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Abstract

A new principal component analysis (PCA) method is proposed which is per-
formed on a subset of blocks of consecutive entries of the population data vec-
tors. This block-based dimensionality reduction introduces a trade-off by which
the accuracy of the dominant eigenvector of the dimension-reduced sample co-
variance matrix is enhanced while some population entries are discarded. This
scheme is particularly suited (but not restricted) to population eigenvectors with
localized energy and rather sparse structures. Unlike many sparse PCA algo-
rithms, the originality of our scheme lies in its providing an online selection of
the subset of blocks which, in the large dimensional regime where both popula-
tion and sample sizes grow large, provably ensures optimal alignment between
population and sample eigenvectors. Moreover, our method inherently handles
(a priori unknown) linear correlation between sample data.

Keywords: random matrix theory, PCA, sparsity, correlated samples.

1. Introduction

The advent of data mining over large dimensional datasets has called into
question many classical statistical methods designed originally under the as-
sumption of small dimensional population sizes (N) and large sample sizes (n).
A prime example of current interest is that of principal component analysis
(PCA), a ubiquitous dimensionality reduction and analysis tool in diverse appli-
cations spanning statistical finance (Ledoit and Wolf, 2003; Laloux et al., 2000),
molecular biology and virology (Dahirel et al., 2011; Quadeer et al., 2014), signal
processing and wireless communications (Moore et al., 2014), among numerous
others.

Considering the simple “spiked” data model Y = (IN + ωuu∗)
1
2X with

X ∈ RN×n having standard Gaussian entries, ω > 0 and u ∈ RN of unit
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norm, traditional PCA aims to estimate u by the vector û corresponding to
the dominant eigenvector of the sample covariance matrix n−1Y Y ∗. It is well
known that |û∗u| → 1 as n→∞ while ω and N are fixed, thus resulting (up to a
rotation) in a consistent estimation of u. However, this consistency property no
longer holds if both N and n grow simultaneously large or if ω decreases with n.
In particular, if N,n→∞ with N/n→ c ∈ (0,∞) while ω is fixed, it is known
from (Baik and Silverstein, 2006) that |û∗u|2 → (1 − c/ω2)(1 + c/ω)−11ω>

√
c.

Thus, under such conditions, û is an inconsistent estimator for u to the extent
that, if ω <

√
c, û tends to be completely orthogonal to u.

The performance of PCA may be potentially improved by exploiting certain
structural characteristics in the model. In particular, often it is the case, per-
haps after a suitable basis transformation, that u is intrinsically sparse in the
sense that its entries have few dominant values. If these values are found for
indices in a set I ⊂ {1, . . . , N}, it is then advantageous to perform PCA on
YI ∈ R|I|×n, the observation matrix restricted to the rows indexed by I. By
reducing the ratio N/n to |I|/n, the resulting dominant eigenvector ûI ∈ R|I|
of n−1YIY

∗
I provides a better approximation for the vector u restricted to its

dominant values. Obviously, smaller |I| implies more accurate ûI , but it also
may lead to more energy in u being discarded. Hence, there is a natural trade-off
between the need for accuracy in the estimation of dominant values and the need
to preserve most of the population vector energy. Statistically, one may also see
this as a variance-bias trade-off, where more aggressive index selection leads to a
reduction in estimator variance but an increased bias. These observations have
recently triggered an important wave of research aimed at (i) defining the neces-
sary and sufficient conditions on the sparsity level of u and the relative growth
of ω,N, n to ensure |û∗u| → 1 for some sparse estimate û, (ii) determining the
optimal convergence rate, and (iii) deriving algorithms that meet such a conver-
gence rate. A seminal early work is (Johnstone and Lu, 2009), which considered
a single-spiked model as introduced above, and this was further generalised to
multiple spikes in (Paul and Johnstone, 2012). Remarkably, in major contrast
to traditional PCA, it was shown that sparse methods can yield consistent esti-
mates for N even as large as exp(n) for ω = O(1), provided that u is sufficiently

sparse; specifically, lim supN
∑N
i=1 |ui|q < ∞ for some q ∈ (0, 2). Several ex-

tensions mostly proposing alternative schemes with improved convergence rate
properties were then provided in e.g., (Ma, 2013; Birnbaum et al., 2013; Yuan
and Zhang, 2013; Shen et al., 2013; Cai et al., 2013; Wang et al., 2014). Other
approaches have also been proposed (Jolliffe et al., 2003; Zou et al., 2006; Shen
and Huang, 2008; Witten et al., 2009; d’Aspremont et al., 2007, 2008; Ulfarsson
and Solo, 2008; Journée et al., 2010; Mairal et al., 2010; Candès et al., 2011)
that turn PCA into an optimization problem and induce sparsity through the
introduction of penalty functions or constraints. In the present work, we shall
explicitly compare our proposed method against the legacy (although now rec-
ognized as suboptimal in practice) sparse PCA (SPCA) algorithm from (John-
stone and Lu, 2009) and the powerful truncated power (TPower) method from
(Yuan and Zhang, 2013). Note that we compare with the TPower method as
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a reference, as this was shown to yield competitive performance against a wide
range of sparse PCA alternatives in (Yuan and Zhang, 2013), including (Zou
et al., 2006; d’Aspremont et al., 2008; Shen and Huang, 2008; Witten et al.,
2009; Journée et al., 2010; Mairal et al., 2010).

The above results, while providing optimal rates of convergence and schemes
that achieve these rates, are based on various assumptions which may impede
their performance for practical systems and for finite N,n. In particular, the
schemes of (Johnstone and Lu, 2009; Paul and Johnstone, 2012) are based on
selecting sets I of rows of Y that satisfy e.g., i ∈ I ⇔ [Y Y ∗]ii > αN for αN given
(rather imprecisely) in terms of orders of magnitude of N . An exact definition of
an optimal choice for αN (or equivalently of the cardinality of |I|) is thus missing
and it turns out in practice that a slight modification in such choices can entail
important performance losses for finite dimensions. A similar comment applies
to the rate-achieving scheme (Ma, 2013), and its single eigenvector predecessor
(Yuan and Zhang, 2013). For example, in (Yuan and Zhang, 2013), successive
truncations of the largest k absolute components of an iterated vector are used
at the core of the TPower algorithm, but no precise estimate of the optimal k is
provided. Another issue is linked to imposing sparsity constraints of the `q type
that may not be met in practice, despite the fact that for many applications
one may naturally expect the eigenvector energy to be localized in few places
of the eigenvector.

With these remarks in mind, in this article, we take a different approach from
the aforementioned works, adopting a so-called “G-estimation” strategy from
random matrix theory which has been successfully applied in various contexts
including portfolio optimization in finance (Laloux et al., 2000; Rubio et al.,
2012; Yang et al., 2014), filter design in array processing (Mestre and Lagunas,
2008; Couillet et al., 2011; Rubio and Mestre, 2009), low-rank matrix denoising
(Nadakuditi, 2014), and wireless communications (Couillet and Debbah, 2011),
though it has yet to be applied to the application of sparse PCA.

We shall work under a setting for which N,n → ∞ in such a way that
N/n→ c ∈ (0,∞) and with ω = O(1). Under this setting, in general terms, the
G-estimation strategy works in three major steps: (i) find a deterministic equiv-
alent for the (random) objective function of interest, (ii) propose a sample-based
consistent estimator for this objective function, and (iii) select on-line the rele-
vant parameters to optimize the sample-based objective function. In the current
context, the objective function of interest is the quantity |ûe∗I u|, where ûe∗I is cal-
culated based on a row selection approach similar in spirit to (Johnstone and Lu,
2009; Paul and Johnstone, 2012; Yuan and Zhang, 2013; Birnbaum et al., 2013),
though here the rows are selected in a blockwise manner for which the possible
sets I ⊂ {1, . . . , N} under consideration are finitely many and each of cardi-
nality O(N) (the superscript ‘e’ stands for the zero-padded extension of ûI).
Our approach, which is most appropriate for eigenvectors with localized energy,
brings several important advantages. Most notably, it allows us to consistently
evaluate on-line the optimal such set I for all large N,n, which maximizes the
objective |ûe∗I u|. This approach is fully automated and requires no heuristic
selection of thresholds nor other parameters. One limitation of the base method
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is that it entails rather high computational complexity for large N ; however, we
show that this can be greatly reduced with a selection technique under certain
assumptions. Practical comparisons versus the aforementioned schemes are also
provided that show sometimes large performance improvements.

An additional contrasting feature of our approach relative to previous work
is that we account for a possibly unknown linear correlation between the sam-
ples. Such unknown inter-sample correlation may be present in practice; for
example, when dealing with time series of temporally correlated asset returns,
or when processing biological data extracted from patients with certain tempo-
ral, geographical, or sequencing biases, which are difficult to remove through
pre-processing. To account for unknown correlation effects among samples, we
shall let the random Gaussian matrix X become XT

1
2 for some unknown de-

terministic positive definite matrix T that plays the role of a data correlation
matrix.

Using the notation mentioned above, our main results can be more precisely
summarized as follows. Assume the data model Y = (IN + ωuu∗)

1
2XT

1
2 with

all parameters unknown, and let K denote a finite and deterministically-selected
set of subsets I ⊂ {1, . . . , N}, such that for each I, |I|/n converges in (0, c].
We propose a method that asymptotically determines the set I ∈ K minimizing
the angle between the vector u ∈ RN and the vector ûeI ∈ RN composed of ûI
in the indices defined by I and zeros elsewhere. For practical purposes, K is
then particularized to the ensemble of the 2K unions of the regular division of
{1, . . . , N} into K sets of size N/K each (assuming N/K ∈ N), and then to
the further union of such unions across M values K1, . . . ,KM of K. To avoid
the computationally expensive evaluation of the method over these

∑M
m=1 2Km

sets, an algorithm (referred to as BlockPCA) is produced, which in favorable

scenarios reduces this evaluation to only
∑M
m=1Km sets and which is proved

nonetheless to asymptotically achieve the minimum angle between u and ûeI
across K. Simulations are performed for two examples, the first with less sparsity
than the second. The second scenario is based on a synthetic wavelet-sparse
example introduced in (Johnstone and Lu, 2009). BlockPCA will be shown to
largely outperform conventional sparse PCA alternatives in the former setting
and to perform close to optimal in the latter, with the strong advantage of
proposing an estimated optimal (blockwise) subset selection. As for (Johnstone
and Lu, 2009; Yuan and Zhang, 2013), our focus is on the simplest case of
a single spike model, leaving non-trivial extensions to multi-spike models for
subsequent work.

Notation: In the remainder of the article, for a set I, the notation |I| will
stand for the cardinality of I. Vectors are understood as column vectors with u∗

the transposed version of u (taken as Hermitian transpose if complex variables
are considered). The notation δx is the Dirac mass at x. The support of a
measure µ shall be denoted supp(µ) and its Stieltjes transform

∫
(t− z)−1dµ(t)

valid for z ∈ C \ supp(µ) as mµ(z). For Hermitian matrices X ∈ RN×N ,
λ1(X) ≥ . . . ≥ λN (X) denotes the eigenvalues of X in non-increasing order.

The convergence sign “
a.s.−→” stands for almost sure (a.s.) convergence.
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2. Model and assumptions

We consider the spiked data model,

Y = (IN + ωuu∗)
1
2 XT

1
2 (1)

where we assume u ∈ RN of unit norm, ω > 0, X ∈ RN×n with independent real
Gaussian entries with zero mean and unit variance,1 and T ∈ Rn×n deterministic
nonnegative definite Hermitian such that 1

n

∑n
i=1 δλi(T ) → ν weakly, with ν 6=

δ0 a probability measure of compact support with lim supn dist(λi(T ), supp(ν))→
0, dist denoting Euclidean distance. We shall consider the regime where N,n→
∞ with N/n→ c ∈ (0,∞).

For I ⊂ {1, . . . , N}, we denote YI ∈ R|I|×n the matrix of the rows of Y
indexed by I. The vector uI ∈ R|I| denotes equivalently the restriction to I
of the vector u. The extended vector ueI ∈ RN is the vector with zero entries
but for the indices in I that contain uI . We will also denote cr = r/n, so
in particular c|I| = |I|/n. The ordered eigenvalue and eigenvector pairs of

YIY
∗
I /n are denoted (λ̂i,I , ûi,I) with λ̂1,I ≥ . . . ≥ λ̂|I|,I . When I = {1, . . . , N},

the eigenvalue and eigenvector pairs will be simply denoted (λ̂i, ûi). Since we

are mostly concerned with the pair (λ̂1,I , û1,I), we shall also use the shortcut

notation (λ̂I , ûI) = (λ̂1,I , û1,I).
Following the ideas from (Johnstone and Lu, 2009) and subsequent works on

sparse PCA, our objective is to estimate the vector u by ûeI for some conveniently
selected set I. The metric FI to maximize across I is given by the random
variable

FI , ω |u∗ûeI |
2

(2)

with minimum at zero and maximum at ω.
The performance measure FI is maximized for some I ⊂ {1, . . . , N}, hence

for one out of 2N such sets (with probability one). To avoid the prohibitive
procedure of testing all sets, sparse PCA approaches often propose to only retain
those indices i for which |ui| is maximum. This, however, comes with several
practical problems. First, to determine which entries of u have the largest |ui|,
the natural procedure is to select those indices i for which the diagonal terms
[Y Y ∗]ii are maximal; this is the original idea of (Johnstone and Lu, 2009).

But, by the central limit theorem, n−1[Y Y ∗]ii = 1 + ω|ui|2 + Op(n
− 1

2 ) so only

those indices i for which lim supn n
1
2 |ui|2 > 0 can be expected to be effectively

recovered. Since ‖u‖2 = 1, these indices have cardinality at most O(n
1
2 ), thus

forming a vanishingly small proportion of {1, . . . , N}. Practical settings in which
the energy of u is concentrated in a non-vanishing proportion of its entries are
thus ruled out. Second, even if for some L, the L largest |ui| could be perfectly
recovered, the choice of L is still left to the practitioner, with only approximate

1Complex variables may also be considered, with all results applying verbatim.

5



rules of thumb provided in the works discussed previously. In this paper, we
aim to address these issues.

Our starting point is to observe that, by definition of YI for a set I ⊂
{1, . . . , N} and by the Gaussianity of X,

YI ∼
(
I|I| + ωuIu

∗
I
) 1

2 XIT
1
2 (3)

=

(
I|I| + ΩI

uI
‖uI‖

u∗I
‖uI‖

) 1
2

XIT
1
2 (4)

where we have defined

ΩI , ω‖uI‖2 (5)

and where “∼” indicates equality in distribution. This unfolds from noticing
that every column of the matrix (IN +ωuu∗)

1
2X restricted to the rows indexed

by I is a zero mean Gaussian vector with covariance I|I| + ωuIu
∗
I .

Of particular importance is that, upon selecting the indices I, the effective
model (4) is still a spiked model having the same form as (1), but with the spiked
eigenvector u now replaced with uI

‖uI‖ and the spiked eigenvalue ω replaced with

ΩI . An important property, which follows from (5), is that for any two disjoint
sets I1, I2 ⊂ {1, . . . , N}, we have

ΩI1∪I2
= ΩI1

+ ΩI2
. (6)

Hence, if one can estimate the effective spike eigenvalue of individual disjoint
block selections, ΩIi , i = 1, 2, . . ., then these can be combined to estimate
the effective spike eigenvalues of larger selections. This observation will be
important for developing an efficient computational algorithm in the following.

3. Results

We provide a new block-based selection method for sparse PCA. The idea
is as follows. We first show that for each non random set I of cardinality
O(N), it is possible to asymptotically evaluate FI with arbitrary accuracy,
without any knowledge of ω, u, and T . The estimate will be denoted F̂I .
Moreover, for a partition of the N indices into K blocks of size N/K ∈ N,
with K fixed and independent of N , this result holds uniformly over the set
K of 2K possible unions of these blocks. This ensures that, by comparing F̂I
for all I ∈ K, we may estimate Iopt = argmaxI∈K FI to arbitrary accuracy.

Denoting the corresponding estimate as Îopt, for K not too small, this gives in
turn an accurate estimate ûeÎopt

for u. To reduce the computational complexity

of the proposed algorithm for large K, we propose an efficient greedy approach
which reduces the search from 2K sets to only K. Our proposed method is
summarized in Algorithm 1. An accompanying important theoretical result is
provided in Theorem 1, which essentially states that, under mild conditions and
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with Îopt now the output of Algorithm 1, FÎopt
−FIopt

a.s.−→ 0 as N,n→∞ with

N/n→ c > 0.
Throughout the paper, we will let I ⊂ {1, . . . , N} be a deterministically

selected set (that is, not depending on X) with cardinality |I| such that c|I| →
c̄ ∈ (0, c]. For such I, we have

FI = ω |u∗ûeI |
2

= ΩI

∣∣∣∣ u∗I‖uI‖ ûI
∣∣∣∣2 .

We will present a consistent estimator for this quantity, first for the case T = σ2I
and subsequently for more general T .

3.1. Consistent estimators for FI

For T = σ2I, we require the following result, which follows from (4) and as
a consequence of (Baik and Silverstein, 2006, Theorems 1.1 and 1.2) and (Paul,
2007, Theorems 1, 2, and 4):

Proposition 1. Let T = σ2I with σ > 0. For deterministically-selected I as
above, if

lim inf
n

ΩI >
√
c̄ (7)

we have, as n→∞,

λ̂I − ρI
a.s.−→ 0, λ̂2,I

a.s.−→ σ2
(

1 +
√
c̄
)2

(8)

FI − F̄I
a.s.−→ 0, (9)

where

ρI = σ2

(
1 + ΩI + c̄

1 + ΩI
ΩI

)
F̄I =

Ω2
I − c̄

ΩI + c̄
.

If (7) is not met, then there exists at least one subsequence over which

λ̂I , λ̂2,I
a.s.−→ σ2

(
1 +
√
c̄
)2

FI
a.s.−→ 0.

Proposition 1 provides a deterministic equivalent for λ̂I and FI in the large
n limit. The right-hand quantity in (7) defines a well-known “phase-transition”
threshold: if the effective spiked eigenvalue ΩI is above this, then the top sample
eigenvalue λ̂I (for the I-truncated model) converges to a value ρI > σ2(1+

√
c̄)2,

and the corresponding top sample eigenvector ûI traces an asymptotic angle
with uI as determined by F̄I . Note that λ̂I is asymptotically distinguishable
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from the second largest sample eigenvalue λ̂2,I which converges to σ2(1 +
√
c̄)2,

representing the right-hand edge of the limiting empirical eigenvalue distribution
of YIY

∗
I /n (the Marchenko-Pastur law in this case). On the other hand, if ΩI

falls below this threshold, as will be the case when ‖uI‖2 is small for the selected
subset I, neither the top sample eigenvalue nor the top sample eigenvector
become informative, and in this case FI is asymptotically zero.

Defining

σ̂2 ,
1

N − 1

N∑
i=2

λ̂i =
1

N − 1

(
tr(Y Y ∗)/n− λ̂1

)
(recall that λ̂i = λ̂i,{1,...,N}), we also have:

σ̂2 a.s.−→ σ2 ,

providing a consistent estimate for the parameter σ2, if unknown.
In order to decide whether (7) is met, one may verify that λ̂I > σ̂2(1 +√

c|I|)
2(1 + ε) for some ε > 0 (Zeng and Liang, 2009; Bianchi et al., 2011), or

alternatively that λ̂I − λ̂2,I > ε. Both methods are equivalent and we shall use
the former in the following.

According to these remarks and the results of Proposition 1, defining2

Ω̂I ,
1

2

(
σ̂−2λ̂I − 1− c|I| +

√
(c|I| − 1− σ̂−2λ̂I)2 − 4c|I|

)
1{λ̂I>σ̂2(1+

√
c|I|)2(1+ε)}

F̂I ,
(Ω̂I)2 − c|I|

Ω̂I + c|I|
1{λ̂I>σ̂2(1+

√
c|I|)2(1+ε)}

we have that, if lim infn FI > 0, then there exists ε > 0, sufficiently small, such
that

Ω̂I − ΩI
a.s.−→ 0, F̂I − FI

a.s.−→ 0. (10)

Hence, F̂I provides a consistent estimator for FI for the case T = σ2I.
Now, consider the case of more general T . The result in Proposition 1 has a

(albeit more complicated) generalization for arbitrary T . This follows from (4)
and as a consequence of (Benaych-Georges and Nadakuditi, 2011, Theorem 2.8)
and (Couillet and Hachem, 2013, Theorems 1 and 2):

Proposition 2. Let I be as in Proposition 1. Then, as n→∞, 1
|I|
∑|I|
i=1 δλ̂i,I

a.s.−→
µc̄ weakly, where µc̄ is a probability measure with compact support supp(µc̄)

2The formula for Ω̂I results from inverting the relation λ̂I = σ̂2(1+Ω̂I+c|I|
1+Ω̂I

Ω̂I
)+o(1)

and retaining the unique positive solution.

8



which only depends on c̄ and ν. (Recall that ν is the weak limit of 1
n

∑n
i=1 δλi(T ).)

Moreover, if

lim inf
n

ΩI > −
(

lim
x↓sup(supp(µc̄))

xmµc̄(x) + 1

)−1

(11)

where mµc̄(x) ,
∫

(t−x)−1µc̄(dt) is the restriction to the real axis of the Stieltjes
transform of µc̄, then

λ̂I − ρI
a.s.−→ 0 (12)

λ̂2,I
a.s.−→ sup(supp(µc̄)) (13)

FI − F̄I
a.s.−→ 0 (14)

where ρI > sup(supp(µc̄)) is the unique solution (for all n large) to the equation
in x ∈ (sup(supp(µc̄)),∞)

ΩI = − (xmµc̄(x) + 1)
−1

and where

F̄I = − mµc̄(ρI)

mµc̄(ρI) + ρIm′µc̄(ρI)
.

If (11) is not met, then there exists at least one subsequence over which

λ̂I , λ̂2,I
a.s.−→ sup(supp(µc̄))

FI
a.s.−→ 0.

For the special case, T = σ2I, µc̄ takes the form of the Marchenko-Pastur
law, and ρI and F̄I admit the explicit forms given in Proposition 1. Note also
that the model assumption dist(λi(T ), ν)→ 0, introduced in Section 2, ensures

that λ̂2,I → sup(supp(µc̄)) (i.e., no other eigenvalue than λ̂I may escape the
limiting support of µc̄); if relaxed, several eigenvalues may escape the limiting
support, making it impossible to identify the eigenvector ûi,I having a non-
trivial alignment to uI .

While directly estimating the right-hand side of (11) is difficult in general,
we instead observe that the condition (11) is equivalent, as for the previous

case, to there existing ε > 0 such that λ̂I − λ̂2,I > ε for all large n a.s. For
the estimation of FI , note that from Proposition 2 (by weak convergence and
the asymptotic absence of eigenvalues beyond sup(supp(µc̄))), we have that, for
every x > sup(supp(µc̄)), and every deterministically-selected set I such that
|I|/n→ c̄,

m̂I(x) ,
1

|I| − 1

|I|∑
i=2

1

λ̂i,I − x
a.s.−→ mµc̄(x) (15)

m̂′I(x) =
1

|I| − 1

|I|∑
i=2

1

(λ̂i,I − x)2

a.s.−→ m′µc̄(x). (16)
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Thus, denoting

Ω̂I , −
(
λ̂Im̂I(λ̂I) + 1

)−1

1{λ̂I−λ̂2,I>ε} (17)

F̂I , − m̂I(λ̂I)

m̂I(λ̂I) + λ̂Im̂′I(λ̂I)
1{λ̂I−λ̂2,I>ε} (18)

we conclude that, if lim infn FI > 0, then there exists ε > 0 such that

Ω̂I − ΩI
a.s.−→ 0, F̂I − FI

a.s.−→ 0. (19)

Hence, we have a consistent estimator of FI for general T .

3.2. Uniform consistency

The results (19) and (10) hold uniformly on a finite family of sets K =
{I1, . . . , I|K|} such that, for each 1 ≤ j ≤ |K|, |Ij |/n converges in (0, c]. So in
particular, if lim infn maxj FIj > 0, then there exists ε > 0 such that

max
I∈K

F̂I −max
I∈K

FI
a.s.−→ 0. (20)

This is important as it implies that one may find the optimal set Iopt ⊂
{1, . . . , N} among a finite family K which maximizes the “true” objective FI by
finding the set which maximizes the sample-based objective F̂I . However, while
the optimization of FI in (20) is completely data driven, it entails high complex-
ity when |K| is not too small as it requires to perform |K| eigen-decompositions.
We will demonstrate in the following that with a pragmatic construction of K,
this complexity can be greatly reduced.

In the subsequent development, we will focus attention on general T and
exploit results given in Proposition 2, recalling that it absorbs Proposition 1 as
a particular case. It is important to point out, however, that the case T = σ2In
has the practical advantage in that the computation of F̂I does not require the
evaluation of m̂I(λ̂I) which is a function of all eigenvalues of YIY

∗
I /n. Here,

only λ̂I is needed, which can be estimated efficiently using classical iterative
power methods, without the need to compute the entire eigen-decomposition.

3.3. Reducing the search space

For simplicity of exposition, let us assume that N is taken to be a (large)
multiple of some fixed integers K1, . . . ,KM . For each K ∈ {K1, . . . ,KM},
define KK , {IK1 , . . . , IK2K} where IKj , ∪i∈DjJKi , where JKi , {1 + (i −
1)N/K, . . . , iN/K} and Dj ⊂ {1, . . . ,K} is the index set of components equal
to one in the base-2 expression of j. A convenient choice for K is then to take
K = ∪Mj=1KKj , which contains all possible combinations of regular splittings of
{1, . . . , N} in K sets of size N/K each, with K being any one of K1, . . . ,KM .

For K ∈ {K1, . . . ,KM}, let s1, . . . , sK denote the permutation of {1, . . . ,K}
satisfying

JKs1 � . . . � J
K
sK (21)
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in which the ordering relation “�” is defined for two sets I, I ′ by

I � I ′ ⇔ ΩI ≥ ΩI′ . (22)

With this, we may further define the K sets IK1,�, . . . , IKK,� of KK by IKi,� ,
∪ij=1JKsj , such that IK1,� = JKs1 , IK2,� = JKs1 ∪ J

K
s2 , and so on.

With the definitions above, upon recalling (6), we see that for a given K and
i, the maximum of ΩI , for I ∈ KK and |I| = iN/K, is met for I = IKi,�. We will
show now that this choice also leads to the asymptotic optimum of FI . That is,
for a given K, the optimal set within KK is one of IK1,�, . . . , IKK,�. It then follows
immediately that the required task of estimating FI over all I ∈ K is reduced to

simply estimating FI for the sets I ∈ ∪Mj=1{I
Kj
1,�, . . . , I

Kj
Kj ,�}. Computationally,

this is important, since only
∑M
j=1Kj sets must be considered, rather than∑M

j=1 2Kj . Key to the result is a technical lemma, Lemma 1, established in
Section 6, which implies that for each deterministically-selected I satisfying
(11), the application

ΩI 7→ F̄I = − mµc̄(ρI)

mµc̄(ρI) + ρIm′µc̄(ρI)
(23)

is continuous and monotonically increasing (recall that ρI = ρI(ΩI), as defined
in Proposition 2). Also note that, for all I ∈ KK such that |I| = iN/K, we
have |I|/n→ c̄ = ci/K and thus the right-hand side of (23) becomes

F̄I = −
mµci/K (ρI)

mµci/K (ρI) + ρIm′µci/K (ρI)

which only differs for various I’s by the value of the quantity ρI (equivalently,
by the value of ΩI). As a consequence, from Proposition 2, the mapping{

I ∈ KK , |I| = iN/K
}
→ R+

I 7→ FI

is asymptotically maximal for I such that ΩI is arbitrarily close to ΩIK
i,�

.3 By

continuity of the mapping (23), it is then asymptotically sufficient to consider
the set I = IKi,� among all sets of

{
I ∈ KK , |I| = iN/K

}
.

3.4. Estimating the index sets IKi,�, i = 1, . . . ,K

Having established the asymptotic sufficiency of restricting attention to the
reduced collection of sets IKi,�, i = 1, . . . ,K, the remaining problem is to retrieve

3Note that the mapping may (infinitely often) not be maximal for I = IKi,� as ΩIK
i,�

might

be infinitely often within o(1) of some other ΩI . Nonetheless, IKi,� is always an asymptotically

appropriate candidate for the maximization of |u∗I ûI |
2.
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these sets from KK . Given that IKi,� = ∪ik=1JKsk by definition, one requires the
successive indices s1, . . . , sK , which are determined from ΩJKi for i ∈ {1, . . . ,K}.
In terms of estimating these quantities, according to Proposition 2, for large N ,
if all ΩJKi were sufficiently large (i.e., they met the condition (11)), then it

would be sufficient to evaluate Ω̂JK1 , . . . , Ω̂JKK , as these would form consistent
estimates of ΩJK1 , . . . ,ΩJKK . This, in turn, would lead to consistent estimates

of the indices s1, . . . , sK , and thus of the desired index sets IKi,�, i = 1, . . . ,K.
This is an ideal situation however, and in practice the problem is more com-
plicated. If for some block indices i, ΩJKi is positive but falls below the phase

transition threshold in (11), then Ω̂JKi will be asymptotically zero, thus forming
an inconsistent estimate of ΩJKi . This, in turn, will lead to classification errors
in the estimation of s1, . . . , sK . In the following, we outline a method for dealing
with this important issue.

We first describe the basic idea. Consider a scenario for which for some
subset of block indices MK

1 ⊂ {1, . . . ,K}, Ω̂JKi > 0 for all i ∈ MK
1 only.

By ordering these values, one can consistently estimate s1, . . . , s|MK
1 | and con-

sequently IK1,�, . . . , IK|MK
1 |,�

. Importantly, while IK1,� represents the best single

block, IK2,� the best pair of blocks, through to IK|MK
1 |,�

the best |MK
1 |-fold block,

these index sets are estimated based on the single-block scores Ω̂JKi only. Thus,

it is highly efficient. Nonetheless, we still must estimate IK|MK
1 |+1,�, . . . , I

K
K,�.

This can be done by successively appending to MK
1 the block indices taken

from {1, . . . ,K} \ MK
1 , and computing scores for these appended sets. That

is, we start by computing Ω̂(
∪
i∈MK

1
JKi

)
∪JKj

for all j ∈ {1, . . . ,K} \MK
1 . Two

scenarios may result:

1. If these are non-zero for j ∈ AK2 for some AK2 ⊂ {1, . . . ,K} \MK
1 only,

then these values can be ordered and, in the same way as before, used
directly to obtain consistent estimates of IK|MK

1 |+1,�, . . . , I
K
|MK

1 |+|AK2 |,�
.

2. If they are all zero, then all pairwise extensions toMK
1 must be considered,

and so on, until one or more non-zero value is found. Assuming that it
takes k > 1 iterations, denoteAK2 as the set of all k-sets of {1, . . . ,K}\MK

1

which, when extended toMK
1 , yields Ω̂ > 0. This can be used to directly

produce a consistent estimate of IK|MK
1 |+k,�

. Importantly, similar to the

case above, if AK2 contains multiple k-set entries, then by computing the Ω̂
scores for MK

1 extended by all unions of these, one can also directly pro-
duce consistent estimators for each IK|MK

1 |+`,�
, for ` ∈ {k + 1, . . . , |AK2 |},

provided that there exists a cardinality-` union for which Ω̂ > 0.

One can now iterate the process, with MK
1 replaced with MK

2 =MK
1 ∪ AK2 .

The approach described above can be formalized. Letting MK
0 , ∅, we
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define the following sets recursively: for K ∈ {K1, . . . ,KM} and k = 1, 2, . . .,

MK
k = MK

k−1 ∪ AKk = MK
k−1 ∪

(
∪jAKkj

)
with AKkj , j = 1, 2, . . ., the subsets of {1, . . . ,K} \MK

k−1 such that

Ω̂∪
a∈MK

k−1
∪AK

k1
JKa ≥ Ω̂∪

a∈MK
k−1
∪AK

k2
JKa ≥ · · · > 0

and such that |Ak1| = |Ak2| = . . . is minimal in the sense that there exists
no subset A ⊂ {1, . . . ,K} \ MK

k−1 of smaller positive cardinality for which

Ω̂∪
a∈MK

k−1
∪AJKa > 0. The recursion is performed iteratively for k = 1, . . . , τK ,

where τK is the smallest value of k for which Mk = {1, . . . ,K}.
Now, for any given k < τK , consider the sets

M∈ {MK
k−1 ∪AKk1, MK

k−1 ∪AKk1 ∪AKk2, . . .} .

These M are the (estimated) best index set candidates—in the sense of partial
ordering “�”—among all cardinality-|M| subsets of {1, . . . ,K}. We may denote
for each k, l with Ω̂∪

a∈MK
k−1
∪(∪l

j=1
AK
kj

)
JKa > 0,

ÎK|MK
k−1∪(∪lj=1AKkj)|,�

,
⋃

a∈MK
k−1∪(∪lj=1AKkj)

JKa ⊂ {1, . . . , N}. (24)

It comes immediately that, if (11) holds for IKi,� for some i, then there exists

k, l and sets MK
k−1 and Ak1, . . . ,Akl with |MK

k−1 ∪ (∪lj=1AKkj)| = i, and thus

such that FÎK
i,�
− FIK

i,�

a.s.−→ 0.

3.5. Proposed Block PCA algorithm

The results given above can be synthesized in the form of an algorithm which
seeks to estimate the optimum set I for K ∈ {K1, . . . ,KM}. This is described
in Algorithm 1, which pertains to our proposed Block PCA method. Therein,
the notation Comb(A, k) stands for the set of all possible sets of k elements of
A, and Ω̂I and F̂I are defined in (17) and (18), respectively. In association with
this proposed algorithm, our main theoretical result can then be summarized as
follows.

Theorem 1 (Asymptotic Optimality of Algorithm 1). For K ∈ {K1, . . . ,KM}
and 1 ≤ k ≤ K, let JKk = {(k − 1)N/K + 1, . . . , kN/K}. Assume that, for
all large N , there exists K0 ∈ {K1, . . . ,KM} and {k1, . . . , km} ⊂ {1, . . . ,K0}
such that (11) holds for I = ∪jJK0

kj
. Then, denoting K = {∪a∈AJKa ,K ∈

{K1, . . . ,KM},A ⊂ {1, . . . ,K}}, there exists ε > 0 such that4

F̂Îopt
− FIopt

a.s.−→ 0 (25)

4Recall that ε enters in the definition of Ω̂I and F̂I for each I ∈ {1, . . . , N}.
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with Iopt , argmaxI∈K {FI} and Îopt the output of Algorithm 1.
Moreover, if there exists η > 0 such that FIopt > maxI∈K\{Iopt} FI + η for

all large n,

Îopt = Iopt (26)

for all large n a.s.

This specifies that, asymptotically, Algorithm 1 achieves the best perfor-
mance among any blockwise subset selection. Equation (26) indicates that the
subset selection returned by Algorithm 1 is optimal, provided the performance
achieved by Iopt remains sufficiently away from that achieved by all other sets.

3.6. Practical considerations

Here we provide several remarks concerning the practical implementation
of the proposed BlockPCA algorithm, Algorithm 1. The first remark concerns
computational cost, while the next remark deals with the accuracy of the esti-
mates.

Remark 1 (Early stoppage and sparse setting). As we will demonstrate,
BlockPCA shows substantial performance gains over standard PCA whenever
the vector u exhibits sparsity, in the sense that its support size is essentially
a small fraction of N . Under this setting, the scores F̂ÎK

i,�
computed by the

BlockPCA algorithm will typically tend to significantly decrease with growing i
(for instance, when F̂∪ik=1I(k) becomes much smaller than F̂max in the statement

of Algorithm 1). Indeed, while not true in the general (non-sparse) setting,
for sparse vectors u, F̂ÎK

i,�
, when seen as a function of i, generally grows until

a maximum and then monotonically decreases (as most of the energy in u is
rapidly exhausted). Early stoppage is thus possible when this stage is reached,
which considerably reduces the computational effort.

Remark 2 (Estimation of mµc̄ , m
′
µc̄). In practice, for rather small sets I,

the estimates (15) and (16) may not be sufficiently good approximations of mµc̄

and m′µc̄ , respectively. Instead it might be preferable to consider more robust
estimates, such as

m̂c̄(x) ,
1

|A|
∑
I∈A

m̂I(x), m̂′c̄(x) ,
1

|A|
∑
I∈A

m̂′I(x)

with A a set of deterministic subsets I ⊂ {1, . . . , N} all satisfying |I|/n → c̄.
For larger |I|, in order to estimate ΩI for a given set I, Ω̂I in (17) may
nonetheless be a preferable data-adapted estimator than would(

λ̂Im̂c̄(λ̂I) + 1
)−1

1{λ̂I−λ̂2,I>ε}.
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Algorithm 1 Block PCA algorithm for K ∈ {K1, . . . ,KM}.
function BlockPCA(Y, {K1, . . . ,KM})

F̂max ← 0
Îopt ← ∅
for K ∈ {K1, . . . ,KM} do
M← ∅
FoundPositiveOmega← 1
while FoundPositiveOmega = 1 do

A← 0
FoundPositiveOmega← 0
Aset ← ∅
while FoundPositiveOmega = 0 and |M|+A < K do

A← A+ 1
C ← ∅
for A ∈ Comb({1, . . . ,K} \M, A) do
I ←

(
∪a∈MJKa

)
∪
(
∪a∈AJKa

)
if Ω̂I > 0 then
C ← C ∪ {I}
Aset ← Aset ∪ A
FoundPositiveOmega← 1

end if
end for
if C 6= ∅ then

Write C = {I(1), . . . , I(|C|)} such that Ω̂I(1) ≥ . . . ≥ Ω̂I(|C|) .
for i ∈ {1, . . . , |C|} do

if F̂∪ik=1I(k) > F̂max then

F̂max ← F̂∪ik=1I(k)

Îopt ← ∪ik=1I(k)

end if
end for

end if
end while
M←M∪Aset

end while
end for
return Îopt

end function
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These considerations are left to the appreciation of the practitioner. Note that
under this new approximation of mc̄, sorting the values of Ω̂I for various sets
I of same cardinality is strictly equivalent to sorting the values according to
the ordering of the values of λ̂I , which also comes along with a substantial
computational cost reduction.

3.7. Connection to existing sparse PCA methods

As mentioned in Section 1, the BlockPCA algorithm is closely related to
various sparse PCA algorithms found in e.g., (Johnstone and Lu, 2009) (SPCA)
or (Paul and Johnstone, 2012; Ma, 2013). However, both the target and the
model assumptions of BlockPCA versus sparse PCA methods are different. For
one, under the present assumption that N/n → c ∈ (0,∞) and fixed ω, the
sparse PCA techniques fundamentally assume that there exists I ⊂ {1, . . . , N}
such that |I|/N → 0 and

∑
i∈I |ui|2 → 1, i.e., the energy in u concentrates in

a vanishingly small (relative to N) support. This implies in particular that the
leading |ui|2 are of order 1/|I| � 1/N . In contrast, our approach is not designed
under any such sparsity assumption, but is beneficial whenever u is “rather
sparse” in the sense that most energy of u concentrates in one or more isolated
places, each of size O(N). Being block-based, our algorithm is not designed to
perform well for vectors u with very scattered non-zero entries. For instance,
if ubkN1−αc = N−α for some 0 < α < 1 and for all 1 ≤ k ≤ Nα, and ui = 0
otherwise, BlockPCA will likely select all N entries of u as the optimal subset,
whereas SPCA will perform optimally. As such, BlockPCA favors applications
for which the index ordering in u matters, and for which sparsity is naturally
blockwise. This is often the case when dealing with transformed data (e.g., via
Fourier or wavelet) in signal or image processing.

A key feature of both SPCA and BlockPCA is that they select entries or
blocks of entries of {1, . . . , N} by successive order of magnitudes. For SPCA, the
selection is based on sorting the values of [Y Y ∗]ii from largest to smallest. By
central limit theorem arguments forgetting for a while the possible dependence
between successive estimates, we have n−1[Y Y ∗]ii = 1 + ω|ui|2 + Op(n

− 1
2 ),

therefore being only relevant as long as |ui|2 dominates n−
1
2 . SinceN and n scale

together, this can only occur for a maximum of N
1
2 entries of u, thus a vanishing

amount. This estimation procedure is therefore relevant for sufficiently sparse
vectors u, but is not suitable for vectors which are “not-too-sparse” (e.g., if
most of the |ui|2 are of order N−1). In contrast, our proposed BlockPCA
approach leverages the blockwise approach to achieve estimates of the type
Ω̂I = ΩI + o(1) as long as |I| = O(N). In fact, from (Couillet and Hachem,

2013), this estimate obeys Ω̂I = ΩI + Op(N
− 1

2 ), i.e., ‖uI‖2 is estimated with

accuracy N−
1
2 . This allows for the consistent estimation of every block with

energy dominating N−
1
2 . We shall see in Section 4 that, for a synthetically-

generated example from (Johnstone and Lu, 2009) that can be considered sparse,
the SPCA algorithm does not precisely select the relevant indices of u beyond the
first few ones, which compromises the performance. The BlockPCA algorithm,
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on the other hand, often picks the correct most powerful index blocks and leads
to improved performance, even for such sparsity-induced examples.

But the major feature of BlockPCA lies in its ability to consistently estimate
the optimal block selection. This capability draws mainly on the fact that the
number 2K of possible block selections remains finite while N,n grow, and on
the fact that the elementary subsets JKk are deterministic. The former aspect
enables uniform consistency of the 2K estimates in the large N,n limit, while
the latter aspect ensures that random matrix techniques are valid as XI is
independent of the complementary XIc . The individual entry selection made by
SPCA induces too much correlation between the selected sets I and the random
variable X. Beyond the first few selected indices corresponding to maximal
[Y Y ∗]ii (which for all large N,n are surely the deterministic indices of maximal
|ui|2 values), many selected entries depend on X. This makes it challenging
to determine the theoretical limit of FI when I contains such indices, let alone
deciding on the optimal threshold τ for which only the i’s satisfying [Y Y ∗]ii > τ
are selected.

Whereas SPCA is limited by the choice of τ , BlockPCA is in turn limited by
the choice of the set {K1, . . . ,KM}. Indeed, while large K values theoretically
guarantee refined optimal subsets Iopt, in practice for not-too-large values of
N,n, large K’s will likely lead to ΩJKk ’s of smaller magnitude and to a loss
of uniformity in the convergence results. This goes to the extent where, for
K = N , BlockPCA boils down to SPCA. As a rule of thumb, given the central
limit discussion above, it is advised to keep in practice K <

√
N . But, as

shall be seen in simulations, it is possible to detect limitations in the choice of
a particular K by observing significant mismatches between the performance

achieved by ÎKi,� and by ÎK/2i/2,� for several i’s. This may suggest errors in the

selection of these sets, especially if the performance achieved by the former is
worse than that of the latter.

Another selection argument has to do with the application at hand. Depend-
ing on the data under consideration, one may have some a-priori knowledge on
the typical support size of the localized energy in u. The choice of K should
then be adapted to this support. Fourier and wavelet transforms of practical
data tend in particular not to provide clean single-valued frequencies but rather
spreads of frequencies around given cut-frequencies. Engineering considerations
can thus guide the selection of {K1, . . . ,KM}.

4. Simulation results

We provide simulation results which compare BlockPCA against alternative
sparse PCA approaches; particularly, the SPCA (Johnstone and Lu, 2009) and
TPower (Yuan and Zhang, 2013) methods. Recall that the SPCA algorithm
estimates u via ûI with I = Ŝk for some k, where

Ŝk , argmaxI⊂{1,...,N}
|I|=k

1

N
tr

(
1

n
YIY

∗
I

)
.
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A definite choice of k is in general not available. We shall also denote

Sk , argmaxI⊂{1,...,N}
|I|=k

ΩI

the set which the SPCA algorithm seeks and estimates by Ŝk. The TPower
method estimates u by û∞(k), the limiting vector obtained by the iterations ûi+1

(k) =

TrunNormk( 1
nY Y

∗ûi(k)) with TrunNormk(x) the vector x with only k largest
absolute indices maintained, and normalized to one. Again here k is a parameter
chosen by the experimenter. We denote T̂k as the support of û∞(k). For these

sets, the notation Sopt, Ŝopt, and T̂opt are understood as the respective optima
across the set indexes.

We shall consider two successive examples. The first one concerns the setting
where u has a short but not sparse support, depicted in the first quadrant of
Figure 2, and the columns of Y form an autoregressive process of order one. We
shall show that in this setting, BlockPCA outperforms sparse PCA alternatives
even if the latter are given optimal parametrization of the support size. The
second example concerns a genuinely sparse setting borrowed from (Johnstone
and Lu, 2009, Figure 1) in which u was manually designed to be sparse in
a wavelet domain, ω is rather large, and T = In. This example serves as a
fair comparison of our method against sparse PCA alternatives. It shall be
shown on this example that, while BlockPCA largely outperforms SPCA, it
performs slightly worse than TPower if the latter were given the optimal support
size. Practical considerations on an optimal usage of BlockPCA shall also be
discussed. Both instantaneous and 1000-averaged Monte Carlo realizations of
the various algorithms will be provided.

We start with the non-sparse scenario. To evaluate the performance of Block-
PCA for not-too-large N,n, we take here N = 512, n = 256. The vector u is
defined, up to a rescaling to unit norm, as ui = u(i/N), where the function u(x)
of support [0, 1] is given by

u(x) = N (x; 5/8, 1/80) + 4N (x; 3/4, 1/40) + 9N (x; 7/8, 3/80)

with N (x; a, b) the real Gaussian probability density function at x with mean
a and standard deviation b. Although u could be clearly made sparse in some
well chosen wavelet basis, we assume here that the experimenter is not aware of
such a basis so that u is treated as a non-sparse vector. The parameter ω is set
to ω = 20 and [T ]ij = 0.7|i−j|. We finally set {K1, . . . ,KM} to {2, 4, 8, 16, 32}.
Figure 1 depicts in + signs the averaged values of F̂Îk,� obtained by BlockPCA

for K = 32 (larger black ‘+’ signs) and K = 8 (smaller gray ‘+’ signs). These
are compared against the deterministic equivalent F̄Ik,� in dots, which the algo-
rithm aims at estimating, and against the actual values of FÎk,� in circles, which

provide the actual achieved performance (smaller gray dots/circles for K = 8).
It is observed that the approximation is quite accurate on the first half of the
range of |I| but decays on the second half, with the decay most significant for
larger K.
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Figure 1: Non-sparse example. Averaged values of FI (◦) and its random approximation by

Algorithm 1 (+), for I ∈ {ÎKk,�} found by Algorithm 1, versus deterministic approximation

F̄I for the optimal sets I ∈ {IKk,�} (·). Comparison against SPCA performance on SPCA-

discovered sets Ŝk versus optimal sets Sk and against TPower. Correlation [T ]ij = 0.7|i−j|

unknown.

This is explained by the fact that, for N = 512, K = 32 cannot be considered
sufficiently small for the joint approximations of FÎk,� by F̂Îk,� across all k to

hold.5 Nonetheless, it appears that in the region of interest, where F̂Îk,� is

maximal, BlockPCA on average retrieves the correct optimum set Iopt. The
comparison made against SPCA and TPower (in dashed and dotted lines) shows
that SPCA is inappropriate for estimating the given u, and reveals optimal
performance for a given subset size only on the far right of the plot when Ŝk =
{1, . . . , N}, which thus falls back to the standard PCA scenario. The TPower
method, on the other hand, retrieves a smaller optimal set T̂k, but has much
degraded performance compared with BlockPCA. We also note that the ideal
sought-for FSk achieves its maximum very close to BlockPCA’s optimum, and
thus BlockPCA is close to optimal in this setting. This example therefore clearly
shows the ability of our proposed approach to estimate “not-so-sparse” vectors,
compared with the sparse PCA approaches, SPCA and TPower, as well as

5It is instructive to note that the upper arc of the larger ‘+’ signs, which parallels the lower
arc of larger ‘◦’ signs, is a strong indicator of the impact of the matrix X in the estimation
of IKk,�. Indeed, the upper arc appears to indicate a successive selection of “energetic” YIY

∗
I

irrespective of u, while the lower arc reflects that there is increasing mis-selection. This effect
cannot be avoided if all the energy in u was exhausted in the first sets IKk,�. However, with

growing N,n, or alternatively for smaller K, both arcs need to tend to one another, which is
what is observed here for K = 8. This effect is even more visible in Figure 3.
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BlockPCA ûI , I = Iopt.

0 100 200 300 400 500

0

5 · 10−2

0.1

0.15

0.2

SPCA vector ûI , I = Ŝopt
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Figure 2: Non-sparse example. Eigenvectors obtained by each algorithm. From left to right
and top to bottom: original eigenvector; standard PCA; leading eigenvector found by Algo-
rithm 1 assuming T unknown; optimum theoretical BlockPCA eigenvector; SPCA with oracle
decision on optimal set Ŝk; TPower with oracle knowledge of best T̂k.

classical PCA.
A single (but typical) realization of the eigenvector estimates retrieved by

each algorithm is provided in Figure 2. The substantial improvement of Block
PCA over standard PCA is clearly evident, with the standard approach giving
noisy results and having difficulties in picking up the smaller peaks in u in
particular (which BlockPCA retrieves accurately). We caution, however, that
this is not a systematic scenario, as BlockPCA is not perfect, and sometimes
misses the weakest peak or creates some extra peaks. Note also that Îopt differs
from Iopt in this example. The SPCA and TPower figures are obtained at their
respective optimal point (which we recall—in contrast BlockPCA—is not made
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available by the algorithm), hence providing here a best case scenario. It is
seen that SPCA, while not being exactly the standard PCA output, shows an
important number of spurious values outside the support of u. As for TPower,
it displays a smaller support but misses the connection between the two largest
peaks and presents extra small peaks outside the genuine support of u.
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Figure 3: Setting of (Johnstone and Lu, 2009, Figure 1). Averaged values of FI (◦) and its

random approximation by Algorithm 1 (+), for I ∈ {ÎKk,�} found by Algorithm 1, versus

deterministic approximation F̄I for the optimal sets I ∈ {IKk,�} (·). Comparison against

SPCA performance on SPCA-discovered sets Ŝk versus optimal sets Sk. Correlation T = In
known.

One may argue, of course, that both the SPCA and TPower methods were
mainly designed for the estimation of sparse vectors, as opposed to not-so-
sparse vectors, which are the basis for the BlockPCA algorithm. Thus, for a
fair comparison, it is instructive to compare the performance of the different
algorithms under a suitably sparse setting, particularly to see if the BlockPCA
technique degrades substantially and is overwhelmed in performance by SPCA
and TPower. To investigate this, we now consider the setting of (Johnstone
and Lu, 2009, Figure 1) where, when seen in a wavelet domain, u is sparse.
Following (Johnstone and Lu, 2009) exactly, we take N = 2048, n = 1024,
ω = 100, T = In (which we assume known to BlockPCA). The original-domain
vector u is displayed in the upper-left quadrant of Figure 4. Its value is given
by ui = u(i/N), where the function u(x) is defined on [0, 1] as

u(x) = C (0.7b(1500, 3000, x) + 0.5b(1200, 900, x) + 0.5b(600, 160, x))

with C a normalization constant and b(a, b, x) the Beta-density given by b(a, b, x) =
Γ(a+b)

Γ(a)Γ(b)x
a(1 − x)b−1. This vector u is sparse when wavelet transformed using
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Figure 4: Setting of (Johnstone and Lu, 2009, Figure 1). Resulting inverse wavelet-
transformed eigenvectors. From left to right and top to bottom: original eigenvector; standard
PCA; leading eigenvector found by Algorithm 1 assuming T = In is known (corresponds on
this realization to the leading eigenvector for the theoretically optimal subset selection Iopt);
leading eigenvector found by Algorithm 1 assuming T = In is unknown; SPCA with oracle
decision on optimal thresholding of [Y Y ∗]ii; SPCA with oracle knowledge of both ordering of
|ui|2 and optimal thresholding of [Y Y ∗]ii.

a Symmlet basis. This transformation, not documented in (Johnstone and Lu,
2009, Figure 1), was performed here via the WaveLab Matlab c© library using
the functions6

6The authors in (Johnstone and Lu, 2009) may have used different parameter values than
1 and 4 in their own definition of WT and IWT.
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Figure 5: Setting of (Johnstone and Lu, 2009, Figure 1). Bottom: absolute eigenvector |u|
(seen in wavelet domain). Top: optimal selection sets, theoretical and empirical.

WT = @(x) FWT_PO(x,1,MakeONFilter(’Symmlet’,4))

IWT = @(x) IWT_PO(x,1,MakeONFilter(’Symmlet’,4))

The absolute value of the resulting wavelet transformed vector is displayed in
the bottom part of Figure 5. It is observed that the eigenvector support spans
about 5% to 10% of the vector size and is rather connected, therefore making it
quite sparse but also accessible to BlockPCA. Despite BlockPCA not being at a
particular advantage in this scenario, we shall observe that it still outperforms
SPCA and, remarkably, achieves virtually the same performance as TPower
when the latter is assumed to know the optimal support size selection.

Since T = In is assumed known, we consider here for BlockPCA the es-
timators in (10), with K ∈ {2, 4, 8, 16, 32, 64}. For the sake of clarity, only
the results for K ∈ {16, 64} will be depicted. Similar to Figure 1, Figure 3
displays in continuous lines the averaged performance of SPCA and TPower,
along with the oracle SPCA with knowledge of Sk. Similar to previously, aside
from the very first strongest values of |ui| (here about 30 of them), quickly the
SPCA algorithm shows difficulties in retrieving the correct indices of energetic
|ui|. TPower demonstrates considerable performance improvement, though it
also shows a particularly sensitive turning point beyond which the performance
drops significantly and FT̂k becomes a weak approximation of the optimal FSk .
By comparison, BlockPCA is a close approximation to FSk on most of its range.
Since N is four times larger than in the example of Figure 1, observe that the
approximation F̂ÎK

k,�
for K = 16 is quite accurate along the whole range of

values of FIK
k,�

. For K = 64, the approximations tend to be worse but are still

extremely accurate on the range of most interest (around the peak). In par-
ticular, observe that F̂Îopt

is a particularly close approximation to FIopt
which

strongly suggests that Îopt = Iopt for most realizations. Finally, it is worth not-
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ing that all three approaches in this case can perform better than standard PCA,
the performance of which is given by the value corresponding to the right-most
point (i.e., I = {1, . . . , 2048}).

We next provide in Figure 4 a representative single realization of the eigen-
vectors retrieved by each algorithm. These eigenvectors are all obtained after
performing the inverse wavelet transform (via the function IWT above) of the
eigenvectors obtained as the output of the algorithms. Since Îopt = Iopt for
most realizations, we do not depict both cases here. In terms of performance, it
is evident that BlockPCA largely outperforms the SPCA eigenvector obtained
for the optimal selection Ŝopt, while BlockPCA and TPower are comparable.
As a further comparison, we provide in the lower right quadrant the sought-for
outcome of SPCA, corresponding to optimal subset selection Sopt (which can
thus be considered as an overall optimum).

In Figure 5, taking the same realization as for Figure 4, in addition to plot-
ting the magnitude of the wavelet coefficients of vector u, at the top of the figure
we depict the sets Iopt, Îopt, along with Sopt, T̂opt, and Ŝopt. As already recalled

Îopt = Iopt on this realization, therefore leading to an optimal BlockPCA set
selection. This set turns out to be I64

5,� = J 64
1 ∪ J 64

2 ∪ J 64
3 ∪ J 64

4 ∪ J 64
6 . Note

that the set Sopt resembles Iopt but for a more discrete (higher resolution) sup-
port, which explains the superiority of the oracle SPCA result. The optimum
SPCA set selection Ŝopt has an extremely extended support despite its sharing
most of the support of Sopt (the reader must be aware that, despite the visual
impression, the support of Sopt does in general not exceed 10% of the support
of {1, . . . , N} as hinted at in Figure 3). This can be explained by the fact that,
while the first indices selected by SPCA correspond to genuinely optimal indices
in u, those selected subsequently are competing against the fluctuations of X
which induce large values in the diagonal elements of Y Y ∗ independently of u:
since N is much larger than the support of u, these errors are likely numer-
ous and it takes quite a few erroneous index selections to exhaust most of the
support of u. Finally, as opposed to Ŝopt which tends to be larger than Sopt,
TPower seems to produce a subset of Sopt. This is consistent with Figure 3,

suggesting that T̂k = Sk for the first few values of k, until a point where every
additional index strongly taints the performance of TPower.

5. Discussion and future perspectives

We have presented a novel blockwise sparse PCA approach which leverages
recent results regarding the extreme eigenvalues and eigenvectors of spike ran-
dom matrix models. Our results present a key distinction from most existing
work in the sparse PCA literature, in that they do not impose a strong sparse
structure for which the number of contributing variables is a rapidly vanish-
ing fraction of the total number of variables, and we do not seek algorithms
which provide consistent (and rate-optimal) estimates. Instead, we consider
“not so sparse” models in which the fraction of contributing variables is non-
vanishing, and for which consistent sparse PCA algorithms are generally not
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attainable under the regime where the number of samples and number of vari-
ables grow at the same rate. Our proposed approach presents an efficient and
asymptotically-optimal blockwise variable selection which yields the right bal-
ance between minimizing errors due to finite sampling (achieved with more
aggressive variable selection), and maximizing the retained eigenvector energy
(achieved with less aggressive variable selection). Unlike most existing sparse
PCA algorithms, the proposed method is completely data driven with no free
parameters requiring ad-hoc tuning, while also allowing for possibly unknown
linear correlations between the samples. Our numerical studies demonstrate
the performance merits of the approach with respect to competing sparse PCA
algorithms.

We point out that the purpose of this paper was to pose, for the first time,
the idea of using the limiting eigenvalue and eigenvector results from random
matrix theory to provide consistent estimators of the errors achieved with dif-
ferent variable selections, and to apply such estimators to propose an objective
data-driven variable selection algorithm. These results were demonstrated un-
der various assumptions, some more restrictive than others. First, our proposed
method assumed that the underlying model eigenvector u has its energy mainly
contained in a possibly sparse group of blocks of consecutive entries. We be-
lieve that this assumption is practically reasonable, particularly when working
in a transformed domain such as in a Fourier (or wavelet) basis, where the
signal energy is often clustered around certain frequency bands (typically low
frequencies). A more restrictive assumption of our model is that we consider
a single spike only; effectively representing the case of a rank-1 signal in noise.
The relevant random matrix properties concerning the asymptotic eigenvalue
limits and eigenvector projections are indeed known for spike models beyond
the rank-1 case (see e.g., (Baik and Silverstein (2006); Couillet and Hachem
(2013))), however a refined variable selection strategy will be necessary for such
cases. Such a refinement appears non-trivial. For example, even for the sim-
plest 2-spike departure, a key challenge arises by the fact that for any proposed
blockwise variable selection I, the extracted components from the top two spike
eigenvectors will generally no longer be orthogonal. Moreover, even if they
were, the subset selection may lead to a re-ordering of the corresponding sam-
ple eigenvector-eigenvalue pairs which appears difficult to resolve. These issues
may be partially alleviated if the supports of the spike eigenvectors were as-
sumed to be non-overlapping. While seemingly a strong assumption, this type
of structured correlation model is in fact representative of various applications
for which distinct groups of mutually correlated variables exist, but with the
groups being uncorrelated with each other. For example, this has been shown
to be relevant in biological applications and used to define “biological sectors”
(Dahirel et al. (2011); Quadeer et al. (2014)) identifying co-evolving protein
sites in HIV and Hepatitis C, and is a reasonable approximation for classifying
“financial sectors” of economic activity in financial time series (Plerou et al.
(2002)). While beyond the scope of the current paper, further development of
our ideas along these lines is an interesting avenue for further work. Alternative
correlation scenarios may also be considered; for example, by replacing the iden-
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tity matrix in (1) with a more general correlation construction. In that case,
one could potentially leverage recent results which have been derived for so-
called “generalized spike” models (see e.g., (Bai and Yao (2012); Ding (2015))).
Finally, as for many of the sparse PCA algorithms in the literature, we have
assumed a Gaussian data model. This was required in order to establish the
reduced spike model equivalence in (4), though other data distributions may be
possibly considered; for example, heavy-tailed elliptical models, which may uti-
lize very recent results that have been established for the corresponding random
matrices (Couillet (2015)). This is yet another interesting extension for future
work.

6. A technical lemma

Lemma 1 (A monotonicity result). Let µ be a probability measure with com-
pact support supp(µ) ⊂ R+ and Stieltjes transform mµ. Then the functions

(sup(supp(µ)),∞)→ R+

x 7→ − 1

1 + xmµ(x)

and

(sup(supp(µ)),∞)→ R+

x 7→ − mµ(x)

mµ(x) + xm′µ(x)

are both positive and increasing.

Proof. For the first function,

− 1

1 + xmµ(x)
=

(∫
t

x− t
µ(dt)

)−1

which is positive on (supp(µ),∞) and increasing. For the second function, pos-
itivity is ensured by observing that the numerator is negative while the denom-
inator satisfies mµ(x) +xm′µ(x) =

∫
t(x− t)2µ(dt) > 0. To verify monotonicity,

differentiating along x gives a derivative of the same sign as

−m′µ(x)
(
mµ(x) + xm′µ(x)

)
+mµ(x)

(
2m′µ(x) +m′′µ(x)

)
= −

∫
1

(x− t)2
µ(dt)

∫
t

(x− t)2
µ(dt) + 2

∫
1

x− t
µ(dt)

∫
t

(x− t)3
µ(dt).

Writing −
∫
t(x − t)pµ(dt) =

∫
(x − t)p−1µ(dt) − x

∫
(x − t)p for both terms

involving t in the numerators, this becomes

−
∫

µ(dt)

(x− t)2

∫
µ(dt)

x− t
− x

(∫
µ(dt)

(x− t)2

)2

+ 2x

∫
µ(dt)

x− t

∫
µ(dt)

(x− t)3
.
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By the Cauchy–Schwarz inequality,
(∫ µ(dt)

(x−t)2

)2

≤
∫ µ(dt)

x−t
∫ µ(dt)

(x−t)3 , so that

−m′µ(x)
(
mµ(x) + xm′µ(x)

)
+mµ(x)

(
2m′µ(x) +m′′µ(x)

)
≥
∫
µ(dt)

x− t

(
x

∫
µ(dt)

(x− t)3
−
∫

µ(dt)

(x− t)2

)
=

∫
µ(dt)

x− t

∫
t

(x− t)3
µ(dt)

> 0 .
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