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A Deterministic Equivalent for the Analysis of

Correlated MIMO Multiple Access Channels
Romain Couillet†,‡, Mérouane Debbah‡, Jack W. Silverstein⊥

Abstract

This article provides novel deterministic equivalents for the Stieltjes transform and the Shannon transform of

a class of large dimensional random matrices. These results are used to characterise the ergodic rate region of

multiple antenna multiple access channels, when each point-to-point propagation channel is modelled according to

the Kronecker model. We specifically provide an approximation of all rates achieved within the ergodic rate region

and we provide an approximation of the linear precoders that achieve the boundary of the rate region as well as

an iterative water-filling algorithm to obtain these precoders. An original feature of this work is that the proposed

deterministic equivalents are proved valid even for strong correlation patterns at both communication sides. The above

results are validated by Monte Carlo simulations.

I. INTRODUCTION

When mobile networks were expected to run out of power and frequency resources while being simultaneously

subject to a demand for higher transmission rates, Foschini [1] introduced the idea of multiple input multiple

output (MIMO) communication schemes. Telatar [2] then predicted a growth of the channel capacity by a factor

min(N,n) for an N × n MIMO system compared to the single-antenna case when the matrix-valued channel is

modelled with independent and identically distributed (i.i.d.) standard Gaussian entries. In practical systems though,

this linear gain can only be achieved for high signal-to-noise ratios (SNR) and for uncorrelated transmit and receive

antenna arrays at both communication sides. Nevertheless, the current scarcity of available frequency resources

has led to a widespread incentive for MIMO communications. Mobile terminal engineers now embed numerous

antennas in small devices. Due to space limitations, this inevitably induces channel correlation and thus reduced

transmission rates. An implication of the results introduced in this paper is the ability to study the performance of

MIMO systems subject to strong correlation effects in multi-user and multi-cellular contexts, a question which is

paramount to cellular service providers.

Although alternative communication models could be treated using similar mathematical expressions, such as

cooperative and non-cooperative multi-cell communications with users equipped with multiple antennas, the present
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article investigates the MIMO multiple access channel (MIMO-MAC), where K multi-antenna mobile terminals

transmit information to a single receiver. Under perfect channel state information at the transmitters (CSIT), the

boundaries of the achievable rate region of the MIMO-MAC have been characterised by Yu et al. [3] who provide

an iterative water-filling algorithm to obtain the sum rate maximising precoders. However, to achieve perfect CSIT,

the channel must be quasi-static during a sufficiently long period to allow feedback or pilot signalling from the

receiver to the transmitters. For high mobility wireless services, this is often unacceptable. In this situation, the

transmitters are often assumed to have statistical information about the random fast varying channels, such as first

order moments of their distribution. The achievable rates are in this case the points lying in the ergodic rate region.

It is however difficult to characterise the boundary of the ergodic rate region because it is difficult to compute the

optimal precoders that reach the boundaries. In the single-user context, an algorithm was provided by Vu et al.

in [4] to solve this problem. However, the technique of [4] is rather involved as it requires nested Monte Carlo

simulations and does not provide any insight on the nature of the optimal precoders.

In the present article, we provide a parallel approach that consists in approximating the ergodic sum rate by

deterministic equivalents. That is, for all finite system dimensions, we provide an approximation of the ergodic

rates, which is accurate as the system dimensions grow asymptotically large. Furthermore, we provide an efficient

way to derive an asymptotically accurate approximation of the optimal precoders. The mathematical field of large

dimensional random matrices is particularly suited for this purpose, as it can provide deterministic equivalents of

the achievable rates depending only on the relevant channel parameters, e.g., the long-term transmit and receive

channel covariance matrices in the present situation, the deterministic line of sight components in Rician models

as in [5] etc. The earliest notable result in line with the present study is due to Tulino et al. [6], who provide an

expression of the asymptotic ergodic capacity of point-to-point MIMO communications when the random channel

matrix is composed of i.i.d. Gaussian entries. In [7], Peacock et al. extend the asymptotic result of [6] in the context

of multi-user communications by considering a K-user MAC with channels H1, . . . ,HK modelled as Gaussian

with a separable variance profile. This is, the entries of Hk are Gaussian independent with (i, j)-th entry of zero

mean and variance σ2
k,ij that can be written as a product σ2

k,ij = rk,itk,j of a term depending on i and a term

depending on j. The asymptotic eigenvalue distribution of this matrix model is derived, but neither any explicit

expression of the sum rate is provided as in [6], nor is any ergodic capacity maximising policy derived. In [8],

Soysal et al. derive the sum rate maximising precoder policy in the case of a MAC channel with K users whose

channels H1, . . . ,Hk are one-side correlated zero mean Gaussian, in the sense that all rows of Hk have a common

covariance matrix, different for each k.

In this article, we concentrate on the more general Kronecker channel model. This is, we assume a K-user MIMO-

MAC, with channels H1, . . . ,HK , where each Hk can be written in the form of a product R
1
2

kXkT
1
2

k where Xk

has i.i.d. zero mean Gaussian entries and the left and right correlation matrices Rk and Tk are deterministic

nonnegative definite Hermitian matrices. This model clearly covers the aforementioned channel models of [6], [7]

and [8] as special cases. The Kronecker model is particularly suited to model communication channels that show

transmit and receive correlations, different from one user to the next, in a rich scattering environment. Nonetheless,
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the Kronecker model is only valid in the absence of a line-of-sight component in the channel, when a sufficiently

large number of scatterers is present in the communication medium to justify the i.i.d. aspect of the inner Gaussian

matrix and when the channel is frequency flat over the transmission bandwidth. Using similar tools as those used

in this article, many works have studied these channel models, mostly in a single-user context. We remind the main

contributions, from which the present work borrows several ideas. In [5], [9], [10], Hachem et al. study the point-

to-point multi-antenna Rician channel model, i.e., non-central Gaussian matrices with a variance profile, for which

they provide a deterministic equivalent of the ergodic capacity [5], the corresponding ergodic capacity-achieving

input covariance matrix [9] and a central limit theorem for the ergodic capacity [10]. In [11], Moustakas et al.

provide an expression of the mutual information in time varying frequency selective Kronecker channels, using the

replica method [12]. This result has been recently proved by Dupuy et al. in a yet unpublished work. Dupuy et

al. then derived the expression of the capacity maximising precoding matrix for the frequency selective channel

[13]. A more general frequency selective channel model with non-separable variance profile is studied in [14] by

Rashibi et al. using alternative tools from free probability theory. Of practical interest is also the theoretical work

of Tse [15] on MIMO point-to-point capacity in both uncorrelated and correlated channels, which are validated by

ray-tracing simulations.

The main contribution of this paper is summarized in two theorems contributing to the field of random matrix

theory and enabling the evaluation of the ergodic rate region of the MIMO-MAC with Kronecker channels. We

subsequently derive an iterative water-filling algorithm enabling the description of the boundaries of the rate region

by providing an expression of the asymptotically optimal precoders. The remainder of this paper is structured as

follows: in Section II, we provide a short summary of the main results and how they apply to multi-user wireless

communications. In Section III, the two theorems are introduced, the complete proofs being left to the appendices.

In Section IV, the ergodic rate region of the MIMO-MAC is studied. In this section, we introduce our third main

result: an iterative water-filling algorithm to describe the boundary of the ergodic rate region of the MIMO-MAC.

In Section V, we provide simulation results of the previously derived theoretical formulas. Finally, in Section VI,

we give our conclusions.

Notation: In the following, boldface lower-case characters represent vectors, capital boldface characters denote

matrices (IN is the N ×N identity matrix). Xij denotes the (i, j) entry of X. The Hermitian transpose is denoted

(·)H. The operators trX, |X| and ‖X‖ represent the trace, determinant and spectral norm of matrix X, respectively.

The symbol E·] denotes expectation. The notation FY stands for the (cumulative) distribution function of the

eigenvalues of the Hermitian matrix Y. The function (x)+ equals max(x, 0) for real x. For F , G two distribution

functions, we denote F ⇒ G the vague convergence of F to G. The notation xn
a.s.−→ x denotes the almost sure

convergence of the sequence xn to x. The notation ‖F‖ for the distribution function F is the supremum norm

defined as ‖F‖ = supx F (x). The symbol X ≥ 0 for a square matrix X means that X is Hermitian nonnegative

definite.
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Fig. 1. Multi-antenna multiple access scenario with Kronecker channels.

II. SCOPE AND SUMMARY OF MAIN RESULTS

In this section, we summarise the main results of this article and explain their impact on the study of the effects

of channel correlation on the achievable communication rates in the present multi-user framework.

A. General Model

Consider a set of K wireless terminals, equipped with n1, . . . , nK antennas respectively, which we refer to as

the transmitters, and another device equipped with N antennas, which we call the receiver or the base station. We

consider the uplink communication from the terminals to the base station. Denote Hk ∈ CN×nk the channel matrix

between transmitter k and the receiver. Let Hk be defined as

Hk = R
1
2

kXkT
1
2

k , (1)

where R
1
2

k ∈ CN×N and T
1
2

k ∈ Cnk×nk are nonnegative Hermitian matrices and Xk ∈ CN×nk is a realisation of a

random matrix with independent Gaussian entries of zero mean and variance 1/nk. In this scenario, the matrices

Tk and Rk model the correlation present in the channel at transmitter k and at the receiver, respectively. This setup

is depicted in Figure 1.

It is important to underline that the correlation patterns emerge both from the inter-antenna spacings on the

volume-limited transmit and receive radio devices and from the solid angles of transmitted and received signal

energy. Even though the transmit antennas emit signals in an isotropic manner, only a limited solid angle of

emission is effectively received, and the same holds for the receiver which captures signal energy in a non-isotropic

manner. Given this propagation factor, it is clear that the transmit covariance matrices Rk matrices are not equal for

all users. We nonetheless assume physically identical and interchangeable antennas on each device. We therefore

claim that the diagonal entries of Rk and Tk, i.e., the variance of the channel fading on every antenna, are identical

and equal to one, which, along with the normalisation of the Gaussian matrix Xk, allows for a consistent definition

of the SNR. As a consequence, trRk = N and trTk = nk. We will see that under these trace constraints the

hypotheses made in Theorem 1 are always satisfied, therefore making Theorem 1 valid for all possible figures of
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correlation, including strongly correlated patterns. The hypotheses of Theorem 2, used to characterise the ergodic

rate region of the MIMO-MAC, require additional mild assumptions, making Theorem 2 valid for most practical

models of Rk and Tk. These statements are of major importance and rather new since in other contributions, e.g.,

[5], [13], it is usually assumed that the correlation matrices have uniformly bounded spectral norms across N .

Physically this means that only low correlation patterns are allowed, excluding short distances between antennas

and small solid angles of energy propagation. The counterpart of this interesting property is a theoretical reduction

of the convergence rates of the derived deterministic equivalents, compared to those proposed in [5] and [13].

The rate performance of multi-cell or multi-user communication schemes is connected to the so-called Stieltjes

transform and Shannon transform of matrices BN of the type

BN =

K∑
k=1

R
1
2

kXkTkX
H
kR

1
2

k . (2)

We study these matrices using tools from the field of large dimensional random matrix theory [16]. Among these

tools, we define the Stieltjes transform mN (z) of the Hermitian nonnegative definite matrix BN ∈ CN×N , for

z ∈ C \ R+, as

mN (z) =

∫
1

λ− z
dFN (λ) =

1

N
tr (BN − zIN )

−1
,

where FN denotes the (cumulative) distribution function of the eigenvalues of BN . The Stieltjes transform was

originally used to characterise the asymptotic distribution of the eigenvalues of large dimensional random matrices

[17]. From a wireless communications viewpoint, it can be used to characterise the signal-to-interference plus noise

ratio of certain communication models, e.g., [18], [19]. A second interest of the Stieltjes transform in wireless

communications is its link to the so-called Shannon transform VN (x) of BN , that we define for x > 0 as

VN (x) =
1

N
log det

(
IN +

1

x
BN

)
=

∫ +∞

0

log

(
1 +

λ

x

)
dFN (λ) =

∫ +∞

x

(
1

w
−mN (−w)

)
dw.

The Shannon transform is commonly used to provide approximations of capacity expressions in large dimensional

systems, e.g., [6]. In the present work, the Shannon transform of BN will be used to provide a deterministic

approximation of the ergodic achievable rate of the MIMO-MAC.

Before introducing our main results, namely Theorem 1 and Theorem 2, which are rather technical and difficult

to fathom without a preliminary explanation, we briefly describe these results in telecommunication terms and their

consequences to the multi-user multi-cell communication models at hand.

B. Main results

The main results of this work unfold as follows:

• Theorem 1 provides a deterministic equivalent m◦N (z) for the Stieltjes transform mN (z) of BN , under the

assumption that N and nk grow large with the same order of magnitude and the sequences of distribution

functions {FTk}nk and {FRk}N form tight sequences [20]. This is, we provide an approximation m◦N (z)

of mN (z) which can be expressed without reference to the random Xk matrices and which is almost surely
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asymptotically exact when N → ∞. The tightness hypothesis is the key assumption that allows degenerated

Rk and Tk matrices to be valid in our framework, and that therefore allows us to study strongly correlated

channel models;

• Theorem 2 provides a deterministic equivalent V◦N (x) for the Shannon transform VN (x) of BN . In this theorem,

the assumptions on the Rk and Tk matrices are only slightly more constraining and of marginal importance

for practical purposes. In particular, Theorem 2 theoretically allows the largest eigenvalues of Tk or Rk to

grow linearly with N , as the number of antennas increases, as long as the number of these large eigenvalues

is of order o(N);

• based on Theorem 2, the precoders that maximise the deterministic equivalent of the ergodic sum rate of the

MIMO-MAC are computed. Those precoders have the following properties:

– the eigenspace of the precoder for user k coincides with the eigenspace of the transmit channel correlation

matrix at user k;

– the eigenvalues of the precoder for user k are the solution of a water-filling algorithm;

– as the system dimensions grow large, the mutual information achieved using these precoders becomes

asymptotically close to the channel capacity.

The major practical interest of Theorems 1 and 2 lies in the possibility to analyze mutual information expressions

for multi-dimensional channels, not as the averaged of stochastic variables depending on the random matrices Xk

but as approximated deterministic expressions which do no longer feature the matrices Xk. The study of those

quantities is in general simpler than the study of the averaged stochastic expressions, which leads here to a simple

derivation of the approximated rate optimal precoders.

In the next section, we introduce our theoretical results, whose proofs are left to the appendices.

III. MATHEMATICAL PRELIMINARIES

In this section, we first introduce Theorem 1, which provides a deterministic equivalent for the Stieltjes transform

of matrices BN defined in (2). A deterministic equivalent for the Shannon transform of BN is then provided in

Theorem 2, before we discuss in detail how this last result can be used to characterise the performance of the

MIMO-MAC with strong channel correlation patterns.

A. Main results

Theorem 1: Let K,N, n1, . . . , nK be positive integers and let

BN =

K∑
k=1

R
1
2

kXkTkX
H
kR

1
2

k + S (3)

be an N ×N matrix with the following hypothesis for all k ∈ {1, . . . ,K}:

1) Xk ∈ CN×nk has i.i.d. entries 1√
nk
Xk
ij , such that E[|Xk

11 − EXk
11|2] = 1;

2) R
1
2

k ∈ CN×N is a Hermitian nonnegative square root of the nonnegative definite Hermitian matrix Rk;
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3) Tk = diag(τ1, . . . , τnk) with τi ≥ 0 for all i;

4) the sequences {FTk}nk and {FRk}N are tight;1

5) S ∈ CN×N is Hermitian nonnegative definite;

6) there exist b > a > 0 for which

a < min
k

lim inf
N
ck ≤ max

k
lim sup

N
ck < b, (4)

with ck = N/nk.

Also denote, for z ∈ C \R+, mN (z) =
∫

1
λ−zdFN (λ), the Stieltjes transform of BN . Then, as all nk and N grow

large, with ratio ck,

mN (z)−m◦N (z)
a.s.−→ 0, (5)

where

m◦N (z) =
1

N
tr

(
S +

K∑
k=1

∫
τkdF

Tk(τk)

1 + ckτkek(z)
Rk − zIN

)−1
and the functions ei(z), i ∈ {1, . . . ,K}, form the unique solution to the K equations

ei(z) =
1

N
trRi

(
S +

K∑
k=1

∫
τkdF

Tk(τk)

1 + ckτkek(z)
Rk − zIN

)−1
(6)

such that sgn(=[ei(z)]) = sgn(=[z]) when =[z] 6= 0 and such that ei(z) > 0 when z is real and negative.

Moreover, for any ε > 0, the convergence of Equation (5) is uniform over any region of C bounded by a contour

interior to

C \ ({z : |z| ≤ ε} ∪ {z = x+ iv : x > 0, |v| ≤ ε}) . (7)

For all N , the function m◦N is the Stieltjes transform of a distribution function F ◦N . Denoting FN the empirical

eigenvalue distribution function of BN , we finally have

FN − F ◦N ⇒ 0 (8)

weakly and almost surely as N →∞.

Proof: The proof of Theorem 1 is deferred to Appendix A.

A few technical remarks are of order at his point.

Remark 1: In her PhD dissertation [21], Zhang derives an expression of the limiting eigenvalue distribution for

the simpler case where K = 1 and S = 0 but T1 is not constrained to be diagonal. Her work also uses a method

based on the Stieltjes transform. Based on [21], it seems to the authors that Theorem 1 could well be extended to

non-diagonal Tk. However, proving so requires involved calculus, which we did not perform. Also, in [22], using

the same techniques as in the proof provided in Appendix A, Silverstein et al. do not assume that the matrices

Tk are nonnegative definite. Our result could be extended to this less stringent requirement on the central Tk

1this is, for all ε > 0, there exists M > 0 such that FTk (M) > 1− ε and FRk (M) > 1− ε for all nk , N . See e.g., [20] for more details.
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Define ε > 0, the convergence threshold and n ≥ 0, the iteration step. For all

k ∈ {1, . . . ,K}, set e0j = −1/z and e−1
j =∞.

while maxj{|enj − e
n−1
j |} > ε do

for k ∈ {1, . . . ,K} do

Compute

en+1
k =

1

N
trRk

S+

K∑
j=1

∫
τjdF

Tj (τj)

1 + cjτjenj
Rj − zIN

−1

(9)

end for

Assign n← n+ 1

end while

TABLE I

FIXED-POINT ALGORITHM CONVERGING TO THE SOLUTION OF (6)

matrices, although in this case Theorem 1 does not hold for z real negative. For application purposes though, it is

fundamental that the Stieltjes transform of BN exist for z ∈ R−.

We now claim that, under proper initialisation, for z ∈ C\R+, a classical fixed-point algorithm converges surely

to the solution of (6).

Proposition 1: For z ∈ C \R+, the output {en1 , . . . , enK} of fixed-point algorithm described in Table I converges

surely to the unique solution {e1(z), . . . , eK(z)} of (6), such that sgn(=[ei(z)]) = sgn(=[z]) when =[z] 6= 0 and

such that ei(z) > 0 when z < 0, for all i.

Proof: The proof of Proposition 1, inspired by the work of Dupuy et al. [13] in the context of frequency

selective channel models, is provided in Appendix E.

Different hypotheses will be used in the applications of Theorem 1 provided in Section IV. For practical reasons,

we will in particular need the entries of Xk will be Gaussian, the matrices Tk to be non-diagonal and S = 0. This

entails the following corollary:

Corollary 1: Let K,N, n1, . . . , nK be positive integers and let

BN =

K∑
k=1

R
1
2

kXkTkX
H
kR

1
2

k (10)

be an N ×N matrix with the following hypothesis for all k ∈ {1, . . . ,K}:

1) Xk ∈ CN×nk has i.i.d. Gaussian entries 1√
nk
Xk
ij , with E[Xk

11] = 0 and E[|Xk
11|2] = 1;

2) R
1
2

k ∈ CN×N is a Hermitian nonnegative square root of the nonnegative definite Hermitian matrix Rk;

3) Tk ∈ Cnk×nk is a nonnegative definite Hermitian matrix;

4) {FTk}nk and {FRk}N form tight sequences;

5) there exist b > a > 0 for which

a < min
k

lim inf
N
ck ≤ max

k
lim sup

N
ck < b (11)

with ck = N/nk.
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Also denote, for x > 0, mN (−x) = 1
N tr(BN + xIN )−1. Then, as all N and nk grow large (while K is fixed)

mN (−x)−m◦N (−x)
a.s.−→ 0,

where

m◦N (−x) =
1

N
tr

(
x

[
IN +

K∑
k=1

δk(−x)Rk

])−1
and the set of functions {ei(−x), δi(−x)}, i ∈ {1, . . . ,K}, form the unique solution to the equations

ei(−x) =
1

N
trRi

(
x

[
IN +

K∑
k=1

δk(−x)Rk

])−1
δi(−x) =

1

ni
trTi (x [Ini + ciei(−x)Ti])

−1
,

such that ei(−x) > 0 for all i.

Proof: Since the Xk are Gaussian, the joint distribution of the entries of XkU coincides with that of Xk, for

U any nk×nk unitary matrix. Therefore, XkTkX
H
k in Theorem 1 can be substituted by Xk(UTkU

H)XH
k without

compromising the final result. As a consequence, the Tk can be taken nonnegative definite Hermitian and the result

of Theorem 1 holds. It then suffices to replace δi(−x) in the expression of ei(−x) to fall back on the result of

Theorem 1.

The deterministic equivalent of the Stieltjes transform mN of BN is then extended to a deterministic equivalent

of the Shannon transform of BN in the following result:

Theorem 2: Let x > 0 and BN be a random Hermitian matrix as defined in Corollary 1 with the following

additional assumptions:

1) there exists α > 0 and a sequence r1, r2, . . ., such that, for all N ,

max
1≤k≤K

max(λTkrN+1, λ
Rk
rN+1) ≤ α,

where λZ1 ≥ . . . ≥ λZN denote the ordered eigenvalues of the N ×N matrix Z.

2) denoting bN an upper-bound on the spectral norm of the Tk and Rk, k ∈ {1, . . . ,K}, and β > 0 a constant

such that β > Kb
a (1 +

√
a)2, aN = b2Nβ satisfies

rN log(1 + aN/x) = o(N).

Then, for large N , nk, the Shannon transform VN (x) =
∫

log(1 + 1
xλ)dFN (λ) of BN , satisfies

VN (x)− V◦N (x)
a.s.−→ 0;

where

V◦N (x) =

K∑
k=1

1

N
log det (Ink + ckek(−x)Tk) +

1

N
log det

(
IN +

K∑
k=1

δk(−x)Rk

)
− x

K∑
k=1

δk(−x)ek(−x).

(12)

Proof: The proof of Theorem 2 is provided in Appendix B.
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Note that this last result is consistent both with [6] when the transmission channels are i.i.d. Gaussian and with

[23] when K = 2. This result is also similar in nature to the expressions obtained in [5] for the multi-antenna Rician

channel model and with [11] in the case of frequency selective channels. We point out that the expressions obtained

in [11], [13] and [9], when the entries of the Xk matrices are Gaussian distributed, suggest a faster convergence

rate of the deterministic equivalent of the Stieltjes and Shannon transforms than the one obtained here. Indeed,

while we show here a convergence of order o(1) (which is in fact refined to o(1/ logkN) for any k in Appendix

A), in those works the convergence is proved to be of order O(1/N2).

However, contrary to the above contributions, we allow the Rk and Tk matrices to be more general than uniformly

bounded in spectral norm. This is thoroughly discussed in the section below.

B. Kronecker channel with strong correlation patterns

Theorem 1 and Corollary 1 require {FRk}N and {FTk}nk to form tight sequences. Remark that, because of

the trace constraint 1
N trRk = 1, all sequences {FRk}N are necessarily tight (the same reasoning naturally holds

for Tk). Indeed, given ε > 0, take M = 2/ε; N [1 − FRk(M)] is the number of eigenvalues in Rk larger than

2/ε, which is necessarily less than or equal to Nε/2 from the trace constraint, leading to 1−FRk(M) ≤ ε/2 and

then FRk(M) ≥ 1− ε/2 > 1− ε. The same naturally holds for the Tk matrices. Observe now that Condition 2)

in Theorem 2 requires a stronger assumption on the correlation matrices. Under the trace constraint, a sufficient

assumption for Condition 2) is that there exists α > 0, such that the number of eigenvalues in Rk greater than

α is of order o(N/ logN). This is a mild assumption, which may not be verified for some very specific choices

of {FRk}N .2 Nonetheless, most conventional models for the Rk and Tk, even when showing strong correlation

properties, satisfy the assumptions of Theorem 2. We mention in particular the following examples:

• if all Rk and Tk have uniformly bounded spectral norm, then there exists α > 0 such that all eigenvalues of

Rk and Tk are less then α for all N . This implies rN = 0 for all N and therefore the condition is trivially

satisfied. Our model is therefore compatible with loosely correlated antenna structures;

• in contrast, when antennas are densely packed on a volume-limited device, the correlation matrices Rk and

Tk tend to be asymptotically of finite rank, see e.g. [24] in the case of a dense circular array. That is, for

any given α > 0, for all large N , the number rN of eigenvalues greater than α is finite, while aN defined in

Theorem 2 is of order N2. This implies rN log(1 + aN/x) = O(logN) = o(N) and therefore volume-limited

devices with densely packed antennas are consistent with our framework;

2As a counter-example, take N = 2p + 1 and the eigenvalues of Rk to be

2p−1, p, . . . , p︸ ︷︷ ︸
2p−1

p

, 0, . . . , 0︸ ︷︷ ︸
2p− 2p−1

p

.

The largest eigenvalue is of order N so that aN is of order N2, and the number rN of eigenvalues larger than any α > 0 for N large is of

order 2p−1

p
∼ N

log(N)
. Therefore rN log(1 + aN/x) = O(N) here.
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• for one, two or three dimensional antenna arrays with neighbors separated by half the wavelength as discussed

by Moustakas et al. in [25], the correlation figures have a peculiar behaviour. In a linear array of antenna, O(N)

eigenvalues are of order of magnitude O(1), the remaining eigenvalues being small. In a two-dimensional grid

of antennas, O(
√
N) eigenvalues are of order O(

√
N), the remaining eigenvalues being close to zero. Finally,

in a three-dimensional parallelepiped of antennas, O(N
2
3 ) eigenvalues are of order O(N

1
3 ), the remaining

eigenvalues being close to 0 also. As such, in the p-dimensional scenario, we can approximate rN by N
p−1
p ,

aN by N
2
p and we have

rN log(1 + aN/x) ∼ N
p−1
p logN = o(N),

so that the multi-dimensional antenna arrays with close antennas separated by half the wavelength also satisfy

the hypotheses of Theorem 2.

As a consequence, a wide scope of antenna correlation models enter our deterministic equivalent framework, which

comes again at the price of a slower theoretical convergence of the difference VN − V◦N .

We now move to practical applications of the above results and more specifically to the determination of the

ergodic rate region of the MIMO-MAC.

IV. RATE REGION OF THE MIMO-MAC

In this section, we successively apply Theorem 2 to approximate the ergodic mutual information for all deter-

ministic precoders, and then we determine the precoders that maximise this approximated mutual information. This

gives an approximation of all points on the boundary of the MIMO-MAC rate region. We also introduce an iterative

power allocation algorithm to obtain explicitly the optimal precoders.

A. Deterministic equivalent of the mutual information

Consider the wireless multiple access channel as described in Section II and depicted in Figure 1. We denote

ck = N/nk the ratio between the number of antennas at the receive base station and the number of transmit antennas

of user k. Denote sk ∈ Cnk the Gaussian signal transmitted by user k, such that E[sk] = 0 and E[sks
H
k ] = Pk, with

1
nk

trPk ≤ Pk where Pk is the total power of transmitter k, y ∈ CN the signal received at the base station and

n the additive white Gaussian noise of variance E[nnH] = σ2IN . We recall that the Kronecker channel between

user k and the base station is denoted Hk = R
1
2

kXkT
1
2

k , with the entries of Xk ∈ CN×nk Gaussian independent

of zero mean and variance 1/nk and Rk, Tk deterministic. The received vector y is therefore given by

y =

K∑
k=1

Hksk + n.

Suppose that the Hk channels are varying fast and that the transmitters in the MAC only have statistical channel

state information about the Hk in the sense that user k only knows the long term statistics R1, . . . ,RK and

T1, . . . ,TK . In this case, for a noise variance equal to σ2, the per-antenna ergodic MIMO-MAC rate region CMAC
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is given by [26]

CMAC =
⋃

1
ni

tr(Pi)≤Pi
Pi≥0

i=1,...,K

{
{Ri, 1 ≤ i ≤ K} :

∑
i∈S

Ri ≤ EVN (Pi1 , . . . ,Pi|S| ;σ
2),∀S ⊂ {1, . . . ,K}

}
,

with the expectation taken over the joint random variable (X1, . . . ,XK), S = {i1, . . . , i|S|}, and where we

introduced the notation

VN (Pi1 , . . . ,Pi|S| ;σ
2) ,

1

N
log det

(
IN +

1

σ2

∑
i∈S

HiPiH
H
i

)
.

Now, assuming the Tk, Pk and Rk satisfy the hypotheses of Theorem 2, we have

VN (Pi1 , . . . ,Pi|S| ;x)− V◦N (Pi1 , . . . ,Pi|S| ;x)→ 0,

as N,ni1 , . . . , ni|S| grow large for some sequence {V◦N (Pi1 , . . . ,Pi|S| ;x)}N , on a subset of measure 1 of the

probability space Ω that engenders (Xi1 , . . . ,Xi|S|). Integrating this expression over Ω therefore leads to

EV◦N (Pi1 , . . . ,Pi|S| ;x)− V◦N (Pi1 , . . . ,Pi|S| ;x)→ 0.

We can therefore apply Theorem 2 to determine the ergodic rate region CMAC of the MIMO-MAC. We specifically

have

EVN (Pi1 , . . . ,Pi|S| ;σ
2)−[∑

k∈S

1

N
log det

(
Ink + ckek(−σ2)TkPk

)
+

1

N
log det

(
IN +

∑
k∈S

δk(−σ2)Rk

)
− σ2

∑
k∈S

δk(−σ2)ek(−σ2)

]
→ 0,

(13)

with ei(−σ2) and δi(−σ2) the unique positive solutions of

ei(−σ2) =
1

N
trRi

(
σ2

[
IN +

∑
k∈S

δk(−σ2)Rk

])−1
(14)

δi(−σ2) =
1

ni
trT

1
2
i PiT

1
2
i

(
σ2
[
Ini + ciei(−σ2)T

1
2
i PiT

1
2
i

])−1
.

This provides a deterministic equivalent for all points in the MIMO-MAC rate region, i.e., for all P1, . . . ,PK

precoders.

B. Rate maximisation

Now we wish to determine for which precoders the boundary of the MIMO-MAC rate region is reached. This

requires here to determine the rate optimal precoding matrices Pi1 , . . . ,Pi|S| , for all S ⊂ {1, . . . ,K}. To this end,

we first need the following result:

Proposition 2: If at least one of the correlation matrices Tk, k ∈ S, is invertible, then V◦N is a strictly concave

function in Pi1 , . . . ,Pi|S| .

Proof: The proof of Proposition 2 is provided in Appendix C.
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Define η > 0 the convergence threshold and l ≥ 0 the iteration step. At step l = 0,

for all k ∈ S, i ∈ {1, . . . , nk}, set p0k,i = Pk .

while maxk,i{|plk,i − p
l−1
k,i |} > η do

For k ∈ S, define el+1
k as the solution of (6) for z = −σ2 and Pk with

eigenvalues plk,1, . . . , p
l
k,nk

, obtained from the fixed-point algorithm of Table I.

for k ∈ S do

for i = 1 . . . , nk do

Set pl+1
k,i =

(
µk − 1

cke
l+1
k

tki

)+

, with µk such that 1
nk

trPk = Pk .

end for

end for

Assign l← l + 1

end while

TABLE II

ITERATIVE WATER-FILLING ALGORITHM

Without loss of generality, for any k, since the Xk matrices are standard Gaussian, and therefore of unitarily

invariant joint distribution, Tk can be assumed diagonal. If Tk is not of full rank then it can be reduced into

a matrix of smaller size, such that the resulting matrix is invertible, without changing the problem at hand. We

therefore assume all Tk matrices to be of full rank from now on. From Proposition 2, we then immediately prove

that the |S|-ary set of matrices {P◦i1 , . . . ,P
◦
i|S|
} which maximises the deterministic equivalent of the ergodic sum

rate over the set S is unique. In a very similar way as in [9], we then show that the matrices P◦k, k ∈ S, have the

following properties:

Proposition 3: For every k ∈ S, denote Tk = UkT̄kU
H
k the spectral decomposition of Tk with Uk unitary and

T̄k = diag(tk,1, . . . , tk,nk). Then the precoders P◦i1 , . . . ,P
◦
i|S|

which maximise the right-hand side of (13) satisfy:

1) P◦k = UkP̄
◦
kU

H
k , with P̄◦k diagonal, i.e., the eigenspace of P◦k is the same as the eigenspace of Tk;

2) denoting, for all k, e◦k = ek(−σ2) as in (14) for Pk = P◦k, the ith diagonal entry p◦k,i of P̄◦k satisfies:

p◦k,i =

(
µk −

1

cke◦ktki

)+

, (15)

where the µk are evaluated such that 1
nk

trPk = Pk.

In Table II, we provide an iterative water-filling algorithm to obtain the p◦ki.

Proof: The proof of Proposition 3 is provided in Appendix D.

Remark 2: In [9], it is proved that the convergence of this algorithm implies its convergence towards the correct

limit. The line of reasoning in [9] can be directly adapted to the current situation so that, if the iterative water-filling

algorithm of Table II converges, then Pi1 , . . . ,Pi|S| converge to the matrices P◦i1 , . . . ,P
◦
i|S|

. However, similar to

[9], it is difficult to prove the sure convergence of the water-filling algorithm. Nonetheless, extensive simulations

suggest that convergence is always attained.

For the set S under consideration, denote now P?i1 , . . . ,P
?
i|S|

the true sum rate maximising precoders. Then, if

P◦i1 , . . . ,P
◦
i|S|

and P?i1 , . . . ,P
?
i|S|

are such that Condition 1) of Theorem 2 is satisfied with the sets {T1, . . . ,TK}
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and {R1, . . . ,RK} replaced by {Ti1P
◦
i1
, . . . ,Ti|S|P

◦
i|S|
} (or {Ti1P

?
i1
, . . . ,Ti|S|P

?
i|S|
}) and {Ri1 , . . . ,Ri|S|},

respectively, we have from Theorem 2

VN (P?i1 , . . . ,P
?
i|S|

;σ2)− VN (P◦i1 , . . . ,P
◦
i|S|

;σ2) =
(
VN (P?i1 , . . . ,P

?
i|S|

;σ2)− V◦N (P?i1 , . . . ,P
?
i|S|

;σ2)
)

+
(
V◦N (P?i1 , . . . ,P

?
i|S|

;σ2)− V◦N (P◦i1 , . . . ,P
◦
i|S|

;σ2)
)

+
(
V◦N (P◦i1 , . . . ,P

◦
i|S|

;σ2)− VN (P◦i1 , . . . ,P
◦
i|S|

;σ2)
)
,

where both right-hand side differences of the type VN −V◦N tend to zero, while the left-hand side term is positive

by definition of P?k and the remaining right-hand side term is negative by definition of the P◦k. This finally ensures

that

VN (P?i1 , . . . ,P
?
i|S|

;σ2)− VN (P◦i1 , . . . ,P
◦
i|S|

;σ2)→ 0,

as N,ni1 , . . . , ni|S| grow large with uniformly bounded ratios. Therefore, the mutual information obtained based on

the precoders P◦i1 , . . . ,P
◦
i|S|

is asymptotically close to the capacity achieved with the ideal precoders P?i1 , . . . ,P
?
i|S|

.

Finally, if, for all sets S ⊂ {1, . . . ,K}, the matrices Tk, Rk and the resulting P?k, P◦k satisfy the mild conditions of

Theorem 2, then all points of the boundary of the MIMO-MAC rate region can be given a deterministic equivalent.

This concludes this application section. In the following section, we provide simulation results that confirm the

accuracy of the deterministic equivalents as well as the validity of the hypotheses made on the Tk and Rk matrices.

V. SIMULATIONS AND RESULTS

In the following, we apply the results obtained in Section IV to provide comparative simulation results between

ergodic rate regions, sum rates and their respective deterministic equivalents, for non negligible channel correlations

on both communication sides. We provide simulation results in the context of a two-user MIMO-MAC, with N

antennas at the base station and n1 = n2 antennas at the user terminals. The antennas are placed on a possibly

multi-dimensional array, antenna i being located at xi ∈ R3. We further assume that both terminals are physically

identical. To model the transmit and receive correlation matrices, we consider both the effect of the distances between

adjacent antennas at the user terminals and at the base station, and the effect of the solid angles of effective energy

transmission and reception. We assume a channel model where signals are transmitted and received isotropically in

the vertical direction, but transmitted and received under an angle π in the horizontal direction. We then model the

entries of the correlation matrices from a natural extension of Jakes model [27] with privileged direction of signal

departure and arrival. Denoting λ the transmit signal wavelength, T1ab , the entry (a, b) of the matrix T1, is

T1ab =

∫ θ(T1)
max,

θ
(T1)

min

exp

(
2πi

λ
‖xa − xb‖ cos(θ)

)
dθ

with [θ
(T1)
min , θ

(T1)
max ] the effective horizontal directions of signal propagation. With similar notations for the other

correlation matrices, we choose θ(T1)
min = 0, θ(T1)

max = π, θ(T2)
min = π/3, θ(T2)

max = 4π/3, θ(R1)
min = 2π/3, θ(R1)

max = −2π/3,

θ
(R2)
min = π and θ(R2)

max = 0.
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Fig. 2. Rate region for a two-user MIMO-MAC when the antennas are placed on a linear array with distance between close antennas is λ/10.

The number of antennas N = n1 = n2 is taken equal to 2, 4 or 8. Simulations (sim.) are compared against deterministic equivalents (det. eq.).

Uniform power allocation across transmit antennas (uni.) as well as optimal sum rate maximising precoding (opt.) are considered. The SNR is

20 dB in the top figure and −10 dB in the bottom figure.

We start by simulating the MIMO-MAC rate region obtained when n1 = n2 = N , either for N = 2, N =

4 or N = 8, for a linear antenna array with distance λ/10 between close antennas, under identity or optimal

precoding policies and with signal to noise ratio of 20 dB or −10 dB. Simulation results, averaged over 10, 000

channel realisations are compared with the deterministic equivalents. This is depicted in Figure 2. The deterministic

equivalents of the rate regions appear to approximate the true rate regions extremely well, even for very small

system dimensions. The case N = 8 shows in particular a perfect match. We note that increasing the number of

antennas on both communication side provides a greater gain when using the optimal precoding policy. We also
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Fig. 3. Per-antenna sum rate for a two-user MIMO-MAC when the antennas are placed on a line (1D) or a cubic array (3D). The number

of antennas satisfy N = n1 = n2 and range from 1 to 125. Simulations (sim.) are compared against deterministic equivalents (det. eq.). The

distance between close antennas is λ/2. The SNR is 20 dB. Uniform power allocation (uni.) as well as optimal sum rate maximising precoding

(opt.) are considered.

observe that, while increasing the number of antennas tends to reduce the individual per-antenna rate under uniform

power allocation, using an optimal precoding policy significantly increases the per-antenna rate. This phenomenon

is particularly accentuated in the low SNR regime. This confirms the observations made by Vishwanath et al. in

[28], according to which the efficiency of individual antennas can grow as the correlation grows at low SNR. This

is, for a given number of antennas, by increasing correlation and systematically applying optimal precoding, strong

eigenmodes emerge over which data can be directed. This leads to higher rates than for an uncorrelated antenna

array for which there are no such strong eigenmodes.

In order to test the robustness of the proposed deterministic equivalents to strongly correlated channel conditions,

we then compare in Figure 3 the MIMO-MAC ergodic sum rate to the associated deterministic equivalents when

precoder optimisation is performed or not and when the antenna grids are either one-dimensional regular arrays or

three-dimensional regular cubes. In all situations, the distance between neighboring antennas is half the wavelength

and the signal to noise ratio is taken to be 20 dB. We take the number of antennas on both sides to be successively

1, 8, 27, 64 and 125. We first observe that the deterministic equivalents are extremely accurate in this scenario. We

confirm also the behaviour of the antenna efficiency, which saturates for the one-dimensional array and decreases

fast for the three-dimensional antenna array, similar to what was observed in [25] for the single-user case. In terms

of performance, a large improvement of the achievable sum rate is observed, especially in the three-dimensional

case, when the optimal precoding policy is applied. Using optimal precoding policies can therefore significantly

reduce the negative impact of antenna correlation even in this high SNR regime.
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VI. CONCLUSION

In this article, we analyzed the performance of multi-antenna multi-user wireless communications and more

particularly the multi-antenna multiple access channel, while taking into account the correlation effects due to close

antennas and reduced solid angles of energy transmission and reception. The analytic approach is based on novel

results, based on recent tools from the field of large dimensional random matrix theory. From these tools, we provide

on the one hand a deterministic equivalent of the per-antenna mutual information of the MIMO-MAC for arbitrary

precoders under possibly strongly correlated channel conditions and on the other hand an approximation of the

rate maximising precoders along with an iterative water-filling algorithm to compute these precoders. In particular,

while theoretical results prove the asymptotic accuracy of our model in the case of dense antenna packing or multi-

dimensional antenna array on either communication side, simulations concur and suggest that the deterministic

equivalents are moreover extremely accurate for very small system dimensions. These results can be used both

from a practical side to easily derive optimal precoders and from a theoretical side to quantify the gains achieved

by optimal power allocation policies in strongly correlated MIMO channels.
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APPENDIX A

PROOF OF THEOREM 1

For ease of read, the proof will be divided into several sections.

We first consider the case K = 1, whose generalisation to K ≥ 1 is given in Appendix A-E. Therefore, in the

coming sections, we drop the useless indexes.

A. Truncation and centralisation

We begin with the truncation and centralisation steps which will replace X, R and T by matrices with bounded

entries, more suitable for analysis; the difference of the Stieltjes transforms of the original and new BN converging to

zero. Since vague convergence of distribution functions is equivalent to the convergence of their Stieltjes transforms,

it is sufficient to show the original and new empirical distribution functions of the eigenvalues approach each other

almost surely in the space of subprobability measures on R with respect to the topology which yields vague

convergence.

Let X̃ij = Xij1{|Xij |<
√
N}−E(Xij1{|Xij |<

√
N}) and X̃ =

(
1√
n
X̃ij

)
. Then, from c), Lemma 1 and a), Lemma

3, it follows exactly as in the initial truncation and centralisation steps in [22] and [29] (which provide more details

in their appendices), that

‖FN − FS+R
1
2 X̃TX̃HR

1
2 ‖ a.s.−→ 0,

as N →∞.

Let now Xij = X̃ij · 1{|Xij |<lnN} − E(X̃ij1I{|Xij |<lnN}) and X =
(

1√
n
Xij

)
. This is the final truncation and

centralisation step, which will be practically handled the same way as in [22], which some minor modifications,

given presently.

For any Hermitian non-negative definite r × r matrix A, let λAi denote its i-th smallest eigenvalue of A. With

A = U diag(λA1 , . . . , λ
A
r )UH its spectral decomposition, let for any α > 0

Aα = Udiag(λA1 1{λA
r ≤α}, . . . , λ

A
r 1{λ1≤α})U

H.

Then for any N ×N matrix Q, we get from 1) and 2), Lemma 3,

‖FS+R
1
2 QTQHR

1
2 − FS+R

1
2
αQTαQHR

1
2
α

‖ ≤ 2

N
rank(R

1
2 −R

1
2α) +

1

N
rank(T−Tα)

=
2

N

N∑
i=1

1{λR
i >α} +

1

N

n∑
i=1

1{λT
i >α)}

= 2FR((α,∞)) +
1

cN
FT((α,∞)).

Therefore, from the assumptions 4) and 6) in Theorem 1, we have for any sequence {αN} with αN →∞

‖FS+R
1
2 QTQHR

1
2 − FS+R

1
2
αNQTαNQHR

1
2
αN ‖ → 0, (16)

as N →∞.
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A metric D on probability measures defined on R, which induces the topology of vague convergence, is introduced

in [22] to handle the last truncation step. The matrices studied in [22] are essentially BN with R = IN . Following

the steps beginning at (3.4) in [22], we see in our case that when αN is chosen so that as N →∞, αN ↑ ∞,

α8
N (E|X2

111{X11|≥lnN} +N−1)→ 0

and
∞∑
N=1

α16
N

N2

(
E|X11|41{|X11|<

√
N)} + 1

)
<∞.

We will get

D(FS+R
1
2
αN X̃TαN X̃HR

1
2
αN
, FS+R

1
2
αNXTαNX

H
R

1
2
αN

)
a.s.−→ 0 (17)

as N →∞.

Since E|X11|2 → 1 as N → ∞ we can rescale and replace X with X/
√

E|X11|2, whose components are

bounded by k lnN for some k > 2. Let logN denote logarithm of N with base e1/k (so that k lnN = logN ).

Therefore, from (16) and (17) we can assume that for each N the Xij are i.i.d., EX11 = 0, E|X11|2 = 1, and

|Xij | ≤ logN .

Later on the proof will require a restricted growth rate on both ‖R‖ and ‖T‖. We see from (16) that we can

also assume

max(‖R‖, ‖T‖) ≤ logN. (18)

B. Deterministic approximation of mN (z)

Write X = [x1, . . . ,xn], xi ∈ CN and let yj = (1/
√
n)R

1
2xj . Then we can write

BN = S +

n∑
j=1

τjyjy
H
j .

We assume z ∈ C+ and let v = =[z]. Define

eN = eN (z) = (1/N) trR(BN − zIN )−1

and

pN = − 1

nz

n∑
j=1

τj
1 + cNτjeN

=

∫
−τ

z(1 + cNτeN )
dFT(τ)

Write BN = OΛOH, Λ = diag(λ1, . . . , λN ), its spectral decomposition. Let R = {Rij} = OHRO. Then

eN = (1/N) trR(Λ− zIN )−1 = (1/N)

N∑
i=1

Rii
λi − z

.

We therefore see that eN is the Stieltjes transform of a measure on the nonnegative reals with total mass (1/N) trR.

It follows that both eN (z) and zeN (z) map C+ into C+. This implies that pN (z) and zpN (z) map C+ into C+

and, as z →∞, zpN (z)→ −(1/n) trT. Therefore, from Lemma 6, we also have pN the Stieltjes transform of a

measure on the nonnegative reals with total mass (1/n) trT. From (18), it follows that

|eN | ≤ v−1 logN (19)
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and ∣∣∣∣∫ τ

(1 + cNτeN )
dFT(τ)

∣∣∣∣ = |zpN (z)| ≤ |z|v−1 logN. (20)

More generally, from Lemma 6, any function of the form

−τ
z(1 +m(z))

,

where τ ≥ 0 and m(z) is the Stieltjes transform of a finite measure on R+, is the Stieltjes transform of a measure

on the nonnegative reals with total mass τ . It follows that∣∣∣∣ τ

1 +m(z)

∣∣∣∣ ≤ τ |z|v−1. (21)

Fix now z ∈ C+. Let B(j) = BN − τjyjyH
j . Define D = −zIN + S− zpN (z)R. We write

BN − zIN −D =

n∑
j=1

τjyjy
H
j + zpNR.

Taking inverses and using Lemma 4 we have

(BN − zIN )−1 −D−1 =

n∑
j=1

τjD
−1yjy

H
j (BN − zIN )−1 + zpND−1R(BN − zIN )−1

=

n∑
j=1

τj
D−1yjy

H
j (B(j) − zIN )−1

1 + τjyH
j (B(j) − zIN )−1yj

+ zpND−1R(BN − zIN )−1.

Taking traces and dividing by N , we have

1

N
trD−1 −mN (z) =

1

n

n∑
j=1

τjdj ≡ wmN ,

where

dj =
(1/N)xH

jR
1
2 (B(j) − zIN )−1D−1R

1
2xj

1 + τjyH
j (B(j) − zIN )−1yj

− (1/N) trR(BN − zIN )−1D−1

1 + cNτjeN
.

Multiplying both sides of the above matrix identity by R, and then taking traces and dividing by N , we find

1

N
trD−1R− eN (z) =

1

n

n∑
j=1

τjd
e
j ≡ weN ,

where

dej =
(1/N)xH

jR
1
2 (B(j) − zIN )−1RD−1R

1
2xj

1 + τjyH
j (B(j) − zIN )−1yj

− (1/N) trR(BN − zIN )−1RD−1

1 + cNτjeN
.

We then show that, for any k > 0, almost surely

lim
N→∞

(logkN)wmN = 0 (22)

and

lim
n→∞

(logkN)weN = 0. (23)

Notice that for each j, yH
j (B(j)−zIN )−1yj can be viewed as the Stieltjes transform of a measure on R+. Therefore

from (21) we have ∣∣∣∣∣ 1

1 + τjyH
j (B(j) − zIN )−1yj

∣∣∣∣∣ ≤ |z|v . (24)
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For each j, let e(j) = e(j)(z) = (1/N) trR(B(j) − zIN )−1, and

p(j) = p(j)(z) =

∫
−τ

z(1 + cNτe(j))
dFT(τ),

both being Stieltjes transforms of measures on R+, along with the integrand for each τ .

Using Lemma 4, Equations (18) and (21), we have

|zpN − zp(j)| = |eN − e(j)|cN
∣∣∣∣∫ τ2

(1 + cNτeN )(1 + cNτe(j))
dFT(τ)

∣∣∣∣ ≤ cN |z|2 log3N

Nv3
. (25)

Let D(j) = −zIN +S− zp(j)(z)R. Notice that (BN − zIN )−1 and (B(j)− zIN )−1 are bounded in spectral norm

by v−1 and, from Lemma 8, the same holds true for D−1 and D−1(j) .

In order to handle both wmN , dj and weN , dej at the same time, we shall denote by E either T or IN , and wN ,

dj for now will denote either the original wmN , dj or weN , dej . Write dj = d1j + d2j + d3j + d4j , where

d1j =
(1/N)xH

jR
1
2 (B(j) − zIN )−1ED−1R

1
2xj

1 + τjyH
j (B(j) − zIN )−1yj

−
(1/N)xH

jR
1
2 (B(j) − zIN )−1ED−1(j)R

1
2xj

1 + τjyH
j (B(j) − zIN )−1yj

d2j =
(1/N)xH

jR
1
2 (B(j) − zIN )−1ED−1(j)R

1
2xj

1 + τjyH
j (B(j) − zIN )−1yj

−
(1/N) trR(B(j) − zIN )−1ED−1(j)

1 + τjyH
j (B(j) − zIN )−1yj

d3j =
(1/N) trR(B(j) − zIN )−1ED−1(j)

1 + τjyH
j (B(j) − zIN )−1yj

− (1/N) trR(BN − zIN )−1ED−1

1 + τjyH
j (B(j) − zIN )−1yj

d4j =
(1/N) trR(BN − zIN )−1ED−1

1 + τjyH
j (B(j) − zIN )−1yj

− (1/N) trR(BN − zIN )−1ED−1

1 + cNτjeN
.

From Lemma 4, Equations (18), (24) and (25), we have

τj |d1j | ≤
1

N
‖xj‖2

cN log7N |z|3

Nv7

τj |d2j | ≤ |z|v−1
logN

N

∣∣∣xH
jR

1
2 (B(j) − zIN )−1ED−1(j)R

1
2xj − trR(B(j) − zIN )−1ED−1(j)

∣∣∣
τj |d3j | ≤

|z| log3N

vN

(
1

v2
+
cN |z|2 log3N

v6

)
→ 0, as n→∞

τj |d4j | ≤
|z|cN log4N

Nv3

(
|xH
jR

1
2 (B(j) − zIN )−1R

1
2xj − trR

1
2 (B(j) − zIN )−1R

1
2 |+ logN

v

)
.

From Lemma 7, there exists K̄ > 0 such that,

E| 1

N
‖xj‖2 − 1|6 ≤ KN−3 log12N

E
1

N6
|xH
jR

1
2 (B(j) − zIN )−1ED−1(j)R

1
2xj − trR(B(j) − zIN )−1ED−1(j)|

6 ≤ KN−3v−12 log24N

E
1

N6
|xH
jR

1
2 (B(j) − zIN )−1R

1
2xj − trR

1
2 (B(j) − zIN )−1R

1
2 |6 ≤ KN−3v−6 log18N.

All three moments when multiplied by n times any power of logN , are summable. Applying standard argu-

ments using the Borel-Cantelli lemma and Boole’s inequality (on 4n events), we conclude that, for any k > 0

logkN maxj≤n τjdj
a.s.−→ 0 as N →∞. Hence Equations (22) and (23).
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C. Existence and uniqueness of m◦N (z)

We show now that for any N , n, S, R, N ×N nonnegative definite and T = diag(τ1, . . . , τN ), τk ≥ 0 for all

1 ≤ k ≤ N , there exists a unique e with positive imaginary part for which

e =
1

N
tr

(
S +

[∫
τ

1 + cNτe
dFT(τ)

]
R− zIN

)−1
R. (26)

For existence we consider the subsequences {Nj}, {nj} with Nj = jN , nj = jn, so that cNj remains cN , form

the block diagonal matrices

RNj = diag(R,R, . . . ,R), SNj = diag(S,S, . . . ,S) (27)

both jN × jN and

TNj = diag(T,T, . . . ,T) (28)

of size jn × jn. We see that FTNj = FT and the right side of (26) remains unchanged for all Nj . Consider a

realisation where weNj → 0 as j →∞. We have |eNj (z)| = |(jN)−1 trR(BjN − zIN )−1| ≤ v−1 logN , remaining

bounded as j →∞. Consider then a subsequence for which eNj converges to, say, e. From (21), we see that∣∣∣∣ τ

1 + cNτeNj

∣∣∣∣ ≤ τ |z|v−1
so that from the dominated convergence theorem we have∫

τ

1 + cNτeNj (z)
dFT(τ)→

∫
τ

1 + cNτe
dFT(τ)

along this subsequence. Therefore e solves (26).

We now show uniqueness. Let e be a solution to (26) and let e2 = =[e]. Recalling the definition of D we write

e =
1

N
tr

(
D−1RD−H

(
S +

[∫
τ

1 + cNτe∗
dFT(τ)

]
R− z∗I

))
.

We see that since both R and S are Hermitian nonnegative definite, tr
(
D−1RD−HS

)
is real and nonnegative.

Therefore we can write

e2 =
1

N
tr

(
D−1R(DH)−1

([∫
cNτ

2e2
|1 + cNτe|2

dFT(τ)

]
R + vIN

))
= e2α+ vβ, (29)

where we denoted

α =
1

N
tr

(
D−1R(DH)−1

[∫
cNτ

2

|1 + cNτe|2
dFT(τ)

]
R

)
β =

1

N
tr
(
D−1R(DH)−1

)
.

Let e be another solution to (26), with e2 = =[e], and analogously we can write e2 = e2α+ vβ. Let D denote D

with e replaced by e. Then we have e− e = γ(e− e) where

γ =

∫
cNτ

2

(1 + cNτe)(1 + cNτe)
dFT(τ)

trD−1RD−1R

N
.
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If R is the zero matrix, then γ = 0, and e = e would follow. For R 6= 0 we use Cauchy-Schwarz to find

|γ| ≤
(∫

cNτ
2

|1 + cNτe|2
dFT(τ)

trD−1R(DH)−1R

N

) 1
2

(∫
cNτ

2

|1 + cNτe|2
dFT(τ)

trD−1R(DH)−1R

N

) 1
2

= α
1
2α

1
2

=

(
e2α

e2α+ vβ

) 1
2
(

e2α

e2α+ vβ

) 1
2

.

Necessarily β and β are positive since R 6= 0. Therefore |γ| < 1 so we must have e = e. For z < 0 and e > 0, the

same calculus can be performed, with γ remaining the same. The step (29) is changed by evaluating e, instead of

e2, using the same technique. We obtain the same α while β is replaced by another positive scalar. We therefore

still have that γ < 1.

D. Termination of the proof

Let e◦N denote the solution to (26). We show now for any ` > 0, almost surely

lim
N→∞

log`N(eN − e◦N ) = 0. (30)

Let e◦2 = =[e◦N ], and α◦ = α◦N , β◦ = β◦N be the values as above for which e◦2 = e◦2α
◦ + vβ◦. We have, using (18)

and (21),

e◦2α
◦
N/β

◦
N ≤ e◦2cN logN

∫
τ2

|1 + cNτe◦N |2
dFT(τ)

= − logN=
[∫

τ

1 + cNτe◦N
dFT(τ)

]
≤ log2N |z|v−1.

Therefore

α◦ =

(
e◦2α
◦

e◦2α
◦ + vβ◦

)
=

(
e◦2α
◦/β◦

v + e◦2α
◦/β◦

)
≤
(

log2N |z|
v2 + log2N |z|

)
(31)

Let D◦, D denote D as above with e replaced by, respectively e◦N and eN . We have

eN =
1

N
trD−1R− weN .

With e2 = =[eN ] we write as above

e2 =
1

N
tr

(
D−1RD−H

([∫
cNτ

2e2
|1 + cNτeN |2

dFT(τ)

]
R + vIN

))
−=[weN ]

= e2α+ vβ −=weN
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We have as above eN − e◦N = γ(eN − e◦N ) + weN where now

|γ| ≤ α◦
1
2α

1
2 .

Fix an ` > 0 and consider a realisation for which log`
′
N weN → 0, where `′ = max(`+ 1, 4) and n large enough

so that

|weN | ≤
v3

4cN |z|2 log3N
. (32)

Suppose β ≤ v2

4cN |z|2 log3N
. Then by Equations (18) and (21) we get

α ≤ cNv−2|z|2 log3Nβ ≤ 1/4,

which implies |γ| ≤ 1/2. Otherwise we get from (31) and (32)

|γ| ≤ α◦
1
2

(
e2α

e2α+ vβ −=[weN ]

) 1
2

≤
(

logN |z|
v2 + logN |z|

) 1
2

.

Therefore for all N large

log`N |eN − e◦N | ≤
(log`N)weN

1−
(

log2N |z|
v2+log2N |z|

) 1
2

≤ 2v−2(v2 + log2N |z|)(log`N)weN

→ 0,

as n→∞. Therefore (30) follows.

Let m◦N = N−1 trD◦. We finally show

mN −m◦N
a.s.−→ 0, (33)

as n→∞. Since mN = N−1 trD−1 − wmN , we have

mN −m◦N = γ(eN − e◦N )− wmN ,

where now

γ =

∫
cNτ

2

(1 + cNτeN )(1 + cNτe◦N )
dFT(τ)

trD−1RD◦−1

N
.

From (18) and (21) we get |γ| ≤ cN |z|2v−4 log3N . Therefore, from (22) and (30), we get (33).

Returning to the original assumptions on X11, T, and R, for each of a countably infinite collection of z with

positive imaginary part, possessing a cluster point with positive imaginary part, we have (33). Therefore, by Vitali’s

convergence theorem, page 168 of [30], for any ε > 0 we have with probability one mN (z)−m◦N (z)→ 0 uniformly

in any region of C bounded by a contour interior to

C \ ({z : |z| ≤ ε} ∪ {z = x+ iv : x > 0, |v| ≤ ε}) .
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If S = f(R), meaning the eigenvalues of R are changed via f in the spectral decomposition of R, then we have

m◦N (z) =

∫
1

f(r) + r
∫

τ
1+cNτe◦N (z)dF

T(τ)− z
dFR(r)

e◦N (z) =

∫
r

f(r) + r
∫

τ
1+cNτe◦N (z)dF

T(τ)− z
dFR(r).

E. Extension to K ≥ 1

Suppose now

BN = S +

K∑
k=1

R
1
2

kXkTkX
H
kR

1
2

k

where K remains fixed, Xk is N × nk satisfying 1, the Xk’s are independent, Rk satisfies 2) and 4), Tk is

nk×nk satisfying 3) and 4), ck = N/nk satisfies 6), and S satisfies 5). After truncation and centralisation we may

assume the same condition on the entries of the Xk’s, and the spectral norms of the Rk’s and the Tk’s. Write

yk,j = (1/
√
nk)R

1
2

k xk,j , with xk,j denoting the j-th column of Xk, and let τk,j denote the j-th diagonal element

of Tk. Then we can write

BN = S +

K∑
k=1

nk∑
j=1

τk,jyk,jy
H
k,j .

Define

eN,k = eN,k(z) = (1/N) trRk(BN − zIN )−1

and

pk = − 1

nkz

nk∑
j=1

τk,j
1 + ckτk,jeN,k

=

∫
−τk

1 + ckτkeN,k
dFTk(τk).

We see eN,k and pk have the same properties as eN and pN . Let Bk,(j) = BN − τk,jyk,jy
H
k,j . Define D =

−zIN + S−
∑K
k=1 zpk(z)Rk. We write

BN − zIN −D =

K∑
k=1

 nk∑
j=1

τk,jyk,jy
H
k,j + zpk(z)Rk

 .

Taking inverses and using Lemma 4, we have

D−1 − (BN − zIN )−1 =

K∑
k=1

 nk∑
j=1

τk,jD
−1yk,jy

H
k,j(BN − zIN )−1 + zpkD

−1Rk(BN − zIN )−1


=

K∑
k=1

 nk∑
j=1

τk,j
D−1yk,jy

H
k,j(Bk,(j) − zIN )−1

1 + τk,jyH
k,j(Bk,(j) − zIN )−1yk,j

+ zpkD
−1Rk(BN − zIN )−1

 .

Taking traces and dividing by N , we have

(1/N) trD−1 −mN (z) =

K∑
k=1

1

nk

nk∑
j=1

τk,jdk,j ≡ wmN ,
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where

dk,j =
(1/N)xH

k,jR
1
2

k (Bk,(j) − zIN )−1D−1R
1
2

k xk,j

1 + τk,jyH
k,j(Bk,(j) − zIN )−1yk,j

− (1/N) trRk(BN − zIN )−1D−1

1 + ckτk,jeN,k
.

For a fixed k ∈ {1, . . . ,K}, we multiply the above matrix identity by Rk, take traces and divide by N . Thus we

get

(1/N) trD−1Rk − ek(z) =

K∑
k=1

1

nk

nk∑
j=1

τk,jd
e
kkj ≡ wek,

where

dekkj =
(1/N)xH

k,jR
1
2

k (Bk,(j) − zIN )−1RkD
−1R

1
2

k xk,j

1 + τk,jyH
k,j(Bk,(j) − zIN )−1yk,j

−
(1/N) trRk(BN − zIN )−1RkD

−1

1 + ckτk,jeN,k
.

In exactly the same way as in the case with K = 1 we find that for any nonnegative `, log`NwmN and the

log` wei ’s converge almost surely to zero. By considering block diagonal matrices as before with N , ni’s, S, Ri’s

and Ti’s all fixed we find that there exist e◦1, . . . , e
◦
K with positive imaginary parts for which for each i

e◦i =
1

N
trRi

(
S +

K∑
k=1

[∫
τ

1 + ckτe◦k
dFTk(τ)

]
Rk − zIN

)−1
. (34)

Let us verify uniqueness. Let e◦ = (e◦1, . . . , e
◦
K)T, and let D◦ denote the matrix in (34) whose inverse is taken

(essentially D after the eN,i’s are replaced by the e◦i ’s). Let for each j, e◦j,2 = =e◦j , and e◦2 = (e◦1,2, . . . , e
◦
K,2)T. Then,

noticing that for each i, trSD◦−HRiD
◦−1 is real and nonnegative (positive whenever S 6= 0) and trD◦−HRiD

◦−1

and trRjD
◦−HRiD

◦−1 are real and positive for all i, j, we have

e◦i,2 = =

 1

N
tr

S +

K∑
j=1

[∫
τ

1 + cjτe
◦
j

dFTj (τ)

]
Rj − z∗I

D◦−HRiD
◦−1


=

K∑
j=1

e◦j,2
1

N
trRjD

◦−HRiD
◦−1cj

∫
τ2

|1 + cjτe◦j |2
dFTj (τ) +

v

N
trD◦−HRiD

◦−1. (35)

Let C◦ = (c◦ij), b◦ = (b◦1, . . . , b
◦
N )T, where

c◦ij =
1

N
trRjD

◦−HRiD
◦−1cj

∫
τ2

|1 + cjτe◦j |2
dFTj (τ)

and

b◦i =
1

N
trD◦−HRiD

◦−1.

Therefore we have that e◦2 satisfies

e◦2 = C◦e◦2 + vb◦. (36)

We see that each e◦j,2, c◦ij , and b◦j are positive. Therefore, from Lemma 9 we have ρ(C◦) < 1.

Let e◦ = (e◦1, . . . , e
◦
K)T be another solution to (34), with e◦2, D◦, C◦ = (c◦ij), b◦ defined analogously, so that

(36) holds and ρ(C◦) < 1. We have for each i,

e◦i − e◦i =
1

N
trRiD

◦−1
K∑
j=1

(e◦j − e◦j )cj
∫

τ2

(1 + cjτe◦j )(1 + cjτe◦j )
dFTj (τ)RjD

◦−1.
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Thus with A = (aij) where

aij =
1

N
trRiD

◦−1RjD
◦−1cj

∫
τ2

(1 + cjτe◦j )(1 + cjτe◦j )
dFTj (τ), (37)

we have

e◦ − e◦ = A(e◦ − e◦), (38)

which means, if e◦ 6= e◦, then A has an eigenvalue equal to 1.

Applying Cauchy-Schwarz we have

|aij | ≤

(
1

N
RiD

◦−1RjD
◦−H

∫
τ2

|1 + cjτe◦j |2
dFTj (τ)

) 1
2
(

1

N
RiD

◦−1RjD
◦−H

∫
τ2

|1 + cjτe◦j |2
dFTj (τ)

) 1
2

= c◦ij
1/2c◦ij

1/2.

Therefore from Lemmas 10 and 11 we get

ρ(A) ≤ ρ(c◦ij
1
2 c◦ij

1
2 ) ≤ ρ(C◦)

1
2 ρ(C◦)

1
2 < 1;

a contradiction to the statement A has an eigenvalue equal to 1. Consequently we have e = e.

The same reasoning can be applied to z < 0, with e◦i > 0. In this case matrix A remains the same. The step

(35) is now replaced by taking e◦i , instead of its imaginary part, using the same line of reasoning. This leads to the

same matrix C◦ with (36) remaining true with b◦ replaced by another positive vector. The conclusion ρ(A) < 1

therefore remains.

Let eN = (eN,1, . . . , eN,K)T and e◦N = (e◦N,1, . . . , e
◦
N,K) denote the vector solution to (34) for each N . We will

show for any ` > 0, almost surely

lim
N→∞

log`N(eN − e◦N )→ 0. (39)

We have

e◦N = (
1

N
trR1D

◦−1, . . . ,
1

N
trRKD◦−1)T.

Let we = we
N = −(we1, . . . , w

e
K)T. Then we can write

eN = (
1

N
trR1D

−1, . . . ,
1

N
trRKD−1)T + we.

Therefore

eN − e◦N = A(N)(eN − e◦N ) + we,

where A(N) = (aij(N)) with

aij(N) =
1

N
trRiD

−1RjD
◦−1cj

∫
τ2

(1 + cjτeN,j)(1 + cjτe◦N,j)
dFTj (τ).

We let e◦N,2, b◦ij(N), C◦(N), b◦N,i, and b◦N , denote the quantities from above, reflecting now their dependence on

N . Let C(N) = (cij(N)) be K ×K with

cij(N) =
1

N
trRjD

−HRiD
−1cj

∫
τ2

|1 + cjτeN,j |2
dFTj (τ).
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Let eN,2 = =[eN ] and we
2 = =[we]. Define bN = (bN,1, . . . , bN,K)T with

bN,i =
1

N
trD−HRiD

−1.

Then, as above we find that

eN,2 = C(N)eN,2 + vbN + we
2. (40)

Using (18) and (21) we see there exists a constant K1 > 0 for which

c◦ij(N) ≤ K1 log3Nb◦N,i

and

cij(N) ≤ K1 log3NbN,i

cij(N) ≤ K1 log4N

for each i, j. Therefore, from (36) we see there exists K̂ > 0 for which

e◦N,i ≤ K̂ log4Nvb◦N,i. (41)

Let x be such that xT is a left eigenvector of C◦(N) corresponding to eigenvalue ρ(C◦(N)), guaranteed by Lemma

12. Then from (40) we have

xTe◦N,2 = ρ(C◦(N))xTe◦N,2 + vxTb◦N . (42)

Using (42) we have

1− ρ(C◦(N)) =
vxTb◦N
xTe◦N,2

≥ (K̂ log4N)−1. (43)

Fix an ` > 0 and consider a realisation for which log`+3+pNwe
N → 0, as N → ∞, where p ≥ 12K − 7. We

will show for all N large

ρ(C(N)) ≤ 1 + (K̂ log4N)−1. (44)

For each N we rearrange the entries of eN,2, vbm + we
2, and C(n) depending on whether the ith entry of

vbm + we
2 is greater than, or less than or equal to zero. We can therefore assume

C =

C11(N) C12(N)

C21(N) C22(N)

 ,

where C11(N) is k1 × k1, C22(N) is k2 × k2, C12(N) is k1 × k2, and C21(N) is k2 × k1. From Lemma 9 we

have ρ(C11(N)) < 1. If vbN,i+we
2,i ≤ 0, then necessarily vbN,i ≤ |we

N | ≤ K1(log n)−(3+p), and so from (41) we

have the entries of C21(N) and C22(N) bounded by K1(logN)−p. We may assume for all N large 0 < k1 < K,

since otherwise we would have ρ(C(N)) < 1.
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We seek an expression for det(C(N)−λIN ) in which Lemma 14 can be used. We consider N large enough so

that, for |λ| ≥ 1/2, we have (C22(N)− λIN )−1 existing with entries uniformly bounded. We have

det(C(N)− λI) = det

I −C12(N)(C22(N)− λI)−1

0 I

C11(N)− λI C12(N)

C21(N) C22(N)− λI


= det

C11(N)− λI−C12(N)(C22(N)− λI)−1C21(N) 0

C21(N) C22(N)− λI


= det(C11(N)− λI−C12(N)(C22(N)− λI)−1C21(N)) det(C22(N)− λI).

We see then that for λ = ρ(C(N)) real and greater than 1,

det(C11(N)− λI−C12(N)(C22(N)− λI)−1C21(N)) (45)

must be zero.

Notice that from (41), the entries of C12(N)(C22(N)− λI)−1C21(N) can be made smaller than any negative

power of logN for p sufficiently large. Notice also that the diagonal elements of C11(N) are all less than 1. From

this, Lemma 13 and (41), we see that ρ(C(N)) ≤ K1 log4N . The determinant in (45) can be written as

det(C11(N)− λI) + g(λ),

where g(λ) is a sum of products, each containing at least one entry from C12(N)(C22(N)−λI)−1C21(N). Again,

from (41) we see that for all |λ| ≥ 1/2, g(λ) can be made smaller than any negative power of logN by making

p sufficiently large. Choose p so that |g(λ)| < (K̂ logN)−4k1 for these λ. It is clear that any p > 8k1 + 4 will

suffice. Let λ1, . . . , λk1 denote the eigenvalues of C11. Since ρ(C11) < 1, we see that for |λ| ≥ (K̂ logN)−4, we

have

|det(C11(N)− λI)| = |
k1∏
i=1

(λi − λ)|

> (K̂ logN)−4k1 .

Thus with f(λ) = det(C11(N)−λI), a polynomial, and g(λ) being a rational function, we have the conditions of

Lemma 14 being met on any rectangle C, with vertical lines going through ((K̂ logN)−4, 0) and (K1(logN)4, 0).

Therefore, since f(λ) has no zeros inside C, neither does det(C(N) − λI). Thus we get (44). As before we see

that

|aij(N)| ≤ c1/2ij (N)c◦ij
1/2(N).

Therefore, from (43), (44), and Lemmas 10 and 11, we have for all N large

ρ(A(N)) ≤

(
K̂2 log8N − 1

K̂2 log8N

) 1
2

. (46)

For these N we have then I−A(N) invertible, and so

eN − e 0
N = (I−A(N))−1we.
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By (18) and (21) we have the entries of A(N) bounded by K1 log4N . Notice also, from (46)

|det(I−A(N))| ≥ (1− ρ(A(N))K ≥

K̂2 log8N

(
1 +

K̂2 log8N − 1

K̂2 log8N

) 1
2

−K ≥ (2K̂2 log8N)−K .

When considering the inverse of a square matrix in terms of its adjoint divided by its determinant, we see that

the entries of (I−A(N))−1 are bounded by

(K − 1)!K1(logN)4(K−1)

|det(I−A(N))|
≤ K3(logN)12K−4.

Therefore, since p ≥ 12K − 7 (> 8k1 + 4), (39) follows on this realisation, an event which occurs with probability

one.

Letting m◦N = 1
N trD◦−1, we have

mN −m◦N = ~γT(eN − e◦N ),

where ~γ = (γ1, . . . , γK)T with

γj =

∫
cNτ

2

(1 + cNτeN,j)(1 + cnτe◦N,j)
dFTN (τ)

trD−1RjD
◦−1

N
.

From (18) and (21) we get each |γj | ≤ cN |z|2v−4 log3N . Therefore from (39) and the fact that wmN → 0, we have

mN −m◦N → 0,

almost surely, as N →∞.

This completes the proof.

APPENDIX B

PROOF OF THEOREM 2

We first prove that V◦N (x) as defined in Equation (12) verifies

V◦N (x) =

∫ ∞
x

(
1

w
−m◦N (−w)

)
dw (47)

and then we prove that, under the conditions of Theorem 2, V◦(x) defined as such verifies

V◦N (x)− VN (x)
a.s.−→ 0. (48)

A. Proof of (47)

First, write ei(z) under the symmetric form

ei(z) =
1

N
trRi

(
−z

[
IN +

K∑
k=1

δkRk

])−1
δi(z) =

1

ni
trTi (−z [Ini + ciei(z)Ti])

−1
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and then for m◦N (z),

m◦N (z) =
1

N
tr

(
−z

[
IN +

K∑
k=1

δkRk

])−1
.

Now, notice that

1

z
−m◦N (−z) =

1

N

(zI)
−1 −

(
z

[
IN +

K∑
k=1

δkRk

])−1
=

K∑
k=1

δk(−z) · ek(−z).

Since the Shannon transform V(x) satisfies V(x) =
∫ +∞
x

[w−1 −mN (−w)]dw, we need to find an integral form

for
∑K
k=1 δk(−z) · ek(−z). Notice now that

d

dz

1

N
log det

(
IN +

K∑
k=1

δk(−z)Rk

)
= −z

K∑
k=1

ek(−z) · δ′k(−z)

d

dz

1

N
log det (Ink + ckek(−z)Tk) = −z · e′k(−z) · δk(−z)

d

dz

(
z

K∑
k=1

δk(−z)ek(−z)

)
=

K∑
k=1

δk(−z)ek(−z)− z
K∑
k=1

δ′k(−z) · ek(−z) + δk(−z) · e′k(−z).

Combining the last three lines, we have
K∑
k=1

δk(−z)ek(−z) =

d

dz

[
− 1

N
log det

(
IN +

K∑
k=1

δk(−z)Rk

)
−

K∑
k=1

1

N
log det (Ink + ckek(−z)Tk) + z

K∑
k=1

δk(−z)ek(−z)

]
,

which after integration leads to∫ +∞

z

(
1

w
−m◦N (−w)

)
dw =

1

N
log det

(
IN +

K∑
k=1

δk(−z)Rk

)
+

K∑
k=1

1

N
log det (Ink + ckek(−z)Tk)− z

K∑
k=1

δk(−z)ek(−z), (49)

which is exactly the right-hand side of (12).

B. Proof of (48)

Consider now the existence of a nonrandom α and for each N a non-negative integer rN for which

max
i≤K

max(λTirN+1, λ
Ri
rN+1) ≤ α

(eigenvalues also arranged in non-increasing order). Then for each i

λ
R

1
2
i XiTiX

H
iR

1
2
i

2rN+1 = (s
R

1
2
i XiT

1
2
i

2rN+1 )2

≤ α2‖XiX
H
i ‖
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and then we have, from Lemma 15,

λBN2KrN+1 ≤ α
2(‖X1X

H
1 ‖+ · · ·+ ‖XKXH

K‖).

We can in fact consider that the spectral norms of the Xi are bounded in the limit. Either Gaussian assumptions

on the components, or finite fourth moment, but all coming from doubly infinite arrays (remember though that we

need the right-unitary invariance structure of Xi). Because of assumption 5 in Corollary 1, we can, by enlarging

the sample space, assume each Xi is embedded in an N × n′i matrix X′i, where N/n′i → a as N → ∞. Then,

with probability one (see e.g. [16]),

lim sup
N

λBN2KrN+1 ≤ lim sup
N

α2(‖X′1X′1
H‖+ · · ·+ ‖X′KX′K

H‖)

≤ α2Kb

a
(1 +

√
a)2. (50)

Let a◦ be any real greater than α2K b
a (1 +

√
a)2.

Since S = 0 here, it follows as in [22] that {FBn} is almost surely tight. Let F ◦N denote the distribution function

having Stieltjes transform m◦N , and let f on [0,∞) be a continuous function. Then the function

fa◦(x) =

 f(x) , x ≤ a◦

f(a◦) , x > a◦

is bounded and continuous. Therefore, with probability 1,∫
fa◦(x)dFN (x)−

∫
fa◦(x)dF ◦N (x)→ 0,

as N →∞.

Suppose now rN = o(N). Then, since almost surely there are at most 2KrN eigenvalues greater than a◦ for all

N large, any converging subsequence of {F ◦N} must have some mass lying on [0, a◦]. This implies, with probability

1,
1

N

∑
λi≤a◦

f(λi)−
∫
[0,a◦]

f(x)dF ◦N (x)→ 0,

as N →∞.

Let bN be a bound on the spectral norms of the Ti and Ri. Then

‖Bn‖ ≤ b2N (‖X′1X′1
H‖+ · · ·+ ‖X′KX′K

H‖). (51)

Fix a number β > Kb
a (1+

√
a)2, and let aN = b2Nβ. Suppose also that f is increasing and that f(aN )rN = o(N).

Then ∫
f(x)dFBn(x)− 1

N

∑
λi≤a◦

f(λi)→ 0,

almost surely, as N →∞. Therefore, with probability 1,∫
f(x)dFN (x)−

∫
[0,a◦]

f(x)dF ◦N (x)→ 0,

as N →∞.
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For any N we consider, for j = 1, 2, . . ., the jN × jN matrix BN,j formed, as before, from block diagonal

matrices and jN × jni matrices of i.i.d. variables. Then with probability 1, FBN,j converges weakly to F ◦N as

j →∞. Properties on the eigenvalues of BN,j will thus yield properties of F ◦N .

By considering the bound on ‖Bn,j‖ analogous to (51), we must have F ◦N (aN ) = 1 for all N large.

Similar to (50) we see that, with probability 1

lim sup
j

λ
BN,j
2KjrN+1 ≤ a

2((1 +
√
c1)2 + · · ·+ (1 +

√
cK)2),

this latter number being less than a◦ for all N large.

At this point we will use the fact that for probability measures PN , P on R with PN converging weakly to P ,

we have (see e.g. [31])

lim inf
N

PN (G) ≥ P (G)

for any open set G. Thus, with G = (a◦,∞) we see that, with probability 1, for all N large

F ◦N ((a◦,∞)) = 1− F ◦N (a◦) ≤ lim inf
j

FBN,j ((a◦,∞))

≤ 2KrN/N.

Therefore, for all N large ∫
(a◦,∞)

f(x)dF ◦N (x) ≤ f(aN )2KrN/N → 0,

as N →∞.

Therefore, we conclude that,
∫
f(x)dF ◦N (x) is bounded, and with probability 1∫

f(x)dFN (x)−
∫
f(x)dF ◦N (x)→ 0,

as N →∞. This concludes the proof.

APPENDIX C

PROOF OF PROPOSITION 2

The proof stems from the following result,

Proposition 4: f(P1, . . . ,PK) is a strictly concave matrix in the Hermitian nonnegative definite matrices P1, . . . ,PK ,

if and only if, for any couples (P1a ,P1b), . . . , (PKa ,PKb) of Hermitian nonnegative definite matrices, the function

φ(λ) = f (λP1a + (1− λ)P1b , . . . , λPKa + (1− λ)PKb)

is strictly concave.

Denote

V̄◦N (λ) = V◦N (λP1a + (1− λ)P1b , . . . , λP|S|a + (1− λ)P|S|b)
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and consider a set (δk, ek,Pi1 , . . . ,Pi|S|) which satisfies the system of equations (53)-(55). Then, from remark

(56) and (57),

dV̄◦N
dλ

=
∑
k∈S

∂V̄

∂δk

∂δk
∂λ

+
∂V̄

∂ek

∂ek
∂λ

+
∂V̄

∂λ

=
∂V̄

∂λ
,

where

V̄ : (δ1, . . . , δ|S|, e1, . . . , e|S|, λ) 7→ V̄◦N (λ). (52)

Mere derivations of V̄ lead then to

∂2V̄

∂λ2
= −

∑
i∈S

(c2i e
2
i )

1

N
tr (I + cieiRiPi)

−2
(Ri(Pia −Pib))

2.

Since ei > 0 on the strictly negative real axis, if any of the Ri’s is positive definite, then, for all nonnegative

definite couples (Pia ,Pib), such that Pia 6= Pib , V̄
′′
N < 0. Then, from Proposition 4, the deterministic approximate

V◦N is strictly concave in P1, . . . ,P|S| if any of the Ri matrices is invertible.

APPENDIX D

PROOF OF PROPOSITION 3

The proof of Proposition 3 recalls the proof from [9], Proposition 5. Let us define the functions

V◦N (P1, . . . ,P|S|) =
∑
k∈S

1

N
log det (Ink + ckekRkPk)

+
1

N
log det

(
IN +

∑
k∈S

δkTk

)

− σ2
K∑
k=1

δk(−σ2)ek(−σ2), (53)

where

ei = ei(P1, . . . ,P|S|) =
1

N
trTi

(
σ2

[
IN +

∑
k∈S

δkTk

])−1
(54)

δi = δi(P1, . . . ,P|S|) =
1

ni
trRiPi

(
σ2 [Ini + ciei(z)RiPi]

)−1
(55)

and V : (P1, . . . ,P|S|, δ1, . . . , δ|S|, e1, . . . , e|S|) 7→ V◦N (P1, . . . ,P|S|). Then we need only prove that, for all k ∈ S,

∂V

∂δk
(P1, . . . ,P|S|, δ

◦
1 , . . . , δ

◦
|S|, e

◦
1, . . . , e

◦
|S|) = 0

∂V

∂ek
(P1, . . . ,P|S|, δ

◦
1 , . . . , δ

◦
|S|, e

◦
1, . . . , e

◦
|S|) = 0.

Remark then that

∂V

∂δk
(P1, . . . ,P|S|, δ1, . . . , δ|S|, e1, . . . , e|S|) =

1

N
tr

(I +
∑
i∈S

δiTi

)−1
Tk

− σ2ek (56)

∂V

∂ek
(P1, . . . ,P|S|, δ1, . . . , δ|S|, e1, . . . , e|S|) = ck

1

N
tr
[
(I + ckekRiPi)

−1
RkPk

]
− σ2δk, (57)
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both being null whenever, for all k, ek = ek(−σ2,P1, . . . ,P|S|) and δk = δk(−σ2,P1, . . . ,P|S|), which is true in

particular for the unique power optimal solution P◦1, . . . ,P
◦
|S| whenever ek = e◦k and δk = δ◦k.

When, for all k, ek = e◦k, δk = δ◦k, the maximum of V over the Pk is then obtained by maximising the expressions

log det(Ink + cke
◦
kRkPk) over Pk. From the inequality (see e.g. [2])

det(Ink + cke
◦
kRkPk) ≤

nk∏
i=1

(Ink + cke
◦
kRkPk)ii ,

where, only here, we denote (X)ii the entry (i, i) of matrix X. The equality is obtained if and only if Ink+cke
◦
kRkPk

is diagonal. The equality case arises for Pk and Rk = UkDkU
H
k co-diagonalizable. In this case, denoting Pk =

UkQkU
H
k , the entries of Qk, constrained by 1

nk
tr(Qk) = Pk are solutions of the classical optimisation problem

under constraint,

sup
Qk

1
nk

tr(Qk)≤Pk

log det (Ink + cke
◦
kQkDk) ,

whose solution is given by the classical water-filling algorithm. Hence (15).

APPENDIX E

PROOF OF PROPOSITION 1

The convergence of the fixed-point algorithm follows the same line of proof as the uniqueness in Section A-E.

We prove the convergence for z ∈ C+, although this can be easily generalised. If one considers the difference

en+1 − en, where en = (en1 , . . . , e
n
K), instead of e◦ − e◦, the same development as in Section A-E leads to

en+1 − en = An(en − en−1)

for n ≥ 1, where An is defined, similarly as in (37), as An = (anij), with anij defined by

anij =
1

N
trRiDn−1

−1RjDn
−1cj

∫
τ2

(1 + cjτe
n−1
j )(1 + cjτenj )

dFTj (τ),

where Dn is D for ej(z) replaced by enj (z).

From Cauchy-Schwarz inequality, and the different bounds on the Dn, Rk and Tk matrices used so far, we have

anij ≤
|z|2cj
v4

logN4

N
,

with v = =[z]. Denoting c0 = max(cj), we then have that

max
j

(
en+1
j − enj

)
< K

|z|2c0
v4

≤ logN4

N
max
j

(
enj − en−1j

)
.

Let 0 < ε < 1, and take now a countable set {z1, z2, . . .}, vk = =[zk], such that K |zk|
2c0
v4k

logN4

N < 1−ε for all zk

(this is possible by letting vk > 0 be large enough). On this countable set, the sequences {en} are therefore Cauchy

sequences on CK : they all converge. Since the enj are holomorphic and bounded on every compact set included in

C\R+, from Vitali’s convergence theorem [30], the function enj (z) converges on such compact sets. Now, from the

fact that we forced the initialisation step to be e0j = −1/z, e0j is the Stieltjes transform of a distribution function at
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point z. It now suffices to verify that, if enj is the Stieltjes transform of a distribution function at point z, then so is

en+1
j . This requires to verify that z ∈ C+, enj ∈ C+ implies en+1

j ∈ C+, z ∈ C+, zenj ∈ C+ implies zen+1
j ∈ C+,

and limy→∞−yenj (iy) < ∞ implies that limy→∞−yenj (iy) < ∞. This follows directly from the definition of

enj . From the dominated convergence theorem, we then also have that the limit of enj is a Stieltjes transform that

is solution to (6). From the uniqueness of the Stieltjes transform, solution to (6) (this follows from the pointwise

uniqueness on C+ and the fact that the Stieltjes transform is holomorphic on all compact sets of C \R+), we then

have that enj converges for all j and z ∈ C \ R+, if e0j is initialised at a Stieltjes transform.

APPENDIX F

USEFUL LEMMAS

In this section, we gather most of the known or new lemmas which are needed in various places in the proof of

Appendices A-E.

The statements in the following Lemma are well-known

Lemma 1: 1) For rectangular matrices A, B of the same size,

rank(A + B) ≤ rank(A) + rank(B);

2) For rectangular matrices A, B for which AB is defined,

rank(AB) ≤ min(rank(A), rank(B));

3) For rectangular A, rank(A) is less than the number of non-zero entries of A.

Lemma 2: (Lemma 2.4 of [22]) For N ×N Hermitian matrices A and B,

‖FA − FB‖ ≤ 1

N
rank(A−B).

From these two lemmas we get the following.

Lemma 3: Let S, A, A, be Hermitian N ×N , Q, Q both N × n, and B, B both Hermitian n× n. Then

1)

‖FS+AQBQHA − FS+AQBQ
H
A‖ ≤ 2

N
rank(Q−Q);

2)

‖FS+AQBQHA − FS+AQBQHA‖ ≤ 2

N
rank(A−A);

3)

‖FS+AQBQHA − FS+AQBQHA‖ ≤ 1

N
rank(B−B).

Lemma 4: For N ×N A, τ ∈ C and r ∈ CN for which A and A + τrrH are invertible,

rH(A + τrrH)−1 =
1

1 + τrHA−1r
rHA−1.

This result follows from rHA−1(A + τrrH) = (1 + τrHA−1r)rH.

Moreover, we recall Lemma 2.6 of [22]
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Lemma 5: Let z ∈ C+ with v = =[z], A and B N ×N with B Hermitian, and r ∈ CN . Then∣∣tr ((B− zIN )−1 − (B + rrH − zIN )−1
)
A
∣∣ =

∣∣∣∣rH(B− zIN )−1A(B− zIN )−1r

1 + rH(B− zIN )−1r

∣∣∣∣ ≤ ‖A‖v .

If z < 0, we also have ∣∣tr ((B− zIN )−1 − (B + rrH − zIN )−1
)
A
∣∣ ≤ ‖A‖

|z|
.

From Lemma 2.2 of [32], and Theorems A.2, A.4, A.5 of [33], we have the following

Lemma 6: If f is analytic on C+, both f(z) and zf(z) map C+ into C+, and there exists a θ ∈ (0, π/2) for

which zf(z) → c, finite, as z → ∞ restricted to {w ∈ C : θ < argw < π − θ}, then c < 0 and f is the Stieltjes

transform of a measure on the nonnegative reals with total mass −c.

Also, from [22], we need

Lemma 7: Let y = (y1, . . . , yN )T with the yi’s i.i.d. such that Ey1 = 0, E|y1|2 = 1 and y1 ≤ logN , and A an

N ×N matrix independent of y, then

E|yHAy − trA|6 ≤ K‖A‖6N3 log12N,

where K does not depend on N , A, nor on the distribution of y1.

Additionally, we need

Lemma 8: Let D = A + iB + ivI, where A, B are N × N Hermitian, B is also positive semi-definite, and

v > 0. Then ‖D−1‖ ≤ v−1.

Proof: We have DDH = (A + iB)(A− iB) + v2I + 2vB. Therefore the eigenvalues of DDH are greater or

equal to v2, which implies the singular values of D are greater or equal to v, so that the singular values of D−1

are less or equal to v−1. We therefore get our result.

From Theorem 2.1 of [34],

Lemma 9: Let ρ(C) denote the spectral radius of the N ×N matrix C (the largest of the absolute values of the

eigenvalues of C). If x,b ∈ RN with the components of C, x, and b all positive, then the equation x = Cx + b

implies ρ(C) < 1.

From Theorem 8.1.18 of [35],

Lemma 10: Suppose A = (aij) and B = (bij) are N ×N with bij nonnegative and |aij | ≤ bij . Then

ρ(A) ≤ ρ((|aij |)) ≤ ρ(B).

Also, from Lemma 5.7.9 of [36],

Lemma 11: Let A = (aij) and B = (bij) be N ×N with aij , bij nonnegative. Then

ρ((a
1
2
ijb

1
2
ij)) ≤ (ρ(A))

1
2 (ρ(B))

1
2 .

And, Theorems 8.2.2 and 8.3.1 of [35],

Lemma 12: If C is a square matrix with nonnegative entries, then ρ(C) is an eigenvalue of C having an

eigenvector x with nonnegative entries. Moreover, if the entries of C are all positive, then ρ(C) > 0 and the entries

of x are all positive.
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From [36], we also need Theorem 6.1.1,

Lemma 13: Gersgorin’s Theorem All the eigenvalues of an N ×N matrix A = (aij) lie in the union of the N

disks in the complex plane, the ith disk having center aii and radius
∑
j 6=i |aij |.

Theorem 3.42 of [30],

Lemma 14: Rouche’s Theorem If f(z) and g(z) are analytic inside and on a closed contour C of the complex

plane, and |g(z)| < |f(z)| on C, then f(z) and f(z) + g(z) have the same number of zeros inside C.

In order to prove Theorem 2, we also need, from [37]

Lemma 15: Consider a rectangular matrix A and let sAi denote the ith largest singular value of A, with sAi = 0

whenever i > rank(A). Let m, n be arbitrary non-negative integers. Then for A, B rectangular of the same size

sA+B
m+n+1 ≤ sAm+1 + sBn+1,

and for A, B rectangular for which AB is defined

sABm+n+1 ≤ sAm+1s
B
n+1.

As a corollary, for any integer r ≥ 0 and rectangular matrices A1, . . . ,AK , all of the same size,

sA1+···+AK

Kr+1 ≤ sA1
r+1 + · · ·+ sAK

r+1.
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[6] A. M. Tulino and S. Verdú, “Impact of antenna correlation on the capacity of multiantenna channels,” IEEE Trans. Inf. Theory, vol. 51,

no. 7, pp. 2491–2509, 2005.

[7] M. J. M. Peacock, I. B. Collings, and M. L. Honig, “Eigenvalue distributions of sums and products of large random matrices via incremental

matrix expansions,” IEEE Trans. Inf. Theory, vol. 54, no. 5, pp. 2123–2138, 2008.

[8] A. Soysal and S. Ulukus, “Optimality of beamforming in fading mimo multiple access channels,” IEEE Trans. Commun., vol. 57, no. 4,

pp. 1171–1183, Apr. 2009.



39

[9] J. Dumont, W. Hachem, P. Loubaton, and J. Najim, “On the capacity achieving covariance matrix for rician mimo channels: An asymptotic

approach,” IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 1048–1069, 2010.

[10] W. Hachem, P. Loubaton, and J. Najim, “A clt for information theoretic statistics of gram random matrices with a given variance profile,”

Annals of Probability, vol. 18, no. 6, pp. 2071–2130, Dec. 2008.

[11] A. L. Moustakas and S. H. Simon, “On the outage capacity of correlated multiple-path mimo channels,” IEEE Trans. Inf. Theory, vol. 53,

no. 11, pp. 3887–3903, 2007.
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