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Electrical Vehicles in the Smart Grid:

A Mean Field Game Analysis
Romain Couillet, Samir M. Perlaza, Hamidou Tembine, and Mérouane Debbah

Abstract

In this article, we investigate the competitive interaction between electrical vehicles or hybrid oil-

electricity vehicles in a Cournot market consisting of electricity transactions to or from an underlying

electricity distribution network. We provide a mean field game formulation for this competition, and

introduce the set of fundamental differential equations ruling the behavior of the vehicles at the feedback

Nash equilibrium, referred here to as the mean field equilibrium. This framework allows for a consistent

analysis of the evolution of the price of electricity as well as of the instantaneous electricity demand in

the power grid. Simulations precisely quantify those parameters and suggest that significant reduction of

the daily electricity peak demand can be achieved by appropriate electricity pricing.

I. INTRODUCTION

Electrical vehicles (EV) and plug-in hybrid electrical vehicles (PHEV) have been recognized as natural

components of future electricity distribution networks, known as smart grids [1], [2], [3]. As opposed

to classical vehicles, EV and PHEV are equipped with batteries which can be charged or discharged by

using a simple plug-in connector compatible with the local electricity distribution grid. Thus, EV and

PHEV can be conceived as both energy consuming devices and mobile energy sources [4], [5], [6], [7].

In the former case, EV and PHEV can be seen as devices straining the energy demand of energy suppliers

and, thus, adding a new constraint to reliably distribute the electricity. In the latter case, EV and PHEV
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can be used to store or even to transport the energy from one geographical area to another and then to

increase the reliability of the energy supply in certain zones or time intervals.

In this framework, it is therefore an important economical and social challenge to enforce charge and

discharge policies to EV and PHEV in an optimal manner. Here, optimality must be interpreted in the

sense of individual revenue obtained by the EV and PHEV owners when participating in the energy

trades and also in terms of reliability of the energy supply process to the fixed consumers. In this paper,

we consider that a way to improve reliability is to allow EV and PHEV to buy and sell energy to or

from the smart grid, as in a classical Cournot competition [8]. Clearly, the price at which the energy is

sold and bought depends on the existing demand in the grid and also on the demand and offer resulting

from all the vehicles connected to the network. This competitive interaction resulting from the energy

trade, given a global price, can be analyzed using tools from dynamic game theory [9]. This is studied

for instance in [10], where a noncooperative game is played among a number of PHEV groups aiming

to sell part of their stored energy to the smart grid; an algorithm based on best response dynamics is

then proposed to allow PHEV groups to reach a Nash equilibrium.

Nonetheless, in practical scenarios, the number of vehicles might be drastically large so that finite

dimensional game theory analysis might not necessarily bring enough insight about the global behavior

of the market. To overcome this problem, in this paper, we study the energy trade when the number of

vehicles tends to infinity and all vehicles are considered alike, following the paradigm of [11], [12]. More

precisely, we shall model this interaction as a mean field game [13], [14]. In contrast to finite games,

where each player follows the evolution of the state of the game and the actions taken by all other players

in order to maximize a given individual benefit, in the mean field game formulation, players do not react

to actions from individual players but rather to the aggregate behavior of all players. The notion of

(Nash) equilibrium in the context of mean field games is known as mean field equilibrium (MFE). When

focusing only on the class of regular functions of time and battery levels, a necessary condition for the

MFE is to be the solution of a coupled system of partial differential equations (PDE) which includes a

(backward) Hamilton-Jacobi-Bellman (HJB) equation and a (forward) Fokker-Planck-Kolmogorov (FPK)

equation.

The closest contribution to our specific problem setting is [15], [16]. Therein, a mean field game

approach to the study of oil production is developed. In [15], the selfish players are oil producers and

the mean field variable is the oil selling price. In this article, we develop a similar framework as in [15]

but on a finite time horizon, applied to both EV and PHEV, with vehicle owners as the selfish players

and electricity price as the mean field variable.
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The reminder of this article unfolds as follows. In Section II, we describe the problem formulation in

the case where only electrical vehicles interact with the energy market. Therein, the problem is formulated

as a continuous time differential game with finite time horizon. This formulation is then written under the

form of a mean field game and the differential equations describing the MFE are presented. In Section

III, the same analysis presented for EV is carried out for the case of PHEV. In Section IV, we provide

numerical simulations and derive conclusions for both scenarios. Finally, in Section V, we conclude this

work.

II. ELECTRICAL VEHICLES

A. System Model

Consider a finite set K = {1, . . . ,K} of EVs participating to energy trading with an underlying

electricity distribution network. The consumption rate of vehicle k ∈ K at time t ∈ [0, T ] is denoted

by g
(k)
t . This consumption rate is measured in units of electricity per time. We assume that g(k)

t is

deterministic and known by EV k. The amount of energy stored in the battery of vehicle k at time t is

denoted by x
(k)
t ∈ [0, 1], quantified in energy units. Here, x(k)

t = 0 for an empty battery and x
(k)
t = 1

for a fully charged battery. We denote by α(k)
t the energy provisioning rate of vehicle k at time t, that

is, the rate at which vehicle k buys or sells its energy. We relate the variable x(k)
t to g

(k)
t and α

(k)
t by

the following differential equation
d

dt
x

(k)
t = α

(k)
t − g

(k)
t , (1)

where α(k)
t and g

(k)
t are chosen such that the trajectory x

(k)
t is unique for a given initial x(k)

0 and that,

for all t, 0 ≤ x(k)
t ≤ 1. Such α(k)

t is called an admissible provision rate.

In the following, we denote xt = (x
(1)
t , . . . , x

(K)
t ) and αt = (α

(1)
t , . . . , α

(K)
t ) the battery level profile

and provisioning rate profile at time t, respectively. Consider now a predefined period [0, T ]. We denote

x(k) = {x(k)
t , 0 ≤ t ≤ T} and α(k) = {α(k)

t , 0 ≤ t ≤ T} the trajectories of the battery level and

provisioning rates for EV k, respectively. We also denote x = {xt, 0 ≤ t ≤ T} and α = {αt, 0 ≤ t ≤ T}

the trajectories of the battery level and provisioning rate profiles. We finally denote AK the set of all

admissible provision rates α.

The price at which vehicles either sell or buy electricity at time t is determined by the function

pt : RK → R, αt 7→ pt(αt). The time dependency of the price pt models a realistic dynamic pricing

policy accounting for the energy demand for other services than EV battery loading. This function can be

tuned to create incentives for EV to sell or buy energy at specific time periods. In addition to electricity
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price, other factors influence the energy trades of EV owners. We model the latter, for player k, by the

following set of functions. The function h(k)
t : R→ R, α 7→ h

(k)
t (α) models the (psychological) cost for

player k to buy or sell electricity at rate α at time t. Indeed, EV owners are more likely to trade energy

at some convenient time intervals, e.g. during nighttime when the EV is parked at home. The function

f
(k)
t : [0, 1] → R, x 7→ f

(k)
t (x) models the cost for vehicle k to possess only a fraction x of energy

reserves at time t. For instance, during periods of high energy consumption, the interest of EV owners

is to have maximally loaded batteries. Finally, κ(k) : [0, 1]→ R, x 7→ κ(k)(x) models the cost for EV k

to end the trade period [0, T ] with a fraction x of battery load. This function guarantees that EV owners

do not sell all their battery content at the end of the trade. A comprehensive discussion on the choices

of these functions is considered in Section IV.

The goal of EV k is to determine the consumption rates α(k) that minimize its total cost Jk : AK → R,

(α(1), . . . , α(K))→ Jk(α
(k),α(−k)), over a time window [0, T ] given the consumption rates α(−k) chosen

by all the other EVs. That is,

Jk

(
α(k),α(−k)

)
=

∫ T

0

(
α

(k)
t pt(αt) + h

(k)
t (α

(k)
t ) + f

(k)
t (x

(k)
t )
)

dt+ κ(k)(x
(k)
T ) (2)

for a given initial state x0. Note importantly that the instantaneous global price pt(αt) is a function of

the instantaneous provisioning rate profile αt, which in return depends both on the instantaneous energy

reserve profile xt and on the initial energy reserve profile x0.

In the following, we formulate a differential game which models the interactions between the active

EVs in the system.

B. Classical Game Formulation

We model the energy trades resulting from the interactions among the electrical vehicles and the smart

grid by a K-player continuous-time differential game of pre-specified fixed duration T > 0. Let K, the

set of EV, be the set of players. The state of the game, at time t, is determined by the energy reserve

profile xt = (x
(1)
t , . . . , x

(K)
t ), whose trajectory x is determined by the initial state x0 and, through the

players’ control, by the state evolution equation (1). The cost function of player k is defined by (2). The

objective of player k is to determine a control trajectory α(k) that minimizes its cost. At instant t, the

instantaneous control α(k)
t is determined based on the information available to player k, which we denote

by the information set η(k)
t . We will consider here that the information set corresponds to the singleton

η
(k)
t = {x(k)

t }. That is, players are assumed memoryless as they do not remember the previous individual

states nor their previous instantaneous controls.
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In the following, we describe the strategy of player k, that is, the mapping from the individual

information set to the space of individual controls. Let us denote the strategy of player k by the mapping

γ
(k)
t : η

(k)
t → AK

t,k, x 7→ γ
(k)
t (x) with AK

t,k the set of admissible controls for player k at time t. Given the

nature of the information sets, this strategy can be referred to as a non-anticipative (own-state) feedback

strategy. The action of player k is therefore described as

α
(k)
t = γ

(k)
t (x

(k)
t ). (3)

In the following, we will mostly use the notation α(k)
t , implicitly assuming the existence of a mapping

γ
(k)
t , and we denote ĀK

t = ĀK
t,1× . . .× ĀK

t,K , ĀK
t,k ⊂ AK

t,k, the class of feedback strategies at time t. The

notation ĀK ⊂ AK will be used for the class of all K-vector feedback controls {ĀK
t , 0 ≤ t ≤ T}. We

recall that the interdependence between players in this game appears through the electricity price: the

individual control α(k)
t depends on the global price pt(αt), which depends itself on all the other players’

individual controls α(−k)
t .

The formulation of the game is completed by further imposing that both the deterministic function

gt and the corresponding strategies γ(1), . . . , γ(K), with γ(k) = {γ(k)
t : 0 ≤ t ≤ T}, are such that the

trajectory defined by the initial value x0 and the differential equation (1) is well defined and unique.

Following the above game formulation, we consider as equilibrium notion the own-state feedback Nash

equilibrium, which we define as follows.

Definition 1: The control profile α? =
(
α?(1), . . . , α?(K)

)
∈ ĀK is an own-state feedback Nash

equilibrium (NE) if, for all k ∈ K and for all admissible control α =
(
α(1), . . . , α(K)

)
∈ ĀK , it

holds that

Jk

(
α?(k),α?(−k)

)
≤ Jk

(
α(k),α?(−k)

)
, (4)

with α
?(k)
t = γ

(k)
t (x

?(k)
t ), α(k)

t = γ
(k)
t (x

(k)
t ), k ∈ K, and x?t ,xt satisfying the state evolution (1), for a

common initial state x0.

Our interest in the NE lies in the fact that, at a state of NE, all the EV use a control policy, from

which they have no reason to depart. Nonetheless, analyzing the NE of such a game, where K is greater

than one is a difficult problem. In fact, even if a NE exists, it would lead to solutions that are inherently

difficult to exploit. In particular, it is clear that, under this formulation, any change in the battery level

of a given player impacts all other players which must react as a consequence. We aim at reducing this

complexity by adopting some additional, but reasonable, conditions.
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C. Mean Field Game Formulation

In this section, we simplify the equilibrium analysis of the differential game presented in the previous

section by considering the following hypotheses: (i) the set of players is sufficiently large to be considered

infinite, and (ii) players are indistinguishable, in the sense that a different player labelling leads to the

same joint state distribution. The first assumption is tenable here as we analyze a large population of

EVs. The second assumption reflects the fact that all players have, to some extent, similar batteries and

similar individual objectives (but obviously different battery states).

From the assumptions of player indistinguishability and under the large K limit setting [17], we can

drop the player indexes in the previous notations and model the (battery) states of the players at time

t by a random variable xt with distribution m(t, x). As such, m(t, x) is the limiting distribution of the

empirical distribution mK(t, x) defined as

mK(t, x) =
1

K

K∑
k=1

δx(k)
t =x.

Now, in order to avoid the unrealistic assumption that all vehicles consume energy at the same rate at

any time instant, we model the EV consumption rate by the stochastic process gtdt+gtσtdWt, with Wt a

Brownian motion. The state evolution of xt is therefore described by the following stochastic differential

equation (SDE)

dxt = αtdt− gt (dt+ σtdWt) + dNt, (5)

with x0 ∈ [0, 1] (now seen as a random variable) having distribution m0 = m(0, ·). The term dNt

is a reflective variable to ensure that xt remains in [0, 1]. Similar to above, we will assume that all

conditions are met for such a trajectory xt to be well-defined. Now, under the assumption of player

indistinguishability, the analysis of the game reduces to the study of the trajectory of the individual state

and individual control of a single player game (or equivalently, of a stochastic control problem), with

cost function J : A→ R, α 7→ J(α), with A the set of all controls {αt, 0 ≤ t ≤ T} admissible for the

state dynamics (5), defined as

J (α) = E

∫ T

0
(αtpt(mt) + ht(αt) + ft(xt)) dt+ κ(xT ), (6)

for a given initial (x0,m0), where mt = m(t, ·) is the distribution of the players among all individual

states, and xt satisfies the dynamics (5). The control αt is a feedback control that can be seen as the

image αt = γt(xt) of the (own-state) feedback strategy γt : ηt → At, x 7→ γt(x) on the information set

ηt = {xt}. The set of such controls is denoted Āt, and the set of control profiles {αt, 0 ≤ t ≤ T} is

denoted Ā ⊂ A.
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In this context, the energy trading price writes pt : Mt → R+, mt 7→ pt(mt), with Mt the class

of distributions mt. The price can now be seen as a function of the total instantaneous EV demand∫ 1
0 αtmt(x). However, for computational ease, we will instead consider that prices are fixed not by the

total EV consumption
∫ 1

0 αtmt(dx) but by the expected consumption gt + d
dt(
∫ 1

0 xmt(dx)), where both

quantities only differ by an additional Brownian motion term when σt > 0. In practice, this suggests that

the energy regulators which set the instantaneous prices do not have the information on the instantaneous

demand at time t but know the distribution mt at time t (as we will see, this information is accessible

in anticipation at time t = 0). We therefore define pt as

pt(mt) = D(t, ·)−1

(
gt +

d

dt

∫ 1

0
xmt(dx)

)
,

where D(t, p) is the total energy demand function (including both EV and external trades) at time t

for a given price p, and the inverse is with respect to composition. Under the above assumptions, the

continuous time differential game discussed in Section II-B becomes a mean field game as introduced in

[13], [14].

D. Mean Field Equilibrium

Our interest now is to transpose the notion of own-state feedback NE into the corresponding notion

of equilibrium in the mean field game, namely the own-state feedback mean field equilibrium (MFE).

Based on Definition 1, we state the following definition.

Definition 2: The control α? ∈ Ā is a mean field equilibrium in (own-state) feedback strategies if, for

all α ∈ Ā consistent with m?, it holds that

J (α?;m?) ≤ Jk (α;m?) , (7)

where J (·;m?) denotes J (·) with m replaced by m? in its expression, m? being the distribution induced

by the mean field equilibrium α? for the dynamics (5) and for a given initial state distribution m0.

Let us define the value function v : [0, T ]× [0, 1]→ R, (u, y)→ v(u, y), as follows,

v(u, y) = inf
α∈Ā

E

[∫ T

u
(αtpt(mt) + ht(αt) + ft(xt)) dt+ κ(xT )

]
where xt is any solution to (5) with xu = y.

According to [16], an MFE α? for the game that generates a regular couple (v,m) must be a solution

to the following (backward) Hamilton-Jacobi-Bellman equation

∂tv(t, x) = − inf
α∈R
{α∂xv(t, x) + αpt(m

?
t ) + ht(αt) + ft(xt)}

+ gt∂xv(t, x)− 1

2
g2
t σ

2
t ∂

2
xxv(t, x) (8)
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where m(t, ·)? = m?
t is the solution of the following (forward) Fokker-Planck-Kolmogorov equation

∂tm(t, x) = −∂x [(α?t − gt)m(t, x)] +
1

2
g2
t σ

2
t ∂

2
xxm(t, x) (9)

for given m(0, ·).

In the following, we assume the cost h(αt) for control quadratic, i.e.

ht(α) =
1

2
Htα

2,

with Ht > 0 representing the unwillingness of the car owner to buy or sell energy at time t. This choice is

seemingly non-natural as it implies that users are more willing to buy or sell small quantities rather than

large quantities of energy. Nonetheless, under the mean field game formulation, this has to be understood

as the fact that, on average, only a limited population of users at time t is willing (or able) to buy energy.

As such, intuitively, making the (psychological) cost of buying or selling energy larger for larger amounts

of energy forces only part of the population to buy or sell. As for the particular choice of a quadratic

cost rather than any other cost function, it is convenient for calculus mostly.

Under this assumption, solving

inf
α∈R
{α∂xv(t, x) + αpt(m

?
t ) + ht(αt) + ft(xt)}

for all t, it is immediate by convexity arguments to see that the optimal trajectory α? is explicitly given

by

α?t = − 1

Ht
[∂xv(t, x) + pt(m

?
t )] , (10)

possibly subject to some boundary conditions to ensure that xt ∈ [0, 1] at all times. In the remainder of

the article, we will assume this condition always met, so that at no time we will consider EV owners

with completely full or completely empty batteries.

The HJB equation now becomes

0 = ∂tv(t, x)−
(

1

Ht
[∂xv(t, x) + pt(m

?
t )] + gt

)
∂xv(t, x)

− pt(m
?
t )

Ht
[∂xv(t, x) + pt(m

?
t )] + ft(x)

+
1

2Ht
[∂xv(t, x) + pt(m

?
t )]

2 +
1

2
σ2
t g

2
t ∂

2
xxv(t, x),

which can be simplified as

∂tv(t, x) =
1

2Ht
(∂xv(t, x) + pt(m

?
t ))

2 + gt∂xv(t, x)

− ft(x)− 1

2
σ2
t g

2
t ∂

2
xxv(t, x)
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and the FPK equation is

∂tm(t, x) =

(
1

Ht
[∂xv

?(t, x) + pt(m(t, x)] + gt

)
∂xm(t, x)

+
1

Ht
∂2
xxv

?(t, x)m(t, x) +
1

2
g2
t σ

2
t ∂

2
xxm(t, x).

This defines the two fundamental differential equations to be solved, either explicitly or numerically, for

determining the MFE.

In the next section, we improve the EV framework by turning the purely electrical vehicles into PHEV,

introducing therefore the possibility for players to select between two alternative sources of energy.

III. PLUG-IN HYBRID VEHICLES

A. System Model

In this section, we consider that vehicles in the set K are PHEV. A PHEV can operate both with an

electrical energy source and an alternative energy source, for instance oil. The PHEV interacts with the

electricity distribution grid by trading electricity with an elastic price, while trading oil at a fixed price

(which is a natural assumption on a daily or even weekly basis). We describe the energy reserves of PHEV

k by the two-dimensional vector z(k)
t = (z

(k)
1,t , z

(k)
2,t )T ∈ [0, 1]2, where z1,t is the amount of energy stored

in the batteries and z2,t the level of the oil tank. We denote the provisioning rates of electricity and oil

of PHEV k by µ(k)
1,t ∈ R and µ(k)

2,t ∈ R, respectively. In addition, we denote β(k) : R+ × [0, 1]2 → [0, 1],

(t, z) 7→ β(k)(t, z), with z = (z1, z2), the function that determines the relative proportion of energy drawn

from the batteries of PHEV k at time t. Typically, taking β(k)(t, z) = z1/(z1 + z2) translates a policy

where energy is consumed indistinctly of the energy source. Note that, depending on the typical distances

covered by PHEV owners at time t (e.g. weekdays against weekends), β(k)(t, z
(k)
t ) may explicitly depend

on t. Alternatively, we may have considered β(k)(t, z
(k)
t ) an additional control variable which can be set

optimally by the car owner depending on the status of the energy market. Nonetheless, for simplicity

of analysis, we do not consider this scenario here. We relate the variables z(k)
t , µ(k)

t , and β(k) by the

following state evolution dynamics

d

dt
z

(k)
t =

µ(k)
1,t

µ
(k)
2,t

−
 β(t, z

(k)
t )

1− β(t, z
(k)
t )

 g(k)
t (11)

and, similar to previously, we consider only β functions and µ(k)
t controls which are admissible, in the

sense of their defining a unique solution z(k)
t for each t, k.
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We then define the cost of PHEV k in the time window [0, T ] as

Lk

(
µ(k),µ(−k)

)
=

∫ T

0

(
rt

(
µ

(1)
t , . . . ,µ

(K)
t

)
+ q

(k)
t (µ

(k)
t ) + s

(k)
t (z

(k)
t )
)

dt+ ξ(k)(z
(k)
T ), (12)

for a given initial state z0 ∈ [0, 1]2K , i.e. the initial energy reserves of all PHEV, where µ = (µ(1), . . . ,µ(K)),

with µ(k) = {µ(k)
t = (µ

(k)
1,t , µ

(k)
2,t ), 0 ≤ t ≤ T} belonging to the set of admissible controls for the dynamics

(11).

Here, rt : R2K → R2, µ 7→ rt(µ
(1), . . . ,µ(K)) = (r1,t(µ

(1)
1 , . . . , µ

(K)
1 ), r2,t(µ

(1)
2 , . . . , µ

(K)
2 )) evaluates

the instantaneous prices r1,t of electricity and r2,t of oil, given the controls µ(k) = (µ
(k)
1 , µ

(k)
2 ). In

particular, we assume here that the price for oil is fixed, given by r2,t(µ
(1)
2 , . . . , µ

(K)
2 ) = r2. Note that in

this case the trajectory of the state z = {zt = (z
(1)
t , . . . , z

(N)
t ), 0 ≤ t ≤ T} is determined by the initial

state z0 = (z
(1)
0 , . . . , z

(K)
0 ) and by the dynamics (11). We denote Z the set of state trajectories z.

The function q
(k)
t : R2 → R, µ 7→ q

(k)
t (µ) evaluates the psychological cost of trading a quantity µ1

of electricity and a quantity µ2 of oil at time t, where µ = (µ1, µ2)T. The function s(k)
t : [0, 1]2 → R,

z 7→ s
(k)
t (z) denotes the cost for PHEV k to be in state z = (z1, z2) at time t. Finally, ξ(k) : [0, 1]2 → R,

z 7→ ξ(k)(z) is the cost for PHEV k to be in state z = (z1, z2) at time T . These are analogous to the

functions h(k)
t , f (k)

t , and κ(k) in (2), respectively.

In the following, we formulate the finite-number of players differential game.

B. Classical Game Formulation

The interaction between all PHEVs is modeled by a K-player continuous-time stochastic differential

game of pre-specified fixed duration T > 0. As for the case of EV, the aim of player k is to determine

the control trajectory µ(k) = {µ(k)
t , 0 ≤ t ≤ T} such that its cost Lk in (12) is minimized given

the initial conditions z0 and the control trajectories adopted by all the other players µ(−k). We denote

the set of all admissible controls µ(k) of player k over the time period [0, T ] by Uk, and we denote

U = U1 × · · · × UK . At time t, the instantaneous control µ(k) is determined based on the information

available to player k, which we denote by the information set η(k)
t , as in the previous section. Here,

the information set corresponds to the singleton η
(k)
t = {z(k)

t }. Let us denote the strategy of player

k by θ
(k)
t : η

(k)
t → Uk, η(k)

t → θ
(k)
t (η

(k)
t ). As stated above, this strategy corresponds to the class of

non-anticipative own-state feedback strategies, and we will write

µ
(k)
t = θ

(k)
t (η

(k)
t ). (13)

The image of θ(k)
t , i.e. the set of own-state feedback controls, is denoted Ūk and we write Ū = Ū1 ×

. . .× ŪK .
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C. Mean Field Game Formulation

In this section, we proceed similarly to Section II-C. We use here a finite-game counting measure mK

of the form

mK(t, z) =
1

K

K∑
k=1

δ(z
(k)
1,t ,z

(k)
2,t )=(z1,z2), (14)

with z = (z1, z2)T, and we assume asymptotic player indistinguishability to ensure that it admits a weak

limiting distribution m(t, ·) as K →∞. As previously, the individual state of each player is assumed to

be a noisy version of the deterministic state trajectory in (11) determined by the following SDE,

dzt =

µ1,t

µ2,t

 dt−

 β(t, zt)

1− β(t, zt)

 gt
1

1

+ σtdWt

+ dNt

for a given initial state z0. In particular, Wt = (W1,t,W2,t)
T is a two-dimensional Brownian motion

with independent components and Nt is the associated reflection vector. Similar to the EV scenario, σt

determines the variance of the noise at time t. The analysis of the game now reduces to the analysis of

the behavior of a single player. The cost function L(k) , L, assumed identical to all players, reads

L (µ,m) = E

∫ T

0
(rt (mt) + qt(µt) + st(zt)) dt+ ξ(zT ), (15)

where mt = m(t, ·) ∈Mt is the distribution of the state variable zt and Mt is the set of distributions at

time t. The initial state condition is z0 ∈ [0, 1]2, a random variable with distribution m0. The price for

electricity is given by the function r1,t : Mt → R+, with

r1,t(mt) = D(t, ·)−1

(
gt

∫
[0,1]2

β(t, z)mt(z)dz +
d

dt

∫
[0,1]2

z1mt(z)dz

)
(16)

for z = (z1, z2)T in the integrals. The price for oil is constant, given by r2,t = r2.

The next section is dedicated to determining the MFE for this game.

D. Mean Field Analysis

Under the above game formulation, the optimal control problem which represents the equilibrium of

the game formulates as

u(0, z0) = inf
µ∈Ū

L (µ,m0)

dzt =

µ1,t

µ2,t

dt−

 β(t, zt)

1− β(t, zt)

 gt [dt+ σtdWt] + dNt. (17)
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We introduce the value function

v(u,y) = inf
µ∈Ū

E

[∫ T

u
(rt (mt) + qt(µt) + st(zt)) dt+ ξ(zT )

]
(18)

with initial value zu = y.

As in the EV case, we consider the cost function as quadratic, that is,

qt(µt) =
1

2
Q1,t(µ1,t)

2 +
1

2
Q2,t(µ2,t)

2,

with (Q1,t, Q2,t) ∈ R2.

The HJB equation, which provides a necessary condition for the existence of an MFE generating

regular couples (v,m), is here given by

−∂tv(t, z) = inf
(µ1,t,µ2,t)∈R2

{µ1,t r1,t (m?
t ) + µ2,tr2 + qt (µt)

+(µ1,t − gtβ(t, z) )∂z1v(t, z)

+ (µ2,t + gt(β (t, z)− 1)) ∂z2v(t, z)}

+ft(z) +
1

2
σ2
t g

2
t [(β(t, z)

)
2∂2
z1z1v(t, z)

+2β(t, z)(1− β(t, z))∂2
zv(t, z)

+(1− β(t, z))2∂2
z2z2v(t, z)

]
, (19)

where m? = {m?
t , 0 ≤ t ≤ T}, m?

t = m(t, ·)?, is solution to the FPK equation

∂tm (t, z) = −∂z1
[
(µ?1,t − β (t, z) gt)m (t, z)

]
−∂z2

[
(µ?2,t + (β (t, z)− 1)gt)m (t, z)

]
+

1

2
g2
t σ

2
t

[
β (t, z)2 ∂2

z1z1m (t, z) + (1− β (t, z))2∂2
z2z2m (t, z)

+2β (t, z) (1− β (t, z))∂2
z1z2m (t, z)

]
,

with µ?t = (µ?1,t, µ
?
2,t) ∈ Ūt the cost minimizing (zt-adapted) feedback control, determined by

µ?1,t = − 1

Q1,t
(r1,t (m?

t ) + ∂z1v(t, z)) (20)

µ?2,t = − 1

Q2,t
(r2 + ∂z2v(t, z)) . (21)

Assuming σt = 0, we obtain more compact forms. In particular, after substitution of the expression of
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µ?t , the HJB equation becomes

∂tv (t, z) =
1

2Q1,t
(∂z1v (t, z) + r1,t(m

?
t ))

2

+
1

2Q2,t
(∂z2v (t, z) + r2)2

+gtβ (t, z) ∂z1v (t, z)

+gt(1− β (t, z))∂z2v (t, z)− ft (z) . (22)

where m?
t is solution to

∂tm (t, z) =

[
1

Q1,t
(∂z1z1v

?) +
1

Q2,t
(∂z2z2v

?) + gt [∂z1β (t, z)− ∂z2β (t, z)]

]
m (t, z)

+

[
1

Q1,t
(r1,t(m (t, z)) + ∂z1v

?) + β (t, z) gt

]
∂z1m (t, z)

+

[
1

Q2,t
(r2 + ∂z2v

?) + (1− β (t, z))gt

]
∂z2m (t, z) (23)

with v? the solution to (22), which is our final expression. Note in particular that, for β(t, z) = z1
z1+z2

,

z = (z1, z2)T, which we will use in Section IV, we have that

∂z1β (t, z)− ∂z2β (t, z) =
1

z1 + z2
. (24)

IV. SIMULATIONS

In this section, we provide simulation results for the electrical vehicle schemes developed in Section

II and Section III.

A. EV analysis

We first consider the scenario of Section II. We assume a realistic three-day scenario (t = 0 at midnight

the first day and t = T = 1 seventy-two hours later) where players have an average consumption rate that

depends on specific periods of the days. The scenario is typical of a Friday to Sunday energy consumption,

with higher overall electricity consumption on Friday and different patterns of car usage on Friday than

on Saturday and Sunday. Since it is difficult to provide a universal system parametrization, we will take

arbitrary scalings in the energy consumption functions.

The car electricity consumption function gt is depicted in Figure 1, where we see in particular that

consumption is higher on Friday and with a peak around 5pm, while consumption is lower on weekend

days with different peak times. The variance σ2
t on the consumption is taken equal to 0.01 at all time,

ensuring a standard deviation of the order of 10%. The demand function D(t, p) is such that the price p
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is a quadratic function of the total electricity demand from both electrical vehicles and other electricity

services. Specifically, we take here

pt =

([
gt +

d

dt

∫
xm(t, x)dx

]+

+ dt

)2

where dt stands for the demand of electricity in services other than electrical cars, with [x]+ = max(x, 0).

We therefore assume that this demand is deterministic and is not altered by the evolution of EV electricity

price, which is a realistic assumption if the EV electricity market is independent of the outer electricity

trading market. The function dt is depicted in dashed line in Figure 4, up to a constant corresponding to

the total average EV consumption; that is, the dashed line represents the total electricity consumption if

EV consumption were distributed equally in time. For simplicity of understanding, we assume ht = 30

constant; that is, we do not consider that the car owners have any particular incentive to charge or

discharge at some specific time periods.1 We take f(t, x) = (1 − x)2 to impose consumers to keep a

certain level of electricity in their batteries, and the boundary condition κ(x) = (1−x)2 in order to avoid

large sales at the last minute. The initial condition on m(0, ·) is a triangle distribution m0 centered at 0.5

and with support [0.3, 0.7]. The boundary conditions on m and v are such that ∂xm(0, ·) = ∂xm(1, ·) =

∂xv(0, ·) = ∂xv(1, ·) = 0 in order to force the energy content to lie in [0, 1].

To solve the system of equations (8), (9) in (m, v), we proceed by solving sequentially the HJB and

FPK equations using a simple fixed-point algorithm until convergence. We do not ensure here that this

algorithm does converge, neither do we ensure that the solution obtained is the solution sought for.

Using a finite difference method on a sampling of 144 points in the time axis (every 30min) and of

100 points in the battery level axis, the above scheme leads to the distribution evolution m? depicted in

Figure 2. A few observations can be already made from this figure. We easily observe daily sequences

of increases and decreases of the average battery levels. We see in particular that during nighttime, the

battery levels increase, indicating that energy is purchased in nighttime and consumed during daytime.

It is interesting to note that, due to the small variance σ2
t that was chosen, the overall tendency is for

m?(t, ·) to concentrate into a single mass when t → 1. This is a usual phenomenon which determines

the steady state if time were to continue with constant values for all time-dependent system parameters.

From the expression of m?, v?, and the equations derived in Section II, it is now possible to obtain

much information about the system. In particular, it is interesting to follow the electricity bought or sold

1Note that the determination of a correct ht is highly subjective and is better kept constant for the sake of interpretation.
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by electrical vehicles at all time, that is the quantity

gt +
d

dt

∫
xm?(t, x)dx

or the overall electricity consumption in the market given by

gt +
d

dt

∫
xm?(t, x)dx+ dt

and the price pt(m?
t ) defined here as

pt(m
?
t ) =

([
gt +

d

dt

∫
xm?(t, x)dx

]+

+ dt

)2

.

This is depicted in Figure 3, Figure 4 and in Figure 5, respectively.

We see first in Figure 3 that the peaks of electricity bought by electrical vehicles take place during

the night where the overall demand is low, while they are at their lowest during peak demand periods.

This is a natural outcome of the fact that prices are high during peak demand periods. However, we also

see that the difference of amplitude between lowest and highest purchases is not large. This is due to

the fact that, while prices are high in peak demand periods, the EV owners still have a strong incentive

not to find their batteries empty, driving them to keep buying electricity at peak periods. This behaviour

can be hindered by relaxing the constraint f(t, x).

Of more interest is Figure 4, where the differences between electricity consumption with or without

incentives on EV behaviour is presented. This figure depicts in dashed line the overall energy consumption

if the EV purchases were equally distributed in the three-day period (that is, with no incentive), and in

plain line the overall consumption under our current assumptions. It is seen here that the price incentives

on electricity purchases produce a much expected peak demand reduction in the critical day periods,

and a simultaneous increase of consumption during low consumption periods. Note importantly that our

analysis does not consider changes in dt when the price for electricity changes; only the part of electricity

reserved for EV drives prices which in turn drive the EV behaviour, which is a natural assumption if

different price conditions are applied to EV and other services. The price evolution is depicted in Figure

5, where it is seen in this setting that the price is mostly driven by the function dt.

B. PHEV analysis

In this second section, we wish to analyze the behavior of hybrid vehicles as described in Section

III. Since solving three-dimensional differential equations is time-consuming, we only provide results for

the time scale discretized in 12 samples and for the “spatial” scales discretized both in 16 samples. For
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Fig. 1. Mean energy consumption gt of EV as a function of time.
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Fig. 2. Density solution m?(t, x) as a function of the time t and the battery level x.

each differential equation, the resolution is performed by iterating the resolution of the two-dimensional

differential equations along time and electricity scales for each fixed oil tank level, and time and oil

scales for each fixed battery level. Then the system of HJB and FPK differential equations is solved

by further iterating a fixed point algorithm as in the previous section. For simplicity of interpretation,

we consider here a time-independent scenario where both gt = 0.2 and (q1,t, q2,t) = (125, 125) are
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Fig. 3. Electricity purchased by EV as a function of the time t.
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Fig. 4. Total electricity consumption with or without EV regulation as a function of the time t.

constant with time.2 We take the electricity price to be r1,t = (D(t, r1,t))
+ +0.5, where now the demand

is solely due to the electricity being bought by PHEVs; that is, we do not consider other sources of

electricity consumption in order to focus on the oil/electricity interaction solely. The oil price is set to

r2,t = r2 = 0.7. This is a natural choice as it is expected that an approximate quantity gt = 0.2 will

2Such a large value for the entries of ht is motivated by faster algorithm convergence reasons, although it inhibits as a

counterpart fast variations of m along time.
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Fig. 5. Evolution of the price pt(m
?
t ) as a function of the time t.

be asked for at any time to cover for the energy consumed, hence a price for electricity r1,t ' 0.7. We

impose a constraint st(z) = 20(2 − z1 − z2)2, where z = (z1, z2)T. The relative consumption β of oil

and electricity is proportional to the total quantity of energy, that is β(t, z) = z1/(z1 + z2) and therefore

1 − β(t, z) = z2/(z1 + z2). We take σt = 0 for simplicity. The boundary constraints are identical to

those in the previous section. As for the terminal constraint on v, it imposes that v(T, z) = ξ(z) =

10(2− (z1 + z2))2.

We consider the scenario where m(0, ·) is a (properly truncated and scaled) Gaussian distribution with

mean (0.4, 0.6)T and covariance 0.02I2, with I2 the 2×2 identity matrix. That is, we assume that, initially,

most vehicles have more oil than electricity. This is depicted in Figure 6. We then let the system evolve

freely under the above set of constraints. It is natural to guess that the overall behavior is a decrease of

either or both quantities of oil and electricity to zero if the prices are too high, or an increase of either or

both quantities to one, if the prices are more reasonable. What is interesting to observe is the trajectory

jointly followed by the players. The resulting final distribution m?(T, ·) is depicted in Figure 7. What we

observe in the aforementioned conditions is that the initial distribution has shifted towards an increase of

both electricity and oil levels, with a stronger increase of the mean battery level. Another observation is

that the distribution tends to stretch along the z1 = z2 diagonal in the figure, translating the fact that oil

and electricity are seen almost as equivalent goods due to the loosely constraining energy cost policy.

Among the different further analyses, in Figure 8, we consider a section of the distribution of the
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Fig. 6. Initial distribution m(0, ·) at time t = 0, as a function of both levels of battery and oil tank.

optimal transaction policy µ?1,t and µ?2,t at time t = 0+, for z2,t = 0.5 and z2,t = 0.9 (we remind that

both µ?1,t and µ?2,t are functions of t, z1,t and z2,t). That is, we observe the initial behavior of players

with half-filled oil tanks and almost completely filled oil tanks. It is seen that, for users with a very low

level of electricity, buying electricity is an appealing choice. This can be interpreted by the fact that, as

few players are in strong need for energy, it is possible to acquire a large quantity of electricity at a

reasonable price. Those players with low reserves of electricity are the main beneficiaries. For users with

already a reasonable level of electricity though, electricity and oil are seen as equivalent goods. As a

matter of fact, our results also show that, at time t = 0+, the price of electricity equals r1,t = 0.706 ' r2.

That is, the players with low electricity levels draw as much of the electricity overhead (compared to oil)

as is needed to reach an equilibrium price with oil. Now, it is also observed that, for users with large

quantities of oil, electricity becomes a compelling purchase in order to further increase the total quantity

of energy (since f imposes z1,t + z2,t to be close to 2), hence a larger incentive for buying electricity

when the battery level is not large. When both battery and tank levels are alike, we see that the quantity

of electricity purchased is the same as the quantity of oil purchased.

Obviously, from the very generic settings of both EV and PHEV problems, many more scenarios can

be carried out so to evaluate the actual impact of the EV and PHEV on realistic smart grid scenarios. The

simulations above and their interpretations only provide a framework of fully rational vehicle owner’s

behavior, which needs be reported to real-life conditions with extreme care.
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Fig. 7. Final distribution m(T, ·) as a function of both levels of battery and oil tank.
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Fig. 8. Optimal transactions at time t = 0+ for players with different oil and battery levels.

V. CONCLUSION

In this article, we proposed a game theoretical framework to model the behavior of electrical vehicle

and hybrid electricity-oil vehicle owners aiming at selfishly minimizing their operating cost. As the

number of selfish players is large, and players are assumed alike, we then turned the problem into a

mean field game, for which we obtain the fundamental differential equations describing the mean field

equilibrium of the game. Using numerical methods, we drew conclusions which give new insights on the
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way to optimize the electrical vehicle penetration in the future smart grid.
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[13] J. M. Lasry and P. L. Lions, “Jeux à champ moyen. i - le cas stationnaire,” Comptes Rendus Mathématique, vol. 343,
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