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Abstract—This paper introduces a Bayesian framework to
detect multiple signals embedded in noisy observations, from
an array of sensors. For various states of knowledge on the
communication channel and the noise at the receiving sensors, a
marginalization procedure based on random matrix theory tech-
niques, in conjunction with the maximum entropy principle, is
used to compute the Neyman-Pearson hypothesis testing criterion.
Quite remarkably, although rather involved, explicit expressions
for the Bayesian detector are derived which enable to decideon
the presence of signal sources in a noisy wireless environment.
Under the hypotheses that the true channel conditions adhere
the maximum entropy model, the proposed detector is the
optimal Neyman-Pearson detector; if so, the performance ofthe
derived decision criteria can be used as an upper-bound for the
performance of alternative detectors. In particular, simulation
results are provided that suggest that the classical energydetector
is close-to-optimal when the noise power isa priori known to
the sensor array, especially when many sources simultaneously
transmit, while the conditioning number-based detector, used
classically when the noise power is unknown, is shown to perform
poorly in comparison to the proposed optimal detector.

I. I NTRODUCTION

Since a few years, the idea of smart communication devices
has made its way through the general framework of cognitive
radio [1]. The general idea of an ideal cognitive terminal isthat
of a device capable of exploring and exploiting the communi-
cation environment based on any prior state of knowledge [2].
Such a device should be first able to turn prior information on
the transmission channel into a mathematically tractable form.
This allows then the terminal to take optimal instantaneous
decisions in terms of information to feed back, bandwidth
to occupy, transmission power to use etc. It should also be
capable of updating its knowledge to continuously adapt to the
dynamics of the environment. This vision of a cognitive radio
is compliant with Haykin’s anticipation of “brain empowered”
wireless devices [2].

One of the key features of cognitive receivers is their ability
to sense free spectrum. When the cognitive device is switched
on, its prior knowledge on the environment is very limited but
still it is requited todecide whether it receives informative
data or only thermal noise, on different frequency bands: this
will be further referred to as thesignal sensing procedure. In
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the single-input single-output (SISO) scenario, the studyof
Bayesian signal detectors dates back to the work of Urkowitz
[3] on additive white Gaussian noise (AWGN) channels. It
was later extended to more realistic channel models [4]-[5].
Urkowitz’s signal detector is optimal in the sense that his
process performs the maximumcorrect detection rate, i.e.
the odds for an informative signal to be detected as such,
for a given low false alarm rate, i.e. the odds for a pure
noise input to be wrongly declared an informative signal. To
the authors’ knowledge, there exists no trivial multiple input
multiple output (MIMO) extension of the classical energy
detector, apart from that which consists into summing up all
powers received at the sensor array, e.g. [6]. In that case, the
receiver decides that the incoming signal carriesinformation if
the total received power exceeds a given threshold; otherwise
the received signal is declared pure noise. However, both
single sensor or sensor array models often assume perfecta
priori knowledge of the background noise power and, more
generally, does not capitalize on the prior information available
at the receiver; e.g. the receiver might be aware that, giventhe
wireless environment, it should expect a strong line-of-sight
component from the transmitter or, on the contrary, should
expect the fading channel to vary strongly. Note also that the
assumed prior knowledge of the noise power, or equivalently
of the expected signal-to-noise ratio (SNR), is unrealistic when
performing signal sensing. Alternative solutions have been
proposed that deal with the issue ofa priori unknown noise
power. In [7]-[8], a method based on the conditioning number
of the received sample covariance matrix1 allows to determine
a Neyman-Pearson decision criterion that is independent of
the noise power. An extension of this work is found in [9],
where the decision criterion is now based on the ratio between
the smallest eigenvalue of the received sample covariance
matrix and its trace. This method is however not heuristic
but is the solution of the generalized likelihood ratio test
(GLRT), which is another approach to deal with decision tests
with uncertain system parameters. Other contributions propose
detection schemes that are well suited for the determination
of the exact number of transmit sources, e.g. [10]-[11], which
extends the classical signal sensing procedure.

In a cognitive radio context, one would like all afore-
mentioned schemes to be unified into a general framework.
This is, for any prior knowledge available at the cognitive
receiver, given some received signal, the device should be
able to provide “optimal” decisions regarding the presence

1the conditioning number of a Hermitian matrix is defined as the ratio
between the largest and the smallest of its eigenvalues.
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of informative data, the number of transmitting sources etc.
This is the main focus of this work. The first barrier to
break is the question of optimality under incomplete prior
information. Indeed, even when much is unknown about the
environment, a transmission model still has to be found. To
this end, we shall model all random parameters about the
environment using themaximum entropy principle [12], whose
object is to assign prior probability distributions to unknown
parameters along the following rules: (i) the prior distribution
assigned to a unknown variable should be consistent with the
prior information about this variable, and (ii) among those
distributions that satisfy (i) the assigned prior distribution is
the one with maximum entropy, i.e. the one which maximizes
randomness. The maximum entropy principle, as a maximizer
of randomness, is mathematically justified by a Bayesian
definition of the uncertainty about a random variable, due
to Cox [13], and was largely applied in statistical physics,
spurred by the pioneering work from Brillouin on negentropy
[14]. In the following, we shall derive the optimal Neyman-
Pearson decision criteria for the problems of signal sensing
under various prior knowledge on the environment, specifically
the knowledge or absence of knowledge on the noise power,
and on the number of transmitting sources. Those can be
considered bothoptimal in the maximum-entropy sense, when
some system variables are unknown, andtruly optimal, when
the true system model matches the derived maximum-entropy
model; in the latter case, the derived Neyman-Pearson criteria
will provide performance upper-bounds to the classical heuris-
tic detectors. Part of this work is dedicated to evaluate through
simulations how close to optimal those classical detectorsare.

This paper is structured as follows: In Section II we for-
mulate the signal sensing problem and introduce the channel
model. Then in Section III, the Bayesian signal detectors are
computed for various prior information on the system model at
the sensing device. Simulations are then presented in Section
IV. Finally, after a short discussion in Section V on the general
framework and its limitations, we provide our conclusions in
Section VI.

Notations: In the following, boldface lowercase and upper-
case characters are used for vectors and matrices, respectively.
We note(·)H the Hermitian transpose,tr(·) denotes the matrix
trace.U(N) is the set of unitary square matrices of sizeN .
The notationPX(Y ) denotes the probability density function
of the variableX evaluated in the vicinity ofY . The notation
(x)+ equalsx if x > 0 and0 otherwise.

II. SIGNAL MODEL

We consider a communication system composed ofM
transmitter sources, e.g. this can either be anM -antenna single
transmitter orM single antenna (not necessarily uncorrelated)
information sources, and a receiver composed ofN sensors,
be they the uncorrelated antennas of a single terminal or a
mesh of scattered sensors. To enhance the multiple-antenna
(MIMO) analogy, the set of sources and the set of sensors will
be referred to asthe transmitter andthe receiver, respectively.
The communication channel between the transmitter and the
receiver is modelled by the matrixH ∈ CN×M , with (i, j)th

entrieshij . If, at time l, the transmitter emits data, denoted
as anM -dimensional vectors(l) = (s

(l)
1 , . . . , s

(l)
M )T ∈ CM .

The additive white Gaussian noise at the receiver is modelled,
at time l, by the vectorσθ

(l) = σ(θ
(l)
1 , . . . , θ

(l)
N )T ∈ CN ,

where σ2 denotes the variance of the noise vector entries.
Without generality restriction, we shall consider in the fol-
lowing zero mean and unit variance of the entries of both
θ

(l) and s(l), i.e. E[|θ
(l)
i |2] = 1, E[|s

(l)
i |2] = 1. We then

denotey(l) = (y
(l)
1 , . . . , y

(l)
N )T the N -dimensional data re-

ceived at timel. Assuming the channel coherence time is
at least as long asL sampling periods, we finally denote
Y = (y(1), . . . ,y(L)) ∈ CN×L the matrix of the concatenated
receive vectors.

Depending on whether the transmitter emits informative
signals, we consider the following hypotheses

• H0. Only background noise is received.
• H1. Informative signals plus background noise are re-

ceived.

Therefore, under conditionH0, we have the model,

Y = σ
[

θ
(1) · · · θ

(L)
]

(1)

and under conditionH1,

Y =
[

H σIN

]

[

s(1) · · · s(L)

θ
(1) · · · θ

(L)

]

. (2)

Under this hypothesis, we further denoteΣ the covariance
matrix of y(1),

Σ = E[y(1)y(1)H] = HHH + σ2IN = UΛUH, (3)

whereΛ = diag
(

ν1 + σ2, . . . , νN + σ2
)

, with ν1, . . . , νN the
eigenvalues ofHHH andU a certain unitary matrix.

The receiver is entitled to decide whether the sensors are
transmitting informative signals or not; this is, the receiver
makes a decision over hypothesisH0 or H1. The receiver is
however considered to have very limited information about
the transmission channel and is in particular not necessarily
aware of the exact numberM of sources and of the signal-
to-noise ratio. For this reason, the maximum entropy principle
requires that all unknown variables be assigned a probabil-
ity distribution which is both (i) consistent with the prior
information (voluntarily discarding information violates the
Bayesian requirements) and (ii) has maximal entropy over the
set of densities that validate (i). It is known in particularthat
the entropy maximizing probability distribution of a random
vector, whose population covariance matrix is known, is a
multivariate Gaussian distribution with zero mean and variance
the known population covariance matrix. If the population
covariance matrix is unknown but is known to be of unit trace,
then the entropy maximizing distribution is now multivariate
independent Gaussian with zero mean and normalized identity
covariance matrix. Therefore, ifH is only known to satisfy,
as is often the case in the short term,1

N E[trHHH] = 1,
the maximum entropy principle states that the entrieshij are
independent and distributed ashij ∼ CN(0, 1/M), for all
(i, j). For the same reason, both noiseθ

(l)
i and signals(l)

i
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entries are taken independent Gaussian with zero mean and
varianceE[|θ

(l)
i |2] = 1, E[|s

(l)
i |2] = 1.

The Neyman-Pearson criterion for the receiver to establish
whether an informative signal was transmitted is based on the
ratio C,

C(Y) =
PH1|Y(Y)

PH0|Y(Y)
. (4)

For a given receive space-time matrixY, if C(Y) > 1,
then the odds are that an informative signal was transmitted,
while if C(Y) < 1, it is more likely that no informative
signal was transmitted and therefore only background noise
was measured. To ensure a low probability of false alarm
(or false positive), i.e. the probability to declare a pure noise
sample to carry an informative signal, a certain thresholdξ is
generally set such that, whenC(Y) > ξ, the receiver declares
an informative signal was sent, while whenC(Y) < ξ, the
receiver declares that no informative signal was sent. The
question of what ratioξ to be set to ensure a given maximally
acceptable false alarm rate will not be treated in the following.
We will however provide an explicit expression of (4) for the
aforementioned model, and shall compare its performance to
that achieved by classical detectors.

Thanks to Bayes’ rule, (4) becomes

C(Y) =
PH1 · PY|H1

(Y)

PH0 · PY|H0
(Y)

(5)

with PHi
the a priori probability for hypothesisHi to be

true. We suppose that no side information allows the receiver
to think H1 is more or less probable thanH0, and therefore
setPH1 = PH0 = 1

2 , and thenC(Y) reduces to a maximum
likelihood criterion.

In the next section, we will derive close-form expressions
for C(Y) under the hypotheses that the values ofM and
the SNR are either perfectly or only partially known at the
receiver.

III. S IGNAL DETECTION

A. Known noise variance and number of signal sources

1) Derivation of PY|Hi
in SIMO case: We first analyze the

situation when the noise powerσ2 and the numberM of signal
sources are known to the receiver. We also assume in this first
scenario thatM = 1. Since it is a common assumption that
the number of available samples at the receiver is larger than
the number of sensors themselves, we further consider that
L > N .2

a) Pure noise likelihood PY|H0
: In this first scenario,

the noise entriesθ(l)
i are Gaussian and independent. The

distribution forY, that can be seen as a random vector with
NL entries, is then anNL multivariate uncorrelated complex
Gaussian with covariance matrixσ2INL,

PY|H0
(Y) =

1

(πσ2)NL
e−

1
σ2 trYY

H

. (6)

2the more marginalL < N case will not be treated here for lack of space.

By denotingx = (x1, . . . , xN )T the eigenvalues ofYYH, (6)
only depends on

∑N
i=1 xi,

PY|H0
(Y) =

1

(πσ2)NL
e−

1
σ2

PN
i=1 xi . (7)

b) Informative signal likelihood PY|H1
: In the informa-

tion plus noise scenarioH1, the problem is more involved.
The entries of the channel matrixH were previously modelled
as jointly uncorrelated Gaussian, withE[|hij |

2] = 1/M .
Therefore, sinceM = 1, H ∈ C

N×1 andΣ = HHH + σ2IN

has N − 1 eigenvalues equal toσ2 and another distinct
eigenvalueλ1 = ν1 + σ2 = (

∑N
i=1 |hi1|

2) + σ2. The density
of λ1 − σ2 is a complexχ2

N distribution (which is, up to a
scaling factor2, equivalent to a realχ2

2N distribution). Hence
the eigenvalue distribution ofΣ, defined onR+N ,

PΛ(Λ) =
1

N
(λ1 − σ2)N−1

+

e−(λ1−σ2)

(N − 1)!

N
∏

i=2

δ(λi − σ2). (8)

Given model (2),Y is distributed as correlated Gaussian,

PY|Σ,I1(Y,Σ) =
1

πLN det(Λ)L
e−tr(YY

H
UΛ

−1
U

H). (9)

whereIk denotes the prior information “H1 andM = k”.
Since the channelH is unknown, we need to integrate out all

possible channels of the model (2) over the probability space
of N × M matrices with Gaussian i.i.d. distribution. This is
equivalent to integrating out all possible covariance matrices
Σ over the space of such positive definite Hermitian matrices

PY|H1
(Y) =

∫

Σ

PY|ΣH1
(Y,Σ)PΣ(Σ)dΣ. (10)

Eventually, the Neyman-Pearson decision ratio (4) for the
single-input multiple-output channel takes an explicit expres-
sion, given as follows,

Theorem 1: The Neyman-Pearson decision ratioCY|I1(Y)
for the presence of an informative signal under prior informa-
tion I1, i.e. the receiver knows (i)M = 1 signal source, (ii)
the SNRσ−2, reads

C(Y) =
1

N

N
∑

l=1

σ2(N+L−1)eσ2+
xl

σ2

∏N
i=1
i6=l

(xl − xi)
JN−L−1(σ

2, xl) (11)

with x1, . . . , xN the empirical eigenvalues ofYYH and where

Jk(x, y) =

∫ +∞

x

tke−t− y

t dt. (12)

The main steps of the proof of Theorem 1 are provided in
Appendix A. Among the interesting features of (11), note that
the Neyman-Pearson test does only depend on the eigenvalues
of YYH. This suggests that the eigenvectors ofYYH do
not provide any information regarding the presence of an
informative signal. The essential reason is that both underH0

and H1, the eigenvectors ofY are isotropically distributed
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on the unitN -dimensional complex sphere; as such, a given
realization of the eigenvectors ofY does not carry any relevant
information to the hypothesis test. The Gaussian assumption
for H brought by the maximum entropy principle is therefore
essential here. Note however that (11) is not reduced to a
function of the sum

∑

i xi of the eigenvalues, as for the
classical energy detector.

On the negative side, the integralJk(x, y) does not take
a closed-form expression, but forx = 0; see page 561 of
[15]. This is rather inconvenient for practical purposes, since
Jk(x, y) must be evaluated every time or a rather large lookup
table must be kept in memory. It is also difficult to get any
insight on the performance of such a detector for different
values ofσ2, N andL, let alone marginalizing overσ2 when
the latter is not perfectly known. This last point is discussed
in Section III-B1. We now turn to the more general case when
M ≥ 1.

2) Derivation of PY|Hi
in MIMO case: In the MIMO

configuration,PY|H0
remains unchanged and Equation (6) still

holds. For the subsequent derivations, due to space limitation,
we only treat the situation whenM ≤ N but the caseM > N
is a trivial extension.

In this scenario,H ∈ CN×M is a random matrix with
independent and identically distributed central Gaussianen-
tries. The variance of every row isE[

∑M
j=1 |hij |

2] = 1.
ThereforeMHHH is distributed as a null Wishart matrix.
Hence, observing thatΣ − σ2IN is the diagonal matrix of
the eigenvalues ofHHH,

Σ = U · diag(ν1 + σ2, . . . , νM + σ2, σ2, . . . , σ2) ·UH (13)

for some unitary matrixU ∈ CN×N , the eigenvalue distribu-
tion density ofΛ can be derived [16]

PΛ(Λ) =
(N − M)!MMN

N !

M
∏

i=1

eM
P

M
i=1(λi−σ2)(λi − σ2)N−M

+

(M − i)!(N − i)!

×

M
∏

i<j

(λi − λj)
2

N
∏

i>M

δ(λi − σ2). (14)

From Equations (13) and (14) above, the MIMO equivalent
result to Theorem 1 unfolds as follows,

Theorem 2: The Neyman-Pearson decision ratioCY|IM
(Y)

for the presence of informative signal under prior information
IM , i.e. when the receiver is aware of (i)M ≤ N signal
sources, (ii) the noise powerσ2, reads

C(Y) =

σ2M(N+L−M)(N − M)!eM2σ2

N !M (M−1−2L)M/2
∏M−1

j=1 j!

∑

a⊂[1,N ]

e

PM
i=1 xai

σ2

∏

ai

∏

j 6=a1
...

j 6=ai

(xai
− xj)

×
∑

b∈P(M)

(−1)sgn(b)+M
M
∏

l=1

JN−L−2+bl
(Mσ2, Mxal

) (15)

with P(M) the ensemble of permutations of{1, . . . , M}, b =
(b1, . . . , bM ) and sgn(b) the signature of the permutationb.

The main steps of the proof of Theorem 2 are provided
in Appendix B. Note again thatCY|IM

(Y) is a function
of the empirical eigenvaluesx1, . . . , xN of YYH only. In
the following, we extend the current signal detector to the
situations whereM and σ2 are not a priori known at the
receiver.

B. Number of sources and/or noise variance unknown

1) Unknown noise variance: Efficient signal sensing when
the noise level is unknown is highly desirable. Indeed, if the
noise level were exactly known, some prior noise detection
mechanism would be required. The difficulty here is handily
avoided thanks toad-hoc methods that are asymptotically
independent of the noise level [7], [8], [9]. Instead, we shall
consider here the prior information about the noise power.
It might happen though that the receiver has no knowledge
whatsoever on the value of the noise power. When such a
situation arises, the unknown parameter must be assigned an
uninformative prior [17]. Assigning uninformative priors of
variables defined in a continuum is however, still to this day,
a controverted issue of the maximum entropy theory. The
classical uninformative priors considered in the literature are
(i) the uniform prior, i.e. every two positive values for the
noise power are equi-probable, which experiences problems
of scaling invariance thoroughly discussed in [12], and (ii)
Jeffreys prior [17], i.e. the prior distribution forσ2 takes the
form σ−α for any deterministic choice of positiveα, which
is invariant under scaling but is not fully attractive. Notethat
Jeffreys uninformative priors, in spite of their inherent bias for
some hypotheses, are sometimes used in other areas of signal
processing, see e.g. [18] for the estimation of noise covariance
matrices.

To alleviate somewhat the problem of uninformative priors,
we shall consider that the noise powerσ2 is known at least
to be bounded both from under and from above, i.e.σ2 ∈
[σ2

−, σ2
+], and we shall consider the “desirable” assumption

of uniform prior for σ2 over the set[σ2
−, σ2

+].
This therefore leads to

PY|I′

M
(Y) =

1

σ2
+ − σ2

−

∫ σ2
+

σ2
−

PY|σ2,I′

M
(Y, σ2)dσ2 (16)

with I ′k the information “H1, M = k and σ2 ∈ [σ2
−, σ2

+]”.
The latter results in the updated decisions of the form,

C(Y) =

∫ σ2
+

σ2
−

PY|σ2,I′

M
(Y, σ2)dσ2

∫ σ2
+

σ2
−

PY|σ2,H0
(Y, σ2)dσ2

. (17)

The computational difficulty raised by the integralsJk(x, y)
does not allow for any satisfying closed-form formulas for (16)
so that only numerical integrations can be performed at this
point.
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Fig. 1. ROC curve for SIMO transmission,M = 1, N = 4, L = 8,
SNR = −3 dB, FAR range of practical interest.

C. Unknown number of sources M

In practical cases, the number of transmitting sources is
only known to be finite and discrete. If only an upper bound
value Mmax on M is known, a uniform prior is assigned to
positiveM (which is here fully compliant with the maximum
entropy principle for discrete random processes). The prob-
ability distribution of Y under hypothesisI0 =“σ2 known,
M ≥ 1 unknown”, reads

PY|I0(Y) =
1

Mmax

Mmax
∑

i=1

PY|“M=i′′,I0(Y), (18)

which does not meet any computational difficulty.
Assuming again equal probability for hypothesesH0 and

H1, this leads to the decision ratio,

C(Y) =
1

Mmax

∑Mmax

i=1 PY|“M=i′′,I0(Y)

PY|H0
(Y)

. (19)

Note now that it is possible to make a decision test on the
number of sources itself in a rather straightforward extension
of the previous formula. Indeed, given a space-time matrix
realization Y, the probability for the number of transmit
antennas to bei is, from Bayes’ rule,

P“M=i′′|Y(Y) =
PY|“M=i′′ (Y)P“M=i′′

∑Mmax

j=0 PY|“M=j′′ (Y)P“M=j′′
, (20)

where all the quantities of interest here were derived in the
previous sections and appendixes. The multiple hypothesistest
on M is then based on a comparison of theodds O(“M = i′′)
for the events“M = i′′, for all i ∈ {0, . . . , Mmax}. The odds
for the event“M = i′′ is defined as

O(“M = i′′) =
P“M=i′′|Y(Y)

∑Mmax

j=0
j 6=i

P“M=j′′|Y(Y)
. (21)
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Fig. 2. Correct detection rates under FAR constraints for different SNR
levels,M = 1, N = 4, L = 8
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IV. SIMULATION AND RESULTS

In the following, we present results obtained for the afore-
mentioned SIMO and MIMO scenarios, using Theorems 1 and
2 respectively. In the simulations, the hypotheses concerning
incoming data, channel aspect and noise figure are those
presented in the model of Section II, i.e. the channel, signal
and noise matrix entries are i.i.d. Gaussian with zero mean
and respective variances1/M , 1 and 1. Therefore, under
this setting, the Neyman-Pearson decision criteria derived in
Theorems 1 and 2 are optimal. If the noise varianceσ2 is a
priori known at the sensing device, the results are compared
against the classical energy detector [3]. If the noise variance is
a priori unknown at the receiver, our results will be compared
against both the conditioning number method of [7]-[8] and
the GLRT approach of [9].

In our first example, we consider a SIMO channel with
N = 4 antennas at the receiver,L = 8 sampling instants
and a signal to noise ratioSNR = −3 dB. To compare
the performances of the different methods, we provide their
respective operating characteristic curves (ROC), i.e. for all
discussed methods, we compare simulation results in terms of
rates of false positives (or false alarm rates (FAR)) against
rates of true positives (correct detection rate (CDR)). Figure
1 presents the respective ROC curves for the Bayesian esti-
mator of Theorem 1 against the classical energy detector [3],
obtained from100, 000 Monte Carlo realizations of the model.
We remind that the energy detector decision criterion is based
on the test

Cenergy(Y) =
1

Lσ2

1

N

N
∑

i=1

xi. (22)

Figure 1 suggests that as much as a10% increase in detection
ability is obtained by the Bayesian detector and that this gain
increases along with smaller FAR. This tendency is confirmed
by Figure 2 in which the performance of the Bayesian signal
detector with respect to the energy detector for different FAR
is presented against the SNR.

In Figure 3, we takeN = 4, L = 8 andSNR = −3 dB as
before but consider nowM = 1 to M = 3 signal sources; we
then use Theorem 2 here. In this scenario the energy detector
closes in the gap with the Bayesian detector, with a surprising
behaviour: the energy detector performs better forM ∈ {2, 3}
than for M = 1, while the opposite tendency is observed
for the Bayesian detector. A possible interpretation comes
as follows: for the energy detector, due to MIMO channel
hardening effect [19], the variance of the receive signal is
smaller with increasingM , reducing then the false positive
rates; on the contrary, the performance decay of the Bayesian
estimator may be attributed to the increased number of degrees
of freedom in the MIMO channelH for larger M , which
makes it more difficult to matchPH1|Y(Y) againstPH0|Y(Y)
from single-shot simulations ofY matrices. In Figure 4,
we assume that the numberM = 1 of signal sources isa
priori known only to be in the setM ∈ {1, . . . , Mmax}, for
Mmax ∈ {1, 2, 3}. We observe that, while perfect knowledge
of M leads to some non-negligible gain with respect to the
cases whenM is unknown, increasingMmax does not really
impact performance. This might be interpreted by the fact that

the hypothesisM = 1 is naturally selected against hypotheses
of largerM . The same remark holds true for the case when
the SNR isa priori unknown, discussed hereafter.

Consider the scenario when the noise varianceσ2 is a
priori known to belong to the interval[σ2

−, σ2
+]. This is

presented in Figure 5 which demonstrates the effect of an
inaccurate knowledge of the noise power in terms of CDR
and FAR. In this simulation,M = 1, N = 4, L = 8 and
SNR = 0 dB.3 Comparison is made between the cases of exact
SNR knowledge, short SNR range[σ2

−, σ2
+] = [−2.5, 2.5] dB,

large SNR range[σ2
−, σ2

+] = [−5, 5] dB and very large range
[σ2

−, σ2
+] = [−9, 9] dB. Observe that the short SNR range

provides already a strong performance decay compared to the
ideal scenario, which is particularly noticeable in terms of
CDR performance at low FAR. Larger SNR ranges are then
only slightly worse than the short range scenario and seem
to converge to a ‘worst-case limit’; this can be interpretedby
the fact that the additional hypotheses, i.e. very strong orvery
little noise power, are automatically discarded as the values
of PY|σ2,I′

1
(Y, σ2) and PY|σ2,H0

(Y, σ2) become negligible
for unrealistic values ofσ2. Additional simulations for larger
SNR ranges were carried out that visually confirm that the
FAR and CDR plots are identical here as long asσ2

− ≤ −5
dB andσ2

+ ≥ 5 dB. Therefore, simulations suggest that the
proposed Bayesian signal detector is able to cope even with
totally unknown SNR, which is obviously not the case of
the classical energy detector that relies on an SNR-dependent
decision threshold.

We now consider totally unknown SNR value, which we
demonstrated above to be equivalent as taking thea priori
informationσ2

− ≤ σ2 ≤ σ2
+, with σ2

− ≤ −5 dB andσ2
+ ≥ 5

dB. The performance, already provided in Figure 5, is now
compared in Figure 6 against the conditioning number method,
the GLRT method and the Bayesian approach with Jeffreys
prior Pσ2(σ2) = σ−2α and α = 1. We recall briefly those
methods. The conditioning number method is an heuristic
method, independent of the SNR, which considers the decision
ratio

Ccond(Y) =
maxi(xi)

mini(xi)
(23)

between the largest and the smallest eigenvalue of the empir-
ical YYH matrix. The GLRT method considers instead the
ratio [9]

CGLRT(Y) =
supH,σ2 PH1|Y,H,σ2(Y)

supσ2 PH0|Y,σ2(Y)
(24)

=





(

1 −
1

N

)N−1
maxi(xi)
1
N

∑N
i=1 xi

(

1 −
maxi(xi)
∑N

i=1 xi

)N−1




−L

.

(25)

We observe first that the intuitive, though naive, condition-
ing number approach is greatly outperformed by the GLRT
method, by more than30% of correction detection perfor-
mance for low FAR. In turn the Bayesian detector appears
to outperform the GLRT method, but only for large FAR.

3the specific choices of signal-to-noise ratios were made such that the ROC
curves do not lead to trivial all zeros or all ones CDR at low FAR.
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This seems to suggest that the computationally simple GLRT
approach seems to be extremely adequate and close-to-optimal
for low FAR constraints.

V. D ISCUSSION

In the previous framework, we relied on the maximum
entropy principle in order to derive uniquea priori dis-
tributions for the various unknown system parameters. The
provided Bayesian solutions, derived from the channel state of
knowledge available at the receiver, were claimed consistent
in the proposed probability framework. This framework is in
particular extensible to whatever prior knowledge the receiver
might have on the transmission environment. However, some
limitations can be raised. First, as stated in III-B1, uninforma-
tive priors modeling is still an incomplete and controversial
theory, for which no definite answer is available to this day.
When such a prior information is to be treated, the proposed
signal sensing framework is not capable of singling out a
proper maximum entropy model; this constitutes a major
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Fig. 6. ROC curve fora priori unknown σ2 of the Bayesian method,
conditioning number method and GLRT method,M = 1, N = 4, L = 8,
SNR = 0 dB. For the Bayesian method, both uniform and Jeffreys prior,
with exponentα = 1, are provided.

coherency issue of our source detection framework. Also, the
mathematical tools to derive maximum entropy distributions,
e.g. Lagrangian multipliers, only cope with statistical prior
knowledge, such as the moments of the underlying density
functions, and are rarely able to treat deterministic knowledge.

Note however that the advances in the field of random
matrix theory provide new answers to problems of high dimen-
sionality, even for finiteN, L values. Those problems, such as
the present maximum-likelihood multi-sensor signal sensing,
are often considered intractable and suffer in practice from
the so-calledcurse of dimensionality. The current study relies
nonetheless on the important property that the transmission
channelH is modelled as i.i.d. Gaussian; ifH were more
structured, it would have been more difficult to obtain an
integral expression similar to (45) and the final results, bethey
derivable, would implicate not only the eigenvalues but also
the eigenvectors ofYYH. Recent mathematical advances [20],
[21] provide some hope though that integration over Gaussian
matrices with non trivial correlation models may actually be
feasible.

More importantly, the proposed Bayesian framework allows
one to answer a wider scope of problems than just the present
multi-source signal sensing. In particular, we discussed in
the introduction the somewhat different problem of counting
the number of transmitting sources. Lately, the problem of
identifying the transmit power of the individual sources has
also received a lot of interest in the random matrix community,
see e.g. [22], [23] and [24].

VI. CONCLUSION

In this work, we introduced a general Bayesian framework
for multi-source detection from an array of sensors. This
framework is based on a consistent treatment of the infor-
mation about the transmission channel available at the sensing
device. The resulting Bayesian estimators were proven optimal
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with respect to the Neyman-Pearson detection criterion. The
performance of these novel multi-source detectors is compared
in simulations against (i) the classical energy detector when the
signal-to-noise ratio is perfectly known, (ii) recent techniques
from the field of random matrix theory when the signal-to-
noise ratio is unknown. ROC curve comparisons suggested
that the energy detector performs close-to-optimally, especially
when the number of transmit sources increases. We also
observed that the recently proposed GLRT detector when
the noise power isa priori unknown performs also close-to-
optimally, especially when the tolerated rates of false alarms
is low. We finally showed that this general framework can
be easily extended to problems such as number of sources
identification or source power inference.

APPENDIX A
PROOF OFTHEOREM 1

We start by noticing thatH is Gaussian and therefore the
joint density of its entries is invariant by left and right unitary
products. As a consequence, the distribution of the matrixΣ =
HHH + σ2I is unitarily invariant, i.e. for any unitary matrix
V, VΣVH has the same joint density asΣ. The latter density
does not as a consequence depend onU in its singular value
decomposition (3). This allows us to write, similarly as in [27],

PY|H1
(Y) =

∫

Σ

PY|Σ,H1
(Y,Σ)PΣ(Σ)dΣ (26)

=

∫

U(N)×R+

PY|Σ,H1
(Y,Σ)Pλ1 (λ1)dUdλ1.

(27)

Equation (27) leads then to

PY|I1(Y) =

∫

U(N)×R+N

e−tr(YY
H
UΛ

−1
U

H)

πNL det(Λ)L
(λ1 − σ2)N−1

+

×
e−(λ1−σ2)

N !

N
∏

i=2

δ(λi − σ2)dUdλ1 . . . dλN . (28)

To go further, we utilize the Harish-Chandra identity [26]

∫

U(N)

eκtr(AUBU
H)dU

=

(

N−1
∏

n=1

n!

)

κN(N−1)/2

det

(

{

e−AiBj
}

1≤i≤N
1≤j≤N

)

∆(A)∆(B)
(29)

in which, for a matrix X with eigenvaluesx1, . . . , xN ,
∆(X) =

∏

i>j(xi − xj) is the Vandermonde determinant.
In order to avoid divisions by zero when applying (29), we

moveλ2, . . . , λN away fromσ2, in such a way thatPY|I1(Y)
writes

PY|I1(Y)

= lim
λ2,...,λN→σ2

eσ2

(−1)
N(N−1)

2

∏N−1
j=1 j!

πLNσ2L(N−1)N !

∫ +∞

σ2

1

λL
1

(λ1 − σ2)N−1e−λ1

det

(

{

e
−

xi
λj

}

i,j

)

∆(X)∆(Λ−1)
dλ1 (30)

= lim
λ2,...,λN→σ2

eσ2 ∏N−1
j=1 j!

πLNσ2L(N−1)N !

∫ +∞

σ2

(λ1 − σ2)N−1

λL
1

e−λ1 det
(

ΛN−1
)

det

(

{

e
−

xi
λj

}

i,j

)

∆(X)∆(Λ)
dλ1

(31)

= lim
λ2,...,λN→σ2

eσ2

σ2(N−1)(N−L−1)
∏N−1

j=1 j!

πLNN !

∫ +∞

σ2

λ1
N−L−1(λ1 − σ2)N−1e−λ1

det

(

{

e
−

xi
λj

}

i,j

)

∆(X)∆(Λ)
dλ1

(32)

in which X andx1, . . . , xN respectively correspond toYYH

and its eigenvalues. The equality (31) comes from the fact that
∆(Λ−1) = (−1)N(N+3)/2 ∆(Λ)

det(Λ)N−1 .
By denotingy = (y1, . . . , yN−1, yN) = (λ2, . . . , λN , λ1)

and the functionsf(xi, yj) = e
−

xi
yj and fi(yj) = f(xi, yj),

we can perform a similar derivation as in [25] to obtain

lim
λ2,...,λN→σ2

det

(

{

e
−

xi
λj

}

i,j

)

∆(X)∆(Λ)
(33)

= lim
y1,...,yN−1→σ2

yN→λ1

(−1)N−1
det
(

{fi(xj)}i,j

)

∆(X)∆(Λ)
(34)

= (−1)N−1 det
[

fi(σ
2), f ′

i(σ
2), . . . , f (N−2)(σ2), fi(λ1)

]

∏

i<j(xi − xj)(λ1 − σ2)N−1
∏N−2

j=1 j!
.

(35)

The change of variables led to a switch of one column and
explains the(−1)N−1 factor when computing the resulting
determinant. The partial derivatives off along the second
variable is

∂f

∂yk
(a, b) =

k
∑

m=1

(−1)k+m

bm+k
Cm

k

(k − 1)!

(m − 1)!
ame−

a
b (36)

∆
= κk(a, b)e−

a
b . (37)

Back to the full expression ofPY|H1
(Y), we then have
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PY|I1(Y)

=
eσ2

σ2(N−1)(N−L−1)

NπLN

∫ +∞

σ2

(−1)N−1λN−L−1
1 e−λ1

×
det
[

fi(σ
2), f ′

i(σ
2), . . . , f (N−2)(σ2), fi(λ1)

]

∏

i<j(xi − xj)
dλ1 (38)

=
eσ2

σ2(N−1)(N−L−1)

NπLN
∏

i<j(xi − xj)

∫ +∞

σ2

dλ1(−1)N−1λN−L−1
1 e−λ1

× det









e−
x1
σ2

...

e−
xN

σ2

(

κj(xi, σ
2)e−

xi

σ2

)

1≤i≤N
1≤j≤N−2

e
−

x1
λ1

...

e−
xN
λ1









.

(39)

Before going further, we need the following result,
Lemma 1: Given a family {a1, . . . , aN} ∈ RN , N ≥ 2,

andb ∈ R∗, we have

det









1
... (κj(ai, b)) 1≤i≤N

1≤j≤N−1

1









=
1

bN(N−1)

∏

i<j

(aj − ai).

(40)
This identity follows from the observation that columnk of
the matrix above is a polynomial of orderk. Since summations
of linear combinations of the columns do not affect the
determinant, each polynomial can be replaced by the mono-
mial of higher order, i.e.b−2(k−1)ak

i . Extracting the product
1 · b−2 · · · b−2(N−1) = b−(N−1)N from the determinant, what
remains is the determinant of a Vandermonde matrix based on
the vectora1, . . . , aN .

By factorizing every row of the matrix bye−
xi

σ2 and
developing the determinant on the last column, one obtains

PY|I1 (Y)

=
eσ2

σ2(N−1)(N−L−1)

NπLN
∏

i<j(xi − xj)

∫ +∞

σ2

λN−L−1
1 e−λ1e−

PN
i=1 xi

σ2

× (−1)N−1
N
∑

l=1

(−1)N+l e
−xl

“

1
λ1

− 1
σ2

”

σ2(N−1)(N−2)

∏

i<j
i6=l
j 6=l

(xi − xj)dλ1

(41)

=
eσ2− 1

σ2

PN
i=1 xi

NπLNσ2(N−1)(L−1)

N
∑

l=1

(−1)l−1

∫ +∞

σ2

λN−L−1
1 e−λ1

×
e
−xl

“

1
λ1

− 1
σ2

”

∏

i<l(xi − xl)
∏

i>l(xl − xi)
dλ1 (42)

=
eσ2− 1

σ2

P

N
i=1 xi

NπLNσ2(N−1)(L−1)

N
∑

l=1

e
xl

σ2

∏N
i=1
i6=l

(xl − xi)

×

∫ +∞

σ2

λN−L−1
1 e

−
“

λ1+
xl
λ1

”

dλ1, (43)

which finally gives

PY|I1(Y) =
eσ2− 1

σ2

PN
i=1 xi

NπLNσ2(N−1)(L−1)

N
∑

l=1

e
xl

σ2 JN−L−1(σ
2,xl)

∏N
i=1
i6=l

(xl − xi)
.

(44)

with Jk(x, y) =
∫ +∞

x
tke−t− y

t dt, and we finally have the
desired decision criterion.

APPENDIX B
PROOF OFTHEOREM 2

SinceH is still unitarily invariant in the caseM > 1,

PY|IM
(Y) =

∫

U(N)×R+M

PY|Σ,IM
(Y,Σ)PΛ̄(Λ̄)dUdΛ̄,

(45)

which, using the same technique as previously, further devel-
ops into

PY|IM
(Y)

=
(N − M)!MMNeM2σ2

σ2(N−M)(N−L−1)(−1)MN−M(M+1)
2

N !πNL
∏M−1

j=1 j!

×

∫ +∞

σ2

· · ·

∫ +∞

σ2

M
∏

i=1

λi
N−L−1

∏M
i<j(λi − λj)

∏N
i<j(xi − xj)

e−M
PM

i=1 λi

× det









e−
x1
σ2

...

e−
xN

σ2

κj(xi, σ
2)e−

xi

σ2

e
−

x1
λM · · · e−

x1
λ1

... · · ·
...

e
−

xN
λM · · · e

−
xN
λ1









(46)

in which the term(−1)MN−M(M+1)
2 originates from theM

exchanges between thekth column and the(N − k + 1)th

column, k ∈ [1, M ]. By factorizing the determinant by
e−

1
σ2

P

N
i=1 xi , developing along theM last columns, we have

from Lemma 1,

det









e−
x1
σ2

...

e−
xN

σ2

κj(xi, σ
2)e−

xi

σ2

e
−

x1
λM · · · e−

x1
λ1

... · · ·
...

e
−

xN
λM · · · e−

xN
λ1









(47)

=
∑

a⊂[1,N ]

e
−

P

M
i=1 xai

“

1
λi

− 1
σ2

”

σ2(N−M−1)(N−M)

e−
PN

i=1 xi

σ2
∏N

i<j(xi − xj)
∏

ai

∏

j /∈[a1,...,ai]
(xai

− xj)
.

(48)

Together, this becomes,
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PY|IM
(Y)

=
(N − M)!eM2σ2−

PN
i=1 xi

σ2

N !M (M−2L−1)M/2πNLσ2(N−M)(L−M)
∏M−1

j=1 j!

×
∑

a⊂[1,N ]

e

PM
i=1 xai

σ2

∏

ai

∏

j /∈{a1,...,ai}
(xai

− xj)

∫ +∞

Mσ2

· · ·

∫ +∞

Mσ2

e
−

PM
i=1

“

λi+
Mxai

λi

” M
∏

i=1

λi
N−L−1

M
∏

i<j

(λi − λj)dλ1 . . . dλM .

(49)

Remind now the Vandermonde determinant identity

M
∏

i<j

(Xj − Xi) =
∑

b∈P(M)

sgn(b)

M
∏

i=1

Xbi−1
i , (50)

whereP(k) is the ensemble of permutations ofk andsgn(b)
designs the signature of the permutationb. We finally obtain

PY|IM
(Y) =

(N − M)!M (2L−M+1)M/2eM2σ2−
PN

i=1 xi

σ2

N !πNLσ2(N−M)(L−M)
∏M−1

j=1 j!

×
∑

a⊂[1,N ]

e

PM
i=1 xai

σ2

∏

ai

∏

j 6=a1
...

j 6=ai

(xai
− xj)

∑

b∈P(M)

(−1)sgn(b)+M

×

M
∏

l=1

JN−L−2+bl
(Mσ2, Mxai

), (51)

which completes the proof.
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