Ω fn(ω, z)dP (ω)− gn(z) −−−→
n→∞

0. Thus gn is also an approximation of the

expected value of fn.

In the context of large dimensional random matrix theory, one often considers random matrices Hn ∈

CN×n of growing dimensions N,n→∞, where in general N/n = cn is such that

0 < lim inf
n
cn ≤ lim sup

n
cn <∞. (2)

This simply states that cn is bounded so that the ratio N/n of the matrix dimensions is never too close

to zero or infinity. Formally, to be in line with Definition 1, we will define random matrices in the

following as series (Hn)n≥1 = (Hn(ω))n≥1 of matrices with growing dimensions which are defined on

a probability space (Ω,F , P ), where every ω ∈ Ω generates the whole sequence (Hn(ω))n≥1 and not

only a single matrix Hn(ω).

In wireless communications, one is often interested in the behavior of functionals fn(Hn, z), where

Hn ∈ CN×n is a matrix describing the input-output relation of a wireless channel. In particular,

fn(Hn, z) = 1
N log det(IN + zHnH

H
n ), z ∈ R+, is the (normalized) mutual information of the MIMO

channel Hn between an n-antenna transmitter and an N -antenna receiver at signal-to-noise ratio (SNR)

z. Other quantities of interest are the SINR with linear detectors or precoders and the associated rates.

The goal of a large system analysis based on RMT is to provide deterministic approximations of these

random quantities, which become arbitrarily tight as the system dimensions grow. Thus, deterministic

equivalents provide a deterministic abstraction of the physical layer. This is particularly interesting for

complex channel models which are intractable by exact analysis.

Deterministic equivalents for functionals of large dimensional random matrices have been considered

for a wide range of communication channel models. For instance, in [5], a deterministic equivalent for

the ergodic mutual information of the Rician fading channel model Hn = Xn + An is provided, where

Xn ∈ CN×n has independent entries with zero mean and a variance profile E[|(Xn)ij |2] = σ2
n,ij , and

An ∈ CN×n is a deterministic matrix. In [25], the deterministic equivalent of [5] is used to determine

an asymptotically tight approximation of the ergodic capacity achieving input covariance matrix for the

MIMO Rician fading channel. Deterministic equivalents were then extended to broader classes of wireless

channel models, such as the capacity of the frequency-selective MIMO channel [15], the MIMO MAC
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with Kronecker correlation [14] and the sum rate capacity of linearly precoded broadcast channels under

imperfect channel state information [9]. The application of such techniques is therefore very broad as it

can simplify the difficult study of communication channels with a various number of random parameters

(random channels, unitary precoders, path loss, etc.). Moreover, deterministic equivalents can be used to

compute approximate solutions of otherwise intractable optimization problems [12], [9], [25].

All of the works mentioned above consider deterministic equivalents for random matrix models created

from sums of independent random matrices. In many cases of practical interest, it is however necessary

to consider more complex combinations of matrices, such as products or sums of products. These include

for example the multi-hop relay channel (Section III-A) as well as the double-scattering channel model

[23] (Section III-B). Another recent example is [7], which considers random beamforming over fading

channels, i.e., both the precoding and the channel matrices are assumed to be random. In this work,

the authors derive deterministic equivalents of the mutual information and of the SINR with MMSE

detection with respect to the random precoding matrices for quasi-static channels. Then, a second set of

deterministic equivalents is found, treating both precoders and channel matrices as random. This technique

relies on a fundamental result of probability theory, the Fubini theorem. In this article, we explain this

approach in detail and generalize it to the new notion of iterative deterministic equivalents.

B. The Fubini theorem

Theorem 1 ([19]): Let (Ω,F , P ) and (Ω′,F ′, P ′) be two probability spaces. Denote (Ω×Ω′,F×F ′, Q)

their product space. Let f : Ω× Ω′ → R be (F × F ′)-integrable. Then∫
Ω×Ω′

f(ω, ω′)dQ(ω, ω′) =

∫
Ω

[∫
Ω′
f(ω, ω′)dP ′(ω′)

]
dP (ω)

=

∫
Ω′

[∫
Ω
f(ω, ω′)dP (ω)

]
dP ′(ω′).

In particular, consider a set A ∈ F × F ′. Then, we have from Theorem 1 that

Q(A) =

∫
Ω×Ω′

1A(ω, ω′)dQ(ω, ω′)

=

∫
Ω′

[∫
Ω
1A(ω, ω′)dP (ω)

]
dP ′(ω′). (3)

Equation (3) is the core ingredient for the definition of iterative deterministic equivalents: Let (Hn(ω))n≥1

and (H′n(ω′))n≥1 be two series of random matrices generated by the spaces (Ω,F , P ) and (Ω′,F ′, P ′),

respectively. As in Theorem 1, call Q the product-space measure. Let fn((Hn(ω),H′n(ω′)), z) be a
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functional of the matrices Hn(ω) and H′n(ω′). Assume that there is a function g̃n(Hn(ω), z), such that,

for each ω ∈ A ⊂ Ω with P (A) = 1, there exists a subset B(ω) ⊂ Ω′ with P ′(B(ω)) = 1, on which

fn((Hn(ω),H′n(ω′)), z)− g̃n(Hn(ω), z)→ 0. (4)

Although g̃n(Hn(ω), z) is a random function (as it depends on ω), it is independent of H′n(ω′). Thus, we

can see g̃n(Hn(ω), z) as a deterministic equivalent of fn((Hn(ω),H′n(ω′)), z) with respect to (H′n(ω′))n≥1.

Now, let us assume that there is a second function gn(z), such that for ω ∈ C ⊂ Ω with P (C) = 1,

g̃n(Hn(ω), z)− gn(z)→ 0. (5)

Call D = {(ω, ω′) : ω ∈ A∩C , ω′ ∈ B(ω)} ⊂ Ω×Ω′, the space on which fn((Hn,H
′
n), z)−gn(z)→ 0.

Then, from (3), this space has probability

Q(D) =

∫
Ω

[∫
Ω′
1D(ω, ω′)dP ′(ω′)

]
dP (ω)

(a)

≥
∫
A∩C

[∫
B(ω)

1D(ω, ω′)dP ′(ω′)

]
dP (ω)

(b)
=

∫
A∩C

dP (ω)

(c)
= 1 (6)

where (a) is due to A ∩ B ⊂ Ω and B(ω) ⊂ Ω′, (b) follows since P ′(B(ω)) = 1 for ω ∈ A and (c)

holds since P (A ∩ C) = P (A) + P (C)− P (A ∪ C) = 1.

To summarize, if a deterministic equivalent gn exists for a functional fn of a random series (H′n)n≥1

and a deterministic series (Hn)n≥1 of matrices, and if additionally it can be proved that this deterministic

equivalent holds true for almost every such (Hn)n≥1 generated by a space Ω, then the latter is also a

deterministic equivalent for the random series ((Hn,H
′
n))n≥1.

This is the mathematical key idea behind our method to derive iterative deterministic equivalents of

functionals fn((Hn(ω),H′n(ω′)), z), of two (or more) random matrices. First, one considers one of the

sequences of random matrices, e.g. (Hn(ω))n≥1, to be deterministic and derives a deterministic equivalent

with respect to (H′n(ω′))n≥1. In the example above, this was the role of the functional g̃n(Hn(ω), z)

which is independent of H′n(ω′). In a second step, one assumes the matrices (Hn(ω))n≥1 to be random

and derives an iterative deterministic equivalent gn(z) of g̃n(Hn(ω), z). Of course, this procedure can be

carried out for any finite number of random matrices where in each step the “randomness” related to one

of the matrices is removed. From the above construction, we will call (gn)n≥1 an iterative deterministic

equivalent.
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Fig. 1. Multi-hop amplify-and-forward MIMO relay channel.

In the next section, we present two specific examples of iterative deterministic equivalents with

applications to the capacity of multi-hop MIMO relay and double-scattering channels. From now on, all

matrices and vectors should be understood as sequences of matrices and vectors with growing dimensions.

For notational convenience, we drop the index n, e.g. we write H instead of (Hn)n≥1.

III. APPLICATIONS

A. Multi-hop relay channel

Consider a multi-hop AF MIMO relay channel where a source node communicates via K − 1 relays

with a destination node. There is no direct link between the source and the destination and each relay can

only receive data from the preceding hop. This is for example the case if the nodes follow a time-division

multiple-access (TDMA) protocol where only one node is transmitting at any given time and the path

loss between relay k and k − 2 is large. Thus each data symbol reaches the destination after K channel

uses. The source and destination are respectively equipped with n and nK antennas while the kth relay

has nk antennas. The relays operate an AF-protocol where each node simply transmits a scaled version

of its received signal to the next hop. We will consider a large system limit where n, n1, . . . , nK grow

infinitely large at the same speed. Define the following quantities:

c1 =
n

n1

ck =
nk−1

nk
, k = 2, . . . ,K. (7)

The notation “n → ∞” must be understood from now on as n → ∞, such that 0 < lim infn ck ≤

lim supn ck < ∞ for all k. We denote yk ∈ Cnk the received base-band signal vector at the kth hop,
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given by

y1 =
√
α1H1

√
β0

n
x + n1

yk =
√
αkHk

√
βk−1

nk−1
yk−1 + nk, k = 2, . . . ,K (8)

where Hk ∈ Cnk×nk−1 is a standard complex Gaussian matrix1 (let n0
4
= n), x ∼ CN (0, In) is the

channel input vector, nk ∼ CN (0, Ink) is a noise vector, αk is a path loss factor, and the parameter βk

is chosen to normalize the transmit power of the kth node according to its power budget ρk > 0, i.e.,

β0 =
ρ0

1
n trE [xxH]

= ρ0

βk =
ρk

1
nk

trE
[
yky

H
k

] , k = 1, . . . ,K − 1. (9)

The expectation in the last equation is with respect to the transmit and noise vectors only.2 The channel

matrices Hk and path loss factors αk are assumed to be known to the relays and the destination. Since the

received signal at each relay is corrupted by noise, the system suffers from noise accumulation. This is

in addition to the linear rate loss 1
K related to the TDMA protocol. Thus, the capacity decreases quickly

with the number of hops K. Note that our system model is different from existing works which consider

either no noise [26], or noise only at the destination [22]. An exception is [27], in which the authors

consider a similar system model, but do not provide closed-form expressions of the asymptotic mutual

information. Several other works deal with the asymptotic capacity of the dual-hop relay channel [28],

[29]. Recently, an exact expression of the mutual information of the dual-hop channel for finite channel

dimensions was derived in [30]. Here, we will provide an explicit deterministic equivalent of the mutual

information at each relay for the general model (8).

Let us introduce the following, recursively defined matrices Rk

(
βk−1

)
:

R0 = E
[
xxH

]
= In

Rk

(
βk−1

)
= E

[
yky

H
k

]
= Ink +

αkβk−1

nk−1
HkRk−1

(
βk−2

)
HH
k , k = 1, . . . ,K (10)

and the functionals Jk
(
x,βk−1

)
, x > 0, which are defined as

Jk
(
x,βk−1

)
=

1

nk
log det

(
Ink + x

αkβk−1

nk−1
HkRk−1

(
βk−2

)
HH
k

)
, k = 1, . . . ,K (11)

1A standard complex Gaussian matrix X has i.i.d. elements Xij ∼ CN (0, 1).
2Under a long-term power constraint, the expectation could be taken also with respect to the matrices Hk. Asymptotically,

both constraints are equivalent (see Lemma 1).
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where βk = [β0, · · · , βk]. With these definitions, we can express the normalized mutual information

Ik(βk−1) between yk and x as

Ik(βk−1) =
1

K

(
Jk(1,βk−1)− Jk(1,β′k−1)

)
(12)

where β′k = [0, β1, · · · , βk]. Next, we demonstrate by a simple example that (12) holds.

Example 1 (2-hop Relay-channel): The normalized mutual information I2(β1) between x and the

channel output after the second hop y2 is given as

I2(β1) =
1

Kn2
log det

(
In2

+

(
In2

+
α2β1

n1
H2H

H
2

)−1 α2β1α1β0

n1n
H2H1H

H
1 HH

2

)

=
1

Kn2
log det

(
In2

+
α2β1

n1
H2

(
In +

α1β0

n
H1H

H
1

)
HH

2

)
− 1

Kn2
log det

(
In2

+
α2β1

n1
H2H

H
2

)
=

1

Kn2
log det

(
In2

+
α2β1

n1
H2R1(β0)HH

2

)
− 1

Kn2
log det

(
In2

+
α2β1

n1
H2R1(0)HH

2

)
=

1

K

(
J2(1,β1)− J2(1,β′1)

)
. (13)

In the following, we will derive deterministic equivalents Īk(β̄k−1) of Ik(βk−1). It will turn out that

the recursive definition of the matrices Rk(βk−1) in (10) allows us to calculate iterative deterministic

equivalents of the mutual information after each hop. This is achieved by treating the matrix Rk−1(βk−2)

as deterministic and deriving a deterministic equivalent of JK(x,βk−1) with respect to the matrix Hk.

This process can be iterated for Rk−2(βk−3),Rk−3(βk−4), . . . and Hk−1,Hk−2, . . . until the determin-

istic matrix R0 is reached. Before we address this problem, we will derive deterministic equivalents β̄k

of the power normalization factors βk:

Lemma 1 (Asymptotic power normalization): Let β0 = β̄0 = ρ0. Then,

βk
a.s.−−−→

n→∞
β̄k =

ρk
1 + αkρk−1

, k = 1, . . . ,K − 1.

Proof: Recall the definition of βk = ρk
1

nk
trRk

, where Rk = Rk

(
βk−1

)
. For k ≥ 1, we have

1

nk
tr Rk = 1 +

αkβk−1

nknk−1
tr HkRk−1H

H
k

(a)
= 1 + αkβk−1

1

nk

nk∑
j=1

1

nk−1
h̃H
k,jRk−1h̃k,j

(b)
� 1 + αk

ρk−1
1

nk−1
tr Rk−1

1

nk−1
tr Rk−1

= 1 + αkρk−1 (14)
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where (a) is obtained by denoting h̃k,j ∈ Cnk−1 the jth row vector of Hk and (b) is due to Lemma 2

and Lemma 6 in Appendix A and the definition of βk−1. By the continuous mapping theorem [31], we

finally have

βk =
ρk

1
nk

tr Rk

a.s.−−−→
n→∞

ρk
1 + αkρk−1

. (15)

In the next theorem, we will build upon Lemma 1, and provide deterministic equivalents of Jk(x,βk).

Theorem 2: For k ∈ {1, . . . ,K}, let βk−1 = [β0 · · ·βk−1] ≥ 0 be a sequence of random vectors,

indexed by n, and β̄k−1 = [β̄0 · · · β̄k−1] ≥ 0 be deterministic, such that βi
a.s.−−−→

n→∞
β̄i for i = 0, . . . , k−1.

Then,

Jk
(
x,βk−1

)
− J̄k

(
x, β̄k−1

) a.s.−−−→
n→∞

0

where J̄k
(
x, β̄k−1

)
is recursively defined for k ≥ 2 as

J̄k
(
x, β̄k−1

)
= ckJ̄k−1

(
xαkβ̄k−1

ck + xαkβ̄k−1 + ēk−1

(
x, β̄k−1

) , β̄k−1

)
+ ck log

(
1 +

xαkβk−1

ck + ēk−1

(
x, β̄k−1

))

+ log

(
1 +

ēk−1

(
x, β̄k−1

)
ck

)
−

ēk−1

(
x, β̄k−1

)
ck + ēk−1

(
x, β̄k−1

)
and ēk

(
x, β̄k

)
for k ≥ 0 is given by Theorem 3. The initial value J̄1

(
x, β̄0

)
is given in closed form:

J̄1

(
x, β̄0

)
= c1 log

(
1 +

xα1β̄0

c1 + ē0

(
x, β̄0

))+ log

(
1 +

ē0

(
x, β̄0

)
c1

)
−

ē0

(
x, β̄0

)
c1 + ē0

(
x, β̄0

) .
Proof: The proof is provided in Appendix B.

Theorem 2 allows us to compute the quantities J̄k(x, β̄k−1) recursively for any desired relay node

k. The values of ēk−1

(
x, β̄k−1

)
, needed at each stage, can also be calculated in a recursive manner as

shown in the next theorem.

Theorem 3: For k ∈ {1, . . . ,K − 1}, let βk = [β0 · · ·βk] ≥ 0 be a sequence of random vectors,

indexed by n, and β̄k = [β̄0 · · · β̄k] ≥ 0 be deterministic, such that βi
a.s.−−−→

n→∞
β̄i for i = 0, . . . , k. Let

x > 0 and denote by mk (x,βk) = 1
nk+1

tr
(
αk+1βk

1
nk

Hk+1Rk

(
βk−1

)
HH
k+1 + 1

xInk+1

)−1
. Then,

mk (x,βk)− m̄k

(
x, β̄k

) a.s.−−−→
n→∞

0
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where m̄k

(
x, β̄k

)
is recursively defined for k ≥ 1 as

m̄k

(
x, β̄k

)
=

xck+1

ck+1 + ēk
(
x, β̄k

)
and ēk

(
x, β̄k

)
is given as the unique positive solution to the following fixed point equation

ēk
(
x, β̄k

)
= ck+1

(
ck+1 + ēk

(
x, β̄k

))
−
ck+1

(
ck+1 + ēk

(
x, β̄k

))2
xαk+1β̄k

m̄k−1

(
xαk+1β̄k

ck+1 + xαk+1β̄k + ēk
(
x, β̄k

) , β̄k−1

)
.

The initial values m̄0(x, β̄0) and ē0(x, β̄0) are given in closed form:

m̄0(x, β̄0) =
c1

α1β̄0

c1+ē0(x,β̄0)
+ 1

x

+ (1− c1)x

ē0

(
x, β̄0

)
= −xα1β̄0(1− c1) + c1

2
+

√(
xα1β̄0(1− c1) + c1

)2
+ 4xα1β̄0c2

1

2
.

Proof: The proof is provided in Appendix C.

Remark 3.1: The quantity mk (x,βk) can be seen as the Stieltjes transform [3] of the empirical

spectral distribution (e.s.d.) of the matrix αk+1βk
1
nk

Hk+1Rk(βk−1)HH
k+1 evaluated at − 1

x . One can

further show that Theorem 3 implies the weak convergence of the e.s.d. αk+1βk
1
nk

Hk+1Rk(βk−1)HH
k+1

to a distribution function, whose Stieltjes transform is given by m̄k, for almost every H1, . . . ,HK .

Applying Theorem 2 and Lemma 1 to (12) yields the following corollary which provides a deterministic

equivalent of the mutual information Ik(βk−1):

Corollary 1 (Asymptotic mutual information of the K-hop AF MIMO Relay channel):

Ik
(
βk−1

)
− Īk

(
β̄k−1

) a.s−−−→
n→∞

0 k = 1, . . . ,K

where

Īk
(
β̄k−1

)
=

1

K

(
J̄k(1, β̄k−1)− J̄k(1, β̄

′
k−1)

)
with β̄k−1 = [β̄0 · · · β̄k−1], β̄′k−1 = [0 β̄1 · · · β̄k−1] as given by Lemma 1, and J̄k(x, β̄k−1) and J̄k(x, β̄

′
k−1)

as given by Theorem 2.

Remark 3.2: The values of Īk(β̄k−1) can be very easily numerically computed. We provide the Matlab

code which was used to generate the numerical results in this section in Appendix J. Due to the recursive
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implementation, the computational complexity grows quickly with k. Calculating J̄k(x, β̄k−1) with high

precision for large values of k (> 10) seems therefore impractical.

We would now like to verify our analysis by some numerical results. To this end, we consider a system

with three relays, i.e., K = 4. We assume n = n4 = 4, n1 = n3 = 8, n2 = 12, ρ1 = ρ3 = 0.7ρ0 and

ρ2 = 0.5ρ0. The last assumption allows us to control the transmit power of all nodes by the transmit

SNR ρ0 of the source node. We further assume the path loss factors α1 = 1, α2 = α4 = 0.7, α3 = 0.5.

Fig. 2 shows the average normalized mutual information E
[
nk
n Ik

(
βk−1

)]
after each hop (k = 1, . . . , 4)

versus the transmit power ρ0 of the source node. Note that we have re-normalized all results by nk
n to

put them on a common ground for comparison. The deterministic equivalents nk
n Īk

(
β̄k−1

)
as provided

by Corollary 1 are drawn by solid lines, simulation results are represented by markers. The error bars

represent one standard deviation of the simulation results in each direction. We can observe a very good

fit between the asymptotic approximations and the simulation results for all k and the entire range of ρ0.

As expected, the performance decreases rapidly with each hop.

Finally, we would like to remark that, although we have considered a rather simple channel model

with neither antenna correlation nor precoding at the nodes, more involved channel models can be treated

in a straightforward fashion with the same techniques.

B. Double-scattering MAC

Consider a discrete-time MIMO MAC from K transmitters, equipped with nk, k = 1, . . . ,K, antennas,

respectively, to a receiver with N antennas. The channel output vector y ∈ CN reads

y =

K∑
k=1

Hkxk + n (16)

where Hk ∈ CN×nk and xk ∈ Cnk are the channel matrix and the transmit vector associated with the

kth transmitter, n ∼ CN (0, 1
ρIN ) is a noise vector and ρ > 0 denotes the SNR. We assume Gaussian

signaling, i.e., xk = [xk,1, . . . , xk,nk ]
T ∼ CN (0,Qk), where Qk ∈ Cnk×nk . The channel matrices Hk

are modeled by the double-scattering model [23]

Hk =
1√
Nknk

R
1

2

kW1,kS
1

2

kW2,kT
1

2

k (17)

where Rk ∈ CN×N , Sk ∈ CNk×Nk and Tk ∈ Cnk×nk are deterministic correlation matrices, while

W1,k ∈ CN×Nk and W2,k ∈ CNk×nk are independent standard complex Gaussian matrices. Since the

distributions of W1,k and W2,k are unitarily invariant, we can assume Sk = diag(sk,1, . . . , sk,Nk) to be

diagonal matrices, without loss of generality for the statistics of y.



13

−10 0 10 20 30
0

0.5

1

1.5

2
n = n4 = 4, n1 = n3 = 8, n2 = 12

ρ0 (dB)

E
[ n

k n
I k

( β
k
−
1

)]
(n

at
s/

s/
H

z) k = 1

k = 2

k = 3

k = 4

Fig. 2. Average normalized mutual information E
[
nk
n
Ik(βk−1)

]
after the kth hop versus the transmit SNR ρ0 of the source

node. The deterministic equivalents nk
n
Īk

(
β̄k−1

)
are drawn by solid lines, the simulation results by markers. The error bars

correspond to one standard deviation of the simulation results in each direction.

The double-scattering model [23] was motivated by the observation of low-rank channel matrices,

despite low antenna correlation at the transmitter and receiver, see e.g. [24], [32]. A special case of the

double-scattering model is the keyhole channel [33], [34], which exhibits null antenna correlation, i.e.,

Rk = IN and Tk = nk for all k, but only a single degree of freedom. The existence of such channels

(under laboratory conditions) was confirmed by measurements in [34]. Several theoretical works have

studied the double-scattering model so far. The authors of [35] derive capacity upper-bounds for the

general model and a closed-form expression for the keyhole channel. An asymptotic study of the outage

capacity of the multi-keyhole channel was presented in [36]. The diversity order of the double-scattering

model was considered in [37] and it was shown that a MIMO system with t transmit antennas, r receive

antennas and s scatterers achieves the diversity of order trs/max(t, r, s). A closed-from expression of the

diversity-multiplexing trade-off (DMT) was derived in [38]. Beamforming along the strongest eigenmode

over Rayleigh product MIMO channels, i.e., the double-scattering model without any form of correlation,

was considered in [39]. Here, the authors derive exact expressions of the cumulative distribution function

(cdf) and the probability density function (pdf) of the largest eigenvalue of the Gramian of the channel
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matrix and compute closed-form results for the ergodic capacity, outage probability and SINR distribution.

In a later paper [40], the MIMO MAC with double-scattering fading is analyzed. The authors obtain

closed-form upper-bounds on the sum-capacity and prove that the transmitters should send their signals

along the eigenvectors of the transmit correlation matrices in order to achieve capacity. Despite the

significant interest in the double-scattering channel model, little work has been done to study its asymptotic

performance when the channel dimensions grow large. We are only aware of [32], in which a model

without transmit and receive correlation is studied relying on tools from free probability theory. Implicit

expressions of the asymptotic mutual information and the SINR with MMSE detection are found therein.

In the following, we provide deterministic equivalents of the mutual information, the SINR with MMSE-

detection and the associated sum-rate. In addition, we derive the precoders which maximize the determin-

istic equivalent of the mutual information and provide a simple algorithm for their computation. The key

idea behind the following proofs is that the double-scattering channel can be interpreted as a Kronecker

channel [14] with a random receive correlation matrix, which itself is modeled by the Kronecker model.

This observation allows us to build upon [14] which provides an asymptotic analysis of the performance

of Kronecker channels with deterministic correlation matrices (Theorem 9 in Appendix A). Based on

the Fubini theorem, we extend this work by allowing the correlation matrices to be random. A similar

technique can be applied to more involved channel models, such as channels with line-of-sight components

or MIMO product channels with an arbitrary number of matrices.

Denote IN (ρ) the instantaneous normalized mutual information of the channel (16), defined as [41]

IN (ρ) =
1

N
log det

(
IN + ρ

K∑
k=1

HkQkH
H
k

)
. (18)

Moreover, denote γNk,j (ρ) the SINR at the output of the MMSE detector related to the transmit symbol

xk,j , given by [42]

γNk,j (ρ) = hH
k,j

(
K∑
i=1

HiH
H
i − hk,jh

H
k,j +

1

ρ
IN

)−1

hk,j . (19)

We define the normalized sum-rate RN (ρ) with MMSE detection as

RN (ρ) =
1

N

K∑
k=1

nk∑
j=1

log
(
1 + γNk,j (ρ)

)
. (20)

The notation “N →∞” will be used to denote that N and all Nk, nk grow infinitely large, satisfying

0 < lim inf NkN ≤ lim sup Nk
N < ∞ and 0 < lim inf nkN ≤ lim sup nk

N < ∞. Additionally, we need the

following technical assumption:
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A 1: For all k, lim supN‖Rk‖ <∞, lim supN‖Sk‖ <∞ and lim supN‖TkQk‖ <∞.

Remark 3.3: This assumption implies in particular that the antenna correlation at the transmitter and

receiver side cannot grow with the system size, as it would be the case for very dense antenna arrays

[43]. Amendments to relax this assumption can be made, following the work in [14]. Moreover, the last

constraint, lim supN‖TkQk‖ <∞, implies that no transmitter is allowed to focus an increasing amount

of transmit power in a single direction.

Our first theorem introduces a set of 3K implicit equations which uniquely determines some quantities

(gk, ḡk, δk) (1 ≤ k ≤ K). These will be needed later on to provide deterministic equivalents of IN (ρ),

γNk,j
(
σ2
)
, and RN (ρ).

Theorem 4 (Fundamental equations): The following system of 3K implicit equations in ḡk, gk, and

δk (1 ≤ k ≤ K):

ḡk =
1

nk
tr T

1

2

kQkT
1

2

k

(
gkT

1

2

kQkT
1

2

k + Ink

)−1

gk =
1

nk

Nk∑
j=1

sk,jδk
1 + ḡksk,jδk

(21)

δk =
1

Nk
tr Rk

(
K∑
i=1

ni
Ni

ḡigi
δi

Ri +
1

ρ
IN

)−1

has a unique solution satisfying ḡk, gk, δk > 0 for all k and ρ > 0.

Proof: The proof is provided in Appendix D.

Remark 3.4: The values of ḡk, gk, and δk can be computed by a standard fixed-point algorithm which

iteratively computes (21), starting from some arbitrary initialization ḡ(0)
k , g

(0)
k , δ

(0)
k > 0. This algorithm is

proved to converge, generally terminates within a few iterations (depending on the system size and the

desired accuracy), and does not pose any computational challenge.

The next theorem provides a deterministic equivalent of the (ergodic) mutual information based on the

quantities (gk, ḡk, δk) as provided by Theorem 4.

Theorem 5 (Mutual information): Assume that A 1 holds. Then,

(i) IN (ρ)− ĪN (ρ)
a.s.−−−−→

N→∞
0

(ii) E [IN (ρ)]− ĪN (ρ) −−−−→
N→∞

0
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where

ĪN (ρ) =
1

N
log det

(
IN + ρ

K∑
k=1

nk
Nk

ḡkgk
δk

Rk

)

+
1

N

K∑
k=1

[
log det (INk + ḡkδkSk) + log det

(
Ink + gkT

1

2

kQkT
1

2

k

)
− 2nkgkḡk

]
(22)

and gk, ḡk, δk are the unique positive solutions to (21).

Proof: The proof is provided in Appendix E.

The following result allows us to compute the asymptotically optimal precoding matrices Qk which

maximize ĪN (ρ) under individual transmit power constraints.

Theorem 6 (Optimal power allocation): The solution to the following optimization problem:(
Q̄?

1, . . . , Q̄
?
K

)
= arg max

Q1,...,Qk

ĪN (ρ)

s.t.
1

nk
tr Qk ≤ Pk ∀k

where ĪN (ρ) is defined in Theorem 5, is given as Q̄?
k = UkP̄

?
kU

H
k , where Uk ∈ Cnk×nk is defined by

the spectral decomposition of Tk = Ukdiag(tk,1, . . . , tk,nk)U
H
k and P̄?

k = diag(p̄?k,1, . . . , p̄
?
k,nk

) is given

by the water-filling solution:

p̄?k,j =

(
µk −

1

g?ktk,j

)+

(23)

where µk is chosen to satisfy 1
nk

tr P̄?
k = Pk and g?k is given by Theorem 4 for Qk = Q̄?

k.

Proof: The proof is provided in Appendix F.

Remark 3.5: The optimal power allocation matrices P̄?
k can be calculated by the iterative water-filling

Algorithm 1 (see [14, Remark 2] and [7, Remark 3] for a discussion on the convergence of this algorithm).

Remark 3.6: Denote by (Q?
1, . . . ,Q

?
K) the set of precoding matrices which maximize E [IN (ρ)] for a

given set of power constraints. If the condition lim sup‖TkQ
?
k‖ <∞ holds for all k, then E [IN (ρ,Q?

1, . . . ,Q
?
K)]−

ĪN (ρ, Q̄?
1, . . . , Q̄

?
K) −−−−→

N→∞
0, by Theorem 5 and the strict concavity of ĪN (ρ) and IN (ρ) in the matrices

Qk. However, this condition is difficult to verify and is outside the scope of this paper. See [25] for such

a technical discussion in the case of Rician fading channels.

Next, we provide deterministic equivalents of the SINR γNk,j (ρ) at the output of the MMSE detector

and the associated sum-rate RN (ρ).
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Algorithm 1 Iterative water-filling algorithm

1: Let ε > 0, n = 0 and p̄?,0k,j = Pk for all k, j.

2: repeat

3: For all k, compute g?,nk according to Theorem 4 with matrices Qk = Ukdiag
(
p̄?,nk,j

)
UH
k .

4: For all k, j, calculate p̄?,n+1
k,j =

(
µk − 1

g?,nk tk,j

)+
, with µk such that 1

nk

∑nk
j=1 p̄

?,n+1
k,j = Pk.

5: n = n+ 1

6: until maxk,j |p̄?,nk,j − p̄
?,n−1
k,j | ≤ ε

Theorem 7 (SINR of the MMSE detector): Let Qk = diag (pk,1, . . . , pk,nk) and Tk = diag(tk,1, . . . , tk,nk)

for all k. Assume that A 1 holds. Then,

γNk,j (ρ)− γ̄Nk,j (ρ)
a.s.−−−−→

N→∞
0

where γ̄Nk,j (ρ) = pk,jtk,jgk and gk is by given by Theorem 4.

Proof: The proof is provided in Appendix G.

Remark 3.7: It is easy to see that the theorem is also valid under the more general assumption Tk =

Ukdiag(tk,1, . . . , tk,nk)U
H
k and Qk = Ukdiag(pk,1, . . . , pk,nk)U

H
k .

Corollary 2 (Sum-rate with MMSE decoding): Let Qk = diag (pk,1, . . . , pk,nk) and Tk = diag(tk,1, . . . , tk,nk)

for all k. Assume that A 1 holds. Then,

(i) RN (ρ)− R̄N (ρ)
a.s.−−−−→

N→∞
0

(ii) E [RN (ρ)]− R̄N (ρ)
a.s.−−−−→

N→∞
0

where

R̄N (ρ) =
1

N

K∑
k=1

nk∑
j=1

log
(
1 + γ̄Nk,j (ρ)

)
and the γ̄Nk,j (ρ) are given by Theorem 7.

Proof: The proof is provided in Appendix H.

Remark 3.8: Careful inspection of (22) reveals that the third term of ĪN (ρ) equals R̄N (ρ) since

1

N

K∑
k=1

log det
(
Ink + gkT

1

2

kQkT
1

2

k

)
=

1

N

K∑
k=1

nk∑
j=1

log (1 + pk,jtk,jgk) . (24)
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Thus, all other terms in (22) correspond to the gains of successive interference cancellation [44] over

simple MMSE detection.

A special case of the double-scattering channel is the Rayleigh product MIMO channel [39] which

does not exhibit any form of correlation between the transmit and receive antennas or the scatterers. For

this model, Theorems 4, 5 and 7 can be given in closed form as shown in the next corollary.

Corollary 3 (Rayleigh product channel): For all k, let Nk = S, nk = N and assume Tk = IN ,

Sk = IS , Rk = IN , and Qk = IN . Then ĪN (ρ) and γ̄Nk,j (ρ) as defined in Theorems 5 and 7 can be

given in closed form as

ĪN (ρ) = log

(
1 + ρ

NK

S
ḡ

(
ḡ +

S

N
− 1

))
− KS

N
log

(
1 +

N

S
(ḡ − 1)

)
−K log (ḡ)− 2K (1− ḡ)

and

γ̄Nk,j (ρ) =
1− ḡ
ḡ

where ḡ is the unique root to

ḡ3 − ḡ2

(
2− S

N
− 1

K

)
+ ḡ

(
1− S

N
− 1

K
+

S

NK

(
1 +

1

ρ

))
− S

NK

1

ρ
= 0 (25)

such that ḡ ∈
(
1−min

[
1
K ,

S
N

]
, 1
)
.

Proof: The proof is provided in Appendix I.

Note that similar expressions for the asymptotic mutual information and MMSE-SINR have been

obtained in [32] by means of free probability theory. However, these results require the numerical solution

of a third order differential equation.

As a first numerical example, we consider the “multi-keyhole channel”, i.e., K = 1, S1 = IN1
,

R1 = IN , T1 = Q1 = In1
, for N = n1 = 4. Fig. 3 depicts the normalized ergodic mutual information

E [IN (ρ)] and its asymptotic approximation ĪN (ρ) versus SNR for different numbers of “keyholes” N1 ∈

{1, 2, 3, 4, 100}. Surprisingly, the match between both results is almost perfect although the channel

dimensions are very small. As one expects, the multiplexing gain increases linearly with N1 until N1 ≥

N = 4. Larger values of N1 only change the statistical distribution of the channel matrix while the degrees

of freedom are limited by the number of antennas (for N1 →∞, H1 becomes a standard Rayleigh fading

channel [23]).

As a second example, we consider a MAC from K = 3 transmitters, assuming the double-scattering

model in [23]. Under this model, the correlation matrices are given as Rk = G(φr,k, dr,k, Nk), Sk =
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Fig. 3. Ergodic mutual information E [IN (ρ)] of the multi-keyhole channel and its deterministic equivalent ĪN (ρ) versus ρ.

G(φs,k, ds,k, Nk) and Tk = G(φt,k, dt,k, Nk), where G(φ, d, n) is defined as

[G(φ, d, n)]k,l =
1

n

n−1

2∑
j= 1−n

2

exp

(
i2πd(k − l) sin

(
jφ

1− n

))
. (26)

The values φt,k and φr,k determine the angular spread of the radiated and received signals, dt,k and

dr,k are the antenna spacings at the kth transmitter and receiver in multiples of the signal wavelength,

Nk can be seen as the number of scatterers and ds,k as the spacing of the scatterers. For simplicity,

we assume N = 4, Pk = 1/nk, Nk = 11, nk = 3, dt,k = dr,k = 0.25 and ds,k = 50 for all k. We

further assume φr,k = φt,k for all k, with φr,k ∈ {π/4, π/2, π} and φs,k = π/8. Fig. 4 shows E [IN (ρ)]

and ĪN (ρ) with uniform and optimal power allocation versus SNR. Again, our asymptotic results yield

very tight approximations, even for small system dimensions. Note that we have used the precoding

matrices provided by Theorem 6 for the simulations as the optimal precoding matrices are unknown.

For comparison, we also provide the sum-rate with MMSE detection E [RN (ρ)] and its deterministic

approximation R̄N (ρ). We observe a good fit between both results at low SNR values, but a slight

mismatch for higher values. This is due to a slower convergence of the SINR γNk,j(ρ) to its deterministic

approximation γ̄Nk,j(ρ), well documented in the RMT literature, e.g. [45].
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Fig. 4. Ergodic mutual information E [IN (ρ)] and sum-rate E [RN (ρ)] of the multiple access channel and their asymptotic

approximations ĪN (ρ) and R̄N (ρ) versus ρ.

IV. CONCLUSION

In this paper, we have presented a novel tool for the large system analysis of communication systems,

called iterative deterministic equivalents. This tool is particularly suited for the analysis of channel models

composed of complex combinations of independent random matrices, e.g. products or sums of products

of matrices. We have demonstrated the usefulness of this approach with the help of two examples which

had not been solved in the literature before. These are the multi-hop AF MIMO relay channel with

noise at each stage and the MIMO MAC under the double-scattering channel model. For these channel

models, we have provided asymptotically tight deterministic approximations of information theoretic

quantities of interest, such as the mutual information and the sum-rate with MMSE detection. These

approximations can be easily computed by provably converging fixed-point algorithms and do not require

any numerical integration. Our simulation results suggest that the asymptotic performance approximations

are very accurate for finite system dimensions with only a few antennas at each node. Finally, the method

of iterative deterministic equivalents is applicable to a wide range of channel models of interest (e.g.

combinations of correlated i.i.d. and random unitary matrices [7]) which cannot be easily treated so far

with other techniques.
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APPENDIX A

RELATED RESULTS

Lemma 2 ([46, Lemma 2.7], [9, Lemma 4]): Let (AN )N≥1 be a sequence of random N×N matrices,

satisfying lim supN‖AN‖ < ∞, almost surely. Let (xN )N≥1 be a sequence of random N -dimensional

vectors of i.i.d. entries with zero mean, variance 1/N and 8th order moment of order O
(
1/N4

)
,

independent of AN . Then,

xH
NANxN −

1

N
tr AN

a.s.−−−−→
N→∞

0.

Lemma 3 (Matrix inversion lemma [47, Eq. (2.2)]): Let A ∈ CN×N be Hermitian invertible. Then,

for any vector x ∈ CN and any scalar τ ∈ C such that A + τxxH is invertible,

xH
(
A + τxxH

)−1
=

xHA−1

1 + τxHA−1x
.

Lemma 4 (Rank-1 perturbation lemma [47]): Let z < 0, A ∈ CN×N , B ∈ CN×N with B Hermitian

nonnegative definite, and v ∈ CN . Then,∣∣∣tr ((B− zIN )−1 − (B + vvH − zIN )−1
)

A
∣∣∣ ≤ ‖A‖|z| .

Lemma 5: Let R ∈ CN×N be Hermitian with smallest eigenvalue λmin ≥ 1 and a, b, c, d > 0. Then

1

N
tr R (aR + bIN )−1 R (cR + dIN )−1 ≥ 1

(a+ b)(c+ d)
.

Proof: Let R = U∆UH, where U ∈ CN×N is unitary and ∆ = diag (δ1, . . . , δN ) ≥ 1. Thus,

1

N
tr R (aR + bIN )−1 R (cR + dIN )−1 =

1

N
tr ∆2 (a∆ + bIN )−1 (c∆ + dIN )−1

=
1

(a+ b)(c+ d)

1

N

N∑
i=1

δ2
i (a+ b)(c+ d)

(aδi + b)(cδi + d)

≥ 1

(a+ b)(c+ d)
. (27)

Lemma 6: Let the matrices Rk(βk−1), be defined as in (10). Then, almost surely:

lim sup
n
‖Rk(βk−1)‖ <∞, k = 0, . . . ,K.
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Proof: For k ∈ {1, . . . ,K}, denote by (Ωk,Fk, Pk) the probability space generating the sequences

of random matrices Hk. By [46], we have on a space Bk ⊂ Ωk with Pk(Bk) = 1,

1

nk−1

∥∥∥HkH
H
k

∥∥∥− (1 +
1
√
ck

)2

−−−→
n→∞

0. (28)

Obviously, we have ‖R0‖ = ‖In‖ = 1. Thus, almost surely,

lim sup
n
‖R1(β0)‖ ≤ 1 + lim sup

n

α1β0

n

∥∥∥H1H
H
1

∥∥∥ = 1 + α1β0 lim sup
n

(
1 +

1
√
c1

)2

<∞. (29)

Consider now the product space (Ω1×Ω2,F1×F2, Q2). By the Fubini theorem, we have on a subspace

C2 ⊂ Ω1 × Ω2 with Q2(C2) = 1,

lim sup
n
‖R2(β1)‖ ≤ 1 + lim sup

n

α2β1

n1

∥∥∥H2R1(β0)HH
2

∥∥∥
≤ 1 + lim sup

n
α2β1‖R1(β0)‖ 1

n1

∥∥∥H2H
H
2

∥∥∥
= 1 + α2β1 lim sup

n

(
1 + α1β0

(
1 +

1
√
c1

)2
)(

1 +
1
√
c2

)2

<∞. (30)

Repeating the last step k − 2 times concludes the proof.

Definition 2 (Standard interference function [48]): A function h(x1, . . . , xK) = [h1(x1, . . . , xK), . . . ,

hK(x1, . . . , xK)]T ∈ RK is said to be standard if it fulfills the following conditions:

1) Positivity: for each j, if x1, . . . , xK ≥ 0, then hj(x1, . . . , xK) > 0.

2) Monotonicity: if x1 > x′1, . . . , xK > x′K , then for all j, hj(x1, . . . , xK) > hj(x
′
1, . . . , x

′
K).

3) Scalability: for all α > 1 and for all j, αhj(x1, . . . , xK) > hj(αx1, . . . , αxK).

Theorem 8 (Fixed-point theorem [48, Theorem 2]): If a K-variate function h(x1, . . . , xK) is standard

and there exists (x1, . . . , xK) such that for all j, xj ≥ hj(x1, . . . , xK), then the fixed-point algorithm

that consists in setting

x
(t+1)
j = hj(x

(t)
1 , . . . , x

(t)
K )

for t ≥ 1 and for any initial values x(0)
1 , . . . , x

(0)
K > 0 converges to the unique jointly positive solution

of the system of K equations

xj = hj(x1, . . . , xK), j ∈ {1, . . . ,K}.
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Theorem 9 ([14, Corollary 1, Theorem 2]): For k ∈ {1, . . . ,K}, let (nk)N≥1 = (nk(N))N≥1 be

a sequence of positive integers and let (Rk,N )N≥1, Rk,N ∈ CN×N , (Tk,N )N≥1,Tk,N ∈ Cnk×nk ,

and (DN )N≥1, DN ∈ CN×N , be three sequences of nonnegative definite Hermitian matrices, sat-

isfying lim supN‖Rk,N‖ < ∞, lim supN‖Tk,N‖ < ∞, and lim supN‖DN‖ < ∞. Let (Xk,N )N≥1,

Xk,N ∈ CN×nk , be a sequence of random matrices with i.i.d. complex Gaussian entries with zero mean

and variance 1/nk. Denote BN =
∑

k R
1

2

k,NXk,NTk,NXH
k,NR

1

2

k,N and define the function VN (x) =

1
N log det (IN + xBN ) for x > 0. Let ck = nk/N and assume that 0 < lim infN ck ≤ lim supN ck <∞

for all k. Then,

(i)
1

N
tr DN

(
BN +

1

x
IN

)−1

− 1

N
tr DN

(
K∑
i=1

ēiRi,N +
1

x
IN

)−1

a.s.−−−−→
N→∞

0

(ii) VN (x)− V̄N (x)
a.s.−−−−→

N→∞
0

where

V̄N (x) =
1

N
log det

(
IN + x

K∑
k=1

ēk,NRk,N

)
+

K∑
k=1

1

N
log det (Ink + ek,NTk,N )− 1

N

K∑
k=1

nkek,N ēk,N

and where ēk,N , ek,N , k = 1, . . . ,K, are given as the unique solution to the equations

ēk,N =
1

nk
tr Tk,N (ek,NTk,N + Ink)

−1

ek,N =
1

nK
tr Rk,N

(
K∑
i=1

ēiRi,N +
1

x
IN

)−1

such that ēk,N , ek,N > 0 for all k.

Corollary 4 (Special case of Theorem 9, see also [47]): Let (n)N≥1 = (n(N))N≥1 be a sequence of

positive integers. Let (RN )N≥1, RN ∈ Cn×n, be a sequence of nonnegative definite Hermitian matrices,

satisfying lim supN‖RN‖ < ∞ and let (XN )N≥1, XN ∈ CN×n, be a sequence of random matrices

with i.i.d. complex Gaussian entries with zero mean and variance 1/n. For x > 0, define the following

functions mN (x) = 1
N tr

(
XNRNXH

N + 1
xIN

)−1 and JN (x) = 1
N log det

(
IN + xXNRNXH

N

)
. Denote

c = n
N and assume that 0 < lim infN c ≤ lim supN c <∞. Then,

(i) mN (x)− m̄N (x)
a.s.−−−−→

N→∞
0, (ii) JN (x)− J̄N (x)

a.s.−−−−→
N→∞

0

where

m̄N (x) =
1

N
tr
(

RN

c+ ēN
+

1

x
In

)−1

+ (1− c)x

J̄N (x) =
1

N
log det ([c+ ēN ] In + xRN ) + (1− c) log (c+ ēN )− ēN

c+ ēN
− log(c)



24

and ēN is defined as the unique positive solution to the implicit equation

ēN =
1

N
tr RN

(
RN

c+ ēN
+

1

x
In

)−1

. (31)

APPENDIX B

PROOF OF THEOREM 2:

First, notice that

ηk
4
=

∥∥Rk(βk−1)−Rk(β̄k−1)
∥∥

=

∥∥∥∥αkβk−1

nk−1
HkRk−1(βk−2)HH

k −
αkβ̄k−1

nk−1
HkRk−1(β̄k−2)HH

k

∥∥∥∥
≤ αk

∥∥∥∥HkH
H
k

nk−1

∥∥∥∥∥∥βk−1Rk−1(βk−2)− β̄k−1Rk−1(β̄k−2)
∥∥

≤ αk

∥∥∥∥HkH
H
k

nk−1

∥∥∥∥ [|βk−1 − β̄k−1|
∥∥Rk−1(βk−2)

∥∥+ β̄k−1

∥∥Rk−1(βk−2)−Rk−1(β̄k−2)
∥∥] . (32)

Since, almost surely, lim sup
∥∥R1(β0)−R1(β̄0)

∥∥ ≤ lim supα1|β0−β̄0|
∥∥∥H1HH

1

n

∥∥∥ = 0 and lim sup
∥∥Rk−1(βk−2)

∥∥ <
∞ (see proof of Lemma 6), one can iteratively show that ηk → 0, almost surely. Thus,∣∣Jk (x,βk−1

)
− Jk

(
x, β̄k−1

)∣∣ a.s.−−−→
n→∞

0. (33)

This means that we can from now on replace βk by β̄k and focus on Jk
(
x, β̄k−1

)
.

As a consequence of Corollary 4, Lemma 6, and the Fubini theorem, we obtain the following relation

Jk(x, β̄k−1)− J̃k(x, β̄k−1)
a.s.−−−→

n→∞
0, k ≥ 1 (34)

where

J̃k
(
x, β̄k−1

)
=

1

nk
log det

([
ck + ek−1

(
x, β̄k−1

)]
Ink−1

+ xαkβ̄k−1Rk−1

(
β̄k−2

))
+ (1− ck) log

(
ck + ek−1

(
x, β̄k−1

))
−

ek−1

(
x, β̄k−1

)
ck + ek−1

(
x, β̄k−1

) − log (ck) (35)

and ek−1

(
x, β̄k−1

)
is given as the unique positive solution to

ek−1

(
x, β̄k−1

)
=

1

nk
trαkβ̄k−1Rk−1

(
β̄k−2

)(αkβ̄k−1Rk−1

(
β̄k−2

)
ck + ek−1

(
x, β̄k−1

) +
1

x
Ink−1

)−1

. (36)

In particular, for k = 1, we have

J̃1

(
x, β̄0

)
= J̄1

(
x, β̄0

)
(37)
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where

J̄1

(
x, β̄0

)
= c1 log

(
1 +

xα1β̄0

c1 + ē0

(
x, β̄0

))+ log

(
1 +

ē0

(
x, β̄0

)
c1

)
−

ē0

(
x, β̄0

)
c1 + ē0

(
x, β̄0

) (38)

ē0

(
x, β̄0

)
= −xα1β̄0(1− c1) + c1

2
+

√(
xα1β̄0(1− c1) + c1

)2
+ 4xα1β̄0c2

1

2
(39)

according to Corollary 4. Note that (31) permits a closed-form solution (39) in this case.

Now, using the recursion Rk−1

(
β̄k−2

)
= Ink−1

+ αk−1β̄k−2

nk−2
Hk−1Rk−2

(
β̄k−3

)
HH
k−1 (10) in (35), we

obtain

J̃k(x, β̄k−1) = ckJk−1

(
xαkβ̄k−1

ck + xαkβ̄k−1 + ek−1

(
x, β̄k−1

) , β̄k−2

)
+ ck log

(
1 +

xαkβ̄k−1

ck + ek−1

(
x, β̄k−1

))

+ log

(
1 +

ek−1

(
x, β̄k−1

)
ck

)
−

ek−1

(
x, β̄k−1

)
ck + ek−1

(
x, β̄k−1

) . (40)

In the proof of Theorem 3, it is shown that

ek−1

(
x, β̄k−1

)
− ēk−1

(
x, β̄k−1

) a.s.−−−→
n→∞

0. (41)

By the continuous mapping theorem [31], we therefore have

Jk−1

(
xαkβ̄k−1

1 + xαkβ̄k−1 + ek−1

(
x, β̄k−1

) , β̄k−2

)

− Jk−1

(
xαkβ̄k−1

1 + xαkβ̄k−1 + ēk−1

(
x, β̄k−1

) , β̄k−2

)
a.s.−−−→

n→∞
0. (42)

Applying the last result together with Corollary 4, Lemma 6, the continuous mapping theorem and the

Fubini theorem to (40) concludes the proof for k = 2 since J̃1

(
x, β̄0

)
= J̄1

(
x, β̄0

)
by (37). The

convergence for k > 2 is shown by successive iterations of the last steps.

APPENDIX C

PROOF OF THEOREM 3

From standard matrix inequalities and (32), it follows that∣∣mk (x,βk)−mk

(
x, β̄k

)∣∣ ≤ x2αk+1

∥∥∥∥∥Hk+1H
H
k+1

nk

∥∥∥∥∥∥∥βkRk

(
βk−1

)
− β̄kRk

(
β̄k−1

)∥∥ a.s.−−−→
n→∞

0. (43)

Thus, we can replace from now on βk by β̄k, for almost every (H1, . . . ,HK).

From Corollary 4, Lemma 6 and the Fubini theorem, it follows that

mk

(
x, β̄k

)
− m̃k

(
x, β̄k

) a.s.−−−→
n→∞

0 (44)
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where

m̃k(x, β̄k) =
1

nk+1
tr

(
αk+1β̄kRk

(
β̄k−1

)
ck+1 + ek

(
x, β̄k

) +
1

x
In

)−1

+ (1− ck+1)x (45)

and ek
(
x, β̄k

)
is given as the unique positive solution to

ek
(
x, β̄k

)
=

1

nk+1
trαk+1β̄kRk

(
β̄k−1

)(αk+1β̄kRk

(
β̄k−1

)
ck+1 + ek

(
x, β̄k

) +
1

x
Ink

)−1

. (46)

In particular, we have m̃0(x, β̄k) = m̄0(x, β̄k), where

m̄0(x, β̄0) =
c1

α1β̄0

c1+ē0(x,β̄0)
+ 1

x

+ (1− c1)x (47)

ē0

(
x, β̄0

)
= −xα1β̄0(1− c1) + c1

2
+

√(
xα1β̄0(1− c1) + c1

)2
+ 4xα1β̄0c2

1

2
. (48)

Replacing Rk

(
β̄k−1

)
in (46) by its recursive definition Rk

(
β̄k−1

)
= Ink+αkβ̄k−1

nk−1
HkRk−1

(
β̄k−2

)
HH
k

(10) yields after straightforward calculus

ek
(
x, β̄k

)
= ck+1

(
ck+1 + ek

(
x, β̄k

))
−
ck+1

(
ck+1 + ek

(
x, β̄k

))2
xαk+1β̄k

mk−1

(
xαk+1β̄k

ck+1 + xαk+1β̄k + ek
(
x, β̄k

) , β̄k−1

)
. (49)

Similarly, one obtains

m̃k(x, β̄k) =
ck+1

(
ck+1 + ek

(
x, β̄k

))
αk+1β̄k

mk−1

(
xαk+1β̄k

ck+1 + xαk+1β̄k + ek
(
x, β̄k

) , β̄k−1

)
+ (1− ck+1)x.

(50)

Combining the last two equations leads to

m̃k(x, β̄k) =
xck+1

ck+1 + ek
(
x, β̄k

) . (51)

Consider now the quantity ēk
(
x, β̄k

)
, k ≥ 1, defined as a positive solution to

ēk
(
x, β̄k

)
= ck+1

(
ck+1 + ēk

(
x, β̄k

))
−
ck+1

(
ck+1 + ēk

(
x, β̄k

))2
xαk+1β̄k

m̄k−1

(
xαk+1β̄k

ck+1 + xαk+1β̄k + ēk
(
x, β̄k

) , β̄k−1

)
(52)

where m̄k

(
x, β̄k

)
is recursively defined for k ≥ 1 as

m̄k

(
x, β̄k

)
=

xck+1

ck+1 + ēk
(
x, β̄k

) . (53)
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It remains to show that a unique solution to (52) exists and that ek
(
x, β̄k

)
− ēk

(
x, β̄k

) a.s.−−−→
n→∞

0. Let us

first define the following functions for k ≥ 1:

fk(z) = ck+1 (ck+1 + z)− ck+1 (ck+1 + z)2

xαk+1β̄k
mk−1

(
xαk+1β̄k

ck+1 + xαk+1β̄k + z
, β̄k−1

)
(54)

f̄k(z) = ck+1 (ck+1 + z)− ck+1 (ck+1 + z)2

xαk+1β̄k
m̄k−1

(
xαk+1β̄k

ck+1 + xαk+1β̄k + z
, β̄k−1

)
. (55)

From (46) and with the help of Lemma 5 (note that the smallest eigenvalue of Rk is greater or equal

to 1 for all k), one can easily verify that fk(z) satisfies the following properties for z ≥ 0:

(i)

fk(z) ≥ ck+1(ck+1 + z)

[
1− ck+1 + z

ck+1 + z + xαk+1β̄k

]
> 0

(ii) for z > z′ ≥ 0,

fk(z)− fk(z′)

≥
(z − z′)ck+1α

2
k+1β̄

2
k

(ck+1 + z′)(ck+1 + z)

1

nk
tr Rk

(
αk+1β̄kRk

ck+1 + z
+

1

x
Ink

)−1

Rk

(
αk+1β̄kRk

ck+1 + z′
+

1

x
Ink

)−1

≥
(z − z′)ck+1α

2
k+1β̄

2
k(

αk+1β̄k + ck+1+z′

x

) (
αk+1β̄k + ck+1+z

x

)
> 0

(iii) for α > 1,

αfk(z)− fk(αz)

≥
(α− 1)c2

k+1α
2
k+1β̄

2
k

(ck+1 + αz)(αck+1 + αz)

1

nk
tr Rk

(
αk+1β̄kRk

αck+1 + αz
+

1

αx
Ink

)−1

Rk

(
αk+1β̄kRk

ck+1 + αz
+

1

x
Ink

)−1

+
(α− 1)ck+1αk+1β̄k

αx

1

nk
tr Rk

(
αk+1β̄kRk

αck+1 + αz
+

1

αx
Ink

)−1(
αk+1β̄kRk

ck+1 + αz
+

1

x
Ink

)−1

≥
(α− 1)c2

k+1α
2
k+1β̄

2
k(

αk+1β̄k + ck+1+αz
x

) (
αk+1β̄k + αck+1+αz

x

) +
(α− 1)ck+1αk+1β̄k

αx
(

αk+1β̄k
αck+1+αz + 1

αx

)(
αk+1β̄k
ck+1αz

+ 1
x

)
> 0

where Rk = Rk

(
β̄k−1

)
. All properties are independent of Rk and therefore hold for n→∞.

Assume now k = 1. For any sequence of bounded non-negative real numbers zn, we have by (44) and

the continuous mapping theorem [31],

f1(zn)− f̄1(zn)
a.s.−−−→

n→∞
0. (56)
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Thus, properties (i)− (iii) of f1(z) also hold for f̄1(z). By Definition 2 and Theorem 8, these properties

imply the uniqueness of positive solutions to the fixed point equations z = f1(z) and y = f̄1(y), and

hence the uniqueness of solutions to (52) for k = 1. Moreover, note that

|fk(a)− fk(b)| ≤
α2
k+1β̄

2
kx

2

ck+1
‖Rk

(
β̄k−1

)
‖2|a− b|. (57)

Hence,∣∣ē1

(
x, β̄1

)
− e1

(
x, β̄1

)∣∣ =
∣∣f̄1

(
ē1

(
x, β̄1

))
− f1

(
e1

(
x, β̄1

))∣∣
≤
∣∣f̄1

(
ē1

(
x, β̄1

))
− f1

(
ē1

(
x, β̄1

))∣∣+
∣∣f1

(
ē1

(
x, β̄1

))
− f1

(
e1

(
x, β̄1

))∣∣
≤ εn +

α2
2β̄

2
1x

2

c2
‖R1

(
β̄0

)
‖2
∣∣ē1

(
x, β̄1

)
− e1

(
x, β̄1

)∣∣ (58)

for some sequence of real numbers εn, satisfying εn
a.s.−−−→

n→∞
0. By Lemma 6, ‖R1

(
β̄0

)
‖ < M , almost

surely, for some M > 0. Thus, for x ≤
√

c2(1−δ)
α2

2β̄
2
1M

2 and some δ > 0, we have∣∣ē1

(
x, β̄1

)
− e1

(
x, β̄1

)∣∣ ≤ εn
δ

a.s.−−−→
n→∞

0. (59)

Since ē1

(
x, β̄1

)
and e1

(
x, β̄1

)
are (almost surely) bounded on any closed subset of R+ \ {0} and have

analytic continuations for x ∈ C\R−, we have by Vitali’s convergence theorem [49] that the convergence

holds for any x ∈ R+ \ {0}.

The last convergence implies by the continuous mapping theorem that,

m1(x, β̄1)− m̄1

(
x, β̄1

) a.s.−−−→
n→∞

0. (60)

We now assume k = 2. The last convergence implies f2(z)→ f̄2(z), almost surely. The same steps can

therefore be applied to show that m2(x, β̄1) − m̄2

(
x, β̄1

) a.s.−−−→
n→∞

0. This terminates the proof as this

process can be iterated k times.

APPENDIX D

PROOF OF THEOREM 4: FUNDAMENTAL EQUATIONS

The proof follows essentially the same steps as the proof of Theorem 2 in [7] and will not be given

in full detail here. In order to prove the uniqueness of solutions (ḡk, gk, δk), it is sufficient to show by

Theorem 8 that the K-variate function h : (x1, . . . , xK) 7→ (h1, . . . , hK) as defined below, is a standard

interference function (see Definition 2). For k = 1, . . . ,K, we define

hk(x1, . . . , xK) 7→ 1

nk

Nk∑
j=1

sk,jδk
1 + ḡksk,jδk

(61)



29

where

ḡk =
1

nk
tr T

1

2

kQkT
1

2

k

(
xkT

1

2

kQkT
1

2

k + Ink

)−1

(62)

and δk, k = 1, . . . ,K, form the unique jointly positive solution to the following fixed-point equations

δk =
1

Nk
tr Rk

(
K∑
k=1

nk
Nk

ḡkxk
δk

Rk +
1

ρ
IN

)−1

. (63)

The only difference to [7] is the definition of ḡk. In our case, ḡk is directly defined as a function of

xk, whereas b̄k in [7] (using their notations) is given as the solution of another fixed point equation.

However, the behavior of b̄k and ḡk as seen as functions of xk is identical. In particular, let xk > x′k > 0

and denote by ḡk and ḡ′k the corresponding values of (62), respectively. One can easily verify that the

following conditions hold:(i) ḡk < ḡ′k and (ii) xkḡk > x′kḡ
′
k. The remaining steps are identical to [7]

and will not be repeated here. By showing h(x1, . . . , xK) to be a standard interference function, we have

proved by Theorem 8 that the following fixed-point algorithm, which iteratively computes

xt+1
k = hk(x

(t)
1 , . . . , x

(t)
K ), k = 1, . . . ,K (64)

for t ≥ 0 and some set of initial values x(0)
1 , . . . , x

(0)
K , converges as t → ∞ to the unique fixed point

(g1, . . . , gK).

APPENDIX E

PROOF OF THEOREM 5: MUTUAL INFORMATION

The key idea is that the double-scattering model can be considered as the Kronecker channel model as

considered in Theorem 9 with random correlation matrices. Assume now a Kronecker model, for which

the matrices Hk are given as

Hk =
1
√
nk

ZkW2,kT
1

2

k (65)

where Zk ∈ CN×Nk is a deterministic matrix and W2,k and Tk are defined as in (17). Further assume

that lim supN‖Zk‖ <∞ for all k. Thus, we can apply Theorem 9 to obtain the following deterministic

equivalent V̄N (ρ) of IN (ρ):

V̄N (ρ) =
1

N
log det

(
IN + ρ

K∑
k=1

ēkZkZ
H
k

)
+

K∑
k=1

1

N
log det

(
Ink + ekT

1

2

kQkT
1

2

k

)
− 1

N

K∑
k=1

nkekēk

(66)
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where ēk, ek, k = 1, . . . ,K, are given as the unique solutions to the following equations

ēk =
1

nk
tr T

1

2

kQkT
1

2

k

(
ekT

1

2

kQkT
1

2

k + Ink

)−1

ek =
1

nk
tr ZkZ

H
k

(
K∑
i=1

ēiZiZ
H
i +

1

ρ
IN

)−1

(67)

such that ēk, ek > 0 for all k. Recall that the matrices Qk are the covariance matrices of the channel inputs

xk. Thus, the channel model is equivalent to a channel Hk = 1√
nk

ZkW2,kT̃
1

2

k , where T̃
1

2

k = T
1

2 Q
1

2

k ,

with uncorrelated channel inputs x̃k ∼ CN (0, Ink).

For the double-scattering channel, the matrices Zk are random and defined as

Zk =
1√
Nk

R
1

2

kW1,kS
1

2

k . (68)

Let (Ω,F , P ) be the probability space generating the random sequences of matrices (W1,k(ω))N≥1. There

exists A ⊂ Ω with P (A) = 1, such that for each ω ∈ A, we have lim supN‖Zk(ω)Zk(ω)H‖ <∞ ([46]).

Thus, for each of these ω, the matrices ZkZ
H
k satisfy the criteria of the correlation matrices of Theorem 9.

Let (Ω′,F ′, P ′) the probability space generating the matrices W2,k. Thus, for every ω ∈ A, there exist a

A′(ω) ⊂ Ω′ with P ′(A′) = 1, such that for all ω′ ∈ A′(ω), V̄N (ρ) is a deterministic equivalent of IN (ρ).

Denote by (Ω × Ω′,F × F ′, Q) the product space generating the matrices W1,k(ω) and W1,k(ω
′) and

denote by B ⊂ Ω × Ω′ the space of all tuples (ω, ω′), such that ω ∈ A and ω′ ∈ A′(ω). By the Fubini

theorem, we have Q(B) = 1, which proves that V̄N (ρ) − In(ρ) → 0, almost surely. However, V̄N (ρ)

is a random quantity, which depends on the matrices Zk. Therefore, we will need to obtain an iterative

deterministic equivalent ĪN (ρ) of V̄N (ρ).

The first step is to replace the fixed-point equations (67) that depend on Zk by deterministic ones. Let

us define the quantities ēk,i,j , ek,i,j , for i ∈ {1, . . . ,K}, j ∈ {1, . . . , Nk}, which are given as the unique

solutions to the following set of fixed-point equations:

ēk,i,j =
1

nk
tr T̃k

(
ek,i,jT̃k + Ink

)−1

ek,i,j =
1

nk
tr Zk,i,jZ

H
k,i,j

(
K∑
`=1

ē`,i,jZ`,i,jZ
H
`,i,j +

1

ρ
IN

)−1

(69)

where

Zk,i,j =

Zk , i 6= k

[zk,1 · · · zk,j−1zk,j+1 . . . zk,Nk ] , i = k

.
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Obviously, ēk,i,j and ek,i,j are independent of the vector zi,j . In addition, we define

Z = max
k

lim sup
N
‖ZkZH

k ‖, T = max
k

lim sup
N
‖T̃k‖, n = min

k
nk, c =

N

n

and

αi,j = max
k
|ek,i,j − ek| , ᾱi,j = max

k
|ēk,i,j − ēk| .

Thus, we have for N large,

|ēk,i,j − ēk| =
∣∣∣∣ 1

nk
tr T̃k

(
ek,i,jT̃k + Ink

)−1 (
(ek − ek,i,j)T̃k

)(
ekT̃k + Ink

)−1
∣∣∣∣

≤ αi,jT 2. (70)

Since the right-hand side (RHS) of the last inequality is independent of k, we have

ᾱi,j ≤ αi,jT 2. (71)

On the other hand, for i 6= k, we have for N sufficiently large,

|ek,i,j − ek|

=

∣∣∣∣∣∣ 1

nk
tr ZkZ

H
k

(
K∑
`=1

ē`,i,jZ`,i,jZ
H
`,i,j +

1

ρ
IN

)−1( K∑
`=1

(ē` − ē`,i,j)Z`ZH
` + ēi,i,jzi,jz

H
i,j

)(
K∑
`=1

ē`Z`Z
H
` +

1

ρ
IN

)−1
∣∣∣∣∣∣

≤ cKρ2Z2ᾱi,j +
ēi,i,j
n

∣∣∣∣∣∣zHi,j
(

K∑
`=1

ē`Z`Z
H
` +

1

ρ
IN

)−1

ZkZ
H
k

(
K∑
`=1

ē`,i,jZ`,i,jZ
H
`,i,j +

1

ρ
IN

)−1

zi,j

∣∣∣∣∣∣
≤ cKρ2Z2ᾱi,j +

ρ2Z2T

n
(72)

where the last inequality is due to ēk,i,j ≤ T and
∣∣∣zHi,jAzi,j

∣∣∣ ≤ ‖zi,j‖2‖A‖ ≤ Z‖A‖, for any matrix A.

Similarly, one can show that

|ek,k,j − ek| = cKρ2Z2ᾱk,j +
ρ2Z2T

n
+
ρZ

n
. (73)

It follows from (72), (73) and (71), that

αi,j ≤ cKρ2Z2ᾱi,j +
ρ2Z2T

n
+
ρZ

n
≤ cKρ2Z2T 2αi,j +

ρ2Z2T

n
+
ρZ

n
. (74)

Now, for any ρ ≤
√

1−ε
cKZ2T 2 and ε > 0, we have

αi,j ≤
ρZ

εn
(1 + ρZT ) , ᾱi,j ≤

ρZT 2

εn
(1 + ρZT ) .
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Let µ = max{ρZε (1 + ρZT ) , ρZT
2

ε (1 + ρZT )}, then we finally have

αi,j ≤
µ

n
, ᾱi,j ≤

µ

n
. (75)

The last result establishes that for sufficiently small ρ, the differences between the solutions (ēk,i,j , ek,i,j)

to (69) and the solutions (ēk, ek) to (67) are uniformly bounded by µ and vanish as n→∞. Moreover,

ek and ek,i,j have an analytic continuation on z = −1
ρ ∈ C \ R+ and are uniformly bounded on all

closed subsets of z ∈ C \R+. Thus, in particular for ρ ∈ R+ \ {0} and all k, i, j, we have by the Vitali

convergence theorem [49]

ek − ek,i,j −−−−→
N→∞

0 and hence ēk − ēk,i,j −−−−→
N→∞

0. (76)

As a consequence of (76), we can now write

ek =
1

nk

Nk∑
j=1

zHk,j

(
K∑
i=1

ēiZiZ
H
i +

1

ρ
IN

)−1

zk,j

(a)
� 1

nk

Nk∑
j=1

zHk,j

(
K∑
i=1

ēi,k,jZiZ
H
i +

1

ρ
IN

)−1

zk,j

(b)
=

1

nk

Nk∑
j=1

zHk,j

(∑K
i=1 ēi,k,jZiZ

H
i − ēk,k,jzk,jzHk,j + 1

ρIN

)−1
zk,j

1 + ēk,k,jz
H
k,j

(∑K
i=1 ēi,j,kZiZ

H
i − ēk,k,jzk,jzHk,j + 1

ρIN

)−1
zk,j

(c)
� 1

nk

Nk∑
j=1

sk,j
Nk

tr Rk

(∑K
i=1 ēi,j,kZiZ

H
i + 1

ρIN

)−1

1 + sk,j ēk,k,j
Nk

tr Rk

(∑K
i=1 ēi,j,kZiZ

H
i + 1

ρIN

)−1

(d)
� 1

nk

Nk∑
j=1

sk,j
Nk

tr Rk

(∑K
i=1 ēiZiZ

H
i + 1

ρIN

)−1

1 + sk,j ēk
Nk

tr Rk

(∑K
i=1 ēiZiZ

H
i + 1

ρIN

)−1 (77)

where (a) follows from (76) since∣∣∣∣∣∣zHk,j
(

K∑
i=1

ēiZiZ
H
i +

1

ρ
IN

)−1

zk,j − zHk,j

(
K∑
i=1

ēi,k,jZiZ
H
i +

1

ρ
IN

)−1

zk,j

∣∣∣∣∣∣ ≤ µKZρ2

n
−−−−→
N→∞

0, (78)

(b) is due to Lemma 3, (c) is a consequence of Lemmas 2 and 4 and (d) is obtained by applying (76) a sec-

ond time. Next, we would like to find deterministic equivalents of the terms 1
Nk

tr Rk

(∑K
i=1 ēiZiZ

H
i + 1

ρIN

)−1
.

We cannot directly apply Theorem 9 at this point since the ēk are defined as functions of Zk. However,

based on the relations (75) and (78), Theorem 9 (see [14, Theorem 1]) can be shown to hold also for

the matrix model under study. Thus,

1

Nk
tr Rk

(
K∑
i=1

ēiZiZ
H
i +

1

ρ
IN

)−1

� fk (79)
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where fk for k ∈ {1, . . . ,K} are defined as the unique solution to the following fixed-point equations

f̄k =
1

Nk

Nk∑
j=1

sk,j ēk
1 + ēksk,jfk

(80)

fk =
1

Nk
tr Rk

(
K∑
i=1

f̄iRi +
1

ρ
IN

)−1

(81)

such that fk > 0 for all k. Replacing (80) in (81) leads to

fk =
1

Nk
tr Rk

 K∑
i=1

ēi
Ni

Ri

Ni∑
j=1

si,j
1 + si,j ēifi

+
1

ρ
IN

−1

. (82)

Thus,

ek =
1

nk

Nk∑
j=1

sk,jfk
1 + sk,j ēkfk

+ εk (83)

where εk is a sequence of random variables, satisfying εk
a.s.−−−−→

N→∞
0. Consider now the following system

of equations

ēk =
1

nk
tr T̃k

(
ekT̃k + Ink

)−1

ek =
1

nk

Nk∑
j=1

sk,jfk
1 + sk,j ēkfk

+ εk

fk =
1

Nk
tr Rk

 K∑
i=1

ēi
Ni

Ri

Ni∑
j=1

si,j
1 + si,j ēifi

+
1

ρ
IN

−1

and its deterministic counterpart

ḡk =
1

nk
tr T̃k

(
gkT̃k + Ink

)−1

gk =
1

nk

Nk∑
j=1

sk,jδk
1 + sk,j ḡkδk

δk =
1

Nk
tr Rk

 K∑
i=1

ḡi
Ni

Ri

Ni∑
j=1

si,j
1 + si,j ḡiδi

+
1

ρ
IN

−1

=
1

Nk
tr Rk

(
K∑
i=1

ni
Ni

ḡigi
δi

Ri +
1

ρ
IN

)−1

.

Define the quantities:

γ1 = max
k
|ek − gk| , γ2 = max

k
|ēk − ḡk| , γ3 = max

k
|fk − δk| , ε = max

k
|εk| .

Straight-forward calculations lead to the following bounds:

γ1 ≤ cSγ3 + cS2R2ρ2γ2 + ε, γ2 ≤ γ1T
2, γ3 ≤ KSR2ρ2γ2 +KS2R2T 2ρ2γ1.
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Combining these results and using the fact that ε a.s.−−−−→
N→∞

0 yields for ρ sufficiently small,

γ1, γ2, γ3
a.s.−−−−→

N→∞
0. (84)

Since ek, gk, ēk, ḡk, fk, δk are all (almost surely) bounded for ρ in any closed subset of R+ \ {0} and

have analytic continuations for ρ ∈ C\R−, we have by Vitali’s convergence theorem [49] that (84) holds

for any ρ ∈ R+ \ {0}.

Coming now back to V̄N (ρ) as given in (66), we have from the continuous mapping theorem [31] that

1

N

K∑
k=1

[
log det

(
Ink + ekT̃k

)
− nkekēk

]
−
[
log det

(
Ink + gkT̃k

)
− nkgkḡk

]
a.s.−−−−→

N→∞
0. (85)

Moreover, since ‖
∑K

k=1 (ēk − ḡk) ZkZ
H
k ‖

a.s.−−−−→
N→∞

0, we have

1

N
log det

(
IN + ρ

K∑
k=1

ēkZkZ
H
k

)
− 1

N
log det

(
IN + ρ

K∑
k=1

ḡkZkZ
H
k

)
a.s.−−−−→

N→∞
0. (86)

Applying Theorem 9 to the last term yields

1

N
log det

(
IN + ρ

K∑
k=1

ḡkZkZ
H
k

)

− 1

N
log det

(
IN + ρ

K∑
k=1

nk
Nk

ḡkgk
δk

Rk

)
− 1

N

K∑
k=1

log det (INk + ḡkδkSk) + nkḡkgk
a.s.−−−−→

N→∞
0. (87)

Combining (85) and (87) finally leads to

V̄N (ρ)− ĪN (ρ)
a.s.−−−−→

N→∞
0 (88)

where

ĪN (ρ) =
1

N
log det

(
IN + ρ

K∑
k=1

nk
Nk

ḡkgk
δk

Rk

)
+

1

N

K∑
k=1

log det (INk + ḡkδkSk)− nkḡkgk

+
1

N

K∑
k=1

log det
(
Ink + gkT̃k

)
− nkgkḡk. (89)

This concludes the proof of part (i).

In order to show the convergence in the mean (part (ii)), we will pursue the same approach as in [5],

[7]. Define the following functions:

mN (z) =
1

N
tr

(
K∑
k=1

HkH
H
k − zIN

)−1

, m̄N (z) =
1

N
tr

(
K∑
k=1

nk
Nk

ḡkgk
δk

Rk − zIN

)−1

.

One can show that

E [IN (ρ)]− ĪN (ρ) =

∫ ∞
1

ρ

([
1

ω
− E [mN (−ω)]

]
−
[

1

ω
− m̄N (−ω)

])
dω. (90)
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Since both mN (ω) and m̄N (ω) are uniformly bounded by 1
ω , it follows from dominated convergence

arguments, Theorem 9 and (84) that, for all ω > 0,[
1

ω
− E [mN (−ω)]

]
−
[

1

ω
− m̄N (−ω)

]
→ 0. (91)

Moreover,∣∣∣∣[ 1

ω
− E [mN (−ω)]

]
−
[

1

ω
− m̄N (−ω)

]∣∣∣∣ ≤ ∣∣∣∣[ 1

ω
− E [mN (−ω)]

]∣∣∣∣+

∣∣∣∣[ 1

ω
− m̄N (−ω)

]∣∣∣∣
≤ 1

ω2

(
1

N
trE

[
K∑
k=1

HkH
H
k

]
+

1

N
tr

(
K∑
k=1

nk
Nk

ḡkgk
δk

Rk

))

≤ 2KRST

ω2
(92)

where R = maxk lim sup‖Rk‖, S = maxk lim sup‖Sk‖, T = maxk lim sup‖TkQk‖. Since 2KRST
ω2 is

finite and integrable over [1
ρ ,∞), it follows from the dominated convergence theorem that

E [IN (ρ)]− ĪN (ρ) −−−−→
N→∞

0. (93)

APPENDIX F

PROOF OF THEOREM 6: OPTIMAL POWER ALLOCATION

The proof follows closely those of [25, Proposition 5] and [14, Proposition 3].

We first recall the following property of concave functions (see e.g. [50]):

Property 1: A function f (Q1, . . . ,QK) is strictly concave in the Hermitian nonnegative matrices

Q1, . . . ,QK , if and only if, for any couples (Q1a ,Q1b) , . . . , (QKa ,QKb) of Hermitian nonnegative

matrices, the function

φ(λ) = f (λQ1a + (1− λ)Q1b, . . . , λQKa + (1− λ)QKb) , λ ∈ [0, 1]

is strictly concave.

Consider now ĪN (ρ) seen as a function of λ for Qk = λQka − (1 − λ)Qkb , where Qka ,Qkb are

Hermitian nonnegative definite matrices, for k = 1, . . . ,K. Thus, by the chain rule of differentiation,

dĪN (ρ)

dλ
=
∂ĪN (ρ)

∂λ
+

K∑
k=1

∂ĪN (ρ)

∂ḡk

∂ḡk
∂λ

+
∂ĪN (ρ)

∂gk

∂gk
∂λ

+
∂ĪN (ρ)

∂δk

∂δ

∂λ
. (94)

One can verify that the partial derivatives of ĪN (ρ) with respect to gk, ḡk, δk, respectively, satisfy

∂ĪN (ρ)

∂gk
=
∂ĪN (ρ)

∂ḡk
=
∂ĪN (ρ)

∂δk
= 0, (95)
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due to the defining relation (21). Thus,

dĪN (ρ)

dλ
=
∂ĪN (ρ)

∂λ
=

K∑
k=1

1

N
tr T

1

2

k

(
Ink + gkT

1

2

k (λQka + (1− λ)Qkb) T
1

2

k

)−1

T
1

2

k (Qka −Qkb) . (96)

The second derivative therefore reads

d2ĪN (ρ)

dλ2
= −

K∑
k=1

1

N
tr

T
1

2

k

(
Ink + gkT

1

2

k (λQka + (1− λ)Qkb) T
1

2

k

)−1

T
1

2

k︸ ︷︷ ︸
4
= Ak

(Qka −Qkb)︸ ︷︷ ︸
4
= Bk


2

(97)

where Ak are Hermitian nonnegative definite and Bk are Hermitian. Let Ak = UkDkU
H
k be the eigen-

value decomposition of Ak, where Uk ∈ Cnk×nk are unitary matrices and Dk = diag (dk,1, . . . , dk,nk) �

0. Moreover, denote Zk = BkUk = [zk,1 . . . zk,nk ]. Then,

1

N
tr [AkBk]

2 =
1

N
tr DkU

HBkAkBkU =
1

N
tr DkZ

H
kAkZk =

1

N

nk∑
j=1

dk,jz
H
k,jAkzk,j ≥ 0. (98)

If Tk � 0, or equivalently, if Tk is invertible, we have Ak � 0 and (98) holds with strict inequality for

Qka 6= Qkb . Thus, if any of the matrices Tk is invertible and Qka 6= Qkb , we have

K∑
k=1

1

N
tr [AkBk]

2 > 0 (99)

and hence d2ĪN (ρ)
dλ2 < 0. Thus, ĪN (ρ) is strictly concave in the matrices Qk. Due to (95) it is then sufficient

to maximize

log det
(
Ink + gkT

1

2

kQkT
1

2

k

)
(100)

with respect to Qk and with the constraint 1
nk

tr Qk ≤ Pk. The solution to this problem is well-known

[41] and given by the water-filling solution stated in the theorem. However, since gk depends on Qk,

this solution must be computed iteratively by Algorithm 1.

APPENDIX G

PROOF OF THEOREM 7: SINR OF THE MMSE DETECTOR

Similar to the proof of Theorem 5, let us consider the matrix model

Hk =
1
√
nk

ZkW2,kT
1

2

kQ
1

2

k (101)

where

Zk =
1√
Nk

R
1

2

kWk,1S
1

2

k . (102)
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Then,

γNk,j = pk,jtk,j
1

nk
wH

2,k,jZ
H
k

(
K∑
i=1

HiH
H
i − pk,jtk,j

1

nk
Zkw2,k,jw2,k,jZ

H
k +

1

ρ
IN

)−1

Zkw2,k,j . (103)

It was shown in the proof of Theorem 5 that, almost surely, lim supN‖ZkZH
k ‖ < 0. From the Fubini

theorem, Lemma 2 and Lemma 4, we therefore have

γNk,j − pk,jtk,j
1

nk
tr ZkZ

H
k

(
K∑
i=1

HiH
H
i + ρInk

)
a.s−−−−→

N→∞
0. (104)

Applying Theorem 9 (i) leads to

γNk,j − pk,jtk,j
1

nk
tr ZkZ

H
k

(
K∑
i=1

ēiZiZ
H
i + ρInk

)−1

a.s−−−−→
N→∞

0 (105)

where ēi are given as the unique solutions to (67). Notice now from (67) that

ek =
1

nk
tr ZkZ

H
k

(
K∑
i=1

ēiZiZ
H
i + ρInk

)−1

(106)

and that maxk |ek − gk|
a.s−−−−→

N→∞
0 by (84). This finally implies

γNk,j − pk,jtk,jgk
a.s−−−−→

N→∞
0. (107)

APPENDIX H

PROOF OF COROLLARY 2: SUM-RATE WITH MMSE DECODING

Part (i) is a simple consequence of Theorem 7 and the continuous mapping theorem.

For Part (ii), first notice that RN (ρ) ≤ IN (ρ) and R̄N (ρ) ≤ ĪN (ρ). Thus,∣∣∣∣∣∣RN (ρ)− 1

N

K∑
k=1

nk∑
j=1

log (1 + pk,jtk,jgk)

∣∣∣∣∣∣ ≤ IN (ρ) + ĪN (ρ)
4
= φN (ρ). (108)

Since E [φN (ρ)] <∞ by Theorem 5 (ii), it follows from dominated convergence arguments that

E [RN (ρ)]− R̄N (ρ) −−−−→
N→∞

0. (109)

APPENDIX I

PROOF OF COROLLARY 3: RAYLEIGH PRODUCT CHANNEL

Under the assumptions of the corollary, the fundamental equations in Theorem 4 reduce to

ḡ =
1

1 + g
(110)

g =
S

N

δ

1 + ḡδ
(111)

δ =
1

K ḡg
δ + S

N
1
ρ

(112)
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From (110), we have

g =
1− ḡ
ḡ

. (113)

Solving (111) for δ and replacing g by (113) yields

δ =
1− ḡ

ḡ
(
ḡ + S

N − 1
) . (114)

Solving (112) for δ and replacing g by (113) leads to

δ =
1−K(1− ḡ)

S
N

1
ρ

. (115)

Equating (114) and (115) and rearranging the terms as a polynomial in ḡ finally yields

ḡ3 − ḡ2

(
2− S

N
− 1

K

)
+ ḡ

(
1− S

N
− 1

K
+

S

NK

(
1 +

1

ρ

))
− S

NK

1

ρ
= 0. (116)

By Theorem 4, only one of the roots of this polynomial satisfies ḡ, g, δ > 0. Now, (113) implies ḡ < 1,

(114) implies ḡ > 1− S
N (115) implies ḡ > 1− 1

K . Hence ḡ ∈
(
1−min

[
1
K ,

S
N

]
, 1
)
.

Similarly, ĪN (ρ) reduces under the assumptions of the corollary to

ĪN (ρ) = log

(
1 + ρ

NK

S

ḡg

δ

)
+
KS

N
log (1 + ḡδ) +K log (1 + g)− 2Kḡg. (117)

Replacing g
δ by ḡ + S

N − 1 in the first term, δ by (114) in the second term, g by (113) in the third term

and ḡg by (1− ḡ) in the last term leads to the desired result.

The simplification of Theorem 7 is immediate since γ̄Nkj = pk,jtk,jgk = 1−ḡ
ḡ by (113).
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APPENDIX J

MATLAB CODE RELATED TO THE MULTIHOP AF MIMO RELAY CHANNEL

A. Code for Corollary 1: corollary1.m

function I_k = corollary1(k,K,a,rho,c)

% Compute deterministic equivalent I_k of the asymptotic mutual information

% Input parameters :

% k : denotes which function I_k to compute

% K : total number number of hops

% a = [alpha_1,...,alpha_{K}] : vector containing the path loss factors

% rho = [rho_0,...,rho_{K-1}] : vector containing the power budgets rho_k

% c = [c_1,...,c_K] : vector containing the matrix dimension ratios

% Calculate asymptotic power normalization factors (Lemma 1)

b = zeros(1,k);

b(1) = rho(1);

for i=2:k

b(i) = rho(i) / (1+a(i-1)*rho(i-1));

end

% Calculate capacity

I_k = 1/K*(theorem2(k,1,a,b,c) - theorem2(k,1,a,[0,b(2:end)],c));

end

B. Code for Theorem 2: theorem2.m

function J = theorem2(k,x,a,b,c)

% Recursively computes deterministic equivalent of J_k

% Input parameters :

% k : denotes which function J_k to compute

% x : argument of J_k

% a = [alpha_1,...,alpha_{k}] : vector containing the path loss factors

% b = [beta_0,...,beta_{k-1}] : power normalization factors

% c = [c_1,...,c_K] : vector containing the matrix dimension ratios

if (k==1) % J_1 is given in closed form

[˜,e] = theorem3(k-1,x,a,b,c);

J = c(k)*log(1 + x*a(k)*b(k)/(c(k)+e)) + log(1+e/c(k)) - e/(c(k)+e);

else % J_k, k>1, must be computed recursively

[˜,e] = theorem3(k-1,x,a,b,c);

J = c(k)*theorem2(k-1,x*a(k)*b(k)/(c(k)+x*a(k)*b(k) + e),a,b,c)...

+ c(k)*log(1 + x*a(k)*b(k)/(c(k)+e)) + log(1 + e/c(k)) - e/(c(k)+e);

end

end
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C. Code for Theorem 3: theorem3.m

function [m,e] = theorem3(k,x,a,b,c)

% Recursively computes the quantities e_k

% Input parameters :

% k : denotes which function e_k to compute

% x : argument of e_k

% a = [alpha_1,...,alpha_{k}] : vector containing the path loss factors

% b = [beta_0,...,beta_{k}] : power normalization factors

% c = [c_1,...,c_K] : vector containing the matrix dimension ratios

if (k==0) % For k=0, e_o and m_0 are given in closed form

e = -(x*a(1)*b(1)*(1-c(1))+c(1))/2 + sqrt((x*a(1)*b(1)*(1-c(1))+c(1))ˆ2...

+ 4*x*a(1)*b(1)*c(1)ˆ2)/2;

m = c(1) / (a(1)*b(1)/(c(1)+e)+1/x) + (1-c(1))*x;

else % For k>0, e_k is given as the solution to a fixed point equation

e = 0;

eold = 1;

while abs(e-eold)>1e-6 % the error tolerance 1e-6 can be changed

eold = e;

e = c(k+1)*(c(k+1)+eold) - c(k+1)*(c(k+1)+eold)ˆ2/(x*a(k+1)*b(k+1))...

* theorem3(k-1,x*a(k+1)*b(k+1)/(c(k+1)+x*a(k+1)*b(k+1)+eold),a,b,c);

end

m = x*c(k+1)/(c(k+1)+e);

end

end
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