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Abstract—Recently, the structure of the optimal linear pre-
coder for multi-cell downlink systems has been described in
[1]. Other references (e.g., [2]) have used simplified versions
of the precoder to obtain promising performance gains. These
gains have been hypothesized to stem from providing additional
degrees of freedom that allow for interference mitigation through
interference relegation to orthogonal subspaces. However, no
conclusive or rigorous understanding has yet been proposed.

In this paper, we take an interference-aware adaption of
the generally optimal precoding structure and analyze the rate
performance in multi-cell scenarios. A special emphasis is placed
on induced interference mitigation. For example, we will verify
the intuitive expectation that the precoder structure can either
completely remove induced inter-cell or intra-cell interference.
We state new results from large-scale random matrix theory,
that make it possible to give more intuitive and insightful
explanations of the precoder behavior, also for cases involving
imperfect channel state information (CSI). We remark especially
that the interference-aware precoder makes use of all available
information about interfering channels to improve performance.
Even extremely bad CSI can be used to enhance the sum rate.
Our obtained insights are then used to propose heuristic precoder
parameters for arbitrary systems, whose effectiveness is shown
in more involved system scenarios. Furthermore, determining
these parameters does not require explicit inter base station
cooperation. Using a simple heuristic version of the interference
aware precoder, one finds that a sum rate performance, close to
the optimally parameterized precoder one, can be achieved.

I. INTRODUCTION

The growth of data traffic and the number of user termi-
nals (UTs) in cellular networks, will likely persist for the
foreseeable future [3]. In order to deal with the resulting
demand, it is estimated [4] that a thousand-fold increase in
network capacity is required over the next 10 years. Given
that the available spectral resources are severely limited, the
majority of the wireless community sees massive network
densification as the most realistic approach to solving most
pressing issues. Also historically, shrinking cell size has been
the single most successful technique in satisfying demand
for network capacity [5, Chapter 6.3.4]. In recent times,
this technique has been named the small cell approach [6],
[7]. However, interference still is a major limiting factor for
capacity in multi-cell scenarios [8], [9]. Also, The situation
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is unlikely to improve, as modern cellular networks serve a
multitude of users, using the same time/frequency resources.
In general, we see a trend to using more and more antennas
for interference mitigation, e.g. via the “massive” multiple-
input multiple-output (MIMO) approach [10]. Here the number
of transmit antennas surpasses the number of served UTs by
an order of magnitude. Independent of this specific approach,
the surplus antennas can be used to mitigate interference by
using spatial precoding [1], [11], [12], [9]. The interference
problem is generally compounded by the effect of imperfect
knowledge concerning the channel state information (CSI).
Such imperfections are unavoidable, as imperfect estimation
algorithms, limited number of orthogonal pilot sequences,
mobile UTs, delays, etc. can not be avoided in practice. Hence,
one is interested in employing precoding schemes that are
robust to CSI error and exploit the available CSI as efficiently
as possible.

Arguably, the most successful and practically applicable
precoding scheme used today is regularized zero forcing (RZF)
precoding [13] (also known as MMSE precoding, transmit
Wiener filter, generalized eigenvalue-based beamformer, etc.;
see [1, Remark 3.2] for a comprehensive history of this precod-
ing scheme). Classical RZF precoders are only defined for sin-
gle cell systems and thus do not take inter-cell interference into
account. This disregard of valuable information is particularly
wasteful in high density scenarios, where high interference
levels are performance limiting. It is, hence, advisable to look
for RZF related precoding schemes that exploit any additional
information about out-of-cell interference. Early multi-cell
extensions of the RZF scheme do not take the quality of
CSI into account [14] and later ones either rely on heuristic
distributed optimization algorithms or on inter-cell cooperation
[15] to determine the precoding vector. Thus, they offer limited
insight into the precoder structure, how the precoder works and
how it can be improved.

In [1, Eq (3.33)] we find the most recent and general treat-
ment of the multi-cell RZF precoder, along with a proof that
the proposed structure is optimal w.r.t. many utility functions
of practical interest (see also [16]). The precoding structure in
question is the following:
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which we will call generalized RZF (genRZF) from now on.
Here the channel vectors from a base station (BS) m to UT
k in cell l, is denoted hml,k and the aggregated channel matrix
from BS m to cell m is Hm

m. The factor γm is a regularization
parameter and precoder normalization is done via the variable
νm. We notice that each channel is separately assigned a factor
αml,k, that can be interpreted as the importance placed on the
respective estimated channel. In [2] a largely simplified version
of genRZF was discussed, where a certain set of UT channels
was weighted with respect to an estimated receive covariance
matrix of the interference channels. Hoydis et al. argued, that
“large regularization parameters make the precoding vectors
more orthogonal to the interference subspace”, but did not
conclusively and rigorously show how or why this is achieved.
In this paper we propose and analyze an intermediate class
of RZF precoders, that we denote interference-aware RZF
(iaRZF):

Fmm =

(
L∑
l=1

αml Ĥm
l (Ĥm

l )H+γmINm

)−1

Ĥm
mν

1
2
m (1)

where the weighting takes place with respect to each cell
using αml and Ĥm

l is actually the imperfect estimate of each
aggregated channel matrix. This structure achieves a middle
ground between genRZF and the approach in [2]. It reduces the
number of variables that need to be optimized, but still allows
to manage interference induced to other cells in an multi-
cell environment, by using excess antennas at the BSs. The
weights αml can be interpreted as a factor of importance placed
on the respective estimated channels. It allows the balancing
of signal power directed to the served users, with causing
interference to other cells. This can be used to optimize sum
rate performance, as will be shown in Section II. We note
that estimation of the inter-cell interference can be considered
as implicit coordination, but no inter-cell communication is
necessary.

Building on our work in [17], this paper analyzes the
proposed iaRZF scheme, showing that it can significantly im-
prove sum-rate performance in high interference multi cellular
scenarios. In particular, it is not necessary to have reliable
estimations of interfering channels; even very bad CSI allow
for significant gains. We facilitate intuitive understanding
of the precoder through new methods of analysis in both
finite and large dimensions. Special emphasis is placed on
the induced interference mitigation mechanism of iaRZF. To
obtain fundamental insights, we consider the large-system
regime where the number of transmit antennas and UTs are
both large. Our main contributions are as follows.

• We derive deterministic expressions for the asymptotic
user rates, which also serve as accurate approximations
in practical non-asymptotic regimes. Merely, the channel
statistics are needed for calculation and implementation
of our deterministic expressions.

• These novel expressions generalize the prior work in [18]
for single-cell systems and in [19] for multi-cell systems
where only deterministic statistical CSI is utilized for
suppression of inter-cell interference.

Fig. 1. Simple 2BSs Downlink System.

• These extensions are used to optimize the sum rate of the
iaRZF precoding scheme in limiting cases.

• We propose and explain the appropriate heuristic scaling
of the precoder weights w.r.t. various system parameters,
that offers close to optimal sum rate performance; also in
non-limit cases.

• Furthermore, new finite dimensional approaches to ana-
lyzing multi-cell RZF precoding schemes are introduced
and applied for limiting cases.

The notation in this paper adheres to the following general
rules. Boldface lower case is used for column vectors, and
upper case for matrices. XT and XH denote the transpose,
and conjugate transpose of X, respectively, while tr(X) is the
matrix trace function. The expectation operator is denoted E[·].
The spectral norm of X is denoted ‖X‖2 and the euclidean
norm of x is denoted ‖x‖2. Circularly symmetric complex
Gaussian random vectors are denoted CN (x̄,Q), where x̄
is the mean and Q is the covariance matrix. The set of all
complex numbers is denoted by C, with CN×1 and CN×M
being the generalizations to vectors and matrices, respectively.
The M×M identity matrix is written as IM , the zero vector of
length M is denoted 0M×1 and the zero matrix 0M . Through-
out this paper, superscripts generally refer to the origin (e.g.,
cell m) and subscripts generally denote the destination (e.g.,
cell l or UT k of cell l), when both information are needed.
We employ ⊥⊥ and 6⊥⊥ to mean stochastic independence and
dependence, respectively.

II. UNDERSTANDING IARZF

In order to intuitively understand and motivate the iaRZF
precoder we first analyze its behavior and impact in a rel-
atively simple system, which is introduced in the following
subsection.

A. Simple System

We start by examining a simple downlink system depicted
in Figure 1 that is a further simplification of the Wyner model
[20], [21]. It features 2 BSs, BS1 and BS2, with N antennas
each. Every BS serves one cell with K single antenna users.
For convenience we introduce the notations c = K/N and x̄ =
mod (x, 2)+1, x ∈ {1, 2}. In order to circumvent scheduling
complications, we assume N ≥ K. The aggregated channel
matrix between BSx and the affiliated users is denoted Hx =
[hx,1, . . . ,hx,K ] ∈ CN×K and the matrix pertaining to the
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users of the other cell Gx(ε) = [gx,1, . . . ,gx,K ] ∈ CN×K ,
which is usually abbreviated as Gx. We generally treat ε as
an interference channel gain/path-loss factor. The precoding
matrix used at BSx is designated by Fx ∈ CN×K . For the
channel realizations we choose a simple block-wise fast fading
model, where hx,k ∼ CN (0, 1

N IN ) and gx,k ∼ CN (0, ε 1
N IN )

for k = 1, . . . ,K.
Denoting fx,k the kth column of Fx, Fx[k] as Fx with

its kth column removed and nx,k ∼ CN (0, 1) the received
additive Gaussian noise at UTx,k, we define the received signal
at UTx,k as

yx,k = hH
x,kfx,ksx,k+ hH

x,kFx[k]sx[k]︸ ︷︷ ︸
intra-cell interference

+ gH
x̄,kFx̄sx̄︸ ︷︷ ︸

inter-cell intference

+nx,k

(2)

where sx ∼ CN (0, ρxIN )1 is the vector of transmitted
Gaussian symbols. It defines the average per UT transmit
power of BSx as ρx (normalized w.r.t. noise). The notations
sx[k] and sx,k designate the transmit vector without symbol k
and the transmit symbol of UTx,k.

When calculating the precoder Fx, we assume that the
channel Hx can be correctly estimated, however, we allow
for mis-estimation of the “inter-cell interference channel” Gx

by adopting the generic Gauss-Markov formulation

Ĝx =
√

1−τ2Gx+τG̃x.

Choosing g̃x,k ∼ CN (0, ε 1
N IN ), we can vary the available

CSI quality by adjusting 0 ≤ τ ≤ 1 appropriately.
In this section we choose the precoding to be the previously

introduced iaRZF, the unnormalized form of which the simple
system reads

Mx =
(
αxHxH

H
x+βxGxG

H
x+γxI

)−1
Hx. (3)

One remarks that the normalization of the identity matrix can
also be controlled by only scaling αx and βx at the same time
and fixing γx to an arbitrary value (e.g., 1). We still keep
all three variables to facilitate easy adaption for applications
that are closer to traditional RZF (set α, β = 1) or closer to
the general precoder (set γ = 1). We assume the following
normalization of the precoder:

Fx =
√
K

Mx√
tr (MH

xMx)
(4)

i.e., it is assured that the sum energy of the precoder
tr
(
FH
xFx

)
is K.2

Remark 1 (Channel Scaling 1/N ). The statistics of the chan-
nel matrices in this section incorporate the factor 1/N , which
simplifies comparisons with the later, more general, large-
scale results (see Section III). This can also be interpreted, as
transferring a scaling of the transmit power into the channel
itself. The precoder formulations presented in the current

1We remark that ρx is of order 1.
2It can be shown, using results from Appendix C-A, that this implies
‖fx,k‖22 → 1, almost surely, under Assumption 1 for the given simplified
system.
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Fig. 2. Average user rate vs. transmit power to noise ratio (N = 160,
K = 40, ε = 0.7, ρ1 = ρ2 = ρ).

section can be simply rewritten to fit the more traditional
statistics of hk ∼ CN (0, IN ) and gk ∼ CN (0, εIN ), by using

M̃x =
(
αxHxH

H
x+βxGxG

H
x+NγxI

)−1
Hx

instead of M. This equation shows that, under the chosen
model, the regularization implicitly scales with N . However,
one can either chose γ or α, β appropriately, to achieve any
scaling.

B. Performance of Simple System

First, we compare the general performance of the proposed
iaRZF scheme with classical approaches, i.e., non-cooperative
zero-forcing (ZF), maximum-ratio transmission (MRT) and
RZF. The rate of UTx,k can be defined as

Ratex,k = log2

(
1+

Sigx,k
Intax,k+Intrx,k+1

)
where Sigx,k = ρxh

H
x,kfx,kf

H
x,khx,k, Intax,k =

ρxh
H
x,kFx[k]F

H
x[k]hx,k and Intrx,k = ρx̄g

H
x̄,kFx̄F

H
x̄gx̄,k denote

the received signal power, received intra-cell interference and
received inter-cell interference, respectively.

For comparison we used the following (pre-normalization)
precoders: MMRT

x = Hx, MZF
x = Hx(HH

xHx)−1, MRZF
x =

Hx(HH
xHx+ K

Nρx
I)−1, where the regularization in MRZF

x is
chosen according to [16], [18]. The iaRZF weights have been
chosen to be α = β = Nρx and γ = 1, hence simplifying
comparison with RZF precoding. The corresponding perfor-
mance graphs, obtained by extensive Monte-Carlo simulations,
can be found in Figure 2.

We observe that iaRZF largely outperforms the other
schemes. This is not surprising, as the non-cooperative
schemes do not take information about the interfered UTs
into account. What is surprising, however, is the gain in
performance even for very bad channel estimates (see curve
τ = 0.5). Only for extremely bad CSI we observe that iaRZF
wastes energy due to non-optimized choice of α, β. Thus,
it performs worse than the other schemes, that do not take
τ into account for precoding. This problem can easily be
circumvented by choosing proper weights that let β → 0 for
τ → 1; as will be shown later on.
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C. iaRZF for αx, βx →∞
As has been briefly remarked by Hoydis et al. in [2], the

iaRZF weights αx and βx should, intuitively, allow to project
the transmitted signal to subspaces orthogonal to the UTx’s
(“own users”) and UTx̄’s (“other users”) channels, respec-
tively. This behavior, in the limit cases of αx or βx → ∞,
is analyzed in this subsection.

1) Finite Dimensional Analysis: Limiting ourselves to finite
dimensional methods and to the perfect CSI case (τ = 0), we
can already obtain the following insights.

First, we introduce the notation P⊥X as a projection matrix
on the space orthogonal to the column space of X. Following
the path outlined in Appendix B-A, one finds for the limit
αx →∞ and assuming HH

xHx invertible (true with probabil-
ity 1):

αxMx
αx→∞−→ Hx

(
HH
xHx

)−1− (5)

P⊥Hx
Gx

(
β−1
x I+GH

xP⊥Hx
Gx

)−1
GH
xHx

(
HH
xHx

)−1

Recall that the received signal at the UTs of BSx in our simple
model, due to (only) the intra-cell users, is given as3

yintra
x = HH

xFxsx
Lem 2
= kHH

xHx

(
HH
xHx

)−1
sx = ksx

where the normalization leaves a scaling factor k that is
independent of αx. The Lemma 2 used here can be found in
Appendix A. Thus, we see that for αx →∞ and βx bounded,
the precoder acts similar to a traditional ZF precoder. Thus, the
intra-cell interference is completely suppressed in our system.

Looking at the limit βx →∞, one arrives at

Mx
βx→∞−→[

P⊥Gx
−P⊥Gx

Hx

(
α−1
x I+HH

xP⊥Gx
Hx

)−1
HH
xP⊥Gx

]
Hx.

One remembers that the received signal due to inter-cell
interference in our simple model is given as

yinter
x = GH

x̄Fx̄sx̄

which from the above gives yinter
x = 0. Hence, using Lemma 2,

we see that for βx →∞ and αx bounded, the induced inter-
cell interference vanishes.

2) Large-Scale Analysis: We want to be able to study
the impact of all system parameters on the average rate
performance in more detail. Many insights on this matter are
hidden by the inherent randomness of the SINRs. In order to
find an expression of the sum rate that does not rely on random
quantities, we anticipate results from Subsection III-E. There
we find a deterministic limit to which the random values of
SINRx almost surely converge, when N,K → ∞, assuming
0 < c <∞. This will also serve to motivate, how those later
results are advantageous to intuitively and easily analyze more
general system models pertaining to iaRZF formulations. We
can adapt the results from Theorem 1 to fit our the current sim-
plified model, by choosing L = 2,Kx = K,Nx = N,χxx =
1, χxx̄ = ε, τxx̄ = τ, τxx = 0, αxx = αx, α

x
x̄ = βx, γ = 1,

Px = ρx, for x ∈ {1, 2}. Doing so ultimately results in

3This includes the signal, as well as, the intra-cell interference part.

the following performance indicators Sigx
a.s.−→ Sigx and

Intx
a.s.−→ Intx, where

Sigx = Px

(
1− cα2

xe
2
x

(1+αxex)2
− cβ2

xε
2e2
x

(1+βxεex)2

)
Intx = Pxc

1

(1+αxex)
2︸ ︷︷ ︸

from BS x

+Px̄cε
1+2βx̄ετ

2ex̄+β2
x̄ε

2τ2e2
x̄

(1+βx̄εex̄)
2︸ ︷︷ ︸

from BS x̄
(6)

∆
=Int

BSx
x +Int

BSx̄
x

ex =

(
1+

cαx
1+αxex

+
cβxε

1+βxεex

)−1

(7)

where ex is the unique non-negative solution to the fixed
point equation (7). These expressions are precise in the large-
scale regime (N,K → ∞, 0 < K/N < ∞) and good
approximations for finite dimensions. As a consequence of
the continuous mapping theorem the above finally implies
SINRx

a.s.−→ SINRx = Sigx( Intx+1 )−1.
After realizing that 0 < lim inf ex < lim sup ex < ∞ for

K,N →∞ (see Lemma 6), the large-scale formulations give
the insights we already obtained from the finite dimensional
analysis (see previous subsection). Slightly simplifying (6) to
reflect the perfect CSI case (τ = 0), one obtains

lim
αx→∞

Int
BSx
x = lim

αx→∞
Pxc

1

(1+αxex)
2 = 0

lim
βx→∞

Int
BSx̄
x = lim

βx→∞
Px̄c

ε

(1+βxεex)
2 = 0

i.e., for αx → ∞ the intra-cell interference vanishes and for
βx → ∞ the induced inter-cell interference vanishes. Hence,
at this point we have re-obtained the results from the previous
subsection, which only used on finite dimensional techniques.

The large system formulation can also be used to judge the
impact of the practically very important case of mis-estimation
of the channels to the other cell’s users. Remembering again
0 < lim inf ex < lim sup ex <∞ and (6) leads to

lim
αx→∞

Pxc
1

(1+αxex)
2 = 0

lim
βx→∞

Px̄c
(β−2
x +2ετ2exβ

−1
x +ε2τ2e2

x)ε(
β−1
x +εex

)2 = Px̄cτ
2ε

i.e., for αx →∞ the intra-cell interference still vanishes, but
for βx → ∞ the induced inter-cell interference converges to
Px̄cτ

2ε. Hence we see that the induced inter-cell interference
cannot be completely canceled any more, due to imperfect
CSI. The impact of this is directly proportional to the transmit
power, distance/gain, number of excessive antennas (N−K)
and CSI quality obtained by the interfering BS.

3) Large Scale Optimization: One advantage of the large-
scale approximation, is the possibility to find asymptotically
optimal weights for the limit behavior of iaRZF. However, to
keep the calculations within reasonable effort, one needs to
limit the model to P1 = P2 = P . In this case the symmetry
of the system entails α1 = α2 = α and β1 = β2 = β.
Employing the steps from the previous subsection, we obtain
a complete formulation for the large-scale approximation of



5

the (now equal) SINR values, when α→∞. This is denoted

SINR
α→∞

= Sig
α→∞ (

1+Int
α→∞)−1

where

Sig
α→∞

= P

(
1−c− cβ2ε2e2

(1+βεe)2

)
Int

α→∞
= Pcε

1+2βετ2e+β2ε2τ2e2

(1+βεe)
2

and

e
∆
=eα→∞ =

(
1+

c

e
+

cβε

1+βεe

)−1

. (8)

The optimal values of the weight β in limit case α → ∞
can be found by solving ∂SINR

α→∞
/∂β = 0. This leads (see

Appendix B-C) to

βα→∞opt =
P (1−τ2)

Pcετ2+1
. (9)

This states, that in the perfect CSI case (τ = 0), one should
chose β equal to the transmit power of the BSs. It also shows
how one should scale β in between the two obvious solutions,
i.e., full weight on the interfering channel information for
perfect CSI and no weight (disregard all information on the in-
terfering channel) for random CSI (τ = 1). We remark that the
interference channel gain factor ε is also implicitly included
in the precoder. Thus for ε→ 0, we have β‖GH

xGx‖ → 0K ,
while β remains bounded. Hence no energy is wasted to
precode for non-existent interference, as one would expect.

The same large-scale optimization can also be carried out
for the limit of β →∞. The SINR optimal weight for α can
be found as (similar to Appendix B-C)

αβ→∞opt =
P

Pcετ2+1
=

1

cετ2+1/P
. (10)

The result states, analog to the previous outcome, that in the
perfect CSI case (τ = 0), one should chose α equal to the
transmit power of the BSs. However, unlike for βα→∞opt , the
implications for other limit-cases are not so clear. We see that
increasing the transmit power also increases the weight α, up
to the maximum value of 1/(cετ2). The weight reduces as
the interference worsens, i.e., when τ2, c or ε grow. This
makes sense, as the precoder would give more importance
on the interfering channel (by indirectly increasing β via
normalization).

Finally, we can easily calculate the SINR in the limit of
both α and β independently tending to infinity:

SINR
α,β→∞

=
P (1−2c)

Pcετ2+1
.

The rationale behind all analyses in this section is, that
optimal weights in the limit case often make for good heuristic
approximations in more general cases. For instance, one can
re-introduce the weights, found under the large-scale assump-
tion, into the finite dimensional limit formulations. Particularly
interesting for this approach is combining (9) with (5) to
achieve a new structure, which could be considered a heuristic
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Fig. 3. Average user rate vs. CSI quality for adaptive precoder weights (N =
160, K = 40, ε = 0.7, P = 10dB).

iaZF precoder:

MiaZF
x = Hx

(
HH
xHx

)−1−P⊥Hx
Gx

×
(
Pcετ2+1

P (1−τ2)
I+GH

xP⊥Hx
Gx

)−1

GH
xHx

(
HH
xHx

)−1
.

4) Graphical Interpretation of the Results: We will now
proceed to show and compare the influence of the results
from the previous subsection on the system performance of our
simple model. Particularly interesting here are comparisons to
numerically found, sum rate optimal weights.

In Figure 3 we analyze the average UT rate with respect
to CSI randomness (τ ), for different sets of precoder weights
(α, β), that (mostly) adapt to the available CSI quality. The
values (αlsopt and βlsopt) are obtained using 2D line search.
Crucially, we see that the performance under (αlsopt, β

ls
opt) and

(αβ→∞opt , βα→∞opt ) is practically the same (the curves actually
are the same within plotting precision).
The plot also contains the pair (αlsopt0, 0), which corresponds
to MMSE precoding. The weight αlsopt is again found by
line search, hence we name the curve “optimal” (w.r.t sum
rate) MMSE precoding. The performance is constant, as the
precoder does not take the interfering channel (i.e., τ ) into
account. However, we see that the optimally weighted iaRZF
reduced back to MMSE, when the channel estimation is purely
random.

In Figure 4 we illustrate the effect of (sub-optimally,
but conveniently) choosing a constant value for β. We set
α = αβ→∞opt for all curves and also give the familiar
(αβ→∞opt , βα→∞opt ) curve, as a benchmark. Furthermore, the
actual value of βlsopt is given on a second axis to illustrate
how one would need to adapt β for optimal average rate
performance. Overall one observes that a constant value for β
is (unsurprisingly) only acceptable for a limited region of the
CSI quality spectrum. Small values of β fit well for large τ ,
middle values fit well for small τ . Overly large (or small) βs
do not reach optimal performance in any region.

The encouraging performance of iaRZF using the optimal
weights derived under limit assumptions, paired with the
promise of simple and intuitive insights, provides motivation
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for the next section, where we will apply the iaRZF scheme
to a more general system.

III. GENERAL SYSTEM FOR IARZF ANALYSIS

A. System Model
In the following, we analyze cellular downlink multi-user

MIMO systems of a more general type. We look at L cells,
each consisting of one BS associated with a number of single
antenna UTs. In more detail, the lth BS is equipped with Nl
transmit antennas and serves Kl UTs. We generally set Nl ≥
Kl in order to avoid scheduling complications. We assume
transmission on a single narrow-band carrier, full transmit-
buffers, and universal frequency reuse among the cells.

The lth BS transmits a data symbol vector xl =
[xl,1, . . . , xl,Kl ]

T intended for its Kl uniquely associated UTs.
This BS uses the linear precoding matrix Fll ∈ CNl×Kl , where
the columns f ll,k ∈ CNl constitute the precoding vectors for
each UT. We note that BSs do not directly interact with each
other and users from other cells are explicitly not served. Thus,
the received signal yl,k ∈ C at the kth UT in cell l is

yl,k =
√
χll,k(hll,k)Hf ll,kxl,k+

∑
k′ 6=k

√
χll,k(hll,k)Hf ll,k′xl,k′

+
∑
m6=l

√
χml,k(hml,k)HFmmxm+nl,k (11)

where nl,k ∼ CN (0, 1) an additive noise term. The trans-
mission symbols are chosen from a Gaussian codebook,
i.e., xl,k ∼ CN (0, 1). We assume block-wise small scale
Rayleigh fading, thus the channel vectors are modeled as
hml,k ∼ CN (0, 1

Nm
INm). The path-loss and other large-scale

fading effects are incorporated in the χml,k factors. The scaling
factor 1

Nm
in the fading variances is of technical nature and

utilized in the asymptotic analysis. It can be canceled for a
given arbitrarily sized system by modifying the transmission
power accordingly; similar to Remark 1.

B. Imperfect Channel State Information
The UTs are assumed to perfectly estimate the respective

channels to their serving BS, which enables coherent recep-
tion. This is reasonable, even for moderately fast traveling

users, if proper downlink reference signals are alternated with
data symbols. Generally, downlink CSI can be obtained using
either a time-division duplex protocol where the BS acquires
channel knowledge from uplink pilot signaling [19] or a
frequency-division duplex protocol, where temporal correla-
tion is exploited as in [22]. In both cases, the transmitter
usually has imperfect knowledge of the instantaneous channel
realizations, e.g., due to imperfect pilot-based channel esti-
mation, delays in the acquisition protocols, and user mobility.
To model imperfect CSI without making explicit assumptions
on the acquisition protocol, we employ the generic Gauss-
Markov formulation (see e.g. [18], [23], [24]) and we define
the estimated channel vectors ĥml,k ∈ CNm to be

ĥml,k =
√
χml,k

[√
(1−(τml )2)hml,k+τml h̃ml,k

]
(12)

where h̃ml,k ∼ CN (0, 1
Nm

INm) is the normalized independent
estimation error. Using this formulation, we can set the accu-
racy of the channel acquisition between the UTs of cell l and
the BS of cell m by selecting τml ∈ [0, 1]; a small value for τml
implies a good estimate. Furthermore, we remark that these
choices imply ĥml,k ∼ CN (0, χml,k

1
Nm

INm). For convenience
later on, we define the aggregated estimated channel matrices
as Ĥm

l = [ĥml,1, . . . , ĥ
m
l,Kl

] ∈ CNm×Kl .

C. iaRZF and Power Constraints

Following the promising results observed in Section II,
we continue our analysis of the iaRZF precoding matrices
Fmm, m = 1, . . . , L, introduced in (1). For some derivations,
it will turn out to be useful to restate this precoder as

Fmm =
(
αmmĤm

m(Ĥm
m)H+Zm+γmINm

)−1

Ĥm
mν

1
2
m

where Zm =
∑
l 6=m α

m
l Ĥm

l (Ĥm
l )H. The αml can be consid-

ered as weights pertaining to the importance one wishes to
attribute to the respective estimated channel. We remark, that
the regularization parameter γm is usually chosen to be the
number of users over the total transmit power [16] in classical
RZF. The factors νm are used to fulfill the average per UT
transmit power constraint Pm4, pertaining to BS m:

1

Km
tr
[
Fmm(Fmm)H

]
= Pm . (13)

D. Performance Measure

Most performance measures in cellular systems are func-
tions of the SINRs at each UT; e.g., (weighted) sum rate and
outage probability. Under the treated system model, the re-
ceived signal power (in expectation to the transmitted symbols
x

(l)
l,k) at the kth UT of cell l, i.e., UTl,k, is

Sig
(l)
l,k = χll,k(hll,k)Hf ll,k(f ll,k)Hhll,k (14)

4We remark that choosing Pm of order 1 will assure proper scaling of all
terms of the SINR in the following (see (17)).
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Similarly, the interference power is

Int
(l)
l,k =

∑
m 6=l

χml,k(hml,k)HFmm(Fmm)Hhml,k

+χll,k(hll,k)HFll[k](F
l
l[k])

Hhll,k (15)

where

Fll[k] =
(
αllĤ

l
l(Ĥ

l
l)
H+Zl+γlINl

)−1

Ĥl
l[k]ν

1
2

l (16)

and Ĥl
l[k] is Ĥl

l with its kth column removed. Hence, the SINR
at UTl,k can be expressed as

SINRl,k = Sig
(l)
l,k (Intl,k+1)

−1
. (17)

In the following, we focus on the sum rate, which is
a commonly used performance measure utilizing the SINR
values and straightforward to interpret. Under the assumption
that interference is treated as noise, the sum rate expressed as

Rsum =
∑
l,k

Rl,k =
∑
l,k

log(1+SINRl,k)

where SINRs are random quantities defined by the system
model. This randomness obscures the influence of the system
parameters on sum rate performance.

E. Deterministic Equivalent of the SINR
In order to obtain tractable and insightful expressions of

the system performance, we propose a large scale approxi-
mation. This allows us to state the sum rate expression in a
deterministic and compact form that can readily be interpreted
and optimized. Also, the large system approximations are
accurate in both massive MIMO systems and conventional
small-scale MIMO of tractable size, as will be evidenced later
via simulations (see Subsection IV-B). In certain special cases,
optimizations of such approximations w.r.t. many performance
measures, can be carried out analytically (see for example
[18]). In almost all cases, optimizations can be done numer-
ically. We will derive a deterministic equivalent (DE) of the
SINR values that allows for a large scale approximation of the
sum rate expression in (17). DEs are preferable to standard
limit calculations, as they are precise in the limit case, are
also defined for finite dimensions and provably approach the
random quantity for increasing dimensions (see, e.g., [25] and
[26] for more information). The DE is based on the following
technical assumption. Introducing the ratio ci = Ki/Ni, we
make the following assumption.

Assumption A-1. Ni,Ki →∞, such that for all i we have

0 < lim inf ci ≤ lim sup ci <∞.

This asymptotic regime is denoted N →∞ for brevity.

Thus, we require for Ni and Ki to grow large at the same
speed. By extending the analytical approach in [18] and [19]
to the SINR expression in (17), we obtain a DE of the SINR,
which is denoted SINRl,k in the following.

Theorem 1 (Deterministic Equivalent of the SINR). Under
A-1, we have

SINRl,k−SINRl,k
a.s.−−−−→

N→∞
0.

Here SINRl,k = Sig
(l)

l,k

(
Intl,k+1

)−1
with

Sig
(l)

l,k = νl(χ
l
l,k)2e2

(l)

(
1−(τ ll )

2
)

(yll,k)2

Intl,k =
L∑

m=1

νm

(
1+2xml,ke(m)+αml χ

m
l,kx

m
l,ke

2
(m)

)
χml,kg(m)(y

m
l,k)2

given xml,k = αml χ
m
l,k(τml )2. The parameter νm, the abbrevia-

tions g(m) and yml,k, as well as the corresponding fixed-point
equation e(m) and e′(m) are given in the following.

First, we define e(m) to be the unique positive solution of
the fixed-point equation

e(m) = (18)γm+
1

Nm

Km∑
j=1

αmmχ
m
m,jy

m
m,j+

1

Nm

∑
l 6=m

Kl∑
k=1

αml χ
m
l,ky

m
l,k

−1

where yml,k =
(

1+αml χ
m
l,ke(m)

)−1

. We also have νm =

PmKm/
(
Nmg(m)

)
with

g(m) = − 1

Nm

Km∑
j=1

χmm,je
′
(m)(y

m
m,k)2

and e′(m) can be found directly, once e(m) is known:

e′(m) =

[
1

Nm

Km∑
j=1

(αmm)2(χmm,j)
2(ymm,j)

2+

1

Nm

∑
l 6=m

Kl∑
k=1

(αml )2(χml,k)2(yml,k)2−e−2
(m)

]−1

. (19)

Proof: See Appendix C.
By employing dominated convergence arguments and the

continuous mapping theorem (e.g., [26]), we see that Theo-
rem 1 implies, for each UT (l, k),

Rl,k−log2(1+SINRl,k)
a.s.−−−−→

N→∞
0. (20)

These results have already been used in Section II and will
also serve as the basis in the following.

IV. NUMERICAL RESULTS

In this section we will, first, introduce a heuristic general-
ization of the previously found (see Subsection II-C3) “limit-
optimal” iaRZF precoder weights. Furthermore, we provide
simulations that corroborate the viability of the proposed
precoder, even in systems that are substantially different to
the idealized system used in Section II.

A. Heuristic Generalization of Optimal Weights

Subsection II-C3 resulted in some optimal iaRZF precoder
weights for the case of 2 BSs and under various assumptions,
most prominently that the respective other weight is infinitely
large. We have already observed in Subsection II-C4 that these
precoder weights, also offer virtually optimal performance,
when they are applied in the non-limit weight case. Now it is
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Fig. 5. Geometry 2 BS and 4 BS Downlink Models.

natural to go one step further and to intuitively generalize the
heuristic weights to systems with arbitrary many BSs, transmit
powers, CSI randomness and user/antenna ratios. Following
the insights and the structures discovered before (see (9)
and (10)), we define the general heuristic precoder weights
as

α̃ab =
Pa(1−(τab )2)

Pbcbεab (τab )2+1
. (21)

Here we introduced the new notation εab , which we take to be
the average gain factor between BS a and the UTs of cell b.
Thus, it can be calculated as εab = 1

Kb

∑
k χ

a
b,k.

One can intuitively understand (21) by remembering that αab
should be proportional to the “importance” of the associated
channels (from BSa to UTs b). Hence, the numerator places
more importance on BSs with more transmit power and less
importance on badly estimated channels. The denominator
deemphasizes the importance of induced interference, when
the receiving cell features large transmit power and many “ex-
tra” antennas. Also, bad channel estimates reduce importance
again; analogously to the numerator. The intuitive reason for
having εab in the denominator becomes clear once one realizes
that the estimated channels in our model are not normalized
(see (12)). Thus, the approximate effective weight of the
precoder with respect to a normalized channel is wab = α̃abε

a
b .

Hence, for εab → 0, we have wab → 0, i.e., no importance is
placed on very weak channels. Using the same deliberation, we
notice that for εab →∞ we have wab tending to some constant
value and for τab → 0 we have wab → Paε

a
b . Especially the

last observation is important in order to see why no energy is
wasted on far away interferers/weak channels, even if one has
perfect CSI of those channels.

B. Performance

In order to verify the heuristic approach, we introduce
two models (see Figure 5). In the first one, two BSs are
distanced 1.5 units, have a height of 0.1 units and use 160
antennas each. Around each BS, 40 single antenna UTs of
height 0, are randomly (uniformly) distributed within a radius
of 1 unit. Hence, one obtains clear non-overlapping clusters
that are closely related to the Wyner-like simplified model
in Section II. The pathloss between each BS and all UTs is
defined as the inverse of the distance to the power of 2.8. The
quality of CSI estimation between a BS and its associated
UTs is defined by τ1

1 = τ2
2 = τa and inter-cell wise by

τ1
2 = τ2

1 = τb. Due to the symmetry we can assume that
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Fig. 6. 2 BSs: Average rate vs. transmit power to noise ratio (Nx = 160,
Kx = 40, PX = P , (τa, τb) ∈ {(0, 0.4), (0.1, 0.5)}, i.e., case a and b).

the chosen channel weighting pertaining to intra-cell channels
are the same for both BSs and will be denoted α1

1 = α2
2 = α.

Similarly, the inter-cell weights will be denoted α1
2 = α2

1 = β.
The transmit power to noise ratio (per UT) at each BS is
taken equal, i.e., P1 = P2 = P . For this system we obtain the
average UT rate performance, shown in Figure 6. The markers
denote results of Monte-Carlo simulations that randomize over
UT placement scenarios and channel realizations, when the
precoding weights are chosen as in (21). The main point
of this graph is to compare the performance under heuristic
weights and numerically optimal weights, found via 2D line
search. We observe that the performance of both approaches
is virtually the same. Furthermore, one sees that constant
weights exhibit the same problems as in Section II. Interesting
is also the observation that, when one diverges prominently
from the simple system (τa = 0), by choosing τa = 0.1,
the heuristic weights still perform practically the same as
exhaustive numerical optimization.

Finally, we look a more complex system of 4 BSs (see
Figure 5). The BSs, of height 0.1 units, are placed on the
corners of a square with edge length 1 units. The UTs are of
height 0 and are distributed uniformly in a disc of radius 0.5
units around the corresponding BS. The pathloss is calculated
as the inverse of distance to the power of 2.8. Figure 7 shows
the performance of the 4 BS system, assuming that each
BS has 160 antennas with a power constraint of P per UT
and serves 40 UTs. We assume that the CSI randomness is
overwhelmingly determined by inter-BS distance, i.e., we have
τa for each BS to the adherent UTs, τb for each BS to UTs of
BSs 1 unit away and τc for each BS to UTs of BSs

√
2 units

away. It is, thus, reasonable to chose τa < τb < τc. In the graph
we compare the heuristic weights with various other weighting
approaches. Round markers stem from a Monte-Carlo simula-
tion of the performance pertaining to the heuristic weights, in
order to confirm the applicability of our DEs. The benchmark
“numeric” result in this figure is obtained from optimizing
the 8 precoder weights via extensive numerical search, using
α̃ab as a starting point. The observed performance is always
better than the heuristic approach, which is not surprising, as
the randomly positioned and non-clustered structure of UTs is
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taking the scenario very far away from the original simplified
system of Section II. More interesting is the performance of
taking αab = Pa(1−(τab )2). This configuration conforms to not
taking any interference into account, i.e., εab = 0. We observe
that most of the gains of the heuristic method come from
this part; only at very high powers, where interference is the
dominant problem, the Pa(1−(τab )2) approach is noticeably
suboptimal. Similarly, choosing αab = (1−(τab )2) performs
well at middle and high transmit SNR, but losses efficacy
at low SNR. The constant weight approach behaves like in
Section II, in that it is only a good match for a limited part of
the curve. However, given the “mis-matched” general scenario,
we see that it can also outperform the heuristic weights. For
comparison purposes, we also compare with standard non-
cooperative RZF, as defined in Subsection II-B.

In general, employing α̃ab is most advantageous in high
interference scenarios, as would be expected due to the
“interference aware” conception of the precoder. The figure
generally implies that the heuristic approach is close to the
numerical optimum, however we can not be sure that numeric
optimization finds the true optimum. Carrying out the same
simulations for different levels of CSI randomness, one ob-
serves that the gain of using the heuristic variant of iaRZF
is substantial as long as the estimations of the interfering
channels are not too bad. For extremely bad CSI, standard
non-cooperative RZF can outperform iaRZF with α̃ab . We also
note that better CSI widens the gap between the α̃ab and
αab = Pa(1−(τab )2) weighted iaRZF versions.

V. CONCLUSION

In this paper, we analyzed a variant of the generally opti-
mal linear precoding structure for multi-cell system, denoted
iaRZF. It was shown that the relegation of interference into
orthogonal subspaces by iaRZF can be explained rigorously
and intuitively, even without assuming large scale systems.
For example, one can indeed observe that the precoder can
either completely get rid of inter-cell or intra-cell interference
(assuming perfect channel knowledge).

Stating and proving new results from large-scale random
matrix theory, allowed us to give more conclusive and intuitive

insights into the behavior of the precoder, especially with
respect to imperfect CSI knowledge and induced interference
mitigation. The effectiveness of these large-scale results has
been demonstrated in practical finite dimensional systems.
Most importantly, we concluded that iaRZF can use all avail-
able (also very bad) interference channel knowledge to obtain
significant performance gains, while not requiring explicit inter
base station cooperation.

Moreover, it is possible to analytically optimize the iaRZF
precoder weights in certain limit scenarios using our large-
scale results. Insights from this were used to propose a
heuristic generalization of the limit optimal iaRZF weighting
for arbitrary systems. The efficacy of the heuristic iaRZF
approach has been demonstrated by achieving a sum-rate close
to the numerically optimally weighted iaRZF, for a wide range
of general and practical systems. The effectiveness of our
heuristic approach has been intuitively explained by mainly
balancing the importance of available knowledge about various
channel and system variables.

APPENDIX A
USEFUL NOTATION AND LEMMAS

Lemma 1 (Common Matrix Identities). Let A, B be complex
invertible matrices and C a rectangular complex matrix,
all of proper size. We restate the following, well known,
relationships:
Woodbury Identity:(

A+CBCH
)−1

=

A−1−A−1C
(
B−1+CHA−1C

)−1
CHA−1. (22)

Searl Identity:

(I+AB)
−1

A = A (I+BA)
−1
. (23)

Resolvent Identity:

A−1+B−1 = −A−1 (A−B) B−1. (24)

Lemma 2 (Unitary Projection Matrices). Let X be an N×K
complex matrix, where N ≥ K and rank(X) = K. We define
PX = X

(
XHX

)−1
XH and P⊥X = I−PX. It follows (see

e.g., [27, Chapter 5.13])

P = P2 ⇔ P = PH

P⊥XX = 0⇔ XHP⊥X = 0 .

Generally one denotes PX as the projection matrix onto the
column space of X and P⊥X as the projection matrix onto the
orthogonal space of the column space of X.

Definition 1 (Notation of Resolvents). Given the notations
from Section III, we define the resolvent matrice of Ĥa

aas

Qa
∆
=
(
αaaĤ

a
a(Ĥa

a)H+Za+γaINa

)−1

and we will also make use of the following modified versions

Qa[bc]
∆
=
(
αaaĤ

a
a(Ĥa

a)H+Za−αab ĥab,c(ĥab,c)H+γaINa

)−1

Qa[b]
∆
=
(
αaaĤ

a
a(Ĥa

a)H+Za−αaaĥaa,b(ĥaa,b)H+γaINa

)−1

=
(
αaaĤ

a
a[b](Ĥ

a
a[b])

H+Za+γaINa

)−1

.
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Lemma 3 (Matrix Inversion Lemma [28, Lemma 2.2]). . Let
A be an M×M invertible matrix and x ∈ CM , c ∈ C for
which A+cxxH is invertible. Then, as an application of (22),
we have

xH
(
A+cxxH

)−1
=

xHA−1

1+cxHA−1x
.

For the previously defined resolvent matrices, we have in
particular

Qaĥ
a
a,b =

Qa[b]ĥ
a
a,b

1+αaa(ĥaa,b)
HQa[b]ĥ

a
a,b

.

Lemma 4 (Convergence of Quadratic Forms [29]). Let xM =
[X1, . . . , XM ]

T be an M×1 vector where the Xn are i.i.d.
Gaussian complex random variables with unit variance. Let
AM be an M×M matrix independent of xM . If in addition
lim supM ‖A‖2 <∞ then we have that

1

M
xHAMx− 1

M
tr(AM )

a.s.−−−−−→
M→+∞

0.

Corollary 1. Let AM be as in Lemma 4, i.e.,
lim supM ‖A‖2 < ∞, and xM ,yM be random, mutually
independent with complex Gaussian entries of zero mean and
variance 1. Then, for any p ≥ 2 we have

1

M
yH
MAMxM

a.s.−−−−−−−→
M,K→+∞

0.

Lemma 5. [Rank-One Perturbation Lemma [26,
Lemma 14.3]] Let Qa and Qa[b] be the resolvent matrices
as defined in Definition 1. Then, for any matrix A we have:

tr
[
A
(
Qa−Qa[b]

)]
≤ 1

γa
‖A‖2.

APPENDIX B
SIMPLE SYSTEM LIMIT BEHAVIOR PROOFS

A. Finite Dimensions
In order to simplify the notation we will not explicitly

state the index x in the following, unless needed, hence the
normalized precoder F for each of the two cells is F =√
KM/

√
tr MMH for M =

(
αHHH+βGGH+γI

)−1
H.

1) β → ∞: For the limit when β → ∞ we use (22) with
A = βGGH+γI and CBCH = HαIHH to reformulate the
matrix M

M =
(
αHHH+βGGH+γI

)−1
H

=
[
QG−QGH

(
α−1I+HHQGH

)−1
HHQG

]
H

where

QG =
(
βGGH+γI

)−1

(22)
= γ−1I−γ−1G

(
γ

β
I+GHG

)−1

GH.

We now let β → ∞, assuming GHG is invertible (which
true with probability 1) and γ bounded. In this regime, we
remember Lemma 2, and rewrite QG = γ−1P⊥G. One finally
arrives at

M
β→∞−→[
γ−1P⊥G−γ−2P⊥GH

(
α−1I+γ−1HHP⊥GH

)−1
HHP⊥G

]
H.

2) α → ∞: Introducing the abbreviations QH =(
HHH+ γ

αI
)−1

and Q̄H =
(
HHH+ γ

αI
)−1

, we can rewrite
the matrix M as follows.

αM =

(
HHH+

β

α
GGH+

γ

α
I

)−1

H

(22)
=

[
QH−QHG

(
α

β
I+GHQHG

)−1

GHQH

]
H

(23)
= HQ̄H−QHG

(
α

β
I+GHQHG

)−1

GHHQ̄H .

Applying (24) to the expression
(
HHH+ γ

αI
)−1

+
(
− γ
αI
)−1

,
one eventually finds the relationship QH =
αγ−1

(
I−HQ̄HHH

)
. Hence,

αM = HQ̄H−γ−1
(
I−HQ̄HHH

)
G

[
1

β
I+γ−1GH

(
I−HQ̄HHH

)
G

]−1

GHHQ̄H.

Now, taking the limit of α → ∞, assuming HHH invert-
ible (true with probability 1), and recognizing P⊥H = I−
H
(
HHH

)−1
HH we arrive at

αM
α→∞−→ H

(
HHH

)−1−γ−1
[
I−H

(
HHH

)−1
HH
]

G{
β−1I+γ−1GH

[
I−H

(
HHH

)−1
HH
]

G
}−1

GHH
(
HHH

)−1

= H
(
HHH

)−1

−γ−1P⊥HG
{
β−1I+γ−1GHP⊥HG

}−1
GHH

(
HHH

)−1
.

B. Large-Scale Approximation

We remind ourselves, that for perfect and imperfect CSI the
resulting fixed point equations are equivalent:

e =

(
1+

c

α−1+e
+

cε

β−1+εe

)−1

. (25)

Lemma 6 (e is Bounded). For either α → ∞ and β, ε
bounded or β →∞ and α, ε bounded, we have

0 < lim inf e < lim sup e <∞.

Proof: 1) e <∞ when α or β →∞.
This follows immediately from contradiction, when one takes
e→∞ in (25).

2) e positive when α or β →∞.
We take either α→∞ and β, ε bounded or β →∞ and α, ε
bounded. For the case α→∞, we first denote γ = αe. Now
we assume γ to be bounded for α→∞

γ = lim
α→∞

(
1

α
+

c

1+γ
+

cβε

α+βεγ

)−1

=

(
c

1+γ

)−1

thus implying γ = 1
c−1 < 0, as c < 1. Case 1 directly

contradicts the assumption and case 2 is contradicting, as e
can not be negative for positive values of α, β, c and ε. Thus,
γ is not bounded for α → ∞, hence e can neither be zero
nor negative. For the case of β →∞, we denote γ = βe and
proceed analogously.
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C. Large-Scale Optimization α→∞
Continuing from Appendix B-B, we see that in the limit

α → ∞ the large-scale approximation of the SINR values,
pertaining to the users of each cell, i.e., SINR

α→∞
, is indeed

as stated in Subsection II-C3.
Differentiating SINR

α→∞
w.r.t. β, while taking into ac-

count that e is an abbreviation for eα→∞(β) leads us to

∂SINR
α→∞

∂β
= −2Pcε2 [e+βe′] (26)

× t1

[P (cβ2e2ε3τ2+2cβeε2τ2+cε)+β2e2ε2+2βeε+1]
2

where we used e′ as shorthand for ∂eα→∞(β)
∂β and

t1 = P [c−1−βεe+2βcεe]+βe+β2e2ε

−Px̄τ2
[
c−1−βεe+βcεe−β2ce2ε2

]
Realizing that the denominator of (26) can not become zero,

we have two possible solutions for ∂SINR
α→∞

/∂β = 0. In
Lemma 7 we show that e+βe′ > 0, hence we only need to
deal with the term t1. We remember from (8) that c−1−βεe+
2βcεe+e+βεe2 = 0. Thus,

P [c−1−βεe+2βcεe]+βe+β2e2ε

= −Pe−Pβεe2+βe+β2εe2.

Hence,

t1 =
(
εe2+Pτ2ce2ε2

)(
β− P (1−τ2)

Pcετ2+1

)(
β+

1

eε

)
.

Given that only the middle term can become zero, we find
βopt to be as stated in (9). The physical interpretation of the
SINR guarantees this point to be the maximum.

Lemma 7. Given the notation and definitions from Ap-
pendix B-C, e+βe′ > 0.

Proof Sketch: From [28] we know that an object of the
form

m(z) =
[
−z+c

∫
t

1+tm(z)
dν(t)

]−1

where ν is a non-negative finite measure, is a so-called
Stieltjes transform of a measure ν, defined ∀z /∈ Supp (ν).
Adapting (25) by re-naming ẽ∆

=βεe we see that it is indeed a
valid Stieltjes transform for an appropriately chosen measure.
Finally, one recognizes βe′+e as the derivative of a Stieltjes
transform, which is always positive.

APPENDIX C
PROOF OF THEOREM 1

A. Power Normalization Term
We start by finding a DE of the term νm, which will turn out

to be a frequently reoccurring object, throughout this Section.
From (13), we see that the power normalization term νm is
defined by the relationship

Pm
νm

Km

Nm
=

1

Nm
tr
[
Ĥm
m(Ĥm

m)HQ2
m

]
=

∂

∂γm

{
1

αmmNm
tr [(Zm+γmINm) Qm]

}
(27)

where we used the general identities
∂
∂y

{
−tr

[
A (A+B+yI)

−1
]}

= tr
[
A (A+B+yI)

−2
]

and A (A+B+yI)
−1

= I−(B+yI) (A+B+yI)
−1. The

goal now is to find a deterministic object X̄m that satisfies
1

Nm
tr
[
Ĥm
m(Ĥm

m)HQ2
m

]
−X̄m

a.s.−→ 0

for the regime defined in A-1.
To do this, we apply [18, Theorem 1] to (27), where we

set the respective variables to be Ψi = χmm,iI, QN = Zm+

γmINm , BN = αmmĤm
m(Ĥm

m)H+Zm and z = −γm. Thus, we
find the (partially deterministic) quantity

X̄m =
∂

∂γm

1

αmmNm
tr
[

(Zm+γmINm) ·(
1

Nm

Km∑
j=1

αmmχ
m
m,jINm

1+ej(m)

+Zm+γmINm

)−1]
where ej(m) = αmmχ

m
m,ie(m) and

e(m) =
1

Nm
tr

 1

Nm

Km∑
j=1

αmmχ
m
m,jINm

1+αmmχ
m
m,je(m)

+Zm+γmINm

−1

.

Remark 2. In order to reuse the results from this section
later on, it will turn out to be useful to realize the following
relationship involving e(m).

1

Nm
tr Qm−e(m)

a.s.−→ 0 . (28)

This can be quickly verified by [18, Theorem 1], when choos-
ing Ψi = χmm,iI, QN = I, BN = αmmĤm

m(Ĥm
m)H+Zm and

z = −γm.

One notices, that the fixed-point equation e(m) contains the
term Zm, which is not deterministic. Thus, our found objects
are not yet DEs. In order to resolve this situation we condition
Zm to be fixed for now. Under this assumption we now find
the DE of e(m). To do this, it is necessary to realize that e(m)

contains another Stieltjes transform:

e(m) =
1

Nm
tr
[
(Zm+βmINm)

−1
]

where

βm =
1

Nm

Km∑
j=1

αmmχ
m
m,j

1+αmmχ
m
m,je(m)

+γm . (29)

The solution becomes immediate once we rephrase Zm as

Zm =
∑
l 6=m

Kl∑
k=1

αml ĥml,k(ĥml,k)H = Ȟm
[m]A

m
[m]

(
Ȟm

[m]

)H
where Ȟm

[m] ∈ CNm×K[m] , with K[m] =
∑
l 6=mKl, is the ag-

gregated matrix of the vectors ȟml,k ∼ CN (0, 1
Nm

INm) ,∀ l 6=
m and

Am
[m] = diag

[
αm1 χ

m
1,1, . . . , α

m
1 χ

m
1,K1

, αm2 χ
m
2,1, . . . ,

αm2 χ
m
2,K2

, · · · , αmm−1χ
m
m−1,Km−1

,

αmm+1χ
m
m+1,1, · · · , αmBχmB,KB

]
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Now, one can directly apply [28] or [26][Th 3.13, Eq 3.23]
with T = Am

[m] and X = (Ȟm
[m])

H. Being careful with the
notation (XTXH instead of (Ȟm

[m])
HAm

[m]Ȟ
m
[m]), we arrive at:

e(m) =
1

Nm
tr
{[

Ȟm
[m]A

m
[m](Ȟ

m
[m])

H+βmINm

]−1
}

where

e(m)−
1

Nm

βm+
1

Nm

L∑
l 6=m

Kl∑
k

αml χ
m
l,k

1+αml χ
m
l,ke(m)

−1

a.s.−→ 0 .

Here we used Remark 2 and βm is given in (29)
Now, combining the intermediate results, using again

Remark 2 and the relationship tr A (A+xI)
−1

= tr I−
xtr (A+xI)

−1 with A = Zm+γmINm , we arrive at

X̄m = − 1

αmmNm

Km∑
j=1

αmmχ
m
m,je

′
(m)

(1+αmmχ
m
m,je(m))2

where e′(m) is shorthand for ∂/∂γme(m) and can found (by
tedious calculus) to be as stated in (19), which concludes this
part of the proof.

B. Signal Power Term

The important part of the signal power term (14) (w.r.t.
this proof) is (hll,k)HQlĥ

l
l,k. We will now derive a DE of

this quantity. Before proceeding, we remind ourselves that
our chosen model of the estimated channel (12) entails the
following relationships: hll,k ⊥⊥ h̃ll,k, ĥll,k 6⊥⊥ hll,k, ĥll,k 6⊥⊥ h̃ll,k,
Ql[k] ⊥⊥ ĥll,k, Ql[k] ⊥⊥ hll,k. Also, formulations containing ĥll,k
can often be split into two terms comprising hll,k and h̃ll,k.
Hence, the application of Lemmas 3, 4, 5 and Corollary 1, in
the following is well justified. Employing (28) one sees

(hll,k)HQlĥ
l
l,k−

√
χll,k

√
(1−(τ ll )

2)e(l)

1+αllχ
l
l,ke(l)

a.s.−→ 0 .

Finally, applying this result to the complete formulation (14),
we arrive at the familiar term from Theorem 1.

C. Preparation for Interference Terms

In this subsection we derive the deterministic equivalents
of the two terms (hll,k)HBQlh

l
l,k and (hll,k)HBQlh̃

l
l,k, where

B ∈ CNl×Nl has uniformly bounded spectral norm w.r.t. Nl
and is independent of hll,k and h̃ll,k. The following approach
is based on and slightly generalizes [18, Lemma 7]. First, we
realize that

Q−1
a −Q−1

a[bc] = c0h
a
b,c(h

a
b,c)

H+c2h
a
b,c(h̃

a
b,c)

H

+c2h̃
a
b,c(h

a
b,c)

H+c1h̃
a
b,c(h̃

a
b,c)

H (30)

where c0 = αabχ
a
b,c

(
1−(τab )2

)
, c1 = αabχ

a
b,c(τ

a
b )2 and

c2 = αabχ
a
b,c

√
(1−(τab )2)τab . We omitted designating

the dependencies of c on a and b, as this is always
clear from the context. To ease the exposition, we also
introduce the following abbreviations Y1

∆
=(h̃ll,k)HQl[k]h

l
l,k,

Y4
∆
=(hll,k)HBQl[k]h

l
l,k, Y2

∆
=(hll,k)HQl[k]h̃

l
l,k,

Y5
∆
=(h̃ll,k)HQl[k]h̃

l
l,k, Y3

∆
=(hll,k)HBQl[k]h̃

l
l,k and

Y6
∆
=(hll,k)HQl[k]h

l
l,k. Finally, we begin with the term

(hll,k)HBQlh̃
l
l,k:

(hll,k)HBQlh̃
l
l,k−(hll,k)HBQl[k]h̃

l
l,k

(24)
= −(hll,k)HBQl

(
Q−1
l −Q−1

l[k]

)
Ql[k]h̃

l
l,k

and, using (30), we find

(hll,k)HBQlh̃
l
l,k =

Y3−(hll,k)HBQlh
l
l,k (c0Y2+c2Y5)

1+c2Y2+c1Y5
.

(31)

Similarly, for the term (hll,k)HBQlh
l
l,k we arrive at

(hll,k)HBQlh
l
l,k (1+c0Y6+c2Y1)

= Y4−(hll,k)HBQlh̃
l
l,k (c2Y5+c1Y1) . (32)

Now, applying (31) to (32), one arrives at

(hll,k)HBQlh
l
l,k

[
(1+c0Y6+c2Y1)− (c0Y2+c2Y5) (c2Y6+c1Y1)

1+c2Y2+c1Y5

]
= Y4−

(hll,k)HBQlh̃
l
l,k (c2Y6+c1Y1)

1+c2Y2+c1Y5
. (33)

Similar to Appendix C-B, we notice that Y1, Y2 and Y3,
converge almost surely to 0 in the large system limit:
Y1, Y2, Y3

a.s.−→ 0 . We also foresee that

Y4−u′
a.s.−→ 0 , Y5−u1

a.s.−→ 0 , Y6−u2
a.s.−→ 0

where the values for u′ , u1 and u2 are not yet of concern.
Thus, (33) finally leads to

(hll,k)HBQlh
l
l,k−

u′ (1+c1u1)

1+c1u1+c0u2+(c0c1−c22)u1u2

a.s.−→ 0 .

(34)

In order to find the second original term ((hll,k)HBQlh̃
l
l,k),

we reform and plug (32) into (31) and follow analogously the
path we took to arrive at (34). We finally find

(hll,k)HBQlh̃
l
l,k−

−c2u1u
′

1+c1u1+c0u2+(c0c1−c22)u1u2

a.s.−→ 0 .

(35)

D. Interference Power Terms

Having obtained the preparation results in Appendix C-C
we can now continue to find the DEs for different parts of the
interference power term. From (15) we arrive at

Int
(l)
l,k =

∑
m 6=l

νmχ
m
l,k (hml,k)HQmĤm

m(Ĥm
m)HQmhml,k︸ ︷︷ ︸

Part Am

+νlχ
l
l,k (hll,k)HQlĤ

l
l[k](Ĥ

l
l[k])

HQlh
l
l,k︸ ︷︷ ︸

Part B

.
(36)

We start by treating (36) Part B first. Employing the relation-
ships ABC = ACD+A(B−C)D and (24) one finds

Part B = (hll,k)HQl[k]Ĥ
l
l[k](Ĥ

l
l[k])

HQlĤ
l
l[k]h

l
l,k

−(hll,k)HQl

[
Q−1
l −Q−1

l[k]

]
Ql[k]Ĥ

l
l[k](Ĥ

l
l[k])

HQlh
l
l,k .
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We rewrite Part B as

Part B = X1−c0X3X1−c2X3X2−c2X4X1−c1X4X2 .

Where we have found and abbreviated the 4 quadratic
forms, X1 = (hll,k)HQl[k]Ĥ

l
l[k](Ĥ

l
l[k])

HQlh
l
l,k, X2 =

(h̃ll,k)HQl[k]Ĥ
l
l[k](Ĥ

l
l[k])

HQlh
l
l,k, X3 = (hll,k)HQlh

l
l,k and

X4 = (hll,k)HQlh̃
l
l,k.

To find the deterministic equivalents for X1 and X2, we can
use (34) and (35), respectively, where B = Ql[k]Ĥ

l
l[k](Ĥ

l
l[k])

H.
The respective variables u1, u2 and u′ for this choice of
B are found (using the same standard techniques as in
Appendix C-B) to be

u1 = (h̃ll,k)HQl[k]h̃
l
l,k ⇒ u1−e(l)

a.s.−→ 0 .

Analogously, u1−e(l)
a.s.−→ 0 . Hence, we see that u1 and

u2 converge to the same value and we will abbreviate them
henceforth as u. For the still missing term u′ we arrive at

u′ = (hll,k)HQl[k]Ĥ
l
l[k](Ĥ

l
l[k])

HQl[k]h
l
l,k ⇒ u′−g(l)

a.s.−→ 0

where the last step makes have use of the results in
Appendix C-A. Also, we remind ourselves that we have
c0 = αllχ

l
l,k

(
1−(τ ll )

2
)
, c1 = αllχ

l
l,k(τ ll )

2 and c2 =

αllχ
l
l,k

√
(1−(τ ll )

2)τ ll , hence c0+c1 = αllχ
l
l,k and c0c1−c22 =

0. So, finally, we have

X1−
u′ (1+c1u)

1+(c1+c0)u

a.s.−→ 0 and X2−
−c2uu′

1+(c1+c0)u

a.s.−→ 0 .

To find the DEs for X3 and X4, we can again use (34) and
(35), respectively. This time B = I and hence the variables
simplify to u′ = u1 = u2

∆
=u, where u−e(l)

a.s.−→ 0 . Thus,

X3−
u (1+c1u)

1+(c1+c0)u

a.s.−→ 0 and X4−
−c2u2

1+(c1+c0)u

a.s.−→ 0 .

Combining all results after further simplifications, we can
express the DE of Part B, i.e., Part B, as

Part B = g(l)
1−(τ ll )

2(
1+αllχ

l
l,ke(l)

)2 +g(l)(τ
l
l )

2 .

The next step is to derive the DE of (36) Part Am, i.e.,
Part Am. Fortunately, the sum obliges m 6= l and, thus, the
same derivation like for Part B applies. Hence, we arrive at

Part Am = g(m)
1−(τml )2(

1+αml χ
m
l,ke(m)

)2 +g(m)(τ
m
l )2 .

Combing Part B and the sum of Part Am with our original
expression of the interference power, we arrive at the expres-
sion in Theorem 1.
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