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Abstract—Linear precoding has been widely studied in the
context of Massive MIMO together with the two common power
normalization techniques, namely, matrix normalization (MN)
and vector normalization (VN). However, the effect of both on
the system performance has not been thoroughly studied. The
aim of this paper is to address this problem using large system
analysis. Considering a system model that accounts for channel
estimation, pilot contamination, arbitrary pathloss, and per-user
channel correlation, we compute tight approximations for the
signal-to-interference-plus-noise ratio (SINR) and the rate of each
user equipment (UE) in the system while employing maximum
ratio transmission (MRT), zero forcing (ZF), and regularized ZF
(RZF) precoding under both MN and VN techniques. Exploiting
such results, we reveal the effect of power normalization on
the performance of MRT and ZF, and determine how it affects
noise, interference, pilot contamination, and signal powers of
any arbitrary UE. We show that the power normalization can
convey a notion of fairness or sum rate maximization for ZF.
Numerical results are used to validate the accuracy of the
asymptotic analysis and to show that in Massive MIMO, non-
coherent interference and noise, rather than pilot contamination,
are often the major limiting factors of the considered precoding
schemes.

Index Terms—Massive MIMO, linear precoding, power nor-
malization techniques, large system analysis, pilot contamination.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a mul-
tiuser MIMO system that employs a large number of antennas
at the base stations (BSs) to serve a relatively smaller number
of user equipments (UEs) [1]–[4]. This large number of
antennas enables each BS to focus the radiated energy into
a specific location in space or to intercept the power of
transmitted electromagnetic waves more efficiently. Therefore,
Massive MIMO has higher spectral efficiency and energy
efficiency compared to classical multiuser MIMO systems
[3], [5]–[7]. Moreover, it has been recently shown that the

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

M. Sadeghi (meysam@mymail.sutd.edu.sg) and C. Yuen
(yuenchau@sutd.edu.sg) are with Singapore University of Technology
and Design (SUTD), Singapore. L. Sanguinetti (luca.sanguinetti@unipi.it) is
with the University of Pisa, Dipartimento di Ingegneria dell’Informazione,
Italy and also with the Large Systems and Networks Group (LANEAS),
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capacity of Massive MIMO grows without bounds as the
number of antennas increases, even under pilot contamination
[8]. Due to the quasi-orthogonal nature of channels in Massive
MIMO, linear precoding and detection schemes perform close-
to-optimal [5], [6], [9]. Moreover, if the channel reciprocity is
exploited, the overhead of the channel state information (CSI)
acquisition is independent of the number of BS antennas [10].
These remarkable features candidate Massive MIMO as one of
the most promising technologies for next generation of cellular
networks [9], [11], [12].

Linear precoding has a central role in Massive MIMO
and has been extensively studied in the past few years [5],
[13]–[21]. The spectral efficiency and energy efficiency of
maximum ratio transmission (MRT) and zero forcing (ZF) pre-
coding in single-cell Massive MIMO systems are investigated
in [13]. In [14], a multicell linear precoding is proposed to
mitigate the effect of pilot contamination. The performance
of MRT, ZF, and regularized ZF (RZF) precoding in single-
cell large-scale MIMO systems is studied in [15], considering
a per-user channel correlation model. A seminal treatment
of MRT and RZF precoding schemes in multicell Massive
MIMO systems is presented in [5]. The spectral efficiency of
multicell Massive MIMO systems with downlink training and
linear pilot contamination precoding is studied in [16]. In [17],
closed-form approximations for the achievable downlink rates
of MRT and ZF precoding schemes are presented for multi-
cell Massive MIMO systems. A linear truncated polynomial
expansion based precoding is proposed in [18], which reduces
the complexity of RZF precoding. The effect of phase noise
on the signal-to-interference-plus-noise (SINR) of MRT, ZF,
and RZF precoding schemes is studied in [19]. A multicell
MMSE precoder that improves the sum spectral efficiency of
Massive MIMO systems is proposed in [20].

In order to utilize linear precoding, the power should be
adjusted to meet the power constraint at the BS. This can be
done either by optimized power allocation among the downlink
data streams [20], [22]–[24], or simply by uniform power
allocation among downlink data streams jointly with precoder
power normalization [5], [13], [16]–[18]. Although the latter
approach may provide a weaker performance compared to the
former, it is the most used in the Massive MIMO literature
[5], [10], [13], [16]–[18]. The reason for this is that power
allocation presents the following major issues: (i) finding a
global solution is a challenging task [23], [25], [26]; (ii) a
certain level of coordination or cooperation among cells is
required; and (iii) it should be performed very frequently, even
for static users, as scheduling may change rapidly in practice.
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The two commonly used power normalization techniques
in Massive MIMO are matrix normalization (MN) and vector
normalization (VN) [25], [26]. In MN, the precoding matrix
of each BS is adjusted by multiplying it with a scalar such
that the power constraint at the BS is met [5], [10], [13],
[16], [18]. On the other hand, with VN the precoding matrix
is normalized such that equal amount of power is allocated to
each UE while satisfying the power constraint [17], [25], [26].
Note that these two methods yield the same performance with
optimal power allocation, but not with practical suboptimal
power allocation [26], [27].

Although linear precoding has been largely studied in
Massive MIMO, a detailed treatment of the impact of power
normalization does not exist in the literature. The first attempt
in this direction was carried out in [25] and extended in [26]
wherein the authors study the impact of MN and VN on MRT
and ZF precoding schemes. However, both works in [25], [26]
do not grasp the essence of a practical Massive MIMO system
since: 1) a single-cell network composed of three radio units is
considered; 2) perfect CSI is assumed and thus CSI acquisition
or pilot contamination are not accounted for; and 3) large-scale
attenuation is neglected, though it has a fundamental impact
on power normalization, as it will be detailed later.

The goal of this paper is to present a comprehensive picture
on the effect of MN and VN on the performance of MRT,
ZF, and RZF in Massive MIMO, in the simple and practical
case of uniform power allocation over all downlink streams.
Particularly, the following contributions are provided.

• We extend the analysis in [25], [26] to a multicell Massive
MIMO system, which accounts for channel estimation,
pilot contamination, an arbitrary pathloss model, and per-
user channel correlation. Asymptotically tight approxima-
tions of the signal-to-interference-plus-noise ratio (SINR)
and rate of each UE are provided and validated by
numerical results for MRT, ZF, and RZF with VN and
MN.

• Explicit asymptotic approximations for the SINR and rate
of each UE are given for a Rayleigh fading channel
model. These results are used: 1) to elaborate on how the
two different power normalization techniques affect the
signal, noise, and interference powers as well as the pilot
contamination experienced by each UE in the system; 2)
to prove that large-scale fading has a fundamental role
on the performance provided by the two normalization
techniques while both perform the same if neglected; 3) to
show that ZF conveys a notion of sum rate maximization
with VN and of fairness with MN.

• The asymptotic approximations of SINRs are used to-
gether with numerical results to study the main limiting
factors of the investigated schemes in Massive MIMO.
Particularly, we reveal that in Massive MIMO, non-
coherent interference and noise, rather than pilot con-
tamination, are often the major limiting factors for all
schemes and also show how they are affected by power
normalization.

The remainder of this paper is organized as follows. Sec-
tion II introduces the network model, the channel estimation

scheme, the precoding and power normalization methods,
as well as the downlink achievable rates. The large system
analysis is provided in Section III. The effect of power
normalization techniques is elaborated in Section IV. The
proposed asymptotic approximations are verified by means of
numerical results in Section V. Some conclusions are drawn
in Section VI.

Notations: The following notation is used throughout the
paper. Scalars are denoted by lower case letters whereas
boldface lower (upper) case letters are used for vectors (ma-
trices). We denote by IN the identity matrix of size N and
represent the element on the ith row and kth column of A as
[A]i,k. The symbol CN (., .) denotes the circularly symmetric
complex Gaussian distribution. The trace, transpose, conjugate
transpose, real part, and expectation operators are denoted by
tr(·), (·)T , (·)H , Re(·), and E[·], respectively. The notations
a.s−−−−→

N→∞
and −−−−→

N→∞
represent almost sure convergence.

II. COMMUNICATION SCHEME

Next, we introduce the system model, the channel estima-
tion method, the precoding and power normalization tech-
niques, and compute the downlink achievable rates.

A. System Model

We consider the downlink of a Massive MIMO system
composed of L cells, where the set of all cells is denoted
by L. The BS of each cell has N antennas and serves K
single-antenna UEs in the same time-frequency resource. The
set of UEs belonging to cell l is denoted by Kl. We assume
transmissions over flat-fading channels. We employ a double
index notation to refer to each UE as e.g., “user k in cell l”.
Under this convention, let hjlk ∈ CN be the channel between
BS j and UE k in cell l within a block and assume that

hjlk = Θ
1/2
jlk zjlk (1)

where zjlk ∼ CN (0, IN ) and Θjlk ∈ CN×N accounts for
the corresponding channel correlation matrix. Note that (1)
enables us to assign a unique correlation matrix between each
user-BS pair and it includes many channel models in the
literature as special cases [15].

B. Channel Estimation

We assume that BSs and UEs are perfectly synchronized and
operate according to a time-division duplex (TDD) protocol.
Then, the channels can be found by an uplink training phase
and used in the downlink by exploiting channel reciprocity.
Using orthogonal pilots in each cell while reusing them in all
other cells, after correlating the received training signal with
the pilot sequence of UE k, the observed channel of user k in
cell j is

ytr
jk = hjjk +

L∑
l=1,l 6=j

hjlk +
1
√
ρtr

njk (2)

where njk ∼ CN (0, σ2IN ) with σ2 being the noise spectral
density and ρtr is proportional to the training SNR. Applying
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the MMSE estimation, the estimated channel can be computed
as follows [5]

ĥjjk = ΘjjkQjky
tr
jk (3)

where ĥjjk ∼ CN (0,Φjjk). Also, Qjk and Φjlk are given
by

Qjk =

(
L∑
l=1

Θjlk +
σ2

ρtr
IN

)−1

∀j, k (4)

Φjlk = ΘjjkQjkΘjlk ∀j, l, k. (5)

Note that due to the orthogonality principle of MMSE, the
estimation error h̃jjk = hjjk − ĥjjk is independent of ĥjjk
and such that h̃jjk ∼ CN (0,Θjjk − Φjjk). For notational
simplicity, we denote Ĥjj = [ĥjj1, . . . , ĥjjK ] as the matrix
collecting the estimated channels of cell j.

C. Precoding and Power Normalization Techniques

As mentioned earlier, we consider MRT, ZF, and RZF with
VN and MN [25], [26]. Denoting by Gj = [gj1, . . . ,gjK ] ∈
CN×K the precoding matrix of BS j, where gjk ∈ CN is the
precoding vector of UE k in cell j, we have

Gj = FjD
1/2
j (6)

where Fj = [fj1, . . . , fjK ] ∈ CN×K determines the precoding
scheme and Dj ∈ CK×K characterizes the power allocation
strategy. Therefore, Fj takes one of the following forms:

Fj =


Ĥjj MRT (7)

Ĥjj

(
ĤH
jjĤjj

)−1

ZF (8)(
ĤjjĤ

H
jj + Zj +NαjIN

)−1

Ĥjj RZF (9)

where αj > 0 is the regularization parameter and Zj ∈ CN×N
is an arbitrary Hermitian nonnegative definite matrix that can
be used to leverage the system performance [5].

As mentioned in the introduction, finding the optimal values
for the elements of Dj is challenging in practice [23]. This is
why VN or MN are usually employed [26]. In this case, Dj

is diagonal with entries chosen so as to satisfy the following
average power constraint E[trGjG

H
j ] = K ∀j. If VN is used,

then the kth diagonal element of Dj is computed as

[Dj ]k,k = djk =
1

E[fHjkfjk]
. (10)

On the other hand, if MN is employed, then Dj = ηjIK with

ηj =
K

E[trFjFHj ]
. (11)

D. Downlink Achievable Rate

The received signal of user k in cell j can be written as

yjk = hHjjkgjksjk +

K∑
i=1,i6=k

hHjjkgjisji

+

L∑
l=1,l 6=j

K∑
i=1

hHljkglisli + njk (12)

with sli ∈ C being the signal intended to UE i in cell l,
assumed independent across (l, i) pairs, of zero mean and unit
variance, and njk ∼ CN (0, σ2/ρdl) where ρdl is proportional
to the downlink signal power.

As in [1], [5], [6], [14] (among many others), we assume
that there are no downlink pilots such that the UEs do not
have knowledge of the current channels but can only learn the
average channel gain E{hHjjkgjk} and the total interference
power. Note this is the common approach in Massive MIMO
due to the channel hardening [28]. Using the same technique
as in [29], an ergodic achievable information rate for UE k in
cell j is obtained as rjk = log2(1 + γjk) where γjk is given
by

γjk =
|E[hHjjkgjk]|2

σ2

ρdl
+

L∑
l=1

K∑
i=1

E[|hHljkgli|2]− |E[hHjjkgjk]|2
(13)

where the expectation is taken with respect to the channel
realizations. The above result holds true for any precoding
scheme and is obtained by treating the interference (from the
same and other cells) and channel uncertainty as worst-case
Gaussian noise. By using VN and MN, i.e. (10) and (11), the
SINR takes respectively the form in (16) and (17), given on
the top of next page.

As for all precoding schemes, γMN
jk and γV Njk depend on

the statistical distribution of {hjlk} and {ĥjlk}. This makes
hard to compute both in closed-form. To overcome this issue, a
large system analysis is provided next to find tight asymptotic
approximations (hereafter called deterministic equivalents) for
γMN
jk and γV Njk and their associated achievable rates.

III. LARGE SYSTEM ANALYSIS

We consider a regime in which N and K grow large
with a non-trivial ratio N/K, where 1 < lim inf N/K ≤
lim supN/K < ∞. We will represent it as N → ∞. Under
this assumption, we derive deterministic equivalents (DEs) for
γjk when any of MRT, ZF, and RZF precoding schemes is used
with either MN or VN. The DE is represented by γjk, and it
is such that γjk − γjk

a.s−−−−→
N→∞

0. By applying the continuous
mapping theorem [30], the almost sure convergence of the
results illustrated below implies that rjk − rjk −−−−→

N→∞
0 with

rjk = log2(1+γjk), where γjk denotes one of the asymptotic
approximations computed below.

As limiting cases are considered, the following conditions
are needed. Note that they have been widely used in the
literature as in [5], [15], [31], [32].

A1 : lim sup||Θ1/2
jlk || <∞ and lim inf

1

N
tr (Θjlk) > 0

A2 :∃ε > 0 : λmin(
1

N
HH
ll Hll) > ε

A3 : lim sup
N
|| 1

N
Zl|| <∞

A4 :rank(Ĥll) ≥ K.

A. Large System Results for Vector Normalization

In this subsection, we derive DEs for γVN
jk , when any of

MRT, ZF, and RZF precoding schemes are used.
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γVN
jk =

djk |E[hHjjkfjk]|2

σ2

ρdl
+ djk var(hHjjkfjk) +

L∑
l=1

K∑
i=1,i6=k

dli E[|hHljkfli|2] +
∑L
l=1,l 6=j dlk E[|hHljkflk|2]

(16)

γMN
jk =

ηj |E[hHjjkfjk]|2

σ2

ρdl
+ ηj var(hHjjkfjk) +

L∑
l=1

K∑
i=1,i6=k

ηl E[|hHljkfli|2] +
∑L
l=1,l 6=j ηl E[|hHljkflk|2]

. (17)

Theorem 1. Let A1 hold true. If MRT with VN is used, then
γVN
jk − γ

(MRT−VN)
jk −−−−→

N→∞
0 almost surely with

γ
(MRT−VN)
jk =

d†jk
(

1
N trΦjjk

)2
σ2

Nρdl
+ 1
N

L∑
l=1

K∑
i=1

d†lizli,jk +
L∑

l=1,l 6=j
d†lk|

1
N trΦljk|2

(18)

where

d†li =
( 1

N
trΦlli

)−1

(19)

zli,jk =
1

N
trΘljkΦlli. (20)

Proof. The proof is provided in Appendix A.

Theorem 2. Let A1 and A3 hold true. If RZF with VN is used,
then γVN

jk − γ
(RZF−VN)
jk −−−−→

N→∞
0 almost surely while

γ
(RZF−VN)
jk =

d◦jk
u2
jk

(1+ujk)2

σ2

Nρdl
+ 1

N

L∑
l=1

K∑
i=1

d◦li
εli,jk

(1+uli)2
+

L∑
l=1,l 6=j

d◦lk
|uljk|2

(1+ulk)2

(21)

with

d◦li =
(1 + uli)

2

1
N trΦlliT′l,IN

(22)

ulk =
1

N
trΦllkTl (23)

uljk =
1

N
trΦljkTl (24)

εli,jk =
1

N
trΘljkT

′
l,Φlli

+
|uljk|2

(1 + ulk)2
× 1

N
trΦllkT

′
l,Φlli

− 2

1 + ulk
Re

(
1

N
trΦljkT

′
l,Φlli

× u∗ljk
)

(25)

and Sl = Zl

N . Also, Tl, T′l,IN , and T′l,Φlli
are given in

Theorems 7 and 8 in Appendix E.

Proof. The proof is provided in Appendix B.

Theorem 3. Let A1, A2 and A4 hold true. If ZF with VN is
employed, then γVN

jk − γ
(ZF−VN)
jk −−−−→

N→∞
0 almost surely with

γ
(ZF−VN)
jk =

ujk

σ2

Nρdl
+ 1

N

L∑
l=1

K∑
i=1

εli,jk

uli
+

L∑
l=1,l 6=j

u2
ljk

ulk

(26)

where

uli =
1

N
tr
(
ΦlliTl

)
(27)

Tl =

(
1

N

K∑
i=1

Φlli

uli
+ IN

)−1

(28)

uljk =
1

N
tr
(
ΦljkTl

)
(29)

εli,jk =
1

N
trΘljkT

′
l,Φlli

+
|uljk|2

ulk2

1

N
trΦllkT

′
l,Φlli

− 2

ulk
Re

(
u∗ljk

1

N
trΦljkT

′
l,Φlli

)
(30)

T′l,Φllk
= Tl

(
1

N

K∑
i=1

u′li,Φllk
Φlli

uli2
+ Φllk

)
Tl (31)

where u′l,Φllk
= [u′l1,Φllk

, . . . , u′lK,Φllk
]T ∈ CK is computed

as

u′l,Φllk
= (IK − Jl)

−1vl,Φllk
(32)

with the entries of Jl ∈ CK×K and vl,Φllk
∈ CK are given

by:

[Jl]n,i =
1

N2

tr
(
ΦllnTlΦlliTl

)
uli2

(33)

[vl,Φllk
]i =

1

N
tr
(
ΦlliTlΦllkTl

)
. (34)

Proof. The proof is provided in the Appendix C.

Notice that the computation of the DEs with ZF precoding
(either VN or MN) for the considered multicell Massive
MIMO system is more involved than with MRT or RZF
precoding schemes. This is mainly due to the fact that it is not
straightforward to start with ZF precoder and then compute the
DEs by applying common techniques, e.g., matrix inversion
lemma. Therefore, in proving Theorem 3 (and also Theorem
6) we start with the DE of RZF and then use a bounding and
limiting technique to compute the DE for ZF.

B. Large System Results for Matrix Normalization

Next, the DEs of γMN
jk are given for MRT, ZF, and RZF.

Note that the DEs of γMN
jk for MRT and RZF are obtained

from [5].
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Theorem 4. [5, Theorem 4] Let A1 hold true. If MRT with
MN is used, then γMN

jk − γ
(MRT−MN)
jk −−−−→

N→∞
0 almost surely

with

γ
(MRT−MN)
jk =

λj
(

1
N trΦjjk

)2
σ2

Nρdl
+ 1

N

L∑
l=1

K∑
i=1

λlzli,jk +
L∑

l=1,l 6=j
λl| 1

N trΦljk|2
(35)

where zli,jk is given in (20) and

λj =
( 1

K

K∑
k=1

1

N
trΦjjk

)−1

. (36)

Theorem 5. [5, Theorem 6] Let A1 and A3 hold true. If RZF
with MN is used, then γMN

jk − γ
(RZF−MN)
jk −−−−→

N→∞
0 almost

surely with

γ
(RZF−MN)
jk =

λj
u2
jk

(1+ujk)2

σ2

Nρdl
+ 1

N

L∑
l=1

K∑
i=1

λl
εli,jk

(1+uli)2
+

L∑
l=1,l 6=j

λl
|uljk|2

(1+ulk)2

(37)

with

λl =
K

N

(
1

N
trTl −

1

N
tr(

Zl
N

+ αlIN )T′l,IN

)−1

(38)

where Sl = Zl

N and Tl and T′l,IN are given by Theorem 7 and
Theorem 8. Also uli, uljk, and εli,jk are defined in Theorem
2.

Theorem 6. Let A1, A2 and A4 hold true. If ZF with MN is
used, then γMN

jk − γ
(ZF−MN)
jk −−−−→

N→∞
0 almost surely with

γ
(ZF−MN)
jk =

λj

σ2

Nρdl
+ 1

N

L∑
l=1

K∑
i=1

λl
εli,jk

uli
2 +

L∑
l=1,l 6=j

λl
uljk

2

ulk
2

(39)

with λj =

(
1
K

K∑
i=1

1
uji

)−1

where uli, uljk, and εli,jk are given

in Theorem 3.

Proof sketch. The proof follows the same procedure as the
proof of Theorem 3 presented in Appendix C. Start with the
triangle equality and bound |γ(ZF−MN)

lk −γ(ZF−MN)
lk |. Then find

the DE of γ(ZF−MN)
jk by letting α→ 0 in γ(RZF−MN)

jk .

The asymptotic expressions provided in Theorems 1, 2, 3,
and 6 will be shown to be very tight, even for systems with
finite dimensions, via numerical results in Section V. This
allows us to use them for evaluating the performance of prac-
tical multicell Massive MIMO systems without the need for
time-consuming Monte Carlo simulations. Moreover, they lay
the foundation for further analysis of different configurations
of Massive MIMO systems ( e.g., distributed massive MIMO
systems [33], [34]). Next, they are used to get further insights
into the system under investigation for a simplified channel
model.

IV. EFFECT OF POWER NORMALIZATION TECHNIQUE

In this section, we use the asymptotic results provided above
to gain novel insights into the interplay between the different
system parameters and the power normalization techniques in
Massive MIMO. To this end, we consider a special case of the
general channel model of (1) in which Θjlk = djlkIN such
that

hjlk =
√
djlkzjlk (40)

where zjlk ∼ CN (0, IN ) and djlk accounts for an arbitrary
large-scale fading coefficient including pathloss and shadow-
ing. Note this is a quite popular model in Massive MIMO that
allows us to capture the essence of the technology [1], [6].
Under the above circumstances, we have that:

Corollary 1. Let λj = ū
(

1
K

∑K
i=1

αji

d2jji

)−1
and ū = 1 − K

N .
If the channel is modelled as in (40), then

γ
(ZF−VN)
jk =

d2jjk
αjk

ū

νjk +

L∑
l=1,l 6=j

ū
d2
ljk

αlk︸ ︷︷ ︸
Pilot Contamination

(41)

γ
(ZF−MN)
jk =

λj

νjk +

L∑
l=1,l 6=j

λl
d2
ljk

d2
llk︸ ︷︷ ︸

Pilot Contamination

(42)

where

νjk =
σ2

Nρdl︸ ︷︷ ︸
Noise

+
K

N

L∑
l=1

dljk

(
1− dljk

αlk

)
︸ ︷︷ ︸

Interference

. (43)

with αlk =
∑L
n=1 dlnk + σ2

ρtr
.

Proof. See Appendix D.

Corollary 2. Let θl = ( 1
K

∑K
i=1

d2lli
αli

)−1. If the channel is
modelled as in (40) and MRT is used, then

γ
(MRT−VN)
jk =

d2jjk
αjk

ϑjk +
∑

l=1,l 6=j

d2
ljk

αlk︸ ︷︷ ︸
Pilot Contamination

(44)

γ
(MRT−MN)
jk =

θj(
d2jjk
αjk

)2

ϑjk +

L∑
l=1,l 6=j

θl(
dllkdljk
αlk

)2

︸ ︷︷ ︸
Pilot Contamination

(45)

with

ϑjk =
σ2

Nρdl︸ ︷︷ ︸
Noise

+
K

N

L∑
l=1

dljk︸ ︷︷ ︸
Interference

. (46)
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Proof. The proof follows a similar procedure as that of Corol-
lary 1.

The results of Corollaries 1 and 2 are instrumental in
obtaining the following insights into MRT and ZF with either
MN or VN.

Remark 1 (Effect of VN and MN). The terms νjk and ϑjk
in (43) and (46) are the same for both VN and MN. This
means that both normalization techniques have exactly the
same effect on the resulting noise and interference terms
experienced by each UE in the system. On the other hand, they
have different effects on the signal and pilot contamination
powers. The expressions (41)-(46) explicitly state the relation
between the SINR components (the signal power, the interfer-
ence, the noise, and the pilot contamination), the propagation
environment, and the two normalization techniques for ZF and
MRT precoding schemes.

Remark 2 (On the mutual effect of UEs). If VN is employed,
then the signal power and the pilot contamination of UE k in
cell j, for both MRT and ZF precoding, depends only on the
coefficients dlnk ∀l, n ∈ L through αlk. This means that they
are both affected only by the large-scale gains of the UEs in
the network using the same pilot. On the other hand, under
MN both terms depend on the coefficients λl ∀l ∈ L (or θl for
MRT) and thus are influenced by all the UEs in the network
- even though they make use of different pilot sequences.

Remark 3 (Large-Scale Fading and Power Normalization).
Assume that the large-scale fading is neglected such that it
is the same for every UE in the network, i.e., dljk = d
∀l, j, k. Then for ZF (41) and (42), and for MRT (44) and
(45) become equal. Therefore, we can conclude that the large-
scale fading has a fundamental effect on VN and MN and
cannot be ignored.

Consider now, for further simplicity, a single-cell setup, i.e.,
L = 1. Dropping the cell index, αlk reduces to αk = dk +
σ2/ρtr. Also assume that the UEs operate in the high training
SNR regime such that ρtr � 1. Under these conditions, we
have that:

Lemma 1. If L = 1 and ρtr � 1, then for ZF precoding, VN
outperforms MN in terms of sum rate and the sum rate gap
∆r ≥ 0 is given by

∆r =

K∑
k=1

log

(
1 +

1
σ2

Nρdlū
1
dk

)
−

K log

1 +
1

σ2

Nρdlū
1
K

K∑
i=1

1
di

 . (47)

Proof. From Corollary 1, setting L = 1 and assuming ρtr � 1
we obtain that αk ' dk and νk ' σ2

Nρdl
. Then, the result

follows by applying the Jensen’s inequality (by the convexity
of log (1 + 1/x)).

Notice that Lemma 1 extends the results of [25] and [26]
to a system that accounts for CSI acquisition and arbitrary

pathloss and UEs’ distribution. Also, observe that (41) and
(42) simplify as:

γ
(ZF−VN)
jk =

(N −K)ρdl

σ2
dk (48)

γ
(ZF−MN)
jk =

(N −K)ρdl

σ2

( 1

K

K∑
i=1

1

di

)−1

(49)

from which it follows that VN provides higher SINR to the
UEs that are closer to the BS and lower SINR for those that are
far away from the BS (which resembles opportunistic resource
allocation). On the other hand, MN provides a uniform quality
of experience to all UEs. This proves evidence of the fact that
ZF with VN resembles a sum rate maximizer. On the other
hand, it provides a notion of fairness under MN. Notice that
fairness means similar SINR (quality of experience) and it
should not be confused with equal power allocation. The above
results and observations will be validated below in Section V.
Also, the DEs provided in Corollaries 1 and 2 will be used to
investigate the main limiting factors of Massive MIMO.

V. NUMERICAL RESULTS

Monte-Carlo (MC) simulations are now used to validate
the asymptotic analysis for different values of N and K. We
consider a multicell network composed of L = 7 cells, one in
the center and six around. Each cell radius is 1000 meters. A
20 MHz channel is considered and the thermal noise power
is assumed to be −174 dBm/Hz. The UEs are randomly and
uniformly distributed within each cell excluding a circle of
radius 100 meters. The channel is modeled as in [35]. In
particular, we assume that the matrices Θ

1/2
ljk are given by

Θ
1/2
ljk =

√
dljkA (50)

where A = [a(θ1), . . . ,a(θN )] ∈ CN with a(θi) given by

a(θi) =
1√
N

[1, e−i2πω sin(θi), . . . , e−i2πω(N−1) sin(θi)]T (51)

where ω = 0.3 is the antenna spacing and θi = −π/2 +
(i− 1)π/N . Also, dljk is the large-scale attenuation, which is
modeled as dljk = x−βljk where xljk denotes the distance of UE
k in cell j from BS l and β = 3.7 is the path-loss exponent.
We let ρtr = 6 dB and ρdl = 10 dB, which corresponds to a
practical setting [5]. The results are obtained for 100 different
channel and UE distributions realizations.

Figs. 1 and 2 are presented to confirm the accuracy of the
proposed DEs in Theorems 1, 2, 3, and 6. They illustrate
the ergodic achievable sum rate of the center cell versus
N for K = 8 and 16, respectively. The solid lines present
the sum rate achieved based on the proposed deterministic
equivalents, and the markers are achieved through Monte Carlo
simulation. As it is depicted, the DEs match perfectly with
numerical results. Notics that Figs. 1 and 2 (also Table 1),
extend the results in [25] and [26] since CSI acquisition,
pilot contamination, arbitrary pathloss and UEs’ distribution
are taken into account.

In Lemma 1, it is shown that ZF under VN conveys a
notion of sum rate maximization, while ZF with MN resembles
a fairness provisioning precoder. Now, we use Table I to
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Fig. 1: Ergodic achievable sum rate of center cell for MRT,
ZF, and RZF with VN and ZF with MN for K=8.
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Fig. 2: Ergodic achievable sum rate of center cell for MRT,
ZF, and RZF with VN and ZF with MN for K=16.

validate this observation and also to verify the accuracy of
the computed DEs for the simplified channel model in (40).
Table I presents the exact values of SINRs of all the UEs in
the center cell for ZF with MN and VN. It also reports the
estimated values of SINRs by the DEs proposed in Section IV.
This helps the reader to have a better vision on the accuracy
of the achieved DEs.

The first column of Table I reports the number of antennas,
the second one is the UE index. The third and fourth columns
are the SINR of each UE under MN, achieved by the proposed
DE of (42) and by time-consuming Monte Carlo simulations,
respectively. The sixth and seventh columns are the SINR of
each UE under VN, achieved by the proposed DE of (41)
and by intensive Monte Carlo simulations, respectively. The
fifth and eighth columns present the percentage of the error
while estimating a specific UE SINR via proposed DEs. As
predicted by Lemma 1, ZF with MN provides a more uniform
experience for all UEs, while ZF with VN provides very high
SINR for specific UEs (UEs 2, 4, and 6) and much lower SINR
for other UEs. More precisely, from Table I one can see that
the variance of the SINR of the UEs with MN is equal to 0.8
(5.79) for N = 40 (N = 80), while for VN it is equal to
2627 (11550 for N = 80). Also note that the percentage of

TABLE I: SINR of each UE under ZF with VN and MN.

No.
Ant. UE MN

DE
MN
MC

Er.
%

VN
DE

VN
MC

Er.
%

N = 40

1 2.25 2.19 2.6 1.85 1.84 0.5
2 4.89 4.84 1.0 147 149 1.3
3 3.34 3.29 1.5 3.61 3.53 2.2
4 5.14 5.12 0.3 37.5 37.6 0.2
5 4.09 4.02 1.7 1.97 1.96 0.5
6 4.26 4.41 3.5 85 87 2.3
7 3.30 3.33 0.9 2.14 2.2 2.8
8 3.52 3.50 0.5 2.52 2.49 1.2

N = 80

1 3.20 3.15 1.5 3.1 2.98 3.8
2 10.57 10.40 1.6 316 310 1.9
3 5.94 6.03 1.5 6.40 6.36 0.6
4 9.33 9.47 1.5 72.2 72.2 0
5 8.41 8.62 2.5 3.87 3.90 0.7
6 9.05 9.12 0.7 182 185 1.6
7 5.02 4.90 2 3.50 3.43 2
8 5.89 5.74 2.5 4.28 4.21 1.6

error is always less than 4%, which proves the high accuracy
of the DEs. Therefore one can simply use the DEs to achieve
insight on the performance of the network, instead of using
time-consuming Monte Carlo simulations. Moreover, the DEs
do not contain any randomness and are purely based on large-
scale statistics of the system. Hence, they can be used for
network optimization purposes.

Now let us use our derived DEs, given in Corollaries 1 and
2 and Theorems 2 and 5, to investigate a common notion in
the literature of massive MIMO systems. It is known that in
massive MIMO systems, in the limit of an infinite number of
antennas, the detrimental effects such as noise and interference
vanish and pilot contamination become the main bottleneck
of the system performance. This also can be seen from our
results, e.g., corollaries 1 and 2, by letting N grow large while
K is fixed. This has motivated a huge amount of researches on
pilot decontamination. However, as has been shown in [28],
it is usually desirable for massive MIMO systems to work in
a regime where N

K ≤ 10. Therefore, it is interesting to know
what is the major drawback of massive MIMO systems under
practical regimes, e.g., N

K ≤ 10? Is it pilot contamination
(coherent interference)? Or is the noise and interference (more
exactly, non-coherent interference)? How is the answer to this
questions related to the choice of power normalization and
precoding scheme?

To answer these questions, we employ the so-called pilot
contamination-to-interference-plus-noise ratio (PCINR) met-
ric, which is computed by using the DEs provided in Corol-
laries 1 and 2. Fig. 3 plots the PCINR as a function of N/K,
i.e., the number of degrees of freedom per-user in the system.
Although, the optimal operating regime for maximal spectral
efficiency is for N/K < 10 [28], we consider N/K up to
20 to cover a wider range of definition for massive MIMO.
Moreover, as the interference increases by having more UEs in
the system, we consider three different scenarios with K = 5,
K = 10, and K = 15.

Fig. 3 is divided into 3 regions based on the significance of
the PCINR term such that, as we move away from region
1 towards region 3, the importance of pilot contamination
increases while that of the interference plus noise reduces.
Region 1 is where the noise and interference are the dominant
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Fig. 3: PCINR versus the degree of freedom per-user, for different values of K.

limiting factors and pilot contamination has a negligible effect,
less than 10% of the noise and interference. As it is depicted,
MRT with MN operates within this regime, therefore pilot
contamination is never a bottleneck for this scheme, which is
mainly limited by noise and interference. Note that by adding
more UEs in the system (bigger values of K), the PCINR
reduces and pilot contamination becomes even less important.
Hence, when MRT with MN is studied in Massive MIMO the
effect of pilot contamination can be safely neglected.

Region 2 represents the regime where the noise and interfer-
ence are the main limiting factors of the system performance,
while pilot contamination is not negligible any more. It is
interesting to observe that for the other schemes (other than
MRT-MN), Massive MIMO often operates within this region.
This shows that, although pilot contamination is a major
challenge in Massive MIMO, the interference and noise have
still the leading role in limiting the system performance.

Finally, region 3 presents the superiority of pilot contami-

nation effect. If K = 10, then Fig. 3b shows the superiority
of interference and noise over pilot contamination for ZF-
MN and RZF-MN (ZF-VN and RZF-VN) up to N = 130
(N = 233) antennas at the BS. With MRT-VN, the system
requires more than N = 510 to experience the superiority of
pilot contamination over interference and noise. This increases
to N = 2650 with MRT-MN. From Fig. 3, we see also
that, for a given value of N/K, the value of PCINR for the
considered schemes can be ordered as: ZF-MN = RZF-MN ≥
ZF-VN = RZF-VN ≥ MRT-VN ≥ MRT-MN. Based on
the above discussion, it is clear that the choice of precoding
scheme and normalization technique change the importance
of pilot contamination, interference, and noise dramatically
and it should be considered carefully when designing Massive
MIMO systems.
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VI. CONCLUSIONS

Linear precoding schemes, such as MRT and ZF, have a
fundamental role in Massive MIMO. Although these precoding
schemes can be employed with optimized power control
policies, they are usually implemented by simple precoding
power normalization techniques. This is due to the complexity
of attaining optimal power control policies [23], as it requires
coordination and cooperation among cells and computationally
demanding algorithms. On the other hand, precoding power
normalization techniques are simple and efficient [2], [3], [5],
[6].

This work made use of large system analysis to show
how the choice of precoding power normalization affects the
experience of each individual user in the system. Particularly,
we revealed that MN and VN treat the noise and interfer-
ence in the same manner, but have different effects on pilot
contamination and received signal power. We also revealed
the key role played by large-scale fading, positions of UEs,
and pilot assignment into power normalization. We explained
how a simple change in power normalization can resemble
two totally different behaviors, sum-rate maximization or
fairness provisioning. Moreover, we showed numerically how
the choice of the normalization technique can change the main
bottleneck of massive MIMO systems.

VII. APPENDICES

The main strategy to find the DE of γV Njk and γMN
jk for

MRT, ZF, and RZF precoding schemes, is to replace their
constitutive terms by their DEs, which will be detailed in the
following. Also we frequently use the following notation.

Ĥll[k]Ĥ
H
ll[k] = ĤllĤ

H
ll − ĥllkĥ

H
llk

Cl =
(
ĤllĤ

H
ll + Zl + αlNIN

)−1

Cl = NCl

Cl[k] =
(
Ĥll[k]Ĥ

H
ll[k] + Zl + αlNIN

)−1

Cl[k] = NCl[k].

APPENDIX A

We start from γV Njk given in (16) while applying (7) and
(10). Then we divide the numerator and denominator of
γ

(MRT−VN)
jk by N . Define d†li , Ndli. Now by applying

the continuous mapping theorem [30] and replacing each
component of γ(MRT−VN)

jk by its DE, we have the DE of
γ

(MRT−VN)
jk . The DE of signal power component, variance

component, and interference components are given in [5], and
we just need to find the DE of vector normalization coefficient,
which is given as follows

dli =
1

E[ĥHlliĥlli]
=

1

trE[ĥlliĥHlli]

a
=

1

trΦlli
(52)

where in (a) we used the fact that ĥlli ∼ CN (0,Φlli).

APPENDIX B

We start from γV Njk given in (16) while applying (9)
and (10). Then we divide the numerator and denominator
of γ(RZF−V N)

jk by N . Now we replace each component of
γ

(RZF−V N)
jk with its DE. The DE of signal power term,

variance term, and interference terms are given in [5], and
we just need to find the DE of VN coefficient. From (10) we
have

d◦li =
1

N
dli =

1

N
(E[ĥHlliC

2
l ĥlli])

−1 (53)

now consider the term ĥHlliC
2
l ĥlli, we can write

ĥHlliC
2
l ĥlli

a
=

ĥHlliC
2
l[i]ĥlli

(1 + ĥHlliCl[i]ĥlli)2

b�
1
N2 trΦ

H
lliC

2

l

(1 + 1
N trΦlliCl)2

c�
1
N2 trΦ

H
lliT

′
l,IN

(1 + 1
N trΦlliT

−1
l )2

(54)

where (a) follows from Lemma 2, (b)1 achieved by applying
Lemma 3 and 4, and (c) follows from Theorem 7 and 8, while
Sl = Zl

N . Then due to continuous mapping and dominated
convergence theorem we have

d◦li �
(1 + uli)

2

1
N trΦH

lliT
′
l,IN

. (55)

APPENDIX C

The main idea is to find the DE of ZF precoding from RZF
precoding scheme by letting αl = α ∀l ∈ L and α→ 0. First
we use the triangle inequality to bound |γ(ZF−VN)

lk −γ(ZF−VN)
lk |

as follows

|γ(ZF−VN)
lk − γ(ZF−VN)

lk | ≤ |γ(ZF−VN)
lk − γ(RZF−VN)

lk |
+ |γ(RZF−VN)

lk − γ(RZF−VN)
lk | (56)

+ |γ(RZF−VN)
lk − γ(ZF−VN)

lk |.

Now we show each term in the right hand side of (56) can be
made arbitrarily small (i.e. smaller than any given ε > 0) as
long as α > 0 becomes small enough. Let us consider the term
|γ(ZF−VN)
lk − γ

(RZF−VN)
lk |. Note that the difference between

γ
(ZF−VN)
lk and γ(RZF−VN)

lk is due to the different format of Fl
in (8) and (9). As α→ 0 and for Zl = 0 we have

lim
Zl=0,α→0

fRZFlk = lim
α→0

(
ĤllĤ

H
ll +NαIN

)−1

Ĥllek

= Ĥll

(
ĤH
ll Ĥll

)−1

ek = fZFlk . (57)

Therefore the term |γ(ZF−VN)
lk − γ(RZF−VN)

lk | can be made as
small as we want as α goes to zero. For the second term on
the right hand side of (56), from Theorem 2 we have for any
α > 0, |γ(RZF−VN)

lk − γ(RZF−VN)
lk | a.s−−−−→

N→∞
0. Now consider

1aN � bN is equivalent to aN − bN
a.s−−−−→

N→∞
0.
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the third term, |γ(RZF−VN)
lk −γ(ZF−VN)

lk |. Define γ(ZF−VN)
lk :=

limα→0 γ
(RZF−VN)
lk , we need to find its value. We have

lim
α→0

γ
(RZF−VN)
jk (58)

= lim
α→0

d◦jk
u2
jk

(1+ujk)2

σ2

Nρdl
+ 1

N

L∑
l=1

K∑
i=1

d◦li
εli,jk

(1+uli)2
+

L∑
l=1,l 6=j

d◦lk
|uljk|2

(1+ulk)2

= lim
α→0

d◦jk
α2u2

jk

(α+αujk)2

σ2

Nρdl
+ 1

N

L∑
l=1

K∑
i=1

d◦li
α2εli,jk

(α+αuli)2
+

L∑
l=1,l 6=j

d◦lk
|αuljk|2

(α+αulk)2

Define ulk := limα→0 αulk for every l and k. Based on [15]
and by replacing ulk from Theorem 2 we have

ulk = lim
α→0

αulk = lim
α→0

1

N
trΦllk(

1

N

K∑
i=1

Φlli

αuli
+ IN )−1

=
1

N
tr
(
ΦllkTl

)
(59)

with

Tl =

(
1

N

K∑
i=1

Φlli

uli
+ IN

)−1

. (60)

Also defining uljk , limα→0 αuljk for every l, j, and k we
have

uljk = lim
α→0

αl
1

N
trΦljkTl =

1

N
trΦljkTl. (61)

For the term limα→0 d
◦
li we have

lim
α→0

d◦li = lim
α→0

(1 + uli)
2

1
N trΦlliT′l,IN

(62)

= lim
α→0

uli
2

α2 1
N trΦlliT′l,IN

= lim
α→0

uli
2

α2u′li,IN

where T′l,IN and u′li,IN are given in Theorem 8. Now note
that

lim
α→0

α2u′li,IN = α2 1

N
trΦlliT

′
l,IN (63)

= lim
α→0

α2 1

N
trΦlliTl

(
1

N

K∑
t=1

u′lt,IN Φllt

(1 + ult)2
+ IM

)
Tl

=
1

N
trΦlliTl

(
1

N

K∑
t=1

(limα→0 α
2u′lt,IN )Φllt

ult2
+ IN

)
Tl

replacing limα→0 α
2u′lt,IN with ult for every t, (63) reduces to

uli = 1
N trΦlliTl. Therefore limα→0 α

2u′lk,IN = ulk. Hence
from (62) we can conclude that d◦li = uli. For εli,jk we have

εli,jk = lim
α→0

α2εli,jk (64)

=
1

N
trΘljkT

′
l,Φlli

− 2

ulk
Re

(
u∗ljk

1

N
trΦljkT

′
l,Φlli

)
+
|uljk|2

ulk2

1

N
trΦllkT

′
l,Φlli

where T′l,Φlli
, limα→0 α

2T′l,Φlli
is

T′l,Φlli
= lim
α→0

α2Tl

[
1

N

K∑
t=1

u′lt,Φlli
Φllt

(1 + ult)2
+ Φlli

]
Tl

= Tl

[
1

N

K∑
t=1

u′lt,Φlli
Φllt

ult2
+ Φlli

]
Tl (65)

where u′lt,Φlli
= limα→0 α

2u′lt,Φlli
. From Theorem 8 we have

u′l,Φlli
= lim
α→0

(IK − Jl)
−1α2vl,Φlli

= (IK − Jl)
−1vl,Φlli

where Jl and vl,Φlli
are given by (33) and (34), respectively.

Therefore εlk,jn = limα→0 α
2εlk,jn follows (30). Replacing

all these limits in (58) completes the proof.

APPENDIX D

For brevity we only consider ZF with VN. The same steps
can be used for ZF with MN. If the channel is modelled as in
(40), then Θljk = dljkIN and

Φljk =
dllkdljk
αlk

IN (66)

with αlk =
L∑
n=1

dlnk + σ2

ρtr
. Plugging (66) into (27) and (28)

yields ulk =
d2llk
αlk

1
N tr (Tl) with

Tl =

(
1

N

K∑
i=1

1
1
N tr

(
Tl

) + 1

)−1

IN . (67)

Call ū = 1
N tr (Tl). Therefore, we have that

ū =
1

N
tr (Tl) =

(
K

N

1

ū
+ 1

)−1

. (68)

Solving with respect to ū yields ū = 1 − K
N . Then, we

eventually have that

ulk =
d2
llk

αlk
ū (69)

and also uljk =
dllkdljk
αlk

ū. Therefore, the pilot contamination

term in γ(ZF−VN)
jk reduces to

L∑
l=1,l 6=j

u2
ljk

ulk
=

L∑
l=1,l 6=j

d2
ljk

αlk
ū. (70)

Let’s now compute [Jl]n,i defined as in (33). Using the above
results yields

[Jl]n,i =
1

N2

d2
lln

αln

d2
lli

αli

1

uli2
tr
(
T2
)

=
1

N

d2
lln

αln

αli
d2
lli

. (71)

Similarly, we have that

[vk,l]i =
d2
lli

αli

d2
llk

αlk
ū2. (72)

In compact form, we may write Jl and vl,k as

Jl =
1

N
alb

T
l vl,k =

d2
llk

αlk
ū2al (73)
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with [al]i = d2
lli/αli and [bl]i = 1/[al]i. Then, we have that

(applying matrix inversion Lemma)

u′k,l =
d2
llk

αlk
ū2

(
IK −

1

N
alb

T
l

)−1

al =
d2
llk

αlk
ūal = ulkal. (74)

Plugging the above result into (31) produces

T′l,Φlli
=
d2
lli

αli
Tl

(
K

N

1

ū
+ 1

)
Tl =

d2
lli

αli
ūIN = uliIN . (75)

We are thus left with evaluating (30). Using the above results
yields

εli,jk =
dljk
N

tr
(
T′l,Φlli

)
− 2

dljk
dllk

1

N
tr
(
ΦljkT

′
l,Φlli

)
+

+
d2
ljk

d2
llk

1

N
tr
(
ΦllkT

′
l,Φlli

)
(76)

from which, using (66) and (75), we obtain

εli,jk = dljkuli −
d2
ljk

αlk
uli.

Therefore, we have that

1

N

εli,jk

uli
=

1

N
dljk

(
1− dljk

αlk

)
. (77)

Plugging (69), (70) and (77) into (26) produces

1

N

L∑
l=1

K∑
i=1

εli,jk

uli
=
K

N

L∑
l=1

dljk

(
1− dljk

αlk

)
. (78)

Collecting all the above results together completes the proof.

APPENDIX E

A. Required Theorems

Theorem 7. [15, Theorem 1] Let Bl = 1
N ĤllĤ

H
ll + Sl with

Ĥll ∈ CN×K be random with independent column vectors
ĥllk ∼ CN (0,Φllk) for k ∈ {1, . . . ,K}, Sl ∈ CN×N and
Ql ∈ CN×N be Hermitian nonnegative definite. Assume that
Ql and the matrices Φllk for k ∈ {1, . . . ,K} have uniformly
bounded spectral norms (with respect to N ). Define

mBl,Ql
(−αl) ,

1

N
trQl(Bl + αlIN )−1 (79)

Then, for any αl > 0, as N and K grow large with β = N
K

such that 0 < lim inf β ≤ lim supβ <∞ we have that

mBl,Ql
(−αl)−m◦Bl,Ql

(−αl)
a.s−−−−→

N→∞
0 (80)

where m◦Bl,Ql
(−αl) is given by

m◦Bl,Ql
(−αl) =

1

N
trQlTl (81)

with Tl is given by

Tl =

(
1

N

K∑
i=1

Φlli

1 + uli(−αl)
+ Sl + αlIN

)−1

(82)

where the elements of ul(−αl) = [ul1(−αl), . . . , ulK(−αl)]T
are defined as uli(−αl) = limt→∞ u

(t)
li (−αl), where for t ∈

{1, 2, . . .}

u
(t)
lk (−αl) = (83)

1

N
trΦllk

(
1

N

K∑
i=1

Φlli

1 + u
(t−1)
li (−αl)

+ Sl + αlIN

)−1

with initial values u(0)
lk (−α) = 1

α for all k.

Also we need the following theorem.

Theorem 8. [15] Let Ωl ∈ CN×N be Hermitian nonnegative
definite with uniformly bounded spectral norm (with respect
to N). Under the conditions of Theorem 1

1

N
trQl(

1

N
ĤllĤ

H
ll + Sl + αlIN )−1Ωl... (84)

(
1

N
ĤllĤ

H
ll + Sl + αlIN )−1 − 1

N
trQlT

′
l,Ωl

a.s−−−−→
N→∞

0

where T′l,Ωl
∈ CN×N is defined as

T′l,Ωl
= Tl ×

 1

N

K∑
j=1

u′lj,Ωl
(−αl)Φllj

(1 + ulj(−αl))2
+ Ωl

×Tl (85)

where Tl and ul(−α) are given by theorem 1, and
u′l,Ωl

(−α) = [u′l1,,Ωl
(−α), . . . , u′lK,,Ωl

(−α)]T is computed
from

u′l,Ωl
(−α) = (IK − Jl)

−1vl,Ωl
(86)

where Jl ∈ CK×K and vl ∈ CK are:

[Jl]mn =
trΦllmTlΦllnTl

N2(1 + uln(−α))2
1 ≤ m,n ≤ K (87)

[vl,Ωl
]t1 =

1

N
trΦlltTlΩlTl 1 ≤ t ≤ K (88)

B. Required Lemmas
Lemma 2. (Matrix Inversion Lemma)
Let U be an N ×N invertible matrix and x ∈ CN , c ∈ C

for which U + c xxH is invertible. Then

xH
(
U + c xxH

)−1
=

xHU−1

1 + c xHU−1x
(89)

Lemma 3. (Trace Lemma)
Let A ∈ CN×N and x,y ∼ CN (0, 1

N IN ). Assume that A
has uniformly bounded spectral norm (with respect to N) and
that x and y are mutually independent and independent of A.
Then, for all p ≥ 1,

xHAx− 1

N
trA

a.s−−−−→
N→∞

0 and xHAy
a.s−−−−→

N→∞
0 (90)

Lemma 4. (Rank-1 perturbation lemma)
Let A1, A2, ..., with AN ∈ CN×N , be deterministic

with uniformly bounded spectral norm and B1, B2, ..., with
BN ∈ CN×N , be random Hermitian, with eigenvalues λBN

1 ≤
λBN

2 ≤ . . . ≤ λBN

N such that, with probability 1, there exist
ε > 0 for which λBN

1 > ε for all large N . Then for v ∈ CN

1

N
trANB−1

N −
1

N
trAN (B−1

N + vvH)−1 a.s−−−−→
N→∞

0 (91)

where B−1
N and (B−1

N + vvH)−1 exist with probability 1.
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