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High-Dimensional MVDR Beamforming: Optimized
Solutions based on Spiked Random Matrix Models

Liusha Yang∗, Matthew R. McKay∗, Romain Couillet†

Abstract—Minimum variance distortionless response (MVDR)
beamforming (or Capon beamforming) is among the most pop-
ular adaptive array processing strategies due to its ability to
provide noise resilience while nulling out interferers. A practical
challenge with this beamformer is that it involves the inverse co-
variance matrix of the received signals, which must be estimated
from data. Under modern high-dimensional applications, it is
well-known that classical estimators can be severely affected by
sampling noise, which compromises beamformer performance.
Here we propose a new approach to MVDR beamforming
which is suited to high-dimensional settings. In particular, by
drawing an analogy with the MVDR problem and the so-
called “spiked models” in random matrix theory, we propose
robust beamforming solutions which are shown to outperform
classical approaches (e.g., matched filters and sample matrix
inversion techniques), as well as more robust solutions, such as
methods based on diagonal loading. The key to our method is the
design of an optimized inverse covariance estimator which applies
eigenvalue clipping and shrinkage functions that are tailored to
the MVDR application. Our proposed MVDR solution is simple,
in closed form, and easy to implement.

Index Terms—MVDR beamforming, spiked covariance model,
random matrix theory.

I. INTRODUCTION

Adaptive beamforming is widely used in wireless commu-
nications, radar, sonar, microphone array speech processing,
medical imaging and other areas [1–5]. A general goal is
to adaptively steer a beam towards a desired signal, while
placing nulls at interference directions. The well-known mini-
mum variance distortionless response (MVDR) adaptive beam-
former [6] is designed to linearly combine the outputs of the
sensors in order to minimize the array output power, while
maintaining a fixed response towards the desired signal. A
desirable feature of the MVDR beamfomer is that it yields the
maximum signal-to-interference-plus-noise ratio (SINR) at the
array output [7].

A key practical issue with the MVDR beamformer is that
its construction involves the inverse covariance matrix of the
received signals, which must be estimated from observations.
The standard approach is to use the inverse of the sample
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covariance matrix (SCM), a strategy often referred to as “sam-
ple matrix inversion” (SMI). However, while this performs
well in classical application settings in which the number
of observations greatly exceeds the number of sensors of
the receive array, in modern data-limited scenarios or high-
dimensional applications (with large numbers of sensors),
estimation errors in the SCM can significantly compromise
beamformer performance [8–13]. The severity of this degra-
dation is also known to depend strongly on whether the signal
of interest (SoI) is present or absent from the sample data used
for covariance estimation [11–13].

Numerous approaches have been proposed to design more
robust beamforming solutions which aim to overcome this
problem (e.g. [8, 14–17]). The most popular are algorithms
that apply diagonal loading, which form a linear combination
of the SCM and a scaled identity matrix [15–22]. (Note that
this estimator is also commonly used in other fields, including
mathematical finance [22].) The idea of diagonal loading is
to regularize the SCM in order to provide resilience against
inaccuracies, such as sampling noise. Numerous recent studies
have proposed different solutions for optimizing the regular-
ization parameter of diagonal loading [17, 20–24]. Extensions
have also been proposed which replace the SCM with a
robust covariance matrix estimator (such as Tyler’s estimator)
to provide resilience against outliers [25, 26], and optimized
solutions for the loading parameter have been obtained under
different scenarios [25, 27]. An important point, however, is
that the diagonal loading construction (even with an optimized
diagonal loading factor) is not the most “natural” construction
for the MVDR beamforming problem, since it does not exploit
basic structural features of the received signal covariance
matrix under high-dimensional settings, as we indicate below.
Moreover, as we will demonstrate numerically, even when
given the (unobservable) theoretically-optimal parameter for
the MVDR beamformer, its performance can still be quite poor
under data-limited or high-dimensional scenarios.

Despite the fact that MVDR is a classical construction
which has been well studied, the problem of designing beam-
formers which yield high performance at low and high signal-
to-noise ratios (SNRs), under high-dimensional settings, and
in the face of data limitations, has still not been fully re-
solved. The key challenge is to develop covariance estimation
solutions which are appropriately optimized for the MVDR
application. In this paper, we propose a novel beamforming
solution aimed at addressing this problem.

We consider a high-dimensional setting for which the num-
ber of array sensors is assumed large, and the number of inter-
ferers is small in comparison. Relevant large-array application
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examples include [28–31]. Under such setting, our proposed
method is based on the fact that the receive covariance matrix
(with or without the SoI) has a specific structure reminiscent
of the so-called “spiked models” in random matrix theory
(RMT). Specifically, this construction comprises a low-rank
perturbation of a scaled identity matrix, with the scaling factor
corresponding to the noise variance σ2. Here, the leading few
eigenmodes represent the subspace spanned by the signal and
interferers, while the bulk of the eigenmodes (with identical
eigenvalues σ2) represent the noise subspace. This structure
allows for the design of robust estimation solutions which
are suitable for the MVDR problem, as opposed to generic
solutions, such as the SCM or diagonal loading. Specifically,
we consider a class of estimators which apply transformations
(or “shrinkage” functions) to the eigenvalues of the SCM.
In accordance with the spiked structure, the bulk of these
eigenvalues are hard-thresholded (or “clipped”) to the noise
variance σ2, while the transformations for the few leading
eigenvalues are carefully optimized to maximize the MVDR
performance. Specifically, this optimization is done under the
so-called random matrix asymptotic regime, which considers
both the number of sensors N and the number of observations
n growing together such that N/n approaches a constant.

To the best of our knowledge, this approach, which ex-
ploits the spike-model construction, has not been considered
previously for the problem of MVDR beamforming despite the
fact that the strategy appears natural. We point out however,
that there is some related and very recent work [32] that
proposed optimized spike-model-based covariance estimators
for a range of different objective functions. A defining feature
of these solutions is that they were designed for a class
of objective functions having a certain rotational-invariance
property, which does not hold for the MVDR problem. More-
over, the derivation approach relied heavily on this property,
and is not easily adapted to our problem. As such, here we
applied a different technique to identify the MVDR-optimal
eigenvalue shrinkage functions yielding our proposed inverse
covariance estimator, and consequently, our proposed MVDR
beamforming solution.

Our proposed method is simple to implement, and it
is shown through numerical examples to yield exceptional
beamformer performance for high-dimensional, data-limited
scenarios, at high and low SNRs, and in scenarios where
the interferers are substantially stronger than the SoI. The
robustness of our approach is calibrated against the traditional
benchmarks, including the SMI, as well as more robust so-
lutions including diagonal loading and eigen-subspace beam-
forming [8, 14]. Notably, we find that the diagonal loading
method—as a widely used modern MVDR approach—yields
degraded performance compared with our proposed solution,
even when fed the best possible “oracle” parameterization
(which is normally unknown in practice). The importance of
our optimized solution is also calibrated against beamformers
constructed based on other relevant spike-model-based covari-
ance estimators from [32]; again, demonstrating appreciable
performance gains.

II. BACKGROUND

A. Array signal model and optimal MVDR beamforming

Consider a uniform linear array consisting of N sensor ele-
ments which receives m < N narrowband signals over an ob-
servation period of n snapshots. At snapshot j ∈ {1, · · · , n},
the array observation vector x(j) ∈ CN is given by

x(j) =
√
p1a(θ1)z1(j) +

m∑
i=2

√
pia(θi)zi(j) + n(j) ,

where for i = 1, . . . ,m, a(θi) ∈ CN is the unit norm
steering vector of the i-th source, parameterized by its di-
rection of arrival (DoA) θi ∈ (−π, π], whereas pi ∈ R+ is
the corresponding signal power. We consider the case where
z1(j) denotes a SoI, while {zi(j)}mi=2 denote interferers. All
signals, zi(j) ∈ C, are independent complex Gaussian with
zero mean and variance one. Similarly, the noise samples
n(j) ∈ CN are independent, zero mean and spatially-white
complex Gaussian with variance σ2 (i.e., cov(n(j)) = σ2IN ),
assumed independent of zi(j) for all i and j. We allow the
DoAs and the powers to possibly vary with N , though this
will not be shown explicitly.

Let us drop the time index j for convenience. The
interference-plus-noise covariance matrix is given by

Ci+n = E

( m∑
i=2

√
pia(θi)zi + n

)(
m∑
i=2

√
pia(θi)zi + n

)H
=

m∑
i=2

pia(θi)a
H(θi) + σ2IN .

For simplicity, we will assume that σ2 is known; noting that
numerous methods have been proposed for estimating this
quantity consistently (see, e.g., [33–36]). We will also assume
initially that m is known; but we will explore a simple method
for estimating this parameter in our numerical results.

The received signals are linearly combined using a beam-
former h ∈ CN , transforming each vector output sample
x to a scalar y = hHx. The aim of the beamformer is
to enhance the SoI while attenuating interferers originating
from other directions. To this end, we consider the classical
MVDR beamformer [6], which seeks to minimize the output
interference-plus-noise power

Pi+n(h) = E

∣∣∣∣∣hH
(

m∑
i=2

√
pia(θi)zi + n

)∣∣∣∣∣
2
 = hHCi+nh

while constraining unity beam response along a look direction
of the SoI. Specifically, for look direction θ1 (assumed known),
this beamformer solves

min
h∈CN

Pi+n(h) s.t. hHa(θ1) = 1 ,

which takes the well-known form [6, 37]

hMVDR =
C−1i+na(θ1)

aH(θ1)C−1i+na(θ1)
. (1)

We note that in addition to minimizing the total output power,
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the MVDR beamformer also maximizes the output SINR [7]

SINR =
p1h

Ha(θ1)aH(θ1)h

hHCi+nh
. (2)

Hence, the beamformer performance may be also quantified
in terms of its achieved SINR.

In practice, the optimal MVDR beamformer is challenging
to construct, since the inverse covariance matrix C−1i+n is
unknown, and it is difficult to estimate without access to
dedicated “SoI free” training samples (i.e., comprising only of
interference and noise). To address this problem, an equivalent
representation of the optimal beamformer is often used, which
involves the total array covariance matrix

CN = E[xxH ] = p1a(θ1)aH(θ1) + Ci+n . (3)

From the matrix inversion lemma [38], it readily follows
that (1) equivalently expresses as

hMVDR =
C−1N a(θ1)

aH(θ1)C−1N a(θ1)
. (4)

Moreover, in terms of the total power at the beamformer
output, P (h) = E[|hHx|2] = hHCNh, this construction
is also seen to solve

min
h∈CN

P (h) s.t. hHa(θ1) = 1 ;

that is, it is the beamformer which yields the minimum total
output power (subject to unity SoI response):

P (hMVDR) =
1

aH(θ1)C−1N a(θ1)
.

In the following, for notational convenience, we will consider
the normalized total output power, ρ(h) = P (h)/σ2.

B. Sample-based implementation of MVDR beamforming

The advantage of the alternative beamformer specification
given in (4) is that it involves C−1N (which we refer to as
the “precision matrix”), which may be estimated from data,
even if SoI-free observations are not available. We focus on
this scenario throughout the paper, while simply noting that
our results could also be applied for applications with SoI-
free observations. Denoting any given estimate by Ĉ−1N , the
beamformer is constructed as

ĥMVDR =
Ĉ−1N a(θ1)

aH(θ1)Ĉ−1N a(θ1)
. (5)

The performance of this beamformer, measured by its normal-
ized total output power, is now a function of Ĉ−1N and admits

ρ(ĥMVDR) =
P (ĥMVDR)

σ2
=

1

σ2

aH(θ1)Ĉ−1N CN Ĉ−1N a(θ1)(
aH(θ1)Ĉ−1N a(θ1)

)2 .

(6)

This coincides with ρmin = ρ(hMVDR) only when Ĉ−1N =
C−1N , otherwise it is larger, which reflects the penalty due to
imperfect inverse covariance estimation.

The consequence of estimation errors can be severe, par-
ticularly when the number of training samples available for

estimation n is not substantially larger than the signal dimen-
sionality N . The classical estimation approach is simply to
employ the SCM,

SN =
1

n

n∑
j=1

x(j)xH(j) .

The beamformer obtained by plugging S−1N for Ĉ−1N
in (6) is commonly referred to as SMI. It is well-
known, however, that the SMI-based beamformer ĥSMI =
S−1N a(θ1)/(aH(θ1)S−1N a(θ1)) can yield significantly higher
normalized total output power than the theoretical minimum
ρmin, especially when N and n have a similar order of
magnitude, and for the case of interest with the desired signal
being present in the received sample data [11, 17, 39]. It is
shown later (see Fig. 1) that ρ(ĥSMI) and ρmin can have a
large and non-vanishing gap as n and N increase in proportion
to one another. In fact, from prior work [40–42], it follows
that as N,n → ∞ with cN = N/n → c ∈ (0, 1),
then ρ(ĥSMI)/ρmin → 1/(1 − c), demonstrating that even
if one has twice as many samples as receive sensors (with
both sufficiently large), the estimation errors can result in a
significant penalty of 3 dB in terms of total output power.
Moreover, the penalty can even become unbounded as n
approaches N .

In this work, our goal is to design a robust estimation strat-
egy which can overcome this problem by exploiting inherent
structure of the MVDR beamforming problem. In particular,
we will consider the practically relevant scenario for which
the number of sensors N and n are reasonably large, while
the number of signal plus interferers m is relatively small
and is assumed fixed. In this case, the covariance matrix CN

is identified to be a low-rank (i.e., rank m) perturbation of
the identity matrix which, in the language of RMT, conforms
to the so-called “spiked” covariance construction. There is
indeed a wide and growing recent literature focused on the
statistical analysis of spiked covariance models [43–48], and
these results may be leveraged to develop novel estimation
strategies which significantly overcome the sampling noise
issues which fundamentally plague the SCM estimator. To our
knowledge, the exploitation of theoretical spike model proper-
ties for developing optimized MVDR beamforming solutions
has not been considered previously, and this presents a key
contribution of our work. In particular, by utilizing the prior
knowledge that CN has a spiked covariance structure, we will
propose an optimized precision matrix estimator Ĉ−1MVDR, and
consequently an optimized beamformer ĥMVDRopt, which is
designed to minimize (6).

III. OPTIMIZED HIGH-DIMENSIONAL BEAMFORMER
DESIGN

A. MVDR beamforming and spiked covariance models

The aim is to estimate the precision matrix C−1N , with CN

defined in (3). To this end, we start by noting that the matrix
CN may be expressed through eigen-decomposition as

CN = σ2

(
IN +

m∑
i=1

tiviv
H
i

)
, (7)
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which has eigenvalues (σ2(t1+1), . . . , σ2(tm+1), σ2, . . . , σ2),
where ti > 0 for i = 1, . . . ,m, and with v1, . . . ,vm denoting
the eigenvectors corresponding to the largest m eigenvalues.
The eigenvalues σ2(t1 + 1), . . . , σ2(tm + 1) will be referred
to as “spike” eigenvalues.

Our proposed estimator will be based on appropriately ma-
nipulating the eigenvalue spectrum of the SCM. Specifically,
introducing the eigen-decomposition

SN =

N∑
i=1

λiuiu
H
i , (8)

with λi the i-th largest eigenvalue and ui the corresponding
eigenvector, we look for estimators of the form

Ĉ−1N (SN ) =

N∑
i=1

ηiuiu
H
i (9)

where ηi > 0 are appropriate eigenvalue “shrinkage” functions
to be designed.

We note that this general construction has been proposed in
extensive literature [20, 47, 49–53], and is most relevant when
one lacks prior knowledge about the eigenvector structure of
CN (sparsity, etc.). Moreover, choosing the eigenvectors of
Ĉ−1N to coincide with those of the SCM has the desirable
property of making it equivariant with respect to rotations of
the observed data [52]. Given the spiked model covariance
construction, it is natural to apply “hard clipping” to the weak-
est N −m sample eigenvalues, so that ηm+1 = · · · = ηN =
1/σ2. This, in effect, accounts for the eigenvalue spreading
phenomenon [54] caused by finite sampling, in which the
non-spike sample eigenvalues (i.e., the N −m smallest) are
known to be distributed asymptotically in accordance with
the Marcenko-Pastur law, a well-known result in RMT [55].
Introducing the notation wi = σ2ηi − 1, this then leads to the
estimator construction

Ĉ−1N (SN ) =
1

σ2

(
IN +

m∑
i=1

wiuiu
H
i

)
. (10)

The challenge is to design appropriate values for the shrinkage
functions ηi (equivalently wi), for i = 1, . . .m. Specifically,
our aim is to find the optimal w∗ = [w∗1 , . . . , w

∗
m]T which

produces a beamformer of the form (5) leading to the mini-
mization of ρ in (6).

By plugging (10) and (7) into (6), the normalized total
output power ρ is seen as a function of w = [w1, . . . , wm]T ,
which we will make explicit as ρ(w) in the following (i.e.,
we will drop the beamformer dependency, as specified in (6)).
In particular, our optimization problem now becomes

w∗ = argmin
w∈Lm

ρ(w) (11)

where ρ(w) is defined in (12) at the top of the next page. The
parameter range is specified as1 L = [−1 + ξ, q), for some
small ξ > 0 and large q > 0.

The difficulty here is twofold. One is that it is challenging

1Note that we restrict w to a bounded set Lm, which is a technical condi-
tion that will be employed subsequently for establishing uniform convergence
results.

to find the optimal w∗ that minimizes ρ(w) as specified in
(12) in closed-form. The other is that even if such an optimal
w∗ were obtained, this could not be used in practice, since
it involves unobservable quantities (i.e., the ti and vi), which
are properties of CN , the object we are trying to estimate.
To solve these problems, we will appeal to results on the
asymptotic properties of spiked covariance matrices to give a
simplified asymptotic representation for (12). As we will show,
this may be readily optimized, and the optimal solution may
be consistently estimated with observations. We will employ
the following assumptions:

Assumption 1.
a. As N,n→∞, N/n = cN → c for a certain c > 0.
b. The number of spikes m is fixed, independently of N and
n, while t1 > · · · > tm with tm >

√
c for all large N .

Remark 1. Assumption 1.b requires some explanation. The
quantity

√
c represents a fundamental “phase transition”

point; that is, for each i ∈ (1, . . . ,m) such that for large
N , ti >

√
c, there is a deterministic one-to-one mapping

between ti and λi which holds under the asymptotic regime
specified by Assumption 1.a (see (33) in Appendix C). This is
important, since the i-th sample eigenvalue λi then informs
of the unobservable quantity ti, which can thus be estimated.
For the alternative case ti ≤

√
c for large N , the relation no

longer holds, and the value of ti can no longer be estimated. A
similar comment also applies for eigenvectors (see (13) below
for the case ti >

√
c for large N ). As a result, part of the

information about CN cannot be retrieved if some ti ≤
√
c

for large N .

Under these assumptions, in the following we will introduce
a procedure to obtain Ĉ−1MVDR, yielding the optimized beam-
former, ĥMVDRopt. The approach is summarized as follows:

1) We first characterize an asymptotic deterministic equiva-
lent ρ̄(w) of ρ(w), when N,n→∞, N/n = cN → c >
0.

2) Based on ρ̄(w), we determine the oracle w̄∗ that mini-
mizes ρ̄(w) in terms of t1, . . . , tm and the corresponding
eigenvectors v1, . . . ,vm.

3) Finally, we develop a sample-based consistent estimator
ŵ∗ of w̄∗, involving the sample eigenvalues λ1, . . . , λm
and eigenvectors u1, . . . ,um. This yields the desired
Ĉ−1MVDR, and consequently ĥMVDRopt.

B. Deterministic equivalent ρ̄(w) and the optimal w̄∗

To derive the deterministic characterization ρ̄(w), we will
use the fact that, under Assumption 1, the projection of each
of the leading m sample eigenvectors uj onto the leading
m population eigenvectors vi is consistently estimated by a
deterministic function. Specifically, it is known that [55]∣∣vHi uju

H
j vi − siδij

∣∣ a.s.−→ 0 , i, j = 1, . . . ,m (13)

where si =
1−cN/t2i
1+cN/ti

, with δij the kronecker-delta
function. Define also the deterministic quantities, ki =
aH(θ1)viv

H
i a(θ1), i = 1, . . . ,m. We have the following

result:
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ρ(w) =
aH(θ1)

(
IN +

∑m
i=1 wiuiu

H
i

) (
IN +

∑m
j=1 tjvjv

H
j

) (
IN +

∑m
h=1 whuhu

H
h

)
a(θ1)(

aH(θ1)
(
IN +

∑m
l=1 wlulu

H
l

)
a(θ1)

)2 (12)

Theorem 1. [Deterministic equivalent] Let Assumption 1
hold. As N,n→∞, supw∈Lm |ρ(w)− ρ̄(w)| a.s.−→ 0 where

ρ̄(w) =
wTBw + 2wTd + a

(1 + wTe)2
(14)

with

B = diag [s1k1(1 + t1s1), . . . , smkm(1 + tmsm)] ,

d = [s1k1(1 + t1), . . . , smkm(1 + tm)]T ,

e = [s1k1, . . . , smkm]T , a = 1 +

m∑
i=1

tiki .

Proof: See Appendix A.
We now seek the value w̄∗ = [w̄∗1 , . . . , w̄

∗
m]T that minimizes

ρ̄(w). This is given by the following result:

Theorem 2. [Optimal weights] Under the setting of Theo-
rem 1,

w̄∗ = argmin
w∈Lm

ρ̄(w)

where, for i = 1, . . . ,m,

w̄∗i =
ti + cN
t2i + ti

(ψ − ti) , with ψ =

∑m
j=1

kj
tj∑m

j=1
kj
t2j

. (15)

Proof: See Appendix B.

Remark 2. For the special case m = 1 (i.e., a SoI with
no interferers), w̄∗1 = 0, giving Ĉ−1MVDR = 1

σ2 IN . Hence,
ĥMVDRopt = a(θ1), which represents the classical matched
filter. This is in fact the optimal beamformer, as seen from (1)
and the fact that Ci+n = σ2IN .

C. Estimated optimal weights ŵ∗ and proposed algorithm

The optimal weights specified in the theorem above involve
unobservable quantities, i.e., ti and vi, and are therefore
not directly useful in practice. To address this issue, in the
following we provide consistent estimators of these optimal
weights. These are based on the sample eigenvalues λi and
sample eigenvectors ui, for i = 1, ...,m, and hence are
computable from sample observations.

Theorem 3. [Estimated optimal weights] Under the setting of
Theorem 1, for all large n with probability one, λi > σ2(1 +√
cN )2, i = 1, . . . ,m, and we have

|ŵ∗i − w̄∗i |
a.s.−→ 0

where

ŵ∗i =
t̂i + cN

t̂2i + t̂i

(
ψ̂ − t̂i

)
, (16)

Algorithm 1 Proposed MVDR beamformer construction

1) Compute the optimized shrinkage parameters ŵ∗i , i = 1, . . . ,m
in accordance with (16).

2) Form the precision matrix estimator (leading scale factor can
be omitted):

Ĉ−1
MVDR =

1

σ2

(
IN +

m∑
i=1

ŵ∗i uiu
H
i

)
.

3) Construct the MVDR beamformer:

ĥMVDRopt =
Ĉ−1

MVDRa(θ1)

aH(θ1)Ĉ−1
MVDRa(θ1)

.

in which ψ̂ =

∑m
j=1

k̂j

t̂j∑m
j=1

k̂j

t̂2
j

,

t̂i =
λi/σ

2 + 1− cN +
√

(λi/σ2 + 1− cN )2 − 4λi/σ2

2
− 1 ,

k̂i =
1 + cN/t̂i

1− cN/(t̂i)2
aH(θ1)uiu

H
i a(θ1) .

Proof: See Appendix C.
This leads immediately to the specification of our MVDR

beamformer, summarized in Algorithm 1. A pertinent point
is the simplicity of the proposed approach; the shrinkage
functions are in closed form, and are just simple functions
of the eigenvalues and eigenvectors of the SCM. Despite this
simplicity, we will demonstrate in the following that the pro-
posed beamformer exhibits excellent performance compared
with classical solutions (e.g., the SMI beamformer) as well as
more advanced techniques.

D. Scenario with some ti satisfying 0 < ti <
√
c

The previous results are based on the assumption that for
large N , ti >

√
c for all i = 1, . . . ,m. In practice, we would

typically not know if some of the spikes are smaller than this
threshold (i.e., if ti <

√
c for some i). In this subsection, we

explore this situation and investigate how our algorithm will be
applied under such scenarios. Specifically, consider m2 < m,
such that for all large N ,

t1 > t2 > · · · > tm−m2 >
√
c > tm−m2+1 > · · · > tm > 0 .

In this case, under Assumption 1. a, ui no longer asymptot-
ically carries information about vi, while λi is no longer
informative of ti, for i = m−m2+1, . . . ,m. A key distinction
is that now [55, Corollary 9.2]

vHi uiu
H
i vi

a.s.−→ 0 (17)

rather than obeying (13), while

λi/σ
2 a.s.−→

(
1 +
√
c
)2

(18)
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ρ̄ =
w(m2)TB(m2)w(m2) + 2w(m2)Td(m2) + a(m2)

(1 + w(m2)Te(m2))2
+

∑m
i=m−m2+1 tiki

(1 + w(m2)Te(m2))2
(19)

rather than obeying (33).
Writing the population covariance matrix as

CN = σ2

IN +

m−m2∑
i=1

tiviv
H
i +

m∑
j=m−m2+1

tjvjv
H
j


and the corresponding precision matrix estimator as

Ĉ−1N =
1

σ2

IN +

m−m2∑
i=1

wiuiu
H
i +

m∑
j=m−m2+1

wjuju
H
j

 ,

mirroring the same steps as in the proof of Theorem 1 (while
also using (17) and (18)), the deterministic equivalent of ρ(w)
under the same setting as Theorem 1 becomes (19) at the top
of the page, where all terms with the superscript ·(m2) coincide
with those in Theorem 1, but with m replaced by m−m2.

There are two important points to note regarding this result:
1) The deterministic equivalent (19) does not contain wi

(i = m −m2 + 1, . . . ,m); hence, these weights can be
chosen arbitrarily. They can be set to zero without loss
of generality.

2) The first term in (19) coincides exactly with the determin-
istic equivalent obtained when tm−m2+1 = · · · = tm =
0. The effect of these being non-zero (but below the tran-
sition point

√
c) is captured by the second term in (19).

However, the values ti and ki, i = m −m2 + 1, . . . ,m
involved in this expression cannot be typically estimated
from data, unlike for the case i = 1, . . . ,m − m2, and
therefore the exact weights w1, . . . , wm−m2 minimizing
(19), which will involve these quantities, cannot be con-
sistently estimated in practice.

As a consequence of the above arguments, our algorithm will
simply act as if the number of signal plus interferers is the
number of “strong” spike eigenvalues m−m2. And so, it will
provide a consistent estimator of the minimizer of the first
right-hand side term in (19), which is given through Algorithm
1 but with m replaced by m − m2. We point out, however,
that this is a suboptimal solution, since it (necessarily) ignores
the second right-hand side term in (19).

IV. NUMERICAL SIMULATIONS

For our simulations, we assume a uniform linear array with
N identical omnidirectional sensors placed at half-wavelength
spacing. For each data point, we average over 200 indepen-
dent Monte-Carlo trials. Incident upon the sensor array are
m = 6 uncorrelated narrow-band signals from the far field.
Unless otherwise specified, the SoI impinges from θ1 = 0o,
while five interferers impinge from θ2 = 5o, θ3 = 10o,
θ4 = 30o, θ5 = 50o and θ6 = 70o. The steering vector is
a(θ) = 1√

N
[1, ejπ sin(θ), . . . , ejπ sin(θ)(N−1)]T . The noise is

complex Gaussian with mean zero and variance one.
We note that unless otherwise specified, the number of

spikes m is assumed known. For simplicity, we also assume

that the noise variance σ2 is known, while simply noting that
the incorporation of an existing estimation approach [36] into
our experiments revealed qualitatively similar results.

A. ρ-Performance and the deterministic equivalent

We first investigate convergence of our proposed algorithm
in terms of the function ρ. Define SNR = p1

σ2 and INR = pi
σ2

(taken to be the same for all i = 2, . . . ,m). In Fig. 1, for
SNR = 5 dB and INR = 30 dB and different values of
n = 2N and n = 10N , we compare the expectation E[ρ(ŵ∗)]
(computed empirically) with our proposed ŵ∗ in Theorem 3
against the asymptotic deterministic equivalent ρ̄(w̄∗) based
on Theorem 1. Note that E[ρ(ŵ∗)] converges to ρ̄(w̄∗) with
the increase of N and n, as expected. For additional compar-
ison, we also plot the theoretical minimum (oracle) ρmin =
1/(σ2aH(θ1)C−1N a(θ1)) and the expectation E[ρ(ĥSMI)] with
the SMI. These results demonstrate that ρ̄(w̄∗) is close to ρmin,
indicating that our proposed approach leads to near-optimal
performance. Comparison with E[ρ(ĥSMI)], on the other hand,
demonstrates that the total output power is about 1

1−cN times
as large as that achieved with our algorithm (i.e., E[ρ(ŵ∗)]),
consistent with the discussion in Section II-B.

B. Beamformer performance and comparison against previous
methods

Next we compare the performance of our proposed method
ĥMVDRopt against alternative beamforming methods, con-
sidering both the beampatterns and the output SINR (2).
Note that the beampattern reflects the response of the
beamformer to signals originating from DoA α, given by
E
[
20 log10

∣∣∣ĥH(θ1)a(α)
∣∣∣], which is computed by averaging

over 200 simulation runs, with α swept from −90o to 90o. For
these comparisons, we fix INR = 30 dB. We first compare
the performance of ĥMVDRopt against the optimal MVDR
beamformer (4) with perfect knowledge of CN , considering
n = 2N = 200. Results are shown in Fig. 2(a). Despite
the fact that SNR is low (i.e., 5 dB), as for the optimal
solution, our proposed beamformer correctly places nulls in
the directions of each of the interferers. We also compare with
two traditional beamformers: ĥSMI, the SMI beamformer, and
ĥI, the phased array beamformer (or matched filter), which is
the steering vector a(θ1). These results are shown in Fig. 2(b)
and Fig. 2(c) respectively. Clearly, our method ĥMVDRopt

has a significant smaller “noise gain” compared with ĥSMI,
in addition to placing more accurate interference nulls. The
phased array beamformer, ĥI, demonstrates no interference
rejection capability, as expected. The SINR performance of
the different beamformers is shown in Fig. 2(d), for different
SNRs. The performance advantage of the proposed beam-
former ĥMVDRopt over the classical strategies is again evident.
For further comparison, we also plot the SINR performance of
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Fig. 1. Convergence of E[ρ(ŵ∗)] to its deterministic equivalent ρ̄(w̄∗) and the oracle ρmin for different values of n = 2N and n = 10N . The expectation
E[ρ(ĥSMI)] is also shown, which is about 1
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times as large as E[ρ(ŵ∗)]. The expectations E[ρ(ŵ∗)] and E[ρ(ĥSMI)] are estimated by averaging over

200 realizations.
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Fig. 2. Beampattern and SINR performance comparison of ĥMVDRopt, ĥSMI and ĥI (N = 100, n = 200).

each beamformer with different choices of n and N in Fig. 3,
yielding qualitatively similar results.

In addition to the traditional SMI and phased array beam-
formers, we also compared with more robust strategies, which
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Fig. 3. SINR performance comparison of ĥMVDRopt, ĥSMI and ĥI.

are designed to at least partially overcome the problem of sam-
ple insufficiency which plagues accurate inverse covariance
matrix estimation, and is the cause of the poor performance
of the SMI. First, we considered the popular diagonal load-
ing strategy ĥDL (see, e.g., [15–18, 20]), which employs the
construction (5) with the covariance matrix estimator

ĈN (ϕ) = (1− ϕ)SN + ϕIN

where ϕ ∈ (0, 1) is a parameter to be specified. While
numerous methods have been developed to specify ϕ (e.g., [17,
20]), here we compare with the empirically computed “oracle”
solution, in which ϕ is chosen to minimize the normalized
total output power in (6). Note that this optimal solution is
typically unknown in practice, but it provides an upper bound
on the performance achievable with any diagonal loading
method. The beampattern of this oracle beamformer is shown
in Fig. 4(a) for SNR= 5 dB. Strikingly, despite the fact that the
optimal diagonal loading parameter is employed, it is seen that
ĥMVDRopt has a significantly improved response, particularly
in terms of the noise suppression away from the DoA of
interest (i.e., away from 0o). We also compared with the eigen-
subspace beamformer ĥEigsub (see [8, 14]), which constructs a
beamformer based on first projecting a(θ1) onto the estimated
signal-plus-interference subspace (where it is supposed to lie),
giving

aSub =

m∑
i=1

uiu
H
i a(θ1)

and then specifying

ĥEigsub =
S−1N aSub

aHSubS
−1
N aSub

=

(∑m
i=1 1/λiuiu

H
i

)
a(θ1)

aH(θ1)
(∑m

i=1 1/λiuiuHi
)
a(θ1)

.

Note that this scheme can be seen as a special case of the
construction (9), for which ηi = 0 for i = m+1, . . . , N , while
ηi = 1/λi for i = 1, . . . ,m. That is, it completely removes all
noise dimensions, and performs no eigenvalue shrinkage to the
sample eigenvalues. The performance of this eigen-subspace
scheme is shown in Fig. 4(a), where it is seen to produce a

similar response to the diagonal loading method, albeit with
slightly improved noise suppression.

Fig. 4(b) compares the output SINR achieved by the dif-
ferent methods for different SNRs. As evident, ĥMVDRopt

uniformly displays the highest SINR, performing comparable
to the diagonal loading method at low SNR, and with the
eigen-subspace method at high SNR. Similar conclusions are
also reached for different choices of n and N , such as
n = 2N = 40 and n = 10N = 200 (results not shown
due to space limitations).

When the signals are more closely-spaced (e.g., with angular
separation smaller than 360o/N ), similar performance com-
parisons are also obtained, as demonstrated in Fig. 5. Here,
two scenarios are considered: one in which the DoAs are
separated by 3o; another in which they are separated by 1o.
In both cases, our proposed solution performs very closely
to the optimal beamformer (which we recall is the MVDR
beamformer constructed based on perfect knowledge of CN ),
and offers significantly enhanced noise resilience with respect
the diagonal loading and eigen-subspace methods.

The results in Fig. 5, together with those in Fig. 4, demon-
strate the uniformly superior performance of ĥMVDRopt, re-
gardless of whether the array sensors are widely-spaced or
close to one another (or some combination thereof). Interest-
ingly, this performance difference is quite distinct to that which
has been observed previously for RMT-based MUltiple SIgnal
Classification (MUSIC) algorithms as applied to the (albeit
different) problem of DoA estimation [56–62]. Specifically,
for that application, it was shown in [57] that the benefits
of RMT-optimized approaches over classical approaches (e.g.,
conventional MUSIC or spatial periodograms based on the
SCM) are typically only revealed for large-N under “closely-
spaced” scenarios, for which the DoA separations are O(1/N).

C. Robustness to under or overestimation of the number of
signals, m

Our proposed beamformer ĥMVDRopt, as well as ĥEigsub,
requires knowledge of the number of signals m. In practice,
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ĥEigsub
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this often needs to be estimated, and inaccurate estimation
may lead to performance degradation. To assess this, we first
quantified the performance loss of each beamformer when
m is over or underestimated by a fixed amount. The results
are shown in Fig. 6(a) under a similar parameterization to
Section IV-B. The most noteworthy point is that our proposed
method is robust to both under and overestimation of m.
For the eigen-subspace beamformer, on the other hand, while
it also shows robustness to overestimation, its performance
degrades severely when m is underestimated. This may be
an important issue in practice, when underestimation may be
difficult to avoid.

Beyond studying the effect of systematic under or overes-
timation, we also investigated the beamformer performance
when a data-based method is used to estimate m. Numerous
algorithms have been classically proposed for this purpose
(e.g., [63–66]), though they were often developed for scenarios
with n � N . Recent contributions have proposed algorithms
for high-dimensional settings (i.e., with n not substantially ex-
ceeding N ), which include [34, 36, 67]. In this line, a popular
and very simple method is to estimate m as the number of
eigenvalues of the SCM that exceed the right-hand edge of
the Marcenko-Pastur law, σ2(1 +

√
c)2. This method, which

is found to perform well through simulations, is theoretically
justified based on results in [43, 44].

Applying this method to estimate m, Fig. 6(b) compares the
performance of ĥMVDRopt and ĥEigsub. Importantly, for our
proposed MVDR beamformer, the performance with m esti-
mation is nearly identical to that with m known perfectly. The
performance of the eigen-subspace method, on the other hand,
degrades substantially, which is due to the mis-classification
(and particularly underestimation) as indicated previously.

D. Comparison with MVDR constructions based on other
spike-model covariance estimators

Optimal spike-model-based covariance (and inverse covari-
ance) estimation strategies have been proposed recently in
[32]. These methods share the same general structure (10),
but with the weights {wi} designed based on different loss
functions. Nonetheless, in all cases, the optimal weights wi
(i = 1, . . . ,m) were found to depend in a one-to-one manner
on specific sample eigenvalue and eigenvector pairs, λi and
ui (i = 1, . . . ,m), which differs from the optimal MVDR
weights ŵ∗i , specified in (16), which are jointly dependent
on λi and ui for all i = 1, . . . ,m. We compare with
beamformers constructed from two optimized covariance esti-
mation solutions from [32]: (i) ĥOp, the MVDR beamformer
constructed from inverting a covariance matrix estimator with
weights designed to minimize (asymptotically) the operator
loss ‖ĈOp−CN‖Op, and (ii) ĥFroinv, the MVDR beamformer
constructed from the inverse covariance matrix estimator
with weights designed to minimize (again asymptotically)
the Frobenius loss ‖Ĉ−1Froinv − C−1N ‖F. As a simple baseline
method, we also consider the “eigenvalue clipping” strategy,
denoted ĥClip, which corresponds to the beamformer obtained
by setting wi = σ2/λi − 1 in (10). This represents the naive
estimator obtained with no optimization of the weights {wi}.
We consider the same parameter setting as in Section IV-B.

Beampatterns of these three beamformers are compared
with our MVDR approach in Fig. 7(a) for the case n =
2N = 200. While each strategy succeeds in placing nulls at
the correct interference directions, our proposed beamformer
achieves significantly enhanced noise suppression. These re-
sults demonstrate the importance of not only employing the
general structure in (10), but in designing the weights {wi}
which are suitably optimized for the MVDR problem. This
gain is also reflected in the SINR performance (whenever SNR
is not too small), as shown in Fig. 7(b). Similar conclusions are
reached for other choices of n and N also, e.g. n = 2N = 40
and n = 10N = 200, which are not shown due to space
limitations.

V. CONCLUSION

We have proposed a new MVDR beamformer which is
optimally designed for high-dimensional applications in which
the number of samples does not greatly exceed the number
of array elements. Our technique is based on constructing an
optimized estimator of the inverse received signal covariance
matrix, which employs eigenvalue clipping as well as carefully
designed shrinkage functions. Leveraging results from RMT
and spiked models in particular, our solution exploits the
structure of a relatively low dimensional signal subspace
buried in a high dimensional noise space in the MVDR design
problem.

There are various avenues to be explored for future work.
For example, it would be interesting to conduct a second-
order analysis of our proposed MVDR beamformer (i.e.,
deriving a central limit theorem, as in [19, 26]), which would
help to provide insights into the fluctuations of the output
SINR. In addition, our discussion has assumed that the DoA
of the desired signal component is known. While in some
applications this is reasonable, in others it may need to be
estimated, and estimation errors may lead to a performance
degradation. An important challenge, falling beyond the scope
of the current work, is to quantify the effect of such errors
on beamformer performance, and to extend our results to
produce DoA-robust methods. This may involve, for exam-
ple, following similar lines of reasoning to the contributions
[39, 68–70]. We also remark that the MVDR beamforming
problem is closely related to that of designing minimum-
variance portfolios in mathematical finance, and our approach
could naturally be applied to that problem. Further motivating
this direction, it is noteworthy that an empirical analysis of
sample correlation matrices of financial stock return data has
demonstrated spectral properties which are closely reminiscent
of those expected for spiked models [71].

APPENDIX A
PROOF OF THEOREM 1

For a specific w ∈ Lm, the result |ρ(w)− ρ̄(w)| a.s.−→ 0 as
N,n → ∞ and cN = N/n → c > 0 follows immediately
from (12) and the following properties [55]:∣∣aH(θ1)uiu

H
i a(θ1)− siki

∣∣ a.s.−→ 0 (20)∣∣aH(θ1)uiu
H
i viv

H
i a(θ1)− siki

∣∣ a.s.−→ 0
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∣∣aH(θ1)uiu
H
i viv

H
i uiu

H
i a(θ1)− s2i ki

∣∣ a.s.−→ 0 .

The main difficulty is to establish the uniform convergence

sup
w∈Lm

|ρ(w)− ρ̄(w)| a.s.−→ 0 . (21)

From the definition of uniform convergence, this amounts to
showing that for some K > 0 and any given δ > 0,

sup
w∈Lm

|ρ(w)− ρ̄(w)| < Kδ (22)

for all large n almost surely. We start by noting that since
L is bounded, for any given δ > 0, we can always create a
lattice of w1, . . . ,wJ ∈ Lm with J finite such that, for each
w = [w1, . . . , wm] ∈ Lm, there exists w′ = [w′1, . . . , w

′
m] ∈

(w1, . . . ,wJ) for which maxi∈(1,...,m) |wi − w′i| < δ. With
this, we may write:

sup
w∈Lm

|ρ(w)− ρ̄(w)|

≤ sup
w∈Lm

{|ρ(w)−ρ(w′)|+|ρ̄(w′)−ρ̄(w)|+|ρ(w′)−ρ̄(w′)|}

≤ sup
w∈Lm

|ρ(w)− ρ(w′)|+ sup
w∈Lm

|ρ̄(w′)− ρ̄(w)|

+ max
w′′∈(w1,...,wJ )

|ρ(w′′)− ρ̄(w′′)| . (23)

Hence, it follows that the relation (22) would be estab-
lished upon proving that, for certain K1 > 0, K2 > 0,
and K3 > 0, we have supw∈Lm |ρ(w)− ρ(w′)| < K1δ,
supw∈Lm |ρ̄(w′)− ρ̄(w)| < K2δ, and
maxw′′∈(w1,...,wJ ) |ρ(w′′)− ρ̄(w′′)| < K3δ for all large n
almost surely.

To establish the first bound, we start by using (12) to write

|ρ(w)− ρ(w′)|

=

∣∣∣∣D(w′) [N(w)−N(w′)] + [D(w′)−D(w)]N(w′)

D(w)D(w′)

∣∣∣∣
(24)

with the correspondences

N(w) = σ2aH(θ1)Ĉ−1N (w)CN Ĉ−1N (w)a(θ1) , (25)

D(w) =
(
σ2aH(θ1)Ĉ−1N (w)a(θ1)

)2
, (26)
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where we now explicitly show the dependence of Ĉ−1N on w.

Next, we bound the difference terms on the numerator.
Using the definition of the spectral norm, we trivially obtain

|N(w)−N(w′)|

≤ σ2
∥∥∥Ĉ−1N (w)CN Ĉ−1N (w)− Ĉ−1N (w′)CN Ĉ−1N (w′)

∥∥∥ .
Next, plugging in (10) for Ĉ−1N , applying simple algebra, and
invoking the following spectral norm properties [72]

‖UV‖ ≤ ‖U‖‖V‖ , ‖U + V‖ ≤ ‖U‖+ ‖V‖ (27)

for U and V two arbitrary square complex matrices, this is
further bounded as∣∣N(w) −N(w′)

∣∣
≤ 2

∥∥∥∥CN

σ2

∥∥∥∥
∥∥∥∥∥

m∑
i=1

(
wi − w′i

)
uiu

H
i

∥∥∥∥∥
+

∥∥∥∥∥
m∑
i=1

(
w2

i − w′i
2
)
uiu

H
i
CN

σ2
uiu

H
i

∥∥∥∥∥
≤ 2

∥∥∥∥CN

σ2

∥∥∥∥ max
i∈(1,...,m)

∣∣wi − w′i
∣∣

+

∥∥∥∥CN

σ2

∥∥∥∥ max
j∈(1,...,m)

∣∣wj + w′j
∣∣ max
h∈(1,...,m)

∣∣wh − w′h
∣∣

< g1δ

where g1 = 2
∥∥CN

σ2

∥∥+2q
∥∥CN

σ2

∥∥ = 2(t1 +1)(q+1). (This last
line is established by recalling that wi ∈ L = [−1 + ξ, q), for
small ξ > 0 and large q > 0.) The second difference term in
(24) can be bounded similarly, leading to

|D(w)−D(w′)| < g2δ

where g2 = 2q. Hence, combining these results leads to the
following bound for (24):

|ρ(w)− ρ(w′)| < ε1δ ,

where

ε1 =
D(w′)g1 +N(w′)g2

D(w)D(w′)
.

We now need to determine that ε1 is bounded. To this end,
regarding D(w), given in (26), we note that

1∥∥∥ĈN (w)
∥∥∥ ≤ aH(θ1)Ĉ−1N (w)a(θ1) ≤

∥∥∥Ĉ−1N (w)
∥∥∥

which yields D(w) ∈ [ξ2, (q+ 1)2), and the same for D(w′).
Moreover, using (25) and (27), we readily obtain

N(w′) < (t1 + 1)(q + 1)2 .

These results yield ε1 < (q+1)2g1+(t1+1)(q+1)2g2
ξ4 , K1.

Therefore, we have established the desired property

sup
w∈Lm

|ρ(w)− ρ(w′)| < K1δ . (28)

We now turn to deriving the analogous result for the second
term in (23). To this end, similar to before, we start with∣∣ρ̄(w) − ρ̄(w′)

∣∣

=

∣∣∣∣∣ D̄(w′)
[
N̄(w) − N̄(w′)

]
+
[
D̄(w′) − D̄(w)

]
N̄(w′)

D̄(w)D̄(w′)

∣∣∣∣∣ (29)

where now

N̄(w) = 1 +

m∑
i=1

tiki +

m∑
i=1

siki(1 + tisi)w
2
i

+ 2

m∑
i=1

siki(1 + tisi)wi , (30)

D̄(w) =

(
1 +

m∑
i=1

sikiwi

)2

.

For the first difference term in the numerator of (29), we obtain∣∣N̄(w)− N̄(w′)
∣∣ =

∣∣∣∣∣
m∑
i=1

siki(1 + tisi)(w
2
i − w′i

2
)

+

m∑
i=1

2siki(1 + tisi)(wi − w′i)

∣∣∣∣∣ .
Now, substituting for ki and si (defined prior to the theorem
statement), and using the definition of spectral norm and (27),
this is readily bounded as∣∣N̄(w)− N̄(w′)

∣∣
≤

∥∥∥∥∥
m∑
i=1

(t2i − cN )(ti + 1)

(ti + cN )2
(w2

i − w′i
2
)viv

H
i

∥∥∥∥∥
+

∥∥∥∥∥
m∑
i=1

2
(t2i − cN )(ti + 1)

(ti + cN )2
(wi − w′i)vivHi

∥∥∥∥∥
≤ max
i∈(1,...,m)

(t2i − cN )(ti + 1)

(ti + cN )2

×
(

max
j∈(1,...,m)

|wj − w′j | max
h∈(1,...,m)

|wh + w′h|+ 2 max
l∈(1,...,m)

|wl − w′l|
)
.

Further, since (t2i−cN )(ti+1)
(ti+cN )2 is increasing in ti, we have

maxi∈(1,...,m)
(t2i−cN )(ti+1)

(ti+cN )2 =
(t21−cN )(t1+1)

(t1+cN )2 , leading to∣∣N̄(w)− N̄(w′)
∣∣ < g3δ

where g3 =
(t21−cN )(t1+1)

(t1+cN )2 (2q + 2). The second difference
term in the numerator of (29) can be bounded using similar
manipulations, which leads to∣∣D̄(w)− D̄(w′)

∣∣
≤ max
i∈(1,...,m)

t2i − cN
t2i + cN ti

max
j∈(1,...,m)

|wj − w′j |

×
(

2 + max
h∈(1,...,m)

t2h − cN
t2h + cN th

max
l∈(1,...,m)

|wl + w′l|
)
.

Like before, t2i−cN
t2i+cN ti

is increasing in ti, giving

maxi∈(1,...,m)
t2i−cN
t2i+cN ti

=
t21−cN
t21+cN t1

, and thus leading to∣∣D̄(w)− D̄(w′)
∣∣ ≤ g4δ

where g4 =
t21−cN
t21+cN t1

(
2 + 2q

t21−cN
t21+cN t1

)
. Combining these re-

sults produces the following bound for (29):

|ρ̄(w)− ρ̄(w′)| < ε2δ
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where

ε2 =
D̄(w′)g3 + N̄(w′)g4

D̄(w)D̄(w′)
.

Next, note that D̄(w) writes explicitly as D̄(w) =(
1 + aH(θ1)

∑m
i=1

t2i−cN
t2i+cN ti

wiviv
H
i a(θ1)

)2
. As we have

min
i∈(1,...,m)

t2i − cN
t2i + cN ti

wi ≤ aH(θ1)

m∑
i=1

t2i − cN
t2i + cN ti

wiviv
H
i a(θ1)

≤ max
i∈(1,...,m)

t2i − cN
t2i + cN ti

wi ,

together with 0 <
t2i−cN
t2i+cN ti

< 1 and wi ∈ [−1 + ξ, q), we have

−1 + ξ < aH(θ1)
∑m
i=1

t2i−cN
t2i+cN ti

wiviv
H
i a(θ1) < q. Thus, we

obtain D̄(w) ∈ (ξ2, (q + 1)2). Similarly, we have D̄(w′) ∈
(ξ2, (q + 1)2). As for N̄(w), using (30) and (27), we obtain

N̄(w)≤1+ t1 +
(t21 − cN )(t1 + 1)

(t1 + cN )2
q2+2q

(t21 − cN )(t1 + 1)

(t1 + cN )2
,g5 ,

which then yields ε2 <
(q+1)2g3+g5g4

ξ4 , K2. Therefore, we
have established the desired property

sup
w∈Lm

|ρ̄(w)− ρ̄(w′)| < K2δ . (31)

Finally, we turn to deriving the analogous result (for all large
n, almost surely) for the third term in (23). Since, as already
established, for each wi ∈ (w1, . . . ,wJ), as N,n→∞ such
that cN = N/n → c > 0, |ρ(wi)− ρ̄(wi)|

a.s.−→ 0, we have
that for each wi ∈ (w1, . . . ,wJ), |ρ(wi)− ρ̄(wi)| < δ for
all large n almost surely. Thus,

max
w′′∈(w1,...,wJ )

|ρ(w′′)− ρ̄(w′′)| <
J∑
i=1

|ρ(wi)− ρ̄(wi)| < Jδ

for all large n almost surely. This, combined with (31) and
(28) completes the proof that (22) holds, hence establishing
the desired uniform convergence (21).

APPENDIX B
PROOF OF THEOREM 2

By rewriting the numerator of (14) as

1 +

m∑
i=1

[
(tis

2
i ki + siki)

(
wi +

ti + 1

tisi + 1

)2

+ tiki

− (siki + tisiki)
2

tis2i ki + siki

]
,

and the denominator as(
m∑
i=1

[
siki

(
wi +

ti + 1

tisi + 1

)
− tisiki + siki

tisi + 1

]
+ 1

)2

,

the optimization problem of interest can be recast as

w∗ = argmin
w∈Lm

∑m
i=1 ai (wi + bi)

2
+ d

(
∑m
i=1 ei (wi + bi) + f)

2 (32)

where, for i = 1, . . .m,

ai = tis
2
i ki + siki , bi =

ti + 1

tisi + 1
, ei = siki ,

and

d = 1 +

m∑
j=1

(
tjkj −

(sjkj + tjsjkj)
2

tjs2jkj + sjkj

)

f = 1−
m∑
j=1

tjsjkj + sjkj
tjsj + 1

.

To solve this, we first note that application of the Cauchy-
Schwarz inequality to the denominator of (32) yields(

m∑
i=1

ei (wi + bi)+f

)2

=

(
m∑
i=1

√
ai (wi + bi)

ei√
ai

+
√
d
f√
d

)2

≤

(
m∑
i=1

ai (wi + bi)
2

+ d

)(
m∑
i=1

e2i
ai

+
f2

d

)
and therefore the objective function on the right-hand side of
(32) satisfies∑m

i=1 ai (wi + bi)
2

+ d

(
∑m
i=1 ei (wi + bi) + f)

2 ≥
1∑m

i=1
e2i
ai

+ f2

d

.

Here, the “=” is reached when
√
ai(wi+bi)

ei√
ai

=
√
d

f√
d

, i =

1, . . . ,m.
As such, the the optimal weights w̄∗i , i = 1, . . . ,m admit

w̄∗i =
eid

aif
− bi =

ti + cN
t2i + ti

(τ − ti)

with τ =

∑m
j=1

cNkj
tj

1−
∑m

j=1 kj+
∑m

j=1

cNkj

t2
j

.

Additionally, since the signal steering vector a(θ1) lies
entirely in the signal-plus-interference subspace, it follows that∑m
j=1 kj = 1, giving the further simplification

w̄∗i =
ti + cN
t2i + ti

(ψ − ti) , where ψ =

∑m
j=1

kj
tj∑m

j=1
kj
t2j

,

which is the stated result.

APPENDIX C
PROOF OF THEOREM 3

First, we recall the following RMT result [43]: For ti >
√
c,

for all large n with probability one, λi > σ2(1+
√
cN )2. When

N,n→∞, with cN → c,∣∣∣∣λi/σ2 − 1− ti −
cN (1 + ti)

ti

∣∣∣∣ a.s.−→ 0 . (33)

By direct inversion, we obtain consistent estimators of ti.
Specifically, we obtain∣∣t̂i − ti∣∣ a.s.−→ 0, i = 1, . . . ,m

where

t̂i =
λi/σ

2 + 1− cN +
√

(λi/σ2 + 1− cN )2 − 4λi/σ2

2
− 1 .
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Together with (20), it also yields consistent estimators of ki.
Specifically, ∣∣∣∣ 1

ŝi
aH(θ1)uiu

H
i a(θ1)− ki

∣∣∣∣ a.s.−→ 0

with ŝi =
1− cN/(t̂i)2

1 + cN/t̂i
.

Therefore, we obtain consistent estimators ŵ∗i of the
asymptotically-optimal weights w̄∗i by substituting t̂i and k̂i
for ti and ki respectively.
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