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ABSTRACT

This article proposes a distributed multi-task
learning (MTL) algorithm based on supervised prin-
cipal component analysis (SPCA) [1], [2], which
is: (i) theoretically optimal for Gaussian mixtures,
(ii) computationally cheap and scalable. Supporting
experiments on synthetic and real benchmark data
demonstrate that significant energy gains can be
obtained with no performance loss.

I. INTRODUCTION

The mandatory low carbon-footprint revolution
in technologies impacts our “consumption” of data
storage, exchange, and computational power. In this
view, transfer and multi-task learning [4], [13],
[10], [12] are efficient solutions to exploit remotely
located datasets, but their optimal designs in general
demand to gather all data together. In parallel, edge
computing [6], [8], [7], [11] proposes to maintain
computations locally with minimal exchanges but
at the expense of performance.

We introduce here a cost-efficient “multi-task
learning on the edge” paradigm which draws the
strengths of minimalistic data exchanges from edge
computing and of multi-task learning to exploit
multiple (possibly statistically distinct) datasets to-
gether. By exchanging the sufficient statistics (rather
than the data) and by optimizing the task-dependent
data labels (rather than setting them all to ±1
as conventionally done), the proposed scheme is
proved information-theoretically optimal.

?Couillet’s work is supported by the MIAI LargeDATA chair
at Univ.Grenoble-Alps.

Specifically, the article provides a distributed and
scalable extension of the supervised PCA-based
multi-task learning algorithm (MTL-SPCA) [9]. For
large and numerous data, the resulting algorithm is
provably equivalent in performance to the original
(and Gaussian-optimal) MTL-SPCA, while simul-
taneously allowing for drastic cost reductions in
data sharing. In particular, the algorithm recovers all
advantages from MTL-SPCA, such as the absence
of the deleterious problem of negative transfers.
Reproducibility. Code of all figures and algorithms
provided in the article are available at https://github.
com/Sami-fak/DistributedMTLSPCA.

II. CENTRALIZED ALGORITHM

MTL-SPCA [9] is a fast supervised multi-task
classification algorithm relying on a preliminary
PCA-like step which projects the data onto a sub-
space of weighted data classes. Similar to PCA,
MTL-SPCA is a mathematically tractable spectral
method. This tractability allows for setting theoret-
ically optimal data labels (rather than ±1), these
labels not being intrinsic to the data but differing
for each target task so to minimize the classification
error for each individual task. Of utmost importance
here, the inner functioning of MTL-SPCA relies
on “condensed” data information arising from each
task (the class-wise statistical means of the data),
thereby easily allowing for a distributed extension.

Consider k independent agents (i.e., clients) solv-
ing a classification task on their own data based on
training inputs X1, . . . , Xk, where Xi ∈ Rp×ni is
the dataset of client (or task) i composed of ni data
of size p. We let X = [X1, . . . , Xk] ∈ Rp×n (n =∑k

t=1 nt) and, for task i, Xi = [Xi1, . . . , Xim] for
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Xij ∈ Rp×nij the class-j subset (1 ≤ j ≤ m) for
client i (so ni =

∑m
j=1 nij). With a one-versus-all

approach, the m-class problem can be decomposed
as a series of m 2-class problems: for readability,
we thus restrict ourselves to m = 2 classes.

We further denote, for class j in task i, Xij =

[x
(j)
i1 , . . . , x

(j)
inij

] ∈ Rp×nij . To each x
(j)
i` is classi-

cally associated a label y(j)i` ∈ {±1}. In [9], this
choice is proved largely suboptimal and the main
source of negative transfers. Instead, for large p, nij ,
if all data in X are independent Gaussian vectors
with covariance Ip, the label y(j)i` minimizing the
classification error for target task t should be taken
constant for all ` and equal to y(j)i` = [ỹ[t]]ij where
ỹ[t] ∈ R2k is the vector:

ỹ[t] = D−
1
2

c (M+ I2k)
−1MD−

1
2

c (et1− et2) ∈ R2k,

here etj = e2(t−1)+j ∈ R2k is the canonical vector
with 1 at the 2(t− 1) + j-th coordinate,

M = (1/c0)D
1
2
c M

TMD
1
2
c ∈ R2k×2k

is the (fundamental) inter-task similarity matrix,

c = [n11/n, . . . , nk2/n]
T ∈ R2k

the vector of size ratios with Dc = diag(c), c0 =
p/n, and M the matrix of statistical means

M = [µ11, µ12, . . . , µk1, µk2], µtj = E[x(j)t1 ].

Note importantly that the optimal label vector ỹ[t]

for task t depends on the target task.

Remark 1 (Estimating ỹ[t]). For large Gaussian
data, MTM can be effectively estimated as [9]

[MTM ]qq =
4

n2ij
1T
nij
XT

ij;1Xij;21nij
+ op(1)

[MTM ]qq′ =
1

nijni′j′
1T
nij
XT

ijXi′j′1ni′j′ + op(1)

with q = 2(i − 1) + j and q′ = 2(i′ − 1) + j′

different and Xij = [Xij;1, Xij;2] an even-sized
division of Xij . With this result, ˆ̃y[t], defined as ỹ[t]

with MTM replaced by the above estimates, is a
consistent estimate for ỹ[t] as p, nij grow large.

Remark 1 shows that the optimal ỹ[t] is empir-
ically accessible from the vectors 1

nij
Xij1nij : it

does not require to know the individual data.

To classify a new sample x for client t, MTL-
SPCA then consists in projecting x onto the vector

Vt = XJỹ[t]/‖XJỹ[t]‖ = Xy/‖Xy‖

with J =
[
j11, . . . , j2k

]
, where jtj =[

0, . . . , 0,1ntj , 0, . . . , 0
]T

, and y = Jỹ[t].
Precisely, the error-rate minimizing decision (in a
Gaussian setting) results from the test

gt(x) ≡ V T
t x− ζt ≷ 0, ζt ≡

1

2
(m̂t1 + m̂t2) (1)

Here again, Xy =
∑

ij [ỹ
[t]]ijXij1nij is a linear

combination of the empirical means 1
nij
Xij1nij

.

III. DISTRIBUTED ALGORITHM

All operations leading to gt(·) can be written as
a function of the empirical means

µ̂ij ≡
1

nij
Xij1nij

, i ∈ {1, . . . , k}, j ∈ {1, 2}.

The complete dataset X , thus, needs not to be
accessible to client t: only the µ̂ij’s are necessary
and MTL-SPCA can be fully distributed by only
sharing the local (estimated) statistical means across
clients. Or, more efficiently, by updating a set of
statistical means within a central client, to and
from which every client may upload the µ̂ij’s and
download Vt. To get rid of the dataset dependence
tied to the centralized version, Vt = Xy/‖Xy‖ is
here rewritten using:

Xy =

k∑
i=1

2∑
j=1

nij µ̂ij [ỹ
[t]]ij . (2)

The distributed approach is depicted in Figure 1
for the popular multitask learning Amazon-Caltech-
DSLR-Webcam database. Every client is a data
center. Target client “webcam” aims to classify
images of bags and bikes, exploiting images of the
same objects from other data centers slightly differ-
ing in their features (number of data, size, shape,
resolution, background, diversity, etc). Distributed
MTL-SPCA only requires here for the “webcam”
(target) client to access the empirical means from
the other two data centers.
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Fig. 1. Schematics of the distributed algorithm for the Amazon
(Client 1), Caltech (Client 2), and Webcam (Target Client t)
database. Client t draws the projection vector Vt from the
empirical statistical means shared by all clients.

Explicitly, using Remark 1 applied to all con-
stituents of gt(·) – that is, writing Xy and the
m̂ij’s as functions of the µ̂ij’s –, MTL-SPCA is
distributed as per Algorithm 1 (by the central client)
and Algorithm 2 (by target task t).

Algorithm 1: Central Client

Data: M̂1, . . . M̂k (M̂i = [µ̂i1, µ̂i2]), for
µ̂ij ≡ 1

nij
Xij1nij , gathered as

M̂ = [M̂1, . . . , M̂k] ∈ Rp×2k;
Estimate similarity M, optimal label ỹ[t],

and then projection Vt and decision
threshold ζt (Remark 1);

Send estimates of Vt, ζt to client t.

Algorithm 2: Target task t
Data: Training Xt for task t. Test data x.
Result: Class ĵ ∈ {1, 2} of x for task t.
Compute class empirical means µ̂t1, µ̂t2;
Send Mt = [µ̂t1, µ̂t2] to Central Client;
Retrieve Vt, ζt from Central Client;
Compute score gt(x) and classify x in

class ĵ from decision gt(x)
ĵ=1

≷
ĵ=2

ζt.

Remark 2 (Transmission costs). A decisive advan-
tage of MTL-SPCA is to allow for a “multi-task on
the edge” approach, drastically reducing computa-
tional costs compared to a centralized implementa-
tion. In operation, the k clients only send (m−1)k

size-p vectors (m−1 per client) to a Central Client,
thereby preventing the transfer of the complete
datasets (which would require

∑
t,c ntc = n size-p

vectors): so a O(n)-fold gain. This “compacity” of
the sufficient statistics also ensures data privacy by
emitting an averaged version of individual data.

IV. EXPERIMENTS

A. 2-class 2-task transfer learning

In this first setting, class data would classically
be labelled as ±1: of course, MTL-SPCA will over-
write those by optimal labels. Figure 2 illustrates

0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

Task relatedness β

E
rr

or
ra

te

Theory
MTL-SPCA

ST-SPCA
N-SPCA

Fig. 2. Classification error for various task similarities (β) in a
distributed scenario for classical label ±1 (N-SPCA), proposed
method (MTL-SPCA), and single-task SPCA (ST-SPCA). The
theoretical performance for the proposed method is shown in
a solid line. Averaged over 10 000 test samples. MTL-SPCA
strongly benefits from increases in task relatedness.

the empirical versus theoretical (from [9]) classi-
fication error performance of MTL-SPCA under
this scenario for x(j)tl ∼ N ((−1)jµt, Ip), where
µ2 = βµ1 +

√
1− β2µ⊥1 for any µ⊥1 orthogonal

to µ1, both of norm ‖µ1‖ = ‖µ⊥1 ‖ = 1 with
p = 100, n11 = n12 = 1000 and n21 = n22 = 50.
Here β ∈ [0, 1] enforces task relatedness. Unlike
ST-SPCA (Single Task), MTL-SPCA benefits from
increases in task relatedness and avoids negative
transfer (N-SPCA) where labels are set to ±1.

B. Adding tasks

We next study the increase of the number k − 1
of source (2-class) tasks, first on synthetic Gaus-
sian and then on real data. For synthetic data, in
Figure 3, x(j)tl ∼ N ((−1)jµt, Ip), µt = βµ +√
1− β2µ⊥(t) with β ∈ [0, 1] fixed, µ = e

[p]
1 and

µ⊥(t) random of unit norm with [µ⊥(t)]1 = 0, for
t ∈ {1, . . . , k}. Tasks are successively added to help



4

10 20 30 40 50

0.2

0.25

0.3

0.35

Added Tasks

E
rr

or
ra

te
β = 0.6

β = 0.8

β = 0.9

Fig. 3. Theoretical (solid lines) versus empirical (markers) error
rates when adding source tasks with relatedness β to target task.
Marked improvement on first added tasks before asymptotic
saturation.

classify the target task (task 2) with nt1 = nt2 = 50
for t 6= 2 and n21 = n22 = 20, and p = 100.
Not surprisingly, larger values of β induce higher
performance levels with an ultimate saturation as
k →∞. The slight mismatch between theory (from
[9]) and practice decreases as n, p→∞, revealing
a rather unexpected phenomenon: that additional
degrees of freedom further help the algorithm to
“discover” and exploit the affinity between tasks.

Real data arise from Amazon Review (tex-
tual user reviews, positive or negative, on books,
DVDs, electronics, and kitchen items) and Of-
fice31+Caltech (two out of ten classes of images
from different modalities: Amazon, Caltech-256,
high-resolution DSLR, or low-resolution webcam
images) [3], [5]. Figure 4 depicts the classification
performance focusing on the “kitchen” task (task
1) by successively adding the three other datasets
as sources in the order given in the figure, for
n11 = n12 = n31 = n32 = 200, n21 = n41 = 50,
n22 = n42 = 90, p = 400. SURF features (p =
800) are considered as input data for Office+Caltech
images. In Figure 5, features from Amazon (task
2), DSLR (task 3), then webcam images (task 4)
are added to classify the “Backpack” and “Touring-
Bike” classes of Caltech (task 1), for n11 = 50,
n12 = 60, n21 = 90, n22 = 80, n31 = n32 = 12,
n41 = n42 = 20.

Both figures demonstrate the overall superiority
of MTL-SPCA. Most importantly, while N-SPCA
may severely suffer from negative transfer (per-
forming worse than with no extra task), MTL-SPCA
both ignores the negative transfer problem but also
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Fig. 4. Classification error for the Amazon Review dataset with
“Kitchen” as target task under successive addition of sources.
MTL-SPCA (thus with optimized labels ỹ) versus single-task
SPCA (no source data) and the “naive” (N-PCA) algorithm with
labels yi ∈ {±1}. Transfer learning significantly helps with
a clear improvement induced by optimal labels.

Caltech Amazon DSLR Webcam
0.07

0.08

0.09

0.10

0.11

Added Tasks
E

rr
or

ra
te Distributed MTL-SPCA

Single-task SPCA
N-SPCA

Fig. 5. Classification error for the Office+Caltech dataset,
targetting Caltech images of classes “Backpack” and “Touring-
Bike”; same algorithms as in Figure 4. Clear advantage of
MTL-SPCA and a strong manifestation of the “negative
transfer” effect for N-SPCA.

improves where N-SPCA decays.

V. CONCLUSION AND DISCUSSION

MTL-SPCA is one example of a simple answer
to the difficult multi-task learning problem, yet a
solution which is (i) optimal in the (rather large)
Gaussian isotropic case, (ii) easy to implement in
a distributed manner, and (iii) cost-efficient and
environmentally friendly when compared to mod-
ern machine learning mechanisms. What it only
takes here to make MTL-SPCA so powerful is
a statistical analysis and improvement by random
matrix theory [9], a comparison to the information-
theoretic optima, and a thorough inspection of the
incompressible sufficient statistics at play in view
of a distributed implementation.

We believe that a more systematic “sober” ap-
proach to ML problems, based on modern math-
ematical techniques, is prone to significantly re-
duce the environmental footprint of ML algorithms,
which is becoming an absolute necessity.



5

REFERENCES

[1] Eric Bair, Trevor Hastie, Debashis Paul, and Robert Tibshi-
rani. Prediction by supervised principal components. Jour-
nal of the American Statistical Association, 101(473):119–
137, 2006.

[2] Elnaz Barshan, Ali Ghodsi, Zohreh Azimifar, and Man-
soor Zolghadri Jahromi. Supervised principal compo-
nent analysis: Visualization, classification and regression
on subspaces and submanifolds. Pattern Recognition,
44(7):1357–1371, 2011.

[3] John Blitzer, Mark Dredze, and Fernando Pereira. Bi-
ographies, Bollywood, boom-boxes and blenders: Domain
adaptation for sentiment classification. In Proceedings of
the 45th Annual Meeting of the Association of Computa-
tional Linguistics, pages 440–447, Prague, Czech Republic,
June 2007. Association for Computational Linguistics.

[4] Rich Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997.

[5] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman.
Geodesic flow kernel for unsupervised domain adaptation.
In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2066–2073, 2012.

[6] Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar
Yaqoob, and Arif Ahmed. Edge computing: A survey.
Future Generation Computer Systems, 97:219–235, 2019.

[7] Mahadev Satyanarayanan. The emergence of edge com-
puting. Computer, 50(1):30–39, 2017.

[8] Weisong Shi and Schahram Dustdar. The promise of edge
computing. Computer, 49(5):78–81, 2016.

[9] Malik Tiomoko, Romain Couillet, and Frédéric Pascal.
Pca-based multi task learning: a random matrix approach.
Conference on Neural Information Processing Systems,
2021.

[10] Lisa Torrey and Jude Shavlik. Transfer learning. In
Handbook of research on machine learning applications
and trends: algorithms, methods, and techniques, pages
242–264. IGI global, 2010.

[11] Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kil-
patrick, and Dimitrios S Nikolopoulos. Challenges and op-
portunities in edge computing. In 2016 IEEE International
Conference on Smart Cloud (SmartCloud), pages 20–26.
IEEE, 2016.

[12] Qiang Yang, Yu Zhang, Wenyuan Dai, and Sinno Jialin
Pan. Transfer learning. Cambridge University Press, 2020.

[13] Yu Zhang and Qiang Yang. An overview of multi-task
learning. National Science Review, 5(1):30–43, 2018.


	Introduction
	Centralized Algorithm
	Distributed Algorithm
	Experiments
	2-class 2-task transfer learning
	Adding tasks

	Conclusion and discussion
	References

