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Preface

Numerous and large dimensional data is now a default setting in modern ma-
chine learning (ML). Standard ML algorithms, starting with kernel methods
such as support vector machines and graph-based methods like the PageRank
algorithm, were however initially designed out of small-dimensional intuitions
and tend to misbehave, if not completely collapse, when dealing with real-world
large datasets. Random matrix theory has recently developed a broad spec-
trum of tools to help understand this new "curse of dimensionality," to help
repair or completely recreate the suboptimal algorithms, and most importantly
to provide new intuitions to deal with modern data mining.

This book primarily aims to deliver these intuitions, by providing a digest of
the recent theoretical and applied breakthroughs of random matrix theory into
ML. Targeting a broad audience, spanning from undergraduate students inter-
ested in statistical learning to artificial intelligence engineers and researchers
alike, the mathematical prerequisites to the book are minimal (basics of prob-
ability theory, linear algebra, and real and complex analyses are sufficient): As
opposed to introductory books in the mathematical literature of random matrix
theory and large-dimensional statistics, the theoretical focus here is restricted
to the essential requirements to ML applications. These applications range
from detection, statistical inference, and estimation, to graph- and kernel-based
supervised, semisupervised and unsupervised classification, as well as neural
networks: For these, a precise theoretical prediction of the algorithm perfor-
mance (often inaccessible when not resorting to a random matrix analysis),
large dimensional insights, methods of improvement, along with a fundamen-
tal justification of the wide-scope applicability of the methods to real data, are
provided.

Most methods, algorithms, and figure proposed in the book are coded in
MATLAB and Python and made available to the readers (https://github.com/
Zhenyu-LIAO/RMT4ML). The book also contains a series of exercises of two types:
short exercises with corrections available online to familiarize the reader with
the basic theoretical notions and tools in random matrix analysis, as well as
long guided exercises to apply these tools to further concrete ML applications.
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Chapter 1

Introduction

This chapter discusses the fundamentally different mental images of large-dimensional
machine learning (versus its small-dimensional counterpart), through the exam-
ples of sample covariance matrices and kernel matrices, on both synthetic and
real data. Random matrix theory is presented as a flexible and powerful tool
to assess, understand, and improve classical machine learning methods in this
modern large-dimensional setting.

1.1 Motivation: the pitfalls of large dimensional
statistics

1.1.1 The big data era: when n is no longer much larger
than p

The big data revolution comes along with the challenging need to parse, mine,
compress a large amount of large dimensional and possibly heterogeneous data.
In many applications, the dimension p of the observations is as large as – if
not much larger than – their number n. In array processing and wireless com-
munications, the number of antennas required for fine localization resolution
or increased communication throughput may be as large (today in the order of
hundreds) as the number of available independent signal observations [Lu et al.,
2014, Li and Stoica, 2007]. In genomics, the identification of correlations among
hundred of thousands genes based on a limited number of independent (and
expensive) samples induces an even larger ratio p/n [Arnold et al., 1994]. In
statistical finance, portfolio optimization relies on the need to invest on a large
number p of assets to reduce volatility but at the same time to estimate the
current (rather than past) asset statistics from a relatively small number n of
asset return records [Laloux et al., 2000].

As we shall demonstrate in the next section, the fact that in these prob-
lems n is not much larger than p annihilates most of the results from standard
asymptotic statistics that assume n alone is large [Vaart, 2000]. As a rule of
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8 CHAPTER 1. INTRODUCTION

thumb, by “much larger ” we mean here that n must be at least 100 times larger
than p for standard asymptotic statistics to be of practical convenience (see our
argument in Section 1.1.2). Many algorithms in statistics, signal processing, and
machine learning are precisely derived from this n � p assumption that is no
longer appropriate today. A major objective of this monograph is to cast some
light on the resulting biases and problems incurred and to provide a systematic
random matrix framework to improve these algorithms.

Possibly more importantly, we will see along this monograph that (small p)
small-dimensional intuitions which are at the core of many machine learning al-
gorithms (starting with spectral clustering [Ng et al., 2002, Luxburg, 2007]) may
strikingly fail when applied in a simultaneously large n, p setting. A compelling
example lies in the notion of “distance” between vectors. Most classification
methods in machine learning are rooted in the observation that random data
vectors arising from a mixture distribution (say Gaussian) gather in “groups”
of close-by vectors in Euclidean norm. When dealing with large dimensional
data, however, concentration phenomena arise that make Euclidean distances
useless, if not counterproductive: vectors from the same mixture class may be
further away in Euclidean distance than vectors arising from different classes:
while classification may still be doable, it works in a rather different way from
our small-dimensional intuition. The monograph intends to prepare the reader
for the multiple traps caused by this “curse of dimensionality”.

1.1.2 Sample covariance matrices in the large n, p regime

Let us consider the following illustrating example which shows a first elementary,
yet counterintuitive, result: for simultaneously large n, p, the sample covariance
matrix Ĉ ∈ Rp×p based on n samples xi ∼ N (0,C) is an entry-wise consistent
estimator of the population covariance C ∈ Rp×p (i.e., ‖Ĉ − C‖∞ → 0 as
p, n → ∞ for ‖A‖∞ ≡ maxij |Aij |) while overall being an extremely poor
estimator in a (more practical) operator norm sense (i.e., ‖Ĉ − C‖ 6→ 0 with
here ‖ · ‖ the operator norm). Matrix norms are in particular not equivalent in
the large n, p scenario.

Let us detail this claim, in the simplest case where C = Ip. Consider a
data set X = [x1, . . . ,xn] ∈ Rp×n of n independent and identically distributed
(i.i.d.) observations from a p-dimensional standard Gaussian distribution, i.e.,
xi ∼ N (0, Ip) for i ∈ {1, . . . , n}. We wish to estimate the population covariance
matrix C = Ip from the n available samples. The maximum likelihood estimator
in this zero-mean Gaussian setting is the sample covariance matrix Ĉ defined
by

Ĉ =
1

n

n∑
i=1

xix
T
i =

1

n
XXT. (1.1)

By the strong law of large numbers, for fixed p, Ĉ→ Ip almost surely as n→∞,
so that ‖Ĉ − Ip‖

a.s.−−→ 0 holds for any standard matrix norm and in particular
for the operator norm.
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One must be more careful when dealing with the case n, p → ∞ with ratio
p/n → c ∈ (0,∞) (or, from a practical standpoint, n is not much larger than
p). First, note that the entry-wise convergence still holds since, invoking the
law of large numbers again

[Ĉ]ij =
1

n

n∑
l=1

[X]il[X]jl
a.s.−−→

{
1, i = j
0, i 6= j.

Besides, by a concentration inequality argument, it can even be shown that

max
1≤i,j≤p

∣∣∣[Ĉ− Ip]ij

∣∣∣ a.s.−−→ 0

which holds as long as p is no larger than a polynomial function of n, and thus

‖Ĉ− Ip‖∞
a.s.−−→ 0.

Consider now the case p > n. Since Ĉ = 1
n

∑n
i=1 xix

T
i is the sum of n rank-

one matrices, the rank of Ĉ is at most equal to n and thus, being a p×p matrix
with p > n, the sample covariance matrix Ĉ must be a singular matrix having
at least p− n > 0 null eigenvalues. As a consequence,

‖Ĉ− Ip‖ 6→ 0

for ‖·‖ the matrix operator (or spectral) norm. This last result actually extends
to the general case where p/n → c ∈ (0,∞). As such, matrix norms cannot be
considered equivalent in the regime where p is not negligible compared to n.
This follows from the fact that the (matrix norm) equivalence factors depend
on the matrix size p; here for instance, we have that for symmetric matrices
A ∈ Rp×p, ‖A‖∞ ≤ ‖A‖ ≤ p‖A‖∞.

Unfortunately, in practice, the (non-converging) operator norm is of more
practical interest than the (converging) infinity norm.

Remark 1.1 (On the importance of operator norm). For practical purposes,
this “loss” of norm equivalence for large p raises the question of the relevant
matrix norm to consider for a given application. For the purpose of the present
monograph, and for most applications in machine learning, the operator (or
spectral) norm is the most relevant. First, the operator norm is the matrix
norm induced by the Euclidean norm of vectors. Thus, the study of regression
vectors or label/score vectors in classification is naturally attached to the spec-
tral study of matrices. Besides, we will often be interested in the asymptotic
equivalence of families of large dimensional matrices. If ‖Ap − Bp‖ → 0 for
matrix sequences {Ap} and {Bp}, indexed by their dimension p, then according
to Weyl’s inequality (see for example Lemma 2.10 in Section 2.2.1),

max
i
|λi(Ap)− λi(Bp)| → 0

for λ1(A) ≥ λ2(A) ≥ . . . the eigenvalues of A in a decreasing order. Besides,
for ui(Ap) an eigenvector of Ap associated with an isolated eigenvalue λi(Ap)
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(i.e., such that min{|λi+1(Ap) − λi(Ap)|, |λi(Ap) − λi−1(Ap)|} > ε for some
ε > 0 uniformly on p),

‖ui(Ap)− ui(Bp)‖ → 0.

These results ensure that, as far as spectral properties are concerned, Ap can be
studied equivalently through Bp. We will often use this argument to investigate
intractable random matrices Ap by means of a more tractable “proxy” Bp.

The pitfall that consists in assuming that Ĉ is a valid estimator of C since
‖Ĉ −C‖∞

a.s.−−→ 0 may thus have deleterious practical consequences when n is
not significantly larger than p.

Resuming on our norm convergence discussion, it is now natural to ask
whether Ĉ, which badly estimates C, has a controlled asymptotic behavior.
There precisely lay the first theoretical interests of random matrix theory. While
Ĉ itself does not converge in any useful way, its eigenvalue distribution does
exhibit a traceable limiting behavior [Marcenko and Pastur, 1967, Silverstein
and Bai, 1995, Bai and Silverstein, 2010]. The seminal result in this direc-
tion, due to Marc̆enko and Pastur, states that, for C = Ip, as n, p → ∞
with p/n → c ∈ (0,∞), with probability one, the random discrete eigen-
value/empirical spectral distribution

µp ≡
1

p

p∑
i=1

δλi(Ĉ)

converges in law to a non-random smooth limit, today referred to as the “Marc̆enko-
Pastur law” [Marcenko and Pastur, 1967]

µ(dx) = (1− c−1)+δ0(x) +
1

2πcx

√
(x− E−)+(E+ − x)+ dx (1.2)

where E± = (1±
√
c)2 and (x)+ ≡ max(x, 0).

Figure 1.1 compares the empirical spectral distribution of Ĉ to the limiting
Marc̆enko-Pastur law given in (1.2), for p = 500 and n = 50 000.

The elementary Marc̆enko-Pastur result is already quite instructive and in-
sightful.

Remark 1.2 (When is one under the random matrix regime?). Equation (1.2)
reveals that the eigenvalues of Ĉ, instead of concentrating at x = 1 as a large-n
alone analysis would suggest, are spread from (1−

√
c)2 to (1 +

√
c)2. As such,

the eigenvalues span on a range

(1 +
√
c)2 − (1−

√
c)2 = 4

√
c.

This is a slow decaying behavior with respect to c = lim p/n. In particular,
for n = 100p, in which case one would expect a sufficiently large number of
samples for Ĉ to properly estimate C = Ip, one has 4

√
c = 0.4 which is a large

spread around the mean (and true) eigenvalue 1. This is visually confirmed by
Figure 1.1 for p = 500 and n = 50 000, where the histogram of the eigenvalues
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Figure 1.1: Histogram of the eigenvalues of Ĉ versus the Marc̆enko-Pastur law,
for X having standard Gaussian entries, p = 500 and n = 50 000. Link to code:
Matlab and Python.

is nowhere near concentrated at x = 1. Therefore, random matrix results will
be much more accurate than classical asymptotic statistics even when n ∼ 100p.
As a telling example, estimating the covariance matrix of each digit from the
popular MNIST dataset [LeCun et al., 1998], made of no more than 60 000
training samples (and thus about n = 6 000 samples per digit) of size p = 784,
is likely a hazardous undertaking.

Remark 1.3 (On universality). Although introduced here in the context of
Gaussian distribution for xi, the Marc̆enko-Pastur law applies to much more
general cases. Indeed, the result remains valid so long that the xi’s have inde-
pendent normalized entries of zero mean and unit variance (and even beyond this
setting, see [El Karoui, 2009, Louart and Couillet, 2018]). Similar to the law of
large numbers in standard asymptotic statistics, this universality phenomenon
commonly arises in random matrix theory and large dimensional statistics. We
will exploit this phenomenon in the monograph to justify the wide applicability
of the presented results, even to real datasets. See Chapter 8 for more detail.

1.1.3 Kernel matrices of large dimensional data
Another less known but equally important example of the curse of dimensional-
ity in machine learning involves the loss of relevance of (the notion of) Euclidean
distance between large dimensional data vectors. To be more precise, we will see
in the sequel that, in an asymptotically non-trivial classification setting (that is,
ensuring that asymptotic classification is neither trivially easy nor impossible),
large and numerous data vectors x1, . . . ,xn ∈ Rp extracted from a few-class (say

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/2.2/html/MP_and_SC.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/2.2/MP_and_SC.ipynb
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two-class) mixture model tend to be asymptotically at equal (Euclidean) dis-
tance from one another, irrespective of their corresponding class. Roughly said,
in this non-trivial setting and under some reasonable statistical assumptions on
the xi’s, we have

max
1≤i 6=j≤n

{
1

p
‖xi − xj‖2 − τ

}
→ 0 (1.3)

for some constant τ > 0 as n, p → ∞, independently of the classes (same or
different) of xi and xj (here the normalization by p is used for compliance
with the notations in the remainder of this monograph and has no particular
importance).

This asymptotic behavior is extremely counterintuitive and conveys the idea
that classification by standard methods ought not to be doable in this large
dimensional regime. Indeed, in the conventional small-dimensional intuition
that forged many of the leading machine learning algorithms of everyday use
(such as spectral clustering [Ng et al., 2002, Luxburg, 2007]), two data points
are assigned to the same class if they are “close” in Euclidean distance. Here we
claim that, when p is large, data pairs are neither close nor far from each other,
regardless of their belonging to the same class or not. Despite this troubling
loss of individual discriminative power between data pairs, we subsequently show
that, thanks to a collective behavior of all data belonging to the same (few and
thus large) classes, asymptotic data classification or clustering is still achievable.
Better, we shall see that, while many conventional methods devised from small
dimensional intuitions do fail in this large dimensional regime, some popular
approaches (such as the Ng-Jordan-Weiss spectral clustering method [Ng et al.,
2002] or the PageRank semi-supervised learning approach [Avrachenkov et al.,
2012]) still function. But the core reasons for their functioning are strikingly
different from the reasons of their initial designs, and they often operate far
from optimally.

The non-trivial classification regime

To get a clear picture of the source of Equation (1.3), we first need to clarify what
we refer to as the “asymptotically non-trivial” classification setting. Consider the
simplest scenario of a binary Gaussian mixture classification: given a training
set x1, . . . ,xn ∈ Rp of n samples independently drawn from the two-class (C1
and C2) Gaussian mixture

C1 : x ∼ N (µ, Ip), C2 : x ∼ N (−µ, Ip + E) (1.4)

each drawn with probability 1/2, for some deterministic µ ∈ Rp and symmetric
E ∈ Rp×p, both possibly depending on p. In the ideal case where µ and E are
perfectly known, one can devise a (decision optimal) Neyman-Pearson test. For
an unknown x, genuinely belonging to C1, the Neyman-Pearson test to decide
on the class of x reads

(x + µ)T(Ip + E)−1(x + µ)− (x− µ)T(x− µ)
C1
≷
C2
− log det(Ip + E). (1.5)
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Writing x = µ+ z for z ∼ N (0, Ip), the above test is equivalent to

T (x) ≡4µT(Ip + E)−1µ+ 4µT(Ip + E)−1z + zT
(
(Ip + E)−1 − Ip

)
z

+ log det(Ip + E)
C1
≷
C2

0. (1.6)

Since Uz for U ∈ Rp×p an eigenvector basis of (Ip + E)−1 (and thus of (Ip +
E)−1 − Ip) follows the same distribution as z, the random variable T (x) can
be written as the sum of p independent random variables. Further assuming
that ‖µ‖ = O(1) with respect to p, by Lyapunov’s central limit theorem (e.g.,
[Billingsley, 2012, Theorem 27.3]) and the fact that Var[zTAz] = 2 tr(A2) for
symmetric A ∈ Rp×p and Gaussian z, we have, as p→∞,

V
−1/2
T (T (x)− T̄ )

d−→ N (0, 1),

where

T̄ ≡ 4µT(Ip + E)−1µ+ tr(Ip + E)−1 − p+ log det(Ip + E),

VT ≡ 16µT(Ip + E)−2µ+ 2 tr
(
(Ip + E)−1 − Ip

)2
.

As a consequence, the classification of x ∈ C1 is asymptotically non-trivial (i.e.,
the classification error neither goes to 0 nor 1 as p → ∞) if and only if T̄ is of
the same order as

√
VT . Considering the (worst case) scenario where E = 0,

we must have ‖µ‖ ≥ O(1) with respect to p (indeed, if instead ‖µ‖ = o(1), the
classification of x is asymptotically impossible).

Under the constraint ‖µ‖ = O(1), we move on to consider the case E 6= 0
with spectral norm ‖E‖ = o(1). By a Taylor expansion of both (Ip + E)−1 and
log det(Ip + E) around Ip we obtain

T̄ = 4‖µ‖2 − 1

2
tr(E2) + o(1);

VT = 16‖µ‖2 + 2 tr(E2) + o(1),

which demands tr(E2) to be of order O(1) (same as ‖µ‖) so as to have dis-
criminative power. Since tr(E2) ≤ p‖E‖2, with equality if and only if E is
proportional to the identity, i.e., E = εIp, one must have ‖E‖ ≥ O(p−1/2).
Also, since O(1) = tr(E2) ≤ (tr E)2, we must have | tr E| ≥ O(1). This allows
us to conclude on the following non-trivial classification conditions:

‖µ‖ ≥ O(1), ‖E‖ ≥ O(p−1/2), | tr(E)| ≥ O(1), tr(E2) ≥ O(1). (1.7)

These are theminimal conditions for classification in the case of perfectly known
means and covariances in the following sense: (i) if none of the inequalities hold
(i.e., if the means and covariances from both classes are too close), asymptotic
classification must fail, and (ii) if at least one of the inequalities is not tight (say
if ‖µ‖ ≥ O(

√
p)), asymptotic classification becomes trivial.1

1It should be noted here that, unlike in computer science, we will stick in this manuscript
with the notation O(·) indifferently from the complexity notations Ω(·), O(·) and Θ(·). The
exact meaning of O(·) will be clear in context. For instance, under computer science notations,
(1.7) would be ‖µ‖ ≥ Θ(1), ‖E‖ ≥ Θ(p−1/2), | tr(E)| ≥ Θ(1), and tr(E2) ≥ Θ(1).
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We shall subsequently see that (1.7) precisely induces the asymptotic loss
of distance discrimination raised in (1.3) but that standard spectral clustering
methods based on n ∼ p data remain valid.

Asymptotic loss of pairwise distance discrimination

Under the equality case for the conditions in (1.7), consider the (normalized)
Euclidean distance between two distinct data vectors xi ∈ Ca,xj ∈ Cb, i 6= j
given by

1

p
‖xi − xj‖2 =

{ 1
p‖zi − zj‖2 +Ap−1, for a = b = 2
1
p‖zi − zj‖2 +Bp−1, for a = 1, b = 2,

(1.8)

where

A = zTi Ezi + zTj Ezj − 2zTi Ezj

B = zTj (E + E2/4)zj − zTi Ezj + 4‖µ‖2 + 4µT(zi − zj) + o(1)

are both of order O(1) (and thus both Ap−1 and Bp−1 are of order O(p−1))
while the leading term 1

p‖zi − zj‖2 of (1.8) is of order O(1). As such,

max
1≤i 6=j≤n

{
1

p
‖zi − zj‖2 − 2

}
→ 0

almost surely as n, p→∞ (this follows by exploiting the fact that ‖zi − zj‖2 is
a chi-square random variable with p degrees of freedom). As a consequence, as
previously claimed in (1.3),

max
1≤i6=j≤n

{
1

p
‖xi − xj‖2 − τ

}
→ 0

for τ = 2 here. Besides, on closer inspection of (1.8), beyond this common value
τ of order O(1), the discriminative class information in means 4‖µ‖2/p and in
covariances zTj (E+E2/4)zj/p ' tr(E+E2/4)/p are both of order O(p−1) while,
by the central limit theorem, ‖zi − zj‖2/p = 2 + O(p−1/2). The class informa-
tion is thus largely overtaken by the random fluctuations. As a consequence,
asymptotically, the pairwise distance ‖xi − xj‖2/p contains no exploitable in-
formation (about µ or E) to distinguish if xi and xj vectors belong to the same
or different classes.

To visually confirm this joint convergence of the data distances, in Figure 1.2
we display the content of the Gaussian (heat) kernel matrix K ∈ Rn×n with
[K]ij = exp

(
−‖xi − xj‖2/(2p)

)
and the associated second dominant eigenvector

v2 for a two-class Gaussian mixture x ∼ N (±µ, Ip) with µ = [2; 0p−1]. For a
constant n = 500, we take p = 5 in Figure 1.2a and p = 250 in Figure 1.2b.

While the “block-structure” in the case of p = 5 of Figure 1.2a does agree
with the small-dimensional intuition: data vectors from the same class are
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v2 =

[ ]

K =




(a) p = 5

v2 =

[ ]

K =




(b) p = 250

Figure 1.2: Gaussian kernel matrices K and the second top eigenvectors v2 for
small and large dimensional data X = [x1, . . . ,xn] ∈ Rp×n with x1, . . . ,xn/2 ∈
C1 and xn/2+1, . . . ,xn ∈ C2 for n = 5 000. Link to code: Matlab and Python.

“closer” to one another, corresponding to diagonal blocks with larger values
(since exp(−x/2) decreases with x) than in non-diagonal blocks, this intuition
collapses when large dimensional data vectors are considered. Indeed, in the
large data setting of Figure 1.2b, all entries (except obviously on the diago-
nal) of K have approximately the same value, that we now know from (1.3) is
exp(−1).

This is no longer surprising to us. However, what remains surprising in
Figure 1.2 at this stage of our analysis is that the eigenvector v2 of K seems
not affected by this (asymptotic) loss of class-wise discrimination of individual
distances. And spectral clustering seems to work equally well for p = 5 and for
p = 250, despite the radical and intuitively destructive change in the behavior
of K for p = 250.

Explaining kernel methods with random matrix theory

The fundamental reason behind this surprising behavior lies in the accumulated
effect of the n/2 small “hidden” informative terms ‖µ‖2, tr E and tr(E2) in
each class, which collectively “steer” the several top eigenvectors of K. More
explicitly, we shall see in the course of this monograph that the Gaussian kernel
matrix K can be asymptotically expanded as

K = exp(−1)

(
1n1T

n +
1

p
ZTZ

)
+ f(µ,E) · 1

p
jjT + ∗+ o‖·‖(1) (1.9)

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/8/html/RMT_universality.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/8/RMT_universality.html
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where Z = [z1, . . . , zn] ∈ Rp×n is a Gaussian noise matrix, f(µ,E) = O(1)
and j = [1n/2; − 1n/2] is the class-information “label” vector (as in the set-
ting of Figure 1.2). Here ‘∗’ symbolizes extra terms of marginal importance to
the present discussion and o‖·‖(1) represents terms of asymptotically vanishing
operator norm as n, p→∞. The important remark to be made here is that

(i) under this description, [K]ij = exp(−1)(1 + zTi zj/p)± f(µ,E)/p+ ∗ with
f(µ,E)/p � zTi zj/p = O(p−1/2); this is consistent with our previous
discussion: the statistical information is entry-wise dominated by noise;

(ii) from a spectral viewpoint, ‖ZTZ/p‖ = O(1), as per the Marc̆enko-Pastur
theorem [Marcenko and Pastur, 1967] discussed in Section 1.1.2 and vi-
sually confirmed in Figure 1.1, while ‖f(µ,E) · jjT/p‖ = O(1): thus,
spectrum-wise, the information stands on even ground with noise.

The mathematical magic at play here lies in f(µ,E) · jjT/p having entries of
order O(p−1) while being a low rank (here unit rank) matrix: all its “energy”
concentrates in a single non-zero eigenvalue. As for ZTZ/p, with larger O(p−1/2)
amplitude entries, it is composed of “essentially independent” zero mean random
variables and tends to be of full rank and spread its energy over its p eigenvalues.
Spectrum-wise, both f(µ,E) · jjT/p and ZTZ/p meet on even ground under the
non-trivial classification setting of (1.7).

We shall see in Section 4 that things are actually not as clear-cut and in
particular that not all choices of kernel functions can achieve the same non-
trivial classification rates. In particular, the popular Gaussian (RBF) kernel
will be shown to be largely sub-optimal in this respect.

Do real data follow small or large dimensional intuitions?

A first glimpse into this riddle, fundamental for the practical design of machine
learning algorithms, is provided here in Figure 1.3. Similar to Figure 1.2 for
synthetic Gaussian data, Figure 1.3 depicts the content of kernel matrices built
from the MNIST [LeCun et al., 1998] and Fashion-MNIST data [Xiao et al.,
2017], with p = 28×28 = 784 and n = 5 000 in both cases. In Figure 1.4, instead
of raw data, we display the features extracted from popular deep neural networks
such as VGG-16 [Simonyan and Zisserman, 2014] of the more complex CIFAR-
10 images (with p = 1024), as well as the so-called “word-embedding” features
from the popular word2vec method [Mikolov et al., 2013] of the GoogleNews
data (with p = 300). In all aforementioned cases, we observe a typical large
dimensional behavior (that is similar to Figure 1.2b for Gaussian data), not only
on raw data but also on efficient features from modern and elaborate machine
learning algorithms; even more strikingly, this behavior is consistently observed
both for image and natural language data, despite their being of a fundamentally
different nature. Section 1.2.4, at the end of this introductory chapter, provides
first clues which justify why this seemingly unexpected observation (recall again
that, in the classical motivation behind spectral clustering methods [Ng et al.,
2002], we would rather expect a behavior typical of Figure 1.2a) should in fact
not be a surprise.
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(b) Fashion-MNIST data

Figure 1.3: Gaussian kernel matrices K and the second top eigenvectors v2 for
MNIST [LeCun et al., 1998] (class 8 versus 9) and Fashion-MNIST [Xiao et al.,
2017] data (class 5 versus 7), with x1, . . . ,xn/2 ∈ C1 and xn/2+1, . . . ,xn ∈ C2
for n = 5 000. Link to code: Matlab and Python.

1.1.4 Summarizing
In this section we discussed two simple, yet counterintuitive examples of common
pitfalls in learning from large dimensional data.

In the sample covariance matrix example of Section 1.1.2, we made the
important remark of the loss of equivalence between matrix norms in the random
matrix regime where the data (or feature) dimension p and their number n are
both large and comparable, which is at the source of many seemingly striking
empirical observations. We in particular insist that, for matrices An,Bn ∈ Rn×n
of large sizes

∀i, j, [An −Bn]ij → 0 6⇒ ‖An −Bn‖ → 0 (1.10)

in operator norm.
We also realized, from a basic reading of the Marc̆enko-Pastur theorem,

that the random matrix regime arises more often than one may think: while
n/p ∼ 100 may seem large enough a ratio for classical asymptotic statistics to
be accurate, random matrix theory is in general a far more appropriate tool
(with as much as 20% gain in precision for the estimation of the eigenvalues of
sample covariances).

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/8/html/RMT_universality.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/8/RMT_universality.html
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(a) VGG-16 features of CIFAR-10
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(b) Word2vec features of GoogleNews

Figure 1.4: Gaussian kernel matrices K and the second dominant eigenvectors
v2 for (left) VGG-16 [Simonyan and Zisserman, 2014] features of CIFAR-10 data
(“airplane” versus “bird”) and (right) word2vec [Mikolov et al., 2013] features of
GoogleNews-vectors data (“sports” versus “sales”), with x1, . . . ,xn/2 ∈ C1 and
xn/2+1, . . . ,xn ∈ C2. Link to code: Matlab and Python

In Section 1.1.3, we gave a concrete machine learning application example
of the message (1.10) above. We saw that, in the practically most relevant
scenario of non-trivial (not too easy, not too hard) large data classification tasks,
the Euclidean distance between any two data vectors “concentrates” around a
constant (1.3), regardless of their respective classes. Yet, since again entry-
wise convergence [An]ij → τ does not imply operator norm convergence ‖An−
τ1n1T

n‖ → 0, we understood that, thanks to a collective effect of the small but
similarly “oriented” fluctuations in all the entries, spectral clustering remains
valid for large dimensional problems.

Possibly most importantly, we discovered that the curse of dimensionality
induced by the counterintuitive behavior of large dimensional vectors turns into
an asset for mathematical analysis. In the sample covariance matrix example,
we observed that a random-matrix version of the laws of large numbers arises
in the convergence of the eigenvalue distributions of large sample covariance
matrices to a deterministic limiting measure. As a matter of fact, as we shall
see throughout the monograph, the very fact that both p and n are large ensures
a generally fast convergence of most quantities of practical interest for machine
learning: by exploiting np = O(n2) rather than n degrees of freedom, central
limit theorems may converge at O(1/n) rate (instead of the classical O(1/

√
n)).

This fast convergence rate further induces another important phenomenon,
referred to as the universality, which ensures the robustness of the random

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/8/html/RMT_universality.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/8/RMT_universality.ipynb
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matrix asymptotics to a vast range of distributions. Essentially, as we shall
see in more detail later in this monograph, first- and second-order statistics are
often sufficient to describe most asymptotic behaviors, even of complicated data
models and methods. This is a first (yet not the most convincing) justification of
the repeatedly observed – but quite unexpected – good match between random
matrix predictions and experiments on real datasets.

In a nutshell, the fundamentally counter-intuitive yet mathematically ad-
dressable changes in behavior of large dimensional data when compared to small
dimensional data have two major consequences to statistics and machine learn-
ing: (i) most algorithms, originally developed under a small-dimensional intu-
ition, are likely to fail (as we shall discover in this monograph, many of them do)
or at least to perform inefficiently, yet (ii) by benefiting from the extra degrees
of freedom offered by large data (in the dimension p), random matrix theory is
apt to analyze and improve these methods, but most importantly generates a
whole new paradigm for large dimensional learning.

1.2 Random matrix theory as an answer

1.2.1 Which theory and why?

A point of history

Random matrix theory originates from the work of John Wishart [Wishart,
1928] on the study of the eigenvalues of the matrix XXT (now referred to as
a Wishart matrix) for X ∈ Rp×n with [X]ij ∼ N (0, 1). Wishart managed to
determine a closed-form expression for the joint eigenvalue distribution of XXT

for every pair of p, n. Few progress however followed, as matrices with non-
Gaussian entries are hardly amenable to similar analysis and, even if they were,
the actual study of more elaborate functionals of XXT is at best cumbersome
and often simply intractable.

The works of the physicist Eugene Wigner [Wigner, 1955] gave a new impulse
to the theory. Interested in the eigenvalues of symmetric matrices X ∈ Rn×n
with independent Bernoulli entries (particle spins in his application context),
Wigner opted for an asymptotic analysis of the eigenvalue distribution, thereby
initiating the important and much richer branch of large dimensional random
matrix theory. Despite this important inspiration, Wigner exploited standard
asymptotic statistics tools (the method of moments) to prove that the discrete
distribution of the eigenvalues of X has a continuous semicircle looking density
in the limit (the now popular semicircular law). This approach was particularly
convenient as the limiting law is simple and could be visually anticipated (which
is not the case of the next-to-come Marc̆enko-Pastur limiting distribution of
Wishart matrices).

Only until 1967 with the tour-de-force of Marcenko and Pastur [1967] did
random matrix theory take a new dimension. Marc̆enko and Pastur deter-
mined the limiting spectral distribution of the sample covariance matrix model
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XXT of Wishart but under relaxed conditions: [X]ij are independent entries
with zero mean and unit variance, and additional moment assumptions all re-
laxed in subsequent works. The independence (or weak dependence) property
is key to this method. The proof exploits the powerful Stieltjes transform
1
p tr( 1

nXXT − zIp)
−1 =

∫
(λ − z)−1µp(dt) of the empirical spectral distribu-

tion µp ≡ 1
p

∑p
i=1 δλi( 1

nXXT) of 1
nXXT, a tool borrowed from operator the-

ory in Hilbert spaces [Akhiezer and Glazman, 2013], rather than the moments
1
p tr( 1

nXXT)k (which may not converge since E[X`
ij ] needs not be finite for

` > 2).
The technical approach devised by Marc̆enko and Pastur was then largely

embraced at the turn of the 21st century by Bai and Silverstein who, in a series
of significant breakthroughs (the most noticeable of which are [Silverstein and
Bai, 1995, Bai and Silverstein, 1998]), extended [Marcenko and Pastur, 1967] to
an exhaustive study of sample covariance matrices.

In parallel, another approach to limiting spectral analysis of large random
matrices emerged as an application example of the free probability theory de-
veloped by Voiculescu et al. [1992]. Free probability was born as a theory to
study random variables in non-commutative algebras, such as the algebra of
matrices. Rather than relying on independence assumptions as for the afore-
mentioned Stieltjes transform method, free probability theory relies on a notion
of asymptotic freeness. In essence, random matrices are asymptotically free if
their eigenvector distribution are sufficiently isotropic with respect to each other;
for instance, independent Gaussian matrices (matrices with independent Gaus-
sian entries) are free, independent unitary matrices with isotropic eigenvector
distributions are free, a deterministic matrix is free with respect to a Gaussian
matrix, etc. [Mingo and Speicher, 2017].

Both free probability and the Stieltjes transform approaches have long lived
hand-in-hand, and are essentially capable of proving similar results under vari-
ous assumptions. A classical example, of great importance to this monograph,
is that of spiked models (i.e., finite-rank deformation of random matrices, such
as the nonzero mean sample covariance (X + µ1T

n)(X + µ1T
n)T or the rank-one

perturbed identity covariance (Ip + `uuT)
1
2 XXT(Ip + `uuT)

1
2 for X with i.i.d.

zero-mean entries) made popular by two key articles [Baik and Silverstein, 2006]
and [Benaych-Georges and Nadakuditi, 2012], respectively based on a Stieltjes
transform and a free probability approach.

These tools are largely sufficient to cover most of the basic statistical prob-
lems in random matrix theory. In particular, the often called global regime
of random matrices: their limiting eigenvalue spectrum, the behavior of linear
statistics of their eigenvalues or eigenvectors, the position of the outlying eigen-
values in spiked models, etc., are all accessible by either method. However, this
is often not the case of the local regime: the limiting distribution of a specific
eigenvalue (notably the largest and smallest, of practical interest) for which
more efforts are in general needed. There, researchers have rather resorted to a
finite-dimensional analysis of the joint eigenvalue distribution for the Gaussian
case (in the spirit of Wishart), and carefully taken the limits of the distribu-
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tion, exploiting powerful tools such as orthogonal polynomial theory [Johnstone,
2001]. We will not further discuss these approaches in the monograph, which is
rather specific and not of direct use to our applications.

Resolvents, Gaussian tools, and concentration of measure theory

As we shall see throughout this monograph, realistic data and feature models
necessarily contain rich statistical structures and information patterns (to be
extracted by the machine learning algorithms). Typical examples include local
structures (captured by convolutional filters) in image data, as well as short-
and long-term dependences in time series or natural language data. In random
matrix terms, this involves dealing with very structured and heterogeneous ran-
dom matrix models. Although it ebbed and flowed in the past decade, the
free probability approach in general requires more effort and more advanced
techniques to prove the key asymptotic freeness, if possible at all. For this rea-
son (and also because most research and results are available in the Stieltjes
transform-related literature), our focus in this monograph will be on the range
of methods surrounding the Stieltjes transform approach.

More exactly, the central object of study in this monograph is the so-called
resolvent of the (almost always symmetric, or Hermitian in the complex case)
random matrix X ∈ Rn×n under investigation, that we shall often denote QX(z)
or simply Q(z), and that is defined, for all z ∈ C not in the eigenspectrum of
X (i.e., not coinciding with an eigenvalue of X), by

QX(z) ≡ (X− zIn)
−1
. (1.11)

The resolvent is a rich mathematical object that gives access to

• the eigenvalue distribution µX ≡ 1
n

∑n
i=1 δλi(X) of X through the (inverse)

Stieltjes transform relation (for all a, b /∈ {λ1(X), . . . , λn(X)})∫ b

a

µX(dλ) = lim
ε↓0

∫ b

a

1

π
=[mX(x+ ıε)] dx,

with

mX(z) ≡
∫
µX(dλ)

λ− z
=

1

n

n∑
i=1

1

λi(X)− z
=

1

n
tr QX(z);

• functionals of these eigenvalues 1
n

∑n
i=1 f(λi(X)) through Cauchy’s inte-

gral identity (Theorem 2.2)

1

n

n∑
i=1

f(λi(X)) = − 1

2πın

∮
Γ

f(z) tr QX(z) dz,

for Γ ⊂ C a positively oriented contour in the complex plane surrounding
all the λi(X)’s and f(z) complex analytic in a neighborhood of the “inside”
of Γ;



22 CHAPTER 1. INTRODUCTION

• the eigenvectors and subspaces of X, again through Cauchy’s integral re-
lation

ui(X)ui(X)T = − 1

2πı

∮
Γλi(X)

QX(z) dz,

for (λi(X),ui(X)) an eigenpair of X and Γλi(X) a positively oriented con-
tour surrounding only λi(X).

As such, the resolvent plays a key role in the analysis of spectral methods such
as (kernel) spectral clustering or graph-based community detection, in which
case the top eigenvectors of some underlying matrix are exploited.

In addition, the resolvent is a fundamental object that frequently appears in
the solutions to linear regression problems (for machine learning applications,
in least squares support vector machines, random features and kernel ridge
regressions, echo state neural networks, etc.), or to random walk and graph-
based semi-supervised learning methods. They will also be shown to appear
naturally in not-immediately-related machine learning problems, such as in large
dimensional nonlinear regression (logistic or robust M-regression).

The core of the random matrix approach devised in this monograph consists
in determining, for various statistical models of random matrices X a determin-
istic equivalent Q̄(z) for Q(z) = QX(z), that is a deterministic matrix Q̄(z)
such that

u(Q(z)− Q̄(z))
a.s.−−→ 0, or u(E[Q(z)]− Q̄(z))→ 0

for all 1-Lipschitz linear mapping u : Rn×n → R. Of particular interest are the
functions u(X) = 1

n tr(AX) for ‖A‖ ≤ 1, and u(X) = aTXb for ‖a‖, ‖b‖ ≤ 1.2
As an example, in the setting of the Marc̆enko-Pastur law where the random

matrix of interest is 1
nXXT with X ∈ Rp×n having i.i.d. zero mean and unit

variance entries, the resolvent

Q(z) =

(
1

n
XXT − zIp

)−1

admits

Q̄(z) = mµ(z)Ip, mµ(z) =

∫
µ(dλ)

λ− z
, for µ defined in (1.2),

as a deterministic equivalent. Thus, in particular, 1
p tr Q(z)−mµ(z)

a.s.−−→ 0 and
aTQ(z)b−mµ(z)aTb

a.s.−−→ 0 for deterministic a,b ∈ Rp of bounded Euclidean
norm.

Consequently, the resolvent (Stieltjes transform) approach simultaneously
involves notions from three distinct mathematical areas:

2Here A and a,b must be understood as “sequences” of deterministic matrices (or vectors)
of growing size but with controlled norm; in particular, A and a,b, being deterministic, cannot
depend on X (in which case the convergence results may fail: take for instance a = b some
eigenvector of X to be convinced).
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• linear algebra, and particularly the exploitation of inverse matrix lemmas,
the Schur complement, interlacing and low rank perturbation identities
[Horn and Johnson, 2012];

• complex analysis (the resolvent Q(z) is a complex analytic matrix-valued
function) and particularly the theory of analytic functions, contour inte-
grals and residue calculus [Stein and Shakarchi, 2003];

• probability theory, and most specifically notions of convergence, central
limit theory, the method of moments, etc. [Billingsley, 2012]. Depending
on the underlying random matrix assumptions (independence of entries,
Gaussianity, concentration properties), different random matrix-adapted
techniques (among others and variations) will be discussed in this mono-
graph: the Gaussian tools developed by Pastur, relying on Stein’s lemma
and the Nash-Poincaré inequality [Pastur and Shcherbina, 2011], the Bai-
Silverstein inductive method [Bai and Silverstein, 2010], the concentration
of measure framework developed by Ledoux [2005] and applied to random
matrix endeavors successively by El Karoui [2009], Vershynin [2012], and
Louart and Couillet [2018], or the double leave-one-out approach devised
by El Karoui et al. [2013].

The aforementioned tools are in general used together in a perturbation approach
in the sense that they exploit the fact that, by eliminating a row or a column
(say here both row and column i) of a large random matrix X ∈ Rn×n to
obtain X−i ∈ R(n−1)×(n−1), the resolvent Q−i(z) = (X−i − zIn−1)−1 can be
related to the original resolvent Q(z) through both linear algebraic relations
and asymptotically comparable statistical behaviors. For instance, in the case of
symmetric X with i.i.d. (properly normalized) entries, it is not difficult to show
that mX(z) = mX−i(z) +O(n−1).

In this regard, Pastur’s Gaussian method manages, for models of X involving
Gaussianity (e.g., X has Gaussian entries or its entries are functions of Gaus-
sian random variables), to obtain asymptotic relations for EQ(z). Interpolation
methods may then be used to extrapolate the results beyond the Gaussian case.
The Bai-Silverstein inductive method, on the opposite, is not restricted to matri-
ces with Gaussian entries but is restricted to the specific analysis of either trace
forms tr AQ(z) or bilinear forms aTQ(z)b that need be treated individually (it
also suffers to handle exotic forms of dependence within X). The concentra-
tion of measure approach is quite versatile: by merely restricting the matrix
under study to be constituted of concentrated random vectors (so in particular,
Lipschitz maps of standard Gaussian random vectors or of vectors with i.i.d.
entries), it allows one to study simultaneously the fluctuations of all Lipschitz
(or only all linear) functionals of Q(z) under light conditions on X.
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1.2.2 The double asymptotics: turning the curse of di-
mensionality into a dimensionality blessing

Why random matrix theory to study the large n, p regime?

Although we have previously made a point that modern data processing and
learning involve large dimensions (numerous data, large sample sizes, large num-
ber of system parameters) and that large dimensional statistics are a natural
class of mathematical tools to turn to, why should one invest in random ma-
trix theory rather than, say, statistical physics,3 non-asymptotic random matrix
theory,4 or compressive sensing?5 Large dimensional random matrix theory, as
we introduce it in this monograph, has two key distinctive features, making it
simultaneously more powerful and more versatile than these alternative tools:

(i) Unlike non-asymptotic random matrix theory and compressive sensing
methods which mostly aim at bounding key quantities (from a rather
qualitative standpoint), large dimensional random matrix theory is able
to provide precise and quantitative (asymptotically exact) approximations
for a host of quantities, defined as functionals of random matrices. As a
matter of fact, non-asymptotic random matrix theory is more flexible in its
not constraining the system dimensions (p, n) and latent variables (data
statistics, model hyperparameters) to increase at a controlled rate. Large
dimensional random matrix theory, on the opposite, imposes a controlled
growth on the dimensions and consequently on the model statistics to en-
force non-trivial limiting behavior. The ensuing drawback of this allowed
flexibility is that only qualitative bounds can be obtained on the system
behavior, which at best provides “rules of thumbs” and order of magni-
tudes on the performance of given algorithms. Large dimensional random
matrix theory, by providing exact asymptotics, allows one to finely track
the system behavior and opens the possibility to improve its (also fully
traced) performance.

3Statistical physics and statistical mechanics are powerful tools to map large dimensional
data problems into physics-inspired problems of “interacting particles” [Mézard and Monta-
nari, 2009]. In the early 2000’s, statistical physics has brought inspiring ideas and powerful
(but unfortunately often unreliable, since non-rigorous) tools for the analysis of wireless com-
munication and information-theoretic problems, before being caught up by more solid and
versatile mathematical techniques. Today, statistical physics has an edge on the study of
sparse (graph-based) machine learning problems for which random matrix theory still strug-
gles to offer a sound theory.

4The recent field of non-asymptotic random matrix theory is based on concentration in-
equality methods and aims, as such, to provide bounds rather than exact (deterministic)
asymptotics on various random matrix quantities [Vershynin, 2018]. This set of concentration
inequalities should not to be confused with the concentration of measure theory [Ledoux,
2005]: concentration inequalities form a restricted subset of the theory by proving statistical
bounds on specific quantities.

5Compressive sensing revolves around the assumption that large (p) dimensional data often
arise from a manifold in Rp of much lower intrinsic dimension: under this assumption, the
curse of dimensionality (when p ∼ n or even p � n) vanishes if one manages to retrieve the
(often unknown) low-dimensional manifold. As an aftermath of the seminal work by Candes
and Tao [2005], compressive sensing was possibly the first major breakthrough in the modern
field of large dimensional statistical machine learning.
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(ii) Modern advances in large dimensional random matrix theory, as opposed
to statistical physics notably, further provide results for rather generic
and complex system models: matrix models involving non-linearities (ker-
nels, activation functions), structural data dependence (non-identity co-
variances, heterogeneous mixture models, models of concentrated random
vectors with strong nonlinear dependence). These key features bring the
random matrix tools much closer to practical settings and algorithms. As
such, not only does random matrix theory provide a precise understanding
of the behavior of key algorithms in machine learning, but it also predicts
their behavior when applied to extremely realistic data models.

These two advantages are decisive to the analysis, improvement and proposition
of new machine learning algorithms.

The case of machine learning

The major technical difficulty that has long held many machine learning away
from precise quantitative analysis and theoretical comprehension relates to the
non-linearity involved in feature extraction (nonlinear kernels, nonlinear acti-
vation functions in neural networks), to the implicit nature of some methods
(as simple as the logistic regression), and eventually to the difficulty of a proper
(statistical) modeling of complex realistic data of various natures (starting with
images).

An all-encompassing example of these difficulties could be summarized as
the following classical problem:

Problem. Determine the exact classification performance of logistic regres-
sion for n observations of p-dimensional random feature vectors extracted from
a set of two-class images (say, images of dogs versus images of cats).

In the conventional wisdom of statistical machine learning, one cannot con-
ceive to solve this problem in an exact and qualitative manner: the input data
(real images) are not easily modeled, the nonlinear features extracted from those
data are complex mathematical objects (even in the case where the original data
could be modeled as simple Gaussian random vectors), and the logistic regres-
sion is an implicit optimization method not easily amenable to mathematical
analysis.

We shall demonstrate throughout this monograph that random matrix the-
ory provides a satisfying answer to all these difficulties at once and can actually
solve the Problem. This is made possible by the powerful joint universality and
determinism effects brought by large dimensional data models and treatments.

Specifically, in the random matrix regime where n, p grow large at a con-
trolled rate, the following key properties arise:

• fast asymptotic determinism: the law of large numbers and the central
limit theorem tell us that the average of n i.i.d. random variables converges
to a deterministic limit (e.g., the expectation) at an O(1/

√
n) speed. By
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gathering independence (or degrees of freedom) both in the sample di-
mension p and size n, functionals of large random matrices (even complex
functionals, such as the average of functions of their eigenvalues) also con-
verge to deterministic limits, but at an increased speed of up to O(1/

√
np)

which, for n ∼ p, is O(1/n). In machine learning problems, performance
may be expressed in terms of misclassification rates or regression errors
(i.e., averaged statistics of sometimes involved random matrix functionals)
and can thereby be predicted with high accuracy, even for not too large
dimensional datasets;

• universality with respect to data models: similarly, again consistently with
the law of large numbers and the central limit theorem in the large-n alone
setting, the above asymptotic deterministic behavior at large n, p is in
general independent of the underlying distribution of the random matrix
entries. This phenomenon, referred to in the random matrix literature
as universality, predicts notably that the asymptotic statistics of even
complex machine learning procedures depend on the input data only via
the first- and second-order statistics; this is a major distinctive feature
when compared to the fixed-p and large-n regime, where the asymptotic
performance of algorithms, when accessible, would in general depend on
the exact p-dimensional distribution of the data;6

• universality with respect to algorithm non-linearities: when nonlinear meth-
ods are considered, the nonlinear function f (e.g., the kernel function or
the activation function) gets involved in the large dimensional algorithm
performance only via a few parameters (e.g., its derivatives f(τ), f ′(τ), . . .
at a precise location τ , its “moments”

∫
fkµ with respect to the Gaussian

measure µ, or more elaborate scalars solution to a fixed-point equation
involving f). For instance, in the case of kernel random matrices of the
type f(‖xi−xj‖2/p), only the first three derivatives of the kernel function
f at the “concentration” point τ = limp ‖xi − xj‖2/p matter; the perfor-
mance of random neural networks depends on the nonlinear activation
function σ(·) solely through its first Hermite coefficients (i.e., its Gaussian
moments); in implicit optimization schemes (such as logistic regression),
the solution “concentrates” with predictable asymptotics which, despite
the nonlinear and implicit nature of the problem, only only depend on a
few scalar parameters of the logistic loss function. This, together with the
asymptotic deterministic behavior of the linear (eigenvalue or eigenvec-
tor) statistics discussed above, gives access to the performance of a host
of nonlinear machine learning algorithms.

6Compare for instance [Luxburg et al., 2008] on the fixed-p large-n asymptotics of spectral
clustering (the main result of which contains nonlinear expressions of the input data distri-
bution) to [Couillet and Benaych-Georges, 2016] on the large p, n asymptotics of the same
problem (the main result of which only involving linear and quadratic forms of the statisti-
cal mean and covariances of the data, irrespective of the input data distribution, as further
confirmed by Seddik et al. [2019]).
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• tractable real data modeling : possibly the most important aspect of large
dimensional random matrix analysis in machine learning practice relates
to the counter-intuitive fact that, as p, n grow large, machine learning al-
gorithms tend to treat real data as if they were mere Gaussian mixture
models. This statement, to be discussed thoroughly in the subsequent sec-
tions, is both supported by empirical observations (with most theoretical
findings derived for Gaussian mixtures observed to fit the performances
retrieved on real data) and by the theoretical fact that some extremely
realistic datasets (in particular artificial images created by the popular
generative adversarial networks, or GANs) are by definition concentrated
random vectors which are (i) amenable to (and in fact extremely well-
suited for) random matrix analysis, and (ii) proven to behave as if they
were mere Gaussian mixtures.

In a word, in large dimensional problems, data no longer “gather” in groups
and do not really “spread” all over their large ambient space neither. But,
by accumulation of degrees of freedom, they rather concentrate within a thin
lower-dimensional “layer”. Each scalar observation of the data, even through
complicated functions (regressors, classifiers for machine learning applications),
tends to become deterministic, predictable, and simple functions of first-order
statistics of the data distribution. Random matrix theory exploits these effects
and is thus able to answer seemingly inaccessible machine learning questions.

1.2.3 Analyze, understand, and improve large dimensional
machine learning methods

One of the first elementary objectives of this monograph is to demonstrate
that, in a large dimensional and numerous data setting, many standard machine
learning (low dimensional) intuitions tend to collapse. As a result, many of the
algorithms originally designed for small data sizes fail to perform as expected.
Some of these algorithms will be shown to remain valid but for rather unexpected
reasons. Some of them will be proven sub-optimal, quite largely so sometimes.
Finally, some of them will be shown to completely fail to meet their objectives
and in need for an adaptation or a complete change of paradigm.

In a second part, the monograph will further show that this “large dimen-
sional” regime, which one may think synonymous to thousands or millions in
dimension and sample size, is in reality already visible in much smaller data sizes
than the earliest researchers in applied random matrix theory could anticipate.
And, perhaps more importantly, that a large class of “real data” naturally falls
under the random matrix theory umbrella.

Our argumentation line and every single treatment of machine learning al-
gorithm analysis and improvement proceed along the following steps: one needs
to (i) conceive the limitations of low dimensional intuitions and understand
the reach of large dimensional intuitions, (ii) capture the behavior of the main
mathematical objects at play in machine learning on large dimensional models
so as to (iii) include these objects in a mathematical framework for performance
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analysis, and (iv) foresee means of improvement based on the newly acquired
large dimensional intuitions and mathematical understanding.

In the remainder of this subsection, we will illustrate the above four-step
methodology with the examples of kernel methods and the very related random
feature maps (which may alternatively be seen as a two-layer neural network
model with random weights).

From low to large dimensional intuitions

Most of the manuscript focuses on large dimensional data vectors or graph
models. By large dimensional, we refer to random vectors x ∈ Rp “built from”
numerous (of order O(p)) independent degrees of freedom. That is, as opposed
to the compressive sensing paradigm [Donoho, 2006], we do not impose the
existence of a low dimensional representation of the data.7

From this viewpoint, the simplest mixture data model is the Gaussian mix-
ture model x ∼ N (±µ, Ip). As we saw previously, for p small (say, p = 2 or
p = 3), classifying n samples of the mixture is easily visualized as grouping two
stacks of data: one gathered around µ ∈ Rp, the other around −µ. Most of
(low dimensional) machine learning algorithms are anchored in this mentally
convenient visualization. But the large dimensional image is different. Gaus-
sian vectors x ∈ Rp have a norm of order ‖x‖ ∼ O(

√
p) but a spread of order

‖x‖ − E[‖x‖] ∼ O(1) and non-trivial classification can be performed as long as
‖µ‖ is no smaller than O(1). The mental image is thus one of two spheres in Rp
with an extremely large radius (of order O(

√
p)) around which the data of both

classes accumulate. Figure 1.5 provides a comparative picture for small versus
large dimensions p.

With this image in mind, the Euclidean distance paradigm is shifted: for
small p, the information lies in the typical distance from one data point to a
“centroid”; for large p, the centroid is far from all data points (it lives in an
“empty” region of the space) and the class information is summarized in the
accumulated small deterministic deviations of all data points from the class;
this deviation is not (asymptotically) visible for any data vector but can be
inferred collectively from the large data matrix.

Consequently, machine learning algorithms based on evaluations of Euclidean
distances ‖xi − xj‖, inner products xT

i xj , nonlinear activations σ(wTxi) and
regressions f(βTxi), etc. of data xi or data pairs xi,xj structurally behave
differently in large dimensions.

7The statistical information contained in the data such as the mean E[x] can be sparse,
but the practical large dimensional data vectors must randomly “fluctuate” with sufficiently
many degrees of freedom around their possibly low dimensional manifold structure. The large
dimensional random fluctuation of the data is essential to produce a statistically “robust”
behavior of the algorithms and is key to establishing mathematical convergence in the large
n, p regime.
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O(
√
p)

O(1)

Figure 1.5: Visual representation of classification in (left) small and (right)
large dimensions.

Core random matrices in machine learning algorithms

Be it in a supervised, semi-supervised or unsupervised context, machine learning
algorithms essentially consist in extracting structural information from some
available set of data x1, . . . ,xn ∈ X : this is done in general via one-to-one
comparisons of the data. At the heart of most algorithms we notably find
affinity matrices of the type

K ≡ {κ(xi,xj)}ni,j=1 ∈ Rn×n (1.12)

where κ : X × X → R evaluates the closeness or affinity between xi and xj .
For graphs, the data xi are merely the nodes (or vertices) of the graph, and
κ(xi,xj) = wij is thus the weight of the edge (i, j) which may be real of binary
(i.e., wij ∈ {0, 1} depending on whether node i attaches to node j).

For X = Rp and xi statistically distributed, this naturally gives rise to a
family of kernel random matrices, among which are inner-product kernel random
matrices with κ(xi,xj) = f(xT

i xj), distance-based kernel random matrices with
κ(xi,xj) = f(‖xi − xj‖2) and correlation random matrices with κ(xi,xj) =
xT
i xj/(‖xi‖ · ‖xj‖). In the first case, f is often taken to be either linear f(t) = t

(therefore giving rise to sample covariance matrix models), a polynomial f(t) =
akt

k + . . . + a0, or of a sigmoid type such as the logistic function f(t) = (1 +
e−x)−1−1/2 or the hyperbolic tangent f(t) = tanh(t). In the second case, f can
be either linear (and we obtain a Euclidean distance matrix [Dokmanic et al.,
2015]) or more often f(t) = exp(−t/(2σ2)) for some σ > 0, which is referred
to as the heat kernel, the Gaussian kernel, or even as the radial basis function
kernel.

When the xi’s themselves are not directly separable in their ambient space,
they are conventionally mapped into a feature space in which they become sep-
arable. As feature extraction is possibly the single most important but usually
hardest task in machine learning, it comes in a variety of forms. Kernel ma-
trices of the type (1.12) typically plays the role of a feature extraction method
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which maps the data points into a reproducing kernel Hilbert space (RKHS)
[Schölkopf and Smola, 2018]. Another closely related, yet equally popular, ap-
proach, is random extraction by means of random feature maps, which consist in
operating σ(Wx) for some (usually randomly and independently drawn) matrix
W ∈ RN×p and some nonlinear function σ : Rp → RN applying entry-wise, i.e.,
σ(y) = [σ0(y1), . . . , σ0(yN )]T for some σ0 : R→ R which, with a slight abuse of
notation, we simply call σ. Among random feature maps, the most popular is
the random Fourier features method proposed in [Rahimi and Recht, 2008] for
which σ(t) = exp(−ıt) (so, formally, σ(R) ⊂ C rather than R in this case).

Neural networks operate likewise. Every size-N layer (that contains N neu-
rons) of a neural network operates σ(Wx) for an input x, a linear mapping
W ∈ RN×p (the neural weights to be learned) and a nonlinear activation func-
tion σ : R → R.8 In this setting, σ is usually taken to be a sigmoid function
(the logistic function, the tanh or the Gaussian erf function) or, more recently,
the rectified linear unit (ReLU) function σ(t) = max(0, t).

Collecting the data in X = [x1, . . . ,xn] ∈ Rp×n, the sample covariance
matrix of the random features of the data then reduces to the Gram matrix

Φ ≡ σ(WX)Tσ(WX) (1.13)

which is also a central object of interest in this monograph.

The aforementioned kernels and Gram matrices of feature maps are ac-
tually much interrelated. For instance, the random Fourier features σ(Wx),
with σ(t) = exp(−ıt) and W with i.i.d. standard Gaussian entries, i.e., Wij ∼
N (0, 1), are known to have the fundamental property

EW[σ(Wx)Tσ(Wy)] ≡ exp

(
−1

2
‖x− y‖2

)
so that random Fourier features are intricately connected to Gaussian ker-
nel matrices. This property ensures in particular that the Gaussian kernel
κ(x,y) = exp(−‖x − y‖2/2) is a nonnegative definite kernel in the sense that
K = {κ(xi,xj)}ni,j=1 is a nonnegative definite matrix (for any n and any set of
x1, . . . ,xn), a particularly convenient property in both theory and practice. An
important subclass of kernel functions, referred to as Mercer kernels [Schölkopf
and Smola, 2018], share this nonnegative definiteness property and have long
been privileged in machine learning. We shall see in this monograph that, from
a large dimensional perspective, Mercer kernels are in general sub-optimal and
that simple but less intuitive choices of κ can largely outperform these conven-
tional kernels.

A large body of machine learning algorithms (spectral clustering, linear or
logistic regression, support vector machines and neural networks) relates, one
way or another, to the aforementioned global properties (eigenvalues, content

8Sometimes an additional bias term is considered and the network operates σ(WX) + b
for some b ∈ RN also to be learned.
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of dominant eigenvectors, linear or nonlinear functionals of the resolvent) of
the above matrices K or Φ. A systematic statistical analysis of these global
properties for all finite p, n,N is however often out of reach, even for the simplest
standard Gaussian modeling of the data.

In this monograph, we will show that random matrix theory manages to
leverage the large dimensional nature of both the data and the learning systems
(i.e., large n, p,N), to tackle this statistical analysis. We will see in particular
that several conventional models for K can be “Taylor-expanded” under the
form of matrices involving only first- and second-order moments. The Gram
matrix Φ cannot be directly Taylor-expanded in this way (it will be “Hermite-
polynomially-expanded”) but will also be shown to behave as a kernel random
matrix and be decomposed as the sum of more elementary random matrices,
the statistical properties of which also become tractable in the large dimensional
regime.

In short, the intractable matrices K and Φ will be approximated by tractable
ersatz K̃ and Φ̃ which behave asymptotically the same in the sense that

‖K− K̃‖ a.s.−−→ 0, ‖Φ− Φ̃‖ a.s.−−→ 0,

in operator norm as n, p,N → ∞ at a similar rate. These matrices K̃ and Φ̃
will allow for further and deeper mathematical analysis.

Performance analysis: spectral properties and functionals

In a classification context, where conventionally xi ∈ Rp belongs to one of the
k classes C1, . . . , Ck with k � n (the number of data samples) and thus k � p
whenever p ∼ n, the approximation matrices K̃ and Φ̃ will often be shown to
take a spiked random matrix form. That is, for instance,

K̃ = Z + P

where Z ∈ Rn×n is a random symmetric matrix in general having entries of
zero mean and rather uniform variances, while P ∈ Rn×n is a low rank (often
related to k) matrix comprising the statistical information about the data-class
associations and the statistical properties of the classes.

These spiked random matrix models have been extensively studied and it is
possible to extract much information about them. In particular, the dominant
eigenvectors of K̃ are known to relate to the eigenvectors of P (which carry
the sought-for data-class information) whenever a phase transition threshold is
exceeded.

In a regression setting where the xi’s are assumed identically distributed,
the regression vector β ∈ Rp of interest is a certain functional of K or Φ. For
instance, a random feature regression from the observations X ∈ Rp×n to the
desired outputs y ∈ Rn entails the regression vector

β = σ(WX) (Φ + γIn)
−1

y
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which is thus an (indirect) function of the resolvent QΦ(−γ) = (Φ + γIn)−1 of
Φ for a certain γ > 0. Random matrix theory possesses tools to analyze the
statistical properties of such vectors β as well.

Least squares support vector machines and most conventional algorithms
of graph-based semi-supervised learning relate to functionals of the same type.
This also holds true (yet less directly) for nonlinear (e.g., logistic) regression
where β is implicitly defined as a function of QΦ. Similarly, in their plain form,
support vector machines can be seen as nonlinear regression schemes which also
fall within this scope.

Since eigenvalues, eigenvectors and regressor statistics are at the core of
machine learning algorithm performance, once these central quantities are ac-
cessible, the actual (asymptotic) classification error rates, mean squared error of
regression, etc. become also accessible. It is important to point out here that not
only bounds on performance but actual accurate estimators of the performance
are provided. Under a random matrix framework, a precise characterization of
the anticipated performance (as well as its error margins) for the above algo-
rithms becomes available.

Since these performance indicators depend on the various hyperparameters
of the problem, themselves being quantifiable from data statistics, in many
scenarios, it becomes possible to fine-tune the algorithms without resorting to
cross-validation procedures. We shall notably see how some simple instances
of neural networks can be fairly well understood: why the rectifier max(t, 0)
is a convenient choice, how the activation function and the data statistics mix
up, etc. We will also understand that kernel methods do not function as one
may think they should, and that there exists an elegant interplay between data
statistics and the successive derivatives of the kernel function at a precise posi-
tion.

Directions of improvement and new ideas

Due to the complete change of paradigm when comparing data from a small
versus a large dimensional perspectives, the overall behavior and the ensuing
performance of the studied algorithms are often tainted, when large dimensional
data are handled.

We shall notably see in the course of the monograph that the conventional
heat (or Gaussian) kernel used in various classification contexts is largely sub-
optimal. We shall also see that most graph-inspired semi-supervised learning
algorithms of the literature fail to properly accomplish their requested task for
n, p large and comparable; yet, we will show that the so-called PageRank ap-
proach [Avrachenkov et al., 2012] happens not to fail, although the fundamental
reasons behind its non-degrading performance are at odds with the initial inspi-
ration for the method; but most importantly, this popular approach will also be
shown to perform quite far from optimal and in particular not to be capable of
benefiting from a large addition of unlabeled data. This observation entails the
very unpleasant property that purely unsupervised methods tend to outperform
semi-supervised ones when the number of unlabeled data is quite large.
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For all these applications, the monograph will list a set of recommendations
and improved methods which are tailored to large (as well as not so large)
dimensional data learning. Among others, optimal but quite counterintuitive
kernel functions will be introduced, new regularization procedures for supervised
and semi-supervised learning will be discussed that particularly defeat the curse
of dimensionality in semi-supervised learning (by fully exploiting the addition
of unlabeled data), and some further light on the design of neural networks will
be cast.

1.2.4 Exploiting universality: from large dimensional Gaus-
sian vectors to real data

Before delving into the core of the manuscript, we conclude this section by
further elaborating on the universality phenomenon briefly discussed above,
which is of much greater importance than one may anticipate.

First, let us recall that most random matrix results derived in the literature,
even the most recent ones on machine learning applications (discussed in this
monograph), are based on the assumption of data either arising from (possibly
a mixture of) Gaussian distributions or represented by random vectors with
independent entries. These models are generally deemed unsuitable to mimic
real data and we will not claim otherwise. It is a fact that real data, such as
images, are largely more complex than mere Gaussian vectors.

Yet, what we do claim is that scalar observations (regressor or classifier
outputs, misclassification rates, etc.) obtained from large dimensional and nu-
merous data tend to behave as if the data were Gaussian (mixtures) in the first
place. This is a fundamental disruption from small dimensional statistics that
random matrix theory structurally exploits: rather than assuming data as fixed
entities living in a complex manifold, random matrix theory mostly exploits
their numerous degrees of freedom which, by universality, induce deterministic
behavior in the large dimensional limit, thus independently of the underlying
vector data distribution.

We justify this claim below with both empirical and theoretical arguments.

Theory versus practice

Our first argument follows after numerous comparative experiments made be-
tween theoretical findings on Gaussian versus real data. Indeed, although
mostly derived under simple and seemingly unrealistic Gaussian mixture models,
many theoretical results mentioned above show an unexpected close match when
applied to popular real-world (sometimes not so) large dimensional datasets,
such as the MNIST handwritten-digit dataset [LeCun et al., 1998], the re-
lated Fashion-MNIST [Xiao et al., 2017], Kannada-MNIST [Prabhu, 2019] and
Kuzushiji-MNIST [Clanuwat et al., 2018] datasets, the German Traffic Sign
dataset [Houben et al., 2013], deep neural network features of the now popular
ImageNet dataset [Deng et al., 2009] used for state-of-the-art machine learning
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and computer vision applications, as well as numerous financial and electroen-
cephalography (EEG) time series datasets. In particular, while most elemen-
tary machine learning methods discussed in this monograph cannot be applied
directly on raw ImageNet images to yield satisfactory performance, when per-
formed on “deep” features of the data (such as VGG, DenseNet, or ResNet
features) obtained from independent deep neural networks, these algorithms
tend to behave the same as with simple Gaussian mixtures [Seddik et al., 2020].
These seemingly striking empirical observations are indeed theoretically sus-
tained by universality arguments arising from the powerful concentration of
measure theory.

To be more precise, the following systematic comparison approach will be
pursued in this monograph. An asymptotically non-trivial classification or re-
gression problem is studied: that is, we assume that the problem at hand is
theoretically neither too easy nor too hard to solve (as the one discussed in
Section 1.1.3) and practically leads, in general, to, say, (binary) classification
error rates of the order of 5%−30% and of absolute regression errors also of the
order 5% − 30%. In particular, we insist that the asymptotic random matrix
framework under study is in general incapable to thinly grasp error rates below
the 1− 2% region, which may be the domain of “outliers” and marginal data.

Having posed this non-triviality assumption, we shall generically model the
data as drawn from a simple mixture model, for example the Gaussian mixture
model that gives access to a large panoply of powerful technical tools. The the-
oretical results obtained from the proposed analyses (asymptotic performance
notably) are thus function of the statistical means and covariances of the mixture
distribution. To compare the theoretical results to real data, we then conduct
the following procedure:

1. exploiting the numerous (often labeled) samples of the real datasets (such
as the ∼ 60 000 images of the training MNIST database), we empirically
compute statistical means and covariances for each class of the database;

2. we then evaluate the asymptotic performance that a genuine Gaussian
mixture model having these means and covariances would have;

3. we compare these “theoretical” values to actual simulations.

As the monograph will demonstrate in most scenarios, this procedure system-
atically leads to the conclusion that performance of machine learning methods
obtained on mere Gaussian mixtures approximate surprisingly well the perfor-
mance observed on real data and features. On a side note, we mentioned in
Remark 1.2 that it is likely inappropriate to use the sample covariance matrix
to estimate the population covariance of the small (i.e., n not much larger than
p) databases, such as the MNIST database (for which n/p � 100). However,
it turns out that, as the quantities of interest (e.g., classification or regres-
sion errors) are generally scalar functionals of the data statistical means and
covariances, it is still possible, in the large n, p regime, to derive consistent
estimators of these quantities without resorting to an exact evaluation of the
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(large dimensional) moments; see more discussions on this important topic in
Section 3.2 and 4.4.

As already mentioned in Remark 1.3, this surprising accordance between
theory and practice is possibly due to the universality of random matrix theory
results, i.e., only the first several order statistics of the problem at hand matter
in the large dimensional regime (recall for instance that the limiting eigenvalue
distribution of 1

nXXT for X ∈ Rp×n having i.i.d. zero mean and unit vari-
ance entries is the same Marc̆enko-Pastur law, irrespective of the higher order
moments of X).

Yet, another stronger argument can be made, especially when it comes to
machine learning for image processing.

Concentrated random vectors and real data modeling

The modeling assumption that the data vectors xi are linear or affine maps
xi = Azi + b of random vectors zi constituted of i.i.d. entries is simultaneously
an asset for random matrix analysis (by exploiting the degrees of freedom in the
entries of zi) but a severe practical limitation as few real datasets are likely of
this simplistic form.

El Karoui [2009] provided a first means for random matrix theory to go
beyond the “vector of independent entries” assumption.9 There, relying on ele-
ments of the concentration of measure theory, extensively developed by Ledoux
[2005], El Karoui essentially shows (in a rather technical manner) that some of
the early random matrix results from Pastur, Bai, and Silverstein, remain valid
under the assumption that the xi’s are concentrated random vectors. Roughly
speaking, a random vector x ∈ Rp is concentrated if, for a certain family of
functions f : Rp → R, there exists a deterministic scalar Mf ∈ R such that

P (|f(x)−Mf | > t) ≤ α(t) (1.14)

for some decreasing function α : R → R; in general, α(t) will be of the form
α(t) = Ce−ct

q

for some q > 0 and C, c > 0 constant (which may depend on p
though). Intuitively, a concentrated random vector is a (random) point in high-
dimensional space having “predictable observations” f(x), in the sense that, with
(exponentially) high probability, f(x) takes values very close to the deterministic
Mf . Thus, in the (one-dimensional) “observable world”, the observation f(x),
which may typically be any performance metric of a machine learning algorithm
on a test datum x, appears to be “stable” for any concentrated vector x.10

Ledoux and El Karoui mostly focus on concentrated random vectors defined
on Lipschitz classes of functions f , i.e., x is Lipschitz-concentrated if (1.14) holds

9See also [Pajor and Pastur, 2009] published the same year under slightly more constrained
assumptions.

10Note that by modeling the input data x as a concentrated random vector and stating that
the output (statistics) of a machine learning algorithm is “stable” implicitly assumes some
regularity in the algorithm which, as we shall see, can be shown to hold for many popular
methods including deep neural networks (and which often takes the form of a “Lipschitz
control”).
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Figure 1.6: Multivariate Gaussian distribution x ∼ N (0, Ip), a fundamental
example of concentrated random vectors. (Left) A visual “interpretation” of 500
independent drawings of x ∼ N (0, Ip). (Right) Concentration of observations
for linear (f1(x) = xT1p/

√
p) and Lipschitz (f2(x) = ‖x‖∞) maps.

for all f such that |f(x) − f(y)| ≤ ‖x − y‖ for all x,y ∈ Rp. These stringent
constraints however make it very hard to find any random vector belonging to
this class. As a matter of fact, in this class, the only standard random vectors
are the Gaussian random vector x ∼ N (0, Ip) and the uniform vector on the
sphere u = x/‖x‖ ∼ Sp−1 for x ∼ N (0, Ip). However, quite importantly, every
Rp → Rq Lipschitz-mapping g(x) and g(u) of these two random vectors, by
definition, also belongs to the class.11

A visual representation of the notion of concentration is presented in Fig-
ure 1.6.

Yet, since the widest class of (Lipschitz) concentrated random vectors is
restricted to Lipschitz maps of standard Gaussian vectors, at first sight, con-
centrated random vectors are seemingly no more elaborate models than linear
and affine maps of Gaussian vectors. As a consequence, there is a priori no
reason to assume that mixtures of concentrated random vectors can model real
data any better than Gaussian mixtures.

It turns out that this intuition is again tainted by erroneous finite-dimensional
insights. Indeed, there practically exist extremely data-realistic concentrated
random vectors: the outputs of generative adversarial networks (GANs) [Good-
fellow et al., 2014] as shown in Figure 1.7. GANs generate artificial images

11Under the more restricted class of Lipschitz and convex functions, random vectors with
i.i.d. and bounded entries (up to normalization) also create a class of (convexly) concentrated
random vectors.
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Figure 1.7: Illustration of a generative adversarial network (GAN).

Figure 1.8: Images samples generated by BigGAN in [Brock et al., 2019].

g(x) from large dimensional standard Gaussian vectors x where g is a conven-
tional feedforward neural network trained to mimic real data. As such, g is
the combination of Lipschitz nonlinear (the neural activations) and linear (the
inter-layer connections) maps, and is thus a Lipschitz mapping.12 The output
image vectors g(x), see examples in Figure 1.8, are thus concentrated vectors.
Modern GANs are so sophisticated that it has become virtually impossible for
human beings to tell whether their outputs are genuine or artificial. This, as a
result, strongly suggests that concentrated random vectors are accurate models
of real-world data.

A strong emphasis has thus lately been given to these models. The mono-
graph will in particular elaborate on the work of Louart and Couillet [2018]
which largely generalizes the seminal findings of El Karoui by providing a sys-
tematic methodological toolbox of concentration theory for random matrices.
There, the notion of concentration is generalized by including linear concentra-
tion, which provides a consistent framework for the important notion of deter-
ministic equivalents in random matrix theory, and by providing a wide range of
properties and lemmas of immediate use for random matrix purposes.

An important finding of [Louart and Couillet, 2018] is that first order statis-
tics of functionals of random matrices built from concentrated random vectors,
so in particular the asymptotic performance of many machine learning meth-
ods, are also universal. Specifically, for most conventional machine learning

12In practice, other operations are also performed in neural networks, such as pooling op-
erations, random or deterministic dropouts, various connectivity matrix normalization proce-
dures, so as to achieve better performance. They are all shown to be Lipschitz [Seddik et al.,
2020].
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methods (support vector machines, semi-supervised learning, spectral cluster-
ing, random feature maps, linear regression, etc.), the asymptotic performance
achieved on Gaussian mixtures N (µa,Ca), a ∈ {1, . . . , k}, coincides with that
obtained on concentrated random vectors mixtures La(µa,Ca), a ∈ {1, . . . , k},
having the same means µa and covariances Ca per class, and are independent
of the high-order moments of the underlying distribution.

This strongly suggests that Gaussian mixture models, if not appropriate data
“models” per se, are largely sufficient statistical assumptions for the theoretical
understanding of real data machine learning.

Remark 1.4 (Concentration of measure, concentration inequalities, and non-asymp-
totic random matrices). It is important to raise here the fact that the concentra-
tion of measure theory is structurally broader than the scope of the popular con-
centration inequalities regularly used in statistical learning theory [Boucheron
et al., 2013, Tropp, 2015, Vershynin, 2018]. Concentration inequalities are
merely expressions of (1.14) for specific choices of f and their consequences,
and they are in particular not new to random matrix theory. In [Vershynin,
2012, Tao, 2012], Vershynin and Tao exploit the mathematical strength of con-
centration inequalities (which, thanks to the exponential decay, is stronger and
less cumbersome to handle than moment bounds) to prove fundamental results
in random matrix theory. Yet, these inequalities are mostly exploited in proofs
involving Gaussian or sub-gaussian random vectors (as an instance of concen-
trated random vector). In particular, Vershynin establishes a non-asymptotic
random matrix theory by exploiting concentration inequalities to bound various
quantities of theoretical interest (notably bounds on the eigenvalue positions of
random matrices). The monograph instead puts forth the interest of concentra-
tion of measure theory for data modeling beyond a merely convenient mathe-
matical tool.

Concentration of measure theory is also all the more suited to machine learn-
ing as it structurally relates to linear, Lipschitz, or convex-Lipschitz functionals
of random vectors and matrices. These are precisely the core elements of ma-
chine learning algorithms (kernels, activation functions, convex optimization
schemes). From this viewpoint, concentration of measure theory is much more
adapted to machine learning analysis than seemingly simpler data models. Note
for instance that concentrated random vectors are stable (i.e., they remain con-
centrated) when passed through the layers of a neural network; this is not true
of Gaussian random vectors or vectors with independent entries which in general
no longer have independent entries when passed through nonlinear layers.

A last but not least convenient aspect of concentration of measure theory
is that it flexibly allows one to “decouple” the behavior of the data size p and
number n in the large dimensional setting. It is technically much easier to keep
track of independent growth rates for p and n under a concentration of measure
framework than when exploiting more standard random matrix techniques (such
as Gaussian tools).
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1.3 Outline and online toolbox

1.3.1 Organization of the manuscript
The remainder of the manuscript is divided in two parts.

Chapter 2 introduces the basics of random matrix theory needed for machine
learning applications in this monograph. In doing so, we shall first revisit the
traditional approach found in math-oriented sources, such as [Bai and Silver-
stein, 2010] based on a Stieltjes transform and truncation machinery, [Pastur
and Shcherbina, 2011] based on a Gaussian-method approach, [Tao, 2012, Ver-
shynin, 2012] based on concentration inequalities and a non-asymptotic random
matrix approach, and also say a few words on [Mingo and Speicher, 2017] which
follows a free probability framework or on [Anderson et al., 2010] which is more
oriented towards a determinantal point process and large deviations direction.
Unlike most of these references though (at the possible exception of [Pastur
and Shcherbina, 2011]), our methodology is primarily centered on the statisti-
cal analysis of the resolvent (and only secondarily on the Stieltjes transform)
of random matrices, which is the chief object of interest to us in most machine
learning applications. The particular mathematical toolbox exploited to derive
the results is of secondary importance.

In this chapter, we will successively introduce:

• the fundamental notion of the resolvent Q(z) = (X−zIn)−1 of a (random)
matrix X and its relations to the eigenvalues of X, the limiting spectrum
of X, the eigenvectors and eigenspaces associated to some specific eigen-
values, as well as its relations to bilinear and quadratic forms often met
in applications (linear or kernel regression, linear and quadratic discrimi-
nant analysis, support vector machines, and even the performance of some
simple neural networks);

• the almost equally important notion of deterministic equivalents which
extend the notion of the “limiting behavior” of large dimensional random
matrices, when such limits may not exist (which is the case of most struc-
tured random matrix models of practical interest); deterministic equiva-
lents for the resolvent of random matrix models are at the core of almost
all results derived in this monograph;

• the foundational Marc̆enko-Pastur and Wigner semicircle laws which, as
we shall see, serve as a reference “null model” to all random matrix mod-
els met in machine learning applications; even quite sophisticated random
matrix transformations (through nonlinear kernels, discontinuous activa-
tion functions, etc.) will be seen to boil down, in one way or another, to
either one (or a mixture of both) of these reference laws;

• a successive presentation of the three main technical tools at our disposal
(in this monograph at least) to study random matrix models: the Bai-
Silverstein Stieltjes transform approach, the Pastur-Shcherbina Gaussian
tools, and the Louart-Couillet concentration of measure approach;
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• the natural extensions of the Marc̆enko-Pastur- and Wigner-like random
matrix models to more structured models: with correlation in either fea-
tures or samples, with nonzero mean, divided into sub-classes of correlated
nonzero mean models, with a variance profile (in the case of heterogeneous
graph matrix models), etc.;

• a refined analysis of the large dimensional spectrum of random matrices
using tools from complex analysis, based on which statistical inference
techniques on covariance matrix models are introduced;

• a thorough treatment of the so-called spiked models of random matrices
which carry a significant importance in the applications to machine learn-
ing: spiked models consist in low rank deviations from some elementary
or structured random matrix models; this “rank sparsity” property simpli-
fies the analyses and appropriately models the presence of cluster, classes,
communities, principal components, etc., in machine learning data models;

• a short exposition of alternative tools and techniques, not of central focus
in this monograph, but may have various advantages in specific random
matrix structures;

• a short presentation of the very recent concentration of measure theory
for random matrices that extends most of the results presented in this
chapter to much more realistic (generative) models of data for machine
learning applications.

This lengthy chapter provides a vast majority of the necessary tools to con-
duct the analyses performed in the subsequent chapters of machine learning
methods. This second “application” part is organized as follows:

• Chapter 3 introduces first applications of the random matrix framework
devised in Chapter 2 to detection, estimation and statistical inference;
particular emphasis is made on likelihood ratio tests for the detection of
information from noise, on linear and quadratic discriminant analysis in a
binary hypothesis test, on the estimation of distances between data statis-
tics (particularly here the estimation of distances between unknown covari-
ances and divergences between Gaussian measures of unknown statistics),
as well as on the performance of robust estimators of covariance (or scat-
ter) matrices. The estimation of covariance distance is a typical example
where the usual large-n alone statistical answer dramatically fails, even
when the ratio n/p is quite large, and random matrix analysis provide
consistent (and improved) estimators. As for robust M-estimators, it is
typical of a scenario where classical statistics fail to perform any satisfying
analysis, while random matrix methods exploit concentration of measure
phenomena to fully understand and improve their behavior.

• Chapter 4 follows with a detailed exposition of kernel random matrices and
their applications to kernel- and graph-based methods in machine learn-
ing. This chapter successively exposes the many consequences for these
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methods of the already several-times discussed concentration of distances
phenomenon and shows that, as a result, the behavior, performance, and
the role of hyperparameters (kernel function, regularization penalty, etc.)
become tractable and amenable to improvement. Applications to ker-
nel spectral clustering, graph-based semi-supervised learning (SSL), and
kernel ridge-regression (also referred to as least-squares SVM) are inves-
tigated, as representative examples of unsupervised, semi-supervised, and
supervised learning methods. All these methods will be shown to be theo-
retically tractable, easy to optimize and thus to improve, with experiments
on real data confirming the theoretical findings. The specific example of
SSL is quite telling of the limitations of standard small-dimensional in-
tuitions, and it will be shown that all known classical graph-based SSL
methods either dramatically fail, or at best, do not exhibit the expected
SSL behavior (notably failing to account for the large number of unlabeled
data): the proposed random matrix approach is quite simple and is proven
to solve this problem.

• Chapter 5 focuses specifically on neural network models. While modern
deep neural networks remain difficult to assess, several studies are reported
in this chapter that address simpler models of neural networks (with ran-
dom and few layers, with a possibly recurrent structure) and for which,
again, new insights and exact asymptotic performance are provided. An
additional discussion of the learning dynamics of gradient descent methods
is also exposed in which the step-by-step performance and the importance
of early stopping mechanisms are theoretically analyzed.

• Chapter 6 goes a step beyond all previous chapters for which all metrics
of interest (algorithm behavior, performance) are explicit functions of the
various random matrix models introduced in Chapter 2 (under the form
of eigenvalue distribution, eigenvector statistics, bilinear forms on the re-
solvent, etc.): here we focus on optimization schemes in machine learning
having no explicit solution. As such, the performance of these algorithms
are implicitly related to the random data matrix and seem, at first sight,
not related to random matrix analysis. The chapter shows instead that
most of these methods do exhibit asymptotic (large n, p) performance
that can be expressed as an almost explicit function (via a few coupled
equations) of random matrix models, thereby opening the door to a wide
range of applications (logistic regression, support vector machines, general
empirical risk minimization scheme, etc.).

• Chapter 7 discusses spectral methods for community detection on (mostly
dense) graphs and networks. As opposed to all previous application chap-
ters for which the elementary random matrix model under study is the
Gram matrix XTX for data matrix X ∈ Rp×n, the problem of commu-
nity detection on graphs naturally relates to symmetric graph matrices
X ∈ Rn×n with independent Bernoulli entries. The chapter discusses at
length the popular stochastic block model (SBM) and degree-corrected
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SBM which mimic, with a different degree of reality, the behavior of gen-
uine graphs with communities. A short discussion on the (difficult and so
far not random matrix-related) modern concern of community detection
on the even more realistic case of large dimensional and sparse graphs is
also made.

• Chapter 8 closes the application chapters with a discussion on the ex-
tension of the aforementioned applications to real data modeling. There,
using the recent concentration of measure for random matrix framework,
simulations of extremely realistic models of data (images mostly) are used
to theoretically validate the random matrix results devised in all previous
chapters. The chapter notably passes across the fundamental but surpris-
ing message that simple data models (as Gaussian mixtures) are often
sufficiently rich to account for the large dimensional performance of many
existing machine learning algorithms.

1.3.2 Online codes
Matlab as well as Python codes of the algorithms used to obtain most of the visual
results (graphs, histograms) provided in the monograph are publicly available at
https://github.com/Zhenyu-LIAO/RMT4ML. Links to these codes are directly
provided in the caption of the corresponding figures.

https://github.com/Zhenyu-LIAO/RMT4ML


Chapter 2

Random Matrix Theory

This chapter covers the basics of random matrix theory, within the unified
framework of resolvent- and deterministic-equivalent approach. Historical and
foundational random matrix results are presented in the proposed framework,
together with heuristic derivations as well as detailed proofs. Topics such as sta-
tistical inference and spiked models are covered. The concentration-of-measure
framework, as a newly born yet very flexible and powerful technical approach,
is discussed at the end of the chapter.

Random matrix theory, at its inception, primarily dealt with the eigenvalue
distribution (also referred to as the spectral measure) of large dimensional ran-
dom matrices. One of the key technical tools to study these measures is the
Stieltjes transform, often presented as the central object of the theory [Bai and
Silverstein, 2010, Pastur and Shcherbina, 2011].

But signal processing and machine learning alike are often more interested
in subspaces and eigenvectors (which often carry the structural information of
the data) than in eigenvalues. Subspace or spectral methods, such as principal
component analysis (PCA) [Wold et al., 1987], spectral clustering [Luxburg,
2007] and some semi-supervised learning techniques [Zhu, 2005] are built directly
upon the eigenspace spanned by the several top eigenvectors.

Consequently, beyond the Stieltjes transform, a more general mathematical
object, the resolvent of large random matrices will constitute the cornerstone of
the monograph. The resolvent of a matrix gives access to its spectral measure,
to the location of its isolated eigenvalues, to the statistical behavior of their
associated eigenvectors when random, and consequently provides an entry-door
to the performance analysis of numerous machine learning methods.

This chapter introduces the fundamental objects and tools necessary to
characterize the behavior of large dimensional random matrices (the resolvent,
the Stieltjes transform method, etc.) in Section 2.1, with a particular focus
on the modern and powerful technical approach of deterministic equivalents.
Section 2.2 then presents some foundational random matrix results (under the
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form of deterministic equivalents) which will serve as cornerstones for the vari-
ous machine learning applications discussed in the remainder of this monograph.
Section 2.3 is next devoted to advanced considerations on the limiting spectrum
of sample covariance matrix models, with applications to statistical inference
in Section 2.4. Section 2.5 then introduces the family of spiked models which,
as we will see, play a crucial role in statistics, signal processing, and machine
learning alike. Section 2.6 lists and discusses other models and tools of interest
in the random matrix literature, with a short introduction to the alternative free
probability approach and related techniques. Section 2.7 is finally devoted to
the “modern” concentration of measure framework for random matrices, which,
as we just elaborated in the previous chapter, provides a strong justification of
the universality of random matrix results when applied to real data machine
learning, and also provides a convenient mathematical framework to deal with
neural networks. The chapter then closes on concluding remarks in Section 2.8
and exercises in Section 2.9, both intended to familiarize the reader with the
tools introduced in the chapter as well as to provide supplementary results and
proofs.

2.1 Fundamental objects

2.1.1 The resolvent

We first introduce the resolvent of a matrix.

Definition 1 (Resolvent). For a symmetric matrix M ∈ Rn×n, the resolvent
QM(z) of M is defined, for z ∈ C not eigenvalue of M, as

QM(z) ≡ (M− zIn)
−1
. (2.1)

The matrix QM(z) will often simply be denoted Q(z) when there is no
ambiguity.

The resolvent operator is in fact a very classical tool, the use of which goes
far beyond random matrix theory. It is for instance exploited in the analysis of
linear operators in general Hilbert space [Akhiezer and Glazman, 2013] as well
as in monotone operator theory of importance to modern convex optimization
theory [Bauschke and Combettes, 2017].

2.1.2 Spectral measure and Stieltjes transform

The first use of the resolvent QM is in its relation to the empirical spectral
measure µM of the matrix M, through the associated Stieltjes transform mµM

,
which we all define next.

Definition 2 (Empirical spectral measure). For a symmetric matrix M ∈
Rn×n, the spectral measure or empirical spectral measure or empirical spectral
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distribution (e.s.d.) µM of M is defined as the normalized counting measure of
the eigenvalues λ1(M), . . . , λn(M) of M,

µM ≡
1

n

n∑
i=1

δλi(M). (2.2)

Since
∫
µM(dx) = 1, the spectral measure µM of a matrix M ∈ Rn×n

(random or not) is a probability measure. For (probability) measures, we can
define their associated Stieltjes transforms as follows.

Definition 3 (Stieltjes transform). For a real probability measure µ with support
supp(µ), the Stieltjes transform mµ(z) is defined, for all z ∈ C \ supp(µ), as

mµ(z) ≡
∫

1

t− z
µ(dt). (2.3)

This definition and the Stieltjes transform framework in effect extend beyond
probability measures to σ-finite real measures (i.e., measures µ such that µ(R) <
∞), which will occasionally be discussed in this monograph.

The Stieltjes transform mµ has numerous interesting properties: it is com-
plex analytic on its domain of definition C \ supp(µ), it is bounded |mµ(z)| ≤
1/dist(z, supp(µ)), it satisfies =[z] > 0 ⇒ =[m(z)] > 0, and it is an increasing
function on all connected components of its restriction to R \ supp(µ) (since
m′µ(x) =

∫
(t−x)−2µ(dt) > 0) with limx→±∞mµ(x) = 0 if supp(µ) is bounded.

As a transform, mµ admits an inverse formula to recover µ, as per the
following result.

Theorem 2.1 (Inverse Stieltjes transform). For a, b continuity points of the
probability measure µ, we have

µ([a, b]) =
1

π
lim
y↓0

∫ b

a

= [mµ(x+ ıy)] dx. (2.4)

Besides, if µ admits a density f at x (i.e., µ(x) is differentiable in a neighborhood
of x and limε→0(2ε)−1µ([x− ε, x+ ε]) = f(x)),

f(x) =
1

π
lim
y↓0
= [mµ(x+ ıy)] . (2.5)

Also, if µ has an isolated mass at x, then

µ({x}) = lim
y↓0
−ıymµ(x+ ıy). (2.6)
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Proof. Since | y
(t−x)2+y2 | ≤

1
y for y > 0, by Fubini’s theorem,

1

π

∫ b

a

= [mµ(x+ ıy)] dx =
1

π

∫ b

a

[∫
y

(t− x)2 + y2
µ(dt)

]
dx

=
1

π

∫ [∫ b

a

y

(t− x)2 + y2
dx

]
µ(dt)

=
1

π

∫ [
arctan

(
b− t
y

)
− arctan

(
a− t
y

)]
µ(dt).

As y ↓ 0, the difference in brackets converges either to ±π or 0 depending on
the relative position of a, b and t. By the dominated convergence theorem, the
limit, as y ↓ 0, is

∫
1[a,b]µ(dt) = µ([a, b]). When µ has an isolated mass at x,

say µ(dt) = aδx(t), we similarly have, again by dominated convergence (using
in particular |y(t− x)| ≤ 1

2 (y2 + (t− x)2)) that

lim
y↓0
−ıym(x+ ıy) = − lim

y↓0

∫
ıy(t− x)µ(dt)

(t− x)2 + y2
+ lim

y↓0

∫
y2µ(dt)

(t− x)2 + y2
= a.

This concludes the proof of Theorem 2.1.

The important relation between the empirical spectral measure µM of M ∈
Rn×n, the Stieltjes transform mµM

(z) and the resolvent QM(z) lies in the fact
that

mµM
(z) =

1

n

n∑
i=1

∫
δλi(M)(t)

t− z
=

1

n

n∑
i=1

1

λi(M)− z
=

1

n
tr QM(z). (2.7)

Combining inverse Stieltjes transform in Theorem 2.1 and the relation above
thus provides a link between QM and the eigenvalue distribution of M. While
seemingly contorted at first sight, this link turns out to be a very efficient way
to study the spectral measure of large dimensional random matrices M.

In particular, note that Theorem 2.1 raises an interesting fact: the Stieltjes
transform mµ(z) =

∫
(t − z)−1µ(dt) is defined on all C \ supp(µ), and as z

approaches the support supp(µ), the integrand (t−z)−1 becomes singular. Yet,
this is precisely when x = <[z] ∈ supp(µ) while =[z] ↓ 0 that one can retrieve
the density of µ at x from the Stieltjes transform mµ(z). This observation is key
to the analysis of the spectrum (both eigenvalues and eigenvectors) of (random)
matrices: the singular points of the resolvent of a (random) matrix provide the
information about its spectrum.

Remark 2.1 (Resolvent as a matrix-valued Stieltjes transform). As proposed
in [Hachem et al., 2007], it is convenient to extrapolate Definition 3 of Stielt-
jes transforms to n× n matrix-valued positive measures M(dt),1 in which case

1Defined by the fact that µ(dt; z) = zTM(dt)z =
∑
ij [z]i[z]j [M]ij(dt) is a positive real-

valued measure for all z. See [Rozanov, 1967] for an introduction.



2.1. FUNDAMENTAL OBJECTS 47

Equation (2.7) can be generalized as

QM(z) =

∫
M(dt)

t− z
= U diag

{
1

λi(M)− z

}n
i=1

UT,

where we used the spectral decomposition M = U diag{λi(M)}ni=1U
T. This

definition coincides with the former definition of the resolvent of M. As such,
the resolvent QM(z) is an “improved” Stieltjes transform which enjoys similar
properties as Stieltjes transforms on real-valued measures: it is complex analytic
on its domain of definition, it is bounded ‖QM(z)‖ ≤ 1/ dist(z, supp(µM)), and
x 7→ QM(x) for x ∈ R \ supp(µM) is an increasing matrix-valued function with
respect to symmetric matrix partial ordering (i.e., A � B whenever zT(A −
B)z ≥ 0 for all z).

2.1.3 Cauchy’s integral, linear eigenvalue functionals, and
eigenspaces

Being complex analytic, the resolvent QM(z) can be manipulated using ad-
vanced tools from complex analysis. Of particular interest to this monograph is
the relation between the resolvent and Cauchy’s integral theorem.

Theorem 2.2 (Cauchy’s integral formula). For Γ ⊂ C a positively (i.e., coun-
terclockwise) oriented simple closed curve and a complex function f(z) analytic
in a region containing Γ and its inside, then

(i) if z0 ∈ C is enclosed by Γ, f(z0) = − 1
2πı

∮
Γ
f(z)
z0−z dz;

(ii) if not, 1
2πı

∮
Γ
f(z)
z0−z dz = 0.

This result provides an immediate connection between the so-called linear
functionals of the eigenvalues (also referred to as the linear spectral statistics
[Bai and Silverstein, 2004] or linear eigenvalue statistics [Lytova and Pastur,
2009]) of M and the Stieltjes transform mµM

(z) through

1

n

n∑
i=1

f(λi(M)) = − 1

2πın

∮
Γ

f(z) tr(QM(z)) dz = − 1

2πı

∮
Γ

f(z)mµM
(z) dz,

for all f complex analytic in a compact neighborhood of supp(µM), by choosing
the contour Γ to enclose supp(µM) (i.e., all the eigenvalues λi(M)). More
generally,

1

n

∑
λi(M)∈Γ◦

f(λi(M)) = − 1

2πı

∮
Γ

f(z)mµM
(z) dz,

for Γ◦ the inside of the contour Γ. Note that in this case it is sufficient for f to
be analytic in a neighborhood of supp(µM) ∩ Γ◦; in particular, if one wishes to
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count the number of eigenvalues in an interval [a, b], one may use the formula
for f(t) = 1t∈[a−ε,b+ε] for some ε > 0 small, which is of course not analytic on
C but is analytic on an open neighborhood of [a, b].

Another quantity of interest relates to eigenvectors and eigenspaces. Con-
sidering the spectral decomposition M = UΛUT with U = [u1, . . . ,un] ∈ Rn×n
and Λ = diag{λ1(M), . . . , λn(M)}, we have

QM(z) =

n∑
i=1

uiu
T
i

λi(M)− z

and thus the direct access to the i-th eigenvector ui of M through

uiu
T
i = − 1

2πı

∮
Γλi(M)

QM(z) dz,

for Γλi(M) a contour circling around λi(M) only. More generally,

Uf(Λ; Γ)UT = − 1

2πı

∮
Γ

f(z)QM(z) dz,

for f analytic in a neighborhood of Γ and its inside Γ◦ and f(Λ; Γ) = diag{f(λi(M))·
1λi(M)∈Γ◦}ni=1.

Of specific interest in this monograph will be the projection of an individual
eigenvector ui of M onto a deterministic vector v. In particular, from the above,

|vTui|2 = − 1

2πı

∮
Γλi(M)

vTQM(z)v dz.

In the real case M ∈ Rn×n, this gives access to vTui, up to a sign (which at
any rate is not fixed since both ui and −ui are valid eigenvectors). The formula
extends in the complex case by replacing the transpose (·)T by a Hermitian
transpose (·)∗, and thus providing access to the complex number v∗ui up to a
“phase” eıθ for θ ∈ [0, 2π).

To summarize, the resolvent QM provides access to scalar observations of the
eigenspectrum of M through its linear functionals, i.e., the scalar observations
1
n

∑
i f(λi(M)) and |vTui| accessible from 1

n tr QM and vTQMv, respectively.

Before proceeding to the application of these results to random matrices,
it is worth noticing at this point that working with the resolvent automati-
cally enables many powerful tools from complex analysis, the Cauchy integral
formula being only one instance. Analytic functions, such as the Stieltjes trans-
form and the resolvent, are “extremely smooth” objects, and enjoy a host of
convenient properties. One such important property is, as already mentioned
in Theorem 2.2, that it suffices to know an analytic function locally to know it
globally.
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Theorem 2.3 (Vitali’s convergence theorem [Titchmarsh, 1939]). Let f1, f2, . . .
be a sequence of functions, analytic on a region D ⊂ C, such that |fn(z)| ≤ M
uniformly on n and z ∈ D. Further assume that fn(zj) converges for a countable
set of points z1, z2, . . . ∈ D having a limit point inside D. Then fn(z) converges
uniformly to a limit in any region bounded by a contour interior to D. This
limit is furthermore an analytic function of z.

Vitali’s convergence theorem will be heavily exploited to study the behavior
of resolvents QM(z) near the real axis (where it is almost singular but of utmost
interest) by instead studying its properties away from the real axis (where it is
mathematically more convenient). The theorem is in fact doubly interesting as
it states that the knowledge of fn at a countable number of points z1, z2, . . . is
sufficient to fully characterize the limit f ; as we shall see later, this property will
be used to prove the convergence of functionals fn(z) = g(QM(z)−Q̄(z))→ 0 of
random resolvents QM(z) to deterministic equivalents Q̄(z) (here n is the grow-
ing size of the resolvents): if fn(zj) → 0 almost surely for each z1, z2, . . ., then
by the countable union of probability one events, fn(zj) → 0 with probability
one uniformly on the set {z1, z2, . . .}, and by Vitali we obtain that fn(z) → 0
with probability one uniformly on a (possibly very large) subset of C.

2.1.4 Deterministic and random equivalents

This monograph is concerned with the situation where M is a large dimensional
random matrix, the eigenvalues and eigenvectors of which need be related to the
statistical nature of the model design of M.

In the early days of random matrix theory, the main focus was on the limiting
spectral measure of M ∈ Rn×n, that is the characterization of a certain “limit”
to the spectral measure µM of M as the size of M increases. For this purpose,
a natural approach is to study the random Stieltjes transform mµM

(z) and to
show that it admits a limit (in probability or almost surely) m(z) as n → ∞.
However, this method has strong limitations: (i) it supposes that such a limit
exists, therefore restricting the study to very regular models for M and (ii) it
only quantifies 1

n tr QM (through the Stieltjes transform), thereby discarding all
subspace information about M carried in the resolvent QM. As a consequence,
a further study of the eigenvectors of M often requires a complete rework.

To avoid these limitations, modern random matrix theory focuses instead
on the notion of deterministic equivalents which are deterministic matrices –
thus finite dimensional objects rather than limits – having (in probability or
almost surely) asymptotically the same scalar observations as the random ones.2
In particular, these scalar observations of deterministic equivalents (e.g., their

2The wide spread of deterministic equivalents in the random matrix literature arose from
application needs, primarily in signal processing and wireless communications, involving too
structured matrix models for limiting eigenvalue distributions to be meaningful [Hachem et al.,
2007, Couillet et al., 2011]. Yet, deterministic equivalents in fact originate from the (much
earlier) works of Girko [2001]. They have recently been included as a new feature of free prob-
ability theory [Speicher and Vargas, 2012], an alternative approach to the resolvent method,
which will be shortly discussed in Section 2.6.2.
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normalized traces or their bilinear forms) need not themselves admit a limit as
the matrix dimension n grows: what only matters is that they deterministically
“track” the behavior of their random counterparts with increased accuracy as n
grows large to infinity.

Definition 4 (Deterministic Equivalent). We say that Q̄ ∈ Rn×n is a determin-
istic equivalent for the symmetric random matrix Q ∈ Rn×n if, for (sequences
of) deterministic matrix A ∈ Rn×n and vectors a,b ∈ Rn of unit norms (oper-
ator and Euclidean, respectively), we have, as n→∞,

1

n
tr A(Q− Q̄)→ 0, aT(Q− Q̄)b→ 0,

where the convergence is either in probability or almost sure.

This definition3 has the advantage to bring forth the two key elements giving
access to the spectral information about a random matrix M: traces and bilinear
forms (of its resolvent QM(z) for some z). Deterministic equivalents for the
resolvent QM thus encode the necessary information to statistically quantify, at
least spectrally, the random matrix M.

A first and natural use of deterministic equivalents is to establish that, for a
random matrix M of interest, 1

n tr(QM(z)−Q̄(z))→ 0, say almost surely, for all
z ∈ C with C ⊂ C. Denoting m̄n(z) = 1

n tr Q̄(z), this convergence implies that
the Stieltjes transform of µM “converges” in the sense thatmµM

(z)−m̄n(z)→ 0.
As we will see, this indicates that µM gets increasingly well approximated, as
n grows large, by a probability measure µ̄n having Stieltjes transform m̄n(z).
Identifying m̄n(z), which uniquely defines µ̄n per Theorem 2.1, will often be as
far as the Stieltjes transform method will lead us. But in some rare cases (such
as with the Marc̆enko-Pastur and the semicircle laws), µ̄n will be explicitly
identifiable.

In the remainder of the monograph, we will often characterize the large
dimensional (spectral) behavior of random matrix models M through the “ap-
proximation” offered by the deterministic equivalents Q̄(z) of their associated
resolvents QM(z), providing simultaneously access to their asymptotic spectral
measures as well as to their eigenspaces. We will therefore extrapolate some
of the core traditional results in random matrix theory, such as the Marc̆enko-
Pastur law [Marcenko and Pastur, 1967], the sample covariance matrix model
[Silverstein and Bai, 1995], etc., under this more general form of deterministic
equivalents.

Remark 2.2 (Q̄ versus E[Q]). For Q̄ a deterministic equivalent for Q, the
(probabilistic) convergences 1

n tr A(Q− Q̄)→ 0 and aT(Q− Q̄)b→ 0 generally

3The notion of “deterministic equivalent” has not been formally defined in the literature.
The present definition is thus restricted to this monograph and is for the convenience of pre-
sentation. Section 2.7 will provide an alternative, possibly more satisfying, definition through
the notion of linear concentration (Definition 8).
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unfold from the deterministic relation that

‖E[Q]− Q̄‖ → 0,

and from a control of the variance of 1
n tr(AQ) and aTQb; this will often be

the strategy followed in our proofs. Note particularly that, if the above relation
is met, then E[Q] itself is, by Definition 4, a deterministic equivalent for the
random Q. However, E[Q] is often not convenient to work with and a “truly
deterministic” matrix Q̄ involving no integration over probability spaces (and
that can be numerically evaluated with ease) will be systematically preferred.

Deterministic equivalents will be used very regularly in the course of this
monograph. To avoid heavy notations, particularly in the main theorems and
their proofs, we will use the following shortcut notation, valid both for deter-
ministic and random matrix equivalents.

Notation 1 (Matrix Equivalents). For X,Y ∈ Rn×n two random or determin-
istic matrices, we write

X↔ Y,

if, for all A ∈ Rn×n and a,b ∈ Rn of unit norms (respectively, operator and
Euclidean), we have the simultaneous results

1

n
tr A(X−Y) → 0, aT(X−Y)b → 0, ‖E[X−Y]‖ → 0,

where, for random quantities, the convergence is either in probability or almost
sure.

In many situations, deterministic equivalents Y for a random matrix X may
not be directly accessible with classical random matrix techniques. In these
cases, the introduction of an intermediary random matrix X̃ satisfying ‖X̃ −
X‖ a.s.−−→ 0 will help “propagate” the deterministic equivalent relations. Indeed, if
X̃↔ Y, then necessarily X↔ Y. When the convergence ‖X̃−X‖ a.s.−−→ 0 is too
demanding, it may of course be sufficient in some cases to prove that X↔ X̃ (in
which case both matrices are random) to ensure that X↔ Y. This justifies the
need to apply the notation “↔” to arbitrary, random or deterministic, matrices.

2.2 Foundational random matrix results
In this section we introduce the main historical results of random matrix theory
(appropriately updated under a deterministic equivalent form), which will serve
as supporting materials to most machine learning applications covered in this
monograph.4 For readability and accessibility to the readers new to random

4Although historically and technically, said “Wigner” models of symmetric random matrices
with independent entries came first, are simpler to analyze and spurred more mathematical
research efforts [Wigner, 1955, Mehta and Gaudin, 1960, Anderson et al., 2010], for the sake of
machine learning applications, our focus is primarily set on the slightly more involved sample
covariance matrix models [Marcenko and Pastur, 1967, Bai and Silverstein, 2010].
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matrix theory, we mostly stick to intuitive and short sketches of proofs. Yet, for
the readers to have a glimpse on the technical details and modern tools of the
field, some of the proof sketches will be appended by a complete and exhaustive
proof.

Both sketches and detailed proofs rely on a set of elementary lemmas and
identities which need be introduced to understand their spirit and cornerstone
arguments. This is done below in Section 2.2.1. The detailed proofs differ from
the sketches in having additional technical probability theory arguments to prove
various convergence results. These arguments strongly depend on the underlying
random matrix model hypotheses (Gaussian independent, i.i.d., concentrated
random vectors, etc.); for readability, we will focus in our proofs on one specific
line of arguments (that we claim to be the “historical” one) and will discuss
alternative techniques in side remarks. In particular, the specific concentration
of measure theoretic approach, which is both more “modern” (yet less mature)
and more adapted to machine learning applications, will be given a separate
treatment in Section 2.7.

2.2.1 Key lemmas and identities

Resolvent identities

Most results discussed in this section consist in tools meant to help “approxi-
mate” random matrix resolvents Q(z) via deterministic resolvents Q̄(z) in the
sense of deterministic equivalents in Definition 4. The following first identity
provides a comparison of matrix inverses and is often used to compare the afore-
mentioned resolvents.

Lemma 2.1 (Resolvent identity). For invertible matrices A and B, we have

A−1 −B−1 = A−1(B−A)B−1.

Proof. This can be easily checked by multiplying both sides on the left by A
and on the right by B.

Another useful lemma that helps directly connect the resolvent of BA to
that of AB, is given as follows.

Lemma 2.2. For A ∈ Rp×n and B ∈ Rn×p , we have

A(BA− zIn)−1 = (AB− zIp)−1A,

for z ∈ C distinct from 0 and from the eigenvalues of AB.

Proof. Left-multiply both ends of the equality by AB−zIp to obtain A = A.

For AB and BA symmetric, Lemma 2.2 is a special case of the more gen-
eral relation A · f(BA) = f(AB) · A, with f(M) ≡ Uf(Λ)UT under the
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spectral decomposition M = UΛUT and f complex analytic. Since f is ana-
lytic, f(BA) =

∑∞
i=0 ci(BA)i for some sequence {ci}∞i=0 and thus A · f(BA) =∑∞

i=0 ci(AB)i ·A = f(AB) ·A.

The next lemma, known as Sylvester’s identity (also known as the We-
instein–Aronszajn identity), similarly relates the resolvents of AB and BA
through their determinant.

Lemma 2.3 (Sylvester’s identity). For A ∈ Rp×n, B ∈ Rn×p and z ∈ C \ {0},

det (AB− zIp) = det (BA− zIn) (−z)p−n.

Proof. It suffices to develop the block-matrix determinant (recall that det ( A B
C D ) =

det D · det(A−BD−1C) = det A · det(D−CA−1B) when A,D are invertible)

det

(
zIp zA
B zIn

)
= det(zIp) · det(zIn −BA) = det(zIn) · det(zIp −AB).

An immediate consequence of Sylvester’s identity is that AB and BA have
the same nonzero eigenvalues (those nonzero z’s for which both left- and right-
hand sides vanish). Thus, say for n ≥ p, AB ∈ Rp×p and BA ∈ Rn×n have the
same spectrum, except for the additional n − p zero eigenvalues of BA. This
remark implies the next identity.

Lemma 2.4 (Trace of resolvent and co-resolvent). Let A ∈ Rp×n, B ∈ Rn×p,
and z ∈ C not an eigenvalue of AB nor zero. Then

tr QAB(z) = tr QBA(z) +
n− p
z

.

In particular, if AB and BA are symmetric,

mµAB
(z) =

n

p
mµBA

(z) +
n− p
pz

,

for µAB the empirical spectral measure of AB defined in Definition 2.

It will be customary, if QAB is the resolvent of the matrix model AB under
study, to call QBA the co-resolvent of AB. We will see that the resolvent and co-
resolvent of random matrix models (in particular the resolvent and co-resolvent
of XXT for X some structured random matrix model) often intervene together,
and quite symmetrically, to define their associated deterministic equivalents.

Perturbation identities

Quantifying the asymptotic global (e.g., spectral distribution) or local (e.g.,
isolated eigenvalues or projection on eigenvector) behavior of random matrices
M will systematically involve a perturbation approach. The idea often lies in
comparing the behavior of the resolvent Q = QM to the resolvent Q−i of
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M−i, with M−i defined as M with either i-th row and column, or some i-th
contribution (e.g., M−i =

∑
j 6=i xjx

T
j if M =

∑
j xjx

T
j ), discarded. A number

of so-called perturbation identities are then needed.
The first one involves the segmentation of M under the form of subblocks,

in general consisting of one large block and three small ones. The corresponding
resolvent QM can correspondingly be segmented in subblocks according to the
following block inversion lemma.

Lemma 2.5 (Block matrix inversion). For A ∈ Rp×p, B ∈ Rp×n, C ∈ Rn×p
and D ∈ Rn×n with D invertible, we have(

A B
C D

)−1

=

(
S−1 −S−1BD−1

−D−1CS−1 D−1 + D−1CS−1BD−1

)
,

where S ≡ A−BD−1C is the Schur complement (for the block D) of ( A B
C D ).5

As a consequence of Lemma 2.5, we get the following explicit form for all
diagonal entries of an invertible matrix A.

Lemma 2.6 (Diagonal entries of matrix inverse). For invertible A ∈ Rp×p and
A−i ∈ R(p−1)×(p−1) the matrix obtained by removing the i-th row and column
from A (i ∈ {1, . . . , p}), we have

[A−1]ii =
1

[A]ii −Ai,−i(A−i)−1A−i,i
,

for Ai,−i,A−i,i ∈ Rp−1 the i-th row and column of A with i-th entries removed,
respectively.

The result follows from Lemma 2.5 for entry (1, 1) and can then be gener-
alized to an arbitrary diagonal entry (i, i) by pre- and post-multiplying by the
permutation matrix P which exchanges the first and the i-th row and column.
Alternatively, the result may be obtained from the fact that A−1 = adj(A)

det(A) , with
adj(A) the adjugate matrix of A, together with the block determinant formula.

Perturbations by addition or subtraction of low-rank matrices to M induce
modifications in its resolvent QM that involve Woodbury identity as follows.

Lemma 2.7 (Woodbury). For A ∈ Rp×p, U,V ∈ Rp×n, such that both A and
A + UVT are invertible, we have

(A + UVT)−1 = A−1 −A−1U(In + VTA−1U)−1VTA−1.

Note importantly that, while (A + UVT)−1 is of size p× p, In + VTA−1U
is of size n×n. This will turn out useful, for n� p, to relate resolvents of large
dimensional matrices to resolvents of more elementary and small size matrices.
In particular, for n = 1, i.e., UVT = uvT for U = u ∈ Rp and V = v ∈ Rp, the
above identity specializes to the Sherman–Morrison formula.

5The Schur complement S = A−BD−1C is particularly known for its providing the block
determinant formula det

(
A B
C D

)
= det(D) det(S), already exploited in the proof of Sylvester’s

identity, Lemma 2.3.
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Lemma 2.8 (Sherman–Morrison). For A ∈ Rp×p invertible and u,v ∈ Rp,
A + uvT is invertible if and only if 1 + vTA−1u 6= 0 and

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Besides,

(A + uvT)−1u =
A−1u

1 + vTA−1u
.

Letting A = M− zIp, z ∈ C, and v = τu for τ ∈ R in the previous lemma
leads to the following rank-1 perturbation lemma for the resolvent of M.

Lemma 2.9 (Silverstein and Bai [1995, Lemma 2.6]). For A,M ∈ Rp×p sym-
metric, u ∈ Rp, τ ∈ R and z ∈ C \ R,

∣∣tr A(M + τuuT − zIp)−1 − tr A(M− zIp)−1
∣∣ ≤ ‖A‖
|=(z)|

.

Also, for A,M ∈ Rp×p symmetric and nonnegative definite, u ∈ Rp, τ > 0 and
z < 0,6

∣∣tr A(M + τuuT − zIp)−1 − tr A(M− zIp)−1
∣∣ ≤ ‖A‖

|z|
.

It is interesting (and possibly counterintuitive at first) to note that the norm
‖u‖ and the value τ do not intervene in this inequality. In particular, irrespective
of the amplitude of the rank-1 perturbation τuuT, under the conditions of the
lemma,

mµ
M+τuuT

(z) = mµM
(z) +O(p−1),

and thus, by the link between spectrum and Stieltjes transform, the spectral
measure of M is asymptotically close to that of M + τuuT for any u and τ ,
in the large p limit. This result can be understood through the following two
arguments:

(i) for large p, the spectrum of M (say ‖M‖ = O(1) without loss of generality)
is only non-trivial if the vast majority of the p eigenvalues of M are of
order O(1): thus, as p eigenvalues use a space of size O(1), they tend to
aggregate;

(ii) by Weyl’s interlacing lemma presented next (Lemma 2.10) for symmetric
matrices, the eigenvalues of M and of M+ τuuT are interlaced (i.e., . . . ≤
λi(M) ≤ λi(M + τuuT) ≤ λi+1(M) ≤ . . .).

6Exercise 4 in Section 2.9 proposes a partial proof of Lemma 2.9 for the case z < 0.
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Together, arguments (i) and (ii) thus indicate that the λi(M)’s and λi(M +
τuuT)’s are asymptotically the same, at the possible exception of rightmost
eigenvalue λp(M+τuuT) which is free to be found away from λp(M). The rank-
1 perturbation τuuT of M thus does not asymptotically affect the (limiting)
spectral measure (the possible presence of an outlying eigenvalue having no
effect on the normalized counting measure). In passing, this remark unveils the
important fact that, by definition, the spectral measure, as well as its Stieltjes
transform, is only able to capture the “bulk” behavior of the eigenvalues and
not the behavior of individual eigenvalues. We will come back to this point in
more detail in Section 2.11.

Unlike non-symmetric matrices, symmetric matrices enjoy the nice property
of having “stable” spectra with respect to rank-1 perturbations. For z ∈ R an
eigenvalue of M + τuuT but not of M with, say, τ > 0, we have

0 = det(M + τuuT − zIp) = det(Q−1
M (z)) · det(Ip + τQM(z)uuT)

= det(Q−1
M (z)) ·

(
1 + τuTQM(z)u

)
,

where the second equality unfolds from factoring out M − zIp (which is not
singular as z is not an eigenvalue of M) and the third from Sylvester’s identity,
Lemma 2.3. As a consequence, z is one of the solutions to

−1 = τuTQM(z)u = τ

p∑
i=1

|vT
i u|2

λi(M)− z
, with M =

p∑
i=1

λi(M)viv
T
i ,

which, seen as a function of z, has asymptotes at each λi(M) and is increasing
(from −∞ to ∞) on the segments (λi(M), λi+1(M)) (eigenvalues being sorted
in increasing order). The eigenvalues of M+ τuuT are therefore interlaced with
those of M, see Figure 2.1 for an illustration. This idea generalizes to finite-rank
perturbation in the following lemma.

Lemma 2.10 (Weyl’s inequality, [Horn and Johnson, 2012, Theorem 4.3.1]).
Let A,B ∈ Rp×p be symmetric matrices and let the respective eigenvalues of A,
B and A + B be arranged in nondecreasing order, i.e., λ1 ≤ λ2 ≤ . . . ≤ λp−1 ≤
λp. Then, for all i ∈ {1, . . . , p},

λi(A + B) ≤ λi+j(A) + λp−j(B), j = 0, 1, . . . , p− i,
λi−j+1(A) + λj(B) ≤ λi(A + B), j = 1, . . . , i,

In particular, taking i = 1 in the first equation and i = p in the second equation,
together with the fact λj(B) = −λp+1−j(−B) for j = 1, . . . , p, implies

max
1≤j≤p

|λj(A)− λj(B)| ≤ ‖A−B‖.

This last implication is fundamental as it shows that the difference in op-
erator norm ‖A−B‖ controls (uniformly) the pairwise distance of eigenvalues
|λj(A) − λj(B)|. Since ‖A − B‖ ≤ ‖A − B‖F , the same holds for the (nu-
merically simpler) Frobenius norm; however, it is in general too demanding to
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λi(M) λi+1(M) λi+2(M)

0
−1

λi(M + τuuT) λi+1(M + τuuT)

z

τ
u
T
Q

M
(z

)u

Figure 2.1: Illustration of the eigenvalues of M and the rank-one perturbation
M + τuuT of M, as well as the function τuTQM(z)u. Link to code: Matlab
and Python.

control the matrix differences in Frobenius norm which, as a result, is not used
in practice (in particular, for most random matrix models X ∈ Rp×p considered
in this monograph ‖X‖F is in general O(

√
p) larger than ‖X‖).7

Probability identities

The results of the previous sections are algebraic identities useful to handle
the resolvent QM of the deterministic matrix M. The second ingredient of
random matrix analysis lies in (asymptotic) probability approximations as the
dimensions of M increase. Quite surprisingly, most results essentially revolve
around the convergence of a certain quadratic form, which is often nothing more
than a mere extension of the law of large numbers.

Those quadratic form convergence results come under multiple forms. The
historical form, due to Bai and Silverstein, sometimes referred to as the “trace
lemma”, is as follows.

Lemma 2.11 (Quadratic-form-close-to-the-trace, trace lemma, [Bai and Sil-
verstein, 2010, Lemma B.26]). Let x ∈ Rp have independent entries xi of zero
mean, unit variance and E[|xi|K ] ≤ νK for some K ≥ 1. Then for A ∈ Rp×p

7This being said, the inequality ‖X‖ ≤ (tr(XXT)k)1/(2k), which coincides with ‖X‖ ≤
‖X‖F for k = 1 and becomes an equality in the k → ∞ limit, is sometimes used (however
with k ≥ 2) to control the operator norm ‖X‖. Nonetheless, the approach is often quite
cumbersome as it quickly becomes a heavy combinatorial calculus for not too small k.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/2.2/html/lemma_plots.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/2.2/lemma_plots.ipynb
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and k ≥ 1,

E
[∣∣xTAx− tr A

∣∣k] ≤ Ck [(ν4 tr(AAT)
)k/2

+ ν2k tr(AAT)k/2
]
,

for some constant Ck > 0 independent of p. In particular, if ‖A‖ ≤ 1 and the
entries of x have bounded eighth-order moment,

E
[(

xTAx− tr A
)4] ≤ Cp2,

for some C > 0 independent of p, and consequently, as p→∞,

1

p
xTAx− 1

p
tr A

a.s.−−→ 0.

This last result is rather intuitive. For A = Ip, this is simply an in-
stance of the (strong) law of large numbers. For generic A, first note that,
by the independence of the entries of x, E[xTAx] = tr A. Exploiting the
fact that Var[xTAx/p] = O(p−1) we have that xTAx/p − tr A/p → 0, but
only in probability; since the variance calculus involves exponentiating the en-
tries xi of x up to power 4, they need to be of finite fourth moment. The
almost sure convergence is achieved by showing the faster moment convergence
E[(xTAx/p − tr A/p)4] = O(p−2) which is the second statement of the lemma
and requires 8-th order exponentiation of the xi’s. The request for A to be
of bounded norm with respect to p in this case “stabilizes” the quadratic form
xTAx by maintaining its concentration properties.

Recalling from Remark 2.1 that ‖QM(z)‖ ≤ 1/ dist(z, supp(µM)), Lemma 2.11
can be exploited for A = QM(z) for all z away from the support of µM and all
x independent of QM(z). The core of the proofs of the main random matrix
results is essentially based on this last remark.

The quadratic-form-close-to-the-trace lemma is fundamental to already ob-
tain heuristics on the main random matrix identities, using 1

pxTAx ' 1
p tr A

for x independent of A with independent zero-mean unit-variance entries. In
the rigorous proof of many random matrix results presented in this monograph,
the lemma allows for a careful control on the fluctuations of 1

pxTAx for deter-
ministic A (or, conditioned on A). However, A may itself be random (as when
A = QM(z) the resolvent of a random matrix M). In this case, as a second
step, the fluctuations of 1

p tr A will also need be controlled. The difficulty here,
especially when A takes the form of an inverse matrix A = QM(z), is to exploit
the independence in the, say columns, of M nested inside the matrix inverse (or
other more elaborate function of the random matrix M). This can be elegantly
and universally dealt with using Burkholder inequality: denoting Ei[M] the ex-
pectation of the randommatrix M conditioned on its first (or last) i columns, the
sequence {(Ei −Ei−1)[M]}pi=1 forms a so-called martingale difference sequence;
the fluctuations of such objects (which in a way extend the notion of series of
independent random variables) are well controlled by Burkholder inequality as
follows.
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Lemma 2.12 (Burkholder inequality, Bai and Silverstein [2010, Lemma 2.13] ).
Let {Xi}∞i=1 be a martingale difference for the increasing σ-field {Fi} and denote
Ek the expectation with respect to Fk. Then, for k ≥ 2, and some constant Ck
only dependent on k,

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
k
 ≤ Ck

E

[
n∑
i=1

Ei−1[|Xi|2]

]k/2
+

n∑
i=1

E[|Xi|k]

 .

Lemma 2.12 will mostly be used in the context of proof details on the fluctu-
ations of technical random matrix functionals. It may however be substituted by
other similar tools such as the Gaussian Nash–Poincaré inequality (Lemma 2.14
in the “Gaussian method” proof framework to be discussed in Section 2.2.2)
which also involves moment bounds but restricted to Gaussian random vari-
ables, or more conveniently with concentration inequalities (see Section 2.7 for
detail) which no longer involve moments (which can be cumbersome to compute)
but (exponential) tail bounds.

These identities constitute the main technical ingredients needed to under-
stand the proofs of both historical and more recent random matrix results. The
next section introduces the most fundamental of those, which will be repeatedly
recalled in the remainder of the monograph.

2.2.2 The Marc̆enko-Pastur and semicircle laws
We start by illustrating how the aforementioned tools can be used to prove the
two most popular results in random matrix theory: the Marc̆enko-Pastur law
and the Wigner semicircle law.

To simplify the exposition of the results, we will use the notation for de-
terministic equivalents introduced in Notation 1. That is, for X,Y ∈ Rn×n,
we will denote X ↔ Y if, for all unit norm A ∈ Rn×n and a,b ∈ Rn,
1
n tr A(X−Y)

a.s.−−→ 0, aT(X−Y)b
a.s.−−→ 0 and ‖E[X−Y]‖ → 0.

Most of the results involve Stieltjes transforms mµ(z) of a real probability
measure with support supp(µ) ⊂ R. Since Stieltjes transforms are such that
mµ(z) > 0 for z < inf supp(µ), mµ(z) < 0 for z > sup supp(µ) and =[z] ·
=[mµ(z)] > 0 if z ∈ C \ R (see Definition 3 and the discussions after that), it
will be convenient to introduce the following shortcut notation.

Notation 2 (“Valid” Stieltjes transform pair). For A ⊂ C, z ∈ A and m ∈ C,
we denote Z(A) the set of scalar pairs

Z(A) =
{

(z,m) ∈ A× C, such that (=[z] · =[m] > 0 if =[z] 6= 0)

or (m > 0 if z < inf Ac ∩ R) or (m < 0 if z > supAc ∩ R)
}
.

In particular, for convenient choices of A (not always C \ supp(µ)), many
results presented next will involve pairs (z,m(z)) defined as the unique solution
of an implicit equation within Z(A) (while the implicit equation may in general
have more than one solution in C× C).
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The Marc̆enko-Pastur law

We present the Marc̆enko-Pastur law under the slightly modified form of a
deterministic equivalent for the resolvent Q(z).

Theorem 2.4 (Marcenko and Pastur [1967]). Let X ∈ Rp×n with i.i.d. columns
xi such that xi has independent entries with zero mean, unit variance, and some
light tail condition8 and denote Q(z) = ( 1

nXXT−zIp)−1 the resolvent of 1
nXXT.

Then, as n, p→∞ with p/n→ c ∈ (0,∞),

Q(z)↔ Q̄(z), Q̄(z) = m(z)Ip, (2.8)

with (z,m(z)) the unique solution in Z(C\[(1−
√
c)2, (1+

√
c)2]) (see Notation 2)

of
zcm2(z)− (1− c− z)m(z) + 1 = 0. (2.9)

The function m(z) is the Stieltjes transform of the probability measure µ given
explicitly by

µ(dx) = (1− c−1)+δ0(x) +
1

2πcx

√
(x− E−)+(E+ − x)+ dx (2.10)

where E± = (1 ±
√
c)2 and (x)+ = max(0, x), and is known as the Marc̆enko-

Pastur distribution. In particular, with probability one, the empirical spectral
measure µ 1

nXXT converges weakly to µ.

Figure 2.2 depicts the density of the Marc̆enko-Pastur distribution for dif-
ferent values of c = lim p/n. For a “fixed” dimension p, the ratio c decreases
as the number of samples n grows large, so that the eigenvalues of 1

nXXT be-
come more “concentrated” (their spread is given by the length of the support
[(1−

√
c)2, (1 +

√
c)2]) around the (unique) population covariance matrix eigen-

value (when seeing X as a collection X = [x1, . . . ,xn] of p-dimensional data
vectors with E[xi] = 0 and Cov[xi] = Ip), which is equal to 1.

8For this result, and those related, various tail conditions may be considered, e.g., a uniform
finite moment of order k for some k > 2 (usually k = 4 + ε for any ε > 0 is sufficient).
Depending on the proof approach though, stronger conditions may be requested, such as a
sub-Gaussian tail behavior, a concentration of measure-type condition, etc. Determining the
minimalistic conditions for the results to hold has been of long interest to mathematicians,
as demonstrated by the huge impact of the complete proof by Tao and Vu [2008] of the full-
circle law theorem under no other condition than the identical distribution of the zero-mean
and unit-variance entries (see also [Bordenave and Chafaï, 2014]). Yet, for machine learning
purposes, these are of minor interest: we shall systematically assume “sufficiently smooth”
(and technically convenient) conditions to hold, without hampering the practical applicability
of the results. This being said, it is already interesting to observe that, here and in the vast
majority of the coming results, the matrix entries need not be identically distributed, and
that only the statistical mean and cross-variance of the entries dictate the limiting behavior.
We presently assume that X has i.i.d. columns for technical convenience in the proof – for
instance, to exploit the (rough) union bound in (2.20); this independent entry condition can
be generalized to “independent columns” by considering, e.g., that the xi’s are sub-Gaussian
random vectors [Vershynin, 2018, Section 3.4].
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Figure 2.2: Marc̆enko-Pastur distribution for different values of c. Note the
peculiar “hard-edge” behavior at c = 1, quite unlike other values of c.

Note that the “asymmetric bell” shape of the Marc̆enko-Pastur law gets
increasingly skewed towards large values as c increases and that, as c = 1, the
left-edge value has the very peculiar behavior to diverge. This c = 1 setting is
referred to as the “hard edge” scenario explained by the fact that the limiting
density becomes

1

2πx

√
x+(4− x)+ ∼ 1

π
√
x
,

as x ↓ 0 and thus behaves as 1/
√
x near the left edge (the left edge being at

x = 0) rather than as
√
x− (1−

√
c)2 when c 6= 1 (the left edge being at

x = (1−
√
c)2, see also Exercise 6 for more detailed discussions on this point).

When c > 1, a mass at zero is created (of weight 1 − c−1) while, possibly
unexpectedly, the left edge of the main “bulk” of eigenvalues moves towards the
right, leaving the open segment (0, (1−

√
c)2) empty.9

Proof of Theorem 2.4. Before going into the details of the proof, we first give a
few intuitive arguments.

Intuitive idea. A first heuristic derivation, essentially due to Bai and Silver-
stein, consists in iteratively “guessing” the form of Q̄(z) = F−1(z) for some
matrix F(z). To this end, from Lemma 2.1, it first appears that, writing

9This hard-edge phenomenon is in fact not just an amusing artifact of the theory: it
indeed has deep consequences in practice and notably explains the so-called double-descent
phenomenon lately evidenced in large dimensional statistical inference (see e.g., [Nakkiran
et al., 2020, Mei and Montanari, 2021, Deng et al., 2021, Liao et al., 2020]).
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X = [x1, . . . ,xn],

Q(z)− Q̄(z) = Q(z)

(
F(z) + zIp −

1

n
XXT

)
Q̄(z)

= Q(z)

(
F(z) + zIp −

1

n

n∑
i=1

xix
T
i

)
Q̄(z).

For Q̄(z) to be a deterministic equivalent for Q(z), we wish in particular that
1
p tr A(Q(z)−Q̄(z))

a.s.−−→ 0, for A arbitrary, deterministic, and such that ‖A‖ =
1. That is

1

p
tr(F(z) + zIp)Q̄(z)AQ(z)− 1

n

n∑
i=1

1

p
xT
i Q̄(z)AQ(z)xi

a.s.−−→ 0. (2.11)

We recognize xT
i Q̄(z)AQ(z)xi/p as a quadratic form on which we would like to

use Lemma 2.11 to turn it into a trace term independent of xi. Yet, Lemma 2.11
cannot be applied directly as Q(z) depends on xi. To address this issue, we then
use Lemma 2.8 to write

Q(z)xi =
Q−i(z)xi

1 + 1
nxT

i Q−i(z)xi
,

where Q−i(z) = ( 1
n

∑
j 6=i xjx

T
j − zIp)−1 is independent of xi. Now legitimately

applying Lemma 2.11, we find that

1

p
xT
i Q̄(z)AQ(z)xi =

1
pxT

i Q̄(z)AQ−i(z)xi

1 + 1
nxT

i Q−i(z)xi
'

1
p tr Q̄(z)AQ−i(z)

1 + 1
n tr Q−i(z)

. (2.12)

From Lemma 2.9, normalized traces involving Q−i(z) and Q(z) are asymptoti-
cally identical (since their inverse only differs by the rank-1 matrix 1

nxix
T
i ) and

thus this further reads

1

p
xT
i Q̄(z)AQ(z)xi '

1
p tr Q̄(z)AQ(z)

1 + 1
n tr Q(z)

.

Getting back to (2.11), we thus end up with the approximation

1

p
tr(F(z) + zIp)Q̄(z)AQ(z) '

1
p tr Q̄(z)AQ(z)

1 + 1
n tr Q(z)

, (2.13)

(the argument of the right-hand side summation over i no longer depends on i,
so the sum symbol vanishes). As a consequence, we can now “guess” the form
of F(z): if it is to exist, F(z) must be of the type

F(z) '
(
−z +

1

1 + 1
n tr Q(z)

)
Ip,
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for the approximation above to hold. To close the loop, taking A = Ip, 1
p tr Q(z)

appearing in this display must be well approximated by m(z) ≡ 1
p tr Q̄(z) =

1
p tr F−1(z) so that

1

p
tr Q(z) ' m(z) =

1

−z + 1
1+ p

n
1
p tr Q(z)

' 1

−z + 1
1+ p

nm(z)

, (2.14)

and we thus finally have

Q̄(z) = F−1(z) = m(z)Ip,

where, in the large n, p limit, m(z) is solution to

m(z) =

(
−z +

1

1 + cm(z)

)−1

,

or equivalently

zcm2(z)− (1− c− z)m(z) + 1 = 0.

This equation has two solutions defined via the two values of the complex square
root function (letting z = ρeıθ for ρ ≥ 0 and θ ∈ [0, 2π),

√
z ∈ {±√ρeıθ/2})

m(z) =
1− c− z

2cz
+

√
((1 +

√
c)2 − z)((1−

√
c)2 − z)

2cz
,

only one of which is such that =[z]=[m(z)] > 0 as imposed by the definition of
Stieltjes transforms, see again Definition 3 and the discussion after that. Now,
from the inverse Stieltjes transform theorem, Theorem 2.1, we find that m(z) is
the Stieltjes transform of the measure µ with

µ([a, b]) =
1

π
lim
y↓0

∫ b

a

=[m(x+ ıy)] dx,

for all continuity points a, b ∈ R of µ. The term under the square root in m(z)
being nonnegative only in the set [(1 −

√
c)2, (1 +

√
c)2] (and thus of non-real

square root), the latter defines the support of the continuous part of the measure

µ with density
√

((1+
√
c)2−x)(x−(1−

√
c)2)

2cπx at point x in the set. The case x = 0
brings a discontinuity in µ with weight equal to

µ({0}) = − lim
y↓0

ıym(ıy) =
c− 1

2c
± c− 1

2c
,

where the sign is established by a second-order development of zm(z) in the
neighborhood of zero: that is, “+” for c > 1 inducing a mass 1− 1/c for p > n,
or “−” for c < 1 in which case µ({0}) = 0 and µ has no mass at zero.
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Detailed proof of Theorem 2.4. Having heuristically identified Q̄(z), we
shall now use sound mathematical tools to prove that, indeed, Q̄(z) is a deter-
ministic equivalent for Q(z) in the sense of the theorem statement. Let us first
show that

E[Q(z)] = Q̄(z) + o‖·‖(1), (2.15)

where o‖·‖(1) denotes a matrix term of vanishing operator norm as n, p→∞.

Convergence in mean. For mathematical convenience, we will take z < 0 in
what follows. Since Q(z) and Q̄(z) from the theorem statement are complex
analytic functions for z /∈ R+ (matrix-valued Stieltjes transforms are analytic),
by Vitali’s convergence theorem, Theorem 2.3, obtaining the convergence results
on R− (in fact even on a restricted local subset of R−) is equivalent to obtaining
the result on all of C \ R+.

We proceed in two steps by first introducing the intermediate deterministic
quantities

α(z) ≡ 1

n
trE[Q−1(z)], ¯̄Q(z) ≡

(
−z +

1

1 + α(z)

)−1

Ip, (2.16)

where we denote Q−j(z) ≡ ( 1
n

∑
i 6=j xix

T
i − zIp)−1 the “leave-one-out” version

of Q(z) by removing the contribution from xj .
From Lemma 2.1, we have (the argument z in α(z), Q(z) and ¯̄Q(z) is dropped

when confusion is not possible)

E[Q− ¯̄Q] = EQ

(
Ip

1 + α
− 1

n
XXT

)
¯̄Q =

E[Q]

1 + α
¯̄Q− 1

n
E[QXXT] ¯̄Q

=
E[Q]

1 + α
¯̄Q−

n∑
i=1

1

n
E[Qxix

T
i ] ¯̄Q =

E[Q]

1 + α
¯̄Q−

n∑
i=1

E

[
Q−i

1
nxix

T
i

1 + 1
nxT

i Q−ixi

]
¯̄Q,

where we applied Lemma 2.8 to obtain the last equality.
Since we expect 1

nxT
i Q−ixi to be close to α (as a consequence of Lemma 2.11 and 2.12),

we rewrite

Q−i
1
nxix

T
i

1 + 1
nxT

i Q−ixi
=

Q−i
1
nxix

T
i

1 + α
−

Q−i
1
nxix

T
i ( 1

nxT
i Q−ixi − α)

(1 + α)(1 + 1
nxT

i Q−ixi)
,

so that

E[Q− ¯̄Q] =
E[Q]

1 + α
¯̄Q−

n∑
i=1

E
[
Q−i

1
nxix

T
i

] ¯̄Q

1 + α
+

n∑
i=1

E
[
Q 1
nxix

T
i di
] ¯̄Q

1 + α

=
E[Q]

1 + α
¯̄Q−

n∑
i=1

E
[
Q−i

1
nxix

T
i

] ¯̄Q

1 + α
+

E
[
Q 1
nXDXT

] ¯̄Q

1 + α
,

where we introduced D = diag{di}ni=1 for di = 1
nxT

i Q−ixi − α, and used

again Lemma 2.8 to write Q−i
1
nxix

T
i

1+ 1
nxT

iQ−ixi
= Q 1

nxix
T
i in the first equality. Since
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E[Q−ixix
T
i ] = E[Q−i], this further reads

E[Q− ¯̄Q] =
1

n

n∑
i=1

(E[Q]− E[Q−i])
¯̄Q

1 + α
+

E
[

1
nQXDXT

] ¯̄Q

1 + α
. (2.17)

For the first right-hand side term, again from Lemma 2.1 and 2.8,

1

n

n∑
i=1

E[Q−Q−i] = − 1

n

n∑
i=1

E
[
Q

1

n
xix

T
i Q−i

]

= − 1

n

n∑
i=1

E
[
Q

1

n
xix

T
i Q

(
1 +

1

n
xT
i Q−ixi

)]
= − 1

n
E
[
Q

1

n
XD2X

TQ

]
, (2.18)

where D2 = diag
{

1 + 1
nxT

i Q−ixi
}n
i=1

and thus

E[Q− ¯̄Q] = − 1

n
E
[
Q

1

n
XD2X

TQ

] ¯̄Q

1 + α
+

E
[

1
nQXDXT

] ¯̄Q

1 + α
. (2.19)

It remains to show that the right-hand side terms vanish in the large p, n limit.
For the first term, note that

0 � Q
1

n
XD2X

TQ � Q
1

n
XXTQ · max

1≤i≤n
[D2]ii

in the order of symmetric matrices. Since Q 1
nXXT = Ip + zQ which is of

bounded operator norm (by 2) and ‖Q‖ ≤ 1/|z|, controlling ‖E[Q 1
nXD2X

TQ]‖
boils down to controlling E[maxi[D2]ii]. This can be established in various ways.
For instance, from the union bound and the i.i.d. nature of the xi’s,

P
(

max
i

[D2]ii > t
)
≤ nP ([D2]11 > t) . (2.20)

Now, by Markov’s inequality P(X > t) ≤ E[Xk]/tk for every k (for X, t > 0)
and the moment inequality in Lemma 2.11 for, say k = 4, P(maxi[D2]ii > t)
may be bounded by a function decreasing as t−4, for all t large, and of order
n−1. Specifically, for k even,

P
(

[D2]11 > t+ 1 +
1

n
tr Q−1

)
≤

E
[
( 1
nxT

1 Q−1x1 − 1
n tr Q−1)k

]
tk

≤
EQ−1Ex1

[
( 1
nxT

1 Q−1x1 − 1
n tr Q−1)k

]
tk

where we isolated the expectation over Q−1 from that over x1 to let appear
the difference 1

nxT
1 Q−1x1 − 1

n tr Q−1 which, conditionally on Q−1 of bounded
norm, we know is small and can be controlled using Lemma 2.11:

Ex1

[∣∣∣∣ 1nxT
1 Q−1x1 −

1

n
tr Q−1

∣∣∣∣4
]
≤ C

n4
tr2(Q2

−1),
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for some constant C > 0 which depends on the fourth- and eighth-order mo-
ments of the entries of x, but which is independent of n, p, according to Lemma 2.11
with k = 4. Since ‖Q−1‖ ≤ 1/|z| (note that the key boundedness property of
the resolvent is used to simplify the analysis, here and in most random matrix
proofs), we have tr2(Q2

−1) ≤ p2/|z|4, 1 + 1
n tr Q−1 ≤ 1 + p/(n|z|), and therefore

P ([D2]11 > t) ≤ Cp2

n4|z|4 · t4

holds for all t > C ′ for some C ′ > 0 that depends on n, p only via their ratio
p/n. Finally, since

E[max
i

[D2]ii] =

∫ C′

0

P(max
i

[D2]ii > t) dt+

∫ ∞
C′

P(max
i

[D2]ii > t) dt

≤ C ′ + n

∫ ∞
C′

P([D2]11 > t) dt ≤ C ′ + Cp2

n3|z|4

∫ ∞
C′

t−4 dt <∞

we find that E[maxi[D2]ii] is bounded. Note that this also proves, by (2.18), that
‖E[Q−Q−1]‖ = O(n−1). Consequently, due to the leading 1/n factor in front
of the first right-hand side term of (2.19), this term vanishes as n, p→∞.10

To now handle the second right-hand side term in (2.19), one needs to control
the norm of 1

nQXDXT ¯̄Q. This is not a symmetric matrix, but E[Q− ¯̄Q] is. We
may thus rewrite (2.19) as the half-sum of itself and its transpose and we are
thus left to controlling the operator norm of 1

nQXDXT ¯̄Q+ 1
n

¯̄QXDXTQ. Using
the matrix inequalities ABT+BAT � AAT+BBT (from (A−B)(A−B)T � 0)
and ABT + BAT � −AAT−BBT (from (A + B)(A + B)T � 0), we are left to
bounding the norm of

E
[
nε

n
QXD2XTQ

]
+ E

[
n−ε

n
¯̄QXXT ¯̄Q

]
where the division of the n−2 constant into n−1+ε and n−1−ε for some ε ∈
(0, 1

2 ] will appear as essential, since both terms do not have the same orders of
magnitude (which depend on the so far unknown magnitude of the entries of
D). The second term above is easily seen to be of order O(n−ε). As for the first
term, we write, similar to the bound on D2,

nεE[‖D‖2] = nεE
[
max
i
d2
i

]
≤ nε

∫ C′n−θ−ε

0

P
(

max
i
d2
i > t

)
dt+ n1+ε

∫ ∞
C′n−θ−ε

P
(
d2

1 > t
)
dt

≤ C ′n−θ + n1+ε

∫ ∞
C′n−θ−ε

P

(∣∣∣∣ 1nxT
1 Q−1x1 − α

∣∣∣∣2 > t

)
dt,

10Another proof option could have been to derive a moment inequality for the random
variable |xT

1Q−1x1 − trE[Q−1]|k rather than for |xT
1Q−1x1 − tr Q−1|k, which would have

involved Burkholder inequality used a bit later in the proof to control the fluctuations of
tr Q−1− trEQ−1. But, as we saw, the fundamental boundedness of ‖Q−1‖ discards here the
need to control the fluctuations of Q−1.
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for some C ′ > 0 and θ ∈ (0, 1
2 ] to be determined, di = 1

nxT
i Q−ixi − α and

α = 1
n trE[Q−1] > 0. Here, since α involves an expectation over Q−1 (and not

Q−1 itself as in the bound of ‖D2‖), one needs be more precise in the control
of the fluctuations of both x1 and Q−1. Specifically, we write

E
∣∣∣∣ 1nxT

1 Q−1x1 −
1

n
trE[Q−1]

∣∣∣∣4
= E

∣∣∣∣ 1nxT
1 Q−1x1 −

1

n
tr Q−1 +

1

n
tr(Q−1 − E[Q−1])

∣∣∣∣4
≤ 8

n4
E
[∣∣xT

1 Q−1x1 − tr Q−1

∣∣4]+
8

n4
E
[
|tr Q−1 − trE[Q−1]|4

]
,

which we will show to be of order O(n−2). For the first right-hand side term,
this follows from Lemma 2.11. For the second term, which does not involve a
quadratic form but the fluctuations of the columns of X inside the intricate
functional tr Q−1, we will resort to Burkholder inequality, Lemma 2.12. For the
sake of further reuse, we will prove a slightly more general result on E[| tr Q−1−
trE[Q−1]|4]: first note that by Lemma 2.9 we may freely replace Q−1 with Q in
the result without altering the desired control, and that we may generalize the
control to E[| tr AQ−1− trE[AQ−1]|4] for arbitrary A deterministic of bounded
norm (again, this will be useful later).

Specifically, under the notation of Lemma 2.12, observe that we may write

1

p
tr A(EQ−Q) =

n∑
i=1

Ei
[

1

p
tr AQ

]
− Ei−1

[
1

p
tr AQ

]

=
1

p

n∑
i=1

(Ei − Ei−1) [tr A(Q−Q−i)] ,

(since Ei[tr AQ−i] = Ei−1[tr AQ−i]) for Fi the σ-field generating the columns
xi+1, . . . ,xn of X and with the convention E0[f(X)] = f(X). This forms a
martingale difference sequence so that we fall under the scope of Burkholder
inequality. Now, from the identity Q = Q−i − 1

n
Q−ixix

T
iQ−i

1+ 1
nxT

iQ−ixi
(Lemma 2.8),

(Ei − Ei−1)

[
1

p
tr A(Q−Q−i)

]
= −(Ei − Ei−1)

1
pnxT

i Q−iAQ−ixi

1 + 1
nxT

i Q−ixi
,

which is order O(p−1). As a consequence, from Lemma 2.12,

E

[∣∣∣∣1p tr A(Q− EQ)

∣∣∣∣4
]

= O(n−2). (2.21)

Of course, this in particular implies that E[| 1p tr(Q−1 − EQ−1)|4] = O(n−2), as
desired.
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Having obtained this desired control on the moments, it finally follows from
Markov’s inequality that

P

(∣∣∣∣ 1nxT
1 Q−1x1 −

1

n
trE[Q−1]

∣∣∣∣2 > t

)
≤ Ct−2n−2,

for all t > C ′ and for some constant C ′, C > 0. Therefore

nεE[‖D‖2] ≤ C ′n−θ + CC ′n2ε+θ−1.

By choosing for instance ε = θ = 1
4 , we thus conclude that11

‖E[Q]− ¯̄Q‖ ≤ Cn−1/4, with ¯̄Q =

(
−z +

1

1 + α(z)

)−1

Ip. (2.22)

The introduction of the intermediate deterministic equivalent ¯̄Q allowed us
to compare Q to Q̄ by exploiting the more accessible statistical relation between
Q and E[Q]. We are now in position to compare the deterministic matrices ¯̄Q
and Q̄. To this end, recalling that Q̄ is defined implicitly through Q̄ = m(z)Ip
with m(z) = (−z + 1

1+cm(z) )−1 = 1
p tr Q̄(z), we write, again with Lemma 2.1,

¯̄Q− Q̄ =
α(z)− cm(z)

(1 + cm(z))(1 + α(z))
¯̄QQ̄,

so that

|α(z)− cm(z)| =
∣∣∣∣ 1n tr

(
E[Q−1(z)]− ¯̄Q(z)

)
+

1

n
tr
(

¯̄Q(z)− Q̄(z)
)∣∣∣∣

= |α(z)− cm(z)| ·
1
n tr( ¯̄Q(z)Q̄(z))

(1 + cm(z))(1 + α(z))
+O(n−

1
4 ),

where we used the fact that ‖E[Q−1] − ¯̄Q‖ ≤ ‖E[Q−1 −Q]‖ + ‖E[Q] − ¯̄Q‖ =
O(n−1/4) from (2.22). Since α(z) > 0 for z < 0, we have

0 ≺
¯̄Q(z)

1 + α(z)
≺ Ip

1− z
,

11The obtained bound has order O(n−1/4) which is in fact sub-optimal and could (at least)
be improved to O(n−1/2). It is interesting to note here that this loss in optimality follows
from the very rough bound P(maxi d

2
i > t) ≤ nP(d2i > t), which the moment of order 4

bound in O(n−2) applied in Markov’s inequality does not optimally compensates. Alternative
approaches to avoid this loss are (i) to either evaluate higher-order moments (in general
the moment of order 2k is bounded by Cn−k) but this may come at the cost of cumbersome
calculus; or more conveniently (ii) to obtain exponential decay bounds of P(d2i > t) of the order
O(e−n

α
) which automatically annihilate the polynomial loss induced by the extra factor n.

Item (ii) partially justifies the relevance of a concentration of measure framework for random
matrices, which we will detail in Section 2.7.
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so that

0 <
1
n tr( ¯̄Q(z)Q̄(z))

(1 + cm(z))(1 + α(z))
<

1

1− z
cm(z)

1 + cm(z)
< 1,

and therefore, since m(z) > 0 for z < 0,

|α(z)− cm(z)| → 0,

which concludes the proof of (2.15), and thus of the “convergence in mean” part
of Theorem 2.4.

Concentration and almost sure convergence. To now prove the almost sure
convergence 1

p tr A(Q− Q̄)
a.s.−−→ 0 and aT(Q− Q̄)b

a.s.−−→ 0, it suffices to show

1

p
tr A(Q− EQ)

a.s.−−→ 0, aT(Q− EQ)b
a.s.−−→ 0.

Both results can be proved similarly using Burkholder inequality, Lemma 2.12
(which is the historical approach proposed by Bai and Silverstein [2010]). We
have indeed already proved in (2.21) that E[| tr A(Q − EQ)/p|4] = O(n−2) so
that, from Markov’s inequality (i.e., P(|X| > t) ≤ E[|X|k]/tk) and the Borel-
Cantelli lemma (i.e., P(|Xn| > t) = O(n−`) for some ` > 1 for all t > 0 implies
Xn

a.s.−−→ 0 as n→∞),

1

p
tr A(Q− EQ)

a.s.−−→ 0,

as requested. The convergence aT(Q− EQ)b
a.s.−−→ 0 can be obtained similarly.

A few remarks on Theorem 2.4 and its proof are in order.

Remark 2.3 (On the convergence rates). In the course of the proofs above, we
saw examples of a general concentration trend for linear statistics and quadratic
forms of random matrices. We shall indeed typically have for most of the models
of random matrices X ∈ Rn×n under study in this monograph that

• linear eigenvalue statistics 1
n

∑n
i=1 f(λi(X)) for sufficiently well-behaved

f (so for instance 1
n tr QX(z) = 1

n

∑
i(λi(X) − z)−1) converge at speed

O(1/n) (their variance scales like O(1/n2)). From a central-limit theorem
viewpoint, this is as fast as it can get. Indeed, X is maximally composed
of O(n2) “degrees of freedom” and thus, by the central limit theorem, fluc-
tuations are (at most) at speed O(1/

√
n2) = O(1/n).

• bilinear forms aTf(X)b where f(X) = U diag{f(λi(X))}ni=1U
T (in the

spectral decomposition of X) and a,b ∈ Rn of unit norm typically con-
verge at a slower O(1/

√
n) speed. This weaker convergence speed can be

understood by considering the case where a = b = e1 with e1 the canonical
basis vector and f(t) = (t − z)−1: in this case aTf(X)b = eT

1 Q(z)e1 =
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[Q(z)]11 = (X11− z−X1,−1(X−1− zIn−1)−1X−1,1)−1 by Lemma 2.6, the
fluctuation of which is dominated by that of X11 and typically of order
O(1/

√
n).

This remark is particularly interesting as it indicates, from a statistics viewpoint
that, for data/feature matrix X ∈ Rp×n, asymptotic approximations may gain
accuracy by doubly exploiting the degrees of freedom in both the sample (n) and
feature (p) sizes.

Remark 2.4 (On the assumptions on X). Let us pursue here on footnote 8
introduced to clarify the “light tail condition” phrase of Theorem 2.4. The
Marc̆enko-Pastur law has been widely generalized and several times proven using
different techniques. For instance Adamczak [2011], O’Rourke [2012] assume the
Xij’s are “weakly” dependent in the sense that their correlation or higher order
cross-moments vanish at a certain controlled speed as n, p→∞. Alternatively,
the works of Bai and Silverstein [2010] tend to assume that the entries of X
are not necessarily identically distributed; in this case, an additional condition
on the tails P(|Xij | > t) of the probability measures of the entries (for instance
a uniform bound on some moment higher than 2) is needed. El Karoui [2009]
provides a first result which assumes the columns xi of X = [x1, . . . ,xn] are in-
dependent concentrated random vectors, an assumption that we will thoroughly
discuss in Section 2.7; (very) roughly speaking, concentrated random vectors
x ∈ Rp can be written as x = ϕ(z) where z ∈ Rp has i.i.d. entries either follow-
ing a Gaussian law or of bounded support, and ϕ : Rp → Rp is any 1-Lipschitz
function: this assumption essentially maintains the p degrees of freedom in x
(arising from z) while allowing for strong correlation between the entries of x.
In this case, the Marc̆enko-Pastur law is indeed still valid if x = ϕ(z) has zero
mean and identity covariance.

One may wonder how the (higher order) moment conditions on the en-
tries of X could be relaxed as this seems to suggest that moment bounds can
no longer be used. The approach historically proposed by Bai and Silverstein
(well documented in [Bai and Silverstein, 2010]) relies on a truncation-and-
centering approach which consists in replacing X by a matrix X̃ defined as
X̃ij = Xij ·1|Xij>t(n)| for a certain threshold t, typically (a well chosen) function
of n. Being “truncated”, the entries of X̃ have moments of higher orders (of all
orders if t(n) is constant), so that moment bounds can be used on X̃. It then
remains to show that the functional of X of interest (e.g., the empirical spec-
tral measure of 1

nXXT) is asymptotically the same as that of X̃ as n, p → ∞.
Other techniques exist which prove a result on X having standard Gaussian en-
tries (for instance using Stein’s identity E[ξf(ξ)] = E[f ′(ξ)] for ξ ∼ N (0, 1);
see Lemma 2.13 below) before using specific controls on the deviations from
the Gaussian case (such as generalized Stein’s lemma) to extrapolate between
Gaussian and non-Gaussian cases. This is the subject of the next section.

The “Gaussian method” alternative

Pastur and Shcherbina [2011] propose an alternative proof scheme for Theo-
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rem 2.4, based on a two-step approach: (i) a proof for Gaussian X and (ii)
an interpolation method to non-Gaussian X; together known as the “Gaussian
method”. Although less intuitive when compared to the Bai and Silverstein’s
approach presented in the previous section, this method is much more flexible
as it can handle more structured random matrix models, in particular when
the “guessing” part (of the ultimate deterministic equivalent Q̄ for Q) of Bai-
Silverstein’s method is nontrivial.

The proof in the Gaussian case itself is handled in two steps (or more pre-
cisely is based on two ingredients): (i-a) convergence in mean of the resolvent
with Stein’s lemma, Lemma 2.13, and (i-b) control of the variance with the
Nash–Poincaré inequality, Lemma 2.14, to establish concentration and conver-
gence (in probability or almost surely) of trace and bilinear forms.

Convergence in mean by Stein’s lemma.

Lemma 2.13 (Stein [1981]). Let x ∼ N (0, 1) and f : R → R a continu-
ously differentiable function having at most polynomial growth and such that
E[f ′(x)] <∞. Then,

E[xf(x)] = E[f ′(x)]. (2.23)

In particular, for x ∼ N (0,C) with C ∈ Rp×p and f : Rp → R a continuously
differentiable function with derivatives having at most polynomial growth with
respect to p,

E[[x]if(x)] =

p∑
j=1

[C]ijE
[
∂f(x)

∂[x]j

]
, (2.24)

where ∂/∂[x]i indicates differentiation with respect to the i-th entry of x; or, in
vector form

E[xf(x)] = CE[∇f(x)], (2.25)

with ∇f(x) the gradient of f(x) with respect to x.

The lemma, sometimes referred to as the integration-by-parts formula for
Gaussian variables, simply follows from

E[xf(x)] =

∫
xf(x)e−

1
2x

2

dx

= [−f(x)e−
1
2x

2

]∞−∞ +

∫
f ′(x)e−

1
2x

2

dx = E[f ′(x)]

with integration by parts
∫
u′v = [uv] −

∫
uv′ for u(x) = −e− 1

2x
2

and v(x) =
f(x).

To prove (2.15) in the Gaussian case, let us thus assume X Gaussian, i.e.,
Xij ∼ N (0, 1) and exploit Lemma 2.13. First observe that Q = 1

z
1
nXXTQ− 1

z Ip,
so that

E[Qij ] =
1

zn

n∑
k=1

E[Xik[XTQ]kj ]−
1

z
δij ,



72 CHAPTER 2. RANDOM MATRIX THEORY

in which E[Xik[XTQ]kj ] = E[xf(x)] for x = Xik and f(x) = [XTQ]kj . There-
fore, from Lemma 2.13 and the fact that ∂Q = − 1

nQ∂(XXT)Q,12

E[Xik[XTQ]kj ] = E
[
∂[XTQ]kj
∂Xik

]
= E[ET

ikQ]kj − E
[

1

n
XTQ(EikX

T + XET
ik)Q

]
kj

= E[Qij ]− E
[

1

n
[XTQ]ki[X

TQ]kj

]
− E

[
1

n
[XTQX]kkQij

]
for Eij the indicator matrix with entry [Eij ]lm = δilδjm, so that, summing over
k,

1

z

1

n

n∑
k=1

E[Xik[XTQ]kj ] =
1

z
E[Qij ]−

1

z

1

n2
E[Qij tr(QXXT)]

− 1

z

1

n2
E[QXXTQ]ij . (2.26)

It is not too difficult to see that the term in the second line has vanishing
operator norm (of order O(n−1)) as n, p → ∞ (see later Remark 2.5, which
shows that for complex-valued Gaussian X this term does not even appear in
the derivation). Also recall that tr(QXXT) = np+zn tr Q. As a result, matrix-
wise, we obtain

E[Q] +
1

z
Ip = E[X·k[XTQ]k·] =

1

z
E[Q]− 1

z

1

n
E[Q(p+ z tr Q)] + o‖·‖(1),

where X·k and Xk· is the k-th column and row of X, respectively. As the
random 1

p tr Q is expected to converge to some deterministic m(z) as n, p→∞,
it can be taken out of the expectation in the limit so that, gathering all terms
proportional to E[Q] on the left-hand side, we finally have

E[Q](1− p/n− z − p/n · zm(z)) = Ip + o‖·‖(1),

which, taking the trace to identify m(z), concludes the proof for the Gaussian
case.

Concentration and almost sure convergence by Nash–Poicaré inequality. To
prove the concentration and the almost sure convergence of traces and bilinear
forms of the resolvent in the case of Gaussian X, one may then use the powerful
Nash–Poincaré inequality as follows.

Lemma 2.14 (Nash–Poincaré inequality, [Pastur, 2005]). For x ∼ N (0,C)
with C ∈ Rp×p and f : Rp → R continuously differentiable with derivatives
having at most polynomial growth with respect to p,

Var[f(x)] ≤
p∑

i,j=1

[C]ijE
[
∂f(x)

∂[x]i

∂f(x)

∂[x]j

]
= E

[
(∇f(x))TC∇f(x)

]
,

12This is the matrix version of d(1/x) = −dx/x2.
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where we denote ∇f(x) the gradient of f(x) with respect to x.

The proof of Lemma 2.14 is quite elegant and is provided as an exercise, in
Exercise 5 of Section 2.9.

In the present case, taking f(X) = 1
p tr AQ for Gaussian X with Xij ∼

N (0, 1),

Var

[
1

p
tr AQ

]
≤ 1

p2

p∑
i=1

n∑
j=1

E

[∣∣∣∣∂ tr AQ

∂[X]ij

∣∣∣∣2
]
.

Again using ∂Q = − 1
nQ∂(XXT)Q, we find

∂ tr AQ

∂Xij
= − 1

n
[QAQX + QATQX]ij ,

so that, from (a+ b)2 ≤ 2(a2 + b2) and ‖A‖ = 1,

1

p2

p∑
i=1

n∑
j=1

E

[∣∣∣∣∂ tr AQ

∂Xij

∣∣∣∣2
]
≤ 2

p2n2
E
[

tr(QAQXXTQATQ)

+ tr(QATQXXTQAQ)
]

= O(n−2).

ByMarkov’s inequality and the Borel Cantelli lemma, we thus have that 1
p tr A(Q−

EQ)
a.s.−−→ 0.

When it comes to evaluating the fluctuations of aT(Q−EQ)b with the same
approach, it appears that Var[aT(Q − EQ)b] = O(n−1) which is enough to
ensure convergence in probability (by Markov’s inequality) but not in an almost
sure sense (as the Borel Cantelli lemma cannot be applied). Thus one needs to
resort to evaluating its higher order moments, such as E[|aT(Q − EQ)b|4]. To
this end, we may use the fact that

E[|aT(Q− EQ)b|4]

= Var[|aT(Q− EQ)b|2] +
(
E
[
|aT(Q− EQ)b|2

])2
= Var[|aT(Q− EQ)b|2] +

(
Var[aT(Q− EQ)b]

)2
.

Since we know that the rightmost term is of order O(n−2), it remains to show,
again through Nash–Poincaré inequality, that Var[|aT(Q − EQ)b|2] = O(n−2)
which is a cumbersome but easily obtained result as well.

Interpolation trick to non-Gaussian X. To “interpolate” the obtained results
from Gaussian X to non-Gaussian X, one may then use the following lemma,
which can be viewed as a generalized version of Stein’s lemma to non-Gaussian
distributions.
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Lemma 2.15 (Interpolation trick, [Lytova and Pastur, 2009, Corollaray 3.1]).
For x ∈ R a random variable with zero mean and unit variance, y ∼ N (0, 1),
and f a (k + 2)-times differentiable function with bounded derivatives,

E[f(x)]− E[f(y)] =

k∑
l=2

κl+1

2l!

∫ 1

0

E[f (l+1)x(t)]t(l−1)/2dt+ εk,

where κl is the lth cumulant of x, x(t) =
√
tx+(1−

√
t)y, and |εk| ≤ CkE[|x|k+2]·

supt |f (k+2)(t)| for some constant Ck only dependent on k.

All Gaussian expectations (means and variance) in the proof above can then
be expressed as their non-Gaussian form up to a sum of moment control on the
derivatives of f .

As mentioned above in (2.26), by considering complex Gaussian X instead
of real one, the derivation of Theorem 2.4 can be further simplified. This is
detailed in the following remark.

Remark 2.5 (Simplification in the complex case). The Marc̆enko-Pastur result
presented in Theorem 2.4 has been proven universal with respect to the field (R
or C) of the entries of X, where the Gram matrix of interest in the complex
case is XX∗ for X∗ the Hermitian conjugate (transpose conjugate) of X. The
resolvent now becomes Q(z) =

(
1
nXX∗ − zIp

)−1. Interestingly, Stein’s lemma,
Lemma 2.13, is simplified in the complex case into

E [Xijf(X,X∗)] = E
[

d

dX̄ij
f(X,X∗)

]
,

for f(X,X∗) a (polynomially bounded) smooth function of both X and X∗, and
X̄ij the complex conjugate of Xij, where the complex derivation rules become
(d/dx̄)(x) = 0 and (d/dx̄)x̄ = 1 (see details in e.g., [Pastur and Shcherbina,
2011]). As a consequence, we find that

d

dXij
XX∗ = EijX

∗,

for Eij the indicator matrix with entry [Eij ]lm = δilδjm. This relation is more
convenient to use than in the real case where

d

dXij
XXT = EijX

T + XET
ij ,

and two terms instead of one appear; in recollection of the derivation above of
the Marc̆enko-Pastur theorem, Theorem 2.4, in the real case with Stein’s lemma,
this extra term was anticipated to vanish (see Equation (2.26)).

This remark is particularly useful when universality is anticipated (essen-
tially for all such “first order” deterministic equivalents) and when elaborate
random matrix models are to be treated. That is, in these settings, it is conve-
nient (at least as a preliminary exploration) to assume X has complex rather
than real Gaussian entries.
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Wigner semicircle law

While the Marc̆enko-Pastur law is at the heart of sample covariance matrix mod-
els and is thus a starting point in kernel methods for machine learning, Wigner
semicircle law concerns symmetric matrices of independent entries (above and
on the diagonal) which is more akin to random graphs and will be used in this
monograph almost exclusively to this purpose.13

The main result, again presented under the form of a deterministic equivalent
for the resolvent, is as follows.

Theorem 2.5 (Wigner [1955]). Let X ∈ Rn×n be symmetric and such that the
Xij ∈ R, j ≥ i, are independent zero mean and unit variance random variables
satisfying some light tail conditions. Then, for Q(z) = (X/

√
n − zIn)−1, as

n→∞,
Q(z)↔ Q̄(z), Q̄(z) = m(z)In, (2.27)

with (z,m(z)) the unique solution in Z(C \ [−2, 2]) of

m2(z) + zm(z) + 1 = 0. (2.28)

The function m(z) is the Stieltjes transform of the probability measure

µ(dx) =
1

2π

√
(4− x2)+ dx, (2.29)

which is known as the Wigner semicircle law.

Figure 2.3 compares the empirical spectral measure of X/
√
n given in Theo-

rem 2.5 with the Wigner semicircle law (which, for a proper scaling of the axes,
has a half circular shape as the name suggests), for n = 1 000.

Sketch of proof of Theorem 2.5. Although not the historical method of Wigner,14
we propose here to follow exactly the two approaches detailed in the proof of the
Marc̆enko-Pastur theorem, Theorem 2.4. For pedagogical interest, we provide
the main heuristic arguments both for the Bai-Silverstein and for the Gaussian
method.

Bai-Silverstein heuristic. Let Q = (X/
√
n−zIn)−1 be the resolvent of interest,

we write, by Lemma 2.6,

Qii =
1

1√
n
Xii − z − 1

nxT
i Q−ixi

,

13Up to an important exception when dealing with “properly scaling kernels” in Section 4.3.
14Wigner’s proof in [Wigner, 1955] relied on a method of moment approach: having inferred

that the limiting measure should be a semicircle, he proved via a combinatorial approach,
that the successive “moments” 1

n
tr(n−

1
2 X)k for k = 1, 2, . . . must converge, as n→∞, to the

moments of the semicircle measure
∫
tkµ(dt). This method is simple but only useful if indeed

the limiting measure µ can be inferred. In the Marc̆enko-Pastur case of Theorem 2.4 and
even worse in more elaborate random matrix settings, the limiting measure µ is less obvious
to anticipate.
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Figure 2.3: Histogram of the eigenvalues of X/
√
n versus Wigner semicircle law,

for X having standard Gaussian entries and n = 1 000. Link to code: Matlab
and Python.

with Q−i = (X−i/
√
n− zIn−1)−1, X−i ∈ R(n−1)×(n−1) the matrix obtained by

deleting the i-th row and column from X, and xi ∈ Rn−1 the i-th column (and
thus the i-th row by symmetry) of X with its i-th entry removed. Taking the
sum over i we obtain

1

n
tr Q =

1

n

n∑
i=1

1
1√
n
Xii − z − 1

nxT
i Q−ixi

=
1

n

n∑
i=1

1

−z − 1
nxT

i Q−ixi
+ o(1),

since 1√
n
Xii asymptotically vanishes as n→∞. By Lemma 2.11 and Lemma 2.9,

we should have, for large n,

1

n
xT
i Q−ixi =

1

n
tr Q−i + o(1) =

1

n
tr Q + o(1),

and thus the quadratic equation of 1
n tr Q(

1

n
tr Q

)2

+
z

n
tr Q + 1 = o(1).

With a concentration argument, e.g., Lemma 2.12, we shall have, as n → ∞,
that 1

n tr Q− 1
n trE[Q]

a.s.−−→ 0 and therefore 1
n tr Q(z)−m(z)

a.s.−−→ 0, with m(z)
the unique solution to

m2(z) + zm(z) + 1 = 0,

the solution of which is explicitly given by

m(z) =
1

2
(−z +

√
z2 − 4),

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/2.2/html/MP_and_SC.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/2.2/MP_and_SC.ipynb
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with
√
· again chosen as the branch of the square root for which m(z) is a valid

Stieltjes transform, see Notation 2. Taking the imaginary part and the limit
when z → x ∈ R (which is only non-zero if x2 − 4 < 0) gives the form of the
density µ(dx) in the theorem statement.

Note that in the above Bai-Silverstein heuristic, only the trace form 1
n tr Q(z)

was treated; when the more involved bilinear forms of the type aTQ(z)b are
considered (in which case the non-diagonal entries of the inverse Q(z) need
to be handled), it is often more convenient to resort to the Gaussian method
approach as follows.

Gaussian method heuristic. Similar to the proof of the Marc̆enko-Pastur law
with Gaussian methods in Section 2.2.2, observe that, for Q = (X/

√
n−zIn)−1,

we have
1√
n
E[XQ] = In + zE[Q], (2.30)

so that by Lemma 2.13 and the fact that ∂Q = − 1√
n
Q(∂X)Q,

E[Qij ] =
1

z

1√
n

n∑
k=1

E[XikQkj ]−
1

z
δij

=
1

z

1√
n

n∑
k=1

E
[
∂Qkj

∂Xik

]
− 1

z
δij

= −1

z

1

n

n∑
k=1

E[QkiQkj + QkkQij ]−
1

z
δij

= −1

z

1

n
E
[
[Q2]ij + Qij · tr Q

]
− 1

z
δij

which can be summarized in matrix form as

E[Q] = −1

z

1

n
E[Q2]− 1

z
E[Q] · 1

n
trE[Q]− 1

z
In + o‖·‖(1), (2.31)

where we used the fact that 1
n tr Q − 1

n trEQ
a.s.−−→ 0 as n → ∞ and thus be

asymptotically “taken out of the expectation”.
Since the first matrix on the right-hand side has asymptotically vanishing

operator norm (of order O(n−1)) as n, p→∞,15 we reach

E[Q] = −1

z

(
1 +

1

z

1

n
trE[Q]

)−1

In + o‖·‖(1)

which, after taking the trace and using 1
n trE[Q(z)] − m(z) → 0, gives the

limiting formula
m2(z) + zm(z) + 1 = 0.

The rest of the development is then identical to the Bai-Silverstein approach
above.

15Again, we could even more simply have exploited Remark 2.5 to not even produce the
term E[QkiQkj ] in the early development of the calculus.
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2.2.3 Large dimensional sample covariance matrices and
generalized semicircles

The Marc̆enko-Pastur and semicircle theorems have long been the gold-standard
in both theoretical and applied random matrix theory, in the sense that most
mathematical studies and practical results concerned the Wishart and Wigner
random matrix models.16 But the assumption of (the columns of) data X with
i.i.d., let alone standard Gaussian, entries is often limiting. In statistics where
one is interested in the sample covariance matrix 1

nXXT, it is expected that
the columns xi ∈ Rp of X exhibit a correlation structure and be non-necessarily
independent (in particular when they are samples from a time series). In graph
theory, where the affinity matrix X ∈ Rn×n is the central object of study, one
may wish to model graph patterns, degree heterogeneity, community structures,
etc., which go against the i.i.d. (Bernoulli) assumption of so-called Erdős–Rényi
graphs.

This section introduces generalizations of Marc̆enko-Pastur and semicircle
theorems that go beyond the i.i.d. entries setting, to a level that is convenient
to machine learning applications.17 As an example, in a machine learning clas-
sification context, X will often be subdivided into subblocks that correspond to
different classes, so as to model the existence of classes or communities within
the data.

Large sample covariance matrix model and its generalizations

Our first result generalizes the Marc̆enko-Pastur law, Theorem 2.4, to sample
covariance matrices and is originally due to a long line of works by Silverstein
and Bai [1995].

Theorem 2.6 (Sample covariance matrix, Silverstein and Bai [1995]). Let
X = C

1
2 Z ∈ Rp×n with symmetric nonnegative definite C ∈ Rp×p of bounded

operator norm (i.e., lim supp ‖C‖ < ∞),18 Z ∈ Rp×n having independent zero
mean and unit variance entries satisfying some light tail conditions. Then,
as n, p → ∞ with p/n → c ∈ (0,∞), letting Q(z) = ( 1

nXXT − zIp)
−1 and

16Among those studies are generalizations of the data model assumptions to matrices X
with non independent entries [Pajor and Pastur, 2009], refined studies and characterization of
the limiting spectra [Silverstein and Choi, 1995] (to be discussed later in Section 2.3), deeper
considerations on the local behavior of eigenvalues [Johnstone, 2001, 2008] (that will be briefly
discussed in Section 2.5), just to name a few.

17A host of other results for more elaborate random matrix models exist in the literature.
Many are gathered in the books [Tulino and Verdú, 2004, Couillet and Debbah, 2011]: these
monographs particularly focus on applications to wireless communication. Some of these
results have effectively been reused to form the base ground of the current wave of machine
learning-applied random matrix models.

18In the original article [Silverstein and Bai, 1995], the constraint on the bounded norm of
‖C‖ is relaxed and unnecessary. Yet, this complicates the proof and is never of actual use for
the purpose of this monograph.
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Q̃(z) = ( 1
nXTX− zIn)−1, we have

Q(z)↔ Q̄(z) = −1

z
(Ip + m̃p(z)C)

−1
,

Q̃(z)↔ ¯̃Q(z) = m̃p(z)In,

where (z, m̃p(z)) is the unique solution in Z(C \ R+) of 19

m̃p(z) =

(
−z +

1

n
tr C (Ip + m̃p(z)C)

−1

)−1

. (2.32)

In particular, if the empirical spectral measure of C converges, i.e., µC → ν as
p → ∞, then µ 1

nXXT
a.s.−−→ µ, µ 1

nXTX
a.s.−−→ µ̃ as p, n → ∞ where µ, µ̃ are the

unique measures having Stieltjes transforms m(z) and m̃(z), respectively, with

m(z) =
1

c
m̃(z) +

1− c
cz

, m̃(z) =

(
−z + c

∫
tν(dt)

1 + m̃(z)t

)−1

. (2.33)

Before diving into the proof of Theorem 2.6, a few remarks are in order to
better understand the statement of the theorem.

Remark 2.6 (On the implicit statement). As opposed to Theorem 2.4, the
statement of the theorem is here implicit in the sense that µ is only defined
through mµ(z), itself implicitly defined as the solution of a fixed-point equation.
The main reason for the explicit nature of Theorem 2.4 is that Equation (2.14),
which provides the connection between m(z) and a function of itself, boils down
to a quadratic equation in m(z) which can be solved and from which the inverse
Stieltjes transform, Theorem 2.1, can be applied. Due to the presence of C, in
the present situation, the form equivalent to (2.14) here remains implicit. This
will in fact be the case of almost all generalizations of the Marc̆enko-Pastur and
semicircle theorems to be introduced in this monograph.

Note importantly that the uniqueness of the pair (z, m̃p(z)) is stated within
the set Z(C \ R+), see Notation 2. In particular, for z ∈ C+, there exists a
unique m̃p(z) ∈ C+ solution to the implicit equation; however, nothing prevents
the existence of another solution (say in C− = {z ∈ C | =[z] < 0}) to exist:
this solution would not correspond to the sought-for m̃p(z). Possibly most im-
portantly, we will see in Section 2.3 that, for (z, m̃p(z)) ∈ {R+ \ supp(µ)} × R
(a set excluded from Z(C \R+) but where (z, m̃p(z)) can be formally defined by
continuity), there may exist multiple solutions to the implicit equation! Fortu-
nately, we will see that, here again, the correct solution can be identified.

Another fortunate realization is that the sought-for m̃p(z) solution also often
happens to be the only “stable” one, in the sense that it will often be the only
one discovered by numerical methods. See Remark 2.7 below for detail.

19Note that we denote the Stieltjes transform m̃p(z) with an additional subscript p, since,
unlike Theorem 2.4, m̃p(z) is here defined as a function of the finite dimensional matrix C,
rather than as a function of the limiting spectral measure of C. In particular, m̃p(z) needs
not have a well-defined limit as n, p → ∞. This again confirms the technical advantage of
deterministic equivalents over limits (Definition 4): m̃p(z), instead of a limit, is an increasingly
accurate deterministic approximation of its random counterpart 1

n
tr Q̃(z), as n, p grow large.
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In machine learning applications, the value of m̃p(z) will rarely be a prior-
ity. Renaming δ̃p(z) = m̃p(z), we will instead be more often interested in the
quantity δp(z) ≡ 1

n tr CQ̄(z) = 1
n tr C(−z[Ip + δ̃p(z)C])−1 (in the vast major-

ity of cases, for z = −γ, γ ≥ 0 some regularization parameter) which, from
Lemma 2.11, corresponds to a deterministic equivalent for 1

nxT
0 Q(z)x0 where

x0 = C
1
2 z0 for some z0 ∈ Rp independent of Z having i.i.d. zero mean and

unit variance entries: this quantity appears in the analysis of most regularized
(not necessarily linear) regression problems. Interestingly, from the theorem
statement, it can be checked that δp(z) satisfies the following very elegant sym-
metrically coupled equation{

δp(z) = 1
n tr C(−z[Ip + δ̃p(z)C])−1

δ̃p(z) = 1
n tr In(−z[In + δp(z)In])−1 = − 1

z
1

1+δp(z) .
(2.34)

Theorem 2.7 below will generalize this expression to the so-called bi-correlated
model C

1
2 ZC̃

1
2 with In replaced by an arbitrary nonnegative definite C̃ ∈ Rn×n

in the coupled equation above.

Remark 2.7 (Numerical evaluation of m(z)). Due to its implicit nature, de-
termining m(z) for z ∈ C \ R+ requires to solve an implicit equation. Using
contraction and analyticity arguments, it can be shown that the standard fixed-
point algorithm converges, i.e.,20

m(z) = lim
`→∞

m(`)(z)

with say m̃(0)(z) = 0 and for ` ≥ 0

m(`)(z) =
1

c
m̃(`)(z) +

1− c
cz

, m̃(`+1)(z) =

(
−z + c

∫
tν(dt)

1 + m̃(`)(z)t

)−1

,

(2.35)
or the equivalent finite dimensional version with C in (2.32).

One must be careful here that, since m(z) is not formally defined for z ∈
supp(µ), the above argument does not hold in this set. Yet, the argument extends
to (sup supp(µ),∞) where the fixed-point iteration above is also numerically
stable, but trying to solve (2.35) for m(z) with z ∈ supp(µ) numerically leads
to a non-converging m(`)(z) sequence. This last remark can be effectively used
in practice to numerically determine the right edge sup supp(µ) of the support
as being the smallest z > 0, starting from +∞, for which the algorithm fails to
converge (this can be done fast by dichotomy, starting from a left value z− > 0
known to belong to the support and a large enough right value z+).

Numerically, when evaluating m(z) for z ∈ C+ close to the real axis (say for
z = x+ıε, |ε| � 1), the convergence can appear to be quite slow for x ∈ supp(µ).
A convenient workaround is to sequentially evaluate m(z) for all z’s of the

20When carefully initialized, the convergence to the desired solution of standard fixed-
point equations holds more generally (beyond the sample covariance model); see [Couillet and
Debbah, 2011, Chapters 12-15] for examples of more involved models.
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form x + ıε, starting from some z0 = x0 + ıε away from the support, i.e., for
x0 /∈ supp(µ), then moving on to z1 = (x0 + ε′) + ıε, then z2 = (x0 + 2ε′) + ıε,
etc., for some ε′ ∈ R small and, importantly, to systematically initialize the
fixed-point iterations at position zi with the value m(zi−1). Proceeding this way,
the fixed-point iterations of m(zi) with <[zi] ∈ supp(µ) are initialized close to
the (non real) solution and the convergence is in generally much faster than, for
instance, the fixed initialization m(0)(zi) = 0. (However note that the procedure
may fail close to a mass of the spectrum of µ, typically at z = 0, and may keep
accumulating errors if it happens to fail to converge at any given position of the
spectrum.)

As a consequence of Remark 2.7, one can now numerically solve the implicit
equation in Theorem 2.6 to draw, again numerically, the (limiting) spectrum µ.

Remark 2.8 (Drawing µ). As shall be seen in Section 2.3, the limiting measure
µ in Theorem 2.6 admits a density, which, from the inverse Stieltjes transform
formula in Theorem 2.1 and Remark 2.7 above, can be approximated by solving
for m(z) with z ∈ R+ıε for some ε > 0 small (say ε = 10−5) and then retrieving
the density at x as 1

π=[m(x+ ıε)].
This procedure however only allows for a numerical approximation (rather

than a theoretical evaluation) of µ and of its support (in particular, the support
consists approximately in all values of x’s such that | 1π=[m(x + ıε)]| ∼ ε � 1).
Section 2.3 will go beyond this naive numerical approach and provide an exact
determination of (i) limz∈C+→x∈R\{0}m(z) for all x ∈ R \ {0} and (ii) the
support of µ.21

Figure 2.4 depicts the empirical versus limiting behavior of µ 1
nXXT for C

having three distinct and evenly numerous eigenvalues. In this particular set-
ting, the limiting spectrum is composed of several connected components, with
shapes akin to the Marc̆enko-Pastur law. For sufficiently distinct eigenvalues
of C, these components are disjoint (top) while for close eigenvalues they tend
to merge (middle), and for n < p a Dirac mass at zero is observed and the
eigenvalues spread out even further into a single large component (bottom).

Remark 2.9 (Deterministic equivalent for µ 1
nXXT). The convergence result

µ 1
nXXT

a.s.−−→ µ in Theorem 2.6 imposes that there exists a limit ν to which µC

converges as p→∞: this may not be practically meaningful. In generalized ver-
sions of Theorem 2.6 (see e.g., Theorem 2.8 below), even if the spectral measure
of the covariance matrix does converge, µ 1

nXXT may not have a limit.

21One may be surprised at the implicit statement that limz∈C+→x∈R\{0}m(z) exists for all
x ∈ R\{0}, so in particular for x ∈ supp(µ) while we also stated, at the very beginning of this
section in Definition 3, that m(x) =

∫
(t− x)−1µ(dt) is not formally defined for x ∈ supp(µ).

This is not a contradiction and is, we recall, at the core of the inverse Stieltjes transform
formula in Theorem 2.1: the spectrum µ is precisely determined by looking at =[m(z)]/π for
z complex but arbitrarily close to the real axis. We will see in Section 2.3 that, at least for the
sample covariance matrix model, limz∈C+→x∈R\{0}m(z) (as well as limz∈C−→x∈R\{0}m(z)

but whose value may be different!) indeed exists while m(x) itself needs not be defined.
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Figure 2.4: Histogram of the eigenvalues of 1
nXXT, X = C

1
2 Z ∈ Rp×n, [Z]ij ∼

N (0, 1), n = 3 000; for p = 300 and C having spectral measure µC = 1
3 (δ1 +δ3 +

δ7) (top), µC = 1
3 (δ1+δ3+δ5) (middle) and p = 4 500 with µC = 1

3 (δ1+δ3+δ5)
(bottom). Link to code: Matlab and Python.

One may instead consider the deterministic equivalent µp for µ 1
nXXT which

is a sequence of probability measures for which dist(µ 1
nXXT , µp)

a.s.−−→ 0 for
some distance between probability measure (for instance, such that µ 1

nXXT −
µp

a.s.−−→0 vaguely, so that for every bounded and continuous function f we have∫
fdµ 1

nXXT −
∫
fdµp

a.s.−−→ 0) as n, p→∞.
Practically speaking, since the data dimension p is in general a fixed quan-

tity and C a given covariance matrix (rather than specific values in a growing
sequence of p’s and C’s), one will always consider that the “effective” limiting
measure ν actually coincides with (or is “frozen” to) µC = 1

p

∑p
i=1 δλi(C).

Sketch of proof of Theorem 2.6. The proof of Theorem 2.6 generally follows the
same line of arguments as that of Theorem 2.4. The main difference is that

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/2.2/html/SCM_and_DSC.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/2.2/SCM_and_DSC.ipynb
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(2.12) here becomes

1

p
xT
i Q̄AQxi =

1
pxT

i Q̄AQ−ixi

1 + 1
nxT

i Q−ixi
=

1
p tr Q̄AQ−iC

1 + 1
n tr Q−iC

+ o(1),

where, denoting xi = C
1
2 zi for zi the i-th column of Z ∈ Rp×n having indepen-

dent zero mean and unit variance entries, we have by Lemma 2.11 that

1

n
xT
i Q−ixi =

1

n
zTi C

1
2 Q−iC

1
2 zi =

1

n
tr Q−iC + o(1).

Again with Lemma 2.9 and the fact that 1
n tr Q−iC is bounded, we obtain

the approximation

1

p
tr(F + zIp)Q̄AQ =

1
p tr CQ̄AQ

1 + 1
n tr QC

+ o(1),

that should hold for any A of unit norm, with F−1(z) = Q̄(z) the sought-for
deterministic equivalent, which then must admit the form

F(z) =
C

1 + 1
n tr QC

− zIp + o‖·‖(1),

for the previous approximation to hold. Unlike in the proof of the Marc̆enko-
Pastur theorem, Theorem 2.4, we see here the new term 1

n tr QC appears, which
thus needs be studied. Interestingly, note that taking A = C in 1

n tr A(Q −
Q̄)

a.s.−−→ 0 induces a closed form equation:

1

n
tr CQ =

1

n
tr CQ̄ + o(1) =

1

n
tr C

(
−zIp +

C

1 + 1
n tr CQ̄

)−1

+ o(1) (2.36)

from which we obtain

m̃p(z) =

(
−z +

1

n
tr C (Ip + m̃p(z)C)

−1

)−1

,

if we denote m̃p(z) = − 1
z

(
1 + 1

n tr CQ̄(z)
)−1, as requested.22

With a deterministic equivalent Q̄ = F−1 for Q at hand, a correspond-
ing deterministic equivalent for Q̃ = ( 1

nXTX − zIn)−1 follows from the direct
observation that Q̃ = 1

z
1
nXTQX− 1

z In, so that

[Q̃]ij =
1

z

1

n
xT
i Qxj −

1

z
δij =

1

z

1
nxT

i Q−ixj

1 + 1
nxT

i Q−ixi
− 1

z
δij

=
1

z

1
n tr CQ̄

1 + 1
n tr CQ̄

δij −
1

z
δij + o(1)

= −1

z

(
1 +

1

n
tr CQ̄

)−1

δij + o(1) = m̃p(z)δij + o(1),

22Note that we implicitly used here the fact that ‖C‖ is bounded.
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and thus, for A ∈ Rn×n deterministic of bounded norm, applying the operator
1
n

∑n
i,j=1[A]ij · on both sides (one must be careful to ensure that the entry-wise-

‘+o(1)’ approximation indeed still holds under this operator), we confirm that
¯̃Q(z) ≡ m̃p(z)In is indeed a deterministic equivalent for Q̃.

Remark 2.10 (On singular population covariances). It is interesting to note
from Theorem 2.6 that, if the population covariance C contains some zero eigen-
values, for example if µC → ν as p→∞ with

ν(dx) = (1− cν)δ0(x) + cν ν̃(dx)

for cν ∈ (0, 1) and ν̃ some probability measure, then (as properly shown in
[Silverstein and Choi, 1995]) µ̃({0}) = max (0, 1− ccν). This further implies

µ({0}) =

{
1− cν for ccν ≤ 1,
1− c−1 otherwise.

This result differs from the systematic µ({0}) = max(0, 1−c−1) in the Marc̆enko-
Pastur scenario, and takes into consideration the intrinsic dimension cνp of the
random vector C

1
2 zi ∈ Rp.

In machine learning applications, the data covariance structure C may con-
tain a wide range of very small eigenvalues, a behavior suggesting that the data
representation is of much smaller effective dimension. It is interesting to ob-
serve that Theorem 2.6, in its expression in (2.32), in fact does not depend on
the ratio p/n itself but on 1

n tr C(Ip + m̃p(z)C)−1: the effective data dimen-
sion is thus encapsulated within C in (a non-trivial manner in) the fixed-point
expression.

When the data X = [x1, . . . ,xn] arise from a time series, or when each
data sample is weighted by an independent coefficient (as shall be seen in Sec-
tion 3.3 on robust statistical methods), the sample covariance matrix model is
not sufficiently expressive but can be generalized to the so-called bi-correlated
(or separable covariance) model as follows,

1

n
C

1
2 ZC̃ZTC

1
2 (2.37)

for C ∈ Rp×p and C̃ ∈ Rn×n two nonnegative definite matrices and [Z]ij
i.i.d. random variables with zero mean and unit variance. In particular, for
Z Gaussian and C̃

1
2 Toeplitz (i.e., such that [C̃

1
2 ]ij = α|i−j| for some sequence

α0, . . . , αn−1), the columns of ZC̃
1
2 model a first order auto-regressive process

[Hamilton, 1994].23
For this model, we have the following theorem.

23In passing, Toeplitz matrices involved in time series analyses also exhibit interesting large
dimensional behavior. As an instance, Gray [2006] showed that, under some decay condition
on the sequence {αi}n−1

i=0 , their spectral behavior is the same as that of equivalent circulant
matrices, the latter having the nice property to be diagonalizable in the Fourier basis: the
asymptotic eigenvalues of the Toeplitz matrix are in particular the coefficients of the discrete
Fourier transform of the series {αi}n−1

i=0 .
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Theorem 2.7 (Bi-correlated model, separable covariance model, [Paul and
Silverstein, 2009]). Let Z ∈ Rp×n be a random matrix with i.i.d. zero mean,
unit variance and light tail entries, and C ∈ Rp×p, C̃ ∈ Rn×n be symmetric
nonnegative definite matrices with bounded operator norm. Then, as n, p→∞
with p/n → c ∈ (0,∞), letting Q(z) = ( 1

nC
1
2 ZC̃ZTC

1
2 − zIp)−1 and Q̃(z) =

( 1
nC̃

1
2 ZTCZC̃

1
2 − zIn)−1, we have

Q(z)↔ Q̄(z) = −1

z

(
Ip + δ̃p(z)C

)−1

Q̃(z)↔ ¯̃Q(z) = −1

z

(
In + δp(z)C̃

)−1

with (z, δp(z)), (z, δ̃p(z)) ∈ Z(C \ R+) unique solutions to

δp(z) =
1

n
tr CQ̄(z), δ̃p(z) =

1

n
tr C̃ ¯̃Q(z).

In particular, if µC → ν and µC̃ → ν̃, then

µ 1
nC

1
2 ZC̃ZTC

1
2

a.s.−−→ µ, µ 1
n C̃

1
2 ZTCZC̃

1
2

a.s.−−→ µ̃,

where µ, µ̃ are defined by their Stieltjes transforms m(z) and m̃(z) given by

m(z) = −1

z

∫
ν(dt)

1 + δ̃(z)t
, m̃(z) = −1

z

∫
ν̃(dt)

1 + δ(z)t
,

where (z, δ(z)), (z, δ̃(z)) are the unique solutions in Z(C \ R+) to

δ(z) = − c
z

∫
tν(dt)

1 + δ̃(z)t
, δ̃(z) = −1

z

∫
tν̃(dt)

1 + δ(z)t
.

Sketch of proof of Theorem 2.7. For simplicity and readability, only the case
where both C and C̃ are diagonal is presented here.24 In this case, similar to
the decomposition performed in the proof of Theorem 2.6, one has the following
symmetric re-expression of Q(z) and Q̃(z)

Q(z) =

(
1

n

n∑
i=1

C
1
2 ỹi(C

1
2 ỹi)

T − zIp

)−1

Q̃(z) =

(
1

n

p∑
i=1

C̃
1
2 yi(C̃

1
2 yi)

T − zIn

)−1

24Note that, if Z is standard Gaussian, then ZC̃ZT has the same distribution as ZUC̃UTZT

for any unitary matrix U ∈ Rn×n (since Z ∼ ZU in law). We may then allow C̃ to be diagonal
by specifically choosing U to be a matrix of eigenvectors of C̃. By the universality of random
matrix results with respect to the law of the independent entries of Z, this should be sufficient
to retrieve the result for any Z. The same remark symmetrically holds for C.
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where we denote ỹi ∈ Rp the i-th column of ZC̃
1
2 and yi ∈ Rn the i-th column

of ZTC
1
2 so that, for C and C̃ both diagonal, one has ỹi = C̃

1
2
iizi and yi = C

1
2
iiz̃i

with zi ∈ Rp the i-th column and z̃i ∈ Rn the i-th row of Z ∈ Rp×n.
As a consequence, with Q̄(z) = F−1(z) and ¯̃Q(z) = F̃−1(z), one obtains

again with Lemma 2.1 and 2.8 that

Q(z)− Q̄(z) = Q(z)

(
F(z) + zIp −

1

n

n∑
i=1

C
1
2 ỹi(C

1
2 ỹi)

T

)
Q̄(z)

= Q(F + zIp)Q̄−
1

n

n∑
i=1

Q−iC
1
2 C̃iiziz

T
i C

1
2 Q̄

1 + 1
nC̃iizTi C

1
2 Q−iC

1
2 zi

,

Q̃(z)− ¯̃Q(z) = Q̃(z)

(
F̃(z) + zIn −

1

n

p∑
i=1

C̃
1
2 yi(C̃

1
2 yi)

T

)
¯̃Q(z)

= Q̃(F̃ + zIn) ¯̃Q− 1

n

p∑
i=1

Q̃−iC̃
1
2 Ciiz̃iz̃

T
i C̃

1
2

¯̃Q

1 + 1
nCiiz̃Ti C̃

1
2 Q̃−iC̃

1
2 z̃i

,

where we denote Q−i(z) ≡ ( 1
n

∑n
j 6=i C

1
2 C̃jjzjz

T
j C

1
2 −zIp)−1 and symmetrically

Q̃−i(z) ≡ ( 1
n

∑p
j 6=i C̃

1
2 Cjj z̃j z̃

T
j C̃

1
2 − zIn)−1, which are independent of zi and

z̃i, respectively.
With this independence of Q−i on zi and Q̃−i on z̃i, one deduces again with

Lemma 2.11 that

1

n
C̃iiz

T
i C

1
2 Q−iC

1
2 zi = C̃ii ·

1

n
tr(Q−iC) + o(1),

1

n
Ciiz̃

T
i C̃

1
2 Q̃−iC̃

1
2 z̃i = Cii ·

1

n
tr(Q̃−iC̃) + o(1),

so that F(z) and F̃(z) must take the followings forms

F(z) =
1

n

n∑
i=1

C̃ii ·C
1 + C̃ii · 1

n tr(Q−iC)
− zIp =

1

n

n∑
i=1

C̃ii ·C
1 + C̃ii · 1

n tr CQ̄
− zIp + o‖·‖(1),

F̃(z) =
1

n

p∑
i=1

Cii · C̃
1 + Cii · 1

n tr(Q̃−iC̃)
− zIn =

1

n

p∑
i=1

Cii · C̃
1 + Cii · 1

n tr C̃ ¯̃Q
− zIn + o‖·‖(1).

Denoting δp(z) = 1
n tr CQ̄(z) and δ̃p(z) = 1

n tr C̃ ¯̃Q(z), this can be further re-
duced to

Q̄(z) = F−1(z) = −1

z

(
Ip −

1

z

1

n

n∑
i=1

C̃ii

1 + C̃iiδp(z)
C

)−1

+ o‖·‖(1),

¯̃Q(z) = F̃−1(z) = −1

z

(
In −

1

z

1

n

p∑
i=1

Cii

1 + Ciiδ̃p(z)
C̃

)−1

+ o‖·‖(1).
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To eventually close the loop and obtain the sought-for relation on (δp, δ̃p), one
may plug the above approximation into the definition of δp and δ̃p to obtain the
following symmetric equation

δp(z) = −1

z

1

n

p∑
i=1

Cii

1− 1
z

1
n

∑n
j=1

C̃jjCii

1+C̃jjδp(z)

+ o(1),

δ̃p(z) = −1

z

1

n

n∑
i=1

C̃ii

1− 1
z

1
n

∑p
j=1

CjjC̃ii

1+Cjj δ̃p(z)

+ o(1),

which retrieves the expressions of Theorem 2.7.

As already hinted at when commenting on Theorem 2.6 in (2.34), it is inter-
esting to note the almost perfect symmetry in the equations for the resolvent and
co-resolvent in the bi-correlated model. From a machine learning perspective,
wherein X = C

1
2 ZC̃

1
2 are the observed data, this symmetry between “space”

and “time” correlations, or between the sample covariance matrix XXT and
the (Gram) kernel matrix XTX, will often allow for a natural connection be-
tween results in the spatial (e.g., PCA, subspace methods) and in the temporal
(classification, regression) domains.

From a technical angle, by the trace lemma, Lemma 2.11, we immediately
find that the functions δp(z) and δ̃p(z) (which also happen to be Stieltjes trans-
forms of finite measures on R+) are respectively deterministic equivalents for
1
nxT

0 Q(z)x0 and 1
n x̃T

0 Q̃(z)x̃0 for x0 = C
1
2 z0, x̃0 = C̃

1
2 z̃0 and z0 ∈ Rp, z̃0 ∈ Rn

vectors of independent zero mean and unit variance entries, both independent
of Z. Similar to the remarks after Theorem 2.6, these quadratic forms will
naturally arise in various applications of statistical inference and regression:
particularly for z = −γ with γ ≥ 0 a regularization parameter, C

1
2 zi ∈ Rp

and datum and C̃ii (C̃ will usually be diagonal) an effective weight parameter
induced by the algorithm under study on data point C

1
2 zi.

As pointed out above, the Gram matrix XTX is directly connected to ker-
nel matrices of the type K = {xT

i xj/p}ni,j=1 = XTX/p (inner-product ker-
nels) and K = {‖xi − xj‖2/p}ni,j=1 (distance kernels) since ‖xi − xj‖2/p =

‖xi‖2/p+‖xj‖2/p−2xT
i xj/p which also involves the matrix XTX/p.25 Assum-

ing, as is the basic setting in a multi-class machine learning classification context,
that the vectors xi arise from a mixture model, the following generalization of
Theorem 2.6 is of more practical relevance to machine learning applications.

Theorem 2.8 (Sample covariance of k-class mixture models, [Benaych-Ge-
orges and Couillet, 2016]). Let X = [X(1), . . . ,X(k)] ∈ Rp×n with X(a) =

[x
(a)
1 , . . . ,x

(a)
na ] ∈ Rp×na and x

(a)
i = C

1
2
a z

(a)
i for z

(a)
i a vector with i.i.d. zero

mean, unit variance and light tail entries. Then, as na, p → ∞ in such a way
25The prefactor 1/p is necessary to ensure that the main eigenspectrum of K remains of

order O(1) as p, n increase.
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that k is fixed, p/n → c ∈ (0,∞), and na/n → ca ∈ (0, 1) for a ∈ {1, . . . , k},
letting Q(z) = ( 1

nXXT − zIp)−1 and Q̃(z) = ( 1
nXTX− zIn)−1, we have26

Q(z)↔ Q̄(z) = −1

z

(
Ip +

k∑
a=1

cag̃a(z)Ca

)−1

Q̃(z)↔ ¯̃Q(z) = diag{g̃a(z)1na}ka=1

with (z, g̃a(z)), a ∈ {1, . . . , k}, the unique solutions in Z(C \ R+) to

g̃a(z) = −1

z
(1 + ga(z))−1, ga(z) = −1

z

1

n
tr Ca

(
Ip +

k∑
b=1

cbg̃b(z)Cb

)−1

.

Sketch of proof of Theorem 2.8. Similar to the proof of Theorem 2.6, we obtain,
with the initial guess Q̄(z) = F−1(z), that

Q− Q̄ = Q

(
F + zIp −

1

n

k∑
a=1

na∑
i=1

x
(a)
i (x

(a)
i )T

)
Q̄

which, unlike in the proof of Theorem 2.6, contains a sum over a due to the
different class covariances Ca. To establish 1

n tr A(Q − Q̄)
a.s.−−→ 0, one must

have
1

n
tr(F + zIp)Q̄AQ− 1

n

k∑
a=1

na∑
i=1

1

n
(x

(a)
i )TQ̄AQx

(a)
i

a.s.−−→ 0.

Applying Lemma 2.8 to remove the dependence in Q of x
(a)
i , together with

Lemma 2.9, we deduce

1

n

k∑
a=1

na∑
i=1

1

n
(x

(a)
i )TQ̄AQx

(a)
i =

k∑
a=1

na
n

1
n tr CaQ̄AQ̄

1 + 1
n tr Q̄Ca

+ o(1),

so that F must be written as the following sum over a:

F =

k∑
a=1

ca
Ca

1 + 1
n tr Q̄Ca

− zIp + o‖·‖(1),

which produces the term 1
n tr Q̄Ca, a = 1, . . . , k. To identify these terms and

close the loop, we take A = Cb for each b ∈ {1, . . . , k} to establish

1

n
tr CbQ =

1

n
tr CbQ̄ + o(1) ≡ gb(z) + o(1)

=
1

n
tr Cb

(
−zIp +

k∑
a=1

ca
Ca

1 + 1
n tr Q̄Ca

)−1

+ o(1)

≡ −1

z

1

n
tr Cb

(
Ip +

k∑
a=1

cag̃a(z)Ca

)
+ o(1),

26Here diag{va}ka=1 is a diagonal matrix with the concatenated vector v = [vT
1 , . . . ,v

T
k ] on

the diagonal; and 1na ∈ Rna is the na-dimensional vector of all ones.
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where we denoted g̃a(z) ≡ − 1
z

(
1 + 1

n tr Q̄Ca

)−1
= − 1

z (1 + ga(z))−1, as desired.
This thus produces a k-dimensional vector equation linking the ga(z)’s rather
than a scalar one.

To finally derive a deterministic equivalent of Q̃ from that of Q, we use again
the fact that Q̃ = 1

z
1
nXTQX − 1

z In and therefore, indexing the set {1, . . . , n}
as {(1)1, . . . , (1)n1, . . . , (k)1, . . . , (k)nk}, we have

Q(a)i,(b)j =
1

z

1

n
(x

(a)
i )TQx

(b)
j −

1

z
δ(a)i,(b)j

= −1

z

(
1 +

1

n
tr Q̄Ca

)−1

δ(a)i,(b)j + o(1) = g̃a(z)δ(a)i,(b)j + o(1),

which, after applying 1
n tr A(·) on both sides for A of unit norm, concludes the

proof of Theorem 2.8.

With some further control, Theorem 2.8 may in fact be extended to k = n,
i.e., each data vector xi has its own, possibly distinct, covariance matrix, as
shown in [Wagner et al., 2012]. When the covariance matrices are diagonal, this
is then equivalent to letting X have a variance profile, i.e., the entries [X]ij ’s are
all independent with zero mean and variance σ2

ij ≡ [Ci]jj (with Ci = E[xix
T
i ]),

a setting studied in depth in [Hachem et al., 2007] but originally found in [Girko,
2001].

The application of a variance profile to random matrices with independent
entries finds an even more relevant application to Wigner matrices, as detailed
next.

Generalized semicircle law with a variance profile

Similar to the large sample covariance matrix model, generalizations also exist
for the Wigner semicircle law in Theorem 2.5. In the following theorem, a
variance profile for the entries of the symmetric random matrix is considered.

Theorem 2.9 (Pastur and Shcherbina [2011]). Let X ∈ Rn×n be symmetric
and such that Xij, j ≥ i, is of zero mean, bounded variance Var[Xij ] = σ2

ij, and
satisfies some light tail condition. Then, for Q(z) = (X/

√
n− zIn)−1, we have

Q(z)↔ Q̄(z), Q̄(z) = diag

{
1

−z − gi(z)

}n
i=1

(2.38)

with (z, gi(z)) ∈ Z(C \ R+), i ∈ {1, . . . , n}, uniquely determined by

gi(z) =
1

n

n∑
j=1

σ2
ij

−z − gj(z)
.

Sketch of proof of Theorem 2.9. Basing ourselves on the Gaussian approach,
the proof of Theorem 2.9 differs from that of Theorem 2.5 in the application
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of Lemma 2.13. Taking into consideration the variance E[X2
ik] = σ2

ik, Equa-
tion (2.30) gives

E[Qij ] =
1

z

1√
n

n∑
k=1

E[X2
ik]E

[
∂Qkj

∂Xik

]
− 1

z
δij

= −1

z

1

n

n∑
k=1

σ2
ikE[QkiQkj + QkkQij ]−

1

z
δij

= −1

z

1

n
E[QΣiQ]ij −

1

z

1

n
E[tr(ΣiQ)Qij ]−

1

z
δij

with Σi ≡ diag{σ2
ik}nk=1, so that ‖Σi‖ = O(1) uniformly over all i.

Note that the semicircle law in Theorem 2.5 is indeed a special case with
σ2
ij = δij and Σi = In. As a consequence, similar to the term 1

nE[Q2] in (2.31),
the first term on the right-hand side vanishes as n, p→∞ (or, again, does not
even appear if one considers complex Gaussian entries according to Remark 2.5).
Following the same reasoning, the random variable 1

n tr ΣiQ(z) essentially plays
the role of 1

n tr Q(z) in (2.31) and is expected to converge to some deterministic
gi(z) ≡ 1

n tr ΣiQ̄(z) which can be taken out of the expectation. This gives, in
matrix form

E[Q(z)] = −1

z
diag{gi(z)}ni=1E[Q(z)]− 1

z
In + o‖·‖(1).

Solving this equation for E[Q(z)]↔ Q̄(z) and applying 1
n tr A(·) on both sides

for A of unit norm, we conclude the proof of Theorem 2.9.

Theorem 2.9 plays a significant role in the study of random graphs, with
applications to community detection in large graphs or networks. We shall
come back to this model in more detail later in Section 7.1.

Summarizing, this lengthy first technical section provided the necessary tech-
nical ingredients, along with several key results, to study the (large n, p) spec-
trum of “data sample matrices” from the data population statistics. In Sec-
tion 2.4, we will seek to go backwards, trying to infer the population spectral
statistics from the observed empirical spectrum of the available samples. To
this end though, subtle supplementary results on the limiting spectra must be
introduced. This is the objective of the next section.

The subsequent section, possibly the most technical of this part of the mono-
graph, may be skipped at first read, the main ideas of Section 2.4 being under-
standable if some results are admitted. Yet, for a clear and rigorous treatment
of the limitations of statistical inference in the large n, p regime, the readers will
need to grasp the notions of Section 2.3 below.
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2.3 Advanced spectrum considerations for sam-
ple covariances

As opposed to the Marc̆enko-Pastur result, Theorem 2.4, the generalized sample
covariance matrix model of Theorem 2.6 (and beyond) only provides a char-
acterization of the limiting spectral measure µ of µ 1

nXXT (or a deterministic
equivalent µp for it) through its Stieltjes transform m(z) for z ∈ C\R+ (respec-
tively, through a sequence mp(z) of Stieltjes transforms) which itself assumes
an implicit form. Since the Stieltjes transform inversion formula (Theorem 2.1)
involves the limit of m(z) for z → x ∈ R, the sole information about m(z) for
all z ∈ C \ R+ does not immediately quantifies the measure µ.

From a theoretical standpoint, one may wonder whether the limiting µ ad-
mits a density as in the Marc̆enko-Pastur case and, if so, whether one can de-
termine this density and its exact support. As recalled in Remarks 2.7 and 2.8,
the density of µ (provided it exists) can be “numerically depicted” by solving
for m(z) with z close to, but formally away from, the real axis. We aim here at
a more theoretical and precise characterization of µ.

From a practical standpoint, a fundamental byproduct of this characteriza-
tion is the introduction of the function z 7→ − 1

m(z) which plays a key role in
statistical inference. Indeed, we shall see in Section 2.4 and the many appli-
cations in Chapter 3 that, the statistical information related to the population
covariance C (such as functionals of its eigenvalues, projections on its eigenvec-
tors) can be accessed from the data matrix X by means of a complex integral
method involving the change of variable z 7→ − 1

m(z) .

2.3.1 Limiting spectrum

In [Silverstein and Choi, 1995] (generalized later in [Couillet and Hachem, 2014]
with a more systematic approach), the authors prove that, for any measure ν
(the limiting spectral distribution of C), the limiting measures µ and µ̃ intro-
duced in Theorem 2.6 indeed have a density with a well-defined support.27

27It may come as very surprising but very few works in the random matrix literature have
actually studied the exact behavior of the limiting measure µ of advanced random matrix
models. The few exceptions are [Silverstein and Choi, 1995, Couillet and Hachem, 2014]
which study the defining equation of the Stieltjes transform mµ of µ associated to the sample
covariance matrix models C

1
2 XXTC

1
2 and C

1
2 XC̃XTC

1
2 , respectively, as well as the very

extensive work [Ajanki et al., 2019] on the defining equation of mµ attached to generalized
Wigner models (for instance the generalized semicircle law for Wigner models with a variance
profile, Theorem 2.9). The small number of these studies testifies of the greater importance
of the Stieltjes transform relation defining mµ over the measure µ itself which, both in theory
and in practice, is quite often of lesser interest.
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Density and support of µ (and µ̃)

Precisely, recall that µ = 1
c µ̃+ (1− 1

c )δ0 (with δ0 the Dirac mass at x = 0) with
µ̃ defined by its Stieltjes transform m̃(z) solution to

m̃(z) =

(
−z + c

∫
tν(dt)

1 + tm̃(z)

)−1

.

This functional expression has the interesting key property of being invertible,
in the sense that it is formally equivalent to

z = − 1

m̃(z)
+ c

∫
tν(dt)

1 + tm̃(z)
.

As a consequence, the function m̃(·) : C \ supp(µ̃) → C, z 7→ m̃(z) admits the
functional inverse

z(·) : m̃(C \ supp(µ̃))→ C

m̃ 7→ − 1

m̃
+ c

∫
tν(dt)

1 + tm̃
.

The important point to notice here is that z(·), seen as the functional inverse of
m̃(·), is only defined on the domain m̃(C\ supp(µ̃)). Yet, formally, this function
could be extended to all values m̃ ∈ C such that 0 /∈ 1 + m̃ · supp(ν) (i.e., all
values that do not cancel the denominator 1 + tm̃ for some t ∈ supp(ν)).

The idea of Silverstein and Choi [1995], originally expressed in the seminal
work of Marcenko and Pastur [1967], is twofold:

• Outside the support. (i) the Stieltjes transformmµ(x) =
∫

(t−x)−1µ(dt)
of a measure µ is well defined and an increasing function on its restriction
to x ∈ R \ supp(µ) (it has positive derivative there), hence (ii) so must
be its functional inverse x(·) on its restriction to mµ(R \ supp(µ)), (iii)
consequently, if x(·) admits an extension to some domain S with mµ(R \
supp(µ)) ⊂ S ⊂ R, x(·) should only be increasing on mµ(R \ supp(µ));28
(iv) therefore, the complementary R \ supp(µ) to the support of µ can be
determined as the union of the image of all increasing sections of x(·). See
Figure 2.5, commented below, for a simplified visual understanding.

In our setting, this thus formally defines the support of the limiting mea-
sure µ of µ 1

nXXT .

• In the support. Inside this support, one then needs to determine the
density of µ. To this end, one may first prove the existence of m̃◦(x) =
limε→0 m̃(x + ıε). Upon existence, since =[m̃◦(x)] > 0 for x ∈ supp(µ),

28Formally, it is clear that all decreasing sections of (the extended version of) x(·) cannot
correspond to the functional inverse of a Stieltjes transform. It is less evident though that all
increasing sections do correspond to the inverse of a Stieltjes transform; this was settled in
[Silverstein and Choi, 1995].
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dominated convergence can be applied on the defining equation for m̃(z)
to find that m̃◦(x) is a solution with positive imaginary part of

m̃◦(x) =

(
−x+ c

∫
tν(dt)

1 + m̃◦(x)t

)−1

which is then shown to be unique.

These arguments are formally stated in the following theorem.

Theorem 2.10 (Silverstein and Choi [1995]). Under the setting of Theorem 2.6
with µC → ν as p→∞, define

x(·) : R \ {m̃ | (−1/m̃) ∈ supp(ν)} → R

m̃ 7→ − 1

m̃
+ c

∫
tν(dt)

1 + m̃t
.

Then, µ̃ has a density f̃ on R \ {0} and

• for y ∈ supp(µ̃), f̃(y) = 1
π=[m̃◦(y)] with m̃◦(y) the unique solution with

positive imaginary part of x(m̃◦(y)) = y;

• the support supp(µ̃) \ {0}, which coincides with supp(µ) \ {0}, is defined
by

supp(µ) \ {0}
= R \ {x(m̃) | (−1/m̃) ∈ R \ {supp(ν) ∪ {0}} and x′(m̃) > 0} .

Figure 2.5 depicts the function x(m̃) under a similar setting as Figure 2.4
with ν composed of three Dirac masses. The top display shows four increasing
regions of x(·), thus corresponding (on the y-axis) to four connected components
of R\ supp(µ). The complementary, depicted in blue on the y-axis, corresponds
to the (three) connected components of supp(µ). The middle display only shows
three growing regions for x(·), thus restricting the support of µ to two connected
components. Analogously, in the bottom display there is only one growing
region for x(·) (close to the y-axis from above), which now corresponds to a
single connected component for supp(µ) \ {0}. This is in accordance with the
observations made in Figure 2.4, when altering either ν or c.

A careful analysis of the function x(·) actually reveals additional interesting
properties:

1. the restriction of x(·) to its growing sections is a growing function. This
follows from the fact that, there, x(·) is the functional inverse of m̃(·)
restricted to R \ supp(µ) which is a growing function.

2. in the case of Figure 2.5, since ν is discrete, x(·) presents asymptotes at
each −1/t, t ∈ supp(ν). Thus, from the previous item, supp(µ) is here
determined by the union ∪k[m̃−k , m̃

+
k ] for m̃−1 < m̃+

1 < m̃−2 < . . . the suc-
cessive values of m̃ such that x′(m̃) = 0. This remark may however not
hold for ν with continuous support. Detailed conditions for this charac-
terization to hold are discussed in [Couillet and Hachem, 2014].
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Figure 2.5: x(m̃) for −1/m̃ ∈ R \ supp(ν), with ν = 1
3 (δ1 + δ3 + δ7) (top) and

ν = 1
3 (δ1 + δ3 + δ5) (middle), c = 1/10 in both cases, and ν = 1

3 (δ1 + δ3 + δ5)
with c = 2 (bottom). Local extrema are marked by circles, inflexion points
by squares. The support of µ can be read on the vertical axes. Link to code:
Matlab and Python.

3. the derivative of x(·) is given by

x′(m̃) =
1

m̃2
− c

∫
t2ν(dt)

(1 + tm̃)2

and thus m̃2x′(m̃) converges to 1− c as |m̃| → ∞, while x(m̃)→ 0. Thus
x(·) is either decreasing or increasing at ±∞ depending on whether c < 1
or c > 1. In particular, the pre-image by x(·) of 0+ is −∞ if c < 1 (top and
middle displays of Figure 2.5) and some positive value if c > 1 (bottom
display of Figure 2.5): this remark is fundamental for the next section.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/2.3/html/advanced_spectrum.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/2.3/advanced_spectrum.ipynb
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Variable change: relating supp(ν) and supp(µ).

An important side consequence of the study above of z(·) (and its restriction
x(·) to the real axis) is that the function

γ : C \ {supp(µ) ∪ {0}} → C

z = z(m̃) 7→ − 1

m̃
(2.39)

provides an injective mapping between points outside the support of µ and
points outside the support of ν with the property that

γ(C \ R) ⊂ C \ R and γ(R \ supp(µ)) ⊂ R \ supp(ν)

but where the inclusion is strict in general.
To understand this statement, first consider z ∈ C \ R+. Then, by The-

orem 2.6, there exists a unique pair (z, m̃(z)) ∈ Z and we may thus write
z = z(m̃) for the value m̃ ∈ C\R− given by m̃ = m̃(z). For z = x ∈ R+\supp(µ),
we have just seen in our discussion of Theorem 2.10 and in Figure 2.5 that there
also exists m̃ ∈ R− (it must be real because =[m̃(x)] = 0 outside the support)
such that x = x(m̃). As a consequence, for z ∈ C \ R, m̃ = m̃(z) ∈ C \ R
and thus −1/m̃ ∈ C \ R. Similarly, for x ∈ R \ supp(µ), from Figure 2.5,
−1/m̃ ∈ R \ supp(ν). The map is however only injective (in general not surjec-
tive) as not all values of C\ supp(ν) can be reached. For instance, in Figure 2.5,
the sets (−1/m̃−1 , 1) and (1,−1/m̃+

1 ) cannot be reached by γ. This remark will
constitute a fundamental limitation to statistical inference methods.

More visually, Figure 2.6 depicts in blue the complementary to the image
γ(C \ supp(µ)). This blue region is inaccessible in the sense that no point in
C\supp(µ) can have an image by γ(·) in it. In red are depicted typical images by
γ(·) of rectangular contours surrounding supp(µ). Intuitively, we observe that,
as c increases (compare left to right displays), the exclusion region increases in
size and one thus cannot get “too close” to the support of ν (which is here the
discrete union of three point masses): this “pushes” the image of the red contour
further away from the real axis.

In particular, for c > 1, the exclusion region includes {0}. This is a conse-
quence of Item 3 in the remarks of the previous paragraph: while the right real
crossing of a contour Γµ ⊂ {z ∈ C, <[z] > 0} surrounding the support of µ will
have an image by γ(·) somewhere on the right side of supp(ν), (i) for c < 1, the
left real crossing will have 0+ for image, and (ii) for c > 1, the left real crossing
will have a negative value for image.

This, we shall see next in Section 2.4, is an important problem when it
comes to estimating certain functionals

∫
fdν of ν based on the sample measure

µ 1
nXXT .

2.3.2 “No eigenvalue outside the support”
Before exploiting the aforementioned change of variable (the mapping z 7→
−1/m̃(z)) for statistical inference (in Section 2.4 below), an important extension
of Theorem 2.6 is needed.
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<
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Figure 2.6: Domain of validity of variable changes, for ν = 1
3 (δ1 + δ3 + δ5),

with c = 1/10 (left) and c = 2 (right). The filled blue regions in the bottom
display are the (inaccessible) complementary to the image of −1/m̃(·). The red
contour Γν is the image by −1/m̃(·) of a rectangular contour Γµ surrounding
supp(µ). Link to code: Matlab and Python.

It must be stressed that the limiting results of Theorem 2.6 are weak conver-
gences for the normalized counting measure 1

p

∑p
i=1 δλi( 1

nXXT) (i.e., the spectral
measure) of the eigenvalues of 1

nXXT. This, by definition, means that, for every
continuous bounded f ,

1

p

p∑
i=1

f

(
λi

(
1

n
XXT

))
−
∫
f(t)µ(dt)

a.s.−−→ 0.

Letting for instance f be a smoothed version of the indicator 1[a,b] for a, b ∈
supp(µ), this thus only says that the averaged number of eigenvalues of 1

nXXT

within [a, b] converges to µ([a, b]).
In the example of Figure 2.4 (top or middle), if p1 is the number of eigen-

values falling in the neighborhood of the leftmost connected component of µ

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/2.3/html/advanced_spectrum.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/2.3/advanced_spectrum.ipynb
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(around one), it is thus only possible to know from Theorem 2.6 that p1/p =
1/3 + o(1) (almost surely), which is equivalent to p1 = p/3 + o(p). This, in
particular, does not guarantee that p1 − p/3

a.s.−−→ 0 exactly as n, p→∞.
Worse, Theorem 2.6 only guarantees that, for [a, b] a connected component

of R\supp(µ), the number of eigenvalues of 1
nXXT inside [a, b] is asymptotically

of order o(p). As such, [a, b] may never be empty, even for arbitrarily large n, p
(it can contain a fixed finite number of eigenvalues or even a growing number of
eigenvalues, so long that this number is much less than O(p)). In other words,
Theorem 2.6 does not prevent a few eigenvalues of 1

nXXT from “leaking” from
the limiting support of µ, which, as we shall see in Figure 2.6 and Section 2.4
below, may cause problems in statistical inference.

The following result, again originally due to Bai and Silverstein, settles this
non-trivial issue.

Theorem 2.11 (“No eigenvalue outside the support” and “exact separation”:
[Bai and Silverstein, 1998, 1999, Bai et al., 1988]). Under the setting of Theo-
rem 2.6,29 let ‖C‖ be bounded with µC → ν and

max
1≤i≤p

dist(λi(C), supp(ν))→ 0,

as p → ∞. Consider also −∞ ≤ a < b ≤ ∞ such that a, b ∈ R+ \ supp(µ).
Then the following results hold

• if E[|Zij |4] <∞, then, for |A| the cardinality of set A,∣∣∣∣{λi( 1

n
XXT

)
∈ [a, b]

}∣∣∣∣− |{λi(C) ∈ [γ(a), γ(b)]}| a.s.−−→ 0

with γ(·) defined by (2.39). In particular, if [a, b] is a connected component
of R+ \ supp(µ), then∣∣∣∣{λi( 1

n
XXT

)
∈ [a, b]

}∣∣∣∣ a.s.−−→ 0.

That is, with probability one, no eigenvalues of 1
nXXT appears in [a, b],

for all n, p large.

• if E[Z4
ij ] =∞, then

max
1≤i≤p

λi

(
1

n
XXT

)
a.s.−−→ ∞.

In plain words, the theorem precisely states that:
29Here formally, the theorem statement must be understood with the “light tail condition”

discarded, i.e., the only condition on Z is that it is composed of i.i.d. entries with zero mean
and unit variance.
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• under the condition that E[Z4
ij ] <∞ and that no eigenvalue of C isolates

from its associated limiting spectrum ν, (i) there asymptotically exists no
eigenvalue outside the support of µ and (ii) the eigenvalues assembled in
asymptotically contiguous “bulks” are found in asymptotically expected
numbers. For instance, in the setting of Figure 2.4, it can be verified
that not a single eigenvalue is found away from the support of µ and, in
addition, that the exact number of eigenvalues in the neighborhood of each
connected component of µ is in exact proportion (for the top figure, exactly
p/3 eigenvalues in each component, and for the middle figure, exactly 2p/3
eigenvalues in the rightmost and largest component). We emphasize that
this is a much finer control (of order O(1)) of the eigenvalues than that
offered by Theorem 2.6 (which is only of order o(p)).

• if E[Z4
ij ] = ∞ (for instance for a Student t-distribution with low degree

of freedom), this “exact separation” collapses: while in correct asymptotic
proportion guaranteed by Theorem 2.6, up to o(p) eigenvalues may be
found away from the support of µ, with in particular the largest eigenvalue
going to infinity.

For future reference, we insist on the condition

max
1≤i≤p

dist(λi(C), supp(ν))→ 0, (2.40)

which is also fundamental for the theorem to hold. Not surprisingly, if a single
eigenvalue of C were to diverge as p → ∞, it is expected that an eigenvalue
of 1

nXXT would also diverge. For instance, say λ1(C) = p and λ2(C) = . . . =
λp(C) = 1; then µC → δ1 so that Theorems 2.6 and 2.4 ensure that µ 1

nXXT

converges weakly to the Marc̆enko-Pastur law, while the largest eigenvalue of
1
nXXT is strongly expected to diverge to infinity (which it indeed does in this
case). Section 2.5 on spiked models is strongly inspired by this remark.

2.4 Preliminaries on statistical inference

Section 2.3 provides the necessary ingredients for basic statistical inference con-
siderations of large dimensional sample covariance matrix models.

In this section, we will successively consider the estimation (i) of linear eigen-
value statistics30 of the type 1

p

∑p
i=1 f(λi(C)) and (ii) of eigenvector projections

aTui (ui an eigenvector of C) for deterministic vectors a; from the sample ob-
servation X = [x1, . . . ,xn], xi = C

1
2 zi and zi with standard i.i.d. entries, as

defined in Theorem 2.6.
Before entering the topic, it must be mentioned that large dimensional statis-

tical inference, from a random matrix approach, has stood for long as a complex
problem. In particular, retrieving information about a population covariance C

30These are called linear statistics although f will in general not be linear. What is linear
here is in fact the mapping (f(λ1), . . . , f(λp)) 7→ 1

n

∑p
i=1 f(λi).
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from the samples C
1
2 Z may be seen as inverting Theorem 2.6, a problem tenta-

tively tackled in [El Karoui, 2008] and later in [Bun et al., 2017] using convex
optimization (thus non exact) schemes, but with limited success. Some specific
objects, such as traces of powers of C, traces of its resolvent, quadratic forms,
etc., may be estimated by detoured means and formed the extensive database of
the more-than-fifty G-estimators due to Girko [2001] (the phrase ‘G-estimator’
should be understood as ‘generalized estimators’, according to Girko). In this
section, we instead concentrate on a contour integral approach to systematically
estimate a broad class of functionals of C: the idea, found scattered in the lit-
erature, was revived by Mestre [2008]. The content of this section is not easily
found in the literature but is strongly inspired by (a simplified treatment of)
[Mestre, 2008].

2.4.1 Linear eigenvalue statistics

Relating population and sample Stieltjes transforms

A first observation is that the defining equation for m̃(z) in Theorem 2.6, i.e.,

m̃(z) =

(
−z + c

∫
tν(dt)

1 + tm̃(z)

)−1

can be equivalently rewritten under the form

mν

(
− 1

m̃(z)

)
= −zm(z)m̃(z) (2.41)

where we recall that m(z) = 1
c m̃(z) + 1−c

c
1
z . This simply follows from noticing

that ∫
tν(dt)

1 + tm̃(z)
=

1

m̃(z)

∫
tm̃(z)ν(dt)

1 + tm̃(z)

=
1

m̃(z)

(
1−

∫
ν(dt)

1 + tm̃(z)

)
=

1

m̃(z)

(
1− 1

m̃(z)

∫
ν(dt)

t− (−1/m̃(z))

)

where, from Definition 3, we recognize
∫ ν(dt)
t−(−1/m̃(z)) to be the Stieltjes transform

mν of the measure ν evaluated at −1/m̃(z).

Theorem 2.6 thus (indirectly) establishes a relation between the population
statistics of C and that of the the sample covariance matrix 1

nXXT, through the
Stieltjes transforms of their limiting measures, and we can already anticipate
that −1/m̃(z) will indeed play the role of a variable change to move from z in
m(z), m̃(z) to z′ in mν(z′) if z′ = −1/m̃(z).
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Eigen-inference

Now, observe that, for f : C → C a function analytic in a neighborhood
of the eigenvalues of C, by Cauchy’s integral theorem, the linear statistics
1
p

∑p
i=1 f(λi(C)) of the eigenvalues of C can be expressed as31

1

p

p∑
i=1

f(λi(C)) '
∫
f(t)ν(dt)

=

∫ [
1

2πı

∮
Γν

f(z) dz

z − t

]
ν(dt)

= − 1

2πı

∮
Γν

f(z)

[∫
ν(dt)

t− z

]
dz

= − 1

2πı

∮
Γν

f(z)mν(z) dz (2.42)

where Γν ⊂ C is a (positively oriented) contour encircling the support of ν but
no singularity of f . Here the integral exchange comes at no difficulty because
Γν is a closed compact contour carefully avoiding the support of ν (so that t− z
in the denominator is uniformly away from zero) and supp(ν) is bounded. Thus,
one can express (smooth) linear statistics of the eigenvalues of C by means of a
complex integral involving the Stieltjes transform mν(z).

As a consequence of (2.41), it is now possible to relate the non-observable
mν(z) to m̃(z), which is the large n, p limit of the observable Stieltjes transform
m 1

nXTX(z). To be able to plug (2.41) into (2.42), one needs to perform the
change of variable z 7→ −1/m̃(z). This is however only possible if there indeed
exists a Γν ⊂ C (the contour in (2.42)) such that Γν = −1/m̃(Γµ) for some well
defined complex path Γµ. The discussions in Section 2.3.1 and in particular,
around Figure 2.6, have clarified the conditions under which such a Γν exists.

But let us assume that Γν is indeed well defined as Γν = −1/m̃(Γµ) for some
valid Γµ. Then, Equation (2.42) along with (2.41) imply∫

f(t)ν(dt) = − 1

2πı

∮
Γµ

f

(
− 1

m̃(ω)

)
mν

(
− 1

m̃(ω)

)
m̃′(ω)

m̃2(ω)
dω

=
1

2πı

∮
Γµ

f

(
− 1

m̃(ω)

)
ω
m(ω)m̃′(ω)

m̃(ω)
dω

where we wrote z = −1/m̃(ω). Using that m(ω) = 1
c m̃(ω) + (1 − c)/(cω), this

further reads∫
f(t)ν(dt) =

1

2cπı

∮
Γµ

f

(
− 1

m̃(ω)

)
(ωm̃(ω) + (1− c)) m̃′(ω)

m̃(ω)
dω

=
1

2cπı

∮
Γµ

f

(
− 1

m̃(ω)

)
ωm̃′(ω)dω − 1− c

c
f(0) · 1{0∈Γ◦ν}

31Here again the “'” sign can be turned into an equality if one assumes ν = 1
p

∑p
i=1 δλi(C).
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where Γ◦ν is the inside of Γν , and where for the last equality we used

1

2πı

∮
Γµ

f

(
− 1

m̃(ω)

)
m̃′(ω)

m̃(ω)
dω = − 1

2πı

∮
Γν

z−1f(z) dz = −f(0) · 1{0∈Γ◦ν}

by residue calculus, assuming again that f is analytic on a sufficiently large
region (in particular here around zero).

To complete the statistical inference framework, one finally needs to relate
the above expression to the observation X. The idea is to use the fact that
m 1

nXTX(ω)
a.s.−−→ m̃(ω) from Theorem 2.6. To ensure that m̃(ω) can be replaced

by m 1
nXTX(ω) in the above expression, one however needs to ensure that dom-

inated convergence on the compact set Γµ holds. For this, two ingredients are
needed: (i) first guarantee that the convergencem 1

nXTX(ω)
a.s.−−→ m̃(ω) is uniform

on Γµ, which easily follows from the analytic nature of Stieltjes transforms, and
more importantly (ii) prove that the integrand f(−1/m 1

nXTX(ω))ωm′1
nXTX

(ω)

is uniformly bounded on Γµ. This second item follows from Theorem 2.11 which
guarantees that, for all n, p large, with probability one, all eigenvalues remain
in the vicinity of supp(µ) under the additional conditions (i) E[|Xij |4] <∞ and
(ii) maxi dist(λi(C), supp(ν))→ 0.

As a consequence, accounting now for the conditions of validity of the vari-
able change discussed in the previous section, we have the following statistical
inference result, the original ideas of which are due to Mestre.

Theorem 2.12 (Inspired by Mestre [2008]). Under the setting of Theorem 2.6
with E[|Xij |4] < ∞ and max1≤i≤p dist(λi(C), supp(ν)) → 0, let f : C → C be
a complex function analytic on the complement of γ(C \ supp(µ)) in C with γ
defined in (2.39). Then,

1

p

p∑
i=1

f(λi(C))− 1

2cπı

∮
Γµ

f

(
−1

m 1
nXTX(ω)

)
ωm′1

nXTX(ω)dω
a.s.−−→ 0,

for some complex positively oriented contour Γµ ⊂ C surrounding supp(µ)\{0}.
In particular, if c < 1, the result holds for any f analytic on {z ∈ C, <[z] > 0}
with Γµ chosen as any such contour within {z ∈ C, <[z] > 0}.

From a numerical standpoint, for c < 1, Theorem 2.12 is rather straightfor-
ward: it indicates that any complex contour Γµ in {z ∈ C, <[z] > 0} guarantees
the result. For c > 1, the choice of Γµ is less trivial. For safety, it is advised
to take Γµ a contour closely fitting the support of µ 1

nXTX, excluding zero (such
as a small rectangle). Figure 2.5 and Figure 2.6 visually explain the issue sur-
rounding the case c > 1 and the technical request regarding the analytic nature
of f : from Figure 2.6, since the “tightest-to-the-real-line” (red) contours Γν in
the bottom displays must avoid the blue areas (to be well defined images of
valid contours Γµ from the top displays), the minimal request is for f to be
analytic on those blue areas enclosed in the red contour; if not analytic there,
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the complex integral would have additional residues, thereby altering the result
of the theorem.

In practice, the most problematic case occurs when 0 falls within a blue area
and one has to deal with functions f(z) involving log(z),

√
z, 1/z, all of which

are singular at z = 0. A typical way out of this situation would be to add an
extra term in the result to compensate for the extra residue; this compensating
term would then have to be estimated. This however appears not always to be
possible as discussed in the following remark.

Remark 2.11 (On the c > 1 case). For c > 1 and for f not analytic at zero
(for instance f(z) = log(z), f(z) = z−1, or f(z) =

√
z), Theorem 2.12 cannot

be applied. That is, for these functions,

1

p

p∑
i=1

f(λi(C))

cannot be consistently estimated directly from the theorem statement. Using the
above compensation by the residue at zero workaround, however, it appears that
the compensating term is at least as hard to estimate as 1

p

∑p
i=1 f(λi(C)) itself.

This somehow suggests that, when p > n and thus the sample covariance matrix
1
nXXT is of rank n < p, one lacks information to estimate some functionals of
the p eigenvalues of C. A similar problem will be discussed in Remark 3.3 on
the application to between-covariance matrix distance estimation.

Application example: estimating population eigenvalues of large mul-
tiplicity

Figure 2.4 present three scenarios where the population spectral measure µC

(or equivalently its limit ν) is a discrete sum of three distinct eigenvalues. A
natural concern in the large n, p dimension is whether it is possible to estimate
these eigenvalues consistently from the sample data X of size n.

In the top display of Figure 2.4, it a priori appears that averaging the sample
eigenvalues of each component of µp may provide such a consistent estimator.
This is however not the case: as can be checked below, this estimator is indeed
biased. The framework devised in the previous section, on the contrary, will
provide a consistent estimator: the idea is now to design a contour Γν which
would encircle only one of the three masses in the spectrum (rather than encir-
cling the whole support of ν); one must then find a corresponding valid contour
Γµ such that Γν = −1/m̃(Γµ); not surprisingly, this contour Γµ will encircle the
“hump” in the empirical spectrum µ associated to the corresponding sought-for
eigenvalue of C (this being a consequence of the discussions in Section 2.3 and
particularly of Figure 2.5). In the middle display, a problem arises for the two
population eigenvalues (3 and 5) of C associated to the same connected compo-
nent of µ: for these, no complex contour Γν exists that would be a proper image
Γν = −1/m̃(Γµ) and that would circle around either 3 or 5 alone, see also the
left plots of Figure 2.6. We will see that a more involved procedure can nonethe-
less consistently estimate them both. In the bottom display of Figure 2.4, the
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difficulty further increases: here again, it remains possible to estimate 1, 3 and
5 but at the cost of a more involved method.

Consider then the following generalized setting of Figure 2.4, where

νC =
1

p

k∑
i=1

piδ`i →
k∑
i=1

ciδ`i

for `1 > . . . > `k > 0, k fixed with respect to n, p, and pi/p→ ci > 0 as p→∞
(i.e., each eigenvalue has a large multiplicity of order O(p)).

Fully separable case. We additionally assume for the moment that the sam-
ple size n > p of X = [x1, . . . ,xn] (where xi = C

1
2 zi, zi having standard i.i.d.

entries and bounded fourth order moment as in Theorem 2.11) is sufficiently
large for the number of connected components in µ to be exactly k, i.e., each
eigenvalue of C is “mapped” to a single connected component of supp(µ) as in
the top display of Figure 2.4 and 2.5.

Then, to estimate the population `a, a ∈ {1, . . . , k}, Theorem 2.12 may be
applied to the mere function f(z) = z, however for Γµ now changed into Γ

(a)
µ , a

contour circling around the a-th connected component of supp(µ) only (sorted
descendingly from ∞ to 0). Adapting Theorem 2.12 according to Theorem 2.11
and our previous line of reasoning, we then have

`a − ˆ̀
a

a.s.−−→ 0, ˆ̀
a = − n

pa

1

2πı

∮
Γ
(a)
µ

ω
m′1

nXTX
(ω)

m 1
nXTX(ω)

dω
a.s.−−→ 0. (2.43)

The estimator ˆ̀
a can be numerically evaluated. However, recalling thatm 1

nXTX(ω)

(and its derivative) are rational functions, this integral is prone to estimation
by a simple residue calculus. Indeed, first observe that the integrand in the
expression of ˆ̀

a has two types of poles: (i) the λi = λi(
1
nXTX) falling inside

the surface described by Γ
(a)
µ , since in the neighborhood of λi,

− n

pa
ω
m′1

nXTX
(ω)

m 1
nXTX(ω)

= − n

pa
ω

1
n

∑n
i=1

1
(λi−ω)2

1
n

∑n
i=1

1
λi−ω

∼ω∼λi −
n

pa

ω

λi − ω

and (ii) the zeros of m 1
nXTX falling within Γ

(a)
µ .

For readability in what follows, we sort the eigenvalues of 1
nXTX as λ1 ≥

. . . ≥ λn (these are almost surely distinct but for the possible zero eigenvalues).
Dealing with the first type of poles is easy: the λi falling within Γ

(1)
µ are precisely

the p1 largest, within Γ
(2)
µ the next p2 largest, etc., as per Theorem 2.11. The

residue associated to λi is then

lim
ω→λi

(ω − λi)
n

pa

−ω
λi − ω

=
n

pa
λi.
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The second set of poles is less immediate to retrieve. An important remark is
that the zeros, call them ηj (sorted also as η1 ≥ η2 ≥ . . .), of m 1

nXTX(ω) are
necessarily real (since the Stieltjes transform has nonzero imaginary part for
=[ω] 6= 0, see Definition 3) and satisfy

1

n

n∑
i=1

1

λi − ηj
= 0.

Since the function

x 7→ 1

n

n∑
i=1

1

λi − x

is increasing and has ∞ and −∞ asymptotes at x = λi − 0 and x = λi + 0,
respectively, each ηj falls exactly in one of the intervals [λi, λi+1] and thus
each λi pole is accompanied by its ηi pole (if sorted similarly; see Figure 2.7
for an illustration). The residue calculus then gives, by Taylor expanding the
denominator,

lim
ω→ηj

(ω − ηj)
n

pa

−ωm′1
nXTX

(ω)

0 +m′1
nXTX

(ηj)(ω − ηj)
= − n

pa
ηj .

As a result, we finally have the estimator

ˆ̀
a =

n

pa

p1+...+pa∑
i=p1+...+pa−1+1

λi − ηi. (2.44)

Surprisingly at first, it appears that the estimator is the sum of pa = O(p) terms,
which may seem to conduct to an estimate of order O(p). However, recall that
λ1, . . . , λp are “compacted” in a support of size O(1) and that λi−1 < ηi < λi so
that λi − ηi = O(p−1), which resolves the problem.

This formulation is nonetheless still not fully closed in the sense that the ηi
are so far only provided in terms of the zeros of m 1

nXTX. The following remark
provides an explicit form.

Remark 2.12 (Explicit expression for the zeros of mX(z)). For X ∈ Rn×n
symmetric with eigenvalues λ1 > . . . > λn, the zeros η1 > η2 > . . . of mX(z)
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λi−1 λi

0
λi−1 λi

ηi

x

m
X

(x
)

Figure 2.7: Illustration of the zeros (ηi) and poles (λi) of the (restriction to the
real axis of the) Stieltjes transform mX(x). Link to code: Matlab and Python.

satisfy the following equivalence relations

1

n

n∑
i=1

1

λi − ηj
= 0⇔ 1

n

n∑
i=1

−ηj
λi − ηj

= 0

⇔ 1

n

n∑
i=1

λi
λi − ηj

− 1 = 0

⇔ 1

n

√
λ
T

(Λ− ηjIn)−1
√
λ− 1 = 0

⇔ det

(
1

n

√
λ
√
λ
T

(Λ− ηjIn)−1 − In

)
= 0

⇔ det

(
1

n

√
λ
√
λ
T
−Λ + ηjIn

)
= 0

where we denoted
√
λ ∈ Rp the (column) vector of the

√
λi’s and Λ ∈ Rp×p the

diagonal matrix diag{λi}pi=1, sorted in the same way, and used Lemma 2.3 as
well as the fact that det(Λ− ηjIn) 6= 0 according to our discussion above.

Consequently, the zeros of mX are exactly the eigenvalues of

Λ− 1

n

√
λ
√
λ
T
.

Figure 2.8 depicts the estimation errors in the setting of two population
eigenvalues `1 and `2 (with `1 = 1 and p/n = 1/4), as a function of the difference
∆λ = `2 − `1. Note first that the derived random matrix-based estimator

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/2.4/html/linear_eig_stats.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/2.4/linear_eig_stats.ipynb
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significantly outperforms the naive approach of averaging the eigenvalues of
each component of the sample covariance. Also, we observe that the estimator
error of the proposed approach grows rapidly once ∆λ < 1: this is a typical
“avalanche effect” which appears below the phase transition threshold when the
two connected components of the support of the empirical measure µ are no
longer separable and the estimator is thus no longer consistent.

0 0.5 1 1.5 2
0

0.1

0.3

0.5

∆λ

√ ∑
k a
=

1
(`
a
−

ˆ̀ a
)2

Naive estimator
RMT-improved estimator

Figure 2.8: Eigenvalue estimation errors with naive and RMT-improved ap-
proach, as a function of ∆λ, for `1 = 1, `2 = 1 + ∆λ, p = 256 and n = 1 024.
Results averaged over 30 runs. Link to code: Matlab and Python.

Non-separable case. The estimator introduced above is only valid if the
contour Γ

(a)
µ is licit, in the sense that its image by the variable change z 7→

−1/m̃(z) leads to a valid contour Γ
(a)
ν surrounding `a only. However, we have

seen (in Figure 2.6 notably) that there may not exist any such licit Γ
(a)
µ . In

our present setting, Figures 2.5 (both middle and bottom) and Figure 2.6 (both
left and right) reveal that, if say `1 and `2 are associated to a single connected
component of supp(µ), then all contours Γ

(1)
µ surrounding only the p1 largest

empirical eigenvalues λi are illicit.
In order to estimate both `1 and `2 individually, one must then resort to

using at least two estimates of linear functionals of the couple (`1, `2). One
approach is to estimate simultaneously both p1

p `1 + p2
p `2 and p1

p `
2
1 + p2

p `
2
2, which

are accessible from our present adaptation of Theorem 2.12 for f(z) = z and
f(z) = z2, with a contour Γ

(1,2)
µ surrounding the connected component of µ

encompassing the p1 + p2 largest λi.
Assuming p1 and p2 are known, this thus boils down to solving a second-

order polynomial in ˆ̀
1 and ˆ̀

2. This procedure however has several limitations:

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/2.4/html/linear_eig_stats.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/2.4/linear_eig_stats.ipynb
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(i) the polynomial equations may lead to nonreal solutions (recall that, while
asymptotically this will not occur, the procedure is based on the finite dimen-
sional random realization X, so that nonreal solutions may arise with non-zero
probability), and (ii) assuming that p1 and p2 are known is, unlike the fully sep-
arable case guaranteed by Theorem 2.11, in fact quite demanding as they cannot
be easily estimated from the empirical eigenvalues λi themselves (an additional
third equation is then needed), (iii) a further classical issue in statistics is that
estimates of higher order (second-order here) moments are increasingly prone
to large variances as the moment order increases: as such, the need for addi-
tional equations to estimate the individual `a and their multiplicity must pass
through generalized (non polynomial) moments, which are possibly cumbersome
to estimate.

2.4.2 Eigenvector projections and subspace methods

In the previous section on the inference methods for the linear statistics (of
eigenvalues) of the population covariance C, we exploited, as a immediate con-
sequence of Theorem 2.6, the relation

mν (−1/m̃(z)) = −zm(z)m̃(z)

between the Stieltjes transform mν of the population covariance measure ν and
the Stieltjes transform m (and m̃) of the sample covariance measure µ (and
µ̃ = cµ+ (1− c)δ0).

The deterministic equivalent statements Q(z) ↔ Q̄(z) (as well as Q̃(z) ↔
¯̃Q(z)) in Theorem 2.6 go beyond Stieltjes transform relations as they connect
the whole resolvent matrix Q(z) = ( 1

nXXT − zIp)−1 of the sample covariance
(almost directly) to the resolvent (C− zIp)−1 of the population covariance.

These relations can be used in the following ways: (i) when C is known,
they provide asymptotic characterizations of some functionals of X involving its
singular vectors (i.e., the eigenvectors ûi(X

TX) of XTX or ûi(XXT) of XXT),
in particular projections ûi(XXT)Tu onto the eigenvectors u of C; (ii) when
C is unknown, they provide estimates for some functionals of the eigenvectors
of C, notably projections aTu onto deterministic vectors a, using those of the
empirical eigenvectors ûi. The latter case is particularly suited to the so-called
subspace methods, for instance based on the fact that u(C) is known to be
aligned (or be equal) to some vector aθ parametrized by θ and one aims to
solve for θ maximizing this alignment. See Section 3.1.3 for an example of such
methods in signal processing application. Another scenario of significance is
spectral clustering where the dominant eigenvectors of the kernel matrix XTX
are used to estimate the dominant population eigenvectors, themselves precisely
providing the data classes: knowing their asymptotic alignment thus provides
precise characterizations of the performance of spectral clustering.
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Estimates of functionals of X

In some machine learning applications, the observed data X will be processed
in a nonlinear fashion that may nonetheless preserve its eigenvector structure.
The spectral behavior of the resulting matrix may here be typically evaluated
by means of its projection onto specific vector structures. This is for instance
the case of some simple gradient descent mechanisms for supervised learning to
be discussed in Section 5.2, where the learning performance can be measured
from the alignment between the gradient descent iterates and the classification
vectors (such as the vector [−1n1 ,1n2 ] in a binary classification setting).

For M ∈ Rp×p a symmetric matrix with spectral decomposition M = UΛUT

and Λ = diag{λ1, . . . , λp)}, and f : R→ R, we shall here denote

f(M) = U diag{f(λi)}pi=1U
T.

Assume f is extensible to a complex function f : C → C, analytic on a neigh-
borhood of λ1, . . . , λp. Then, we have that

f(M) = − 1

2πı

∮
Γ

f(z)QM(z) dz

for Γ ⊂ C a contour closely encompassing λ1, . . . , λp but no singularity of f .
This result arises from a simple residue calculus. Indeed, writing

QM = U(Λ− zIp)−1UT =

p∑
i=1

uiu
T
i

λi − z

with U = [u1, . . . ,up], each eigenvalue λj is a pole of the integrand and the
associated residue is

lim
z→λj

(z − λj)f(z)

p∑
i=1

uiu
T
i

λi − z
= −f(λj)uju

T
j .

Summing the expression above over j gives the result.

Now, assuming QM(z) admits a deterministic equivalent Q̄(z), we have in
particular, for A ∈ Rp×p and a,b ∈ Rp, deterministic and of bounded norms,

1

p
tr (Af(M)) = − 1

2πı

∮
Γ

f(z)
1

p
tr AQM(z) dz

= − 1

2πı

∮
Γ

f(z)
1

p
tr AQ̄(z) dz + o(1),

aTf(M)b = − 1

2πı

∮
Γ

f(z)aTQM(z)b dz

= − 1

2πı

∮
Γ

f(z)aTQ̄(z)b dz + o(1),

thereby giving access to the asymptotics of these eigenvector functionals.
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Under the notations of Theorem 2.6, for M = 1
nXXT the sample covariance

matrix under study, we have in particular

1

p
tr Af

(
1

n
XXT

)
=

1

2πı

∮
Γµ

f(z)

z

1

p
tr A (Ip + m̃(z)C)

−1
dz + o(1) (2.45)

aTf

(
1

n
XXT

)
b =

1

2πı

∮
Γµ

f(z)

z
aT (Ip + m̃(z)C)

−1
b dz + o(1)

for Γµ a contour circling around the limiting spectral support supp(µ).

Example: Eigenspace correlation. Returning to Figure 2.4, we have seen
that, when the population covariance spectrum ν is a discrete measure ν =∑k
a=1

pa
p δ`a and c is small enough, µ has a density that spreads in k connected

components supp(µ) = S1 ∪ . . . ∪ Sk, with Sa mapped to the atom `a of ν;
these connected components spread more when c increases. A natural subse-
quent question would be to know whether the eigenvectors ûi associated to the
pa eigenvalues of 1

nXXT of a given connected component Sa share the same
eigenspace as that spanned by the eigenvectors ui of C corresponding to popu-
lation eigenvalue `a (with multiplicity pa) of ν.

This question can be answered by evaluating the following quantity

1

pa
tr ΠaΠ̂a, Πa =

∑
λi(C)=`a

uiu
T
i , Π̂a =

∑
j∼Sa

ûjû
T
j

and where the relation j ∼ Sa stands for dist(λj(
1
nXXT),Sa)→ 0, that is, those

eigenvalues of 1
nXXT converging to the limiting component Sa.

This quantity can be evaluated by letting A = Πa, f(z) = 1 and changing
Γµ into ΓSa , a contour surrounding only the component Sa of supp(µ) in (2.45).
We precisely get

1

pa
tr ΠaΠ̂a =

1

2πı

∮
ΓSa

1

z

1

pa
tr Πa (Ip + m̃(z)C)

−1
dz + o(1)

=
1

2πı

∮
ΓSa

1

z

1

1 + m̃(z)`a
dz + o(1), (2.46)

which, for a given population eigenvalue `a, can be evaluated numerically with
the following two-step procedure:

1. with Theorem 2.10, determine the support of µ, which is assumed to have
exactly k disjoint components, i.e.,

supp(µ) =

k⋃
a=1

Sa, Sa = [s−a , s
+
a ] with s+

a < s−a+1, (2.47)
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2. choose any licit contour ΓSa that carefully circles around only the compo-
nent Sa, for instance the rectangular ΓSa as depicted in Figure 2.9 (which
was adopted e.g., in [Bai and Silverstein, 2004]); then evaluated the in-
tegral numerically over this contour by solving the fixed-point defining
equation of m̃(z) in (2.32).

1 3 7

0

<

>

s−a s+a

εx
εy

<[z]

=
[z

]

Typical contour ΓSa
Support of µ

Figure 2.9: Typical contour ΓSa , for ν = 1
3 (δ1 + δ3 + δ7) with c = 1/10.

But we may go beyond this numerical evaluation and obtain an explicit
expression of the integral. To this end, for the chosen rectangular contour ΓSa
in Figure 2.9, this consists in evaluating the sum of four line integrals (two
“horizontal” and two “vertical”). We provide here the full derivation as it is
instrumental of many such calculus arising in similar inference problems and, to
the best of our knowledge, this specific calculus was not derived elsewhere in the
random matrix literature. Let us first focus on the sum of the two horizontal
integrals ∫ s−a −εx

s+a +εx

g(x+ ıεy) dx+

∫ s+a +εx

s−a −εx
g(x− ıεy) dx

for g(z) ≡ 1
z

1
1+m̃(z)`a

our object of interest here. Note from the definition of
Stieltjes transform, Definition 3, that

<[m(x+ ıy)] = <[m(x− ıy)], =[m(x+ ıy)] = −=[m(x− ıy)],

for any Stieltjes transform m(z) and, consequently,

<[g(x+ ıy)] = <[g(x− ıy)], =[g(x+ ıy)] = −=[g(x− ıy)].

A direct consequence of this observation is that∫ s−a −εx

s+a +εx

g(x+ ıεy)dx+

∫ s+a +εx

s−a −εx
g(x− ıεy)dx = −2ı

∫ s+a +εx

s−a −εx
=[g(x+ ıεy)]dx
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and thus only the imaginary part of g(z) = 1
z

1
1+m̃(z)`a

remains, which is explic-
itly given by

=[g(x+ ıεy)] = − εy + `a (x=[m̃(x+ ıεy)] + εy<[m̃(x+ ıεy)])

(x2 + ε2y) (1 + 2`a<[m̃(x+ ıεy)] + `2a|m̃(x+ ıεy)|2)
.

As for the two vertical integrals (from −εy to εy), we expect that, in the limit
εy → 0, they can be neglected. This is indeed the case as we know from
Theorem 2.10 that the limit

m̃◦(x) = lim
εy↓0

m̃(x+ ıεy) = lim
εy↓0

(m̃(x− ıεy))∗

(with (·)∗ the complex conjugate) exists and is real for x /∈ supp(µ), so that
g(z) is continuous on the vertical lines and the vertical integrals thus vanish as
εy → 0. The resulting complex integral thus corresponds to the limit of the
horizontal integrals for εy → 0. As opposed to the vertical integrals though, for
every x ∈ supp(µ), m̃◦(x) is of positive imaginary part, so that the limits of
m(z) and thus of g(z), for z = x± ıεy, come in conjugate pairs as εy ↓ 0. This
finally leads to

1

pa
tr ΠaΠ̂a =

1

π

∫ s+a

s−a

`a=[m̃◦(x)]

1 + 2`a<[m̃◦(x)] + `2a|m̃◦(x)|2
dx

x
+ o(1), (2.48)

where we recall from Theorem 2.10 that, for x inside the support, m̃◦(x) is the
unique solution with positive imaginary part of

m̃◦(x) =

(
−x+ c

∫
tν(dt)

1 + m̃◦(x)t

)−1

.

We will show in Section 2.5 on “spiked models” that, when the multiplicity pa
of atom `a is small – technically, if one assumes that pa = O(1) with respect to
p –, the alignment tr ΠaΠ̂a just derived takes a much simpler and fully explicit
form, see Theorem 2.14. Yet, the present estimate, which we set under the
scenario where pa = O(p), turns out (as numerical observations in Figure 2.10
suggest) to be as well precise even when pa is small, at least in the setting of
Figure 2.10.

To make this claim more visual, consider the setting where the population
covariance C ∈ Rp×p has its p − m eigenvalues equal to 1 and the remaining
m eigenvalues equal to ` > 1, so that the population spectral measure ν is a
discrete measure having two components: ν = p−m

p δ1 + m
p δ`. In the case where

m,n, p → ∞ with limm/p, p/n ∈ (0,∞), the correlation of eigenspaces that
correspond to the leading eigenvalues of C (equal to ` with multiplicity m) and
those of 1

nXXT, can be fully characterized by (2.48). Figure 2.10 compares the
empirical eigenspace correlation with different limiting behavior predicted by
the “separate bulk” model in (2.48) versus the spiked model introduced later
in Theorem 2.14. For small values of m, both limiting predictions are close,
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although (2.48) already shows a surprisingly marked advantage over the spiked
model, even though m � p (which goes against our assumptions). But as
m increases, the spiked model-based Theorem 2.14 tends to overestimate the
correlation while the prediction (2.48) is a close match to the empirical output.

m = 1 0.05 0.1 0.15 0.2
0.5

0.6

0.7

0.8

0.9

1

p/n

E
ig
en
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ac
e
co
rr
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at
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n
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Asymptotics by (2.48)
Asymptotics by Theorem 2.14

Figure 2.10: Empirical versus limiting eigenspace correlation as a function of
p
n = p

m
m
n for ν = (1 − m

p )δ1 + m
p δ2,

m
p = 1

16 and n = 1 024. Link to code:
Matlab and Python.

This observation, which appears to be quite systematic in random matrix
theory, is interesting from an application perspective: in practice, C is fixed
(instead of growing size) and so are m, p and n. Yet, the random matrix
predictions based on simultaneously large m, p, n are always extremely accurate
and, most importantly, systematically more accurate than when one assumes
one of the dimensions (be it m, p, or n) is fixed.

As a side remark, if we only have access to the empirical covariance 1
nXTX

and its Stieltjes transform (i.e., if C is unknown), then the contour integration
in (2.46) asymptotically and practically reduces to residue calculus as

1

pa
tr ΠaΠ̂a =

1

2πı

∮
ΓSa

1

z

1

1 +m 1
nXTX(z)`a

dz + o(1)

=
∑
i∼Sa

−m 1
nXTX(ζi)

ζim′1
nXTX

(ζi)
+ o(1),

with ζi the roots of m 1
nXTX(ζi) = −1/`a, which, by an argument similar to

Remark 2.12, are the (sorted) eigenvalues of Λ + `a
n 1n1T

n, for Λ the diagonal
matrix containing the eigenvalues of 1

nXTX. The residue calculus technique
performed in the last equation was described in the previous section.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/2.4/html/eigenvec_proj.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/2.4/eigenvec_proj.ipynb
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Eigenvector inference and subspace methods

The second interest of the deterministic equivalent Q(z)↔ Q̄(z) of Theorem 2.6,
already underlined in the previous example, now concerns the statistical infer-
ence of the eigenvectors and eigenspaces of C. Unless a strong a priori structure
is imposed, the eigenvectors themselves cannot be consistently estimated from
X (especially large eigenspaces involving O(p2) parameters, which cannot be
estimated from the O(pn) data observations). But their scalar projections onto
some deterministic vectors are accessible. Precisely, for a,b ∈ Rp of bounded
Euclidean norm, denoting Πi a projector on the eigenspace associated to the
eigenvalue λi(C),

aTΠib = − 1

2πı

∮
Γiν

aT (C− zIp)−1
b dz

for Γiν a contour circling around λi(C) only. From Theorem 2.6 and our subse-
quent discussions in Section 2.3, it is strongly desirable to use again the variable
change z = −1/m̃(ω) in order to estimate aTΠib from an integral over aTQ(z)b
involving the resolvent Q(z). However, this is again only possible if there exists
a pair of contours (Γiν ,Γ) such that −1/m̃(Γ) = Γiν . This is in general not possi-
ble unless λi(C) “induces” its own associated connected component in supp(µ),
see illustrations in Figure 2.5 and 2.6. Assuming the validity of the variable
change, we thus have

aTΠib = − 1

2πı

∮
Γ

aT

(
C +

1

m̃(ω)
Ip

)−1

b · m̃
′(ω)

m̃2(ω)
dω

=
1

2πı

∮
Γ

aTQ(ω)b · ωm̃
′(ω)

m̃(ω)
dω + o(1).

This formula reveals handy when testing whether an expected “structure”
vector a ∈ Rp is present in the dominant subspace associated to the largest
eigenvalue (possibly with multiplicity) λ1(C) of the data covariance structure
C. The value aTΠa/‖a‖2 ∈ [0, 1] precisely evaluates a score for the structure
vector a to be in the span of the dominant eigenvectors of C.

This analysis finds several applications in detection and estimation, notably
in the field of array processing. A concrete example, the G-MUSIC algorithm, is
discussed in Section 3.1.3 but more results are available in the dedicated array
processing literature [Mestre and Lagunas, 2008, Kammoun et al., 2017].

2.5 Spiked models
The statistical methods discussed in the previous sections for the sample covari-
ance matrix model offer a flexible estimation and inference framework, which
can be extended to a large spectrum of random matrix models. However, they
have a certain number of practical limitations: (i) they rely on the implicit na-
ture of Theorem 2.6 and thus their behavior is not easily understood, (ii) the
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complex integration framework, while theoretically satisfying, may be difficult
to handle in practice (conditions of existence of valid contours need be ensured,
the complex integrals do not necessarily lend themselves to simple analytical
evaluation, etc.).

In this section, we will consider a very special, yet practically far reaching,
case of sample covariance matrix models for which the limiting spectral mea-
sure coincides with the Marc̆enko-Pastur law, while the population covariance
matrix has a non-trivial informative structure. Since the Marc̆enko-Pastur law
assumes an explicit well-understood expression (recall Theorem 2.4), the vari-
ous estimates of interest will be explicit, and thus intuitions on their behavior
are easily derived. Besides, the various change of variable difficulties for con-
tour integral methods met in the previous sections are greatly simplified in this
setting.

These special models fundamentally rely on letting the covariance matrix
C be a low rank perturbation of the identity matrix Ip, i.e., C = Ip + P for
P ∈ Rp×p with rank(P) = k fixed with respect to n, p.

Such statistical models corresponding to a low rank update of a classical
random matrix model with well-known behavior are generically called spiked
models.

2.5.1 Isolated eigenvalues
Let us then consider again the model X = [x1, . . . ,xn] ∈ Rp×n with xi = C

1
2 zi,

zi ∈ Rp with standard i.i.d. entries and where

C = Ip + P, P =

k∑
i=1

`iuiu
T
i

with k and `1 ≥ . . . ≥ `k > 0 fixed with respect to n, p.

According to Theorem 2.6, the spectral measure µ 1
nXXT admits a limit µ

defined through the limiting spectral measure ν of C. Note that here ν = δ1
since

µC =
p− k
p

δ1 +
1

p

k∑
i=1

δ1+`i → δ1

as p → ∞. As a consequence, while C is not the identity matrix, µ is the
Marc̆enko-Pastur law introduced in Theorem 2.4. However, note importantly
that the conditions for “no eigenvalue outside the support”, Theorem 2.11, do
not hold here since dist(1 + `i, supp(ν)) 6→ 0 for i ∈ {1, . . . , k}. Therefore,
one cannot claim that all the eigenvalues of 1

nXXT will lie within the support
supp(µ).

We will precisely show here that, depending on the values of `i and the
ratio c = lim p/n, the i-th largest eigenvalue λ̂i of 1

nXXT may indeed isolate
from supp(µ). As such, since most of the eigenvalues of 1

nXXT aggregate, except
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possibly for a few ones (up to k of them), the latter isolated eigenvalues are seen
as isolated “spikes” in the histogram of eigenvalues. See Figure 2.11, commented
next, for a visual representation of these “spikes.”

This specific result, due to Baik (not Bai) and Silverstein, is given in the
following theorem.32

Theorem 2.13 (Spiked eigenvalues, Baik and Silverstein [2006]). Under the
setting of Theorem 2.6 with E[Z4

ij ] <∞, let C = Ip + P with P =
∑k
i=1 `iuiu

T
i

its spectral decomposition, where k and `1 ≥ . . . ≥ `k > 0 are fixed with respect
to n, p. Then, denoting λ̂1 ≥ . . . ≥ λ̂p the eigenvalues of 1

nXXT, as n, p → ∞
with p/n→ c ∈ (0,∞),

λ̂i
a.s.−−→

{
λi = 1 + `i + c 1+`i

`i
> (1 +

√
c)2 , `i >

√
c

(1 +
√
c)2 , `i ≤

√
c.

The theorem thus identifies an abrupt change in the behavior of the i-th
dominant eigenvalue λ̂i of 1

nXXT: if `i ≤
√
c, λ̂i converges to the right-edge

(1+
√
c)2 of the support of the Marc̆enko-Pastur law µ and thus does not isolate.

However, as soon as `i >
√
c, λ̂i converges to a limit beyond the right-edge of µ

and thus does isolate from the Marc̆enko-Pastur support. Note in passing that
the transition is smooth as the limit of λi as `i →

√
c indeed coincides with

(1 +
√
c)2, so there is no “sudden jump” of the limiting eigenvalue location at

the `i =
√
c transition point.

With a physics inspiration, this phenomenon is often referred to as the phase
transition of the spiked models.

From a statistical viewpoint, the fact that the i-th eigenvalue λ̂i of the
sample covariance matrix 1

nXXT “macroscopically” exceeds or not the other
eigenvalues depending on whether `i >

√
c or `i ≤

√
c can be interpreted as a

test of whether the “signal strength” `i of the low rank structure exceeds the
minimal detectability threshold

√
c: this can be achieved if the signal strength

`i is itself strong enough, or alternatively if the number of observed independent
data n is large enough (so that c = lim p/n is small), as common sense would
suggest. Indeed, if `1 <

√
c, the eigenvalues of 1

nXXT are all asymptotically
compacted in the support [(1 −

√
c)2, (1 +

√
c)2] and thus it is theoretically

(asymptotically) impossible to tell whether C = Ip or C is more structured
from the mere observation of the eigenspectrum 1

nXXT. This phase transition
effect, for all successive spikes, is well illustrated in Figure 2.11.

Remark 2.13 (The case of negative `i’s). Baik and Silverstein [2006] in fact
generalized the result in Theorem 2.13 above to account for possibly negative `i’s,

32These same results were later retrieved using a free probability approach (so formally
under slightly different assumptions on Z) in the work [Benaych-Georges and Nadakuditi,
2011] and were generalized to a larger class of random matrix models. This last article, a
richer set of dedicated and better digested techniques (such as those exposed presently), as
well as the growing evidence of fundamental applications of the results [Bianchi et al., 2011,
Donoho et al., 2018, Candès et al., 2015, Couillet, 2015, Couillet and Hachem, 2013], triggered
a renewed wave of interest for spiked models [Loubaton and Vallet, 2011, Capitaine, 2014].
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i.e., `i ∈ (−1, 0). In this situation, the following interesting phenomenon occurs:
(i) if c < 1 and `i < −

√
c, there exists an associated eigenvalue of 1

nXXT which
converges to 1 + `i + c(1 + `i)/`i ∈ (0, (1−

√
c)2) so on the left-hand side of the

limiting Marc̆enko-Pastur support; (ii) if c < 1 and `i ≥ −
√
c, the associated

eigenvalue converges to the left edge (1−
√
c)2); (iii) if c > 1 (so in particular,

since `i > −1, one cannot have `i < −
√
c), the corresponding eigenvalue tends

to 0: so it is never possible to find isolated eigenvalues in the “empty space”
(0, (1−

√
c)2)) when c > 1.

This negative-`i setting in effect finds no practical applications that we are
aware of, and would additionally be cumbersome to integrate (due to heavier
indexing) into a more general statement of Theorem 2.13.

Proof of Theorem 2.13. When it comes to assessing the eigenvalues of a given
matrix M, the first thing that comes to mind is to solve the determinant equation
det(M− λ̂I) = 0. This approach is not convenient for M = 1

nXXT of increasing
dimensions and we have seen that the Stieltjes transform and resolvent method
is an appropriate substitute in that case. Here, since the low rank matrix P
only induces a low rank perturbation of 1

nZZT, the use of Sylvester’s identity,
Lemma 2.3, will turn the large dimensional determinant equation into a small
(fixed) dimensional one, and the determinant equation method is now valid.
This is the approach we pursue here.

Specifically, let us seek for the presence of an eigenvalue λ̂ of 1
nXXT that

is asymptotically greater than (1 +
√
c)2. Our approach is to “isolate” the low

rank contribution due to P from the “whitened” sample covariance matrix model
1
nZZT with identity covariance. To this end, we write, with X = C

1
2 Z,

0 = det

(
1

n
XXT − λ̂Ip

)
= det

(
1

n
(Ip + P)

1
2 ZZT(Ip + P)

1
2 − λ̂Ip

)
= det (Ip + P) det

(
1

n
ZZT − λ̂(Ip + P)−1

)
.

Since det(Ip + P) 6= 0, the first determinant can be discarded. For the second
determinant, first recall from the resolvent identity, Lemma 2.1, that

(Ip + P)−1 = Ip − (Ip + P)−1P,

so that we can isolate the (now well-understood) resolvent of the “whitened”
model. That is, letting Q(λ̂) = ( 1

nZZT − λ̂Ip)
−1, we write

0 = det

(
1

n
ZZT − λ̂Ip + λ̂(Ip + P)−1P

)
= det Q−1(λ̂) det

(
Ip + λ̂Q(λ̂)(Ip + P)−1P

)
. (2.49)

Thanks to Theorem 2.11, inverting the matrix 1
nZZT−λ̂Ip is (almost surely) licit

for all large n, p as we demanded λ̂ > (1 +
√
c)2. Now, considering the spectral
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decomposition P = ULUT with L = diag{`1, . . . , `k} and U = [u1, . . . ,uk] ∈
Rp×k, we further have

(Ip + P)−1P = (Ip + ULUT)−1ULUT = U(Ik + L)−1LUT.

Plugging into (2.49), this is

0 = det Q−1(λ̂) det
(
Ip + λ̂Q(λ̂)U(Ik + L)−1LUT

)
= det Q−1(λ̂) det

(
Ik + λ̂UTQ(λ̂)U(Ik + L)−1L

)
,

where in the last equality we applied Sylvester’s identity, Lemma 2.3. Since
det Q−1(λ̂) = det( 1

nZZT−λ̂Ip) does not vanish for all large n, p at λ̂ > (1+
√
c)2,

we finally have, for all large n, p, the following determinant equation for a much
smaller matrix (of size k × k)

0 = det
(
Ik + λ̂UTQ(λ̂)U(Ik + L)−1L

)
.

Applying Theorem 2.4 entry-wise to each entry of the k × k matrix UTQ(λ̂)U
(this is the step where it is fundamental that k remains finite), we now know
that

UTQ(λ̂)U = m(λ̂)Ik + o‖·‖(1)

almost surely, for m(z) the Stieltjes transform of the Marc̆enko-Pastur law µ
(the term Ik arises from the fact that UTU = Ik). Consequently, by continuity
of the determinant (this is a polynomial of its entries), we have

0 = det
(
Ik + λ̂m(λ̂)(Ik + L)−1L

)
+ o(1)

and thus, if such a λ̂ exists, it must satisfy

λ̂m(λ̂) = −1 + `i
`i

+ o(1),

for some i ∈ {1, . . . , k}.
We thus need to understand when the above equation has a solution. To

this end, observe that the function R \ supp(µ)→ R, x 7→ xm(x) =
∫

x
t−xµ(dt)

is increasing on its domain of definition and that xm(x)→ −1 as x→∞. Note
from Theorem 2.4

zcm2(z)− (1− c− z)m(z) + 1 = 0⇔ zm(z) = −1 +
1

1− z − czm(z)
, (2.50)

so that we can express zm(z) as a function of c and z (alternatively, we could
use the explicit solution for m(z) in the proof of the Marc̆enko-Pastur law, but
this is slightly more cumbersome), so to obtain

lim
x∈R↓(1+

√
c)2
xm(x) = −1 +

√
c√

c
.
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Thus, xm(x) increases from − 1+
√
c√
c

to −1 on the set ((1 +
√
c)2,∞). The

equation λ̂m(λ̂) = − 1+`i
`i

thus only has a solution if and only if `i >
√
c for some

i ∈ {1, . . . , k}. Assuming this holds, we may then use again (2.50) (replacing
zm(z) by −(1 + `i)/`i) to obtain

λ̂i → λi = 1 + `i + c
1 + `i
`i

,

which concludes the proof of Theorem 2.13.
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Figure 2.11: Eigenvalues of 1
nXXT (blue crosses), the Marc̆enko-Pastur law

(red solid line), and asymptotic spike locations (red dashed line), for X = C
1
2 Z,

C = Ip + P with µP = p−4
p δ0 + 1

p (δ1 + δ2 + δ3 + δ4), for p = 1024 and different
values of n. Link to code: Matlab and Python.

Figure 2.11 depicts the eigenvalues of 1
nXXT versus the Marc̆enko-Pastur

law, in the scenario where C = Ip+P with P of rank four, for various ratios p/n.
As predicted by Theorem 2.13, the number of visible “spikes” outside the limiting
Marc̆enko-Pastur law support varies with p/n: as the ratio decreases, less spikes
are visible. We also note that, for fixed p, the asymptotic characterization in
Theorem 2.13 becomes less accurate as n decreases.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/2.5/html/spiked_models.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/2.5/spiked_models.ipynb
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2.5.2 Isolated eigenvectors

From a practical standpoint, we have seen that the presence of isolated eigen-
values in the spectrum of the sample covariance 1

nXXT reveals the presence of
some “structure” in the population covariance C in the sense that C 6= Ip. We
have however also seen that the converse is not true: assuming a spiked model
for C, the absence of isolated eigenvalue does not always imply C = Ip.

More interestingly, whether this “structure” is detected or not, one may
wonder whether it can be estimated at all. More specifically, for C = Ip + P

with P =
∑k
i=1 `iuiu

T
i , are the eigenvectors û1, . . . , ûk of 1

nXXT associated to
its k largest eigenvalues λ̂1 ≥ . . . ≥ λ̂k good estimators of u1, . . . ,uk?

Not surprisingly, as in Theorem 2.13 for the spiked eigenvalues, the answer is
here again twofold: (i) if `i ≤

√
c then ûi tends to be totally uncorrelated from

and thus asymptotically orthogonal to ui;33 while (ii) if `i >
√
c, ûi is, to some

extent, aligned to ui. The following theorem, due to Paul [2007], quantifies this
“to some extent”.34

Theorem 2.14 (Spiked eigenvector alignment, Paul [2007]). Under the setting
of Theorem 2.13, let û1, . . . , ûk be the eigenvectors associated with the largest k
eigenvalues λ̂1 > . . . > λ̂k of 1

nXXT. Further assume that `1 > . . . > `k > 0
are all distinct. Then, for a,b ∈ Rp unit norm deterministic vectors

aTûiû
T
i b− aTuiu

T
i b · 1− c`−2

i

1 + c`−1
i

· 1`i>√c
a.s.−−→ 0. (2.51)

In particular, with a = b = ui we obtain

|uT
i ûi|2

a.s.−−→ ζi ≡
1− c`−2

i

1 + c`−1
i

· 1`i>√c. (2.52)

Proof of Theorem 2.14. We first write that, for all large n, p almost surely and
`i >

√
c,

aTûiû
T
i b = − 1

2πı

∮
Γλi

aT

(
1

n
XXT − zIp

)−1

b dz,

33In the “unstructured” case of C = Ip and Gaussian Z (i.e., the so-called Gaussian Or-
thogonal Ensemble, GOE), it is known that the eigenvectors of the resulting Wishart matrix
are uniformly distributed on the unit sphere Sp−1 [Anderson et al., 2010, Section 2.5.1] (or
equivalently, according to the Haar measure, see more details in Section 2.6.2 below) that is
close to, for p large, a Gaussian distributed random vector with i.i.d. entries. The same holds
for the eigenvectors of Wigner matrix in Theorem 2.5.

34Here again, a large body of literature and modernized tools were set in place to study
asymptotic eigenvector behaviors. Some of them are only valid (or only convenient) for rank-
one spike models [Paul, 2007, Benaych-Georges and Nadakuditi, 2011, 2012], but the tech-
niques now widely used (such as the contour-integral method presented in this monograph)
generally apply to an arbitrary (but fixed) number of spikes [Couillet and Hachem, 2013, Baik
et al., 2005].
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for Γλi a small contour enclosing only the almost sure limit λi = 1 + `i + c 1+`i
`i

of the eigenvalue λ̂i of 1
nXXT given in Theorem 2.13. Isolating 1

nZZT from
1
nXXT as in the proof of Theorem 2.13, we have

aT

(
1

n
XXT − zIp

)−1

b

= aT

(
1

n
(Ip + P)

1
2 ZZT(Ip + P)

1
2 − zIp

)−1

b

= aT(Ip + P)−
1
2

(
1

n
ZZT − zIp + z(Ip + P)−1P

)−1

(Ip + P)−
1
2 b

with Q(z) = ( 1
nZZT−zIp)−1, where we used (Ip+P)−1 = Ip−(Ip+P)−1P from

Lemma 2.1. It then follows from the spectral decomposition that (Ip+P)−1P =
U(Ik + L)−1LUT for U = [u1, . . . ,uk] ∈ Rp×k and L = diag{`i}ki=1 so that

aT

(
1

n
XXT − zIp

)−1

b

= aT(Ip + P)−
1
2 Q(z)(Ip + P)−

1
2 b

− zaT(Ip + P)−
1
2 Q(z)U

(
Ik + L−1 + zUTQ(z)U

)−1
UTQ(z)(Ip + P)−

1
2 b

= aT(Ip + P)−
1
2 Q(z)(Ip + P)−

1
2 b

− zaT(Ip + P)−
1
2 Q(z)U

(
L−1 + (1 + zm(z))Ik

)−1
UTQ(z)(Ip + P)−

1
2 b + o(1),

where we usedWoodbury identity, Lemma 2.7, for the first equality, and UTQ(z)U =
m(z)Ik + o‖·‖(1), as per Theorem 2.4, for the second equality.

Note here that the complex integration of Q(z) on the contour Γλi only
brings a non-trivial residue for the second right-hand side term owing to the
inverse (L−1 + (1 + zm(z))Ik)−1 which is singular at z = λi according to the
proof of Theorem 2.13. We thus finally have

aTûiûib =
1

2πı

∮
Γλi

zm2(z)aTU(Ik + L)−
1
2 (L−1 + (1 + zm(z))Ik)−1

× (Ik + L)−
1
2 UTb dz + o(1).

This expression can then be evaluated by residue calculus at z = λi, the only
singularity of the integrand, as

lim
z→λi

(z − λi)(L−1 + (1 + zm(z))Ik)−1 =
eie

T
i

m(λi) + λim′(λi)

with ei ∈ Rk the canonical basis vector defined as [ei]j = δij . Using the (here
most convenient) form

m(z) =
1

−z + 1
1+cm(z)
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of the Stieltjes transform of the Marc̆enko-Pastur law gives35

m′(z) =
m2(z)

1− cm2(z)
(1+cm(z))2

from which we obtain in particular that m(λi) = −1/(`i + c) and m′(λi) =
`2i (`i + c)−2(`2i − c)−1. We finally get

aTûiû
T
i b = aTuiu

T
i b · 1− c`−2

i

1 + c`−1
i

+ o(1)

which concludes the proof of Theorem 2.14.
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Figure 2.12: Empirical versus limiting |ûT
1 u1|2 for X = C

1
2 Z, C = Ip + `1u1u

T
1

and standard Gaussian Z, p/n = 1/3, for different values of `1. Results obtained
by averaging over 200 runs. In black dashed line the local behavior around

√
c.

Link to code: Matlab and Python.

Figure 2.12 compares, in a single-spike scenario, the theoretical limit ζ1 of
|ûT

1 u1|2 versus its empirical value for different `1 and different p, n with constant
ratio p/n. It is important to note that the theoretical asymptotic phase transi-
tion phenomenon at `1 =

√
c corresponds to a sharp non-differentiable change

in the function `1 7→ ζ1 = (1− c`−2
1 )/(1 + c`−1

1 ) · 1`1≥√c; a local analysis in the
limit of `1 =

√
c+ ε reveals that ζ1 (and thus |ûT

1 u1|2 in the large n, p limit) is

35In passing, note that m′(z) assumes an explicit form as a function of z and m(z). While
not surprising in the Marc̆enko-Pastur case, this turns out to be also true of more elaborate
models where m(z) does not have an explicit expression.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/2.5/html/spiked_models.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/2.5/spiked_models.ipynb
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locally equal to ζ1 ' 2ε√
c(1+

√
c)

and thus, for sufficiently large n, p,

|ûT
1 u1| =`1=

√
c+ε

√
2√

c(1 +
√
c)
·
√
ε+O(ε),

which has an infinite derivative as `1 ↓
√
c. On real data of finite size, this sharp

transition is only observed for extremely large values of n, p. This in particular
means that, in practice, residual information of u1 is still present in û1 below
the phase transition threshold.

2.5.3 Limiting fluctuations
Theorem 2.13 on the limiting presence and position of isolated eigenvalues in the
spectrum of 1

nXXT establishes that it suffices to evaluate whether the largest
eigenvalue λ̂1 of 1

nXXT “isolates from the other eigenvalues λ̂2 > . . . > λ̂p” to
determine the presence of a structure in the population covariance C (in the
sense that C 6= Ip).

However, in practice, from the finite-dimensional observations λ̂1, . . . , λ̂p,
how can one decide whether λ̂1 is isolated? On a random realization of X, λ̂1

may haphazardly be found “rather far” from λ̂2 by a mere finite-dimensional
probability effect. The natural question is then to determine whether the rate
of occurrence of such “haphazard” events can be evaluated.

A whole line of works, based on rather different tools from the Stieltjes trans-
form approach adopted in this monograph,36 settles this question by evaluating,
for C = Ip or C = Ip + P with the eigenvalues of P below the phase transi-
tion threshold, the asymptotic probability for λ1 to escape its limiting value
(1 +

√
c)2. The main result of importance is the following.

Theorem 2.15 (Fluctuation of the largest eigenvalue, Baik et al. [2005]). Under
the setting of Theorem 2.13, assume 0 ≤ `k < . . . < `1 <

√
c. Then,

n
2
3
λ̂1 − (1 +

√
c)2

(1 +
√
c)

4
3 c−

1
6

→ TW1

in law, where TW1 is the (real) Tracy-Widom distribution, historically defined
in [Tracy and Widom, 1996].37

36Unlike the Stieltjes transform method, these tools start from the explicit (finite-
dimensional) formula of the joint eigenvalue distribution of Wishart or Wigner matrix, which is
known in the Gaussian case (and only in this case) and given by (2.56). Exploiting the theory
of orthogonal polynomials and determinantal processes, Equation (2.56) can be marginalized
so to retrieve the exact (finite-dimensional) law of one or several specific eigenvalues (inside
the bulk or on the edge). Taking the large dimensional limit relates the law of the eigenvalues
to the determinant of a specific kernel [Soshnikov, 2000] (Airy kernel for the edge eigenvalues
[Johnstone, 2001, Soshnikov, 1999], sine kernel in the bulk [Arous and Péché, 2005, Erdős
et al., 2010]). Details on these techniques can be found in [Anderson et al., 2010].

37The Tracy-Widom distribution does not have an explicit form. Several works have pro-
vided approximated forms as well as tables of TW1 [Chiani, 2014, Ma, 2012].
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Specifically, the theorem is placed here under the setting where the “popu-
lation spikes” `i’s are below the phase transition and thus asymptotically not
isolated, as per Theorem 2.13. In this setting, the largest empirical eigenvalue
λ̂1 thus converges to the right edge (1 +

√
c)2 of the Marc̆enko-Pastur law and

more precisely behaves, according to the theorem, as λ̂1 = (1 +
√
c)2 + n−

2
3T

where T is a (scaled) Tracy-Widom random variable.
This result is of practical interest as it allows one to estimate, for sufficiently

large n, p, the probability for λ̂1 to be found away from its theoretical limit
(1 +

√
c)2 below the phase transition.

Precisely, the result shows that the limiting fluctuations of λ̂1 are not Gaus-
sian but follow the Tracy-Widom distribution and that, possibly surprisingly,
the rate of this fluctuation is of order O(n−2/3) (instead of O(n−1/2) or O(n−1)
as one would usually expect). This rate is strongly related to the following obser-
vation, initially made by Silverstein and Choi [1995]: close to the right-edge of its
support, the Marc̆enko-Pastur law behaves proportionally to

√
(1 +

√
c)2 − x.

As such, the typical number of eigenvalues in a space of size ε in the neighbor-
hood of the edge is ∫ (1+

√
c)2

(1+
√
c)2−ε

√
(1 +

√
c)2 − x dx ∝ ε 3

2 .

This explains the typical O(n−2/3) fluctuation of the eigenvalues in this neigh-
borhood. See Exercise 6 and 7 for more discussions on this point.

The original result from [Baik et al., 2005] also provides the limiting fluctu-
ations of λ̂1, . . . , λ̂k beyond the phase transition (i.e., when `i >

√
c). Interest-

ingly, above the transition, the fluctuation of λ̂1 is now a classical central limit
of order O(n−1/2). The surprising “transition” from O(n−2/3) to O(n−1/2) of
the fluctuations of λ̂1 (which has little meaning or interpretability for finite n, p)
is often referred to as the BBP phase transition after the names of Baik et al.
[2005]. Couillet and Hachem [2013] go beyond these considerations by providing
the joint fluctuations of the eigenvalues and eigenvector projections as follows.

Theorem 2.16 (Joint fluctuations beyond the phase transition, Couillet and
Hachem [2013]). Under the setting and notations of Theorem 2.13 and Theo-
rem 2.14, assume `1 > . . . > `k >

√
c and define L =

√
p[λ̂1− λ1, . . . , λ̂k − λk]T

and V =
√
p[|uT

1 û1|2 − ζ1, . . . , |uT
k ûk|2 − ζk]T. Then, as p, n → ∞ with p/n →

c ∈ (0,∞),

(
L
V

)
→ N

02k,BlockDiag


 c2(1+`i)

2

(
1+c

(1+`i)
2

(c+`i)
2

)
(c+`i)2(`2i−c)

(1+`i)
3c2

(`i+c)2`i
(1+`i)

3c2

(`i+c)2`i

c(1+`i)
2(`2i−c)
`2i



k

i=1


in law, where BlockDiag(·) is the “block-diagonal” operator.

The theorem notably states that, in the large n, p limit, while each eigenvalue-
eigenvector projector pair fluctuates together, the k pairs fluctuate indepen-
dently (which would no longer be the case if some `i’s had multiplicity larger
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than one; the request `1 > . . . > `k >
√
c in the theorem statement avoids this

technical difficulty, which is treated in [Bai and Yao, 2008, Couillet and Hachem,
2013] but gives rise to more complex results).
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Figure 2.13: (Top) Empirical histogram of n
2
3
λ̂1−(1+

√
c)2

(1+
√
c)

4
3 c−

1
6
for p = 256, n = 512

and standard Gaussian Z, versus the real Tracy-Widom law TW1. Histogram
obtained over 5 000 independent runs. (Bottom) Tracy-Widom distribution
TWβ for β = 1 (real), 2 (complex), and 4 (symplectic). Link to code: Matlab
and Python.

Remark 2.14 (Tracy-Widom law: beyond the real field and universality). The
Tracy-Widom law was first introduced in the context of Wigner random matrices

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/2.5/html/spiked_models.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/2.5/spiked_models.ipynb
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in Theorem 2.5. More precisely, Tracy and Widom [1996] showed that the fluc-
tuation of the largest eigenvalue of a real Gaussian Wigner random matrix (i.e.,

1√
n
X with X ∈ Rn×n of i.i.d. zero mean and unit variance Gaussian entries up

to symmetry) asymptotically follows a Tracy-Widom distribution

n
2
3 (λ1 − 2)→ TW1.

The Tracy-Widom law also extends beyond the largest eigenvalue: it holds true
for the finitely many largest as well as smallest eigenvalues of the Wigner and
the Wishart matrix (in the latter case only if c = lim p/n < 1). It also goes
beyond real-valued symmetric Gaussian matrices (often referred to as the Gaus-
sian Orthogonal Ensemble, GOE) and the real-valued Wishart random matrices,
to complex (Gaussian Unitary Ensemble, GUE) and quaternionic (Gaussian
Symplectic Ensemble, GSE) Gaussian matrices: in these scenarios, the limiting
laws are respectively the TW2 and TW4 Tracy-Widom distributions [Tracy and
Widom, 2000]. See Figure 2.13 for an illustration.

The Tracy-Widom law has also been proven, to some extent, to be univer-
sal with respect to the distribution (of the entries) of random matrices. Sosh-
nikov [1999] and Erdős [2011] proved that, for fast decaying distributions, it is
sufficient to match the first two moments of the entries to obtain asymptotic
Tracy-Widom fluctuations.

Finally, while the fluctuations of the (finitely many) largest or smallest eigen-
values of 1

nXXT are not independent (they give rise, both for the k largest or
for the k smallest, to joint fluctuations), Bianchi et al. [2010] showed that the
fluctuations of the one largest and one smallest eigenvalues of 1

nXXT are in-
dependent. This last result has the interesting consequence that the fluctuations
of the condition number of 1

nXXT (defined as the ratio between largest and
smallest eigenvalues) around (1 +

√
c)2/(1−

√
c)2 are easily obtained, using for

instance the so-called delta method [Vaart, 2000].

2.5.4 Further discussions and other spiked models
The “spiked model” terminology goes beyond sample covariance matrix models
with C = Ip + P, for P a low rank matrix. In the literature, spiked models
loosely refer to as “low rank perturbation” models in the following sense: there
exists an underlying random matrix model X, the spectral measure of which
converges to a well-defined measure with compact support (e.g., the Marc̆enko-
Pastur or semicircle law) and having eigenvalues converging to the support (i.e.,
no single eigenvalue isolates as in Theorem 2.11), which is then modified in some
way by a low rank perturbation matrix P; the resulting matrix has the same
limiting spectral measure as that of X but with possibly a few spurious (isolated)
eigenvalues.

Baik and Silverstein [2006] were the first to study spiked models, but their
approach relied on the well-established results for sample covariance matrix
models (i.e., Theorem 2.6) and was limited to the specific case of C = Ip +
P. This approach indeed requires a full understanding of a “more complex”
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statistical model before particularizing it to a low rank perturbation. Pursuing
on Footnote 32 that introduces Theorem 2.13, more modern tools launched a
second wave of advances in spiked models, mostly triggered by the ideas found
in [Benaych-Georges and Nadakuditi, 2012] (with a free probability approach),
which is based on relating the spiked matrix model after perturbation to the
underlying simple and non perturbed matrix; this is mathematically simpler
and opened the path to a broader scope of generalizations to more advanced
random matrix models.

Among the popular spiked models, we have the following cases:

• the information-plus-noise model of the type

1

n
(X + P)(X + P)T

with X ∈ Rp×n having i.i.d. standard entries (zero mean, unit variance,
and finite fourth moment) and P ∈ Rp×n deterministic (or at least inde-
pendent of X) of fixed rank k � min(n, p);

• the additive model of the type

M + P

where M ∈ Rp×p is either of the type M = 1
nXXT, X ∈ Rp×n with

standard i.i.d. entries, or of M = X/
√
n with X symmetric with standard

i.i.d. entries above and on the diagonal and P ∈ Rn×n a deterministic
matrix of low rank.

Each of these models has its own phase transition threshold (i.e., the value
that eigenvalues of P must exceed for a spike to be observed), dominant eigen-
value limits, and eigenvector projections. These can all be determined with the
aforementioned proof approaches, see more examples in Exercise 11 and 12 of
Section 2.9.

However, we will see in several applications in Chapter 4 that, in machine
learning practice, we will be confronted with more general forms of low rank
perturbation models that do not fit this conventional “random matrix X and
deterministic perturbation P” assumption.

In particular, P will often be a (possibly elaborate) function of X. Also,
the random matrix X itself, which will often stand for the “noisy” part of the
data model (while P will in general comprise both the relevant information
and possibly some extra noise), may induce its own isolated eigenvalues. For
instance, we shall see later in Section 4.2.4 that, depending on the ratios p/n
and tr C4/(tr C2)2, the random matrix {[XTX]2ij · δi6=j}ni,j=1 where X = C

1
2 Z

and Z with i.i.d. standard entries, may have two isolated eigenvalues even when
all the eigenvalues of C remain in their limiting support. Also, in the context
of robust estimation of covariance matrices to be discussed in Section 3.3, it
will not be natural for the statistical model to impose that all its population
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eigenvalues converge to their limiting support (in particular to mimic the action
of a few outliers).

Yet, despite these technical differences, the proof approaches of Theorem 2.13
and Theorem 2.14 remain essentially valid. We thus propose here to generalize
the notion of “spiked models” to models of the type X + P where X is some
reference, well understood, random matrix model (possibly inducing its own
spikes) and P is a low rank matrix, possibly depending on X.

With this definition, the aforementioned sample covariance, information-
plus-noise and additive models are in fact all equivalent to an additive model.
Precisely, we may write

1

n
(X + P)(X + P)T = M + P′

with M =
1

n
XXT, P′ =

1

n
(XPT + PXT + PPT)

and
1

n
(Ip + P)

1
2 XXT(Ip + P)

1
2 = M + P′

with M =
1

n
XXT, P′ =

1

n
(XP′′T + P′′XT + P′′P′′T)

where we introduced P′′ = U((Ik + L)
1
2 − Ik)UTX with P = ULUT. In

the remainder of the monograph, we shall systematically exploit this unified
approach to treat all spiked models.

2.6 Information-plus-noise, deformedWigner, and
other models

2.6.1 Why focus on the sample covariance matrix model?
The previous sections have mostly been concerned with the sample covariance
matrix (as well as more marginally with Wigner matrices), as an instrumental
statistical model for the introduction of the main technical tools of interest to
the monograph: the Stieltjes transform and resolvent method, the spiked model
approach, and statistical inference based on contour integrals, presented here in
the form of their associated deterministic equivalents.

Several other classical random matrix models, of interest in statistics, will be
listed in this section. The technical methods required to study these models are
however not very different and thus not worth detailing in this monograph. Only
pointers to relevant references will be provided here for the interested reader.

It is in particular important to stress that many statistical models arising
in machine learning applications are so specific that they may not (strictly) fall
in any of the conventional models discussed above. Yet, up to some additional
fine-tuning and tricks, the analytical tools required to study these models are
in general not much different from those presented in this chapter. Among
examples met in the next chapters of this monograph, we may list:
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• Graph Laplacian matrices (to be discussed in Chapter 7) of the form

D−A, D−
1
2 AD−

1
2 , D−1A

for A ∈ Rn×n a symmetric matrix with independent entries (up to sym-
metry) and D = diag(A1n). The dependence between A and D makes
these random matrices slightly different from deformed Wigner matrices
(see Section 2.6.2 below) of the type A + D where A has independent
entries and D is deterministic.

• Kernel random matrices of the inner-product or distance type

K = {f(xT
i xj)}ni,j=1, K = {f(‖xi − xj‖2}ni,j=1,

to be discussed in Chapter 4. There, the non-trivial dependence between
the entries of K differs significantly from sample covariance models (except
of course for the linear kernel function f(t) = t in the inner-product case).

• Robust estimators of scatter Ĉ in Section 3.3 defined as the solutions to

Ĉ =
1

n

n∑
i=1

u

(
1

p
xT
i Ĉ−1xi

)
xix

T
i

for some non-increasing function u(t). There, due to the implicit nature
of Ĉ, sample covariance matrix results cannot be applied directly.

• F-matrix models Ĉ−1
1 Ĉ2 and product models Ĉ1Ĉ2 for Ĉa = 1

nXaX
T
a ,

a ∈ {1, 2}, with X1,X2 independent (notably Gaussian) random matri-
ces, used in whitening methods [Yin et al., 1983], or in covariance matrix
distance evaluation (e.g., Fisher distance, KL divergence, Wasserstein dis-
tance, etc., see Section 3.2). By successive conditioning, these models are
more directly related to the sample covariance matrix models, although
not strictly equivalent.

• Generalized sample covariance matrices of the type 1
nZDZT for diago-

nal D ∈ Rn×n that depends on Z (the independent case is handled in
Theorem 2.6), but in an asymptotically “weak” manner, for instance with
D = diag{f(wTzi)}ni=1 for some deterministic w ∈ Rp, zi columns of Z,
and f : R → R. This family of random matrix models arises in many
machine learning applications, e.g., the Hessian matrix of the popular
generalized linear model [Nelder and Wedderburn, 1972] can be shown to
take this form [Liao and Mahoney, 2021], the spectral behavior of which is
closely connected to the convergence rate of various optimization methods,
see the concrete example of phase retrieval model in Section 6.4.

The models and applications listed above appear to be strongly related, one
way or another, to sample covariance matrices. Among the examples above,
kernel matrices, robust estimators, F-matrices and sample covariance products,
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as well as Hessian-type matrices, all relate to sample covariance matrices. The
graph Laplacian (as well, to some extent, as the kernel random matrix models)
is more connected to Wigner matrices. This justifies the particularly focused
vision of this chapter.38

2.6.2 Other models

Advanced sample covariance matrices

From a historical standpoint, the model studied by Silverstein and Bai [1995] is
slightly more general than that presented in Theorem 2.6. This model indeed
assumes the presence of an additional deterministic matrix A:

A +
1

n
XTCX

for random X ∈ Rp×n with independent entries and A,C deterministic matrices
(in fact, C was imposed to be diagonal in [Silverstein and Bai, 1995] but this
condition was later relaxed).

The bi-correlated (or separable covariance) model of the type 1
nC

1
2 XC̃XTC

1
2

discussed in Theorem 2.7 was later studied in [Paul and Silverstein, 2009], where
not only the limiting spectrum but also the condition for the exact separation of
eigenvalues were derived. The extension of the spectral analysis of [Silverstein
and Choi, 1995] for this model was then provided in [Couillet and Hachem,
2014]: a convenient explicit Stieltjes transform inverse z(m̃) no longer exists in
this case (due to the presence of a coupled system of equations), but inverse
mapping theorems guarantee its existence and lead to similar results.

For wireless communication purposes, the bi-correlated model was further
extended in [Couillet et al., 2011] to

k∑
i=1

1

ni
R

1
2
i XiTiX

T
i R

1
2
i

where Ti ∈ Rni×ni and Ri ∈ Cp×p are symmetric nonnegative definite matrices
standing respectively for the transmit (T) and receive (R) correlation matri-
ces at each end of a communication channel between k devices equipped with
n1, . . . , nk antennas and a single receiver equipped with p antennas. Estab-
lishing the limiting spectral measure of this model allows one to estimate the
maximally achievable communication rates between k simultaneously transmit-
ting mobiles terminals (phones, laptops, IoT devices) and a local base station.
Further extensions of this model were then proposed to account for more in-
volved wireless communication models, but they mostly consist in summing

38To the best of our knowledge, most, if not all, random matrix results directly related
to machine learning applications boil down, in simple data model settings at least, to com-
binations (usually sums, sometimes products) of asymptotically independent matrices of the
Wishart (Marc̆enko-Pastur related) and Wigner (semicircle related) types.
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independent versions of Gram matrices ZiZ
T
i where Zi is a Gaussian (or be-

yond Gaussian) random matrix with possibly nonzero mean, side correlations,
a variance profile, etc.; see e.g., [Wen et al., 2013, Hachem et al., 2007, Wagner
et al., 2012, Papazafeiropoulos and Ratnarajah, 2015] out of a much larger list
of articles on the topic.

Of interest to statistics is also the information-plus-noise model of the type
1

n
(X + A)(X + A)T

which is the sample “correlation” matrix between non-centered independent data
X+A. This model also finds interest in wireless communications where [X+A]ij
models the statistical link between transmit antenna j and receive antenna i
which may not be at the same mean-distance (controlled by Aij) than another
antenna pair. This model was first studied by Dozier and Silverstein [2007] who
established the (unique) canonical equation ruling the limiting spectral measure
of the model, as a function of the limiting Stieltjes transform of µA. Surpris-
ingly enough, this model induces specific technical difficulties that left open for
long the question of the exact location of the eigenvalues. Only much later in
[Loubaton and Vallet, 2011] for the Gaussian case and then in [Capitaine, 2014]
for the generic i.i.d. setting was the result fully obtained: that is, as for the sam-
ple covariance matrix in Theorem 2.11, under compactness assumption on the
eigenvalues of A, none of the eigenvalues of 1

n (X + A)(X + A)T asymptotically
escapes the limiting support with high probability.

Yet, for practical applications, if the vectors of means A·1, . . . ,A·n in the
model X + A are equal (to say vector µ ∈ Rp), then A = µ1T

n reduces to
a rank-one matrix, and 1

n (X + A)(X + A)T is merely a spiked model, which
does not necessitate the technical intricacies in the aforementioned articles. If
instead the entries Aij are distinct with no specific (e.g., low rank) structure,
then it is in general not natural to assume that the Xij have equal variance (as
the variance should scale with the mean). To handle this setting, Hachem et al.
[2007], Dumont et al. [2010] studied the generic non-centered variance profile
model

1

n
(B�X + A)(B�X + A)T

where B is a symmetric matrix and � is the entry-wise Hadamard product.
There is no natural limiting spectral measure for this model (even when the
spectra of A,B are assumed to converge) but deterministic equivalents (e.g., of
its resolvent matrix and of the associated Stieltjes transform) can be established,
which generally rely on a set of pn fixed-point equations. To our knowledge, no
result on the conditions for the exact spectrum separation has been obtained
in this setting. In the “separable case” where B = b1b

T
2 for some vectors

b1,b2 (in which case B�X = diag(b1)X diag(b2)), the solution reduces to two
fixed-point equations and the exact asymptotic location of the eigenvalues is
almost a direct application of the “no-eigenvalue outside the support” theorem
for the bi-correlated and the information-plus-noise models (i.e., the extension
of Theorem 2.11 to these models).
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Advanced Wigner matrices

The generalizations of the Wigner random matrix model ( 1√
n
X with X having

i.i.d. zero mean and unit variance entries) have been studied quite in parallel
to the generalizations of the sample covariance matrix model 1

nXXT, as the
technical tools and proofs are quite alike (if not simpler).

The first extended model of historical interest was that of the deformed (i.e.,
nonzero mean) Wigner model of the type

1√
n

(X + A)

for A symmetric and deterministic [Khorunzhy and Pastur, 1994]. Yet again, of
utmost interest in practice is the case where the independent entries of X have
differing variances, which brings forth the model

1√
n

(B�X + A).

The set of the n2 canonical implicit (Stieltjes transform related) equations in-
duced for this model, or for its separable version (B = b1b

T
2 ), have been thor-

oughly investigated in [Ajanki et al., 2019].
In practice, these models are directly applicable to the adjacency matrices of

random graphs ([X + A]ij is the connectivity between node i and node j) with
independent linking probabilities. The elementary case of such random graph
models is the so-called Erdős–Rényi graph for which X + A has i.i.d. Bernoulli
{0, 1} entries with parameter p. In this case A = p1n1T

n is a rank-one matrix and
X has i.i.d. {−p, 1−p} entries such that P(Xij = 1−p) = p,P(Xij = −p) = 1−p
and therefore E[Xij ] = 0 with Var[Xij ] = p(1 − p). X + A thus boils down to
a spiked model. Assuming the graph has heterogeneous degrees, in the sense
that every particular node has its own probability qi to connect to any other
arbitrary node in the graph, we end up with the model diag(q)X diag(q) + A
with q = [q1, . . . , qn], Xij ∈ {−qiqj , 1 − qiqj} and Aij = qiqj . Here again
A = qqT is a rank-one matrix. See Chapter 7 for more detailed discussions on
these random graph models.

(Real) Haar random matrices

Many algorithms and techniques in machine learning and data processing in-
volve random projections, in general onto a lower dimensional subspace. This
naturally calls for the study of random isometric matrices U ∈ Rp×n, n ≤ p, such
that UTU = In (because then UUT ∈ Rp×p is a projector on the n-dimensional
subspace spanned by the columns of U). These can be alternatively seen as
concatenating the n columns of an underlying orthogonal matrix Ũ ∈ Rp×p.

Assuming Ũ to be drawn uniformly in the space of unitary p × p matri-
ces (this is called the Haar measure), U ∈ Rp×n is an orthogonally invariant
random matrix, in the sense that V1UV2 has the same law as U for any pair
of deterministic orthogonal matrices V1 ∈ Rp×p,V2 ∈ Rn×n. However, unlike
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Gaussian random matrices Z ∈ Rp×n, which are also orthogonally invariant,
the entries of U are not independent as they must satisfy UTU = In. This
makes the study of the family of Haar random matrices more involved than the
standard Gaussian case.

Yet, strong analogies exist between the Gaussian and the Haar random ma-
trices. To start with, note that U can be constructed from standard Gaussian
random matrices by letting U = Z(ZTZ)−

1
2 where Z ∈ Rp×n, n ≤ p, is a

random matrix with i.i.d. standard Gaussian entries (it suffices to verify that
UTU = In). Using this property, the fundamental trace lemma, Lemma 2.11,
can be extended to a Haar-matrix equivalent [Debbah et al., 2003, Couillet et al.,
2012].

Lemma 2.16 (Trace lemma for isometric matrices, [Couillet et al., 2012, Lemma 5]).
Let U ∈ Rp×n be n < p columns of a p× p Haar random matrix and let u ∈ Rp
be a column of U. Then, for X ∈ Rp×p a matrix function of the columns of U,
except u, and of bounded operator norm,

E

[∣∣∣∣uTXu− 1

p− n
tr ΠX

∣∣∣∣4
]
≤ C

p2

where Π = Ip − UUT + uuT (i.e., a projector on the complementary to the
subspace spanned by the columns of U, except u) and C a constant depending
only on the operator norm ‖X‖ and the ratio n/p.

Of course, since UUT is a projection matrix, all its eigenvalues are 1 and
0 and there is thus no interest in studying the spectrum of UUT itself. The
above trace lemma however becomes handy when dealing with more structured
models, such as C

1
2 UUTC

1
2 for some deterministic C matrix; the latter may be

seen as a generalization of the sample covariance matrix model of Theorem 2.6.
Specifically, we have the following result which provides a deterministic equiva-
lent for this model.

Theorem 2.17 (Haar sample covariance [Couillet et al., 2012, Theorem 1]).
Let X = C

1
2 U ∈ Rp×n, where U ∈ Rp×n are the n < p columns of a p × p

Haar random matrix and C ∈ Rp×p be symmetric nonnegative definite with
bounded operator norm. Then, for z < 0, as p/n → c ∈ (1,∞), letting Q(z) =
( pnXXT − zIp)−1, we have

Q(z)↔ Q̄(z) = −1

z
(Ip + m̃p(z)C)

−1

where m̃p(z) is the unique positive solution to

m̃p(z) =

(
−z + (1 + zc−1m̃p(z)) ·

1

n
tr C(Ip + m̃p(z)C)−1

)−1

. (2.53)

In the statement of the theorem, we used a “correction” factor p
n in front

of XXT to ensure the correspondence between E[UUT] = n
p Ip and the setting
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of Theorem 2.6 where E[ 1
nZZT] = Ip. Indeed, it is quite interesting to observe

the tight relation between Theorem 2.6 and Theorem 2.17 which, despite the
major difference imposed by the strongly dependent structure of U versus the
independent structure of Z, leads almost to the same deterministic equivalent.
The only difference lies in the extra term zc−1m̃p(z) in the defining equation
(2.53) for m̃p(z).

Similar to the case of random matrices with i.i.d. entries versus Gaussian
entries, it is also, in the case of Haar matrix models, more convenient to work
with Gaussian-specific identities rather than the “independence”-related trace
lemma above. Specifically, an equivalent for Stein’s lemma, Lemma 2.13, also
exists for Haar matrices.

Lemma 2.17 (Stein’s lemma for Haar matrices, [Pastur and Shcherbina, 2011,
Chapter 8]). Let Ũ ∈ Rp×p be a Haar matrix and f : Rp×p → R a function
admitting an analytic extension in the neighborhood of the set of unitary matrices
in Rp×p. Then we have, for all j, j′ ∈ {1, . . . , p},

E

[
p∑
i=1

f ′ij(Ũ)Ũij′ − f ′ij′(Ũ)Ũij

]
= 0

where f ′ij is the classical derivative with respect to Ũij (not accounting for the
dependence of the other entries in Ũ). In the complex case (Ũ ∈ Cp×p and
f(Ũ) ∈ C), this reduces to39

E

[
p∑
i=1

f ′ij(Ũ)Ũij′

]
= 0.

Similarly a Nash–Poincaré inequality, Lemma 2.14, for Haar matrix models
is defined.

Lemma 2.18 (Nash–Poincaré for Haar matrices). Under the setting of Lemma 2.17,
we have

Var(f(Ũ)) ≤ 1

p

p∑
i,j=1

E
[
|f ′ij(Ũ)|2

]
.

Although seemingly less exploitable, the above Stein’s lemma for Haar ma-
trices is in fact quite convenient and easily leads to results such as the afore-
mentioned Theorem 2.17 (for instance, by considering matrix functions of the
form f(ŨD) for D ∈ Rp×p diagonal with Dii = δi≤n — so that f(ŨD) only
selects n < p columns of Ũ ∈ Rp×p). Exercise 13 proposes to retrieve the result
of Theorem 2.17 using both Gaussian (so applying Lemmas 2.17 and 2.18) and
i.i.d. (so applying Lemma 2.16) approaches.

39Similar to what we saw in Remark 2.5, it is in practice more convenient to work under a
complex (unitary) U setting, even in the real (orthogonal) case, as deterministic equivalents
are universal with respect to the underlying field (real or complex) of the entries of U.
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As a major difference between the i.i.d. (as in Theorem 2.6) and the Haar
settings, note that Theorem 2.17 is stated under the constraint that z be real
negative. In effect, Couillet et al. [2012] showed that it is far from trivial to
extend the result to z ∈ C away from the negative real axis: in particular,
unlike in the classical sample covariance setting of Theorem 2.6, in the “Haar
sample covariance” of Theorem 2.17, the fixed-point iteration in (2.53) fails to
converge for z = x + ıε with x > 0 and ε � 1. This particularly makes it
difficult to exploit the result to retrieve (both theoretically40 and numerically)
the limiting spectral measure of C

1
2 UUTC

1
2 , at least in its present form of

(2.53).
There in fact exists a whole other branch of tools in the random matrix

literature, called free probability theory [Voiculescu et al., 1992], which much
more easily recovers Theorem 2.17 (under a different formulation though) and
as well obtains the limiting spectral measure of C

1
2 UUTC

1
2 : specifically, using

an interesting extension to random matrices of classical probability theory on
scalar random variables, free probability theory demonstrates that this limiting
measure is the so-called free multiplicative convolution (see Section 2.6.2 below
for a proper definition) of the limiting spectral measure ν of C and of the limiting
spectral measure of UUT (i.e., the discrete measure δ1 + (c − 1)δ0). The next
section provides a short introduction to the main ingredients of free probability
theory.

Turning to machine learning applications of results on (derivatives of) Haar
random matrix models, to the best of our knowledge, very few works have so
far fully exploited the strength of these identities. For this reason, we will not
elaborate much more on these aspects and will only, in the following section,
briefly introduce free probability theory, which has many advantages (especially
when dealing with Haar or permutation-invariant random matrices) but also
strong limitations when compared to the Stieltjes transform and resolvent ap-
proach. We thus point the interested reader to the (in fact rich) literature for
more details on this topic. Those tools may nonetheless reveal fundamental in-
sight in the future into specific random projection or random permutation-based
methods with isometric constraints in machine learning and AI.

The free probability approach

Free probability theory is a drastically different approach to study random ma-
trices. It is particularly efficient in some scenarios, such as when the sum or
product of random matrices are involved. The theory was developed in parallel
to the Stieltjes transform method discussed in this monograph and originates
from the works of Voiculescu et al. [1992], who originally aimed to describe a
theory of probabilities on non-commutative algebras. A detailed introduction

40One may claim that, since convergence holds for all z < 0, as per Vitali’s convergence
theorem (Theorem 2.3), it can then be extended to all of C \ R+. This is however not so
simple as it is difficult to ensure that m̃p(z) in Theorem 2.17, as defined through its fixed-
point equation, is indeed analytic in a certain cone {z = eıθ | θ ∈ (−θ◦, θ◦)\{0}} (θ◦ ∈ (0, π)).
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of the theory is beyond the scope of this monograph and we refer the interested
readers to [Hiai and Petz, 2006, Biane, 1998] and [Couillet and Debbah, 2011,
Chapter 4 and Chapter 5]. Although free probability theory is rooted in a com-
binatorial approach (see e.g., [Nica and Speicher, 2006]), it also contains some
elegant analytic results, which can be related to the Stieltjes transform: in the
sequel, we emphasize those useful results.

For µ and ν two probability measures compactly supported on [0,∞), Hiai
and Petz [2006] proved that there always exist two free random variables a
and b in some non-commutative probability space having distributions µ and
ν, respectively. The distribution of a+ b and ab depend solely on µ, ν and can
be associated with probability measures called free additive convolution and
free multiplicative convolution of the distributions µ and ν, denoted µ � ν and
µ � ν, respectively. These measures are both compactly supported on [0,∞)
[Voiculescu et al., 1992].

These free additive and multiplicative convolutions satisfy convenient ana-
lytic expressions, through the so-called R- and S-transforms introduced below.

Definition 5 (R- and S-transform). Let µ be a probability measure with support
supp(µ) and Stieltjes transform mµ(z), for z ∈ C+. The R-transform of µ,
denoted Rµ, is defined as the solution to

mµ(Rµ(z) + z−1) = −z

or equivalently

mµ(z) =
1

Rµ(−mµ(z))− z
.

Next, let ψµ(z) be defined as

ψµ(z) =

∫
zt

1− zt
µ(dt) = −1− z−1mµ(z−1)

and let χµ be its unique functional inverse, analytic in the neighborhood of zero,
i.e., χµ(ψµ(z)) = z for |z| small enough. Then, the S-transform of µ, denoted
Sµ, is given by

Sµ(z) = χµ(z)
1 + z

z
.

In particular, Sµ(z) satisfies

mµ

(
z + 1

zSµ(z)

)
= −zSµ(z).

The main property ofR- and S-transforms is summarized below, and requires
the notion of freeness between non-commutative random variables. Freeness is
not an easy notion, and is defined through a series of moment conditions and
combinatorial calculus, which we will not go into here (see again [Hiai and
Petz, 2006, Biane, 1998] for details). One needs just remember at this point
that freeness extends the notion of independence to non-commutative random
variables.
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Lemma 2.19 (R- and S-transforms of sums and products). For a and b two free
random variables with compactly supported distributions µ and ν, respectively,
the law µ� ν of a+ b satisfies

Rµ�ν(z) = Rµ(z) +Rν(z).

Similarly, the law µ� ν of ab satisfies

Sµ�ν(z) = Sµ(z)Sν(z).

Of interest to the present monograph is that “asymptotically large random
matrices” are typical examples of non-commutative random variables for which
freeness can be ensured. To avoid dealing with infinite-size linear operators, it is
more appropriate to define a notion of asymptotic freeness for finite-dimensional
random matrices, which translates the freeness of their respective limiting op-
erators.41

As such, the main result of interest to us is the following: for A ∈ Rn×n and
B ∈ Rn×n two asymptotically free random matrices with respective limiting
spectral measures µA and µB , the limiting spectral measure µA+B (A + B is
here merely a notation with no formal meaning) of A + B exists and satisfies

µA+B = µA � µB , RA+B(z) = RA(z) +RB(z),

for RA(z), RB(z) and RA+B(z) the R-transforms of µA, µB and µA+B , respec-
tively. Similarly, µAB , the limiting spectral measure of the matrix product AB,
exists and satisfies

µAB = µA � µB , SAB(z) = SA(z)SB(z),

for SA(z), SB(z) and SA+B(z) the S-transforms of µA, µB and µA+B . The
above equalities should be understood to hold in the almost sure sense.

Clearly, the asymptotically freeness assumption plays a key role in relating
the limiting spectrum of A + B or AB to that of A and B, which unfortu-
nately in practice only applies easily to a limited range of random matrices. In
essence, A and B are asymptotically free if they are both independent and if
the distribution of their respective eigenvectors are sufficiently “isotropic” with
respect to one another: so essentially, when one of the two matrices is invari-
ant by left and right product by arbitrary unitary matrices. As a consequence,

41One must be careful that, in the whole monograph, we never define large dimensional ran-
dom matrices as being of “infinite” dimensions (which would turn them, when correctly defined,
into operators in an infinite-dimensional Hilbert space): all the objects treated throughout
the book are finite dimensional objects, some functionals of which are studied when the size
of the matrices increase. For actual works on operators, seen as limit of random matrices in
infinite-dimensional spaces, see [Pastur and Figotin, 1992] on almost-periodic random oper-
ators. Aside from a few exceptions though [Hachem et al., 2015], these elegant works find
little practical applications in systems and software engineering. This being said, it is theo-
retically interesting to observe that the Stieltjes transform approach thoroughly developed in
the present monograph shares many common grounds with the more general theory of linear
operators in Hilbert spaces [Akhiezer and Glazman, 2013].
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the two major cases of matrix pairs known to be asymptotically free are: (i) a
standard Gaussian random matrix and any other independent random matrix
(for instance a deterministic matrix or another standard Gaussian random ma-
trix, independent of the first), and (ii) a Haar random matrix and any other
independent random matrix. One may for instance easily determine the limit-
ing spectral measure of models of the type X + A for X a Wigner matrix or
a Wishart matrix and A deterministic, or of XAXT with X Gaussian or Haar
distributed. These objects are however limited and it is technically difficult
to establish asymptotic freeness, the formal definition of which is a matter of
heavy combinatorial calculus (see e.g., [Biane, 1998, Section 3]). As a result,
free probability theory is more complex to use when summing or multiplying
two random matrices with structured eigenvectors, such as simple models like
X�B + A for X a Wigner matrix and B a deterministic variance profile: these
matrices are not free with respect to deterministic matrices, so that the R- and
S-transform formulas cannot be exploited, at least directly; this very fact has
strongly limited the (rigorous) reach of the free probability approach in the past
decade.

A fundamental result to efficiently use the addition and product rules in
Lemma 2.19 are the basic forms of the R- and S-transforms of elementary ran-
dom matrix models. Specifically, the R- and S-transforms of the Marc̆enko-
Pastur and semicircle distributions are known in closed-forms.

Lemma 2.20 (R− and S-transforms of Marc̆enko-Pastur and semicircle law).
The R-transform RMP,c(z) and S-transform SMP,c(z) of the Marc̆enko-Pastur
law µMP,c of parameter c, i.e., of the limiting spectral measure of 1

nZZT, Z ∈
Rp×n with i.i.d. zero mean, unit variance entries, as p/n → c ∈ (0,∞), given
explicitly by (2.10), read

RMP,c(z) =
1

1− cz
, SMP,c(z) =

1

1 + cz
. (2.54)

As for the R-transform RSC(z) and S-transform SSC(z) of the semicircle law
µSC, given by (2.29), we have

RSC(z) = z, SSC(z) =
1√
z
. (2.55)

With Lemma 2.20, one is able to derive, with a free probability approach,
the limiting spectral measure of the information-plus-noise-type random matrix
model M = A + 1

nXXT for X ∈ Rp×n having i.i.d. standard Gaussian entries
and A ∈ Rp×p a deterministic matrix. Specifically, calling µA and µM the
limiting spectral measure of A and M as n, p→∞ with p/n→ c, we have

µM = µA � µMP,c, RM (z) = RA(z) +RMP,c(z)

so that, by Definition 5 and Lemma 2.20,

mM (z) =
1

RM (−mM (z))− z
=

1

RA(−mM (z)) + 1
1+cmM (z) − z
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or equivalently

RA(−mM (z)) +
1

−mM (z)
= z − 1

1 + cmM (z)

which, by taking the Stieltjes transform mA(·) of the limiting law of A on both
sides, together with Definition 5, gives

mM (z) = mA

(
z − 1

1 + cmM (z)

)
.

The same result would have been more painstaking to derive using a purely
Stieltjes transform approach, see e.g., [Silverstein and Bai, 1995]. However,
since very few matrix models can be easily shown to be asymptotically free, the
free probability framework quickly fails to operate in more structured random
matrix models.

Recent works try to cope with these limitations as well as open the range
of applicability of free probability theory to handle sums and products of ma-
trices under weaker forms of asymptotic freeness conditions (to characterize for
instance the limiting spectrum of the sum of random matrices with row and
columns permutation invariance [Au et al., 2018], or to extend the notion of de-
terministic equivalents to a free probability setting [Speicher and Vargas, 2012]).
Despite these efforts, when dealing with random matrix models with involved
structures arising from machine learning applications, the resolvent and Stielt-
jes transform approaches turn out more flexible; they are thus the focus of this
monograph.

Full circle law, β-ensembles, sparse random matrices, etc.

Mathematicians have long been intrigued by the “simplest” random matrix
model in appearance, that is X/

√
n ∈ Rn×n (non-symmetric) with i.i.d. zero

mean and unit variance entries. Being a non-symmetric matrix (at least with
high probability), the eigenvalues of X/

√
n are complex and they have long been

known to spread uniformly on the unit complex disc {z ∈ C, |z| < 1}. Surpris-
ingly though, despite its simple statement, this result, known as the full circle
law or the circular law, has only been proven in full generality very recently
by Tao and Vu [2008]. To explain the difficulties: (i) the Stieltjes transform
method cannot be applied directly as the spectrum is complex (and thus taking
a limit z → z0 for z0 in the support does not allow to “enter” the complex sup-
port as in the real eigenvalue case); there the solution was provided earlier by
Girko [1985] who introduced the alternative V-transform; (ii) the V-transform
involves the limit of an integral form on the logarithm of the singular values of
X which, being square, tends to have a lot of singular values tending to zero
(the singular values of X are the square roots of the eigenvalues of XXT with
X of size p × n where p = n: i.e., this is the technically most difficult hard
edge scenario of the Marc̆enko-Pastur law depicted in Figure 2.2 with c = 1);
this technical difficulty, previously worked around by invoking the existence of
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high order moments for Xij was solved by Tao and Vu by means of the ε-net
technique, popular today in compressive sensing and high-dimensional statistics
[Vershynin, 2018].

From the perspective of the present monograph, the eigenvalues of non-
symmetric models are of marginal interest. These could be used for the analysis
of directed random graphs although, to our knowledge, not much works exist in
this direction.

Another more mathematical interest relates to the fact that Gaussian ran-
dom matrices are much better known than random matrices with i.i.d. entries
and, consequently, come along with a host of other technical tools. In par-
ticular, not only the limiting spectral measure, but actually the exact finite-
dimensional joint distribution P(λ1, . . . , λn) of (real, complex, or quaternionic)
Gaussian symmetric random matrix X and 1

nXXT (with X having i.i.d. stan-
dard Gaussian entries) are known. The expressions of P(λ1, . . . , λn) for these
different cases are quite related.

In particular, the joint eigenvalue distribution for the Gaussian Wigner ma-
trix X ∈ Rn×n is explicitly given by

P(λ1, . . . , λn) ∝
n∏
i=1

e−
1
4βnλi

∏
1≤i<j≤n

|λi − λj |β , (2.56)

for real Gaussian X when β = 1 (recall from Remark 2.14 that this is the Gaus-
sian Orthogonal Ensemble, GOE), complex Gaussian X when β = 2 (Gaussian
Unitary Ensemble, GUE), and quaternionic Gaussian X when β = 4 (Gaussian
Symplectic Ensemble, GSE). Much work has been devoted to the study of the
asymptotics of the joint law of this now called β-ensemble of random matri-
ces. In particular, the Tracy-Widom law for the largest eigenvalue introduced
in Theorem 2.15 is obtained by marginalizing the joint measure to obtain the
probability P(λ1 > x). See [Anderson et al., 2010] for an introduction to these
quite different methods.

Most of the aforementioned random matrix models however share as a com-
mon denominator their relying on O(n2) “degrees of freedom”, in the sense that
they are designed out of order O(n2) independent random variables. For the
sample covariance matrix model 1

nXXT, we have X = C
1
2 Z ∈ Rp×n with

Z made of np independent entries. For the Wigner model, X ∈ Rn×n has
n(n + 1)/2 independent entries on and above the diagonal. This large num-
ber of degrees of freedom is the major asset of random matrix theory, as pre-
sented in this monograph: they trigger (i) concentration properties that do not
appear if p is fixed and only n → ∞ (such as quadratic form concentration
1
p‖zi‖

2 a.s.−−→ 1 for zi ∈ Rp having i.i.d. entries with zero mean and unit variance
as in Lemma 2.11), (ii) fast convergence rates with typical central limit theorem
of order up to O(1/n) and, possibly most importantly, (iii) universality with re-
spect to the underlying distribution of the independent entries (i.e., asymptotic
statistics loosely depend on the actual law of the entries) which simplifies the
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analysis and provides robustness of the studied objects to deviations from the
statistical model.

Yet, a host of practical random matrix models demand less degrees of free-
dom. Realistic networks for instance (social nets, brain connectivity, molecular
networks, etc.) are naturally modeled by sparse random (say symmetric) adja-
cency matrices A ∈ Rn×n with typical number of nonzero elements scaling as
O(n) rather than O(n2). Every row/column ai of A typically has O(1) nonzero
elements (corresponding to the neighbors or contacts of node i in the underlying
graph), and thus ‖ai‖ does not concentrate as n→∞. Kernel random matrices
K = {f(‖xi − xj‖2)}ni,j=1 of finite-dimensional vectors x1, . . . ,xn ∈ Rp with p
small (e.g., in the context of classification or clustering of 2D or 3D data points)
are also more challenging to study than their large-p counterpart, as every en-
try of K remains a random variable which does not concentrate in the large-n
alone limit. The consequences are numerous: (i) the analysis of these objects is
more difficult, if doable at all, and only few large-n statistics can be studied, (ii)
universality and robustness to model assumptions are lost: large-n asymptotics
remain a function of the law of, not only the “statistical structure”, but also
the precise distribution of the entries of xi. These hard-to-obtain results thus
hardly lead to simple and rich insight of the random matrix model under study.

Nevertheless, a branch of random matrix theory focus on these important
models. Stieltjes transform methods are here mostly ineffective and one has
to rely on moment approaches and combinatorics. A particularly interesting
approach when it comes to sparse random graphs of size n is that, as n → ∞,
the graph has a “tree-like” structure; indeed, with a probability O(1/n) for
each node to reach out to any another node, the probability of presence of
cycles in the graph is vanishingly small. This has motivated the independent
development of a graph-based random matrix framework, strongly pushed by
Bordenave and Lelarge [2010], Bordenave et al. [2011]. The results are however
generally “weak” from a practical standpoint. For instance, while it has long
been known that the spectral measure of a dense Erdős–Rényi random graph
A with Bernoulli i.i.d. entries (i.e., with O(n2) degrees of freedom) converges to
the semicircle law, it is still unknown to which measure a sparse random graph
A converges: the limiting law is known to exist, to be decomposed as the sum
of a (known) discrete measure and a (unknown) continuous measure, and to
have an unbounded support (as opposed to the semicircular distribution as in
Theorem 2.5) [Salez, 2011].

The specific kernel random matrix K = {‖xi − xj‖2}ni,j=1 with xi of fixed
dimension, known as a Euclidean random matrix, has also been studied in [Bor-
denave, 2008], but again with results of limited practical reach.

Aside from side comments, the monograph will not dig into these fundamen-
tally different problems, tools, and results. We exclusively concentrate on dense
random matrix models.
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2.6.3 Other statistics
Most of the statistics of practical interest in the application chapters are directly
related to deterministic equivalents of the resolvent of random matrices and to
their linear statistics. For instance, we shall see that the performance of classi-
fication methods (correct classification rates) of n data vectors x1, . . . ,xn in a
k-class (C1, . . . , Ck) problem can in general be estimated from the k-dimensional
matrix of quadratic forms

1

n
JTQ(z)J

(or some closely related statistics) where Q(z) is the resolvent of the underlying
affinity matrix of the data (kernel, graph Laplacian, etc.) and J = [j1, . . . , jk] ∈
Rn×k with [ja]i = δxi∈Ca the canonical vector of class Ca.

Yet, some specific results (such as the classification rate of some random
neural networks, the exact proof of the asymptotic Gaussian behavior of the
entries of the dominant eigenvector in graph adjacency and kernel matrices,
etc.) demand more than just first-order limiting statistics. A further common
statistics of interest lies in the second-order fluctuations, i.e., in central limit
theorems, of the objects under study.

These statistics have long been studied in the random matrix literature,
starting from the works of Bai and Silverstein [2004] who, under the sample
covariance setting of Theorem 2.6, established a central limit of the type

n

∫
f(t)(µ 1

nXXT − µ)(dt)→ N (M(f), σ2(f))

for all analytic functions f . This result (and all similar results for related mod-
els) has the following noteworthy properties:

• the convergence rate is of order O(n−1). This however only holds for
linear statistics of the eigenvalues; fluctuations of bilinear forms aT(Q(z)−
Q̄(z))b fluctuate at a slower O(n−

1
2 ) rate;

• the mean (or bias term) M(f) and variance σ2(f) depend on E[|Zij |4]
(which, thus, must be assumed finite). Both write as the sum A + κB
with κ the kurtosis of the entries Zij . The mean M(f) in particular
vanishes in the complex Gaussian case and the variance in the complex
Gaussian case is twice as large as that in the real Gaussian case.

Many results on central limit theorems for a vast spectrum of linear statistics
of random models have been established, for instance in [Hachem et al., 2008]
for sample covariance matrices 1

nXXT with X having a variance profile, in
[Lytova and Pastur, 2009] to Wigner matrix model for less smooth functions f
(five-times differentiable), or in [Zheng et al., 2017] for F-matrix models of the
type ( 1

n1
X1X

T
1 )−1 1

n2
X2X

T
2 . A generalization to three-times differentiable f is

proposed in [Najim and Yao, 2016]. Central limit theorems for bilinear forms
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are found for instance in [Kammoun et al., 2009]. Fluctuations of the isolated
eigenvalues and eigenvector projections in a spiked random matrix model can
also be found in [Baik et al., 2005, Bai and Yao, 2008, Couillet and Hachem,
2013]. These fluctuations are at a slower O(n−1/2) rate.

A central limit result for the linear statistical inference method of Theo-
rem 2.12 has also been established in [Yao et al., 2013]. There again it is shown
that the convergence speed is of order O(n−1) with a bias and a variance of the
form A+κB with κ the kurtosis of the underlying distribution (and, again, the
bias vanishes in the complex Gaussian case). An estimation method is also pro-
posed for the means and variances, which is of practical interest to empirically
assess the confidence interval of the estimator.

Due to a strong motivation from the field of wireless communications, some
specific linear statistics have been particularly widely studied in the random
matrix literature. This is notably the case of the logarithm function. Statistics
of the type ∫

log(1 + st)µ 1
nXXT(dt)

for s > 0 are particularly important in wireless communications as they give ac-
cess to the achievable communication rate over a linear wireless communication
channel X. This log(1 + st) term arises from the entropy of Gaussian random
variables and is also found in many other applications, such as with the esti-
mation of the Kullback–Leibler divergence between two multivariate Gaussian
vectors to be discussed in Section 3.2. A particularly convenient feature of the
integral form

∫
log(1 + st)µ(dt) is that its derivative with respect to s (that is∫

t/(1 + st)µ(dt)) is immediately related to the Stieltjes transform of µ.42 It
is thus not required to use a complex contour integral method to assess these
quantities (a real integration is sufficient). See [Tulino and Verdú, 2004, Couillet
and Debbah, 2011] for a detailed account of these findings.

In technical terms, there are essentially two major methods to obtain central
limit theorems of random matrix quantities. Recalling that linear functionals
u(Q) of the resolvent Q = (X − zIn)−1 of the random matrix X under study
(e.g., bilinear forms aTQb or traces tr AQ), as our central object of interest, can-
not in general be expressed as a sum of independent random variables. Instead,
Bai and Silverstein [2010] propose to use the martingale difference approach,
which we previously exploited in the detailed proof of the Marc̆enko-Pastur the-
orem, Theorem 2.4. More precisely, for X having independent columns, it is
convenient to write

u(Q)− E[u(Q)] =

n∑
i=1

Ei−1[u(Q)]− Ei[u(Q)]

where Ei is the expectation conditioned on the columns x1, . . . ,xi of X, with
the convention E0[u(Q)] = u(Q). This is a sum of martingale differences, for

42Specifically,
∫
t/(1 + st)µ(dt) = s−1(1− s−1mµ(−s−1)).
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which [Billingsley, 2012, Theorem 35.12] provides a central limit theorem; see
also [Bai and Silverstein, 2010, Chapter 9].

Alternatively, Pastur proposes to use Gaussian techniques, which we also
explored in the alternative proof of Theorem 2.4, along with a characteristic
function approach (see examples in [Pastur and Shcherbina, 2011]) to show that

E
[
e−ıtu(Q)

]
→ e−ıtM−

1
2 t

2σ2

which is the Gaussian characteristic function. To reach this convergence, the
approach consists in exploiting Stein’s lemma, Lemma 2.13, on the differentiated
(along t) left-hand expectation, i.e.,

E
[
−ıu(Q)e−ıtu(Q)

]
.

Exploiting the fact that u is linear and that Q = − 1
z In+ 1

zQX, this expectation
can be reduced as a function of the type E[Xf(X)] on which Lemma 2.13 can
be applied. The objective is then to show that this differentiated characteris-
tic function converges to the derivative of the limiting Gaussian characteristic
function, i.e., (−ıM − tσ2)e−ıtM−

1
2 t

2σ2

. This can be achieved for instance by
controlling the difference using the Nash–Poincaré inequality, Lemma 2.14.

2.7 Beyond vectors of independent entries: con-
centration of measure in RMT

2.7.1 Limitations of the i.i.d. assumption
In the previous sections, we have shown that the Stieltjes transform and resol-
vent approaches are quite versatile tools which, in a way, form a surrounding
“complex analysis and linear algebra core” for random matrix theory analysis.
This core, however, must be independently supplemented by appropriate prob-
abilistic tools (which ensure the necessary convergences for linear algebra and
complex analysis methods to be applied).

When it comes to these probabilistic methods, we have seen that a major
driver for most of the results lies in exploiting the independence both in samples
(n) and features (p) of the underlying random matrix X. It is thus no won-
der that a natural and long-standing assumption in the early works in random
matrix theory was to request for X to have all independent (or “linearly depen-
dent” as in models of the type X = C

1
2 ZC̃

1
2 + A) entries. Most generalizations

of these results usually assume mere deviations from this setting (by allowing
weak, or asymptotically vanishing, correlation between the entries for instance).

However, while for random graphs it is largely conceivable to request inde-
pendent “noise” associated to each link, and for random vector observations it
is natural to ask for these observations to be independent, requesting that every
single observation is made of independent entries is very constraining. Note in
particular that what we referred to as the sample covariance matrix model in
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Theorem 2.6 is in fact a very restricted model where each observation xi needs
be of the form xi = C

1
2 zi for some random vector zi having independent entries.

This model is mostly convenient only in the Gaussian case where zi ∼ N (0, Ip)
and as a result xi ∼ N (0,C). Most multivariate random vectors xi with zero
mean and covariance C (elliptical distributions, correlated vectors of Bernoulli
entries, etc.) cannot be factorized under this form.

Most importantly, the “real data” xi (images, sounds, videos, DNA se-
quences, population features, etc.) met in machine learning applications tend
to live in (possibly very contorted) manifolds that cannot be linearly “whitened”
into a vector of independent entries by merely operating C−

1
2 xi.

2.7.2 Concentrated random vectors as the answer
El Karoui [2009] and Pajor and Pastur [2009] were the first to realize (or at least
to fully exploit the fact) that, from a probability standpoint, the proof of the
sample covariance matrix result in Theorem 2.6 from [Silverstein and Bai, 1995],
only relies on (i) the independence between the (column) vectors xi composing
X = C

1
2 Z (and thus not necessarily of all the entries), and (ii) the convergence

1

n
xT
i Q−i(z)xi −

1

n
tr Q−iC→ 0 (2.57)

in some probabilistic sense, where Q−i(z) = ( 1
nXXT − 1

nxix
T
i − zIp)−1. For

the latter, it is sufficient but not necessary for zi = C−
1
2 xi to have standard

i.i.d. entries. In particular, El Karoui showed that this convergence also holds if
xi is a concentrated random vector : a fundamental property at the core of our
present concern and which, we will show, has far reaching consequences to the
application in real-world machine learning and AI.

In a nutshell, the concentration of measure theory, extensively developed
by Ledoux [2005], considers random vectors x ∈ Rp having the property that
every 1-Lipschitz functional φ : Rp → R of x is “predictable”, in the sense that
there exists a deterministic value Mφ ∈ R such that the random variable φ(x)
remains in the neighborhood ofMφ, and that the diameter of this neighborhood
vanishes as p → ∞. This notion must not be confused with the fact that
the random vector x itself converges, which is in general largely wrong: only
the scalar observations φ(x) of x converge, and we will say in this case that
x “concentrates”.43 More formally, assuming Mφ = O(1) with respect to p
(otherwise, it needs to be appropriately scaled), there exists a function α(t, p)
decreasing to zero in both t and p such that

P (|φ(x)−Mφ| > t) ≤ α(t, p). (2.58)

43As a matter of fact, as we will see, the concept of concentration is even more general
in that it allows one to control the fluctuations of φ(x), for arbitrary φ : Rp → Rq for
generic q ≥ 1, even when φ(x) does not converge. Lipschitz operators being stable through
composition, iterated controls of Lipschitz functions with various Lipschitz constants enables
a thin tracking of the behavior of sometimes intricate nonlinear functionals of x (such as
through the layers of a neural network).
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Of particular interest is the case α(t, p) = e−t
βpγ for some β, γ > 0 which, since

the exponential grows faster than any polynomial, provides a more powerful
and much more flexible inequality than the moment bounds introduced in the
proof of the Marc̆enko-Pastur law.44 The mapping xi → 1

nxT
i Q−i(z)xi in (2.57)

is however not Lipschitz, and thus more profound technical considerations are
requested to show that Theorem 2.6 indeed extends to the case where the xi’s
are independent concentrated random vectors. This is performed in an intricate
manner in [El Karoui, 2009]. A more systematic approach has been recently
developed in [Louart and Couillet, 2018], the basics of which will be discussed
in the next section.

Paradoxically, very few “classical” multivariate distributions are known to
produce concentrated random vectors, and yet, this is enough to bring an out-
standing practical competitive advantage against vectors with independent en-
tries, when it comes to modeling real data in machine learning practice.

Among popular distributions, only the Gaussian random vector x ∼ N (0, Ip),
the uniformly distributed vector on the unit sphere x ∼ Sp−1, and the vector
x with i.i.d. entries with bounded support (i.e., |xi| < K for some K > 0) are
known to be concentrated random vectors. Worse, for the latter, the definition
(2.58) only holds for all 1-Lipschitz and convex maps, which is practically in-
convenient (since, as opposed to Lipschitz maps, Lipschitz-convex functions are
not stable through composition).

Let us thus stick for the moment to the example of x ∼ N (0, Ip). The
major advantage of being a concentrated random vector is that this concen-
tration property is stable under any 1-Lipschitz map f : Rp → Rq. So, if x
is concentrated, so is x′ = f(x), which, as opposed to C

1
2 x, can be a vector

with intricate nonlinear dependence between its entries (as we shall see right
after, this intricate dependence may be such that photo-realistic images, able
to deceive the human eyes, can be generated from Lipschitz maps of standard
Gaussian random vectors).

Now, the key reasons why the class of random vectors {f(x)} spanned by
1-Lipschitz maps f is so fundamental to machine learning are that:

(i) there exist machine learning techniques that learn to produce artificial but
highly realistic data, exclusively based on Lipschitz maps. The most pop-
ular of these methods are the generative adversarial networks (GANs) pro-
posed by Goodfellow et al. [2014]. Those are feedforward neural networks
which, after training, generate highly realistic data f(x) from a standard
Gaussian input x ∼ N (0, Ip) (so realistic that even human beings cannot
tell synthetic data from real ones, see again samples in Figure 1.8). Since
a feedforward neural network is a sequence of linear operators (inter-layer
connections and convolution operators) and Lipschitz nonlinear activation

44Of course, as a compensation for this simplification, this imposes more technical con-
straints on the entries of the random vector x, such as the existence of moments of all orders.
But, as far as practical statistical machine learning considerations are concerned, this is far
from a heavy request.
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functions (sigmoid, rectified linear, etc.), f(·) is indeed Lipschitz (as the
composition of Lipschitz operators remains Lipschitz);

(ii) feature extraction procedures in machine learning are also mostly Lips-
chitz maps. The most popular of these today are convolutional neural
networks, which are again feedforward neural nets and thus, by definition,
Lipschitz maps of the input data. But this is also mostly true for many
“classical” machine learning methods, such as support vector machines,
semi-supervised graph learning, spectral clustering, etc.

As a consequence of (i) and (ii), since real data can be trust-worthily approxi-
mated by outputs x′ of some Lipschitz function x′ = f(x) of random Gaussian
vectors x, the class of concentrated random vectors encompasses a broad “set
of (almost) realistic data”. Furthermore, in practice, the features exploited by
most machine learning algorithms can be seen as yet another Lipschitz mapping
g(x′) of the data x′. Since x′ takes the form of x′ = f(x) for standard Gaussian
x ∼ N (0, Ip), x′′ = (g ◦ f)(x) is again a Lipschitz map of a standard Gaussian
vector and thus a concentrated random vector.

It then becomes natural to model a wide range of realistic data, and their cor-
responding features extracted by, say, modern neural networks, as concentrated
random vectors, e.g., as Lipschitz functions of standard Gaussian vectors.

Remark 2.15 (Concentration inequalities versus concentration of measure the-
ory). The concentration of measure theory developed by Ledoux [2005] pro-
vides as corollaries a list of popular concentration inequalities such as Gaus-
sian concentration inequalities, Bernstein’s and Talagrand’s inequalities for ran-
dom variables with bounded entries,45 McDiarmid’s inequalities for function-
als of bounded deviations of independent random variables, etc. These results,
quite popular in statistics, can however only marginally be used as a full-fledged
concentration of measure-oriented random matrix framework. As an instance,
quadratic forms of the type xTAx are not naturally handled by these concentra-
tion inequalities (for which the Hanson–Weight inequality provides an answer,
see [Rudelson and Vershynin, 2013] and Exercise 15). More importantly, while
quadratic form concentration is essentially sufficient to prove the convergence
of Stieltjes transforms, proving the resolvent convergence E[Q] − Q̄ → 0 under
a concentration inequality setting actually demands to further expand the works
of Ledoux, as will be shown next.

It must also be stressed that, Tao [2012], Vershynin [2012] provided an intro-
duction to what Vershynin refers to as non-asymptotic random matrix theory
based on concentration inequalities. The approach followed by the authors how-
ever significantly differs from the present n, p→∞ with p/n→ c ∈ (0,∞) large
dimensional random matrix considerations. In non-asymptotic random matrix
theory, the variables n, p are left “free” (to grow at any relative speed to infin-
ity) and the use of concentration inequalities aims at retrieving bounds on, for

45To be more exact, Talagrand’s work was developed in parallel to Ledoux’s theory and are
rather complementary than a consequence of one another.
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instance, the largest or smallest eigenvalue or singular value of the underlying
random matrices, without resorting to the Stieltjes transform approach. For
Tao, this control step is the crux of the proof of the circular law (based on the
ε-net theory developed by the author) for non-symmetric matrices X with i.i.d.
entries. For Vershynin, these non-asymptotic spectrum controls are exploited
in applications to compressive sensing, where random matrix theory also plays
a key role – for instance in providing “typical” matrices fulfilling the popular
restricted isometry property [Candès, 2008].

The approach proposed in this monograph also provides a set of inequalities
where n, p have an untied growth to infinity, but the application of these con-
vergence results are mostly of interest in a joint growth rate for n, p. Besides,
additional tools to Ledoux’s original framework, such as the notion of linear
concentration, will be needed.

Remark 2.16 (Limitations of the concentration of measure framework). It is
important to raise here (somewhat ironically) that the concentration of measure
framework, which finds important corollaries to the field of compressive sensing
[Donoho, 2006, Baraniuk, 2007], is, as presented here, at odds with the compres-
sive sensing framework. Indeed, compressive sensing is a major field of research
in large dimensional statistics and machine learning which assumes that large
dimensional data are intrinsically of low dimension. That is, in the simplest
linear setting, data vectors x ∈ Rp can be written as x = Ay for some matrix
A ∈ Rp×q (generally unknown) and y ∈ Rq for q � p. From there, the idea
of compressive sensing is that meaningful statistical inference on y can be per-
formed based on few independent realizations n� p (which is convenient if p is
extremely large). There, concentration inequalities are mostly used to deal with
the (usually random) observation matrix A, rather than with the underlying (low
dimensional) y.

In the present random matrix framework, concentration of measure is used
to model the data, not the data operating matrices. These data however must
not be of intrinsic low dimension q � n. Or, at least, if they were, we would
impose in our framework that n ∼ q and n, q, p→∞ with a small but O(1) ratio
q/p. If instead q = O(1) � n, then we would fall back under the (technically
more difficult) sparse regime discussed at the end of Section 2.6.2 where the
present framework is mostly ineffective.

As shall be seen in concrete applications presented in this monograph, high
resolution images are very appropriately modeled by concentrated random vectors
of intrinsically large dimensions. However, feature vectors such as bag-of-words
(also known as tf*idf features) for text classification [Manning et al., 2008],
which are very large but extremely sparse vectors, cannot be handled by the
random matrix framework presented here.

This however does not mean that compressive sensing is complementary to
random matrix theory. Compressive sensing indeed tackles the “difficult” prob-
lem analyzing sparse recovery algorithms by somehow “loose” inequalities and
bounds: that is, it cannot accurately predict the exact performance of a given
algorithm (however it can ensure its convergence and its efficiency as n → ∞
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at a certain rate with respect to p, while q is in general fixed). Random matrix
theory instead requests that the intrinsic dimension q →∞, even slowly so, but
manages in exchange (by exploiting the q degrees of freedom in the feature space)
to provide accurate performance estimates of machine learning algorithms for
all finite (but at least moderately large) n, q.

2.7.3 Elements of concentration of measure for random
matrices

We recall here basic elements of the concentration of measure theory of immedi-
ate interest to random matrix applications. More advanced considerations can
be found in [Ledoux, 2005] from a mathematical standpoint, and in [Louart and
Couillet, 2018] with a more random matrix-oriented flavor.

Concentration of random variables

Before getting into generic multivariate concentration of measure theory, we
need to start with the concept of concentration of a (uni-variate) random vari-
able. Concentration of measure can be defined in two parallel ways.

Definition 6 (Concentration of a random variable). Let α : R+ → [0, 1] be a
non-increasing function with α(∞) = 0. A random variable x is α-concentrated
and we write x ∝ α if, for an independent copy x′ of x, and all t > 0,

P(|x− x′| > t) ≤ α(t).

The definition suggests that any two independent realizations of x cannot
live far from one another. Alternatively, we may define x as concentrated if
there exists a deterministic pivot a close to which x remains.

Definition 7 (Concentration around a pivot). Let α : R+ → [0, 1] be a non-
increasing function and a ∈ R. Then x is α-concentrated around the pivot a,
denoted x ∈ a± α, if for all t > 0,

P(|x− a| > t) ≤ α(t).

These two definitions are not formally equivalent. However, we have the
implication

x ∝ α⇒ x ∈Mx ± 2α⇒ x ∝ 4α(·/2)

where Mx ∈ R is a median of x, i.e., is such that P(x ≥ Mx) ≥ 1/2 and
P(x ≤ Mx) ≥ 1/2. The loss of a factor 1/2 arises here from the bound P(|x −
x′| > t) ≤ P(|x−a| > t/2) +P(|x′−a| > t/2). As a result, up to constants, it is
then possible to use either definition interchangeably (the proofs of subsequent
results are usually more accessible to one or the other definition).
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A particularly appealing result is that 1-Lipschitz maps f : R → R of a
concentrated random variable x maintain the concentration, i.e.,

x ∝ α⇒ f(x) ∝ α. (2.59)

This is a particularly fundamental result which suggests that every “smooth”
function of sub-linear growth of x satisfies the same concentration property.
This result naturally arises from the fact that |f(x)− f(x′)| ≤ |x−x′| and thus
P(|f(x)− f(x′)| > t) ≤ P(|x− x′| > t).

Evidently, sums of concentrated random variables are also concentrated:

x1 ∝ α, x2 ∝ β ⇒ (x1 + x2) ∝ α(·/2) + β(·/2)

x1 ∈ a± α, x2 ∈ b± β ⇒ (x1 + x2) ∈ (a+ b)± [α(·/2) + β(·/2)]

where in the first line the factor 1/2 again unfolds from the bound P(|x1 +x2−
x′1 − x′2| > t) ≤ P(|x1 − x′1| > t/2) + P(|x2 − x′2| > t/2), and similarly for the
second line.

However, products, particularly of dependent random variables, are less ob-
vious to tackle, as one needs to avoid conditioning. The problem can be worked
around using the following two relations

x1x2 − ab = (x1 − a)(x2 − b) + a(x2 − b) + b(x1 − a)

|x1 − a||x2 − b| > t⇒ (|x1 − a| >
√
t) or (|x2 − b| >

√
t)

so to obtain

x1 ∈ a± α, x2 ∈ b± β ⇒ x1x1 ∈ ab± α(
√
·/3) + α(·/3|b|) + β(

√
·/3) + β(·/3|a|), a, b 6= 0

α(
√
·/2) + α(·/2|b|) + β(

√
·/2), a = 0, b 6= 0

α(
√
·) + β(

√
·), a = b = 0.

For large t, the probability P(|x1x2| > t) is here dominated by the terms α(
√
·)

and β(
√
·) which is not surprising. In the particular case where x1 = x2 = x, or

more generally for powers xk of concentrated random variables x, we have

x ∈ a± α⇒ xk ∈ ak ±
[
α(·/2k|a|k−1) + α((·/2)

1
k )
]

(2.60)

with α(·/0) = α(∞) by convention, which is based on noticing that

|xk − ak| ≤ (2|a|)k
(
|x− a|
|a|

+
|x− a|k

|a|k

)
.

This result will be particularly useful for randommatrix applications to quadratic
forms.

Remark 2.17 (Exponential concentration). Of utmost interest is the case where
α(t) = Ce−(t/σ)q for some C, σ, q > 0. In particular, it is known that standard
random Gaussian variables x satisfy

x ∼ N (0, 1)⇒ x ∈ 0± 2e−(·)2/2.
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Exponential concentrations are fast and induce a lot of convenient properties.
In particular, using the formula E[|x|k] =

∫∞
0

P(|x|k > t) dt, it appears that
all (absolute) moments of exponentially concentrated random variables exist. In
particular,

x ∝ Ce−(·/σ)q ⇒ x ∈ E[x]± e
Cq

q e−(·/2σ)q (2.61)

so that an exponentially concentrated random variable concentrates around its
mean. But most importantly, we have the implications

x ∈ a± Ce−(·/σ)q ⇒ ∀r ≥ q, E[|x− a|r] ≤ CΓ(r/q + 1)σr

⇒ x ∈ a± Ce−(·/σ)q/e

with Γ the gamma-distribution. Thus, exponential concentration is “equivalent”
to controlled growth by σr of all moments r ≥ q. This is particularly appealing
when moments occasionally turn out more convenient to deal with than bounds
on tail probabilities.

Concentration of random vectors

The concept of concentration of random variable x, stating that x does not
deviate much from a given pivot a, cannot be straightforwardly extended to
that of random vectors. Indeed random vectors (in particular large dimensional
ones) rather tend to “avoid” their statistical means or medians: e.g., Gaussian
random vectors x ∼ N (0, Ip) are of zero mean but they “concentrate” on a
O(1)-thick layer around the sphere in Rp of diameter √p, see, e.g., Figure 1.6
for an illustration.

Instead, for a normed vector space (E, ‖ · ‖), we will consider that a ran-
dom vector x ∈ E is concentrated for some class of functions F : Rp → R
if, for all f ∈ F , f(x) is a concentrated random variable. Depending on the
“broadness” of the class, being a concentrated random vector can be more de-
manding. Ledoux [2005] originally defined two such classes F : the class of
1-Lipschitz maps (appropriate for Gaussian or random unitary vectors) and the
class of convex (or weakly convex) 1-Lipschitz maps (adapted to vectors of in-
dependent bounded entries). There, the Lipschitz property (i.e., the fact that
|f(x) − f(y)| ≤ ‖x − y‖) is with respect to the norm ‖ · ‖ in E, and thus the
concentration rates may depend on ‖ · ‖. In order to better encompass random
matrices in the concentration of measure framework, a looser additional class F
will be introduced here: that of unit-norm linear functionals.

Linear concentration Linear concentration is an important concept in ran-
dom matrix theory as it provides a quite general and flexible definition for the
key notion of deterministic equivalents (recall Definition 4) of great significance
in this monograph.
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Definition 8 (Linear concentration). A random vector x ∈ E is linearly α-
concentrated around the deterministic equivalent x̄, with respect to the norm
‖ · ‖ in E, if, for all unit norm linear functional u : E → R (i.e., |u(x)| ≤ ‖x‖),

u(x) ∈ u(x̄)± α.

The expectation being a linear operator (from E to E), an advantage of linear
concentration is that, upon existence, E[x] is a deterministic equivalent for the
concentrated random vector x. In particular, if Q is a random matrix (e.g.,
the resolvent of some other underlying random matrix) in the “vector space”
(Rp×p, ‖·‖), with ‖·‖ the operator norm, and that Q is linearly concentrated with
respect to ‖ ·‖, then, as already mentioned in Remark 2.2, EQ is a deterministic
equivalent for Q and we have in particular, for all A ∈ Rp×p and a,b ∈ Rp of
bounded (operator and Euclidean) norms,

1

p
tr A(Q− EQ)→ 0, aT(Q− EQ)b→ 0

where the convergence is in probability and, if α(t) = Ce−t
q

for some q > 0,
the convergence is also almost sure.46 This result implies that the newly de-
fined notion of deterministic equivalents from a linear concentration standpoint
automatically induces the former Definition 4.

Lipschitz concentration Lipschitz concentration is the most popular type
of concentrations (due to its compatibility with (2.59)). This notion is even in
general merely called “concentration” (rather than Lipschitz concentration) and
is defined as follows.

Definition 9 (Lipschitz concentration). A random vector x ∈ E is Lipschitz
α-concentrated with respect to the norm ‖ · ‖ if, for every 1-Lipschitz function
f : E → R, we have either of the conditions

f(x) ∝ α, denoted x ∝ α

f(x) ∈Mf ± α, denoted x
M∝ α

f(x) ∈ E[f(x)]± α, denoted x
E∝ α

holds, where Mf is a median of f(x).

Similar to the concentration of random variables, the three notions are not
fully equivalent. For generic α-concentration, we have

x ∝ α⇒ x
M∝ 2α⇒ x ∝ 4α(·/2)

46Here we exploit the fact that, for u(Z) = 1
p

tr AZ, |u(Z)| ≤ ‖Z‖ when ‖A‖ ≤ 1 and that,
for u(Z) = aTZb = tr(baTZ), |u(Z)| ≤ ‖Z‖ for ‖a‖, ‖b‖ ≤ 1.
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and, in the case of exponential concentrations, the expectation is well defined
and we further have

x
M∝ Ce−(·/σ)q ⇒ x

E∝ eC
q/qe−(·/2σ)q ⇒ x

M∝ 2eC
q/qe−(·/4σ)q .

The most fundamental result at the very heart of the concentration of mea-
sure theory is that Gaussian random vectors x ∼ N (0, Ip) are Lipschitz concen-
trated in (Rp, ‖ · ‖) for ‖ · ‖ the Euclidean norm, that is

x ∼ N (0, Ip)⇒ x
M∝ 2e−(·)2/2 and x

E∝ 2e−(·)2/2.

A fundamental fact about the above concentration is that it does not depend on
the size p of the ambient space (neither in the tail nor in the head parameters).
As such, arbitrarily large standard Gaussian vectors (and thus concatenation
of independent n such vectors, as well as matrices X = [x1, . . . ,xn] built from
independent standard Gaussian vectors xi endowed with the Frobenius norm)
also concentrate with no dependence on p, n.

This is in fact far from natural as, even for independent vectors x1, . . . ,xn,
all of which being concentrated, the joint concentration of (x1, . . . ,xn) with
respect to the Euclidean norm in the product space generally comes along with
a loss of concentration rate proportional to n. Besides, if the vectors x1 and x2

are both concentrated but not independent, the concatenation vector (x1,x2)
may not even be concentrated.

Remark 2.18 (On the location of Gaussian vectors). To clearly understand
the relation between a standard Gaussian random vector x ∼ N (0, Ip) and its
dimension, note that, ‖x‖ having a chi-distribution with median √p+O(1/

√
p),

its exponential concentration precisely implies

P (|‖x‖ − √p| > t) ≤ 2e−(t+O(1/p))2/4.

Thus, x ∈ Rp is a random vector that essentially lives close to a sphere of
radius O(

√
p) and of thickness O(1) or, equivalently, x/

√
p is a random vector

distributed close to Sp−1, the unit sphere in Rp, with actual distance to the sphere
vanishing as O(1/

√
p). The vector x is thus nowhere near its expected value 0,

see again Figure 1.6 for an illustration.
This remark is fundamental as it disrupts with the small-dimensional mental

image where x lives close to its mean. In 1D to 3D, one indeed visualizes that
(independent) Gaussian random vectors are densely “concentrated” around their
mean (close to the center of the bell-shaped distribution). The intuitive extension
of this visualization to larger dimensions would, however, be erroneous.

As for concentrated random variables, Lipschitz concentrated random vec-
tors are stable through Lipschitz mapping in the sense that, for all 1-Lipschitz
φ : E → E′ with respect to norms ‖ · ‖E and ‖ · ‖E′ ,

x
M∝ α⇒ φ(x)

M∝ α. (2.62)
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Convex (Lipschitz) concentration. To define convex concentration, we
need to recall the notion of quasi-convex functions: f : E → R is quasi-convex
if, for all t ∈ R, the sets {x ∈ E | f(x) ≤ t} are convex sets, i.e., for all t ∈ [0, 1]
and x,y ∈ E, f(tx + (1− t)y) ≤ max{f(x), f(y)}. In particular, convex func-
tions are quasi-convex (thus the notion generalizes convexity) and, for E = R,
all monotonous functions (even concave ones) are quasi-convex.

Then we have the following definition of convex concentration.

Definition 10 (Convex concentration). A vector x ∈ E is (Lipschitz) convexly
concentrated for the norm ‖ ·‖ if, for any 1-Lipschitz and quasi-convex function
f : E → R, we have either of the conditions

f(x) ∝ α, denoted x ∝c α

f(x) ∈Mf ± α, denoted x
M∝c α

f(x) ∈ E[f(x)]± α, denoted x
E∝c α

holds, where Mf is a median of f(x).

Obviously, all Lipschitz convex functions being Lipschitz, Lipschitz concen-
tration implies convex concentration (which itself implies the even less demand-
ing linear concentration); for instance, in the case of exponential concentration,

x
E∝ Ce−(·/σ)q ⇒ x

E∝c Ce−(·/σ)q ⇒ x ∈ E[x]± e−(·/σ)q .

The interest for convex concentration is related to the following result due
to Talagrand [Talagrand, 1995, Theorem 4.1.1]: let x ∈ {0, 1}p be a random
vector of independent entries, then

x
M∝c 4e−(·)2/4.

However, convex concentration has the major limitation that quasi-convex
functions are not stable by composition. This prevents the simple adaptation
of numerous results obtained for Lipschitz (or linear) concentration. Yet, for f
quasi-convex and g affine, f ◦ g is still quasi-convex.

Nonetheless, the results necessary to our present random matrix analysis of
sample covariance matrix models can fortunately be extended.

Convex concentration transversally to a group action. A last conve-
nient notion of concentration, dedicated to random matrix theory, consists in
transferring concentration from X to the vector of its singular values. This will
help transfer concentration from the data to linear statistics of the eigenvalues
of the sample covariance matrix. To this end though, convex concentration is
too demanding and we need to further restrict the space of functions as follows.

Definition 11 (Convex concentration transversally to group action). Let x ∈ E
and G a group acting on E. Then, x is convexly α-concentrated transversally
to the action of G if, for all quasi-convex 1-Lipschitz and G-invariant function
f (i.e., f(g · x) = f(x) for g ∈ G), f(x) ∝ α. This is denoted x ∝TG α.
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In particular, denote σ(X) = (σ1(X), . . . , σmin{p,n}(X)) the vector of the
singular values of X ∈ Rp×n (i.e., σi(X) =

√
λi(XXT) for i ≤ min{p, n}), and

define the group Op,n = {(U,V) ∈ Rp×p ×Rn×n orthonormal} acting on Rp×n
by (U,V) ·M = UMVT and the group Sp of permutations of size p acting on
Rp by τ · y = (yτ(1), . . . ,yτ(p)). Then, we have the following result, inspired by
[Davis, 1957],

X ∝TOp,n α⇔ σ(X) ∝TSmin{p,n}
α. (2.63)

2.7.4 A concentration inequality version of Theorem 2.6

Equipped with these elementary results, we can now provide an extension of the
fundamental Theorem 2.6 to the case of concentrated (random) data vectors.

Before getting to the main result, we introduce some preliminary lemmas,
which generalize classical random matrix results to the concentration of measure
framework. Most of these results and there corresponding proofs can be found
in [Louart and Couillet, 2018].

Trace lemma

A first result of importance concerns the extension of the “quadratic-form-close-
to-the-trace” lemma, Lemma 2.11, from a moment-based version to a concen-
tration of measure setting. The result consists in a generalization of a popular
result in concentration of measure theory known as Hanson-Wright’s theorem
(see e.g., [Vershynin, 2018, Theorem 6.2.1] for a version of random vectors hav-
ing independent sub-gaussian entries).

Lemma 2.21 (Trace lemma for concentrated vectors). Let A ∈ Rp×p and
x ∈ Rp such that x

E∝c Ce−(·/σ)q . Then,

xTAx ∈ tr(E[xxT]A)± C ′
(
e−(·/4σ‖A‖·E[‖x‖])q + e−(·/2‖A‖σ2)

q
2
)

for some constant C ′ > 0 depends only on C and q.

This lemma follows almost automatically from two elementary ingredients
of the concentration of measure theory: (i) assuming first that A is nonnegative
definite, xTAx = ‖A 1

2 x‖2 with ‖A 1
2 x‖ a concentrated random variable (it is a

Lipschitz and convex function of x) which, (ii) from the concentration of pow-
ers of concentrated random variables (2.60) for k = 2, gives the concentration
result, however around (E[‖A 1

2 x‖])2. It then suffices to apply, e.g., [Ledoux,
2005, Proposition 1.9] which states that, if a random variable exponentially
concentrates around some constant ((E[‖A 1

2 x‖])2 here), then up to a change of
constant, it also exponentially concentrates around its expectation. For generic
A, it suffices to write A as the sum of its symmetric nonnegative and symmetric
negative parts.
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This lemma particularly stresses the technical convenience of the concentra-
tion of measure framework. The key random matrix results, such as Lemma 2.11
for vectors of i.i.d. entries, often rely on dedicated tools and possibly heavy
(combinatorial) proof techniques. Here, the concentration of measure alterna-
tive to Lemma 2.11 follows from a mere few-line argument (once the elemen-
tary tools of the theory are in place). Besides, the exponential rate of con-
vergence is very versatile and particularly ensures the uniform convergence of
{xT

i Axi, i = 1, . . . , n}, for n any polynomial in p; using the moment method
would demand to systematically compute high-order moments of xT

i Axi to ob-
tain uniform convergence over large n (e.g., with Markov’s inequality).

Concentration of the Stieltjes transform

Next, we generalize the convergence of Stieltjes transforms in a generic concen-
tration of measure form.

Lemma 2.22 (Trace of Resolvent). For X ∈ Rp×n equipped with the Frobenius
norm, and Q(z) = ( 1

nXXT − zIp)−1 for z < 0,

X ∝c α in (Rp×n, ‖ · ‖F )⇒ tr Q(z) ∝ 2α

( √
n|z|3(·)

8 min{p, n}

)
.

To prove this lemma, first recall that X ∝c α ⇒ σ(X) ∝TSd α with d =

min{p, n}. Also, tr Q(z) =
∑d
i=1 f(σi(X)/

√
n) for f : R+ → R, s 7→ 1/(s2 − z).

This function f is (2|z|−3/2)-Lipschitz (checked by bounding its derivative) and
the mapping (s1, . . . , sd) 7→

∑d
i=1 si is evidently Sd-invariant. However, f is

not quasi-convex but can be written as the sum f = g − h of two quasi-convex
4|z|−3/2-Lipschitz functions (h(s) = (s/|z| − 1/

√
|z|)2 · 1{s∈[0,

√
|z|]} and g =

f + h). Consequently, since X ∝c α ⇒ X ∝TOp,n α, we have from (2.63) both
the concentration of

∑
i g(σi(X)) and of

∑
i h(σi(X)), and it then remains to

apply the result on the concentration of the sum of two concentrated random
variables to obtain the result.

Again here, the proof is elegant and immediate, although the mapping X 7→
tr Q(z) is highly non-trivial from a statistical standpoint. Note in particular
that the technical difficulty raised by the non-convexity of f would not have
been a problem if we had rather assumed Lipschitz concentration X ∝ α for X
(which we recall is more demanding for X and would in particular exclude the
case of X with bounded i.i.d. entries).

Concentration of the resolvent Q and its deterministic equivalents

The approach followed in the previous lemma uses the convenient decomposition
of f : R+ → R as f = g − h for two convex and Lipschitz functions g and h. It
does not seem that the mapping f(X) = Q 1

nXXT(z) from Rp×n to Rp×p can be
treated similarly, as no such Lipschitz function division can be exploited. One
must there resort to the additional strength of exponential concentration to
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divide the space Rp×n into a compact space for the operator norm {X | ‖X‖ ≤
K
√
n} where f will be shown to be automatically Lipschitz (as its image is

bounded) and the complement space {X | ‖X‖ > K
√
n} which is of vanishing

probability for all large K > 0.
Regrouping these two results, we have the following concentration for the

resolvent.

Lemma 2.23 (Concentration of Q 1
nXXT). For X ∈ Rp×n and z < 0, let Q(z) =

( 1
nXXT − zIp)−1. Then we have the following two results

X ∝ α⇒ Q(z) ∝ α
(√

n|z|3(·)/2
)

X
E∝c Ce−(·/σ)q ⇒ Q(z) ∈ EQ(z)± 2Ce

−
(√

n|z|3(·)/4σ
)q

where the left-hand side concentrations are understood in (Rp×n, ‖ · ‖F ) and the
right-hand side in (Rp×p, ‖ · ‖F ).

This result is in fact quite powerful and automatically induces (and vastly
generalizes) the notion of deterministic equivalent of Definition 4, i.e., it implies
that 1

n tr A(Q − EQ)
a.s.−−→ 0 and aT(Q − EQ)b

a.s.−−→ 0 for all A,a,b of unit
norm, as n, p → ∞. Indeed, first recall that the first statement (of Lipschitz
concentration) implies that

X
E∝ α⇒ Q(z) ∈ EQ(z)± α

(√
n|z|3(·)/2

)
(since Lipschitz concentration around the mean implies linear concentration
around the mean). Next, note that the linear concentrations of Q (under either
Lipschitz or convex-Lipschitz-exponential concentration for X) hold here with
respect to the Frobenius norm of X ∈ Rp×n. That is, for A ∈ Rp×p of unit
Frobenius (rather than only spectral) norm,47

tr A(Q− EQ) = O(n−
1
2 ).

In particular, letting p/n→ c > 0, from ‖A‖F ≤
√

rank(A) · ‖A‖ (with ‖ ·‖ the
operator norm) and ‖A‖ ≤ ‖A‖F , we have (i) if A = abT is of unit rank with
a,b of unit norm, then tr abT(Q−EQ) = aT(Q−EQ)b = O(n−1/2), while (ii)
if A is of arbitrary rank (say rank(A) = p) and of unit spectral norm, then we
have p−

1
2 tr A(Q− EQ) = O(n−1/2) so that 1

p tr A(Q− EQ) = O(n−1).
Of course, since ‖·‖ ≤ ‖·‖F in Rp×p, Lemma 2.23 applies to Q in (Rp×p, ‖·‖)

in a spectral norm sense as well.

The proof of the first part of the lemma is again rather straightforward, once
the basic concentration of measure arguments are in place. Here we simply use

47One must be careful not to confuse the steps of the proof which use a smart division of
Rp×n into bounded and unbounded operator norm ‖X‖/

√
n, and the fact that the ultimate

concentration results hold with respect to the Frobenius (instead of spectral) norm.



2.7. BEYOND VECTORS OF INDEPENDENT ENTRIES: CONCENTRATION OF MEASURE IN RMT157

the fact that the mapping f : Rp×n → Rp×p, X 7→ Q(z) is (2/
√
|z|3n)-Lipschitz.

Indeed, by the resolvent identity, Lemma 2.1,

f(X + H)− f(X) = − 1

n
f(X + H)((X + H)HT + HXT)f(X)

so that, from ‖f(X)X‖ ≤
√
n/|z|, ‖f(X)‖ ≤ 1/|z| and ‖AB‖F ≤ ‖A‖ · ‖B‖F

(where ‖·‖ is the operator norm), we have ‖f(X+H)−f(X)‖F ≤ 2‖H‖F /
√
|z|3n

and thus the result.
The proof of the second part is less immediate. Since the result is a linear

concentration of the resolvent, one needs to control the concentration of the ran-
dom variable tr AQ obtained for arbitrary A ∈ Rp×p with ‖A‖F ≤ 1. This is
obtained by considering the mapping f : X 7→ tr AQ, with the major difference
from Lemma 2.22 that f(Q) is now not a mere combination of the singular values
of Q. The function f is not convex (as already discussed in Lemma 2.22) but can
again be divided as f = h−g with g : X 7→ 1

n|z|2 tr XXT and h = f+g both con-
vex, with h Lipschitz and g Lipschitz on the bounded region {X | ‖X‖ ≤ K

√
n}.

Using a truncation method by considering (XK)ij = min{1, K
√
n|z|3

‖X‖F }[X]ij for
growing K, one obtains that the sequence of concentrated random variables
tr AQK = tr A( 1

nXK(XK)T − zIp)
−1 converges in law to tr AQ, which can

then be shown to imply that tr AQ is also a concentrated random variable.

Main result

Let us rephrase the setting of Theorem 2.6 by letting x1, . . . ,xn ∈ Rp be n i.i.d.
random vectors with law L such that

X = [x1, . . . ,xn] ∝ Ce−(·)q/c

for some C, c, q > 0 with respect to the Frobenius norm (which implies in par-
ticular, by the action of the 1-Lipschitz mapping f : (x1, . . . ,xn) 7→ xi, that
each xi is itself concentrated). This request of joint rather than individual (vec-
tor) concentration may be considered demanding, but is at least satisfied by (i)
xi = φ(yi) with 1-Lipschitz maps φ : Rp′ → Rp for (i-a) yi ∼ N (0, Ip′) or (i-b)
yi uniformly distributed on the

√
p′-radius sphere of Rp′ , or (ii) for xi com-

posed of (an affine mapping of) i.i.d. entries supported on [−1, 1], see [Louart
and Couillet, 2018, Remark 3.2].

With the above results, and some specific technical arguments, we have the
following concentration of measure version of Theorem 2.6.

Theorem 2.18 (Sample covariance of concentrated random vectors). Let X =
[x1, . . . ,xn] ∝ Ce−(·)q/c with i.i.d. xi ∈ Rp, and z < 0. Further assume that
E‖xi‖/

√
p (or, if q ≥ 2, simply ‖E[xi]‖/

√
p), tr Φ/p with Φ = 1

nE[XXT], as
well as p/n are all bounded. Then, for all large n,

Q(z) ∈ Q̄(z)± C ′e−(
√
n·)q/c′ in (Rp×n, ‖ · ‖)
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for some C ′, c′ > 0, where

Q̄(z) =

(
Φ

1 + δ(z)
− zIp

)−1

and δ(z) is the unique positive solution to δ(z) = 1
n tr ΦQ̄(z).

Remark 2.19 (On real z < 0). It must be noted here that the concentration
framework devised in this section is only valid for real-valued matrices and thus
Theorem 2.18 holds here for z < 0 only. Using additional arguments (of complex
analytic extension of Q(z) and Q̄(z)), Theorem 2.18 can be naturally extended
to all z ∈ C \ R+.

Denoting δ(z) = −1 − 1
zm̃p(z) and Φ = C, it comes immediately that the

deterministic equivalent Q̄ in Theorem 2.18 above has the same “formal state-
ment” as in Theorem 2.6; we shall see that using δ(z) rather than m̃p(z) is more
convenient under the concentration of measure framework. Yet, there are a few
key differences to raise between both theorems. First, Φ = 1

nE[XXT] is not a
covariance matrix as the present concentration of measure on X does not im-
pose that E[X] = 0. Also, the deterministic equivalent Q̄(z) comes along with a
convergence speed and an exponential tail, which are both more practical than
a mere almost sure convergence of specific statistics.

Theorem 2.18 unfolds from the same idea introduced in the proof of the
Marc̆enko-Pastur law (Theorem 2.4), by successively introducing two determin-
istic equivalents. We provide here the basic arguments of the proof. We already
know from Lemma 2.23 that Q(z) ∈ EQ(z)±Ce−c(

√
n·)

q

for some C, c > 0 and
it only remains to show that ‖EQ(z)− Q̄(z)‖ is small.

To this end, we introduce the first deterministic equivalent

¯̄Q(z) =

(
Φ

1 + δ′(z)
− zIp

)−1

where δ′(z) = 1
nE[xTQ−(z)x] = 1

n tr(ΦEQ−) for Q− ∈ Rp×p the resolvent of
1
nXXT− 1

nxxT and x any column of X. Applying the same ideas as in the proof
of Theorem 2.4, we obtain (we discard the argument z’s for readability)

EQ− ¯̄Q = E
[
Q

(
Φ

1 + δ′
− 1

n
XXT

)]
¯̄Q

=
1

n

n∑
i=1

E
[
Q

(
Φ

1 + δ′
− xix

T
i

)]
¯̄Q = E

[
Q

(
Φ

1 + δ′
− xxT

)]
¯̄Q

which, along with Q = Q−− 1
n

Q−xxTQ−
1+ 1

nxTQ−x
and Qx = Q−x

1+ 1
nxTQ−x

from Lemma 2.8,
gives

EQ− ¯̄Q = E[E1]− E[E2],

E1 = Q−

(
Φ

1 + δ′
− xxT

1 + 1
nxTQ−x

)
¯̄Q, E2 =

1

n(1 + δ′)
Q−xxTQΦ ¯̄Q.
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To bound ‖EQ − ¯̄Q‖ it suffices to bound |aT(EQ − ¯̄Q)a| for any unit norm a.
Applying Cauchy-Schwarz inequality twice we have

|aTE[E1]a| =

∣∣∣∣∣E
[
aTQ−xxT ¯̄Qa ·

1
nxTQ−x− δ′

(1 + δ′)(1 + 1
nxTQ−x)

]∣∣∣∣∣
≤ E

[
|aTQ−x| · |xT ¯̄Qa| ·

∣∣∣∣ 1nxTQ−x− δ′
∣∣∣∣]

≤

√
E
[
|aTQ−x|2 ·

∣∣∣∣ 1nxTQ−x− δ′
∣∣∣∣] · E [|xT ¯̄Qa|2 ·

∣∣∣∣ 1nxTQ−x− δ′
∣∣∣∣]

= O(n−
1
2 )

where we used here: (i) aT ¯̄Qx ∝ Ce−(·)q and aTQ−x ∝ Ce−c(·)
q

(from which
E[|aT ¯̄Qx|k] = O(1) and E[|aTQ−x|k] = O(1)) and (ii) 1

nxTQ−x ∈ δ′±Ce−c(n·)q/2+

Ce−c(
√
n·)q (from which E[| 1nxTQ−x− δ′|k] = O(n−

k
2 )). The concentration re-

sults (i) and (ii) themselves unfold from the previous generic results on concen-
tration of vectors and bilinear forms. Similarly,

|aTE[E2]a| ≤ 1

n

√
E[|aTQ−x|2] · E[|xTQ−Φ ¯̄Qa|2] = O(n−1).

We thus find that ‖EQ − ¯̄Q‖ = O(n−
1
2 ). Integrated into Q(z) ∈ EQ(z) ±

Ce−c(
√
n·)

q

, this gives Q(z) ∈ ¯̄Q± Ce−c(
√
n·)

q

.
It thus remains to show similarly that ‖Q̄− ¯̄Q‖ is small. Note that

‖Q̄− ¯̄Q‖ =
|δ′ − δ|

(1 + δ)(1 + δ′)
‖Q̄Φ ¯̄Q‖ ≤ |δ − δ

′|
|z|

and it thus suffices to control δ − δ′, which, by the implicit form of δ, satisfies

|δ − δ′| = 1

n
| tr Φ(Q̄− ¯̄Q + ¯̄Q− EQ + E[Q−Q−])|

≤ 1

n
| tr Φ(Q̄− ¯̄Q)|+ 1

n
tr Φ‖ ¯̄Q− EQ‖+

1

n
tr Φ‖E[Q−Q−]‖

≤

√
1

n(1 + δ)2
tr Φ2Q̄2 ·

√
1

n(1 + δ′)2
tr Φ2 ¯̄Q2 · |δ − δ′|+O(n−

1
2 )

where we used tr AB ≤ ‖B‖ · tr A for symmetric and nonnegative definite
A ∈ Rp×p, and ‖E[Q−Q−]‖ = O(n−1/2), which unfolds from

‖E[Q−Q−]‖ =
1

n

∥∥∥∥E Q−xxTQ−

1 + 1
nxTQ−x

∥∥∥∥ =
1

n

∥∥∥∥E[Q−ΦQ−]

1 + δ′

∥∥∥∥+O(n−
1
2 ).

The prefactor of |δ− δ′| is strictly less than 1 for all large n, and thus |δ− δ′| =
O(n−

1
2 ), which concludes the proof.
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2.8 Concluding remarks
This section explored basic to advanced spectral properties of a family of ran-
dom matrix models, with a strong emphasis on the sample covariance matrix
model (Theorem 2.6), in the regime of large and commensurable data number
n and dimension p. Despite the simplicity of its definition, we saw that the
limiting spectral measure of the sample covariance matrix is far from trivial,
that advanced techniques from complex analysis can be used to perform sta-
tistical inference, and that, unlike in the classical n → ∞ and p fixed regime,
phase transition phenomena arise, below which some inference problems are
asymptotically insoluble.

Fortunately, even if the statistical models used in concrete machine learn-
ing applications are often more involved, we will see, in the remainder of the
monograph, that the main techniques and tools used to understand and improve
various machine learning methods are essentially the same as those presented
so far. In particular, we will see in the following sections that:

• in (not necessarily linear) regression problems, the resolvent (of sample
covariance matrices, of kernel matrices, of the Gram matrix of nonlinear
random feature maps, etc.) will systematically appear as the central object
of interest (which is reminiscent of the fact that regression is an inverse
problem);

• in classification problems, the spectrum of kernel random matrices and
Laplacian random matrices (for spectral clustering or spectral community
detection), or different types of functionals of these kernel and Laplacian
random matrices (for supervised or semi-supervised graph-based learning)
will play an important role; the performance achieved by these methods,
given in terms of misclassification rates, probability of false alarms, etc.,
will in particular demand the evaluation of the limiting means and vari-
ances of these functionals;

• in the specific case of spectral or subspace methods, such as PCA, manifold-
based clustering, spectral clustering, or community detection, the afore-
mentioned phase transition phenomena will arise and show that there exist
“strict” limitations for these methods: in particular, a minimal samples-
over-dimension ratio exists below which no detection or classification is
possible;

• even for optimization-based machine learning problems, such as general-
ized linear models [Nelder and Wedderburn, 1972], that rarely offer a solu-
tion explicitly defined from (the resolvent of) a particular random matrix,
their large dimensional (limiting) performance will be shown ultimately to
depend, in an almost explicit way, on some slightly more involved random
matrices; there, the twist will be to realize that some random quantities
(not always easy to identify) converge and can asymptotically be replaced
by deterministic equivalents obtained from a perturbation analysis (e.g.,
some sort of a local “linearization”).
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Before delving into these applications, it is important to recall that we shall
purposely place ourselves under the “realistic” situation where the number of
samples n cannot be chosen arbitrarily large (samples never really come for
free in practice) and particularly not overwhelmingly larger than the typical
dimension p of the data. More importantly, we also impose that the problem
being addressed is not “asymptotically trivial”, i.e., for p, n realistically large,
the misclassification probability or the cost to be minimized will not vanish.
This way, the asymptotic analysis (n, p → ∞) will be a realistic representative
of the finite (but not too small) dimensional and moderately difficult machine
learning problem. This is quite different from many parallel theoretical machine
learning works which often aim at concluding (usually through the evaluation
of error bounds, rather than exact results) that the algorithm under analysis
provides an asymptotic perfect performance (vanishing misclassification rate or
cost) in a certain growth regime of n with respect to p. Our vision instead is
that, in the (more) realist large dimensional regime, n and p must be considered
as both fixed (only not to too small values).

As such, to best appreciate the many results to come in the next chapters,
these must be seen through this “finite-dimensional and realistic” lens.
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2.9 Exercises
In this section, we provide short exercises to familiarize the reader with various
useful notions and properties of random matrix calculus discussed this far in
Chapter 2, with detailed solutions provided at https://zhenyu-liao.github.
io/book.

2.9.1 Properties of the Stieltjes transform
Exercise 1 (Stieltjes transform and moments). Show that the Stieltjes trans-
form mµ(z) defined in Definition 3, of a probability measure µ with bounded
support (and thus finite moments), is a moment generating function in the sense
that, for all z ∈ C such that |z| > max{| inf(supp(µ))|, | sup(supp(µ))|},

mµ(z) = −1

z

∞∑
k=0

Mkz
−k

where Mk =
∫
tkµ(dt).

From this formulation, propose a method to evaluate the successive moments
of µ using mµ.

Exercise 2 (Non-immediate Stieltjes transforms). Let X ∈ Rn×n be a symmet-
ric matrix and Q(z) = (X − zIn)−1 its resolvent. Show that, for any u ∈ Rn
of unit norm ‖u‖ = 1 and any A nonnegative definite and such that tr A = 1,
the quantities uTQ(z)u and tr AQ(z) are also Stieltjes transform of probability
measures.

What are these measures and what are their supports?

Exercise 3 (Stieltjes transform and singular values). Let µ be a probability
measure on R+ and ν, ν′ be the measures defined by∫

f(t)ν(dt) =

∫
f(
√
t)µ(dt)∫

f(t)ν′(dt) =
1

2

(∫
f(t)ν(dt) +

∫
f(−t)ν(dt)

)
for all bounded continuous f .

What are ν and ν′ when µ = 1
n

∑n
i=1 δλi for some λ1, . . . , λn ≥ 0?

Show that the Stieltjes transform mν′ of ν′ satisfies

mν′(z) = zmµ(z2).

Letting X ∈ Rn×p and µ be the empirical spectral measure of XXT as in
Definition 2, relate the Stieltjes transform of the empirical spectral measure of
the matrix

Γ =

[
0n×n X
XT 0p×p

]
∈ R(n+p)×(n+p)

to that of the measure µ, and conclude on the nature of this Stieltjes transform
for n = p.

https://zhenyu-liao.github.io/book
https://zhenyu-liao.github.io/book
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Exercise 4 (Proof of Lemma 2.9: a special case). For A,M ∈ Rp×p symmetric
nonnegative definite matrices, u ∈ Rp, τ > 0 and z < 0, show that∣∣∣tr A

(
M + τuuT − zIp

)−1 − tr A (M− zIp)−1
∣∣∣ ≤ ‖A‖|z| .

Exercise 5 (Proof of Nash–Poincaré inequality, Lemma 2.14). The objective of
the exercise is to show that, for x ∼ N (0,C) with C ∈ Rp×p and f : Rp → R of
bounded first- and second-order derivatives,

Var[f(x)] ≤ E
[
(∇f(x))TC∇f(x)

]
.

To this end, it is convenient to first define an “interpolating” Gaussian vector
x(t) =

√
tx1 +

√
1− tx2 for t ∈ [0, 1] with x1 ∼ N (0,C1), x2 ∼ N (0,C2) inde-

pendent, and show, by applying successively the chain rule and Stein’s lemma,
Lemma 2.13, that for twice differentiable g,

E[g(x1)]− E[g(x2)] =

∫ 1

0

d

dt
E[g(x(t))] dt

=
1

2

∫ 1

0

E
[
∇g(x(t))TC1∇g(x(t))−∇g(x(t))TC2∇g(x(t))

]
dt.

From there, apply the result to the vectors x1 = [yT,yT]T ∈ R2p and x2 =
[yT

1 ,y
T
2 ]T ∈ R2p for y,y1,y2 ∼ N (0,C) independent, and g([aT,bT]T) = f(a)f(b).

Conclude by an application of Cauchy-Schwarz inequality on the expectation un-
der the resulting integrand and the observation that the bound on the integrand
is constant with respect to t.

2.9.2 On limiting laws
Exercise 6 (The

√
|x− E| behavior of the edges). Show that both the semicircle

law (Theorem 2.5) and the Marc̆enko-Pastur law (Theorem 2.4, for c 6= 1) have
a local

√
|x− E| behavior at each of the edges E of their support.

Conclude on the typical number of eigenvalues of the Wishart matrix 1
nXXT ∈

Rp×p (with Xij ∼ N (0, 1) independent) and the Wigner 1√
n
X ∈ Rn×n (with say

Xij = Xji ∼ N (0, 1) independent up to symmetry) found near the edges of their
respective supports.

Relate this finding to the Tracy-Widom distribution of the fluctuations of the
largest and smallest eigenvalues in Theorem 2.15.

What happens for the left-edge of the support of the Marc̆enko-Pastur law and
to the associated smallest eigenvalues of Wishart matrices when lim p/n = c =
1? How many eigenvalues are then found close to the left edge in this so-called
“hard-edge” setting? Conclude on the typical fluctuations of these eigenvalues
and confirm numerically.

Exercise 7 (The
√
|x− E| behavior in elaborate models). We here seek to

extend the results in Exercise 6 to the sample covariance matrix model 1
nXXT
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where X = C
1
2 Z with Z having independent entries of zero mean, unit variance

and C having a bounded limiting spectral measure ν with fast decaying tails. We
denote m̃(z) the Stieltjes transform of the limiting spectral measure µ̃ of 1

nXTX.
Using Figure 2.5 as a reference and recalling the formulation for functional

inverse
x(m̃) = − 1

m̃
+ c

∫
tν(dt)

1 + tm̃

extensively discussed in Section 2.3.1, visually justify that x′′(m̃) can be (com-
plex) analytically extended in the neighborhood of the local extrema of x(m̃) (that
is, each point m̃ where x′(m̃) = 0) into a function z(m̃) which must locally co-
incide with the inverse Stieltjes transform of m̃(z).

Deduce that m̃(z) must be of the form
√
z − E near an edge E and conclude.

Exercise 8 (Further results on x(m̃)). We aim in this exercise to justify some
of the visual observations in Figure 2.5 with the help of

x(m̃) = − 1

m̃
+ c

∫
tν(dt)

1 + tm̃
.

Show that, for m̃1 6= m̃2 such that x′(m̃1), x′(m̃2) > 0, we cannot have
x(m̃1) = x(m̃2): that is, the increasing segments of x(m̃) never “overlap”.

Besides, show that, if m̃1 < m̃2 are both of the same sign, and x′(m̃1), x′(m̃2) >
0, then x(m̃1) < x(m̃2): that is, the increasing segments of x(m̃) never “swap”.
To this end, we may prove the intermediary result

(m̃1 − m̃2)

(
1−

∫
cm̃1m̃2t

2ν(dt)

(1 + tm̃1)(1 + tm̃2)

)
= m̃1m̃2(x(m̃1)− x(m̃2))

and use Cauchy-Schwarz inequality to control the left-hand side term.
Finally show that, if ν has bounded support, then x(m̃)→ 0 as m̃→ ±∞.
As a final remark, note that the only important observation about Figure 2.5

which we have not shown here is the fact that the points m̃ where x′(m̃) = 0
must exist. In fact, this is not always the case and heavily depends on the nature
of the tails of the measure ν. Justify in particular that, for some ν, there may
be no asymptote on the edges of the domain of definition of x(·) (as opposed to
what is seen in Figure 2.5).

2.9.3 On eigen-inference
Exercise 9 (Alternative estimates of 1

p tr( 1
nXXT)2). Let X = C

1
2 Z for Z ∈

Rp×n with independent standard Gaussian entries, and C deterministic sym-
metric nonnegative definite, of bounded operator norm, and limiting spectral
measure ν.

Determine the limit, as n, p → ∞ and p/n → c ∈ (0,∞) of the (empirical)
second-order moment

M2 =
1

p
tr

(
1

n
XXT

)2
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as a function of the moments of ν.
Retrieve the same result from the results of Exercise 1 along with the expres-

sion of the Stieltjes transform m(z) of the limiting spectrum µ of 1
nXXT. It

may be useful to first show that m(z) is also solution to

m(z) =

∫
ν(dt)

−z(1 + ctm(z)) + (1− c)t
.

Exercise 10 (Location of the zeros of m̃(z)). Figure 2.7 and Remark 2.12 both
show that the zeros η1, . . . , ηn of mX(z), the Stieltjes transform of a symmetric
matrix X ∈ Rn×n, are interlaced with the eigenvalues λ1, . . . , λn of X.

In the sample covariance matrix case X = 1
nZTCZ with Z ∈ Rp×n having

independent standard Gaussian entries and C with limited spectral measure ν
of bounded and connected support, this means that (up to zero eigenvalues) the
roots ηi of m 1

nZTCZ(z) are all found in the limiting support of the empirical
spectral measure µ̃ of 1

nZTCZ, at the possible exception of the leftmost η1.
Using a change of variable involving m̃(z) of the formula

0 =
1

2πı

∮
Γ

dw

w

for all Γ not enclosing zero, then the approximation m̃(z) = m 1
nZTCZ(z) + o(1)

and finally the residue theorem, show that no zero of m 1
nZTCZ(z) can be found

at macroscopic distance from the limiting support of µ̃.
This conclusion is of practical interest to statistical inference applications

discussed in Section 2.4.1 and in particular, to the explicit expression in (2.44) from (2.43),
for which case this result ensures the existence of a valid contour that circles
around all the λi poles and ηi poles, at least almost surely for sufficiently large
n, p. (And the leftmost η1 is not a problem.)

2.9.4 Spiked models
Exercise 11 (Additive spiked model). Similar to Theorem 2.13, show the phase
transition threshold for the additive model 1

nXXT+P for X having i.i.d. entries
of zero mean, unit variance and low rank P =

∑k
i=1 `iuiu

T
i with `1 > . . . > `k >

0, is determined by the condition

`i >
√
c(1 +

√
c)

with c = lim p/n as p, n → ∞. Under this condition, show that the (almost
sure) limiting value of the corresponding isolated eigenvalue λ̂i of 1

nXXT + P is
given by

λ̂i
a.s.−−→ λi = 1 + `i +

c

`i − c
.

Further show, similar to Theorem 2.14 that, letting ûi be the eigenvector asso-
ciated with λ̂i, we have

|ûT
i ui|2

a.s.−−→ 1− c

(`i − c)2
.
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Exercise 12 (Additive spiked model: the Wigner case). Let X be symmetric
with [X]ij, i ≥ j, i.i.d. with zero mean and unit variance. As in Exercise 11,
show that the “spiked” phase transition threshold for the model X/

√
n+ P with

P =
∑k
i=1 `iuiu

T
i , with `1 > . . . > `k > 0, is determined by the condition

`i > 1

and that, under this condition, the isolated eigenvalue λ̂i of 1√
n
X+P associated

with `i satisfies

λ̂i
a.s.−−→ λi = `i +

1

`i
.

Show finally that, for ûi the eigenvector associated with λ̂i, we have

|ûT
i ui|2

a.s.−−→ 1− 1

`2i
.

2.9.5 Deterministic equivalent
Exercise 13 (Sketch of proof of Theorem 2.17). Inspired by the (sketch of)
proof of Theorem 2.6, prove Theorem 2.17 using

1. the trace lemma adapted to Haar random matrices, Lemma 2.16; and

2. Stein’s lemma adapted to Haar random matrices, Lemma 2.17.

Exercise 14 (Higher-order deterministic equivalent). Theorem 2.4 provides a
deterministic equivalent for the resolvent Q =

(
1
nXXT − zIp

)−1 for X ∈ Rp×n
having i.i.d. zero mean and unit variance entries, which, according to Nota-
tion 1, provides access to the asymptotic behavior of aTQb. In many machine
learning applications, however, the object of natural interest (e.g., the mean
squared error in a regression context and the variance in a classification context)
often involves the asymptotic behavior of aTQAQb which requires a determinis-
tic equivalent for random matrices of the type QAQ, for some A independent of
Q. In particular, for Q↔ Q̄ (such that ‖E[Q]− Q̄‖ → 0), Q̄AQ̄ is in general
not a deterministic equivalent for QAQ. This is due to the fact that

E[QAQ] 6' E[Q]AE[Q].

Instead, prove that, in the setting of Theorem 2.4, one has

Q(z)AQ(z)↔ m2(z)A +
1

n
tr A · m

′(z)m2(z)

(1 + cm(z))2
Ip.

As a sanity check, using the fact that ∂Q(z)/∂z = Q2(z) and taking A = Ip in
the equation above, confirm that

Q2(z)↔ m′(z)Ip

for m′(z) = m2(z)

1− cm2(z)

(1+cm(z))2

obtained from differentiating the Marc̆enko–Pastur

equation (2.9).
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2.9.6 Concentration of measure
Exercise 15 (Concentration of matrix quadratic forms). Recalling the defini-
tions and notations of Section 2.7, let X ∈ Rp×n be a random matrix satisfying

X ∝ Cec·
2

, and ‖E[X]‖ ≤ K

for some K,C, c > 0. Given A ∈ Rp×p deterministic, we aim to prove the
linear concentration of XTAX in (Rn×n, ‖ · ‖F ). To this end, we consider a
deterministic matrix B ∈ Rn×n such that ‖B‖F ≤ 1 and study the behavior of
tr(BXTAX). Consider first the singular value decomposition

A = UAΛAVT
A, B = UBΛBVT

B,

with UA,VA ∈ Rp×p and UB,VB ∈ Rn×n orthogonal matrices, ΛA ∈ Rp×p,
ΛB ∈ Rn×n diagonal matrices, and define X̃1 = UT

AXVB, X̃2 = VT
AXUB ∈

Rp×n. In the sequel, the constants K ′, C ′, c′ > 0 are understood only depending
on K,C, c and might change from line to line.

First show that there exist K ′, C ′, c′ > 0 such that, for t > K ′
√

log(np) and
X̃ ∈ {X̃1, X̃2}

P
(
‖X̃− E[X̃]‖∞ ≥ t

)
≤ C ′e−c

′t2/ log(np).

Deduce from the bound ‖E[X]‖ ≤ K that there exists a constant K ′ > 0 depend-
ing only on K,C, c such that

E[‖X̃‖∞] ≤ K ′
√

log(np).

This established, introduce the set Aθ = {X ∈ Rp×n,max{‖X̃1‖∞, ‖X̃2‖∞} ≤
θ} ⊂ Rp×n and show that for all θ ≥ K ′

√
log(np) with K ′ > 1, we have

P(X ∈ Acθ) ≤ C ′e−c
′θ2

and that the mapping X 7→ tr(BXTAX) is θ‖A‖F -Lipschitz on Aθ.
Introduce M , a median of tr(BXTAX), and note that

P
(∣∣tr(BXTAX)−M

∣∣ ≥ t,X ∈ Aθ) ≤ C ′e−c′t2/(θ‖A‖F )2 .

Conclude by carefully choosing the parameter θ ≥ K ′
√

log(np) and showing that

XTAX ∈ E[XTAX]± C ′e−c
′·2/(log(np)‖A‖2F ) + C ′e−c

′·/‖A‖F .

2.9.7 Beyond matrices
Exercise 16 (Towards spiked models in random tensors). Let Y ∈ Rn×n×n be
a three-way symmetric tensor, i.e., such that [Y]ijk is constant to exchanges of
its indexes, defined by

Y = `x⊗ x⊗ x +
1√
n
W
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where W ∈ Rn×n×n has independent N (0, 1) entries up to symmetry, determin-
istic x ∈ Rn of unit norm, and [a⊗ b⊗ c]ijk = aibjck.

A possible definition of the “eigenvalue-eigenvector” pair (λ̂, û) (without loss
of generality such that λ̂ ≥ 0 and ‖û‖ = 1) of a symmetric tensor Y is the
solution to [Lim, 2005]

Y · û · û = λ̂û

where A · a · b =
∑
ij [A]ij·aibj ∈ Rn is the contraction of the tensor A on

the vectors a,b ∈ Rn. The objective here is to characterize the (possible) spike
λ̂ as well as the associated eigenvector alignment |ûTx| between the dominant
eigenvector and x.

Show first that the matrix Yx = Y · x =
∑n
i=1 Yi··xi ∈ Rn×n takes the form

Yx = `xxT +
1√
n

n∑
i=1

xiWi

where Wi ∈ Rn×n is the i-th “layer” matrix of the tensor W such that [Wi]ab =
Wiab.

Using the Gaussian method discussed in Section 2.2.2, show that the limiting
spectral measure of Yx is the semicircle law supported on [−2, 2] (we may discard
the rank-one matrix `xxT to retrieve this result). Then, using a spiked model
analysis as in Section 2.5, show that

• for all ` > 0, there must exist an isolated eigenvalue λ̂x of Yx (thus no
phase transition) asymptotically equal to (with high probability)

λ̂x → λx =
√
`2 + 4;

• the eigenvector ûx associated with λ̂x satisfies (again with high probability)

|ûT
xx|2 → `√

`2 + 4
.

Conclude on an asymptotic upper bound for the quantity λ̂|ûTx|.



Chapter 3

Statistical Inference in Linear
Models

In this chapter, examples of concrete machine learning and statistical infer-
ence/estimation problems involving covariance matrix-based estimators are dis-
cussed. This includes the generalized likelihood ratio test, the popular linear
and quadratic discriminant analysis, subspace methods such as MUSIC for di-
rection of arrival estimation, covariance distance estimation, as well as robust
covariance estimation.

Sections 2.2 through 2.5 provided the basic material to perform fundamen-
tal signal and data processing tasks such as detection (hypothesis testing) and
estimation (statistical inference) for sample covariance matrix models.

These sections can be summarized as follows: if no a priori information is
known about the population covariance matrix C ∈ Rp×p (i.e., it is not known
to be sparse, Toeplitz, a low-rank perturbation of the identity matrix, etc.),
the observation of i.i.d. (say zero mean) samples X = [x1, . . . ,xn] ∈ Rp×n
with covariance Cov[xi] = C is not sufficient to estimate C itself if p and
n are of the same order of magnitude (since the np degrees of freedom in X
are not enough to evaluate the O(p2) distinct elements of C). As such, the
standard methods for detection and estimation involving C which conventionally
substitute Ĉ = 1

nXXT for C are bound to fail when p is not too small compared
to n.

Yet, C itself may not be the object of central interest. One is often rather
interested in a scalar functional of C: the binary answer to a signal detection
procedure, the probability of an hypothesis test, the class-label as the outcome
of a classification method, or more generally the estimation of a certain more-
or-less involved function of C (its dominant eigenvalue, the projection of its
dominant eigenvector onto a certain deterministic vector of interest, etc.).

Section 2.3 showed that, while Ĉ 6→ C in the (large n, p) random matrix
regime, there exist complex analytic relations between the resolvents QĈ(z) of

169
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Ĉ and QC(z) of C. These relations enable the connection of a large class of
functionals of C (linear functionals of its eigenvalues, subspace projections of
some of its eigenvectors) to those of Ĉ, thereby allowing for random-matrix
improved estimates of these functionals. However, these estimates can be quite
involved and limited in practice by complex integration boundaries. In many
cases of practical interest where information and noise can be “decoupled” in a
low-rank information and a full-rank noise, spiked models previously discussed
in Section 2.5 give access to much simplified versions of these inference methods.

In this chapter, examples of concrete problems involving covariance matrix-
based estimators (and beyond) are discussed:

1. Hypothesis testing in signal-plus-noise model: assuming xi = zi
is pure noise or xi = µ + zi contains an unknown signal and noise, we
discuss in Section 3.1.1 the generalized likelihood ratio test (GLRT) aim-
ing to detect the presence of a signal µ, using asymptotic results on the
eigenvalues of the sample covariance model.

2. Linear and quadratic discriminant analysis: the objective of LDA
and QDA to be discussed in Section 3.1.2 is to classify a test datum x into
one of the two Gaussian hypotheses N (µ0,C0) or N (µ1,C1), based on
some (linear) discrimination rule T (x) obtained from the available training
set. Random matrix results will be used here to analyze the (surprisingly
far from obvious) performance of LDA and QDA.

3. Estimation with subspace methods: for signals parameterized by
some specific “direction of arrival” (DoA) angles θ1, . . . , θk, the so-called
subspace methods, in particular the MUSIC algorithm, can be used to
recover this “angular” information from the signal (containing noise) sam-
ple covariance. In Section 3.1.3, we discuss the random matrix improved
G-MUSIC algorithm and in particular, its significant performance gain in
the large dimensional signal scenario.

4. Distance estimation: as a concrete example of statistical inference pro-
cedures commonly used in machine learning, in Section 3.2 we estimate
the distance between two centered (population) data distributions (or co-
variance matrices) based on a limited number of samples from each distri-
bution. Here random matrix theory provides improved estimators which
are consistent in the regime of simultaneously large sample size and data
dimension.

5. Robust covariance estimation: in presence of outliers, sample covari-
ance matrices are known to be non-robust estimators of population co-
variance matrices, already in the n� p case: robust estimators of scatter
are an efficient alternative in these situations. These objects are hard to
theoretically grasp in the classical n� p setting; we present here a much
more tractable random matrix analysis of these estimates in Section 3.3.
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These topics not being core machine learning algorithms but rather statistical
tools broadly surrounding machine learning (and some of them already well
documented in other textbooks [Tulino and Verdú, 2004, Couillet and Debbah,
2011]), each subject will be mostly “brushed over” rather than exhaustively
explored. Pointers to external articles and references are provided for the inter-
ested readers.

3.1 Detection and estimation in information-plus-
noise models

3.1.1 GLRT asymptotics
Possibly one of the most immediate and telling applications of random matrix
theory, and particularly of spiked models, in statistics deals with the detection
of the presence of some (statistical) “information” buried in white noise.

Denoting X = [x1, . . . ,xn] ∈ Rp×n a matrix with i.i.d. columns xi, the
decision problem is formulated as the following binary hypothesis test:

X =

{
σZ, H0

asT + σZ, H1

where Z = [z1, . . . , zn] ∈ Rp×n with zi ∼ N (0, Ip), a ∈ Rp deterministic with
unit norm ‖a‖ = 1, s = [s1, . . . , sn]T ∈ Rn with si i.i.d. random scalars, and
σ > 0. We also denote c = p/n (and demand as usual that 0 < lim inf c ≤
lim sup c <∞).

This model describes the observation of either pure Gaussian noise data σzi
with zero mean and covariance σ2Ip or of a deterministic information a possibly
modulated by a scalar (random) signal si (which could simply be ±1) added
to the noise. Obviously, if the parameters a, σ as well as the statistics of si
are known, a mere Neyman-Pearson test allows one to discriminate between H0

and H1 with optimal detection probability, for all finite n, p; precisely, one will
decide on the genuine hypothesis according to the ratio of posterior probabilities

P(X | H1)

P(X | H0)

H1

≷
H0

α (3.1)

for some α > 0 controlling the desired Type I and Type II error rates (that is,
the probability of false positives and of false negatives).

However, in practice, unless the existence of a set of previous pure-noise
acquisitions is assumed, it is quite unlikely that σ be assumed known or con-
sistently estimated. Similarly, if the ultimate objective (post-decision) is to
estimate the data structure a under H1, a is naturally assumed partially or
completely unknown (it may be known to belong to a subset of Rp in which
case more elaborate procedures than proposed here can be carried on). In
the most generic scenario where a is fully unknown, assuming additionally the
data of zero mean, we may thus impose without generality the restriction that
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si ∼ N (0, 1). Under this (very restricted) prior knowledge, instead of the maxi-
mum likelihood test in (3.1), one may resort to a generalized likelihood ratio test
(GLRT) defined as

supσ,a P(X | σ,a,H1)

supσ,a P(X | σ,H0)

H1

≷
H0

α.

Under both a Gaussian noise and signal si assumption, the GLRT has an
explicit expression which appears to be a monotonous increasing function of
‖XXT‖/ tr(XXT). That is, the test is equivalent to

Tp ≡
∥∥ 1
nXXT

∥∥
1
p tr

(
1
nXXT

) H1

≷
H0

f(α),

(this result can be found in detail in [Wax and Kailath, 1985, Anderson et al.,
1963]) for some known monotonously increasing function f ,1 where we intro-
duced the normalizations 1/p and 1/n so that both the numerator and denom-
inator are of order O(1) as n, p→∞.

Obviously, since the ratio Tp has limit (1 +
√
c)2 under the H0 asymptotics,

f(α) must be of the form f(α) = (1 +
√
c)2 + g(α) for some g(α) > 0. Also,

as we know that 1
p tr( 1

nXXT) fluctuates at the speed O(n−1), while ‖ 1
nXXT‖

fluctuates at the slower speed O(n−2/3) (as per Theorem 2.15), the global fluc-
tuation is dominated by the numerator at a rate of order O(n−2/3), i.e., we have
under H0,

Tp
H0= (1 +

√
c)2 +O(n−2/3).

Since the denominator essentially converges (at an O(n−1) rate) while the nu-
merator still fluctuates (at an O(n−2/3) rate), despite the dependence between
both, only the fluctuations of the numerator ‖ 1

nXXT‖ influence the behavior of
the ratio Tp, and thus

Tp
H0∼ (1 +

√
c)2 + (1 +

√
c)

4
3 c−

1
6n−

2
3 TW1 + o(n−2/3)

where ‘H0∼ ’ denotes equality in law under H0.
As a consequence, in order to set a maximum false alarm rate (or false

positive, or Type I error) of r > 0 in the limit of large n, p, one must choose a
threshold f(α) for Tp such that

P(Tp ≥ f(α)) = r,

that is, such that

µTW1((−∞, Ap]) = r, Ap = (f(α)− (1 +
√
c)2)(1 +

√
c)−

4
3 c

1
6n

2
3 (3.2)

with µTW1 the Tracy-Widom measure in Theorem 2.15.
1Specifically, f is the functional inverse of g : x 7→ (1−1/p)(1−p)nx−n(1−x/p)n(1−p). See

also [Bianchi et al., 2011] for detail.
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Figure 3.1: Comparison between empirical false alarm rates and TW1(Ap) for
Ap of the form in (3.2), as a function of the threshold f(α) ∈ [(1 +

√
c)2 −

5n−2/3, (1 +
√
c)2 + 5n−2/3], for p = 256, n = 1 024 and σ = 1. Results obtained

from 500 runs. Link to code: Matlab and Python.

Figure 3.1 compares the empirical false alarm rate obtained from different
choices of thresholds f(α) = (1 +

√
c)2 + O(n−2/3) to the asymptotic estimate

TW1(Ap). For a given maximum false alarm rate r, one can thus (numerically)
determine the threshold f(α) using TW1(Ap(f(α))) = r.

Under the H1 hypothesis, recall that s ∼ N (0, In), we may then write

X = asT + σZ =
[
a σIp

]
Z̃, Z̃ =

[
sT

Z

]
with Z̃ ∈ R(p+1)×n having i.i.d. N (0, 1) entries. Hence σ−1X has independent
columns with zero mean and covariance

C ≡ E
[
σ−2 1

n
XXT

]
= Ip + σ−2aaT.

This is a spiked model with population covariance eigenvalues (i) σ−2 + 1 with
unit multiplicity, and (ii) 1 with multiplicity p − 1. We thus know from Theo-
rem 2.13 that Tp converges to a quantity strictly greater than (1 +

√
c)2 if and

only if the “signal-to-noise ratio” σ−2 satisfies σ−2 >
√
c.

Assuming σ = σp depends on p, n, we thus have that, for the signal detection
to be asymptotically non-trivial, σ−2

p must be of the form
√
c + O(n−2/3), in

which case Tp = (1 +
√
c)2 + O(n−2/3). From there, the probability of correct

detection under H1 (i.e., the power of the test) can be derived, and in turn the

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/3.1/html/GLRT.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/3.1/GLRT.ipynb
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receiver operator curve (ROC) of the detection test. We do not pursue these
considerations further here – which, for the interested reader, are given a detailed
account in [Bianchi et al., 2011] –, as (i) they require more elaborate technical
material (specifically, large deviation theory) not discussed in Chapter 2, and
(ii) retrieving the power of the test has little practical algorithmic relevance as
it can only be obtained when σ and ‖a‖ are perfectly known.

We instead move on in the next section to discriminant analysis, a familiar
tool in statistical machine learning for which obtaining a full account of the
asymptotic performance is a crucial step to properly parameterize (and thus
optimize) the method.

3.1.2 Linear and Quadratic Discriminant Analysis

The application of the random matrix framework to linear (LDA) and quadratic
(QDA) discriminant analyses is a very telling example of the counterintuitive
behavior of large dimensional statistics.

Specifically, LDA and QDA aim at selecting one out of two Gaussian model
hypotheses N (µ0,C0) (hypothesis H0) versus N (µ1,C1) (hypothesis H1) for
an observed vector x ∈ Rp.

The means and covariances under H0 and H1 are however unknown, and
are estimated from two sets of training data x

(`)
1 , . . . ,x

(`)
n` ∼ N (µ`,C`) with

` ∈ {0, 1}, as per the standard empirical estimators:

µ̂` ≡
1

n`

n∑̀
i=1

x
(`)
i , Ĉ` ≡

1

n` − 1

n∑̀
i=1

(x
(`)
i − µ̂`)(x

(`)
i − µ̂`)

T.

The test decision for an unknown new observation x is then carried out using
a standard Neyman–Pearson likelihood-ratio procedure, under the assumption
that µ` and C` are correctly estimated by µ̂` and Ĉ`. In the context of LDA
specifically, it is assumed that C0 = C1 (which may be an invalid assumption),
in which case the discrimination is based on the test:2

TLDA(x) ≡ (x− µ̂)
T

Ĉ−1(µ̂0 − µ̂1)
H0

≷
H1

0

where µ̂ = 1
2 (µ̂0 + µ̂1), Ĉ = n0−1

n−2 Ĉ0 + n1−1
n−2 Ĉ1, and we implicitly assumed

that H0 and H1 are equally probable. As for QDA, it instead accounts for the

2To retrieve this result, it suffices to verify that Px∼N (µ̂0,Ĉ)(x) ≷ Px∼N (µ̂1,Ĉ)(x) is equiv-

alent to (x− µ̂)TĈ−1(µ̂0 − µ̂1) ≷ 0.
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possible difference between C0 and C1, and the corresponding test is3

TQDA(x) ≡ −1

2
(x− µ̂0)TĈ−1

0 (x− µ̂0) +
1

2
(x− µ̂1)TĈ−1

1 (x− µ̂1)

+
1

2
log

det Ĉ0

det Ĉ1

H0

≷
H1

0.

Of course, due to the presence of the matrix inverses Ĉ−1
0 and Ĉ−1

1 , these
estimators are only defined (almost surely) for n0, n1 ≥ p. If this condition is
not met, the estimates of Ĉ` are generally regularized as Ĉ

(γ)
` ≡ Ĉ` + γIp for

some γ > 0. As a matter of fact, even when n0, n1 ≥ p, the large condition
number of the empirical inverses (i.e., the ratio between their largest to small-
est eigenvalues) significantly degrades the performance of LDA and QDA, and
imposes this regularization γ in practice.

The objective of this section is to analyze the impact of a large dimensional
assumption on n0, n1, p on the performance of (regularized) LDA and QDA.

In a nutshell, and quite surprisingly at first sight, we will observe that LDA
almost systematically outperforms QDA, in the large p, n0, n1 regime, even when
C0 6= C1: specifically, the minimal difference ‖µ0−µ1‖, when seen as a function
of p, under which hypotheses H0 and H1 can be discriminated is ‖µ0 − µ1‖ =
O(1) for LDA but only ‖µ0 − µ1‖ = O(

√
p) for QDA. In other words, quite

paradoxically, in possibly wrongly assuming that C0 = C1, LDA is in general
capable to discriminate H0 from H1 when ‖µ0 − µ1‖ = O(1), where QDA is
bound fail in this regime.

This remark is all the more counterintuitive that we will see later in Sec-
tion 4.4.3 that a mere (kernel) least-squares regression method, being not de-
signed for Gaussians distributed data, will in the present setting outperform
QDA. This fundamental statement must be understood as follows: the per-
formance gain induced by a perfect modeling of the data statistics (Neyman-
Pearson test over two Gaussian hypotheses when the data are genuinely Gaus-
sian) is insufficient to outweigh the huge loss incurred by the inappropriate
estimation of C` by Ĉ`; this entails that ill-matched procedures (not fitting
the genuine Gaussian nature of the data, but most importantly not trying to
estimate and invert the data population covariance) may perform better.

In the following two sections, we first provide a full account of the large
dimensional behavior of regularized LDA. We will then only justify the main
reasons behind the comparatively poor performance of QDA, or at least its
inability to perform at the same optimal ‖µ0 − µ1‖ = O(1) rate. A detailed
analysis of regularized QDA can be found in [Elkhalil et al., 2020].

3Here, as opposed to the LDA setting where Ĉ is common to both hypotheses, the com-
parison Px∼N (µ̂0,Ĉ0)

(x) ≷ Px∼N (µ̂1,Ĉ1)
(x) maintains the determinants det Ĉ0 and det Ĉ1

from the Gaussian density formula.
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Linear discriminant analysis

The performance of LDA is provided by the probability P(TLDA(x) > 0 | x ∼
H`) for ` ∈ {0, 1}.

In the large n0, n1, p regime where n`/n→ c` ∈ (0, 1) and p/n→ c ∈ (0,∞),
in order for this quantity to remain non-trivial (i.e., neither converging to 0,
1 or 1/2), some growth rate constraints need be set on the distance ‖µ0 −
µ1‖. Assuming ‖C`‖ = O(1) (without generality restriction), it appears (in
the derivation of LDA performance) that this non-trivial regime corresponds
to ‖µ0 − µ1‖ = O(1). Recalling Equation (1.7) in Section 1.1.3, this regime
happens to be the minimal possible growth rate for detection in the oracle case
where µ0 and µ1 would be perfectly known; as such, in terms of optimally
allowed growth rates for ‖µ0 − µ1‖, LDA does not loose in performance.

Under this assumption, one then needs to evaluate the statistics of TLDA(x).
This study is performed in [Elkhalil et al., 2020] with a (slightly different form
of) regularization γ. It is precisely shown that the decision function

T
(γ)
LDA(x) = (x− µ̂)T[Ĉ(γ)]−1(µ̂0 − µ̂1)

satisfies a central limit theorem in the large n0, n1, p limit. To obtain this limit-
ing behavior of T (γ)

LDA, let us assume that x = µ`+C
1
2

` z ∼ H` and observe that we

may write the complete training data set as X = [C
1
2
0 Z0+µ01

T
n0
,C

1
2
1 Z1+µ11

T
n1

]

and its “hypothesis-wise” empirically centered version as X◦ = [C
1
2
0 Z0,C

1
2
1 Z1]−

[ 1
n0

C
1
2
0 Z01n0

1T
n0
, 1
n1

C
1
2
1 Z11n1

1T
n1

] (which are needed to evaluate the sample co-
variance Ĉ(γ)), with Z0 ∈ Rp×n0 ,Z1 ∈ Rp×n1 having i.i.d. N (0, 1) entries.
Developing T (γ)

LDA(x) using these notations, we find

T
(γ)
LDA(x) =

C
1
2

` z +
1

2
U


(−1)`

(−1)`+1

−1
−1




T

QU


1
−1
1
−1


where

Q−1 = Ĉ(γ) =
1

n− 2
C

1
2
0 Z0Z

T
0 C

1
2
0 +

1

n− 2
C

1
2
1 Z1Z

T
1 C

1
2
1

−U

[
0 0
0 1

]
⊗
[ n0

n−2 0

0 n1

n−2

]
UT + γIp

U =
[
µ0 µ1

1
n0

C
1
2
0 Z01n0

1
n1

C
1
2
1 Z11n1

]
and ‘⊗’ denotes the Kronecker product.

The matrix Q−1 takes the form of a spiked random matrix model (U is of
rank at most four), and we may therefore use Woodbury identity, Lemma 2.7,



3.1. DETECTION AND ESTIMATION IN INFORMATION-PLUS-NOISE MODELS177

to isolate the low rank from the large rank parts in Q as

Q = Q◦ + Q◦U

[
0 0
0 1

]
⊗
[ n0

n−2 0

0 n1

n−2

]
×
(

I4 −UTQ◦U

[
0 0
0 1

]
⊗
[ n0

n−2 0

0 n1

n−2

])−1

UTQ◦

in which Q◦ = Q◦(−γ) = ( 1
n−2C

1
2
0 Z0Z

T
0 C

1
2
0 + 1

n−2C
1
2
1 Z1Z

T
1 C

1
2
1 + γIp)

−1. We
may then invoke Theorem 2.8 for which we have in particular that

Q◦(z)↔ Q̄◦(z) ≡ −1

z

(
Ip +

1∑
`=0

c`g̃`(z)C`

)−1

Q̃◦(z)↔ ¯̃Q◦(z) ≡ diag({g̃`(z) · 1n`}1`=0)

where (g`(z), g̃`(z))
1
`=0 are solutions to

g`(z) =
1

n
tr C`Q̄

◦(z), g̃`(z) = −1

z

1

1 + g`(z)
.

Developing T (γ)
LDA, multiple instances of the form UTQ◦U appear, which can

be expressed in the large n0, n1, p limit as

UTQ◦U =


µT

0 Q◦µ0 µT
0 Q◦µ1 0 0

µT
1 Q◦µ0 µT

1 Q◦µ1 0 0

0 0 1−γg̃0(−γ)
c0

0

0 0 0 1−γg̃1(−γ)
c1

+ o‖·‖(1).

Plugging this result into the expression of T (γ)
LDA(x), we find that in the large

n0, n1, p limit,

T
(γ)
LDA(x) =

(−1)`

2
(µ0 − µ1)TQ̄◦(µ0 − µ1)− 1

2
g0(−γ) +

1

2
g1(−γ)

+ zTC
1
2

` Q◦U


1
−1
1

γg̃0(−γ)

− 1
γg̃1(−γ)

+ o(1)

where we used in particular the fact that 1−γg̃0(−γ)
γg̃0(−γ) = g0(−γ).

Remark 3.1 (Optimal decision threshold). Since z ∼ N (0, Ip), it is clear
that the expectation E[T

(γ)
LDA(x)] is dominated by ± 1

2 (µ0 − µ1)TQ̄◦(µ0 − µ1)
which is positive when ` = 0 and negative when ` = 1, as expected. Yet, the
term 1

2 (g1(−γ)− g0(−γ)) intervenes as a bias. If C0 = C1 (which is indeed the
assumption of LDA), then g0 = g1 and this bias disappears; however, for C0,C1

distinct, this bias remains and must be accounted for in the decision threshold
which, therefore, should not be zero.
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In passing, note that the first three terms in the expansion of T (γ)
LDA(x) are

of order O(1) with respect to p, while the fourth term is (zero-mean) Gaussian
conditionally to X and of variance also of order O(1) (see below for detail). This
thus justifies, in the case of LDA, the need for ‖µ0 − µ1‖ to be of order O(1):
if instead ‖µ0 − µ1‖ = O(pt) for t > 0, the first term dominates and T (γ)

LDA(x)
becomes deterministic and the decision is asymptotically trivial; while if t < 0
the first term vanishes when compared to the other three and the decision is
asymptotically equivalent to a random guess.

To now estimate the variance of T (γ)
LDA(x) (to evaluate the precise LDA per-

formance), one now needs to evaluate the second-order moment of the random
term involving z. This gives

Var[T
(γ)
LDA(x)] =


1
−1
1

γg̃0(−γ)
−1

γg̃1(−γ)


T

UTQ◦C`Q
◦U


1
−1
1

γg̃0(−γ)
−1

γg̃1(−γ)

+ o(1).

To proceed, the deterministic equivalent Q̄◦ for Q◦ is not sufficient and we must
resort to a deterministic equivalent for Q◦C`Q

◦ (which is, in generally, different
from Q̄◦C`Q̄

◦, as shown in Exercise 14).
This result was derived in [Benaych-Georges and Couillet, 2016] and states

Q◦C`Q
◦ ↔ Q◦C`Q◦ ≡ Q̄◦C`Q̄

◦ + Q̄◦(R0`C0 +R1`C1)Q̄◦

with Rij = ci
cj

[(I2 − S)−1S]i+1,j+1, [S]i+1,j+1 = cjγ
2g̃i(−γ)2 1

n tr CiQ̄
◦CjQ̄

◦.

This deterministic equivalent immediately provides as asymptotic approxi-
mation for the upper-left 2×2 submatrix of UTQ◦C`Q

◦U, while the off-diagonal
2 × 2 blocks are easily seen to vanish. Finally, the bottom-right 2 × 2 matrix
involves the inner products

1

n2
`

1T
n`

ZT
` C

1
2

` Q◦C`Q
◦C

1
2

`′Z`′1n`′ .

By asymmetry, this is non-vanishing only for ` = `′. And when ` = `′, one must
be careful in evaluating the quadratic form as Z` and Q◦ are not independent.
To deal with this case, we may write,

C
1
2

` Z`Z
T
` C

1
2

` = C
1
2

` Z`

(
In` −

1

n`
1n`1

T
n`

)
ZT
` C

1
2

` +
1

n2
`

C
1
2

` Z`1n`1
T
n`

ZT
` C

1
2

`

in which the columns of Z`(In` − 1
n`

1n`1
T
n`

) and Z`
1
n`

1n` are uncorrelated and
thus independent Gaussian vectors. As such, with a rank-one perturbation
argument, Lemma 2.8,

1T
n`

ZT
` C

1
2

` Q◦ =
1T
n`

ZT
` C

1
2

` Q◦−`

1 + 1
n`(n−2)1

T
n`

ZT
` C

1
2

` Q◦−`C
1
2

` Z`1n`
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with Q◦−` the matrix Q◦ with contribution from 1
n2
`
C

1
2

` Z`1n`1
T
n`

ZT
` C

1
2

` dis-
carded. By the detoured manner to induce independence, we may now apply
the trace lemma, Lemma 2.11, to obtain

1

n2
`

1T
n`

ZT
` C

1
2

` Q◦C`Q
◦C

1
2

`′Z`′1n`′ = δ``′
1
n`

tr(C`Q
◦)2

(1 + 1
n tr C`Q◦)2

+ o(1)

= δ``′γ
2g̃`(−γ)2 1

n`
tr C`Q◦C`Q◦ + o(1).

Plugging these results in the expression of the variance, we thus conclude
that, for x ∼ H`,

Var[T
(γ)
LDA(x)] = (µ0 − µ1)TQ◦C`Q◦(µ0 − µ1)

+
1

n0
tr C0Q◦C`Q◦ +

1

n1
tr C1Q◦C`Q◦ + o(1).

We finally conclude that, for a decision threshold ξ ∈ R,

P
(
T

(γ)
LDA(x) > ξ | x ∼ H`

)

= Q

 ξ − 1
2

[
(−1)`(µ0 − µ1)TQ̄◦(µ0 − µ1)− g0(−γ) + g1(−γ)

]√
(µ0 − µ1)TQ◦C`Q◦(µ0 − µ1) + tr

(
C0

n0
+ C1

n1

)
Q◦C`Q◦

+ o(1)

where Q(t) = 1√
2π

∫∞
t
e−u

2/2du is the Gaussian Q-function. This expression em-
phasizes again the optimality of the decision threshold ξ = 1

2g1(−γ)− 1
2g0(−γ)

pointed out in Remark 3.1.
Figure 3.2 depicts the histograms of LDA output T (γ)

LDA(x) versus theory in
the practical case of Fashion-MNIST [Xiao et al., 2017] and Kannada-MNIST
[Prabhu, 2019] data (thus not Gaussian vectors!), here for γ = 0.1 and n0 =
n1 = 1024 samples per class.

It is quite remarkable to observe that the empirical performance obtained on
the real data is strongly coincident with the (large dimensional) theory derived
from Gaussian data. This observation (that the algorithm performance on real
data is an astounding match to Gaussian predictions) will follow us far in our
progression to the successive applications of random matrix theory to practical
machine learning algorithms, before being theoretically justified in Chapter 8.
In short, this is due to the fact that, in the large n, p regime, the performances
of many machine learning methods are dominated by the first- and second-order
statistics of the data/features, and their performances on real data can thus be
well approximated by those on Gaussian data with the same first- and second-
order statistics. As such, for not-too-small p, real data such as Fashion- and
Kannada-MNIST data, when proceeded by machine learning algorithms such
as LDA and QDA, tend to behave as if they were simple Gaussian mixtures, the
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performance of which are then fully accessible via the proposed random matrix
analysis.

Specifically, the optimal decision threshold for both Fashion- and Kannada-
MNIST data appears to be quite close, at least numerically, to ξ = 0 in
this balanced training sample setting, thereby suggesting that the quantities
g0(−γ) = 1

n tr C0Q̄
◦(−γ) and g1(−γ) = 1

n tr C1Q̄
◦(−γ) are very similar.

We complete this study of LDA by importantly mentioning that, in practice,
the quantities g`(−γ) are simple to estimate. Indeed, it suffices to notice that,
from the trace lemma, Lemma 2.11, for every sample xi ∼ H` of the training
set,

1

n
(xi − µ̂`)T[Ĉ

(γ)
−i ]−1(xi − µ̂`) = g`(−γ) +O(n−

1
2 )

where Ĉ
(γ)
−i = Ĉ − 1

n−2 (xi − µ̂`)(xi − µ̂`)T + γIp. Or equivalently, using the
rank-one perturbation lemma, Lemma 2.8,

1
n (xi − µ̂`)T[Ĉ(γ)]−1(xi − µ̂`)

1− 1
n−2 (xi − µ̂`)T[Ĉ(γ)]−1(xi − µ̂`)

= g`(−γ) +O(n−
1
2 )

which, averaging over i = 1, . . . , n`, gives the even more accurate estimate

1

n`

n∑̀
i=1

1
n (x

(`)
i − µ̂`)T[Ĉ(γ)]−1(x

(`)
i − µ̂`)

1− 1
n−2 (x

(`)
i − µ̂`)T[Ĉ(γ)]−1(x

(`)
i − µ̂`)

= g`(−γ) +O(n−1).

This thus means that one can practically estimate the detection threshold ξ
necessary to achieve a desired level of prediction accuracy. This also means
that the hyperparameter γ can be a priori optimized so to maximize a target
performance (e.g., maximize over γ the quantity P(T

(γ)
LDA(x) > ξ(γ) | x ∼ H1)

given that ξ = ξ(γ) is set such that P(T
(γ)
LDA(x) > ξ(γ) | x ∼ H0) ≤ α for

some predefined α). In addition to the strong fit between theory and practice
on real dataset, this full control and estimation of the performance (even before
actually running the algorithm!) has a strong incidence on the optimal use of
LDA for real data classification.

Quadratic discriminant analysis

To best understand the large dimensional behavior of (regularized) QDA and
to fine-tune the non-trivial assumptions on µ0,µ1 and C0,C1, an important
preliminary step of order of magnitude estimation is needed.

Under the regularized setting, let us define

T
(γ)
QDA(x) ≡ 1

2
√
p

log
det Ĉ

(γ)
0

det Ĉ
(γ)
1

− 1

2
√
p

(x− µ̂0)T[Ĉ
(γ)
0 ]−1(x− µ̂0)

+
1

2
√
p

(x− µ̂1)T[Ĉ
(γ)
1 ]−1(x− µ̂1)
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−20 0 20

(a) Fashion-MNIST

−40 −20 0 20 40

(b) Kannada-MNIST

Figure 3.2: Empirical histogram of T (γ)
LDA(x) versus the Gaussian limiting pre-

diction (dashed lines), H0 in blue and H1 in red, n0 = n1 = 1 024, p = 784,
γ = 0.1, for Fashion-MINST (left) [Xiao et al., 2017] and Kannada-MNIST
(right) [Prabhu, 2019] data, class 3 versus 4. Empirical results averaged over
30 runs on test sets of size 128 each. Link to code: Matlab and Python.

where Ĉ
(γ)
` = Ĉ`+γIp, and the division by 1/

√
p is chosen here so that T (γ)

QDA(x)
be of order O(1) in the non-trivial regime, as we shall see.

First observe that T (γ)
QDA(x) is the sum of two quadratic forms (of the type

(x− µ̂`)T[Ĉ
(γ)
` ]−1(x− µ̂`)/(2

√
p)) and of two linear statistics (log det Ĉ

(γ)
` /
√
p)

of the resolvent of large dimensional random matrices. Under the present 1/
√
p

normalization, it is not difficult to see that the leading order of the quadratic
forms is O(

√
p) while their fluctuations of order O(1); as for the linear statistics,

their means are of order O(
√
p) and their fluctuations of order O(1/

√
p) (recall

from the discussion in Section 2.6.3 that linear statistics have a fast convergence
rate with central limit theorems of speed O(1/

√
pn) = O(1/p)).

As such, if C0 and C1 are sufficiently ‘distinct’ in the large n, p regime, that
is ‖C0 − C1‖ ≥ O(1), the sum of these means remains of order O(

√
p) and

the fluctuations of order O(1): the (random) output T (γ)
QDA(x) is asymptotically

deterministic and the classification becomes trivially easy. For a non-trivial
decision, one must demand instead that

‖C0 −C1‖ = O(1/
√
p).

Yet, due to the independence of Z0 and Z1, and the fact that p/n remains away

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/3.1/html/LDA.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/3.1/LDA.ipynb
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from zero, this condition still implies that

‖Ĉ0 − Ĉ1‖ = O(1)

which holds even when C0 = C1. To see why ‖Ĉ0− Ĉ1‖ remains of order O(1)
in the large n, p regime, it suffices to note that, for say C0 = C1 = Ip,

Ĉ0 − Ĉ1 = [Z0,Z1] diag

{
1T
n0

n0
,−

1T
n1

n1

}
[Z0,Z1]T

the eigenvalues of which are known from Theorem 2.6 to be of order O(1).4
As a consequence of this critical remark, observe that in the case C0 = C1 =

Ip, for say x = µ0 + z with z ∼ N (0, Ip),

(x− µ̂1)T[Ĉ
(γ)
1 ]−1(x− µ̂1)− (x− µ̂0)T[Ĉ

(γ)
0 ]−1(x− µ̂0)

=

(
z + µ0 − µ1 −

1

n0
Z01n0

)T

[Ĉ
(γ)
1 ]−1

(
z + µ0 − µ1 −

1

n1
Z11n1

)
−
(

z− 1

n0
Z01n0

)T

[Ĉ
(γ)
0 ]−1

(
z− 1

n1
Z11n1

)
.

Note that ‖ 1
n`

Z`1n`‖ = O(1) which is thus negligible when compared to ‖z‖ =

O(
√
p). Further developing, we find that, if ‖µ0 − µ1‖ = O(1), the dominant

term is

zT[Ĉ
(γ)
1 ]−1(Ĉ0 − Ĉ1)[Ĉ

(γ)
0 ]−1z (3.3)

which is of order O(p), while the informative means-discriminating term

(µ0 − µ1)T[Ĉ
(γ)
1 ]−1(µ0 − µ1) (3.4)

is of order O(1) and thus negligible. When in particular C0 = C1 and n0 = n1,
while ‖µ0 − µ1‖ = O(1), the dominant term of Equation (3.3) is a zero mean
random noise term of arbitrary sign, and thus leads to an asymptotic detection
performance no better than random guess.

To avoid this trivial scenario it is thus required to let

‖µ0 − µ1‖ = O(
√
p)

thereby turning the informative term of Equation (3.4) to be comparable with
the noise term in Equation (3.3). Note however that, if C0 and C1 had been
perfectly known, letting Ĉ` = C`, the dominant noise term in Equation (3.3)
would vanish and detection could be achieved at the optimal ‖µ0−µ1‖ = O(1)

4While Theorem 2.6 is presented in this monograph under the assumption that the popu-
lation covariance C is nonnegative definite, in the original article of Silverstein and Bai [1995],
this can be relaxed by considering 1

n
ZTCZ for arbitrary symmetric (so not necessarily positive

definite) C ∈ Rp×p.
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rate. So the key limiting factor of QDA is effectively due to the inappropriate
estimation of population covariances by their sample counterparts.

Being largely sub-optimal (when compared to simpler methods developed in
the course of the monograph, such as the LDA approach discussed above and the
LS-SVM approach to be discussed in Section 4.4.3) and bringing little additional
intuition, we do not further expose the technical development of the regularized
QDA performance. An exhaustive account is proposed in [Elkhalil et al., 2020].
It is worth mentioning that, while not solving this deleterious problem, in a
further work [Bejaoui et al., 2020], the authors manage to significantly improve
the QDA approach by applying different regularizations γ0 6= γ1 to the sample
covariance matrices Ĉ

(γ0)
0 and Ĉ

(γ1)
1 (particularly in the case of unbalanced

classification n1 6= n2).

In the next section, we move away from binary hypothesis testing and con-
sider spectral-based estimation problems in statistics, starting with the popular
subspace estimation methods.

3.1.3 Subspace methods: the G-MUSIC algorithm

In several applied contexts, such as in array processing, or brain signal pro-
cessing, the statistical covariance of a sequence of multivariate observations (in
Rp or Cp) testifies of specific “directions of arrival (DoA)” of a sought signal
(arising from radar bounces in array processing, or brain regions in brain signal
processing). In these scenarios, the covariance matrix is quite structured and,
if few (say k � p) distinct signals, or directions of arrival, are to be retrieved
(compared to the dimension p of the data collecting array), this population
covariance matrix is both structured and of a “spiked model type”.

The so-called subspace methods are used to retrieve this structural infor-
mation in the covariance, and, e.g., to infer the directions of arrival, from the
dominant eigenvectors of the sample covariance matrix. These methods are
known to perform well only when the typical angular distance between the DoA
angles θ1, . . . , θk to be estimated is sufficiently large, but fail to be discriminative
otherwise.

We shall see in this section that these algorithms, and particularly the
most popular of them – the MUSIC algorithm (MUltiple SIgnal Classification)
[Schmidt, 1986] –, are again based on the assumption that the population co-
variance can be consistently estimated by the sample covariance matrix. Para-
doxically, this approximation, which we now know is quite rough and hazardous,
will not alter the consistency of the classical MUSIC algorithm in the individual
estimation of the angles θ1, . . . , θk [Vallet et al., 2015]. However, we will see that
random matrix analysis allows for an improvement of MUSIC, the G-MUSCI
approach, which provides a much more accurate discrimination and estimation
of close angles.
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The MUSIC algorithm

We consider the multivariate data (or signal) model of the form

xi =

k∑
`=1

a(θ`)s`,i + σwi

for i ∈ {1, . . . , n}, where a(θ`) ∈ Rp is a deterministic normalized (‖a(θ)‖ = 1)
“steering vector” parameterized by the scalar angle θ` ∈ (−π, π], s`,i ∈ R is
a deterministic or random signal carried in the direction θ` at time instant i,
σ > 0 and wi ∈ Rp is an independent random thermal noise at time i.5

Various hypotheses can be formulated on prior knowledge on the signal s`,i
and its dependence across time instants and across array elements. We consider
here the simple setting where si = [s1,i, . . . , sk,i]

T ∼ N (0,P) for diagonal P ∈
Rk×k with P`` > 0 collecting the energy of the sources, and s1, . . . , sn drawn
independently. We also assume that wi ∼ N (0, Ip) are (mutually) independent
and independent of the sj ’s. In particular, source ` has an associated signal-to-
noise ratio (SNR) P``/σ

2.
As a consequence, we obtain for each i,

E[xix
T
i ] =

k∑
`=1

P``a(θ`)a(θ`)
T + σ2Ip = AθPAT

θ + σ2Ip

where Aθ = [a(θ1), . . . ,a(θk)] ∈ Rp×k.

Let E[xix
T
i ] = UΛUT be the spectral decomposition of E[xix

T
i ] with U =

[u1, . . . ,up] ∈ Rp×p, and Λ = diag(λ1, . . . , λp) where λ1 ≥ . . . ≥ λp. The
MUSIC algorithm is fundamentally based on the observation that the sought
steering vectors a(θ1), . . . ,a(θk) live in the k-dimensional subspace spanned by
the k dominant eigenvectors US = [u1, . . . ,uk] of E[xix

T
i ]. The a(θ`)’s are

therefore all orthogonal to the complementary subspace Ip −USUT
S and

a(θ`)
T(Ip −USUT

S)a(θ`) = 0

for ` ∈ {1, . . . , k}. This equality is then turned into a detection criterion
for θ1, . . . , θ` since, if the steering vectors a(θ) are linearly independent across
(−π, π], we have the equivalence

η(θ) ≡ a(θ)TUSUT
Sa(θ) = ‖a(θ)‖2 = 1⇔ θ ∈ {θ1, . . . , θ`}.

Would E[xix
T
i ] be perfectly known, the identification criterion for the θ`’s

would then consist in scanning η(θ) over (−π, π] and extract the k zeros of the

5In applications such as radar array processing, xi is rather a vector in Cp than in Rp,
and a(θ) is often supposed assumed to be the complex-valued steering vector with entries
a(θ)j = exp(−ıd(j−1) sin(θ))/

√
p for some real d (this is precisely the case for uniform linear

arrays). For consistency with the rest of the monograph, we stick here with real notations,
and all results hold identically in the complex case.
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function 1 − η(θ). In practice, however, the population covariance E[xix
T
i ] is

substituted by the sample estimation 1
nXXT for X = [x1, . . . ,xn] ∈ Rp×n and

the criterion consists in retrieving the k (local) minima of

a(θ)T(Ip − ÛSÛT
S)a(θ) = 1− a(θ)TÛSÛT

Sa(θ)

or alternatively the local maxima of the spike “MUSIC” estimator

η̂MUSIC(θ) ≡ a(θ)TÛSÛT
Sa(θ)

for ÛS ∈ Rp×k the collection of eigenvectors associated with the top k eigenval-
ues of the sample covariance 1

nXXT.

In the case of large dimensional observations, i.e., if p is not negligibly small
compared to n, η̂(θ) is not a consistent estimator for η(θ). Surprisingly though,
it has been shown (using random matrix arguments) that, despite this incon-
sistency in estimating η(θ), for non-trivial ratios p/n, the corresponding es-
timates θ̂1, . . . , θ̂k of the angles θ1, . . . , θk are consistent [Vallet et al., 2015].
This means that, while η̂(θ) − η(θ) 6→ 0 as n, p → ∞, we still have that
arg maxθ∈∂θ` η̂(θ) − arg maxθ∈∂θ` η(θ) → 0 (where ∂θ` is a sufficiently small
neighborhood of the genuine angle θ`), i.e., the local maxima of η̂(θ) do asymp-
totically coincide with the local maxima of η(θ) as n, p→∞.

This remark possibly explains the widespread usage of the MUSIC algorithm,
despite its inherently using an erroneous estimate of η(θ). This ill-estimate
however has the major defect of exhibiting only one local minimum when two
steering angles appear to be too close to one another (see an illustration in the
right display of Figure 3.3), and is thus not able to resolve close angles. The next
section revisits the large n, p estimation of η(θ) using a spiked covariance matrix
approach, thus exploiting the results established in Section 2.5. The section
shows that random matrix can effectively improve the MUSIC algorithm (into
a so-called G-MUSIC alternative) by providing a consistent estimate for η(θ),
with the main advantage of largely increasing the resolution power of MUSIC.

The following results are immediate consequences of Section 2.5 but were
primarily developed, under a broader scope of assumptions, in a long series of
works on the topic (see in particular [Mestre, 2008, Loubaton and Vallet, 2011,
Vallet et al., 2015]).

Spiked G-MUSIC

Assuming that the ratio p/n between the number of sensors p (antenna array
elements, electrodes, etc.) and the number of independent snapshots n of xi’s
is not small, estimating US by ÛS is quite inappropriate, as ‖US − ÛS‖ 6→ 0
as p, n→∞ with a non-trivial p/n ratio. This unfolds directly from the sample
covariance 1

nXXT not being a consistent estimator of the population covariance
E[xix

T
i ].

Our objective of interest here is η(θ) = a(θ)TUSUT
Sa(θ), which is a quadratic

form involving the deterministic vector a(θ) and the rank-k matrix USUT
S ≡
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∑k
i=1 uS,iu

T
S,i, with k small compared to n, p. This quantity can be consistently

estimated using the results in Section 2.5 on spiked random matrices.
More precisely, note that 1

σ2nXXT is a Wishart random matrix with xi/σ ∼
N (0, σ−2AθPAT

θ + Ip) and rank(σ−2AθPAT
θ ) = k, which thus falls under the

setting of Theorems 2.13 and 2.14. Writing the spectral decomposition

σ−2AθPAT
θ = USLSUT

S =

k∑
i=1

`i · uS,iuT
S,i (3.5)

for some diagonal matrix LS = diag(`1, . . . , `k) ∈ Rk×k and assuming that
`i >

√
c for each i (high SNR scenario), by Theorem 2.14, for all deterministic

unit-norm vector a ∈ Rp, as p, n→∞ with p/n→ c ∈ (0,∞),

aTUSUT
Sa =

k∑
i=1

∣∣aTuS,i
∣∣2 =

k∑
i=1

∣∣aTûS,i
∣∣2 · 1 + c`−1

i

1− c`−2
i

+ o(1).

In the specific case of array processing, it is most convenient to assume that
‖a(θ)‖ = 1 and a(θ)Ta(θ′)→ 0 for all fixed θ 6= θ′ as p→∞. This is particularly
valid for the canonical example of a “uniform linear array” (that is, an array of
sensor evenly spaced on a line). Under this assumption, one can identify from
(3.5) that

`i =
Pii

σ2
+ o(1)

which corresponds to the SNR of the i-th signal source. As a result, we have a
first estimator:

k∑
i=1

∣∣a(θ)TûS,i
∣∣2 · 1 + p

n

(
Pii
σ2

)−1

1− p
n

(
Pii
σ2

)−2 = η(θ) + o(1).

However, the SNR Pii/σ
2 is in general not known and also needs to be

estimated. To this end, one may use Theorem 2.13 by noticing that, still under
the condition that `i = Pii/σ

2 + o(1) >
√
c, the i-th largest eigenvalue λ̂i of

1
σ2nXXT satisfies

λ̂i
a.s.−−→ 1 + `i + c

1 + `i
`i

= 1 + c+
Pii

σ2
+ c

σ2

Pii
+ o(1).

By inverting the expression, one has

ˆ̀
i ≡

λ̂i − (1 + p/n)

2
+

1

2

√(
λ̂i −

(
1 +

p

n

))2

− 4p

n
=

Pii

σ2
+ o(1) (3.6)

which entails the final spike “G-MUSIC” estimate

η̂GMUSIC(θ) ≡
k∑
i=1

∣∣a(θ)TûS,i
∣∣2 · 1 + p

n
ˆ̀−1
i

1− p
n

ˆ̀−2
i

= η(θ) + o(1)



3.1. DETECTION AND ESTIMATION IN INFORMATION-PLUS-NOISE MODELS187

with ˆ̀
i given in (3.6) (which is only defined under the condition that λ̂i >

(1+
√
p/n)2). This approach demands to know σ2 since λ̂i is the i-th largest (and

isolated) eigenvalue of 1
σ2nXXT. Yet, it is also known that the limiting spectrum

of 1
σ2nXXT is the Marc̆enko-Pastur distribution with right edge equal to (and

thus, here, with its (k+1)-th largest eigenvalue converging to) (1+
√
c)2 = (1+√

p/n)2 +o(1). As such, σ2 can be estimated from the fact that λ̂k+1( 1
nXXT) =

σ2(1 +
√
p/n)2 + o(1). This estimator is however possibly less accurate as λ̂k+1

fluctuates at a rate O(n−2/3) by the Tracy-Widom theorem, Theorem 2.15.
A better estimate consists in noticing that 1

σ2
1
p tr( 1

nXXT) = 1 + O(n−1), or

even more accurately 1
σ2

1
p−k

(
tr( 1

nXXT)−
∑k
i=1 λ̂i

)
= 1+O(n−1) (this second

discards the isolated signal eigenvalues which in the limit do not contribute but
may induce a bias in finite dimension).

The resulting G-MUSIC estimator is nothing more than a “weighted” ver-
sion of the standard MUSIC algorithm where, instead of projecting a(θ) against
each of the k dominant eigenvectors of 1

nXXT, a(θ) is now projected against
an appropriate weighted sum of these eigenvectors. However, these weighted
projections no longer form a projector onto a subspace, and one must be even
particularly careful that 1 − η̂GMUSIC(θ) might, with low but non zero prob-
ability, be negative (since, unlike MUSIC which enjoys the projector property
η̂MUSIC(θ) ∈ [0, 1], nothing prevents η̂GMUSIC(θ) to be greater than 1). This has
no deleterious consequences here though, as the resulting GMUSIC algorithm
looks for the deepest minima of 1− η̂(θ).

Figure 3.3 depicts, for ‖a(θ)‖ = 1, the performance of the estimator of
1− η̂(θ) (more conventionally used than η̂(θ)) for both the classical MUSIC and
the improved G-MUSIC algorithms. The ground truth η(θ) has zeros precisely
at the location of the genuine angles (here −10◦, 35◦ and 37◦). It is observed
that, for both MUSIC and G-MUSIC, deep local minima are exhibited around
these positions (on a log scale in Figure 3.3). However, (i) the minima reached by
G-MUSIC are deeper and, most importantly, (ii) the precision of the estimates is
largely improved with G-MUSIC, leading in particular to an increased resolution
capability of close angles estimation, as observed in the vicinity of the two angles
35◦ and 37◦ in the right display of Figure 3.3.

The improved spike G-MUSIC algorithm is a typical example of the possi-
bility to (quite elementarily) improve over a classical and largely used algorithm
(such as MUSIC), long known to suffer from large p/n ratios. This being said, as
we illustrated in Figure 2.10 when comparing the accuracy of spiked (where k is
assumed fixed as p, n increase) versus non-spiked (where k is assumed to grow
with p, n) estimates, the spiked GMUSIC algorithm could in fact be further
improved by considering a non-spiked version of the sample covariance matrix
model 1

nXXT (that is, by considering E[xix
T
i ] as a generic covariance matrix

rather than a low-rank perturbation of the identity). This is the approach car-
ried out originally in [Mestre, 2008], however leading to a more complex (and
thus less intuitive) formulation of the GMUSIC estimate of η(θ). Interestingly
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Figure 3.3: (Left) MUSIC versus G-MUSIC for k = 3 sources, p = 30, n = 150
samples, P = Ik and σ2 = 0.1 (−10 dB). Angles of arrival of 10◦, 35◦, and 37◦.
(Right) zoom on the region of interest of close angles (35◦ and 37◦). Link to
code: Matlab and Python.

though, while the spiked-model approach discussed above fully “de-correlates”
the individual k projection |a(θ)TuS,i|2 estimates and only exploits the domi-
nant k eigenvectors of the sample covariance, the non-spiked approach (as in
[Mestre, 2008]) exploits all eigenvalues and eigenvectors in a rather intricate
(but in the end more powerful) manner.6

3.2 Covariance matrix distance estimation

3.2.1 Distances and divergences between Gaussian laws

Most statistical detection, estimation, and classification methods rely exclusively
on the first order statistics of the data distribution. The various notions of
“distances” between different classes of data are then strongly related to these
first moments.

Since means and covariances are often sufficiently discriminating, especially
in large dimensions (see our arguments in Chapter 4 and 8), distances and diver-
gences revolving around Gaussian distributions are of common interest. Among
these, the Kullback-Leibler divergence dKL or the Rényi divergence dαR (param-
eterized by a factor α ∈ R) between two Gaussian N (µ1,C1) and N (µ2,C2),
as well as Bhattacharyya distance dB and the Fisher distance dF (the length
of the geodesic in the “natural” Riemannian space of positive definite matrices)
between two covariance matrices C1 and C2 are among the most popular.

Assuming the observed data vectors have zero mean (or equal mean) and
positive definite covariance, these distances and divergences, that we shall gener-

6To this end, one now needs to use the techniques detailed in Section 2.4.2, and thus deal
with questions of bulk separation in the limiting spectrum of 1

n
XXT in place of the phase

transitions of spiked models used above.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/3.1/html/GMUSIC.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/3.1/GMUSIC.ipynb
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ically denote d(C1,C2; f), share the property that

d(C1,C2; f) =

∫
f(t)νp(dt) (3.7)

for νp = 1
p

∑p
i=1 δλi(C−1

1 C2) the empirical spectral measure of C−1
1 C2 and some

specific function f . Table 3.1 lists the mappings between these distances7 and
functions f and shows in particular that, in order to evaluate all of these dis-
tances, it suffices to assess

∫
f(t)νp(dt) for f(t) one of the functions t 7→ t,

t 7→ log(1 + st) (s ∈ (0,∞), with log(t) = lims→∞ log(1 + st) − log(s)) and
t 7→ log2(t).

Divergences f(z)

dF log2(z)
dB − 1

4 log(z) + 1
2 log(1 + z)− 1

2 log(2)
dKL

1
2z −

1
2 log(z)− 1

2
dα,R

−1
2(α−1) log(α+ (1− α)z) + 1

2 log(z)

Table 3.1: Distances and divergences, and their corresponding f(z) in (3.7).

Remark 3.2 (The Wasserstein distance). Of increasing interest in machine
learning lately is the Wasserstein distance which, for the laws N (0,C1) and
N (0,C2), reduces, up to normalization by 1/p, to

dW(C1,C2) =
1

p
tr(C1) +

1

p
tr(C2)− 2

p
tr
[
(C

1
2
1 C2C

1
2
1 )

1
2

]
=

1

p
tr(C1) +

1

p
tr(C2)− 2

∫ √
tν′p(dt), ν′p =

1

p

p∑
i=1

δλi(C1C2).

The Wasserstein distance therefore does not enter the present scheme in (3.7) as
it involves the eigenvalues of the product C1C2 rather than C−1

1 C2. The same
remark holds for the Frobenius distance d2

Fro(C1,C2) = 1
p tr(C1 − C2)2. Yet,

the derivations in this section easily extend to this setup. Section 3.2.4 below
reports the corresponding results.

3.2.2 The random matrix framework
Given a certain number na of training data X(a) ∈ Rp×na having independent
columns of zero mean and covariance Ca, the pairwise distances d(Ca,Cb; f) is
conventionally estimated, for na > p, through the empirical estimate d(Ĉa, Ĉb; f)

where Ĉa = 1
na

X(a)(X(a))T denotes the sample covariance matrix.
However, for na not much larger than p, Ĉa is known to be a poor estimator

for Ca and d(Ĉa, Ĉb; f) is likely a poor estimator for d(Ca,Cb; f). To convince
7We slightly abuse the definitions here as the Fisher and Bhattacharyya distances and in

fact the square roots of
∫
f(t)νp(dt) and not the integrals themselves.
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oneself, for say f(t) = log(t) and C1 = C2, C−1
1 C2 = Ip so that d(C1,C2; f) =

0, while Ĉ−1
1 Ĉ2 is distributed as a F-matrix with eigenvalues asymptotically

supported on a compact interval around 1 and, in particular, with left edge
converging to zero as n1/p > 1 or n2/p > 1 is close to 1 [Silverstein, 1985],
so that the empirical estimate d(Ĉ−1

1 Ĉ2; f) may be arbitrarily large as either
n1/p, n2/p ↓ 1.

The idea of the random matrix framework is to evaluate d(Ca,Cb; f) con-
sistently from Xa,Xb in the spirit of Section 2.4. In the sequel, we focus on
evaluating the metric d(C1,C2; f) for some arbitrary analytic function f .

To this end, similar to (2.42), we introduce the Stieltjes transform mνp(z)
of the spectral measure νp = 1

p

∑p
i=1 δλi(C−1

1 C2) and write

d(C1,C2; f) =

∫
f(t)νp(dt) = − 1

2πı

∮
Γν

f(z)mνp(z) dz

for Γν a contour surrounding the support of νp, i.e., surrounding all the eigen-
values of C−1

1 C2, but surrounding none of the singularities of f . Letting ν = νp
be a fictitious asymptotic limit for νp as p → ∞ (the finite-dimensional trick),
this becomes

d(C1,C2; f) = − 1

2πı

∮
Γν

f(z)mν(z) dz.

Similarly, we will, in the following, denote c1 = p/n1 = lim p/n1, c2 = p/n2 =
lim p/n2 the fictitious limiting data sample/size ratios.

To connect the unknown ν to the observed µp = 1
p

∑p
i=1 δλi(Ĉ−1

1 Ĉ2), we first
need to establish a link between mν and mµ, with µ the (almost sure weak)
limit of µp as n, p→∞. For this, it suffices to proceed as follows:

• by Sylvester’s identity (Lemma 2.3), Ĉ−1
1 Ĉ2 has the same eigenvalues as

the symmetric matrix Ĉ
1
2
2 Ĉ−1

1 Ĉ
1
2
2 ; which are the inverse eigenvalues of

Ĉ
− 1

2
2 Ĉ1Ĉ

− 1
2

2 ;

• conditioned on X2, Ĉ
− 1

2
2 Ĉ1Ĉ

− 1
2

2 is a sample covariance matrix with pop-
ulation covariance EX1

[Ĉ
− 1

2
2 Ĉ1Ĉ

− 1
2

2 ] = Ĉ
− 1

2
2 C1Ĉ

− 1
2

2 , for which Theo-
rem 2.6 provides a deterministic equivalent, as a function of the “deter-
ministic” limiting spectral measure of Ĉ

− 1
2

2 C1Ĉ
− 1

2
2 ;

• similarly, the matrix Ĉ
− 1

2
2 C1Ĉ

− 1
2

2 has the same eigenvalues as C
1
2
1 Ĉ−1

2 C
1
2
1 ,

which are the inverse eigenvalues of C
− 1

2
1 Ĉ2C

− 1
2

1 , the latter being a sam-
ple covariance matrix with population covariance C

− 1
2

1 C2C
− 1

2
1 for which

Theorem 2.6 also establishes the limiting spectrum.
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Thus, iterating Theorem 2.6 twice can be shown to result in the following
fixed-point system

mν(−1/mζ̃(z)) = −zmζ(z)mζ̃(z), zmµ(z) = ϕ(z)mζ(ϕ(z)) (3.8)

where ϕ(z) = z(1 + c1zmµ(z)) and mζ̃(z) = c2mζ(z) − (1 − c2)/z for ζ the
intermediary limiting spectral measure of 1

n2
C

1
2 ZZTC

1
2 with Z ∈ Rp×n2 having

i.i.d. standard entries and C = C
− 1

2
1 C2C

− 1
2

1 . While the first of the two equations
in (3.8) follows immediately from (2.41), here for a sample covariance matrix
model with C = C

− 1
2

1 C2C
− 1

2
1 (of limiting spectrum ν) and Ĉ = 1

n2
C

1
2 ZZTC

1
2

(having the same limiting spectrum ζ as C−1
1 Ĉ2), obtaining the second equation

in (3.8) is not so immediate. To this end, first write

mζ−1(−1/mµ̃−1(z)) = −zmµ−1(z)mµ̃−1(z)

which relates the Stieltjes transform of the limiting spectral measure of Ĉ−1
2 Ĉ1

(denoted µ−1) to that of Ĉ−1
2 C1 (i.e., ζ−1, considered to be the population

measure when conditioned on X2), with the convention that, for a probability
measure θ, θ−1 is defined through θ−1([a, b]) = θ([b−1, a−1]) for 0 < a < b, and
where we used the now standard notation mµ̃−1(z) = c1mµ−1(z) − (1 − c1)/z.
The result is finally obtained by linking the Stieltjes transform of a measure to
that of its inverse, through

mζ−1(z) = −1

z
− 1

z2
mζ

(
1

z

)
which is a direct consequence of mζ−1(z) =

∫ ζ(dt)
t−1−z = − 1

z −
1
z2

∫ ζ(dt)
t−z−1 . Stitch-

ing these results together, we finally reach (3.8), as desired.
For further need, note that the derivative along z in (3.8) gives

m′ζ(ϕ(z)) =
1

ϕ(z)

(
− ψ′(z)

c2ϕ′(z)
−mζ(ϕ(z))

)
where we introduced the function ψ(z) = 1− c2 − c2zmµ(z).

Two successive changes of variable (ω 7→ z = −1/mζ̃(ω) and u 7→ ω = ϕ(u))
are then needed to relate mν first to mζ and then mζ to mµ. Assuming the
existence of a contour Γµ with valid pre-image Γν by these changes of variable
(as previously discussed in Section 2.4), we find

d(C1,C2; f) = − 1

2πı

∮
Γν

f(z)mν(z) dz

= − 1

2πı

∮
Γζ

f

(
− 1

mζ̃(ω)

)(
−ω

m′
ζ̃
(ω)mζ(ω)

mζ̃(ω)

)
dω

=
1

2πı

∮
Γµ

f

(
ϕ(u)

ψ(u)

)
ψ(u)

c2

[
ϕ′(u)

ϕ(u)
− ψ′(u)

ψ(u)

]
du

− 1− c2
c2

1

2πı

∮
Γµ

f

(
ϕ(u)

ψ(u)

)[
ϕ′(u)

ϕ(u)
− ψ′(u)

ψ(u)

]
du



192 CHAPTER 3. STATISTICAL INFERENCE IN LINEAR MODELS

where we recall that ϕ(u) = u(1 + c1umµ(u)) and ψ(u) = 1 − c2 − c2umµ(u).
Performing the variable changes backwards, the term in the last line writes

− 1− c2
c2

1

2πı

∮
Γµ

f

(
ϕ(u)

ψ(u)

)[
ϕ′(u)

ϕ(u)
− ψ′(u)

ψ(u)

]
du

= −1− c2
c2

1

2πı

∮
Γµ

f

(
ϕ(u)

ψ(u)

)(
ϕ(u)

ψ(u)

)−1(
ϕ(u)

ψ(u)

)′
du

= −1− c2
c2

1

2πı

∮
Γν

f(z)

z
dz.

The contour change analyses performed in Section 2.3.1 are fundamental
at this point. Since we here operate twice sample-covariance matrix variable
changes, it can be shown that, if c1, c2 < 1 (i.e., n1, n2 > p), then any contour
Γµ ⊂ {z ∈ C, <[z] > 0} enclosing the support of µ has Γν ⊂ {z ∈ C, <[z] >
0} as pre-image by the variable changes. Importantly, being subsets of {z ∈
C, <[z] > 0}, both Γµ and Γν both exclude z = 0.

Thus, if f is analytic on {z ∈ C, <[z] > 0}, we have

−1− c2
c2

1

2πı

∮
Γν

f(z)

z
dz = 0.

It then suffices to replace the limiting measure µ by its empirical version
µp = 1

p

∑p
i=1 δλi(Ĉ−1

1 Ĉ2) to obtain the final estimate.

Theorem 3.1 (Covariance distance estimate, [Couillet et al., 2019]). Let f :
R+ → R be a real function with a complex analytic extension on {z ∈ C, <[z] >
0} and c1, c2 < 1. Then, with the above notations,8

d(C1,C2; f)− d̂(X1,X2; f)
a.s.−−→ 0

where

d̂(X1,X2; f) =
1

2πı

∮
Γµ

f

(
ϕp(u)

ψp(u)

)
ψp(u)

c2

[
ϕ′p(u)

ϕp(u)
−
ψ′p(u)

ψp(u)

]
du

where ϕp(z) = z(1 + c1zmµp(z)) and ψp(z) = 1− c2 − c2zmµp(z).

3.2.3 Closed-form expressions
Theorem 3.1 is quite generic, as valid for any f analytic on {z ∈ C, <[z] >
0}. Yet, it practically demands a numerical complex integration procedure and
thus conveys little insights on the actual estimate being computed. Yet, most
distances of practical interest (recall Table 3.1) involve linear combinations of
the functions f(t) = t, f(t) = log(t), f(t) = log(1 + st) and f(t) = log2(t), and

8To avoid too heavy notations, we maintain c1, c2 in the empirical estimates (and in the
subsequent discussions) but one should in reality replace them systematically with n1/n and
n2/n.



3.2. COVARIANCE MATRIX DISTANCE ESTIMATION 193

it thus suffices to compute these integrals for the complex analytic extensions
of these few functions.

Since mµp(z) = 1
p

∑p
i=1(λi(Ĉ

−1
1 Ĉ2)− z)−1 is a rational function, for f also

a rational function, the integrand in Theorem 3.1 is itself a rational function
for which residue calculus can be performed. Among the functions above, this
is the case only for f(t) = t. The other functions (involving logarithms) are
“multi-valued” complex functions for which the integral must be computed with
the help of more advanced complex analytic calculus.

In all cases, a first requirement is to precisely understand the function
ϕp(z)/ψp(z) on {z ∈ C, <[z] > 0} where f is evaluated. This function can
be shown to only have null imaginary part on the real axis and one thus needs
to investigate ϕp(z)/ψp(z) for z real. Also, similar to the proof of Remark 2.12,
it can be shown that ϕp(z) vanishes exactly at 0 < η1 < . . . < ηp the eigen-
values of Λ +

√
λ
√
λ

T

n1−p while ψp(z) vanishes exactly at 0 < ζ1 < . . . < ζp the

eigenvalues of Λ −
√
λ
√
λ

T

n2
, for diagonal Λ ∈ Rp×p and λ = [λ1, . . . , λp]

T ∈ Rp

the increasingly sorted eigenvalues of Ĉ−1
1 Ĉ2 (this follows from Remark 2.12

adapted to the present scenario). Figure 3.4 depicts the function x 7→ xmµp(x)
at the core of the definition of both ϕp(x) and ψp(x). The ordering of the triplets
ζi < λi < ηi is easily established and it appears that ϕp(z)/ψp(z) is everywhere
positive on R+ but on the intervals [ζi, ηi] for i ∈ {1 . . . , p}. These segments
are important as they correspond to branch cuts for the multi-valued functions
z 7→ loga(ϕp(z)/ψp(z)) (a ∈ {1, 2}), i.e., they are discontinuity intervals for the
function, of central importance to evaluate the sought-for complex integrals.

λi λi+1

−c−1
1

0

c−1
2 − 1

λi λi+1

ζi ηi

x

x
m
µ
p
(x

)

Figure 3.4: Typical behavior of the function x 7→ xmµp(x). The blue bar
stresses the range of negative values for ϕp(x)/ψp(x). Link to code: Matlab and
Python.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/3.2/html/cov_distance_estimation.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/3.2/cov_distance_estimation.ipynb
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For f(t) = t, a mere residue calculus accounting for the singularities at ζi,
λi and ηi allows one to establish the following corollary.

Corollary 3.1 (Case f(t) = t). Under the setting of Theorem 3.1, for f(t) = t,

d̂(X1,X2; f) = (1− c1)

∫
tµp(dt).

That is, the “simplest” metric
∫
tνp(dt) can be consistently estimated by a

scaled version (with a 1 − c1 prefactor) of the standard estimator
∫
tµp(dt) =

1
p tr Ĉ−1

1 Ĉ2. We notably recover the standard large-n estimator when c1, c2 → 0.
It may be surprising at first not to see c2 appearing in this expression: this is
explained by the fact that 1

p tr AĈ2 is a consistent estimator of 1
p tr AC2 for all

A of bounded norm, as long as lim inf n2/p > 0 (but the same is not true for
1
p tr AĈ−1

1 which is not a consistent estimate of 1
p tr AC−1

1 ).

To handle the case f(t) = log(t), one needs to “deform” the contour Γµ to
avoid the aforementioned branch cuts. A natural (although admittedly con-
torted) approach is to proceed as depicted in Figure 3.5 by appending Γµ into
a circuit surrounding the whole segment [ζ1, ηp] slightly from above and from
below in the complex plane, with small half-circles of vanishing radius around
all possible singularities (ζi’s, λi’s, and ηi’s). The whole circuit, call it Γ, has
zero integral (as it encompasses no singularity) and is the sum of the desired
original integral over Γµ, of several line (asymptotically real) integrals, and of
half-circle integrals around the poles (evaluated by a variable change z = εeıθ

and then taking ε→ 0).

ζi λi ηi ζi+1 λi+1 ηi+1
ε

<

>

Γµ

<[z]

=
[z

]

Figure 3.5: Deformed contour Γ to evaluate Theorem 3.1 for f(z) = loga(z),
a ∈ {1, 2}. Branch cuts are displayed in blue bars.

The result for the case f(t) = log(t) again takes a rather simple form and is
as follows.9

9In fact, the result can be obtained using the fact that
∫

log(t)µp(dt) =
1
p

log det(Ĉ−1
1 Ĉ2) = 1

p
log det(Ĉ2)− 1

p
log det(Ĉ1); this separation trick can however no longer

be applied to more involved functions such as log(1 + st) or log2(t).
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Corollary 3.2 (Case f(t) = log(t)). Under the setting of Theorem 3.1, for
f(t) = log(t),

d̂(X1,X2; f) =

∫
log(t)µp(dt)−

1− c1
c1

log(1− c1) +
1− c2
c2

log(1− c2).

Interestingly, while the case f(t) = t led to an ultimate estimator corre-
sponding to a mere scaling of the large-n estimator, here the estimate is a
biased version of the large-n estimator by a constant. Besides, for c1 = c2,
the constant vanishes and thus, somewhat surprisingly, the standard large-n
estimator is consistent.

The case f(t) = log2(t) is technically more involved to evaluate than f(t) =
log(t). The core of both results lies in the evaluation of the real integrals right
above and under the branch cuts (as illustrated in Figure 3.5). The sum of every
pair of integrals is of the form

∫ ηi+ı0
ζi+ı0

−
∫ ηi−ı0
ζi−ı0 loga([ϕp/ψp](z))g(z) dz for some

rational function g(z) and a ∈ {1, 2}. Using the fact that log(ω) = log |ω| +
ı arg(ω) (i.e., for a = 1), log([ϕp/ψp](x+ ı0))− log([ϕp/ψp](x− ı0)) = 2ıπ and
the resulting real integral is thus still a rational function. For a = 2 though,
log2([ϕp/ψp](x+ ı0))− log2([ϕp/ψp](x− ı0)) = 2ıπ log |[ϕp/ψp](x)| and thus the
resulting integral involves products of (real) logarithm and rational functions.

After careful calculus, the following corollary is obtained.

Corollary 3.3 (Case f(t) = log2(t)). Under the setting of Theorem 3.1, for
f(t) = log2(t),

d̂(X1,X2; f) =
c1 + c2 − c1c2

c1c2

[
p∑
i=1

log2((1− c1)ηi)− log2((1− c1)λi)

+ 2

p∑
i,j=1

(
Li2

(
1− ζi

λj

)
− Li2

(
1− ηi

λj

)
+ Li2

(
1− ηi

ηj

)
− Li2

(
1− ζi

ηj

))
− 1− c2

c2

[
log2(1− c2)− log2(1− c1) +

p∑
i=1

(
log2(ηi)− log2(ζi)

)]

− 1

p

2

p∑
i,j=1

(
Li2

(
1− ζi

λj

)
− Li2

(
1− ηi

λj

))
−

p∑
i=1

log2((1− c1)λi)


where Li2(x) = −

∫ x
0

log(1−u)
u du is the dilogarithm function and the ηi’s and ζi’s

are the eigenvalues of Λ +
√
λ
√
λ

T

n1−p and Λ−
√
λ
√
λ

T

n2
, respectively.

The case f(t) = log(1 + st), with s ∈ (0,∞), can be treated similarly as the
case f(t) = log(t), with the main difference being a modification in the branch
cuts that now occur when ϕp(x)/ψp(x) < −1/s (rather than < 0). A new set
of singularities κ0 < 0 < κ1 < . . . < κp, the zeros of ϕp(x)/ψp(x) + 1/s, are
then naturally introduced. A simplification nonetheless allows one to express
the resulting expression of the integral only as a function of κ0, as follows.
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Corollary 3.4 (Case f(t) = log(1 + st)). Under the setting of Theorem 3.1, let
s > 0 and f(t) = log(1 + st). Then,

d̂(X1,X2; f) =
c1 + c2 − c1c2

c1c2
log

(
c1 + c2 − c1c2

(1− c1)(c2 − sc1κ0)

)
+

1

c2
log(−sκ0(1− c1)) +

∫
log(1− t/κ0)µp(dt)

where κ0 < 0 is the unique negative solution to ϕp(κ0)/ψp(κ0) = −1/s.

Details on the derivation of these results are available in [Couillet et al.,
2019].

Table 3.2 illustrates, for the Fisher distance, the comparative performance
gain of the large n, p-consistent estimator d̂F(X1,X2) = d̂(X1,X2; log2(·)) pro-
posed in Theorem 3.1 with respect to the traditional plug-in (sample covariance)
estimator dF(Ĉ1, Ĉ2). It clearly appears that, as p/n1 and p/n2 become large
(bottom part of the table), the standard large-n estimator dramatically fails,
while the large-n, p consistent estimator remains quite accurate. More surpris-
ingly is the fact that, even for small p, the large-n, p estimator still, in general,
overtakes the large-n estimator. An (empirical) evaluation of the respective esti-
mate variances also reveals that both standard and RMT-improved approaches
have similar fluctuations around their mean estimate, see [Couillet et al., 2019,
Figure 1].

p dF(C1,C2) d̂F(X1,X2) dF(Ĉ1, Ĉ2)
2 0.0533 0.0524 0.0568
4 0.0796 0.0840 0.0913
8 0.0927 0.0917 0.1048

16 0.0992 0.1007 0.1253
32 0.1025 0.1029 0.1509
64 0.1042 0.1049 0.2009

128 0.1050 0.1044 0.3023
256 0.1054 0.1057 0.5341
512 0.1056 0.1086 1.1556

Table 3.2: Estimation of the Fisher distance dF(C1,C2). Simulation example for
x

(a)
i ∼ N (0,Ca) with [C1]ij = .2|i−j|, [C2]ij = .4|i−j|, n1 = 1 024, n2 = 2 048,

as a function of p, results averaged over 30 runs. Link to code: Matlab and
Python.

Remark 3.3 (On the cases c1, c2 > 1). While the large-n standard estimator
requires n � p and thus n > p, most random matrix analyses only demand
that n, p be simultaneously large. Yet, Theorem 3.1 explicitly demands that
c1 = lim p/n1 < 1 and c2 = lim p/n2 < 1. A careful control of the two successive
changes of variable indeed reveals that, for say c2 > 1, the pre-image Γν of a

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/3.2/html/cov_distance_estimation.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/3.2/cov_distance_estimation.ipynb
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contour Γµ around supp(µ) necessarily encloses zero. For f(z) analytic in a
neighborhood of z = 0, this has no consequence. But for f(z) = loga(z), this
annihilates the derivation and there seems to exist no simple workaround in
this case.10 The case f(z) = log(1 + sz) may still be valid, however only for
sufficiently small values of s (that depend on c1, c2).

Remark 3.4 (Fluctuations). Being a linear statistics (although a rather in-
volved one) of the eigenvalues of Ĉ−1

1 Ĉ2 with n1, n2, p of similar order, the es-
timate d̂(X1,X2; f) can be shown to satisfy a central limit theorem with optimal
speed O(1/p), i.e.,

d̂(X1,X2; f) = d(C1,C2; f) +
1

p
N (M,σ2) + o(p−1)

for some M,σ2 = O(1). Besides, in the complex Gaussian case (i.e., x
(a)
i ∼

CN (0,Ca)), M = 0.

Remark 3.5 (On non-negativity). It is important to stress that, similar to
the GMUSIC estimator discussed in Section 3.1.3, although d̂(X1,X2; f) −
d(C1,C2; f)

a.s.−−→ 0, the non-negativity of the distance d(C1,C2; f) does not
imply that of d̂(X1,X2; f). In particular, for f such that d(·, ·; f) is an actual
distance, if C1 = C2 = C, d(C,C; f) = 0 while d̂(X1,X2; f) = 0+ 1

pN (M,σ2)+

o(p−1) which can thus be negative with nonzero probability. This is another in-
stance of the typical price to be paid for asymptotic consistency of random matrix
estimators.

3.2.4 The Wasserstein and Frobenius distances
As recalled in Remark 3.2, the Wasserstein distance between two centered Gaus-
sian measures N (0,C1) and N (0,C2) is defined as

dW(C1,C2) =
1

p
tr(C1) +

1

p
tr(C2)− 2

∫ √
tν+
p (dt), ν+

p =
1

p

p∑
i=1

δλi(C1C2)

where the + sign in the exponent is here to recall that we take the product
C+1

1 C+1
2 rather than C−1

1 C+1
2 as in the previous section.

In a similar manner, the Frobenius distance between C1 and C2 can be
written as

dFro(C1,C2) =
1

p
tr(C2

1) +
1

p
tr(C2

2)− 2

∫
tν+
p (dt), ν+

p =
1

p

p∑
i=1

δλi(C1C2).

Here, 1
p tr Ĉ1Ĉ2 is known to be a consistent estimate for 1

p tr C1C2 =
∫
tν+
p (dt)

(which follows by first conditioning on, say, Ĉ1 to obtain 1
p tr Ĉ1Ĉ2− 1

p tr Ĉ1C2
a.s.−−→ 0

10At the exception of the tentative alternative by polynomial approximation performed in
[Tiomoko and Couillet, 2019a].
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and then operating similarly on Ĉ1), so that the present framework is of marginal
interest for the Frobenius distance between covariance matrices.

For the square-root function in the case of the Wasserstein distance and
for more general functions f , the same framework as discussed in the previous
section may be used to estimate integral forms of the type∫

f(t)ν+
p (dt), ν+

p =
1

p

p∑
i=1

δλi(C1C2).

This is performed in [Tiomoko and Couillet, 2019b] with the following result.

Theorem 3.2 (Covariance distance estimate for product matrices, Tiomoko and
Couillet [2019b]). Let f : R+ → R be a real function with a complex analytic
extension on {z ∈ C, <[z] > 0} and c1, c2 < 1. Then, with the same notations
as in Theorem 3.1,

d+(C1,C2; f)− d̂+(X1,X2; f)
a.s.−−→ 0

where

d+(C1,C2; f) =

∫
f(t)ν+

p (dt), ν+
p =

1

p

p∑
i=1

δλi(C1C2)

and

d̂+(X1,X2; f) =
1

2πı

∮
Γ
µ
+
p

f

(
ϕ+
p (u)

ψ+
p (u)

)
ψ+
p (u)

c2

[
ϕ+′
p (u)

ϕ+
p (u)

−
ψ+′
p (u)

ψ+
p (u)

]
du

where ϕ+
p (z) = z/(1− c1 − c1zmµ+

p
(z)), ψ+

p (z) = 1− c2 − c2zmµ+
p

(z) and µ+
p is

the empirical spectral measure of Ĉ1Ĉ2.

It is interesting to note that, “formally”, Theorem 3.2 only differs from The-
orem 3.1 from the expression of ψ+

p (z) (called ψp(z) in Theorem 3.1), but of
course µp is also now changed into µ+

p which is a whole different function. Ap-
plied to the Wasserstein metric, a suitable complex integration calculus for the
function f(t) =

√
t leads to the following corollary.

Corollary 3.5 (Wasserstein distance estimate). Under the setting of Theo-
rem 3.2, let λ = [λ1, . . . , λp]

T and Λ = diag(λ), for λ1 ≤ . . . ≤ λp the eigenval-
ues of Ĉ1Ĉ2. Then,

d+(C1,C2;
√
·)− d̂+(X1,X2;

√
·) a.s.−−→ 0

where, for n1 6= n2,

d̂+(X1,X2;
√
·) =

2
√
c1c2

p∑
j=1

√
λj +

2

πc2

p∑
j=1

∫ ηj

ξj

√
−ϕ

+
p (x)

ψ+
p (x)

ψ+′
p (x)dx
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while, for n1 = n2,

d̂+(X1,X2;
√
·) =

2

c2

p∑
j=1

(
√
λj −

√
ξj)

with {ξj}pj=1 and {ηj}pj=1 the increasing eigenvalues of Λ −
√
λ
√
λ

T

n1
and Λ −

√
λ
√
λ

T

n2
, respectively.

The formula is particularly attractive in the case where n1 = n2, although
its formal interpretation is not obvious. In Section 3.5, the detailed derivation
and empirical evaluation of Corollary 3.5 above are provided in the form of a
practical lecture material.

3.2.5 Application to covariance-based spectral clustering
In machine learning, the distance d(·, ·) between statistical covariance matri-
ces Ci is a popular feature to compare and classify data sets of, say, m data
matrices X1, . . . ,Xm, where each datum Xi is a collection of ni vectors Xi =

[x
(i)
1 , . . . ,x

(i)
ni ] with E[x

(i)
j ] = 0 and E[x

(i)
j x

(i)T
j ] = Ci (for instance, Xi is ni

consecutive samples from a multivariate time series). These data can then be
discriminated based on their differing covariance structures. Here, we will not
be concerned with the size of m (which may be small or growing with ni, p) but
will consider the scenario that n1, . . . , nm, p are all large and comparable (and
also that min(n1, . . . , nm) > p in accordance with Remark 3.3).

With these m observations X1, . . . ,Xm, classification based on a standard
Gaussian kernel method would typically consist in assessing the kernel matrix

K =

{
exp

(
−1

2
d(Ci,Cj)

)}m
i,j=1

and then proceed to either (kernel) support vector classification (when in a su-
pervised setting) or spectral clustering (when unsupervised). As one now knows
that estimating d(Ci,Cj) by d(Ĉi, Ĉj) may lead to dramatically erroneous re-
sults, Kij may be more appropriately estimated via

K̂ =

{
exp

(
−1

2
d̂(Xi,Xj)

)}m
i,j=1

.

Figure 3.6 illustrates this idea in the context of spectral clustering of two
classes, where C1 = . . . = Cm/2 = C(1) (class C1) and Cm/2+1 = . . . = Cm =

C(2) (class C2). The dominant two eigenvectors of K̂ are compared with those
obtained by the classical estimates d(Ĉi, Ĉj). The difference between these two
methods is particularly remarkable as the number of samples ni for each data
differs:11 in this case, the estimation bias induced by d(Ĉi, Ĉj) strongly depends

11In fact, for non-trivial tasks, where C(1) and C(2) are rather “close” to each other, and for
ni all equal, here again it can be surprisingly shown that the spectral clustering performance
based on the inappropriate estimates d(Ĉi, Ĉj) of d(Ci,Cj) is as good as spectral clustering
with the improved d̂(Xi,Xj); this however no longer holds when the ni’s are different.
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on the sample sizes ni, nj and thus differently affects each single estimate. This
is seen in the left display of Figure 3.6 by the important spread of the pairs
of eigenvector entries when the ni’s are all different, and in the right display
by the singular behavior of the only pair with different value of ni (which has
the deleterious effect to affect the classification of all other data points!). As a
result, spectral clustering performs significantly better with the random matrix-
improved kernel.

eigv 1

eigv 2 Class 1 d̂(Xi,Xj)

Class 2 d̂(Xi,Xj)

Class 1 d(Ĉi, Ĉj)

Class 2 d(Ĉi, Ĉj)

far outlier

eigv 1

eigv 2

Figure 3.6: First and second eigenvectors of K̂ with K̂ij = exp(−d̂(Xi,Xj)/2)

(blue crosses) versus K̂ij = exp(−d(Ĉi, Ĉj)/2) (red circles); with random
number of snapshots ni (left) and n1 = . . . = nm−1 = 512 and nm = 256
(right). Figure from [Couillet et al., 2019] and available [online].

The results introduced thus far on improved estimates for detection and
estimation rely on an improved use of the sample covariance matrix. This is
theoretically natural as, in the Gaussian case, sample covariance matrices are
maximum-likelihood estimators for the population covariance: there is, as such,
very little one can do better to retrieve information about the population covari-
ance (unless prior information is available). The sample covariance estimator
may however be far from optimal outside the Gaussian setting: when the ob-
servation vectors either emerge from “heavy-tailed” distributions or contain out-
liers. In this setting, refined versions of the sample covariance exist, the (small
or large dimensional) behavior of which is technically more difficult to grasp.
The next section introduces basic notions on the field known as robust statistics,
originally designed to handle these non-Gaussian scenarios, and provides (again
quite counter-intuitive) results retrieved by random matrix theory in the large
n, p regime.

3.3 M-estimators of scatter

https://github.com/maliktiomoko/RMTEstimCovDist/blob/master/spectral_clustering_Fisher.m
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3.3.1 Reminder on robust statistics

Most probabilistic data models revolve around a Gaussian assumption: in signal
processing additive noise models are mostly Gaussian, and in machine learning
the Gaussian mixture model is one of the basic data (or feature) models in
classification. As already mentioned in Section 2.7, Gaussian models may ad-
equately be replaced by a larger class of concentrated random vector models
in large dimensions with little impact on the behavior of many machine learn-
ing algorithms. Gaussian and concentrated random vectors share the property
that they “behave in a smooth and controllable way”. Instead, data polluted by
outliers, missing entries, duplicates, etc., can typically not be accounted for by
Gaussian or even concentrated vector models.

To consider these outlying data in the models, Huber and his successors
developed in the sixties the field of robust statistics [Huber, 2011, Maronna
et al., 2018]. The basic observation of Huber lies in the lack of “robustness”
of sample estimators (sample mean, sample variance and covariance matrix) to
the presence of a single arbitrarily deviant outlying sample. Typically, for i.i.d.
scalar samples x1, . . . , xn ∈ R with mean M = E[xi], 1

n

∑n
i=1 xi

a.s.−−→ M by the
law of large numbers. Yet, the addition of x0 with arbitrarily large amplitude
to the sample average can drive 1

n+1

∑n
i=0 xi arbitrarily far from M .

Huber [2011] proposed a min-max statistical mean and covariance estima-
tion procedure that reduces the negative impact of outliers. The underlying
assumption of Huber’s work is that the data xi arise from a mixture of laws
(1 − ε)µ + εµ′ with µ a known “well-behaved” measure (say Gaussian), µ′ an
unknown arbitrary measure and ε > 0 small. The work of Maronna [1976] gen-
eralizes that of Huber by letting xi belong to a class of (multivariate) generalized
Gaussian distributions, and notably of elliptical measures. A vector xi ∈ Rp is
elliptically distributed if it can be written under the form12

xi = µ+
√
τiC

1
2 zi (3.9)

where zi ∈ Rp is drawn uniformly at random on the sphere centered at zero and
of radius √p (i.e., zi ∼ Sp−1), τi > 0 is also drawn at random but independently
of zi, and the nonnegative definite C ∈ Rp×p is the so-called scatter matrix .
The law of the parameters τi (and notably its moments) controls the degree
of “impulsiveness” of the data. When µ = 0 and E[τi] is finite, then C is
proportional to the population covariance of xi; if E[τi] = ∞, the covariance
is not defined. Multivariate Gaussian (for which τi

a.s.−−→ 1 as p → ∞) and
Student-t distributions belong to the class of elliptical distributions. Maronna
derived the maximum likelihood estimators for µ and C for generic measures
T of the τi’s. These generalize the sample covariance matrix, include Huber’s

12In the literature, elliptical vectors are rather defined through they probability density of
the type exp(−g((x − µ)TC−1(x − µ))) for some function g, median vector µ and scatter
matrix C (µ coincides with the mean when the latter exists, and C is proportional to the
covariance matrix when the latter exists). The identity (3.9) is equivalent to the original
definition, for g related to the law of the τi’s.
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estimator as a special case, and are particularly resilient to “outlying” samples
from the dataset.

3.3.2 The M-estimator of scatter

Of particular interest to the sample covariance matrix model thoroughly ex-
plored in this monograph is its relation to the M-estimators of scatter matrices.
Under both Huber and Maronna’s framework, for x1, . . . ,xn ∈ Rp data samples
with n > p, Maronna’s estimator of scatter Ĉ ∈ Rp×p is defined as a solution
to the fixed-point equation

Ĉ =
1

n

n∑
i=1

u

(
1

p
xT
i Ĉ−1xi

)
xix

T
i (3.10)

for u : R+ → R+ a non-increasing function such that ϕ(x) = xu(x) is non-
decreasing and bounded. Typical examples of such functions are u(x) = (1 +
α)/(x + α) for some α > 0 (this is the prototype of functions met in the max-
imum likelihood estimator of scatter for Student-t distributions) and u(x) =
min{α/x, β} for some α, β > 0 (this is the prototype of Huber’s robust estima-
tors).

Under these assumptions on u, if n > p and the xi’s are linearly independent,
the solution Ĉ to (3.10) can be shown to exist and be unique [Maronna, 1976].
Besides, the iterative fixed-point algorithm consisting in letting Ĉ0 = Ip and,
for t ≥ 0,

Ĉt+1 =
1

n

n∑
i=1

u

(
1

p
xT
i Ĉ−1

t xi

)
xix

T
i

converges to Ĉ as t→∞.
Due to their implicit definition, the behavior of these estimators is particu-

larly difficult to apprehend. Still, it is interesting to observe the mode of action
of Ĉ: u being decreasing, Ĉ essentially reduces the impact of those xi’s such
that xT

i Ĉ−1xi is large; that is, (i) those xi’s having too large amplitude, i.e.,
having large values of τi in the case of elliptical distribution in (3.9); or (ii) those
xi’s correlated to the dominant eigenvectors of Ĉ.

Under a finite n, p regime though, no much more can be said about Ĉ.
However, under a large sample setting where n→∞ alone, it was shown that,
if the xi’s are i.i.d. and elliptically distributed, Ĉ converges almost surely to a
matrix equal, up to a multiplicative constant, to the scatter matrix C of interest.

A particular difficulty in handling the large-n alone scenario is that the
quadratic form 1

pxT
i Ĉ−1xi does not concentrate and remains a rather involved

random variable. This problem is largely alleviated in the large n, p regime
with the help of Lemma 2.11. However, since Ĉ depends on xi in a non-trivial
manner, the large n, p limit of 1

pxT
i Ĉ−1xi is not as simple as for the sample

covariance matrix model.
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3.3.3 The random matrix framework
It is not easy to directly obtain a deterministic equivalent (for the resolvent),
or any asymptotic spectral behavior, of the robust estimator of scatter Ĉ from
(3.10), due to its implicit definition.

In such scenarios, which will also be the case for kernel random matrices
met in Chapter 4, the objective is to substitute the intractable random matrix
under study by a random equivalent, more amenable to random matrix analysis
by conventional tools and techniques. In the present section, we particularly
show that, as n, p→∞, Ĉ asymptotically behaves similarly to another random
matrix Ŝ in the sense that ‖Ĉ − Ŝ‖ a.s.−−→ 0. The random equivalent Ŝ is not
directly observable but tractable to random matrix analysis. Since the conver-
gence ‖Ĉ − Ŝ‖ a.s.−−→ 0 transfers many spectral properties from Ŝ to Ĉ, most
of the (large dimensional) behavior of Ĉ becomes accessible through the study
of Ŝ: in particular, deterministic equivalents for (the resolvent of) Ĉ will be
obtained by retrieving deterministic equivalents for (that of) Ŝ.

The random equivalent Ŝ will however depend on the statistical distribution
of the data xi and must in general be redesigned for each data model. We
consider here the setting where x1, . . . ,xn ∈ Rp arise from a zero-mean elliptical
distribution, i.e., µ = 0 in (3.9) with n > p. Besides, the τi’s are positive i.i.d.
random variables with measure T having finite first-order moment.

A first key observation is that one may already assume C = Ip in the study
of Ĉ. Indeed, by definition

C−
1
2 ĈC−

1
2 =

1

n

n∑
i=1

u

(
1

p
xT
i C−

1
2 (C−

1
2 ĈC−

1
2 )−1C−

1
2 xi

)
C−

1
2 xix

T
i C−

1
2

where, in the inner parentheses, we simply wrote Ĉ = C−
1
2 (C−

1
2 ĈC−

1
2 )−1C−

1
2 .

It is thus equivalent for Ĉ to be the solution to the original problem for the data
xi and for C−

1
2 ĈC−

1
2 to be the solution to the same problem but with data

C−
1
2 xi in place of xi. We may then simply assume from now on that

xi =
√
τizi. (3.11)

We mostly provide here the intuitive derivation of the main result, with a
few words on the actual rigorous proof approach at the end. The idea starts
with the following intuition: letting

Ĉ−i = Ĉ− 1

n
u

(
1

p
xT
i Ĉ−1xi

)
xix

T
i =

1

n

∑
j 6=i

u

(
1

p
xT
j Ĉ−1xj

)
xjx

T
j ,

it is clear that xi depends on Ĉ−i (because xi is part of Ĉ appearing in each
quadratic form xT

j Ĉ−1xj); yet, this dependence is seemingly “asymptotically
weak” as xi only accounts for one out of n constitutive elements in Ĉ and thus
the quadratic forms xT

j Ĉ−1xj , for j 6= i, barely depend on xi.



204 CHAPTER 3. STATISTICAL INFERENCE IN LINEAR MODELS

If this intuition is correct, we may expect the trace-lemma, Lemma 2.11, to
hold for 1

pxT
i Ĉ−1
−ixi; that is, we expect

1

p
xT
i Ĉ−1
−ixi = τi

1

p
zTi Ĉ−1

−i zi ' τi
1

p
tr Ĉ−1

−i ' τi
1

p
tr Ĉ−1 ≡ τiγp

where in the last approximation we applied the rank-one perturbation lemma,
Lemma 2.9, and introduced the notation γp ≡ 1

p tr Ĉ−1. Note that, while γp is
expected to become asymptotically “deterministic” as n, p→∞, this is not the
case for τiγp, due to the random nature of τi.

In order to exploit the “concentration” 1
pxT

i Ĉ−1
−ixi ' τiγp, we now need to

express Ĉ as a function of such quadratic forms. To this end, by Lemma 2.8,
first observe from (3.10) that

1

p
xT
i Ĉ−1xi =

1
pxT

i Ĉ−1
−ixi

1 + 1
nu( 1

pxT
i Ĉ−1xi)xT

i Ĉ−1
−ixi

which we may equivalently rewrite as

1

p
xT
i Ĉ−1
−ixi =

1
pxT

i Ĉ−1xi

1− p
nϕ( 1

pxT
i Ĉ−1xi)

(3.12)

assuming 1− p
nϕ( 1

pxT
i Ĉ−1xi) 6= 0, where we recall that ϕ(x) = xu(x).

Consequently, if the mapping

g : R+ → R+

x 7→ x

1− cϕ(x)

with c = p/n, is bijective, one can then express 1
pxT

i Ĉ−1xi as

1

p
xT
i Ĉ−1xi = g−1

(
1

p
xT
i Ĉ−1
−ixi

)
.

This is indeed the case (g′(x) > 0 and g(0) = 0, g(∞) = ∞) so long that
‖ϕ‖∞ < c−1.

We will pose this assumption from now on and may thus now rewrite Ĉ in
(3.10) under the form

Ĉ =
1

n

n∑
i=1

v

(
1

p
xT
i Ĉ−1
−ixi

)
xix

T
i

where we introduced the notation v = u◦g−1, a non-increasing function (graph-
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ically very similar to u). As 1
pxT

i Ĉ−1
−ixi ' τiγp, we further have

Ĉ =
1

n

n∑
i=1

v (τiγp) xix
T
i + o‖·‖(1)

=
1

n

n∑
i=1

τiv (τiγp) ziz
T
i + o‖·‖(1)

=
1

γp

1

n

n∑
i=1

ψ (τiγp) ziz
T
i + o‖·‖(1)

where we defined ψ(x) = xv(x) which, similar to ϕ(x) = xu(x), is increasing
and bounded. It finally remains to evaluate γp. By definition

γp =
1

p
tr Ĉ−1 ' 1

p
tr

(
1

γp

1

n

n∑
i=1

ψ (τiγp) ziz
T
i

)−1

or equivalently

1 ' 1

p
tr

(
1

n

n∑
i=1

ψ (τiγp) ziz
T
i

)−1

. (3.13)

As we may additionally expect that γp → γ for some deterministic γ, as n, p→
∞, the trace above is merely the Stieltjes transform evaluated at zero of the ma-
trix 1

nZDZT where Z = [z1, . . . , zn] ∈ Rp×n and diagonal D = diag{ψ(τiγ)}ni=1.
Since ψ is bounded, c = p/n < 1 and zi is a concentrated random vector (that
can be seen as a mere random Gaussian vector with norm tending to √p), the
Stieltjes transform for this model is well defined at zero and, from Theorem 2.6
or Theorem 2.18, has limit

m 1
nZDZT(0)

a.s.−−→ m(0), with
1

m(0)
=

∫
ψ(tγ)T (dt)

1 + cψ(tγ)m(0)

where we recall that T is the law of the τi’s. Moreover, since m(0) = 1 by
(3.13), we conclude that γ is solution to:

1 =

∫
ψ(tγ)T (dt)

1 + cψ(tγ)
.

This heuristic derivation allows us to conclude on the following asymptotic
behavior for Ĉ.

Theorem 3.3 (Asymptotic equivalent for Ĉ, Couillet et al. [2015]). Let x1, . . . ,xn ∈
Rp, c = p/n < 1, with xi =

√
τiC

1
2 zi, τi i.i.d. with law T of bounded moment of

order 1 + ε (for some ε > 0), C ∈ Rp×p positive definite and zi ∈ Rp i.i.d. uni-
formly drawn at random on the sphere of mean zero and radius √p. Further let
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u : R+ → R+ be a non-increasing function such that ϕ(x) = xu(x) is increasing
and bounded by c−1. Then ∥∥∥Ĉ− Ŝ

∥∥∥ a.s.−−→ 0

where

Ĉ =
1

n

n∑
i=1

u

(
1

p
xT
i Ĉ−1xi

)
xix

T
i , Ŝ =

1

n

n∑
i=1

v (τiγ) xix
T
i

with v = u ◦ g−1, g(x) = x/(1 − cϕ(x)), ϕ(x) = xu(x), and, for ψ(x) = xv(x),
γ the unique positive solution to

1 =

∫
ψ(tγ)

1 + cψ(tγ)
T (dt).

The fundamental result behind Theorem 3.3 is that, under an elliptical data
model in (3.9) with µ = 0 (the result would of course vary under other statistical
assumptions), Ĉ has the same asymptotic spectral behavior as the random
matrix Ŝ. Now, unlike Ĉ, Ŝ follows a quite elementary statistical model:

Ŝ =
1

n
C

1
2 ZDZTC

1
2 , Z = [z1, . . . , zn], D = diag{τiv(τiγ)}ni=1.

Since the τi’s are independent of the zi’s, Ŝ is merely a bi-correlated model com-
pletely characterized by Theorem 2.7 which in particular provides the limiting
spectral distribution for Ŝ that is identical to that of Ĉ.13 These eigenvalues
and associated limiting spectral measures are depicted in Figure 3.8 and can
be compared to the limiting spectral measure of the sample covariance matrix
1
nXXT in Figure 3.7, here for τi i.i.d. following a Gamma distribution. Of ut-
most interest from these figures is to remark that, while the limiting support of
the spectral measure µ 1

nXXT is (provably) unbounded, since the Gamma distri-
bution itself has unbounded support, the limiting support of µĈ (and of µŜ) is
bounded.

Besides, it can be checked that ‖Ĉ‖ is also (almost surely) bounded since
‖Ŝ‖ = ‖ 1

nC
1
2 ZDZTC

1
2 ‖, where ‖C‖ is bounded and D = diag{τiv(τiγ)}ni=1

with diagonal entries bounded as τiv(τiγ) = ψ(τiγ)/γ < ‖ψ‖∞/γ (which is
finite).

The spectrum boundedness has one key consequence to spiked-model exten-
sions of the model.

Remark 3.6 (Robust spiked model). The model xi =
√
τiC

1
2 zi with C =

Ip is appropriate to model impulsive noise in signal processing applications,
particularly so in array processing where radar signals are likely impulsive. In
this context, the natural extension to an information-plus-noise model reads

xi = asi +
√
τizi

13Again, the entries of the zi’s are not i.i.d. but can be assumed as such by writing zi =
√
pz̃i/‖z̃i‖ with z̃i ∼ N (0, Ip), for which we have ‖z̃i‖/

√
p
a.s.−−−→ 1 uniformly on i ∈ {1, . . . , n}.
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for a certain information vector a ∈ Rp (to be detected and estimated as in
the context of G-MUSIC method discussed in Section 3.1.3) and possibly some
scalar random signal si ∈ R. Writing X = [x1, . . . ,xn] ∈ Rp×n leads to

X = asT + ZT
1
2 , T = diag{τi}ni=1, s = [s1, . . . , sn]T

which follows a spiked model.
However, due to the presence of the unbounded norm T matrix, the sample

covariance 1
nXXT has unbounded limiting support and thus no visible spike for

all large n, p. As a main deleterious consequence, the signal a can be neither
detected nor estimated with spectral methods from the sample covariance.

Letting instead Ĉ = 1
n

∑n
i=1 u( 1

pxT
i Ĉ−1xi)xix

T
i be the robust estimator of

scatter, it is easily shown that ‖Ĉ − Ŝ‖ a.s.−−→ 0 with Ŝ = 1
nZDZT for D =

diag{τiv(τiγ)}ni=1 for the same γ defined in the noise-alone model (with Lemma 2.9
since γ takes a trace form); one must be careful though that Ŝ differs from its
expression in Theorem 3.3, due to the additional low rank “information” part
asT in X. Since D is bounded, Ŝ, and thus the robust estimator of scatter Ĉ
now is a proper spiked-model, allowing for the detection and estimation of a.
Details are provided in [Couillet, 2015].

Unlike all spiked models discussed in Section 2.5, a fundamental particularity
of this spiked model is that, since the τi’s tend to spread due to their impulsive
nature, even for large n, the support of D may be quite scattered (all the more
so when u(x) is close to 1). This is a problem in practice as D may induce
its own “spikes” (isolated eigenvalues) in the spectrum of Ĉ, and these spikes
may be confused with the genuine informative spikes (due to asT). Here, a
very peculiar phenomenon arises: since ‖D‖ ≤ ‖ψ‖∞/γ, the noise-only model
satisfies lim sup ‖ 1

nZDZT‖ ≤ ‖ψ‖∞(1 +
√
c)2/γ ≡ S+ almost surely. Therefore,

the noise-induced spikes can (asymptotically) not been found beyond S+, while
the genuine spikes may. We thus have the typical picture of Figure 3.9 where
(i) between the right-edge S+

µ of the support of the limiting spectrum µ of Ĉ and
S+, one can find both genuine and noise-driven spikes, while (ii) beyond S+

only genuine informative spikes can be found.

A few words on the rigorous proof

The derivation leading up to Theorem 3.3 strongly relies on the claim that the
trace lemma concentration

1

p
zTi Ĉ−1

−i zi '
1

p
tr Ĉ−1

−i ' γ

effectively holds true for n, p large, uniformly so on 1 ≤ i ≤ n, despite the
dependence between zi and Ĉ−i. The strategy proposed in [Couillet et al.,
2015] to prove this result is to “sandwich” the quantities 1

pzTi Ĉ−1
−i zi for 1 ≤ i ≤ n

between two quantities with no dependence problem and which are easily shown
to converge to γ.
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Figure 3.7: Histogram of the eigenvalues of 1
nXXT versus the limiting spectral

measure, with xi =
√
τiC

1
2 zi, zi uniform on the √p-sphere, for n = 2500,

p = 500, C = diag{Ip/4, 3 ·Ip/4, 10 ·Ip/2}, and τi following Γ(0.5, 2)-distribution.
Link to code: Matlab and Python.
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Figure 3.8: Histogram of the eigenvalues of Ĉ (left) and random equivalent
Ŝ (right) in the same setting of Figure 3.7, for u(x) = (1 + α)/(α + x) with
α = 0.2. Link to code: Matlab and Python.

However, as 1
pzTi Ĉ−1

−i zi appears as arguments of the function v, this sand-
wiching idea must be extended to a more convenient quantity. Precisely, recall-
ing that we may assume C = Ip in the proof, letting

ei =
v
(

1
pxT

i Ĉ−1
−ixi

)
v (τiγ)

and relabel the (indices of the) ei’s in such a way that e1 ≤ . . . ≤ en. The main

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/3.3/html/M_estim_of_scatter.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/3.3/M_estim_of_scatter.ipynb
https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/3.3/html/M_estim_of_scatter.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/3.3/M_estim_of_scatter.ipynb
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+ 0.6
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Figure 3.9: Histogram of the eigenvalues of Ĉ in a single-spike model, xi =
√
τizi

with zi uniform on the √p-sphere, for u(x) = (1 + α)/(α + x) with α = 0.2,
p = 256, n = 1 024, Student-t τi’s. Link to code: Matlab and Python.

idea is then to observe that, letting di = 1
pzTi Ĉ−1

−i zi, we have v(τidi) = eiv(τiγ),
and thus

ei =

v

(
τi

1
pzTi

(
1
n

∑
j 6=i τjv(τjdj)zjz

T
j

)−1

zi

)
v (τiγ)

=

v

(
τi

1
pzTi

(
1
n

∑
j 6=i τjv(τjγ)ejzjz

T
j

)−1

zi

)
v (τiγ)

.

Using e1 ≤ ei ≤ en and the non-decreasing nature of v = u ◦ g−1, we have both

ei ≤
v

(
1
en
τi

1
pzTi

(
1
n

∑
j 6=i τjv(τjγ)zjz

T
j

)−1

zi

)
v (τiγ)

,

ei ≥
v

(
1
e1
τi

1
pzTi

(
1
n

∑
j 6=i τjv(τjγ)zjz

T
j

)−1

zi

)
v (τiγ)

.

Focusing on the first inequality, being valid for each i, it is particularly valid for
i = n, and thus

en ≤
v

(
1
en
τn

1
pzTn

(
1
n

∑
j 6=n τjv(τjγ)zjz

T
j

)−1

zn

)
v (τnγ)

.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/3.3/html/M_estim_of_scatter.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/3.3/M_estim_of_scatter.ipynb
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The quadratic form in the numerator above has been cleared of its dependence
problems and it is thus only a matter of standard random matrix theory to show
that

1

p
zTn

 1

n

∑
j 6=n

τjv(τjγ)zjz
T
j

−1

zn
a.s.−−→ γ

(based on the same Stieltjes transform argument as previously). As a side
but important comment, note that, due to the relabeling of e1, . . . , en, zn is
effectively no longer independent of z1, . . . , zn−1 and thus the convergence above
in fact follows from a uniform convergence to γ of the quadratic forms for all
i = 1, . . . , n.14 We thus conclude that, for ε > 0 arbitrarily small, and for all
large n, p,

en ≤
v
(

1
en
τn(γ − ε)

)
v (τnγ)

almost surely, which we can equivalently write, by dividing both sides by τnγ,
as

ψ(τnγ) ≤ v
(

1

en
τn(γ − ε)

)
1

en
τnγ,

where we recall that ψ(x) = xv(x).
Let us now assume that lim supn en > 1 (which we want to disprove) and re-

strict ourselves to a sub-sequence over which en is away from one. For simplicity,
we consider also that the τi’s are all bounded and that ψ is strictly increasing
(with the general case treated in [Couillet et al., 2015]). We may thus extract a
further sub-sequence over which τn → τ∞, en → e∞ ∈ (1,∞], ε → 0, and then
in the limit

ψ(τ∞γ) ≤ ψ(e−1
∞ τ∞γ).

But since ψ is strictly increasing, this implies that e∞ ≤ 1 which contradicts
the assumption that lim supn en > 1. We thus conclude that lim supn en ≤ 1
(almost surely).

With the same arguments, we show that lim infn e1 ≥ 1 almost surely, so
that finally we have that ei

a.s.−−→ 1 for all i = 1, . . . , n which completes the proof.

3.3.4 Extensions
Tyler’s rotational invariant estimator. The class of robust estimators of
scatter of the type of Ĉ in (3.10) developed by Huber and Maronna imposes
that the robustness function u be such that u(0) be defined and that x 7→ xu(x)
be increasing and bounded.

14Specifically, we use the fact that P(|zTn(·)−1zn − γ| > ε) <
∑
i P(|zTi (·)−1zi − γ| > ε),

where the label of zi is now irrelevant in the rightmost term.
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Tyler [1983] proposed another version of Ĉ, which can be thought of as a
limiting version of (3.10) for u(x) = 1/x, i.e.,

Ĉ =
1

n

n∑
i=1

xix
T
i

1
pxT

i Ĉ−1xi
. (3.14)

The apparently slight modification of Maronna’s conditions (here u(0) is not
defined and xu(x) is not increasing) dramatically disrupts the behavior of Ĉ.
First, note that Ĉ is no longer unique as a solution to (3.14): indeed, if Ĉ is
solution, it is easy to see that so is αĈ for all α > 0. It can be shown that these
are all the solutions, that is, for n > p and xi linearly independent, there exists
Ĉ0 solution to (3.14) and the set of solutions Ĉ is exactly {αĈ0, α > 0}.

The main advantage of the formulation in (3.14) lies in its invariance with
respect to the amplitude of the outliers. Precisely, under this formulation, all
the xi’s are “normalized” since (3.14) features the ratio xix

T
i /x

T
i Ĉ−1xi. This

advantage however turns into a drawback if one needs to maintain and compare
the norms of the data.

The asymptotic analysis of Tyler’s estimator in the large n, p regime does
not unfold from the proof of Theorem 3.3, which strongly exploits the fact that
x 7→ xu(x) is increasing (while here xu(x) = 1). In [Zhang et al., 2014], the
authors exploit a different approach to prove that, for elliptical data defined in
(3.9) with scatter matrix C = Ip, Tyler’s estimator asymptotically behaves as a
sample covariance matrix composed of i.i.d. random vectors with zero mean and
identity covariance. Consequently, the limiting spectral measure of Ĉ is simply
the Marc̆enko-Pastur law.

In a sense, Tyler’s estimator with u(x) = 1/x is “as robust as robust estima-
tors can get” since its null-hypothesis spectrum (when C = Ip) leads to the “most
compact” spectral distribution (with given ratio c). For all other u functions,
the limiting spectrum is more spread out. This at first seems more advantageous
in an information-plus-noise spiked extension of the model, as isolated eigenval-
ues are likely more visible in this setting. Yet, the harsh normalization of all
data simultaneously “breaks” the low rank eigenspaces maximally for Tyler’s
estimator. A compromise for a suitable u function is demanded in this case.
These aspects are discussed in [Kammoun et al., 2017].

The p > n scenario. The robust estimator of scatter Ĉ as defined in (3.10)
has the major inconvenience of not being well defined for p > n, since Ĉ,
being the sum of the n rank-one matrices 1

nu( 1
pxT

i Ĉ−1xi)xix
T
i and is thus not

invertible for p > n.
To cover the scenario p > n, one usually resorts to a linear-shrinkage (or

ridge-regularized) version of the original Ĉ by instead defining Ĉρ as the solution
to

Ĉρ = (1− ρ)
1

n

n∑
i=1

u

(
1

p
xT
i Ĉ−1

ρ xi

)
xix

T
i + ρIp (3.15)
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for some ρ ∈ (0, 1]. Thanks to the ρIp addition, the right-hand side term
is positive definite (i.e., Ĉρ � ρIp) and it can be shown that, under similar
conditions on u as in the previous paragraphs, Ĉρ is well defined as the unique
solution to (3.15).

Under this setting, the asymptotic analysis of Ĉρ essentially boils down to
the control of the minimal eigenvalue of Ĉρ (which could be close to zero, thus
leading to an explosion of xT

i Ĉ−1
ρ xi). The works [Couillet and McKay, 2014,

Auguin et al., 2018] extend the results in Theorem 3.3 to this regularized setting.

Robustness to arbitrary outliers. It is important to insist that the asymp-
totic equivalence ‖Ĉ − Ŝ‖ a.s.−−→ 0 in Theorem 3.3 is only valid for the specific
elliptic model of the data xi, a scenario mostly motivated by Maronna’s original
works [Maronna, 1976] on the maximum likelihood estimation for elliptical data
and by the adequate modeling of impulsive noise beyond the Gaussian noise
model in practice.

In the original works of Huber on robust statistics though, the initial objec-
tive of Ĉ was to cope with the presence of outlying data in the samples. To this
end, from a large dimensional data analytic viewpoint, it is more convenient to
assume that the data observations XA ∈ Rp×n are composed in part of clean
data and in part of outliers. We may write

XA = [X, A] = [x1, . . . ,x(1−εn)n,a1, . . . ,aεnn]

for a proportion εn of deterministic unknown outliers A = [a1, . . . ,aεnn] ∈
Rp×εnn and (1− εn) of genuine data X = [x1, . . . ,x(1−εn)n] ∈ Rp×(1−εn)n.

In [Morales-Jimenez et al., 2015], letting xi be independent N (0,C) and the
ai’s be such that 1

nC−
1
2 AATC−

1
2 has bounded norm, Theorem 3.3 is turned

into the following result.

Theorem 3.4 (Robust estimator with outliers, Morales-Jimenez et al. [2015]).
Let XA = [X, A] ∈ Rp×n be defined as above. Then, under the assumptions
and notations of Theorem 3.3 and with εn → ε ∈ (0, 1− c),∥∥∥Ĉ− ŜA

∥∥∥ a.s.−−→ 0, ŜA = v(γn)
1

n
XXT +

1

n

εnn∑
i=1

v(αi,n)aia
T
i

where (γn, α1,n, . . . , αεnn,n) are the unique solution to

γn =
1

p
tr C

 (1− ε)v(γn)

1 + cv(γn)γn
C +

1

n

εnn∑
j=1

v(αj,n)aja
T
j

−1

,

αi,n =
1

p
aT
i

 (1− ε)v(γn)

1 + cv(γn)γn
C +

1

n

∑
j 6=i

v(αj,n)aja
T
j

−1

ai,

for i = 1, . . . , εnn.
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It is already interesting to see that the random equivalent ŜA (and thus
the robust estimator Ĉ) properly weighs all genuine data by the same constant
v(γn) and then weighs all outliers with a (possibly different) parameter v(αi,n)
proportional to its “outlying” character.

Of particular interest is the case of a vanishing proportion of outliers with
εn → 0 (for instance εn = k/n, corresponding to exactly k outliers), which
slightly extends the theorem statement. Then, the result above reduces to the
statement of Theorem 3.3 with τi = 1 and therefore

γn → γ =
ϕ−1(1)

1− c
.

In this case, we have

ŜA =
1

ϕ−1(1)

1

n
XXT +

1

n

εnn∑
i=1

v(αi,n)aia
T
i .

If, in addition, εnn = k and a1 = . . . = ak ≡ a, then α1,n = . . . = αεnn,n ≡ αn
is given by the unique positive solution to

αn =
γ · 1

paTC−1a

1 + cγ(k − 1)v(αn) 1
paTC−1a

.

Several conclusions can be drawn here: first note that the outlying data are
weighed by a factor depending on aTC−1a. Thus, the robust estimator behaves
as if knowledgeable of the quantity aTC−1a although the population matrix C
itself is not accessible; it thus performs much as expected by only discarding from
the samples those “outlying” data vectors a not aligned with C. But also note
that, if C = Ip, then aTC−1a = ‖a‖2, in which case the robust estimator only
evaluates the amplitude of the outlier, rather than its characteristic covariance
structure, to decide on the allocated weight. Consequently, robust estimators
are mostly resilient to outliers if the genuine data (covariance) is quite structured
(and outliers are misaligned to this structure, so for instance when they have
i.i.d. entries), but the converse is not true.

But a much more troubling and unexpected effect is that, if k (so finitely
many) outliers are identical, then αn scales as 1/k and thus quickly vanishes as
k grows large. Ultimately, only few outliers suffice to obtain αn < γ and thus
v(αn) > v(γ): the outliers are then given more weight than the genuine data,
going in a stark opposite direction as originally intended. It is interesting that
random matrix theory so easily reveals such behaviors while the conventional
large-n analysis is generally unable to see (or only through approximations).

Second-order statistics. The convergence ‖Ĉ−Ŝ‖ → 0 in Theorems 3.3 and 3.4
is convenient to transfer the first-order spectral properties of Ŝ to Ĉ. For in-
stance, such convergence implies (i) max1≤i≤p |λi(Ĉ) − λi(Ŝ)| → 0 and (ii)
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‖ui(Ĉ)−ui(Ŝ)‖ → 0 for all isolated eigenvalue-eigenvector pairs (λi(Ĉ),ui(Ĉ))

(i.e., such that |λi(Ĉ)− λi±1(Ĉ)| does not vanish in the large n, p limit).
As such, Ĉ and Ŝ have the same limiting spectral distribution, their eigen-

values are point-wise asymptotically equal and they share the same isolated
eigenvectors in the limit. From a practical standpoint, this in particular means
that the (asymptotic) threshold for signal detection (based on isolated eigen-
values and eigenvectors) can be transferred from (the statistics of) Ŝ to Ĉ and
that the informative content in the eigenvectors of Ĉ can be understood from
those of Ŝ.

However, this is as far as the convergence ‖Ĉ− Ŝ‖ → 0 goes. The question
of the asymptotic local fluctuations of the individual eigenvalues and of the
eigenvector projection statistics does not follow straightforwardly. In particular,
it is believed that ‖Ĉ − Ŝ‖ = O(n−1/2). Since the dominant eigenvalues λi(Ŝ)

and eigenvector projections ui(Ŝ)Ta for deterministic a satisfy central limit
theorems at this O(n−1/2) rate precisely, we can at least tell that λi(Ĉ) and
ui(Ĉ)Ta also fluctuate at an O(n−1/2) rate but it is impossible to provide more
precise quantitative descriptions, e.g., to infer whether a central limit theorem
holds and even to estimate the limiting mean and variance of the fluctuation.
The problem is even exacerbated when it comes to faster statistics, such as linear
spectral statistics 1

n

∑
i f(λi(Ĉ)): while 1

n

∑
i f(λi(Ŝ)) is known to satisfy a

central limit theorem at rate O(n−1), the convergence ‖Ĉ− Ŝ‖ = O(n−1/2) only
allows one to characterize 1

n

∑
i f(λi(Ĉ)) up to a precision of order O(n−1/2).

In [Couillet et al., 2016a], it is shown that more can be said for precise
statistics. Assuming the case where u(x) = 1/x, C = Ip, and Ĉ is regularized
by ρIp for any ρ > 0, it is proved that, for all deterministic vectors a,b ∈ Rp of
unit norm and for all k ∈ Z,

aTĈkb− aTŜkb = O(n−1+ε) (3.16)

for all ε > 0. This result can be straightforwardly used to show that ui(Ĉ)Ta

satisfies the same asymptotic fluctuations as ui(Ŝ)Ta.

As a concrete application example, the robust estimator of scatter Ĉ may
be used for the following hypothesis testing problem

x =

{ √
τz, H0

sa +
√
τz, H1

, given xi =
√
τizi, 1 ≤ i ≤ n

where z, zi are, say, independent and uniformly distributed on the √p-sphere,
a ∈ Rp is some known vector and s ∈ R is unknown. Here, one assumes to
have access to a single observation x but also to some prior “pure noise” data
x1, . . . ,xn, and it is to be tested whether the information vector a is present in
x.

This setting corresponds to that of an impulsive background noise environ-
ment within which an informative data a is expected to be eventually detected
(which could be a signal signature such as a steering vector in array processing).
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Since a is known, the generalized likelihood ratio test (GLRT) in this setting
(recall Section 3.1.1 for a definition of the GLRT) reads

Tp ≡
|xTĈ−1a|2

(xTĈ−1x)(aTĈ−1a)

H1

≷
H0

α,

for some predefined threshold α > 0. In the absence of a within x, xTĈ−1a =
O(1/

√
n) while in the presence of a, xTĈ−1a is of the order of α. The test is

therefore asymptotically non-trivial only if α scales as O(1/
√
n). Under these

conditions, the performance of the test (its asymptotic errors of Type I and II)
are given by the asymptotic behavior of Tp under H0 and H1 hypotheses.

This behavior is accessible by showing a central limit theorem for Tp, which
itself follows (by the delta-method [Vaart, 2000]) from a central limit theorem
on the vector (xTĈ−1a,xTĈ−1x,aTĈ−1a). From (3.16), this is asymptotically
equivalent to establishing a central limit theorem for (xTŜ−1a,xTŜ−1x,aTŜ−1a)

which, given the elementary modeling of Ŝ, is within reach of random matrix
theory.

A thorough investigation of this GLRT asymptotics is performed in [Couillet
et al., 2016a, Kammoun et al., 2017].

3.4 Concluding remarks
All the methods presented in this chapter, from discriminant analysis to ro-
bust covariance estimation, all consist, one way or another, in improving the
mismatched estimation of a covariance matrix C by its sample estimate Ĉ.

However, as opposed to the conventional idea that one must, before every-
thing, improve this mismatched estimate Ĉ into a “better” plug-in estimate of
the large dimensional C, the random matrix approach developed in this chap-
ter rather consists in the first place in identifying the ultimate scalar (or small
dimensional) objective to be optimized, and only then, adapt the estimate of C
appropriately. Specifically, we saw that:

• in the discriminant analysis scenario in Section 3.1.2, we estimate C
through a “linear shrinkage or ridge-regularized” version Ĉ + γIp of Ĉ,
and then aim at optimizing γ in such a way to maximize the ultimate
detection probability of the underlying hypothesis test;

• in the spiked G-MUSIC improvement of the MUSIC algorithm in Sec-
tion 3.1.3, one aims primarily at estimating quadratic forms of the type
aTuuTa where u is an eigenvector (associated to the largest eigenvalues)
of C. There, the covariance C is never estimated, and only the quadratic
form aTuuTa is retrieved as a function of aTûûTa with û the correspond-
ing eigenvector of Ĉ;

• in the distance estimation framework between two covariance matrices in
Section 3.2, again, the ultimate target is the distance d(C1,C2); instead of
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correcting the quite erroneous but natural plug-in estimate d(Ĉ1, Ĉ2), the
strategy consists in characterizing d(C1,C2) as a function of the resolvents
of C1 and C2, before connecting them to the observable Ĉ1 and Ĉ2; in
the end, the estimators depend in a non-trivial manner on some functional
of the eigenvalues of Ĉ−1

1 Ĉ2 (or Ĉ1Ĉ2);

• finally, for the robust covariance (or scatter) estimator in Section 3.3, the
asymptotics of the robust estimator are not so trivially related to the
underlying covariance matrices being estimated, but a deep investigation
of the quadratic forms xT

i Ĉ−1xi at the core of the estimator fully reveals
the statistical behavior of these robust estimators.

While estimating the p(p − 1)/2 elements of C from the np entries [X]ij
of the data matrix X ∈ Rp×n cannot be performed consistently in the regime
where n ∼ p (at least when no strong a priori structure is supposed on C), this
does not necessarily mean that there is no means to improve over the classical
sample covariance matrix.

Specifically, a recent direction is being followed which consists in generalizing
the notion of “linear shrinkage”, i.e., estimating C through the matrix Ĉ + γIp
for some γ > 0, to “nonlinear shrinkage.” The idea behind nonlinear shrinkage
is to design an estimator of the type Ûf(Λ̂)ÛT, where ÛΛ̂ÛT = Ĉ is the
spectral decomposition of Ĉ and f(·) is a nonlinear function applied entry-wise
on the diagonal elements of Λ̂, i.e., the eigenvalues of Ĉ. The function f is
then selected in such a way that a distance criterion, such as the Frobenius
norm error E[‖C− Ûf(Λ̂)ÛT‖2F ], is minimized or alternatively such that f(λ̂i)
estimates the corresponding i-th eigenvalue of C. In a series of works [Ledoit
and Péché, 2011, Ledoit and Wolf, 2012, Bun et al., 2017], the authors proposed
several such functions f .

Overall, it is interesting to take a step back and realize the number and
diversity of findings obtained since the seminal article of Marc̆enko and Pastur
in 1967 surrounding the sample covariance matrix model. Clearly ubiquitous in
statistics and machine learning, second-order statistics have for long never been
the subject of so deep investigations (as the sample covariance was considered
a good estimator for the population covariance) until this fundamental first
random matrix work. It is now fully admitted by many research communities
(statistics, statistical physics, electrical engineering), and increasingly by the
machine learning experts, that all methods and algorithms derived from a mere
replacement of the population covariance matrix by the sample covariance are
at best hazardous, and often counterproductive.

This is another instance of the curse of dimensionality in large and numerous
data processing problems, which is being more and more efficiently tackled. The
next chapter goes a step further, beyond the linear and quadratic settings, into
kernel-based algorithms (and thus nonlinear functions of the data, more akin to
most machine learning algorithms).
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3.5 Practical course material
In this section, two practical lectures related to the present Chapter 3 are dis-
cussed: Practical Lecture 1 on the estimation of the Wasserstein distance be-
tween covariances, as an important application of the technique presented in
Section 3.2; and Practical Lecture 2 on the Tyler robust estimator, with ap-
plication in portfolio optimization in statistical finance, as an extension of the
results in Section 3.3.

Practical Lecture Material 1 (TheWasserstein distance estimation, Tiomoko
and Couillet [2019b] ). This exercise aims to formally derive Theorem 3.2 in
the specific case of the Wasserstein distance (i.e., Corollary 3.5). That is, we
aim at estimating, for two sets of independent centered Gaussian samples with
covariance matrices C1 and C2, the quantity

dW (C1,C2) =
1

p

(
tr(C1) + tr(C2)− 2 tr

[
(C

1
2
1 C2C

1
2
1 )

1
2

])
.

Confirm that only the rightmost term is the challenging one to estimate, i.e.,
from ni independent samples Xa = [xa1, . . . ,xana ] ∈ Rp×na and with p ∼ na,
show that 1

p tr Ĉa is a consistent estimate for 1
p tr Ca with Ĉa = 1

ni
XaX

T
a the

sample covariance estimate of Ca, so that only the quantity 1
p tr[(C

1
2
1 C2C

1
2
1 )

1
2 ]

remains to be estimated.
In the following we thus aim to estimate d = 1

p tr[(C
1
2
1 C2C

1
2
1 )

1
2 ]. First write

d =
∫ √

tνp(dt) with νp = 1
p

∑p
i=1 δλi(C1C2) and deduce, by Cauchy’s integration

formula (Theorem 2.2), that

d =
−1

2πı

∮
Γν

√
zmνp(z) dz (3.17)

with mνp(z) the Stieltjes transform of νp, Γν an appropriate complex contour,
and
√
z some complex analytic extension of the real square root (letting z = reıθ

for r ≥ 0 and θ ∈ (−π, π], we will consider here the principal root of z, defined
as
√
z =
√
reıθ/2).

With the help of Theorem 2.6 and the discussion in Section 3.2, show that
the Stieltjes transform mµp of the spectral measure µp of Ĉ1Ĉ2 relates to mνp

through the set of equations

zmµp(z) = ϕp(z)mζp (ϕp(z)) + o(1) (3.18)

mνp

(
z

Ψp(z)

)
= mζp(z)Ψp(z) + o(1). (3.19)

where ζp is the spectral measure of C
1
2
2 Ĉ1C

1
2
2 , Ψp(z) ≡ 1− p

n2
− p

n2
zmζp(z) and

ϕp(z) = z/(1− p
n1
− p

n1
zmµp(z)).

By means of two successive changes of variables, prove that the desired dis-
tance d can be consistently estimated, as n, p→∞, by

d̂ ≡ n2

2πıp

∮
Γ

√
ϕp(z)

ψp(z)

[
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

]
ψp(z) dz
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where ψp(z) ≡ 1− p
n2
− p
n2
zmµp(z), and Γ is some complex contour to be carefully

positioned. The idea here is similar to the derivation performed in Section 3.2.
The functions ϕp(z) and ψp(z) are rational functions (as rational functions

of mµp , itself a relational function). By identifying zeros, poles and the limiting
behavior as |z| → ∞, show that they can be expressed under the following rational
forms

ϕp(z) = z

∏p
i=1 z − λi∏p
i=1 z − ηi

, ψp(z) =

∏p
i=1 z − ξi∏p
i=1 z − λi

where λ1 ≤ . . . ≤ λp are the increasingly sorted eigenvalues of Ĉ1Ĉ2, and
{ξi}pi=1, {ηi}

p
i=1 the increasingly sorted eigenvalues of Λ− 1

n1

√
λ
√
λ
T
and Λ−

1
n2

√
λ
√
λ
T
, respectively, with λ = (λ1, . . . , λp)

T, Λ = diag(λ) and √. is under-
stood entry wise.

Find the singularities, the poles and the branch cuts of the complex integrand
in the expression of d̂ and represent them on the complex plane. You may refer to
Figure 3.5, but must be extremely careful on the relative ordering of the (ξi, ηi, λi)
triplets. Based on this representation, and (again) as in Figure 3.5, deform the
contour Γ into a more convenient contour for integration. Prove then that the
resulting integrals over ε-radius circles around ξi are null in the small ε limit
(using for instance the change of variable z = ξi + εeıθ). Next prove that the
resulting integrals over the real axis (again in the ε → 0 limit) between ξj + ε
and ηj + ε sum up to

A1 =
2n2

πp

p∑
j=1

∫ ηj

ξj

√
−ϕp(x)

ψp(x)
ψ′p(x)dx− 2n2

πp

p∑
j=1

1√
ε ddx

(
1

ϕp(x)ψp(x)

)
(ηj)

.

Continue the calculus by proving, using the change of variable z = ηj + εeıθ,
that integrals over the ε-radius circles around ηj do not vanish but convey a
second contribution summing up, in the ε→ 0 limit, to

A2 =
2n2

πp

p∑
j=1

1√
ε ddx

(
1

ϕp(x)ψp(x)

)
(ηj)

.

Finally prove that the residues associated to the “poles” λi (that is the integral
over small circles surrounding the λi’s) sum up to

A3 =
2n2

p

√
n1

n2

p∑
j=1

√
λj .

Conclude from these three contributions that d can be estimated by the real-
line integral form

d̂(X1,X2) ≡
2
√
n1n2

p

p∑
j=1

√
λj +

2n2

πp

p∑
j=1

∫ ηj

ξj

√
−ϕp(x)

ψp(x)
ψ′p(x) dx.
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Show in particular that, when n1 = n2 = n/2, this estimate further simplifies as

d̂(X1,X2) =
n

p

p∑
j=1

(√
λj −

√
ξj

)
using the fact that ξj → ηj in the limit where n1/n − n2/n → 0, and that, by
deforming the “real line” part of the contour,

1

π
lim
t→ξj

∫ t

ξj

√
−ϕp(x)

ψp(x)
ψ′p(x) dx =

1

2πı
lim
ε→0

∮
Γεξj

√
−ϕp(z)ψp(z)

ψ′p(z)

ψp(z)
dz

where Γεξj is an ε-radius circular contour around ξj.
Deduce the final expression of an n, p-consistent estimate of the Wasserstein

distance for Gaussian samples, and confirm by reproducing Table 3.3.

p d(C1,C2) d̂(X1,X2) d(Ĉ1, Ĉ2)
2 0.0110 0.0109 0.0115
4 0.0175 0.0189 0.0203
8 0.0208 0.0213 0.0240

16 0.0225 0.0232 0.0286
32 0.0233 0.0237 0.0343
64 0.0237 0.0243 0.0454

128 0.0239 0.0240 0.0663
256 0.0240 0.0243 0.1092
512 0.0241 0.0245 0.1954

Table 3.3: Estimation of the Wasserstein distance for x
(a)
i ∼ N (0,Ca) with

[C1]ij = 0.2|i−j|, [C2]ij = 0.4|i−j|, n1 = 1 024, n2 = 2 048, as a function of p,
results averaged over 30 runs. Link to code: Matlab and Python.

Practical Lecture Material 2 (Robust portfolio optimization via Tyler esti-
mator, Yang et al. [2015]). In computational finance, one of the problems of the
popular Markowitz’s mean-variance optimization framework consists in deter-
mining a portfolio vector w ∈ Rp, to allocate to p assets (stock market indices),
in such as way to maximize the expected return and/or minimize the risk of the
investment. From a statistical perspective, w is thus set to minimize a certain
cost function based on past observations x1, . . . ,xn ∈ Rp of the market evolution
(the returns) of the p assets. Those observations are often assumed independent
for simplicity, but cannot be considered Gaussian due to the possibly erratic
nature of the market.

We consider here for simplicity the problem of minimizing the risk, without
constraining the expected return. We assume independent (and centered) ellipti-
cally distributed xi =

√
τiC

1
2 zi return vectors, where zi ∈ Rp is uniform on the

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/3.5/html/Wasserstein_dist.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/3.5/Wasserstein_dist.ipynb
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√
p-sphere and τi > 0 are random i.i.d. impulses independent of zi, as in (3.9).

We wish to determine

w∗ = arg min
w∈Rp, wT1p=1

E[|wTx|2] (3.20)

where the constraint wT1p = 1 ensures that the total investment remains con-
stant.

Assuming that E[τ ] = 1 (which we can set for convenience and without gen-
erality restriction), show via the Lagrangian multipliers method that the solution
to (3.20) is explicitly given by

w∗ =
C−11p

1T
pC−11p

with thus the associated minimal (expected) risk E[|(w∗)Tx|2] = (1T
pC−11p)

−1.
The covariance C being unknown, and the historical returns xi being impul-

sive in nature, we wish to estimate w∗ via a robust estimator of scatter approach
as in Section 3.3. That is, we replace C in the formulas above by the robust
(shrinkage) Tyler estimator Ĉ(γ) defined, for γ ∈ (max{0, 1 − n/p}, 1], as the
unique solution to

Ĉ(γ) = (1− γ)
1

n
XD−1XT + γIp, D = diag

{
1

p
xT
i Ĉ−1(γ)xi

}n
i=1

. (3.21)

The regularization term γIp allows for p > n and offers an additional degree
of freedom, and the choice of a Tyler estimator (i.e., u(x) = 1/x in our pre-
vious notations in Section 3.3) is made here for computational convenience of
particular interest to finance application.

First show that, replacing the unknown C by Ĉ(γ) and letting ŵ =
Ĉ−1(γ)1p

1T
pĈ
−1(γ)1p

,
the resulting portfolio risk is given by

E
x∼
√
τC

1
2 z

[|ŵTx|2] =
1T
p Ĉ−1(γ)CĈ−1(γ)1p

(1T
p Ĉ−1(γ)1p)2

(3.22)

and confirm that we retrieve the correct result as Ĉ(γ) coincides with C. Our
objective here is to estimate this quantity, and to retrieve the performance/risk
of this robust portfolio design as a function of γ.

Similar to the (intuitive) approach developed in Section 3.3.3 for generic
u(·) functions (but without regularization γ), show that the following random
equivalent asymptotics hold:∥∥∥Ĉ(γ)− Ŝ(γ)

∥∥∥ a.s.−−→ 0, Ŝ(γ) ≡ 1

δ(γ)

1− γ
1− (1− γ)c

1

n
C

1
2 ZZTC

1
2 + γIp, (3.23)

where c = lim p/n, Z = [z1, . . . , zn] and δ(γ) is the unique solution to

1 =
1

p
tr C ((1− γ)C + δ(γ)γIp)

−1
, (3.24)
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and that we have the following deterministic equivalent for the inverse of Ĉ(γ):

[Ĉ(γ)]−1 ↔
(

1− γ
δ(γ)

C + γIp

)−1

. (3.25)

To this end, one may first evaluate [Ĉ(γ)]−1 − [Ĉ−i(γ)]−1, where Ĉ−i(γ) is
defined as Ĉ(γ) but with the summation over 1 ≤ j 6= i ≤ n, i.e.,

Ĉ−i(γ) = (1− γ)
1

n

∑
j 6=i

xjx
T
j

1
pxT

j Ĉ−1(γ)xj
+ γIp,

then show that
1

p
zTi C

1
2 Ĉ−1(γ)C

1
2 zi =

(
1− (1− γ)

p

n

) 1

p
zTi C

1
2 Ĉ−1
−i (γ)C

1
2 zi (3.26)

and use the intuition that
1

p
zTi C

1
2 Ĉ−1
−i (γ)C

1
2 zi '

1

p
tr C−1Ĉ(γ)

the right-end side term corresponding in the limit of δ(γ) defined in (3.24).
Complete the proof by using appropriately Theorem 2.6.

With this result and (3.22) at hand, show that

E[|(ŵ)Tx|2] = σ2(γ) + o(p−1) (3.27)

where

σ2(γ) ≡ δ2(γ)

δ2(γ)− cβ(γ)(1− γ)2

1T
p

(
1−γ
δ(γ)C + γIp

)−1

C
(

1−γ
δ(γ)C + γIp

)−1

1p(
1T
p

(
1−γ
δ(γ)C + γIp

)−1

1p

)2

β(γ) ≡ 1

p
tr C2

(
1− γ
δ(γ)

C + γIp

)−2

.

To this end, one may first demonstrate, for the more technical numerator,
that

Ĉ−1(γ)CĈ−1(γ) = − d

dω

[(
Ĉ(γ) + ωC

)−1
]
ω=0

and construct (for instance based on the proof of Theorem 2.6) a determinis-
tic equivalent for (Ĉ(γ) + ωC)−1, or equivalently for (Ŝ(γ) + ωC)−1 + o‖·‖(1)
according to (3.23), which we may then differentiate and evaluate at ω = 0 to
retrieve the result.

Hint: In detail, obtaining this deterministic equivalent may be performed
with the following steps: (i) show, using the Bai-Silverstein approach in the
proof of Theorem 2.6, that

(Ŝ + ωC)−1 ↔ (αωC + γIp + ωC)−1
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where

αω =
1− γ

δ(γ)(1− (1− γ)c) + (1− γ)c∆ω
,

and ∆ω is solution to

∆ω =
1

p
tr C (αωC + γIp + ωC)

−1
.

and in particular confirm that ∆0 = δ(γ) and α0 = (1− γ)/δ(γ). Then proceed
(ii) by showing that

− d

dω
(Ŝ + ωC)−1

↔ − d

dω
(αωC + γIp + ωC)

−1

=

(
1− cα2

ω

d

dω
∆ω

)
(αωC + γIp + ωC)

−1
C (αωC + γIp + ωC)

−1

and prove that

d

dω
∆ω = −

1
p tr C2 (αωC + γIp + ωC)

−2

1− cα2
ω

1
p tr C2 (αωC + γIp + ωC)

−2 .

Put all things together (iii) and set ω to zero to conclude.
For the expression of σ2(γ) of practical interest, one needs a consistent es-

timate for σ2(γ) for all γ > 0, upon which an estimate of the optimal γ (i.e.,
the one achieving the minimum estimated risk) can be obtained. We will proceed
here in two steps. From (3.26), first establish that

δ̂(γ)− δ(γ)
1
p tr C

a.s.−−→ 0

where

δ̂(γ) ≡ 1

1− (1− γ) pn

1

n
tr XTĈ−1(γ)X diag{‖xi‖−2}ni=1

=
1

1− (1− γ) pn

1

n

n∑
i=1

xT
i Ĉ−1(γ)xi
‖xi‖2

=
1

1− (1− γ) pn

1

n

n∑
i=1

xT
i Ĉ−1(γ)xi
‖xi‖2

.

Then, establish that

σ̂2(γ)− σ2(γ)
1
p tr C

a.s.−−→ 0, (3.28)

with σ̂2(γ) ≡ δ̂(γ)

1− γ − (1− γ)2 p
n

1T
p Ĉ−1(γ)

(
Ĉ(γ)− γIp

)
Ĉ−1(γ)1p(

1T
p Ĉ−1(γ)1p

)2
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by developing Ĉ−1(γ)C
1
2 ziz

T
i C

1
2 Ĉ−1(γ) (or equivalently Ŝ−1(γ)C

1
2 ziz

T
i C

1
2 Ŝ−1(γ))

as a function of the matrix form Ŝ−1
−i (γ)C

1
2 ziz

T
i C

1
2 Ŝ−1
−i (γ) and taking the ex-

pectation over zi, together with the asymptotic approximation

1T
nŜ−1
−i (γ)CŜ−1

−i (γ)1n ' 1T
nĈ−1(γ)CĈ−1(γ)1n.

Confirm the results in (3.27) and (3.28) by reproducing Figure 3.10 in the
setting where

√
τi =

√
χ2
d/d for χ2

d a Chi-square random variable with d = 3
degree of freedom (so that E[τi] = 1) and C = 5 · uuT + Ip for u with uniformly
distributed and normalized entries [u]i ∼ Unif(0.5, 1.5)/

√
p.

These results may also be simulated on real financial time series from leading
international markets (e.g., based on daily historical returns from the NYSE,
HSI, CAC-40, etc., over a time window of typically a few years). An exhaustive
analysis is provided in [Yang et al., 2015].
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Figure 3.10: Portfolio risk, the asymptotic approximation σ2(γ) in (3.27), and
the estimate 1

p tr C · σ̂2(γ) in (3.28), as a function of the regularization penalty
γ, for z uniform on the √p-sphere, Chi-square τ , p = 256 and n = 512. Results
averaged over 50 runs. Link to code: Matlab and Python.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/3.5/html/robust_portfolio.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/3.5/robust_portfolio.ipynb
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Chapter 4

Kernel Methods

This chapter discusses the fundamental kernel methods, with applications to su-
pervised (kernel ridge regression or LS-SVM), semi-supervised (graph Laplacian-
based learning), or unsupervised learning (such as kernel spectral clustering)
schemes. By focusing on the typical examples of distance and inner-product-
type kernels, we show how large-dimensional kernel approach differs from our
small-dimensional intuition, and perhaps more importantly, how random ma-
trix theory plays a central role in understanding and tuning various kernel-based
methods.

In a broad sense, kernel methods are at the core of many, if not most,
machine learning algorithms [Schölkopf and Smola, 2018]. Given a set of data
x1, . . . ,xn ∈ Rp, most learning mechanisms rely on extracting the structural
data information from direct or indirect pairwise comparisons κ(xi,xj) for some
affinity metric κ(·, ·). Gathered in an n× n matrix

K = {κ(xi,xj)}ni,j=1 , (4.1)

the “cumulative” effect of these comparisons for numerous (n � 1) data is at
the source of various supervised, semi-supervised, or unsupervised methods such
as support vector machines, graph Laplacian-based learning, kernel spectral
clustering, and has deep connections to neural networks.

These applications will be thoroughly discussed in Section 4.4. For the mo-
ment though, our main interest lies in the spectral characterization of the kernel
matrix K itself for various (classical) choices of affinity functions κ and for var-
ious statistical models of the data xi.

Clearly, from a purely machine learning perspective, the choice of the affinity
function κ(·, ·) is central to a good performance of the learning method under
study. Since real data in general have highly complex structures, a typical
viewpoint is to assume that the data points xi and xj are not directly compara-
ble in their ambient space but that there exists a convenient feature extraction
function φ : Rp → Rq (q ∈ N ∪ {+∞}) such that φ(xi) and φ(xj) are more
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amenable to comparison. Otherwise stated, in the image of φ(·), the data are
more “linear” (or more “linearly separable” if one seeks to group the data in
affinity classes). The simplest affinity function between xi and xj would in this
case be κ(xi,xj) = φ(xi)

Tφ(xj).
Since q may be larger (if not much larger) than p, the mere cost of evaluating

φ(xi)
Tφ(xj) can be deleterious to practical implementation. The so-called kernel

trick is anchored in the remark that, for a certain class of such functions φ,
φ(xi)

Tφ(xj) = f(‖xi − xj‖2) or = f(xT
i xj) for some function f : R → R and

it thus suffices to evaluate ‖xi − xj‖2 or xT
i xj in the ambient space and then

apply f in an entry-wise manner to evaluate all data affinities, leading to more
practically convenient methods.

Although the class of such functions f is inherently restricted by the need
for a mapping φ to exist such that, say, φ(xi)

Tφ(xj) = f(‖xi − xj‖2) for all
possible xi,xj pairs (these are sometimes called Mercer kernel functions),1 with
time, practitioners have started to use arbitrary functions f and worked with
generic kernel matrices of the form

K =
{
f
(
‖xi − xj‖2

)}n
i,j=1

, or K =
{
f
(
xT
i xj

)}n
i,j=1

, (4.2)

irrespective of the actual form or even the existence of an underlying feature
extraction function φ. There are in particular empirical evidences showing that
well-chosen “indefinite” (i.e., non-Mercer type) kernels, being not associated to a
mapping φ, can sometimes outperform conventional nonnegative definite kernels
that satisfy the Mercer’s condition [Haasdonk, 2005, Luss and D’Aspremont,
2008].

Remark 4.1 (Typical families of kernel functions f and the finite-dimen-
sional setting). It is important to raise here a direct consequence of the “finite-
dimensional intuitions” inherent to kernel methods in machine learning. For
an affinity of the type κ(xi,xj) = f(‖xi − xj‖2), it is natural to assume that
f be a non-increasing function, as “close” data xi,xj (in an Euclidean distance
sense) should have a stronger affinity than “distant” xi,xj. The popular choice
f(t) = exp(−t/2) (known as the Gaussian, radial basis function, or heat kernel,
and which relates to an infinite-dimensional map φ) is particularly appealing as
it brings arbitrarily close data to a unit affinity (κ(xi,xj)→ 1 as ‖xi−xj‖ → 0)
and far data to a null affinity (κ(xi,xj)→ 0 as ‖xi − xj‖ → ∞).

We will subsequently show in this section that, as already illustrated in Sec-
tion 1.1.3, this natural reasoning often collapses when dealing with realistic
large dimensional data, leading to erroneous intuitions and disrupting many
conventional ideas behind kernel-based machine learning.

1In particular, since the matrix {φ(xi)
Tφ(xj)}ni,j=1 is nonnegative definite, f must be such

that {f(‖xi − xj‖2)}ni,j=1 is also nonnegative definite irrespective of n and x1, . . . ,xn.
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4.1 Basic setting

As pointed out in Remark 4.1 and shall become evident from the coming anal-
ysis, the small dimensional intuition according to which f should be a non-
increasing “valid” Mercer function becomes rather meaningless when dealing
with large dimensional data, essentially due to the “curse of dimensionality”
and the concentration phenomenon in high dimensions.

To fully capture this aspect, a first important consideration is, as already
mentioned in Section 1.1.3, to deal with “non-trivial” relative growth rates of the
statistical data parameters with respect to the dimensions p, n. By non-trivial,
we mean that the underlying classification or regression problem for which the
kernel method is designed should neither be impossible nor trivially easy to
solve as p, n → ∞. The reason behind this request is fundamental, and also
disrupts from many research works in machine learning which, instead, seek to
prove that the method under study performs perfectly in the limit of large n
(with p fixed in general): here, we rather wish to account for the fact that, at
finite but large p, n, the machine learning methods of practical interest are those
which have non-trivial performances; thus, in what follows, “n, p → ∞ in non-
trivial growth rates” should really be understood as “n, p are both large and the
problem at hand is non-trivially easy or hard to solve.”

In this section we will mostly focus on the use of kernel methods for classi-
fication, and thus the non-trivial settings are given in terms of the growth rate
of the “distance” between (the statistics of) data classes. It will particularly
appear that the very definition of the appropriate growth rates to ensure the
non-trivial character of a machine learning problem to be solved through ker-
nel methods depends on the kernel design itself, and that flagship kernels such
as the Gaussian kernel κ(xi,xj) = exp(−‖xi − xj‖2/2σ2) are in general quite
sub-optimal.

4.1.1 The non-trivial growth rates

In classical large-n only asymptotic statistics, laws of large numbers demand
a scaling by 1/n of the summed observations. When centered, central limit
theorems then occur after multiplication of the average by

√
n. A similar re-

quirement is needed when we now consider that the dimension p of the data
is also large. In particular, we will demand that the norm of each observation
remains bounded. Assuming x ∈ Rp is a vector of bounded entries, i.e., each of
order O(1) with respect to p, the natural normalization is typically x/

√
p.

In the context of kernel methods, for data x1, . . . ,xn, one wishes that the
argument of f(·) in the inner-product kernel f(xT

i xj) or the distance kernel
f(‖xi − xj‖2) be of order O(1), when f is assumed independent of p.

The “correct” scaling however appears not to be so immediate. Letting xi
have entries of order O(1), one naturally has that ‖xi−xj‖2 = ‖xi‖2 + ‖xj‖2−
2xT

i xj = O(p) and it thus appears natural to scale ‖xi−xj‖2 by 1/p. Similarly,
if the norm of the mean ‖E[xi]‖ of xi has the same order of magnitude as ‖xi‖
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itself (as it should in general), then for xi,xj independent, E[xT
i xj ] = O(p). So

again, one should scale the inner-product also by 1/p. Hence the kernel matrices

K =

{
f

(
1

p
‖xi − xj‖2

)}n
i,j=1

, and
{
f

(
1

p
xT
i xj

)}n
i,j=1

.

Section 4.2 (and most applications thereafter) will be placed under these
kernel forms. The most commonly used Gaussian kernel matrix, defined as
K = {exp(−‖xi−xj‖2/2σ2)}ni,j=1, falls into this family as one usually demands
that σ2 ∼ E[‖xi − xj‖2] (to avoid evaluating the exponential close to zero or
infinity).

However, as already demonstrated in Section 1.1.3, if n scales like p, then,
for the classification problem to be asymptotically non-trivial, the difference
‖E[xi]−E[xj ]‖2 needs to scale like O(1) rather than O(p) (otherwise data classes
would be too easy to cluster for all large n, p), resulting in ‖xi−xj‖2/p possibly
converging to a constant value irrespective of the data classes (of xi and xj),
with a typical “spread” of order O(1/

√
p). Similarly, up to re-centering,2 xT

i xj/p
scales like O(1/

√
p) rather than O(1). As such, it seems more appropriate to

normalize the kernel matrix entries as

[K]ij = f

‖xi − xj‖2√
p

− 1

n(n− 1)

∑
i′,j′

‖xi′ − xj′‖2√
p

 , or [K]ij = f

(
1
√
p
xT
i xj

)

in order here to avoid evaluating f essentially at a single value (equal to zero for
the inner-product kernel or equal to the average “common” limiting intra-data
distance for the distance kernel).

This “properly scaling” setting is in fact much richer than the 1/p normal-
ization when n, p are of the same order of magnitude. Sections 4.2.4 and 4.3
elaborate on this scenario.

4.1.2 Statistical data model

In the remainder of the section, we assume the observation of n independent
data vectors from a total of k classes gathered as X = [x1, . . . ,xn] ∈ Rp×n
where

x1, . . . ,xn1
∼ N (µ1,C1)

...
...

xn−nk+1, . . . ,xn ∼ N (µk,Ck)

2Precisely, up to redefining X = [x1, . . . ,xn] as XP for P = In− 1
n

1n1T
n the data centering

projector.
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which is a k-class Gaussian mixture model (GMM) with a fixed cardinality
n1, . . . , nk in each class.3 The fact that the data are indexed according to
classes simplifies the notation but has no practical consequence in the analysis.

We will denote Ca the class number “a”, so in particular

xi ∼ N (µa,Ca)⇔ xi ∈ Ca (4.3)

for a ∈ {1, . . . , k}, and will use for convenience the matrix

J = [j1, . . . , jk] ∈ Rn×k, ja = [ 0, . . . , 0︸ ︷︷ ︸
n1+...+na−1

, 1, . . . , 1︸ ︷︷ ︸
na

, 0, . . . , 0︸ ︷︷ ︸
na+1+...+nk

]T (4.4)

which is the indicator matrix of the class labels (J is a priori known under
a supervised learning setting and is to be fully or partially recovered under a
semi-supervised or unsupervised learning setting).

We shall systematically make the following simplifying growth rate assump-
tion for p, n and n1, . . . , nk.

Assumption 1 (Growth rate of data size and number). As n → ∞, p/n →
c ∈ (0,∞) and na/n→ ca ∈ (0, 1).

This assumption in particular implies that each class is “large” in the sense
that their cardinalities increase with n.4

Accordingly with the discussions in Chapter 2, from a random matrix “uni-
versality” perspective, the Gaussian mixture assumption will often (yet not al-
ways) turn out equivalent to demanding that

xi ∈ Ca : xi = µa + C
1
2
a zi

with zi ∈ Rp a random vector with i.i.d. entries of zero mean, unit variance,
and bounded higher-order (e.g., fourth) moments.

This hypothesis is indeed quite restrictive as it imposes that the data, up
to centering and linear scaling, are composed of i.i.d. entries. Equivalently, this
suggests that only data which result from affine transformations of vectors with
i.i.d. entries can be studied, which is quite restrictive in practice as “real data”
are deemed much more complex.

Exploring the notion of concentrated random vectors introduced in Sec-
tion 2.7, Chapter 8 will open up this discussion by showing that a much larger
class of (statistical) data models embrace the same asymptotic statistics, and
that most results discussed in the present section apply identically to broader
models of data irreducible to vectors of independent entries.

3Formally, a GMM is rather defined as the distribution
∑k
a=1 πa · N (µa,Ca) for given

proportions π1 + . . .+ πk = 1. It will be more convenient for us, and in general equivalent in
the large n, p setting, to assume the xi’s drawn from one of k possible distributions N (µa,Ca)
with fixed cardinality na for class Ca.

4If we were to relax the assumption by letting, say class Ca, be of much smaller cardinality
than O(n), it would then be necessary to counterbalance this “lack of redundancy” by increas-
ing the growth rate in the “distances” between the statistics of Ca (mean and covariance in
particular) and those of the other classes.
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4.2 Distance and inner-product random kernel
matrices

The most widely used kernel model in machine learning applications is the heat
kernel K = {exp(−‖xi − xj‖2/2σ2)}ni,j=1, for some σ > 0. It is thus natural to
start the large dimensional analysis of kernel random matrices by focusing on
this model.

As mentioned in the previous sections, for the Gaussian mixture model
above, as the dimension p increases, σ2 needs to scale as O(p), so say σ2 = σ̃2p
for some σ̃2 = O(1), to avoid evaluating the exponential at increasingly large
values for p large. As such, the prototypical kernel of present interest is

K =

{
f

(
1

p
‖xi − xj‖2

)}n
i,j=1

, (4.5)

for f a sufficiently smooth function (specifically, f(t) = exp(−t/2σ̃2) for the heat
kernel). As we will see though, it is much desirable not to restrict ourselves to
f(t) = exp(−t/2σ̃2) so to better appreciate the impact of the nonlinear kernel
function f on the (asymptotic) structural behavior of the kernel matrix K.

4.2.1 Main intuitions
Euclidean random matrices with equal covariances. In order to get a
first picture of the large dimensional behavior of K, let us first develop the
distance ‖xi − xj‖2/p for xi ∈ Ca and xj ∈ Cb, with i 6= j.

For simplicity, let us assume for the moment C1 = . . . = Ck = Ip and recall
the notation xi = µa + zi. We have, for i 6= j that “entry-wise”,

1

p
‖xi − xj‖2 =

1

p
‖µa − µb‖2 +

2

p
(µa − µb)T(zi − zj)

+
1

p
‖zi‖2 +

1

p
‖zj‖2 −

2

p
zTi zj . (4.6)

For ‖xi‖ of order O(
√
p), if ‖µa‖ = O(

√
p) for all a ∈ {1, . . . , k} (which

would be natural), then ‖µa − µb‖2/p is a priori of order O(1) while, by the
central limit theorem, ‖zi‖2/p = 1 +O(p−1/2). Also, again by the central limit
theorem, zTi zj/p = O(p−1/2) and (µa − µb)T(zi − zj)/p = O(p−1/2).

As a consequence, for p large, the distance ‖xi − xj‖2/p is dominated by
‖µa−µb‖2/p+2 and easily discriminates classes from the pairwise observations
of xi,xj , making the classification asymptotically trivial (without having to
resort to any kernel method). It is thus of interest consider the situations where
the class distances are less significant to understand how the choices of kernel
come into play in such more practical scenario.

To this end, we now demand that

‖µa − µb‖ = O(1) (4.7)
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which is also the minimal distance rate that can be discriminated from a mere
Bayesian inference analysis, as thoroughly discussed in Section 1.1.3. Since the
kernel function f(·) operates only on the distances ‖xi − xj‖, we may even
request (up to centering all data by, say, the constant vector 1

n

∑k
a=1 naµa) for

simplicity that ‖µa‖ = O(1) for each a.
In this case though, note importantly that ‖µa −µb‖2/p = O(p−1) which is

dominated by the noise terms 2zTi zj/p and ‖zi‖2/p+‖zj‖2/p−2, both of order
O(p−1/2). It thus seems at first that the classes Ca and Cb with ‖µa − µb‖ =
O(1) are too “close” to separate from each other, at least from an “entry-wise”
standpoint by evaluating only the distance ‖xi − xj‖2/p.

However, “matrix-wise”, the intuition appears to be quite different. Indeed,
we have in matrix form{

1

p
‖xi − xj‖2

}n
i,j=1

= 2 · 1n1T
n +

1

p
J
{
‖µa − µb‖2

}k
a,b=1

JT

+ψ1T
n + 1nψ

T − 2

p
ZTZ

+
2

p
(d1T

n + 1ndT)− 2

p
(JMTZ + ZTMJT)− diag(·) (4.8)

where M = [µ1, . . . ,µk] ∈ Rp×k, ψ ∈ Rn is the vector with independent (asymp-
totically Gaussian) entries [ψ]i = 1− ‖zi‖2/p = O(p−1/2), d = diag(JMTZ) ∈
Rn having independent entries of zero mean and variance ‖µa‖2 = O(1) if the
i-th entry corresponds to E[xi] = µa, and the operator X − diag(·) returns
matrix X with diagonal entries replaced by zeros. This matrix of distances is
sometimes referred to in the literature as the Euclidean matrix [Mézard et al.,
1999] of the samples x1, . . . ,xn and is in itself the core of estimation methods
such as multidimensional scaling [Cox and Cox, 2008].

From a spectral viewpoint, observe from (4.8) that the Euclidean matrix is
largely dominated by the matrix 2 · 1n1T

n which has norm 2n. Next in norm
comes the rank-2 matrix ψ1T

n+1nψ
T. The sum of the two matrices being of rank

2 (since 1n is common), these matrices marginally affect the spectrum of the
whole matrix. What is particularly interesting now is to observe that the rest of
the kernel matrix expansion is a “properly normalized” spiked model, as studied
in Section 2.5. Indeed, 2ZTZ/p is a Wishart matrix having limiting spectral
measure the Marc̆enko-Pastur distribution with support of order O(1) and with
all eigenvalues asymptotically close to the limiting support (Theorem 2.11); then
J
{
‖µa − µb‖2

}k
i,j=1

JT/p+2(d1T
n+1ndT)/p−2(JMTZ+ZTMJT)/p is a rank

at most 2k+2 matrix with the fundamental property also of norm O(1) (which is
easily verified from the non-trivial growth rate assumption that ‖µa‖ = O(1)).5
This low rank information matrix is then prone to induce isolated eigenvalues,
and thus structured eigenvectors aligning, to some extent, to linear combinations
of the ja’s class label vectors, in the spectrum of the Euclidean matrix.

5The addition of the low rank matrices 2 · 1n1T
n and ψ1T

n + 1nψT, of norms increasing
with n, p slightly modifies the spiked models studied in Section 2.5 but, as we shall see, with
little (in some cases absolutely no) impact on the model analysis.
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This “mismatch” between the “entry-wise” and “matrix-wise” characterization
in (4.6) and (4.8) may seem surprising at first. Indeed, while ‖µa − µb‖2/p =
O(p−1) is largely dominated by 2zTi zj/p = O(p−1/2) (and thus the class infor-
mation is asymptotically not accessible from any entry ‖xi − xj‖2/p alone),
matrix-wise, the operator norm of J

{
‖µa − µb‖2

}k
a,b=1

JT/p is of the same or-
der as that of 2ZTZ/p. This can be (intuitively) understood as the “redundant”
effect of the multiple independent copies from the same statistical class (of
number of order O(n) under Assumption 1) of xi’s sharing the same mean µa,
for each a, which together “coherently align” into a matrix with all “energy”
gathered in few nonzero eigenvalues (up to k � n); this is opposed to 2ZTZ/p,
the entries of which are all centered (except on the diagonal) with essentially
asymptotically independent fluctuations, that induce a more or less even spread
of the matrix energy in its n eigenvalues. Altogether, the redundancy effect in
the information exactly compensates (in order of magnitude) the weakness in
the information strength carried by each single xi, and results in comparable
information and noise matrix norms.

From the results of Section 2.5 on spiked models, it is thus expected that,
as p, n → ∞ with p/n → c ∈ (0,∞), if the eigenvalues of the low-rank ma-
trix {‖µa − µb‖}ka,b=1 exceed a certain threshold (that depends on c), isolated
eigenvalues (asymptotically) appear in the spectrum of the Euclidean distance
matrix of (4.8).

More importantly, beyond the threshold, the associated dominant eigenvec-
tors are expected to be noisy versions of the eigenvectors of J

{
‖µa − µb‖2

}k
a,b=1

JT/p,
which lie in the span of the columns j1, . . . , jk of J. Precisely, the eigenvec-
tors of the Euclidean matrix shall correlate to specific linear combinations of
the class “label” vectors ja, which is exactly what is observed in practice: the
class information can thus be recovered (in a fully unsupervised manner) from
the dominant eigenvectors. This in particular suggests that, while the class of
any xi cannot be retrieved from a mere pairwise comparison of the distances
‖xi−xj‖, matrix-wise, the eigenvectors of the large Euclidean matrix, the sim-
plest distance-based kernel matrix K, provide this information. This remark is
at the heart of the large dimensional analysis of the spectral clustering algo-
rithms to be discussed in Section 4.4.1.

Including covariance structures. The Euclidean matrix in (4.8) with xi =
µa + zi (and zi having zero mean unit variance independent entries) so far
corresponds to a kernel matrix model K = {f( 1

p‖xi−xj‖2)}ni,j=1 restricted to (i)
Ca = Cov[xi] = Ip and (ii) f(t) = t. A first observation is that, for C1, . . . ,Ck

distinct and of bounded norm, we naturally have tr(Ca −Cb)/p = O(1) (since
tr C/p ≤ ‖C‖ = O(1)) and thus, defining

C◦ =

k∑
a=1

na
n

Ca, and C◦a = Ca −C◦ (4.9)
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the average and centered covariances, respectively, we necessarily have tr C◦a/p =
O(1) for a = 1, . . . , k.

Accounting for covariance matrices, for xi = µa+C
1/2
a zi, in the development

of ‖xi − xj‖2/p, we now have

zTi Cazi/p+ zTj Cbzj/p = tr Ca/p+ tr Cb/p+ [ψ]i + [ψ]j︸ ︷︷ ︸
O(p−1/2)

= 2 tr C◦/p+ tr C◦a/p+ tr C◦b/p+O(p−1/2)

with [ψ]i ≡ zTi Cazi/p − tr Ca/p = O(p−1/2) by a central limit theorem argu-
ment.

As a consequence, here again, tr C◦a/p + tr C◦b/p = O(1) dominates the
noise terms 2zTi C

1/2
a C

1/2
b zj/p = O(p−1/2) and [ψ]i = zTi Cazi/p − tr Ca/p =

O(p−1/2), and classification becomes trivial. For this not to arise, we further
demand

tr C◦a/p = O(p−1/2), (4.10)
that is, “trace-wise” the covariances C1, . . . ,Ck are at most distinct by O(

√
p)

rather than O(p). This appears to be the correct (and again, from the analysis
of Section 1.1.3 in the setting where all eigenvalues of C◦a are of order O(p−1/2),
the Bayesian minimal) regime of non-trivial classification when n, p scale pro-
portionally.

Note that this constraint is quite interesting as, in an effort not to trivialize
classification, it in turn leads to entry-wise trivialize the Euclidean distance
matrix. Indeed, in this setting, for i 6= j,

1

p
‖xi − xj‖2 =

2

p
tr C◦ +

1

p
‖µa − µb‖2 +

1

p
tr(C◦a + C◦b)−

2

p
zTi C

1
2
aC

1
2

b zj

+

(
1

p
zTi Cazi −

1

p
tr Ca

)
+

(
1

p
zTj Cbzj −

1

p
tr Cb

)
+

2

p
(µa − µb)T(C

1
2
a zi −C

1
2

b xj)

=
2

p
tr C◦ +O(p−

1
2 ).

As such, all of the entries are dominated by the same constant 2 tr C◦/p, re-
gardless of the values of a, b.

On the other hand, similar to (4.8), matrix-wise it appears that{
1

p
‖xi − xj‖2

}n
i,j=1

=
2

p
tr C◦ · 1n1T

n +
1

p
J
{
‖µa − µb‖2

}k
a,b=1

JT

+ (ψ + Jt) 1T
n + 1n (ψ + Jt)

T − 2

p
WTW

+
2

p
(d1T

n + 1ndT)− 2

p
(JMTW + WTMJ)

− diag(·) (4.11)



234 CHAPTER 4. KERNEL METHODS

where we denoted W = [C
1
2
1 Z1, . . . ,C

1
2

kZk] ∈ Rp×n, t = {tr C◦a/p}ka=1 ∈ Rk,
[ψ]i = zTi Cazi/p − tr Ca/p = O(p−1/2) for xi ∈ Ca, and similar to previously
used d = diag(JMTW). Again, the matrix is dominated by the O(n)-norm
matrix 2 tr C◦/p ·1n1T

n, but the second dominant term, the O(
√
n)-norm rank-2

matrix (ψ+Jt)1T
n+1n(ψ+Jt)T, is now informative. This matrix being norm-

dominant (once the non-informative rank-1 matrix 2 tr C◦/p · 1n1T
n discarded),

the vector ψ + Jt is directly accessible (for all large p, n). Thus, the dominant
eigenvector of K− 2

p tr C◦1n1T
n gives direct access to the vector entries, that is

to (for Gaussian xi ∈ Ca)

ta + [ψ]i
L
=

1

p
tr C◦a +

√
3

p2
tr C2

a · N (0, 1) (4.12)

where the factor 3 arises from the fourth order moment of the standard real
Gaussian, itself following from the central limit theorem on ‖zi‖2. Since both
tr C◦a/p and

√
3 tr C2

a/p
2 are of order O(p−1/2), non-trivial clustering can be

performed based on the covariance traces directly using the dominant eigenvec-
tor of K − 2

p tr C◦1n1T
n or, since 1n is common to the two dominant matrices,

equivalently on the second dominant eigenvector of the Euclidean matrix.
Setting 2

p tr C◦1n1T
n and (ψ + Jt)1T

n + 1n(ψ + Jt)T aside, we are then left
with the smaller O(1) order terms

− 2

p
WWT +

1

p
J
{
‖µa − µb‖2

}k
i,j=1

JT +
2

p
(d1T

n + 1ndT)

− 2

p
(JMTW + WTMJ)

from which discrimination based on the means µ1, . . . ,µk can be performed.
This is however as far as the Euclidean distance random matrix (with f(t) =

t in a kernel matrix setting) can go. In particular, consider the case where
µ1 = . . . = µk and tr C1 = . . . = tr Ck while the C1, . . . ,Ck are different.
Then, asymptotically, no spectral information can be retrieved from the Eu-
clidean distance matrix which can be used to discriminate the data classes (the
covariance matrices appear in W but the singular vectors of W do not provide
straightforward access to this information).

This is where the limitations of the linear kernel f(t) = t appear. To go
further and be able to classify data with different covariance structures, f must
be taken nonlinear.

Nonlinear kernel models. To analyze generic nonlinear kernels, we start
from the development (4.11) of the Euclidean matrix {‖xi − xj‖2/p}ni,j=1. We
recall that, entry-wise, the matrix is dominated by the constant τp ≡ 2 tr C◦/p.
As such, if f is smooth around τp, a Taylor-expansion can be performed to
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obtain, for i 6= j

f

(
1

p
‖xi − xj‖2

)
= f(τp) + f ′(τp)

(
1

p
‖xi − xj‖2 − τp

)
+
f ′′(τp)

2

(
1

p
‖xi − xj‖2 − τp

)2

+O

((
1

p
‖xi − xj‖2 − τp

)3
)
.

Let us assume for the moment that f ′(τp) 6= 0, that is f does not have
a minimum at (or in a vanishing vicinity of) τp. Since τp is of order O(1)
and f is smooth around τp, all derivatives f (`)(τp) are of order O(1). As for
(‖xi − xj‖2/p− τp)`, from our previous derivations, it is of order O(p−`/2).

As a consequence, (‖xi− xj‖2/p− τp)3 = O(p−3/2) so that, in the best case
the matrix {(‖xi − xj‖2/p − τp)3}ni,j=1 has operator norm of order O(p−1/2).
Given the presence of the full-rank “noise” term −2f ′(τp)WWT/p of spectral
norm O(1) in the Taylor expansion, this third-order term is necessarily negligible
in operator norm and can then be discarded. This is not the case for the second-
order term (‖xi − xj‖2/p− τp)2 that may be of operator norm of order (up to)
O(1) (which, as we shall see, it indeed does). The high-level discussion here
is however only valid provided that f ′(τp) is away from zero: the case where
f ′(τp) = o(1) (with respect to n, p) leads to a fundamentally different behavior
and will be treated subsequently in Section 4.2.4 (for f ′(τp) = 0, the dominant
full-rank matrix in the expansion will no longer be WWT/p: this remark will
fundamentally justify why the very popular Gaussian kernel, as well as most
classical kernels in the machine learning literature, for which f ′(τp) cannot be
close to zero, can be quite sub-optimal in some scenarios).

As such, for f ′(τp) 6= 0, a second-order Taylor expansion of the kernel matrix
K is sufficient to fully characterize the spectral behavior of K in the large n, p
regime.

Remark 4.2 (On data/feature centering). Replacing all xi’s by xi − u for
some fixed vector u should naturally not impede classification. One may thus
freely work with the centered version x◦i = xi − 1

n

∑n
j=1 xj of the data xi. This

choice is particularly relevant when dealing with inner-product kernels of the
type f(xT

i xj) since then f is applied to values surrounding zero (because of the
average

∑
ij(x

◦
i )

T(x◦j ) = 0), and is of course inconsequential for distance kernels
since f(‖xi − xj‖2) = f(‖x◦i − x◦j‖2).

In addition, recall that for Mercer kernels, f(‖xi − xj‖2) = φ(xi)
Tφ(xj) for

some function φ : Rp → H with image in some Hilbert space H (in general
H = Rq with q ∈ N ∪ {+∞}). Then it may seem natural to also center data in
the feature space H. That is, instead of working with K one may equivalently
work with PKP = (ΦP)TΦP where P = In− 1

n1n1T
n is the centering operator.

In addition to (a priori) not affecting the performance of kernel methods,
this centering operation has a major technical advantage: since P1n = 0, from
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the calculus above, many terms irrelevant to classification (such as the dominant
unit-rank term f(τp)1n1T

n) vanish and the study of the centered kernel matrix
PKP is made simpler. However, at this point of the development, it is not so
clear what the impact of this centering operation on non-Mercer kernels really
is.

4.2.2 Main results: distance random kernel matrices
A careful derivation of all terms in the second-order Taylor expansion of K above
is rigorously performed in [Couillet and Benaych-Georges, 2016]. The result is
summarized as follows.

Theorem 4.1 (Couillet and Benaych-Georges [2016]). Let f be three-times
continuously differentiable in the vicinity of τp = 2

p tr C◦ and such that 0 <

lim infp |f ′(τp)| ≤ lim supp |f ′(τp)| <∞. Further assume the growth rates6

M = [µ◦1, . . . ,µ
◦
k] = O‖·‖(1), µ◦a = µa −

k∑
b=1

nb
n
µb

t = [t1, . . . , tk]T = O‖·‖(1), ta =
1
√
p

tr(Ca −C◦)

S = {Sab}ka,b=1 = O‖·‖(1), Sab =
1

p
tr CaCb.

Then, with previous notations, as p, n→∞ with p/n→ c ∈ (0,∞) and na/n→
ca ∈ (0, 1),

‖K− K̃‖ a.s.−−→ 0,

where K =
{
f
(

1
p‖xi − xj‖2

)}n
i,j=1

and

K̃ = −2f ′(τp)

(
1

p
WTW + VAVT

)
+ (f(0)− f(τp) + τpf

′(τp)) In

with W = [W1, . . . ,Wk], Wa ∈ Rp×na , for a = 1, . . . , k,

V =

[
J
√
p
,

WTM
√
p

, ṽ, ψ,
√
pψ2, ψ̃

]
, ṽ =

{
1
√
p
WT

aµ
◦
a

}k
a=1

,

ψ̃ = diag(ta1na)ψ, ψ =
1

p
{‖wi‖2 − E[‖wi‖2]}ni=1

with ψ2 ≡ [ψ2
1 , . . . , ψ

2
n] and

A = An + A√n + A1

6Note importantly that the definition of covariance “shape” S here is in fact different from
the term tr(E2) in (1.7) where the covariance difference E was evaluated. As will become
clear in (4.13) below, the condition S = O‖·‖(1) is in fact far from (the Neyman-Pearson)
optimum.
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with Anα ∈ R(2k+4)×(2k+4) the symmetric matrices of operator norm of order
O(nα) defined as

An = − f(τp)

2f ′(τp)
p

[
1k1

T
k 0
∗ 0

]

A√n = −1

2

√
p



{ta + tb}ka,b=1 0 0 1k 0 0

∗ 0 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0



A1 =



A1,11 Ik −1k − f ′′(τp)
2f ′(τp)t − f ′′(τp)

4f ′(τp)1k − f ′′(τp)
2f ′(τp)1k

∗ 0 0 0 0 0
∗ ∗ 0 0 0 0

∗ ∗ ∗ − f ′′(τp)
2f ′(τp) 0 0

∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0


A1,11 =

{
−1

2
‖µa − µb‖2 −

f ′′(τp)

4f ′(τp)
(ta + tb)

2 − f ′′(τp)

f ′(τp)
Sab

}k
a,b=1

.

Understanding this result at first glance may seem a daunting task. In the
following, we will sequentially show that the result can first be simplified and
most importantly that many more intuitions arise from its raw mathematical
statement than one may think.

As a preliminary observation, note that the first two leading-order terms
in K̃ are VAnVT = O‖·‖(n) and VA√nVT = O‖·‖(

√
n). Both are (i) low

rank matrices and in particular (ii) orthogonal to the projection matrix P. As
a consequence of Remark 4.2, the following corollary provides an asymptotic
equivalent for the centered distance random kernel matrix PKP which takes a
much simpler form.

Corollary 4.1 (Centered distance random kernel matrix). With the same no-
tations and assumptions as in Theorem 4.1, as p, n→∞ with p/n→ c ∈ (0,∞)
and na/n→ ca ∈ (0, 1),

‖PKP−PK̃P‖ a.s.−−→ 0

where

K̃ = −2f ′(τp)

(
1

p
WTW + VAVT

)
+ (f(0)− f(τp) + τpf

′(τp)) In

with W = [W1, . . . ,Wk], Wa ∈ Rp×na , for a = 1, . . . , k,

V =

[
J
√
p
,

WTM
√
p

, ṽ, ψ

]
,
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and

A = A1 =


A1,11 Ik −1k − f ′′(τp)

2f ′(τp)t

∗ 0 0 0
∗ ∗ 0 0

∗ ∗ ∗ − f ′′(τp)
2f ′(τp)


A1,11 =

{
−1

2
‖µa − µb‖2 −

f ′′(τp)

2f ′(τp)
tatb −

f ′′(τp)

f ′(τp)
Sab

}k
a,b=1

.

Remark 4.3 (Loss of first informative eigenvector due to centering). Note that,
compared to Theorem 4.1 without centering, in the asymptotic approximation of
PKP in Corollary 4.1 the information on the covariance traces t (in A√n in
Theorem 4.1), which takes the form ψ + Jt as in (4.12), is now lost. This is,
however, not really an issue: this information is readily accessible through a
simple evaluation of the norms ‖x◦i ‖2 to the same accuracy.

Now, to fully understand this slightly simplified version of the result, let us
make a list of successive observations:

• discarding the term proportional to In remaining after centering (which
follows from the treatment of the diagonal elements of K and is of course
inconsequential to the eigenvector structure of K̃), K̃ is the sum of the
full-rank O(1)-norm 1

pWTW matrix and of the low rank (up to 2k + 2)
matrix VAVT. This matrix is of the family of spiked random matrix
models and can be studied as per Section 2.5: its asymptotic spectrum,
eigenvalue positions, phase transitions, “angles” between its eigenvectors
and those of VAVT, etc., can all be studied.

• the matrix V is built in such a way that its vector components are of
O(1) norm and asymptotically “essentially” orthogonal (in the sense that
VT
·aV·b

a.s.−−→ 0 for a 6= b as p, n → ∞). Besides, V mainly contains two
types of submatrices: the class (informative) label matrix J and the “noise”
(uninformative) remaining random vectors of zero mean. The latter are
claimed uninformative in a spectral sense, as the class-wise means of their
entries are all zero (only the variances of their entries depend on the classes,
but a spectral method cannot directly detect this information).

• being a spiked model, the relevance of the dominant eigenvectors of K̃
for classification depends on the ratio between the largest “informative”
eigenvalues of VAVT and the typical “spread” of the eigenvalues of the
noise matrix 1

pWTW. The useful vector here is J which contains the class
indicators for each data vector xi. As such, by examining the block entry
(1, 1) of the matrices Anα above, and in particular the block entry A1,11

in the centered case, it appears that, asymptotically, the eigenspectrum of
the distance random kernel matrix K only depends on:
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– the first three derivatives f(τp), f ′(τp) and f ′′(τp) of the function f
around the “concentration point” τp;

– the statistical information vector t and the matrices M and S.

As a consequence of these observations, it appears that when performed
on large dimensional data, spectral classification methods based on the kernel
matrix K do not exploit any other information than those contained in M, t
and S. Besides, since K̃ only depends on f(τp), f ′(τp) and f ′′(τp), somewhat
surprisingly, most classification methods based on K asymptotically perform
equivalently for f taken as a polynomial of order two having the same first
derivatives at τp. We will see in the sequel that this “universality” result holds
even more generally beyond the (centered) distance kernel and smooth f dis-
cussed here, and leads to improved “compressed and/or quantized” kernel scheme
of immediate practical interest in Section 4.3.

Now, further note that the coefficients f(τp), f ′(τp) and f ′′(τp) are prefactors
of M, t, S, as well as of the (noisy) random matrix WTW. This leads to several
fundamental remarks:

• letting f ′′(τp) = 0, the term S vanishes from K̃. As such, spectral meth-
ods based on K cannot, in this setting, distinguish different classes from
their covariance “shapes” (but they can still discriminate clusters having
different covariance traces, if no centering is applied, see Remark 4.3).
This in particular explains why spectral clustering with the linear kernel
f(t) = t does not allow to distinguish Gaussian mixtures of equal means
and covariance traces;

• more fundamentally, the analysis reveals a non-trivial fact: letting f ′(τp)→
0, the noisy term −2f ′(τp)W

TW/p vanishes, while some of the compo-
nents of the informative term −2f ′(τp)VAVT remains; this is because
A1,11 contains terms having f ′(τp) in the denominator. Thus, in this
f ′(τp) → 0 limit, if additionally t = o‖·‖(1) (e.g., for normalized data
vectors such that ‖xi‖ =

√
p for all i, of particular interest in a subspace

clustering context [Couillet and Kammoun, 2016]), K̃ becomes essentially
(asymptotically) deterministic with only the information on covariance
shape S remaining: this indicates that (asymptotic) perfect classification
can be achieved in this case. An application of this key remark will appear
in the context of LS-SVM classifiers in Figure 4.21 later in Section 4.4.3.

The last remark is quite surprising: it indicates that, for f a kernel function
having a local extremum (minimum or maximum) at τp, up to data normaliza-
tion, for S = O‖·‖(1) as requested in Theorem 4.1, the classification becomes
trivially easy. This local extremum condition is not met for any commonly
used monotonously decreasing function in the machine learning literature, such
as the Gaussian kernel function f(t) = exp(−t/2). This drastically changes the
perspective of kernel methods for which one usually requests that f define a pos-
itive definite kernel, i.e., that f be such that there exists a function φ : Rp → Rq
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for which f(‖xi − xj‖2) = φ(xi)
Tφ(xj). For f satisfying f ′(τp) = 0, it is quite

unlikely that f defines a positive definite kernel.
Going further, the fact that the classification becomes trivial means that,

instead of requiring M, t,S to be of order O(1), it might be possible to perform
classification for more stringent discriminative rates. Since M and t are already
rate-optimal in the Neyman-Pearson test analysis from (1.7), only the growth
rate of S can be improved. More precisely, denote C◦a ≡ Ca−C◦ and assume now
that C◦a = O‖·‖(p

−1/2) rather than O(1) (this, in passing, readily implies that
ta = tr C◦a/

√
p = O(1) achieves the Bayes optimal rate when the eigenvalues of

C◦a are of the same order). We then have

Sab =
1

p
tr CaCb =

1

p
tr
[
(C◦)2

]
+

1

p
tr C◦(C◦a + C◦b) +

1

p
tr C◦aC

◦
b (4.13)

where we recall C◦ ≡
∑k
a=1

na
n Ca = O‖·‖(1) so that 1

p tr
[
(C◦)2

]
= O(1) and

1
p tr C◦(C◦a + C◦b) ≤ ‖C◦‖(ta + tb)/

√
p = O(p−1/2). Based on this expan-

sion, we show in the next sections that, for a careful choice of f , it is indeed
possible, in the n ∼ p regime, to perform non-trivial classification down to
S = 1

p tr(C◦)21k1
T
k + O‖·‖(p

−1/2) (which is still not Neyman-Pearson optimal,
as recall from (1.7), but likely the optimal rate that unsupervised classification
methods can achieve).

Remark 4.4 (Estimation of τp). The above results suggest that, depending
on the discriminating statistical information M, t,S that practitioners wish to
emphasize, it suffices to tune the kernel function f by properly selecting its
successive derivatives at τp. This thus demands an estimate of τp in the large
n, p setting.

Since τp is the common limiting distance between all pairs of data vectors,
it easily follows that, as n, p→∞,

1

n(n− 1)

n∑
i,j=1

1

p
‖xi − xj‖2 − τp = O(p−1)

in probability. As such, τp can be easily and accurately estimated from the
(unlabeled) data. For future use, we stress here the importance of the small
fluctuations (of order 1/p) of the estimate which, in the above decomposition of
K in matrices of successive orders 1, 1/

√
p, 1/p, etc., corresponds to a small

(second) order fluctuation. One may thus freely substitute τp by its estimate
without affecting the statements of the previous theorem and corollary.

Remark 4.5 (The inner-product kernel case). The model K = {f((x◦i )
Tx◦j/p)}ni,j=1

(with centered data vector x◦i as per Remark 4.2) gives an inner-product kernel
that is simpler to deal with. Note indeed that ‖xi−xj‖2/p = ‖x◦i ‖2/p+‖x◦j‖2/p−
2(x◦i )

Tx◦j/p, which contains the inner-product as one of the three elements. The
Taylor expansion of the inner-product model involves less terms and is performed
around the limit (equal to 0) of (x◦i )

Tx◦j/p. In particular, the covariance trace
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information t = {tr C◦a/
√
p}ka=1 disappears in the (asymptotic) expansion of

inner-product kernel matrices and, as a consequence, the inner-product kernels
are not able to separate two “nested balls” N (0, (1 ± ε/√p)Ip) with ε = O(1)
while the distance kernel can.7 Figure 4.1 illustrates this remark by displaying
the eigenvalues and top eigenvectors of distance and inner-product kernel ma-
trices, respectively. While an informative spike and the associated eigenvector
are observed for the distance kernel, this is not the case for the inner-product
kernel.

0 0.5 1 1.5 2

0 0.5 1 1.5 2

(a) Eigenvalues of distance kernel

−1.5 −1 −0.5 0

(b) Eigenvalues of inner-product kernel

(c) Top eigenvector of distance kernel (d) Top eigenvector of inner-prod kernel

Figure 4.1: Eigenvalues and top eigenvector of recentered distance f(‖x◦i −
x◦j‖2/p) and inner product f((x◦i )

Tx◦j/p) kernel matrices PKP, with f(t) =
exp(−t/2), p = 1 024, n = 512, µ = 0 and Ca = (1 + 5 · (−1)a/

√
p)Ip for

a ∈ {1, 2}, x1, . . . ,xn/2 ∈ C1 and xn/2+1, . . . ,xn ∈ C2. Link to code: Matlab
and Python.

4.2.3 Motivation: α-β random kernel matrices

We have seen above that, with the particular choice f ′(τp) = 0, the classification
becomes (asymptotically) trivial if the eigenvalues of S = {tr CaCb/p}ka,b=1 are
of order O(1). In a two-class setting, this is equivalent to imposing tr(C1 −
C2)2/p = O(1) (which is also the normalized Frobenius distance ‖C1−C2‖2F /p

7For this “nested balls” problem, the covariance “shape” S = 121T
2 + O‖·‖(p

−1/2) is not
discriminative.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.2/html/dist_kernel.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.2/dist_kernel.ipynb
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between symmetric covariances C1 and C2). Recall again from (1.7) that it is
theoretically possible to discriminate covariance matrices with smaller Frobenius
distance. As we shall see next, by letting f ′(τp) be close to zero, in the n ∼ p
regime, one can relax the constraint on S to

S =
1

p
tr(C◦)21k1

T
k +O‖·‖(p

−1/2)

that is, to be able to discriminate data classes under the weaker condition

tr(Ca −Cb)
2 = O(

√
p).

However, in the random kernel models discussed in Section 4.2 (with f indepen-
dent of n, p), choosing f ′(τp) = 0 simultaneously discards the information in M
about the class means.

A careful analysis of our previous derivations reveals that the information
about M = O‖·‖(1) and S = 1

p tr(C◦)21k1
T
k + O‖·‖(p

−1/2) can be set on “even
grounds” by letting f depend on p in such a way that

f(τp) = O(1), f ′(τp) = O(p−
1
2 ), f ′′(τp) = O(1).

That is, instead of requesting f ′(τp) = 0, we merely demand

f ′(τp) = α/
√
p, and f ′′(τp) = 2β (4.14)

(where the factor 2 is here for future convenience) for some α, β ∈ (0,∞).
Examples of such kernel functions include

f(t) = β

(
t− τp +

α

2β
√
p

)2

, f(t) = exp

(
−
(
t− τp +

α

2β
√
p

)2
)
.

The first function may be seen as a generalized second-order polynomial kernel,
and the second as a generalized (and properly normalized) Gaussian kernel.

Note importantly that, from Remark 4.4, τp can be accurately estimated by
τ̂p up to an error of order O(p−1). Therefore, writing f ′(τp) ' f ′(τ̂p) + (τp −
τ̂p)f

′′(τ̂p) with f ′(τp) = O(p−1/2) and f ′′(τ̂p) = O(1), the relative estimation
error (f ′(τp)−f ′(τ̂p))/f ′(τp) vanishes at a rate of O(p−1/2). This means that one
can still accurately select f to fulfill the above conditions on derivatives, with
the estimate τ̂p proposed in Remark 4.4 rather than with the a priori unknown
τp.

For simplicity of analysis (see Remarks 4.2 and 4.5), in the next develop-
ments, we will focus on an inner-product random kernel matrix rather than a
distance kernel, and account for the feature centering matrix P, i.e., we consider
the kernel model

PKP = P

{
f

(
1

p
(x◦i )

Tx◦j

)}n
i,j=1

P (4.15)
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where we recall that x◦i = xi − 1
n

∑n
j=1 xj and P = In − 1

n1n1n. This double-
centering (of the data in their ambient and feature spaces) has the advantage of
(i) ensuring that the inner products concentrate at 0 and (ii) also of eliminating
many terms in the Taylor expansion around 0 thanks to the projection matrix P
(as in Corollary 4.1 versus Theorem 4.1). We thus now demand that f depend
on p and

f(0) = O(1), f ′(0) =
α
√
p
, f ′′(0) = 2β (4.16)

with α, β ∈ R fixed with respect to p. Here, typical kernel functions are

f(t) = β

(
t+

α

2β
√
p

)2

, f(t) = exp

(
−
(
t+

α

2β
√
p

)2
)
.

In terms of data statistics, we consider here the same setting for the means
M = O‖·‖(1) (which is already Bayesian optimal) as in the previous section.
For covariances though, recalling the expansion of Sab = tr CaCb/p in (4.13),
we introduce the centered and rescaled (by √p) covariance “shape” information

S◦ =

{
1
√
p

tr C◦aC
◦
b

}k
a,b=1

for which we demand S◦ = O‖·‖(1), rather than O(
√
p) as in the previous setting

in (4.13).

4.2.4 Main results: α-β kernel random matrices

For the inner-product random kernel matrix K above, we have the following
asymptotics.

Theorem 4.2 (α-β kernel matrix model, Tiomoko Ali et al. [2018]). Let K ∈
Rn×n be defined as in (4.15) with xi ∼ N (µa,Ca) for xi ∈ Ca satisfying the
following growth rate conditions

M = O‖·‖(1), S◦ =
1
√
p
{tr C◦aC

◦
b}ka,b=1 = O‖·‖(1)

Then, as n, p→∞ with p/n→ c ∈ (0,∞),∥∥∥√p (PKP + (f(0) + (tr C◦/p) · f ′(0))P)−PK̃P
∥∥∥ a.s.−−→ 0

where

K̃ = α · 1

p
WTW + β ·Φ + VAVT

A =

[
α ·MTM + β · S◦ αIk

αIk 0

]
, V =

[
J√
p ,

WTM√
p

]
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and

Φ
√
p

=

{(
1

p
wT
i wj

)2
}n
i,j=1

−
{

1

p2
tr(CaCb)1na1

T
nb

}k
a,b=1

− diag(·) (4.17)

where we recall that Z−diag(·) sets the diagonal entries of the matrix Z to zero.

It is worth mentioning that, similar to Remark 4.5 for the “classical” inner-
product kernel with f independent of p, the covariance trace information t also
disappears in the α-β inner-product kernel model and the covariance “shape”
information S in Theorem 4.1 appears here in the form of S◦.

But it is even more fundamental to see here that, by reducing the amplitude
of f ′(τp) by a factor √p, the formerly leading noise term WTW/p in Theo-
rem 4.1 has decreased a √p order of magnitude and its norm is now of the same
order as that of a second-order noise term Φ. Thus, K can be here seen to
asymptotically behave like a different and very special spiked model, for which
the full rank (or noise) matrix is the sum αWTW/p + βΦ constituted of the
non-independent matrices W and Φ.

Individually, WTW/p has a limiting spectrum akin to the Bai-Silverstein
law in Theorem 2.6, with C◦ as population covariance (or to the Marc̆enko-
Pastur law for C◦ = Ip). Indeed, different from Theorem 4.1 with limiting
spectrum characterized by the mixture covariance model in Theorem 2.8, taking
S◦ = O‖·‖(1) here ensures that the covariance matrices C1, . . . ,Ck cannot be
too different from the average C◦ (in particular all covariance differences C◦a =
Ca − C◦ are, in operator norm, of order O(p−1/4)) and it can then be shown
that the limiting spectrum of WTW/p is the same as if all columns of W had
the same covariance matrix C◦. This largely simplifies the theoretical analysis.

As for Φ defined in (4.17), note that it has identically distributed entries
(but on the diagonal) of zero mean, which are however not independent. Yet, it
can be shown [Kammoun and Couillet, 2017] that the limiting spectrum of Φ is
indeed a semicircle law, similar to the Wigner case in Theorem 2.5, so as if the
entries were independent ; there is nonetheless a major difference between the
spectrum of Φ and that of a standard Wigner matrix with i.i.d. entries: Φ may
present up to two isolated eigenvalues outside the semicircle bulk. This unfolds
from the fact that the deterministic equivalent for the resolvent (Φ− zIn)−1 is
of the form

(Φ− zIn)−1 ↔ m(z)In +
Ω2m3(z)

c2 − Ω2m2(z)
· 1n1T

n

n
(4.18)

where

ω =

√
2

p
tr
[
(C◦)2

]
, Ω =

√
2

p
tr [(C◦)4]

and m(z) is the Stieltjes transform of the (rescaled) semicircle law with support
[−2ω/

√
c, 2ω/

√
c], solution to

m(z) = − 1

z + c−1ω2m(z)
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and with associated (limiting) spectral measure of density

µ(dx) =
c

2ω2π

√
(4ω2/c− x2)+ dx.

In particular, if Ω ≤
√
cω, the contribution 1n1T

n/n in the deterministic equiv-
alent does not induce a (symmetric) pair of isolated “spikes”8 in the eigenspec-
trum of Φ. If instead Ω >

√
cω, spiked eigenvalues will be found at the positions

±(c−1Ω + ω2/Ω), see Figure 4.2 for an illustration.9 Yet, this is of little rele-
vance in Theorem 4.2 here since PΦP naturally discards the contribution from
1n1T

n and thus no spurious spike appears in the spectrum of PΦP.
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Figure 4.2: Eigenvalues of Φ versus the (rescaled) semicircle law, for p = 800
and n = 2 400. Two spikes appear here which carry no information, with black
crosses indicating their locations at ±(Ω/c+ ω2/Ω). Link to code: Matlab and
Python.

Now, the main issue in determining the limiting spectrum of the sum α ·
WTW/p+β ·Φ (and its centered version) is to deal with the non-trivial depen-
dence between W and Φ. Intuitively, note that the main “driving randomness”
in WTW/p are the first-order fluctuation of the inner products wT

i wj/p (for
i 6= j around 0), while for Φ this driving randomness is the second-order fluctua-
tion of the type (wT

i wj/p)
2−E[(wT

i wj/p)
2]. These two fluctuations (of different

order) essentially “behave” independently in the large n, p limit. Rigorously, it
can be proved that the limiting spectral measure of αWTW/p + βΦ is the

8With a slight abuse of terminology, we still refer the (possible) isolated eigenvalues outside
the semicircle bulk as “spikes”, which should be distinguished from the “classical” spiked model
discussed in Section 2.5: here, Φ is a “pure noise” random matrix, and the spikes are non-
informative and not due to the low-rank (additive) structure in Φ as in Section 2.5, but due
to the intrinsic independence between its entries.

9This follows from solving the determinant equation det(Φ− zIn) = 0.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.2/html/alpha_beta_kernel.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.2/alpha_beta_kernel.ipynb
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free additive convolution (recall from Definition 5) of the limiting measures of
each component, i.e., the same limiting distribution as for the independent sum
αZT

1 Z1/p+ βZ2/
√
p for Z1 with i.i.d. zero mean columns of covariance C◦ and

Z2 an independent symmetric matrix of i.i.d. zero mean unit variance entries
(up to symmetry and with zeros on the diagonal). So in some sense, through
the lens of (limiting) spectral measure, the two dependent random matrices
WTW/p and Φ behave as if they were “freely” independent in the large n, p
limit.

Precisely, we have the following result.

Theorem 4.3 (Limiting spectrum of α-β kernel matrix model). Under the con-
ditions of Theorem 4.2, the empirical spectral measure µǨ of Ǩ ≡ √p(PKP +
(f(0) + (tr C◦/p) · f ′(0))P) (after centering and rescaling as per Theorem 4.2)
satisfies µǨ−µ → 0 weakly, for a probability measure µ defined by its Stieltjes
transform m(z) as the unique solution to

1

m(z)
= −z +

α

p
tr C◦

(
Ip + c−1αm(z)C◦

)−1 − β2c−1ω2m(z)

where we recall that ω =
√

2
p tr(C◦)2.

We recognize a semicircle equation for α = 0 and a Bai-Silverstein equa-
tion in Theorem 2.6 for β = 0. Figure 4.3 illustrates the transition from the
Marc̆enko-Pastur to the semicircle law for the eigenvalues of K with different
values of α, β.

Back to the statement of Theorem 4.2, note now that α and β also weigh
the relative impact of the statistical means (through MTM) and covariances
(through S◦) of the data. The spectrum of K thus has two extreme scenarios:
for β = 0, the main bulk of K forms a Marc̆enko-Pastur distribution and isolated
eigenvalues can be found only if MTM is large, with the information in S◦

unused; for α = 0, the main bulk is a semicircle law, with isolated eigenvalues
only induced by S◦ and the information in M being discarded.

The α-β kernel may thus be claimed “optimal” in the sense that it allows
for a separation of the statistical classes at the minimal discriminating rate for
MTM and quasi-optimal rate for S◦ (at least bringing a significant improvement
from the kernel models in the previous sections). This is of particular interest
in scenarios where the covariance information is critical to classification, while
not discarding the (usually equally important) mean statistics.

While being (quasi-)optimal in its discriminating power, the “α-β” kernel
still has its limitations: (i) it acts solely in the neighborhood of zero so that all
functions f having the same derivatives at zero produce asymptotically equiva-
lent kernels, regardless of their behavior on the rest of R; (ii) this differentiability
request automatically discards a large class of kernel functions of more practical
interest, such as the sign function, the rectified linear unit (ReLU) in neural
networks, etc.
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Figure 4.3: Eigenvalues of Ǩ as defined in Theorem 4.3 versus the limiting
laws, for p = 512, n = 1 024, with zero mean and identity covariance, f(t) =
β(t + α

2β p
−1/2)2. The spectrum has a Marc̆enko-Pastur-like shape for large α

and a semicircle-like shape for large β. Link to code: Matlab and Python.

The next section generalizes the idea of the “α-β” kernel, however with a
more “proper” scaling of the kernel function. That is, we shall now demand
that f operates on xT

i xj/
√
p which does not converge, rather than on xT

i xj/p
which “concentrates” around zero for large p. Quite astonishingly, we will see
in Section 4.3 that the α-β kernel with f restricted to a (smooth) second-order
polynomial (i) in fact coincides with a “properly scaling” polynomial kernel and
that (ii) in some respect, is the optimal kernel in the class of nonlinear and
possibly non-smooth kernels.

4.3 Properly scaling kernel model

4.3.1 Motivation

The concentration of Euclidean distances ‖xi − xj‖2/p − τp → 0 or of inner
products xT

i xj/p → 0, as n, p → ∞ discussed in Section 4.2.2 and 4.2.4, is
advantageous and convenient from a theoretical analysis perspective as it al-

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.2/html/alpha_beta_kernel.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.2/alpha_beta_kernel.ipynb
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lows for (entry-wise) Taylor expansions of nonlinear kernel functions. On the
downside though, these concentration phenomena strongly restrict the “effective
impact” of the kernel function f : as shown previously, only the first two suc-
cessive derivatives of f at point τp or zero really affect the spectral behavior of
kernel matrices (and, as a result, the classification or regression performance of
kernel-based methods).

This normalization 1/p thus might be interpreted as an incorrect “scaling”
for ‖xi − xj‖2 or xT

i xj . For the latter, it is in fact rather immediate, from
central limit arguments, that, assuming E[xi] = 0 for all i, one has xT

i xj =
O(
√
p) for i 6= j; it is therefore more natural to evaluate f at (x◦i )

T(x◦j )/
√
p for

x◦i = xi − 1
n

∑n
j=1 xj , rather than (x◦i )

T(x◦j )/p. In this case, the whole domain
of f (which we assumed defined on the full real axis) can be exploited – only
with higher probability in the O(1) vicinity of zero (as opposed to the single
point at zero in the case of (x◦i )

T(x◦j )/p). Similarly, for ‖xi−xj‖2, although not
commonly considered in the literature, it turns out, in the large n, p regime, to
be more appropriate to center and scale it as (‖xi − xj‖2 − pτp)/

√
p.

This section precisely studies these “properly scaling” kernels which, as op-
posed to previous models, cannot be dealt with by means of entry-wise Tay-
lor expansions. A more refined approach, based on orthogonal polynomials
for the Gaussian measure (arising here as a consequence of the central limit
(x◦i )

T(x◦j )/
√
p

d−→ N (0, σ2)), needs to be devised.

Surprisingly enough, despite the initial motivation to avoid concentrating the
impact of f at a single point (τp or zero, in which case the kernel matrix depends
asymptotically on f only via its successive derivatives at that point), we will
see in the sequel that, under the same non-trivial classification conditions (as
for the α-β kernel in Section 4.2.4), the asymptotics of these “properly scaling”
kernel matrices still only depend on two or three key parameters of f and are
thus essentially no more powerful than the previously studied kernels. Yet, a
few important advantages are worth discussing; as we shall see:

• properly scaling kernels automatically detect differences in covariance ma-
trices down to the rates of the α-β kernels discussed in Section 4.2.4; in
this respect, they are more powerful than the conventional Gaussian heat
kernels discussed in Section 4.2.2;

• properly scaling kernel functions f need not be smooth and in particular
they need not be differentiable at τp or zero. This has the substantial
advantage that “discrete” kernels, e.g., f(t) ∈ {0, 1,−1} (such as the sign
or a binary/ternary thresholding kernels), can be shown to yield the same
(asymptotic) performance as the “optimal” α-β kernels when properly de-
fined.
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4.3.2 Setting

For simplicity and readability, we will exclusively focus on the inner-product
kernel K, the (i, j) entry of which is given by

[K]ij =
1
√
p
f

(
1
√
p

(x◦i )
T(x◦j )

)
δi 6=j . (4.19)

Note here the importance of discarding the diagonal elements: since ‖xi‖2/
√
p =

O(
√
p), the diagonal elements would in the limit evaluate f at ∞. The leading

1/
√
p term is here to ensure that the main support of K is of order O(1), for

most functions f that does not depend of p.
We will show that, under the same (optimal) growth rate assumptions on the

data statistics as in Section 4.2.4 , and under some mild regularity conditions
for f , the spectrum of K defined in (4.19) (asymptotically) still only depends
on three parameters which are, however, no longer the derivatives of f at zero,
but three (generalized) moments of f for the Gaussian measure.

The loss of “concentration” of (x◦i )
T(x◦j )/

√
p (around zero), which instead

spreads out like a Gaussian distribution, clearly breaks down the Taylor expan-
sion approach used so far to assess the kernel spectral behavior in the large n, p
regime. The cornerstone idea in this setting is to precisely exploit the fact that
(x◦i )

T(x◦j )
√
p converges in law to a Gaussian random variable so that K may

be viewed in the limit as a matrix with dependent Gaussian entries to which
f is applied. The main problem posed by this non-trivial dependence is that
many elementary tools to determine the limiting eigenvalue distribution or a
deterministic equivalent for the resolvent now collapse. As an instance, it is not
possible here to extract a row or column from K (or from any simple random
matrix asymptotically equivalent to K) while ensuring its independence with
respect to the other columns, as has been done in Section 2.2.

In the seminal works of [Cheng and Singer, 2013, Do and Vu, 2013], the
authors manage to work around the problem by expanding f(N (0, 1)) in its
series of Hermite polynomials; i.e., by approximating f as a sum of orthogonal
polynomials with respect to the Gaussian measure. In essence, the orthogonal
polynomials restore the aforementioned lost independence between the rows or
columns of K. Of course, the relevance to use orthogonal polynomials with
respect to the Gaussian measure arises from (x◦i )

T(x◦j )/
√
p being essentially

Gaussian in the p→∞ limit.
For ease of presentation, we let here x1, . . . ,xn ∈ Rp be drawn independently

from one of k classes C1, . . . , Ck (of cardinality n1, . . . , nk) with now

xi ∈ Ca ⇔ xi = µa + (Ip + Ea)
1
2 zi (4.20)

for zi ∈ Rp having i.i.d. zero-mean, unit-variance, κ-kurtosis, and sub-exponential
entries [Vershynin, 2018], so that C◦ = Ip. The non-trivial classification assump-
tions under this setting are as follows (in essence, the same as for the α-β kernel
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in Section 4.2.4).

M = [µ◦1, . . . ,µ
◦
k] = O‖·‖(1), µ◦` = µ` −

k∑
a=1

na
n
µa

t = [t1, . . . , tk]T = O‖·‖(1), ta =
1
√
p

tr C◦a =
1
√
p

tr Ea

S◦ = {S◦ab}ka,b=1 = O‖·‖(1), S◦ab =
1
√
p

tr C◦aC
◦
b =

1
√
p

tr EaEb.

It will appear convenient in the following to first consider the “null model”, i.e.,
µa = 0 and Ea = 0 for each a, before discussing the general case as a (in fact
rather not immediate) deformation of the null model.

Under the null model, we write K = KN , defined as

[KN ]ij = δi6=jf(zTi zj/
√
p)/
√
p (4.21)

for which zTi zj/
√
p

d−→ N (0, 1) as a result of the central limit theorem.
As announced, in order to analyze the spectral behavior of the null model

KN , we will resort to the theory of orthogonal polynomials and particularly of
the class of Hermite polynomials (for Gaussian measure) [Lozier, 2003]. A short
introduction to the basic concepts of the theory is thus needed.

For a probability measure µ, we define the set of orthogonal polynomials
{P`(x), ` = 0, 1, . . .} with respect to the scalar product 〈f, g〉 =

∫
f · g dµ as

the result of the Gram-Schmidt orthogonalization procedure on the monomials
{1, x, x2, . . .} with P0(x) = 1, P` of degree ` and 〈P`1 , P`2〉 = δ`1−`2 . By the
Riesz-Fisher theorem [Rudin, 1964, Theorem 11.43], for any function f ∈ L2(µ),
the set of square-integrable functions with respect to 〈·, ·〉, one can formally
expand f as

f(x) ∼
∞∑
`=0

a`P`(x), a` =

∫
f(x)P`(x)µ(dx) (4.22)

where “f ∼
∑∞
`=0 Pl” indicates that ‖f −

∑N
`=0 P`‖ → 0 as N → ∞ with

‖f‖2 = 〈f, f〉.

For our kernel matrix purpose, we demand that f be sufficiently “smooth”
so that it can be well approximated by a sequence of orthogonal polynomials
with respect to “close-to-Gaussian” measures.

Assumption 2. For each p, let ξp = zTi zj/
√
p and let {P`,p(x), ` ≥ 0} be the

set of orthogonal polynomials with respect to the probability measure µp of ξp.
For f ∈ L2(µp) for each p, we denote

f(x) ∼
∞∑
`=0

a`,pP`,p(x),

with a`,p defined similarly in (4.22) such that
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(i)
∑∞
`=0 a`,pP`,p(x)µp(dx) converges in L2(µp) to f(x) uniformly over large

p; and

(ii) as p → ∞,
∑∞
`=1 |a`,p|2 → ν ∈ [0,∞), and, for ` = 0, 1, 2, a`,p → a` with

a0 = 0.

Note that Assumption 2 does not impose any constraint on the distribution
of the random vector zi (or on the data xi), but only on the inner product
ξp = zTi zj/

√
p. Different from the Gaussian mixture model studied in previous

sections, here one may go beyond the Gaussian setting and consider rather
generic random vector zi having i.i.d. zero-mean, unit-variance, κ-kurtosis, and
sub-exponential entries. As we shall see below, non-informative spikes may also
appear in the eigenspectrum of the null model KN (as in Figure 4.2 for α-β
kernels), the location of which depends on the kurtosis κ of the distribution of
zi.

Since ξp → N (0, 1), the limiting parameters a0, a1, a2 and ν correspond to
(generalized) moments of the standard Gaussian measure involving f . Precisely,

a0 = E[f(ξ)], a1 = E[ξf(ξ)],
√

2a2 = E[(ξ2 − 1)f(ξ)], ν = Var[f(ξ)] (4.23)

for ξ ∼ N (0, 1) and therefore ν ≥ a2
1 + a2

2. These parameters will be of central
significance to determine the eigenspectrum behavior of K.

Note that a0 = 0 in Item (ii) above is a simplifying assumption to avoid
to existence of a constant component in all (non-diagonal) entries of KN and
K. It suffices to subtract the constant E[f(ξ)] from f (so redefine f(t) as
f(t)−E[f(ξ)]), without affecting the classification or regression performance of
kernel methods.

4.3.3 Limiting spectrum of the null model
As previously mentioned, it is convenient to start by investigating the null model
inner-product kernel matrix K = KN with

[K]ij =

{
f(zTi zj/

√
p)/
√
p for i 6= j

0 for i = j

for i.i.d. zi ∼ N (0, Ip).10 We are, as usual, interested in the associated resolvent

Q(z) ≡ (K− zIn)
−1 ∈ Rn×n.

Following the Marc̆enko-Pastur and Bai-Silverstein approaches (in Theo-
rem 2.4 and 2.6, respectively), we first remove the i-th row and the i-th column
of the symmetric matrix K to decompose it, up to permutation, as

K =

[
K−i f(ZT

−izi/
√
p)/
√
p

f(zTi Z−i/
√
p)/
√
p 0

]
with K−i ≡ f(ZT

−iZ−i/
√
p)/
√
p− diag(·) ∈ R(n−1)×(n−1),

10Here we provide detailed derivations in the Gaussian case, generalizations to sub-
exponential distribution can be found in [Do and Vu, 2013].



252 CHAPTER 4. KERNEL METHODS

(that is, with zeros on the diagonal of K−i) where Z−i ∈ Rp×(n−1) is the
Gaussian matrix Z without the i-th column zi. As such, K−i is (i) independent
of zi, and is (ii) asymptotically close to K for n large. We similarly define the
resolvent of K−i as

Q−i ≡ (K−i − zIn−1)−1 ∈ R(n−1)×(n−1).

With Lemma 2.6, the (i, i)-th diagonal entry of Q is given by

[Q]ii =
1

−z − 1
pf(zTi Z−i/

√
p)Q−if(ZT

−1zi/
√
p)
≡ 1

−z − δi
(4.24)

where we recall that the diagonals of both K and K−i are zero. To evaluate the
Stieltjes transform mn(z) = 1

n tr Q(z) = 1
n

∑n
i=1 Qii(z) of the spectral measure

of K, the key object is thus the (nonlinear) quadratic form

δi ≡
1

p
f(zTi Z−i/

√
p)Q−if(ZT

−izi/
√
p). (4.25)

We then wish to relate δi to the (normalized) trace of Q−i (and then to mn(z)),
using arguments in the spirit of the trace lemma, Lemma 2.11. However, here
Lemma 2.11 does not apply since the “leave-one-out” kernel matrix K−i, and
thus its resolvent Q−i, are not independent of the random vector f(zTi Z−i/

√
p)/
√
p.

To handle the nonlinear random vector f(ZT
−izi/

√
p), Cheng and Singer

[2013] propose, by leveraging the Gaussianity of the zi’s, to perform the following
orthogonal decomposition of zj :

zj = αj
zi
‖zi‖

+ z⊥j , αj =
zTi zj
‖zi‖

(4.26)

for j 6= i, where zi/‖zi‖ is the unit vector in the direction of zi and z⊥j lies in
the (p− 1)-dimensional subspace orthogonal to zi. Since zi, zj are independent
standard Gaussian vectors, we have in the large p limit that αj ∼ N (0, 1),
z⊥j ∼ N (0, Ip−1), and that these two terms are independent.

The fact that αj and z⊥j are independent is of crucial significance in the
analysis of K and can be checked by showing that, conditioned on zi, they are
uncorrelated Gaussian variables.

With this decomposition of zj , taking k 6= j and k 6= i, the term zTj zk can
be expanded as

zTj zk = αjαk + (z⊥j )Tz⊥k ≡ αjαk + Φ⊥jk (4.27)

where the cross terms in the product expansion disappear by orthogonality.
Note from (4.26) that both zj and z⊥j are of (Euclidean) norm O(

√
p) while

αj · ‖zi‖/‖zi‖ = O(1). Similarly, in (4.27), both zTj zk and Φ⊥jk are of order
O(
√
p) while αjαk = O(1). In this sense, Φ⊥jk is asymptotically close to the

original inner product zTj zk, with only the contribution from zi excluded and
explicitly given by αjαk.
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We further denote α−i = [α1, . . . , αi−1, αi+1, . . . , αn]T ∈ Rn−1 and K⊥−i ∈
R(n−1)×(n−1) the matrix with (j, k) entry given by

[K⊥−i]jk ≡ δj 6=k · f
(
(z⊥j )Tz⊥k /

√
p
)
/
√
p = δj 6=k · f(Φ⊥jk/

√
p)/
√
p (4.28)

so that the nonlinear random vector f(ZT
−izi/

√
p) may be approximated as

f(ZT
−izi/

√
p) = f(α−i‖zi‖/

√
p) ' f(α−i) for p large. Also remark here that

the random vector α−i is merely a standard Gaussian random vector N (0, In−1)
in the large n, p limit, in the sense that each entry is asymptotically Gaussian
and uncorrelated (one must however be extremely careful when using the ap-
proximation α−i ∼ N (0, In−1) as the point-wise convergence of the αj ’s to
N (0, 1) does not imply a vector-wise Gaussian convergence, whatever this may
mean).

The advantage of introducing Φ⊥ and K⊥−i is that α−i is “essentially” asymp-
totically independent of Φ⊥, in the sense that the expectations E[Φ⊥α−i] and
E[K⊥−iα−i] vanish in the large n, p limit. This is, however, not the case for the
(original) “leave-one-out” kernel matrix K−i, as previously discussed in (4.25),
for which ‖E[K−iα−i]‖ 6' 0.

With these remarks in mind, the study of K−i boils down to that of K⊥−i.
In the remainder, we need to control its resolvent

Q⊥−i ≡
(
K⊥−i − zIn−1

)−1

which is therefore also “asymptotically” independent of α−i.

With these preliminary derivations, we now focus on the “leave-one-out”
kernel matrix K−i ≡ f(ZT

−iZ−i/
√
p)/
√
p− diag(·). With (4.27), its (j, k)-entry

is given by

[K−i]jk =
1
√
p
f

(
1
√
p
αjαk +

1
√
p
Φ⊥jk

)
where we recall that Φ⊥jk = O(

√
p), αjαk = O(1) and they are (asymptoti-

cally) independent. As a consequence, with a Taylor expansion of f(αjαk/
√
p+

Φ⊥jk/
√
p) around the leading term Φ⊥jk/

√
p, we obtain11

f

(
1
√
p
αjαk +

1
√
p
Φ⊥jk

)
= f

(
1
√
p
Φ⊥jk

)
+ f ′

(
1
√
p
Φ⊥jk

)
1
√
p
αjαk +O(p−1)

so that, for j 6= k,

[K−i]jk =
1
√
p
f

(
1
√
p
Φ⊥jk

)
+
a1

p
αjαk +

1

p
g

(
1
√
p
Φ⊥jk

)
αjαk +O(p−3/2)

=

[
K⊥−i +

a1

p
α−iα

T
−i +

1
√
p

diag(α−i)G diag(α−i)

]
jk

+O(p−3/2)

11We consider for the moment f to be a Hermite polynomial (and thus differentiable), and
extend the result to square-summable f (with respect to Gaussian measure) under Assump-
tion 2.
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with the shortcut g(x) = f ′(x)−a1, for a1 the first Hermite coefficient in defined
(4.23), K⊥−i defined in (4.28), and another “kernel matrix” G with (j, k) entry
given by

[G]jk ≡ g(Φ⊥jk/
√
p)/
√
p.

In particular, the function g satisfies Eξ∼N (0,1)[g(ξ)] = 0 under Assumption 2.
Note that we intentionally extract the constant a1 from the nonlinear func-

tion f ′(x) since

• for α−i ∼ N (0, In−1) in the large n, p limit, we have 1
pα−iα

T
−i = O‖·‖(1);

• for G−diag(·) = O‖·‖(1), we have 1√
p diag(α−i)G diag(α−i) = O‖·‖(p

−1/2)

which is instead of vanishing operator norm as n, p→∞.

The fact that G − diag(·) = O‖·‖(1) is closely related to the fact that we
consider a0 = E[f(ξ)] = 0 in Assumption 2: indeed, it can be shown that for
a0 = 0 the kernel matrix K has bounded operator norm (see, e.g., [Fan and
Montanari, 2019, Theorem 1.7]) for n, p large. The same holds for the (slightly
different) kernel matrix G − diag(·) with E[g(ξ)] = 0. These remarks together
lead to the conclusion that, in matrix form,

K−i = K⊥−i +
a1

p
α−iα

T
−i + o‖·‖(1) (4.29)

with α−i “essentially” asymptotically independent of K⊥−i.

As a consequence of the above approximation, we have, for Q−i ≡ (K−i − zIn−1)
−1,

Q−i =

(
K⊥−i +

a1

p
α−iα

T
−i − zIn−1

)−1

+ o‖·‖(1)

= Q⊥−i −
a1Q

⊥
−i

1
pα−iα

T
−iQ

⊥
−i

1 + a1
p α

T
−iQ

⊥
−iα−i

+ o‖·‖(1)

= Q⊥−i −
a1Q

⊥
−i

1
pα−iα

T
−iQ

⊥
−i

1 + a1
p tr Q⊥−i

+ o‖·‖(1)

where we recall that Q⊥−i ≡ (K⊥−i − zIn−1)−1 is asymptotically independent of
α−i. Here we used Lemma 2.8 for the second and Lemma 2.11 for the third
line. Also, with the approximation in (4.29) and Lemma 2.9 we deduce

1

p
tr Q⊥−i =

1

p
tr Q−i + o(1) =

1

p
tr Q + o(1) =

n

p
mn(z) + o(1) =

1

c
m(z) + o(1)

for mn(z) = 1
n tr Q(z) the desired Stieltjes transform and m(z) its limit as

n, p→∞, the form of which is to be determined.
To form an equation for mn(z) (and m(z)), we come back to (4.24) for which

it remains to investigate the nonlinear quadratic form δi = 1
pf(zTi Z−i/

√
p)Q−if(ZT

−1zi/
√
p)
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defined in (4.25). To this end, note from (4.26) that, for j 6= i,

f(zTj zi/
√
p) = f(αj‖zi‖/

√
p) = f(αj) + f ′(αj) · αj(‖zi‖/

√
p− 1) +O(p−1)

= f(αj) +O(p−1/2)

and therefore

δi =
1

p
f(α−i)

TQ⊥−if(α−i)− a1

(
1
pα

T
−iQ

⊥
−if(α−i)

)2

1 + a1 · npmn(z)
+ o(1)

=
a2

1

p
αT
−iQ

⊥
−iα−i +

1

p
f>1(α−i)Q

⊥
−if>1(α−i)− a1

(
a1
p α

T
−iQ

⊥
−iα−i

)2

1 + a1 · npmn(z)
+ o(1)

where we decomposed f(x) as the sum of its linear part a1x and its “purely”
nonlinear part f>1(x) = f(x) − a1x that is Gaussian orthogonal to a1x in the
sense that E[ξf>1(ξ)] = 〈x, f>1(x)〉 = 0. As a consequence, we have

1

p
αT
−iAα−i =

1

p
tr A + o(1),

1

p
f>1(α−i)

TAf>1(α−i) = Var[f>1(αj)] ·
1

p
tr A + o(1) = (ν − a2

1) · 1

p
tr A + o(1),

1

p
αT
−iAf>1(α−i) = o(1),

for A independent of α−i of bounded operator norm, where we recall the defi-
nition ν = Var[f(ξ)] from (4.23). This leads to the following approximation for
the quadratic form

δi =
1

p
f(zTi Z−i/

√
p)Q−if(ZT

−1zi/
√
p) =

a2
1 · npmn(z)

1 + a1 · npmn(z)
+(ν−a2

1)·n
p
mn(z)+o(1).

Ultimately, using (4.24), we deduce

mn(z) =
1

n

n∑
i=1

1

−z − δi
+ o(1) =

1

−z − (a21/c)mn(z)
1+(a1/c)mn(z) −

ν−a21
c mn(z)

+ o(1)

which entails the following result.

Theorem 4.4 (Limiting spectrum of properly scaling kernel, [Cheng and Singer,
2013, Do and Vu, 2013]). Let p, n → ∞ with p/n → c ∈ (0,∞) and Assump-
tion 2 hold. Then the empirical spectral measure of the null model KN defined
in (4.21) converges weakly and almost surely to a probability measure µ defined
by its Stieltjes transform m(z), unique solution to

− 1

m(z)
= z +

a2
1m(z)

c+ a1m(z)
+
ν − a2

1

c
m(z). (4.30)
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As already mentioned in Footnote 10, despite derived here only in the
Gaussian case, Theorem 4.4 holds more generally for the large family of sub-
exponential distributions (having finite higher order moments) [Do and Vu,
2013]. While universality is classical in random matrix results, with mostly first
and second-order statistics involved, establishing universality for the present
matrix model is much less obvious because of the non-linearity and the strong
dependence (between entries) involved. As an instance, we shall see in Theo-
rem 4.5 below that, while the limiting spectrum of KN is universal, it is not the
case for the possible non-informative spikes, the (asymptotic) location of which
depends on the kurtosis of the distribution.

Remark 4.6 (Connection to α-β kernel). Note that, taking f(t) = βt2 + αt+
α2/(4β) in (4.21), one obtains, up to centering, the second-order polynomial
α-β kernel discussed in Section 4.2.4. In a sense, the properly scaling model is
a natural extension of the α-β kernel model, allowing for a much larger family
of nonlinear functions f (including non-smooth functions).

Similar to the α-β kernel model in Theorem 4.3 (with C◦ = Ip), here the
limiting spectral measure µ of the null model KN is the free additive convolution
(denoted as ‘�’, see Definition 5) between the Marc̆enko–Pastur law (denoted
µMP,c of shape parameter c = lim p/n) and the semicircle law (µSC) as

µ = a1(µMP,c−1 − 1)�
√

(ν − a2
1)c−1µSC

where a1(µMP,c−1−1) is the law of a1(x−1) for x ∼ µMP,c−1 and
√

(ν − a2
1)c−1µSC

the law of
√

(ν − a2
1)c−1 · x for x ∼ µSC. Intuitively, the Marc̆enko–Pastur law

characterizes the linear part (a1x) of the kernel function f(x), while the higher-
order “purely” nonlinear part f(x)−a1x contributes to the semicircle law. These
two contributions are asymptotically “independent” so that the resulting limiting
spectrum is the free additive convolution of each component. As an illustration,
Figure 4.4 compares, for f(t) = tanh(t), the empirical spectral measure of the
null model KN to the limiting law µ characterized in Theorem 4.4, which ap-
pears to be the “sum” of a Marc̆enko–Pastur and a semicircle distribution.12

So far in the study of KN , Theorem 4.4 only characterizes the limiting
eigenspectrum and does not provide a description of the possible spikes. Again,
akin to the α-β kernel (recall Figure 4.2), the null model KN may present up
to two isolated eigenvalues outside the support of its limiting spectrum. This
may only occur when the second Hermite coefficient a2 is not zero (a2 6= 0), as
precisely described in the subsequent result.

Theorem 4.5 (Deterministic equivalent for resolvent of properly scaling ker-
nels, Fan and Montanari [2019], Liao et al. [2021]). With the notations and
assumptions in Theorem 4.4,

(KN − zIn)−1 ↔ m(z)In +
a2

2(κ− 1)m3(z)

2c2 − a2
2(κ− 1)m2(z)

· 1

n
1n1T

n

12By “tuning” the parameters a1 and ν of f , one can similarly obtain a “Marc̆enko–Pastur
to semicircle” transition as displayed in Figure 4.3 (for the α-β kernel).
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Figure 4.4: Eigenvalues of KN versus the limiting law from Theorem 4.4, for
p = 800, n = 3 200 and f(t) = tanh(t). Link to code: Matlab and Python.

with c = lim p/n, m(z) the solution to (4.30), and κ the kurtosis of the entries
of zi.

As a result of Theorem 4.5, if a2 = 0 or κ = 1 (for instance for Bernoulli ±1
entries), there is asymptotically no spike outside the limiting support of the null
model KN . With a2 6= 0 and κ > 1, however, one may have up to two spikes at
locations13

λ± = − 1

cδ±
− a2

1δ±
1 + a1δ±

− (ν − a2
1)δ±, δ± = ± 1

a2

√
2

κ− 1
.

This results from solving the determinant equation det(KN −λIn) = 0 through
its deterministic equivalent equation and using the defining equation (4.30) of
m(z).

Note that (i) for a1 = 0, the two spikes are at positions a2
cδ±

+ νδ±
a2

and are
symmetric, similar to the case of the α-β kernel; we recall that in this case the
limiting spectrum is a rescaled semicircle law

µ(dx) =
c

2νπ

√
(4ν/c− x2)+ dx,

and (ii) while the limiting spectrum is universal with respect to the distribution
(of the entries), here the spike does depend on the kurtosis of the distribution.
In Figure 4.5 we observe a farther (left) spike for the Student-t distribution
(left) than for the Gaussian distribution (right), but the same limiting law.

13The phase transition conditions for these non-informative spikes can be similarly deduced
following the line of arguments in Section 2.3.1 and 2.5, see details in [Liao et al., 2021].

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.3/html/proper_scale_kernel.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.3/proper_scale_kernel.ipynb
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In particular, in the case of the Gaussian distribution one has κ = 3, so that
by taking a2 =

√
2 one obtains the same rank-one structure as in the α-β case

(4.18), although the limiting spectrum can be very different (for C◦ 6= Ip).

−2 0 2 4

−2 0 2 4
−2 0 2 4

−2 0 2 4

Figure 4.5: Eigenvalues of KN versus the limiting laws and spikes in Theo-
rem 4.5, for Student-t (with 7 degrees of freedom, left) and Gaussian distri-
bution (right) with p = 512, n = 2 048, and f(t) = max(t, 0). The position
of the isolated (non-informative) eigenvalue depends on the kurtosis κ of the
random matrix entries. Asymptotic locations of the spikes: λ+ = −2.1016 for
Student-t (left) and λ+ = −1.7701 for Gaussian distribution (right). Link to
code: Matlab and Python.

4.3.4 Main results: properly scaling random kernel ma-
trices

Having covered the analysis of the (pure-noise or null model) kernel matrix
KN , we present in this section the “information-plus-noise” random (asymptotic)
equivalent for the kernel matrix K, again under the non-trivial classification
assumptions on the k-class mixture model defined in (4.20) (as for the α-β
kernel studied in Section 4.2.4).

The main idea for this “information-plus-noise” decomposition comes in two
steps: (i) first, by an expansion of xT

i xj as a function of zi, zj and the sta-
tistical mixture model parameters {µa,Ea}ka=1, the inner products xT

i xj are
developed into successive orders of magnitudes with respect to p; this further
allows for a Taylor expansion of f(xT

i xj/
√
p) for at least twice differentiable

functions f around its dominant term f(zTi zj/
√
p). Then, (ii) relying on the

orthogonal polynomial approach of the previous section, one may “linearize”
the resulting matrix terms {f(xT

i xj/
√
p)}, {f ′(xT

i xj/
√
p)} and {f ′′(xT

i xj/
√
p)}

(all terms corresponding to higher order derivatives asymptotically vanish) and
use Assumption 2 to extend the result to all square-summable f . The precise
derivations may be found in [Liao and Couillet, 2019a].

The main conclusion is that the kernel matrix K asymptotically behaves like
the sum K̃ = KN + K̃I of the full-rank “noise” matrix KN (characterized in

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.3/html/proper_scale_kernel.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.3/proper_scale_kernel.ipynb
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Theorem 4.4 and 4.5) and a low-rank “information” matrix K̃I . This is stated
in the following theorem.

Theorem 4.6 (Random equivalent for properly scaling kernel, Liao and Couillet
[2019a]). Let Assumption 2 hold and let K ∈ Rn×n be the properly scaling kernel
defined in (4.19) with xi = µa+(Ip+Ea)

1
2 zi, for zi having i.i.d. zero-mean, unit

variance and sub-exponential entries, xi ∈ Ca satisfying the following growth rate
conditions

M = O‖·‖(1), t =
1
√
p
{tr Ea}ka=1 = O‖·‖(1), S◦ =

1
√
p
{tr EaEb}ka,b=1 = O‖·‖(1).

Then, as n, p→∞ with p/n→ c ∈ (0,∞),

‖K− K̃‖ a.s.−−→ 0, K̃ = KN + VAVT

with KN defined in (4.21) and

A =

[
a1 ·MTM + a2√

2
· (t1T

k + 1kt
T + S◦) a1Ik

a1Ik 0

]
V =

[
J√
p ,

ZTM√
p

]
where we recall that a1 and a2 are the first two Hermite coefficients a1 = E[ξf(ξ)]
and a2 = E[(ξ2 − 1)f(ξ)]/

√
2 for ξ ∼ N (0, 1), as defined in (4.23).

Remark 4.7 (Universality for informative spikes). Interestingly, unlike the
noisy non-informative spikes in Theorem 4.5 and Figure 4.5, which depend on
the kurtosis κ of the distribution, here the informative spikes in Theorem 4.6 can
be shown to be universal [Liao and Couillet, 2019a], as in the case of limiting
spectrum in Theorem 4.4.

Figure 4.6 compares the spectra, and in particular the isolated eigenvalues
of K and K̃ for f(t) = sign(t), |t| and max(t, 0), for random vectors xi =

µa + (Ip + Ea)
1
2 zi with zi having Gaussian or Student-t entries. The figure

validates Theorem 4.6 and its universal extension to non-Gaussian zi’s. Note
that here a2 = 0 for f(t) = sign(t) and a1 = 0 for f(t) = |t|. As a result, different
types of spikes (due to means and covariances) are present. More generally, for f
odd (f(−t) = −f(t)), a2 = 0 and thus the statistical information on covariances
(through Ea) asymptotically vanishes in K; for f even (f(−t) = f(t)), a1 = 0
and the information about the means µa vanishes consequently. Thus, only f
neither odd nor even can preserve both first and second-order discriminating
statistics (e.g., the popular ReLU function f(t) = max(t, 0)). Besides, these
isolated eigenvalues, when being informative (i.e., not due to the non-informative
spikes of KN characterized in Theorem 4.5), correspond to eigenvectors that are,
as expected, noisy versions of linear combinations of the columns of J, as is the
case in previous sections.
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0 50 5 (a) f(t) = sign(t), Gaussian

−4 −2 0 2 4−4 −2 0 2 4−4 −2 0 2 4(b) f(t) = |t|, Gaussian

−2 0 2 4 6−2 0 2 4 6−2 0 2 4 6(c) f(t) = max(t, 0), Gaussian

−2 0 2 4 6−2 0 2 4 6−2 0 2 4 6(d) f(t) = max(t, 0), Student-t

Figure 4.6: Eigenvalues of K versus the limiting laws and spikes of K̃ in The-
orem 4.6, for p = 1 024, n = 2 048, with two classes n1 = n2 = n/2 and
µ1 = −[2; 0p−1] = −µ2 and E1 = −5 · Ip/

√
p = −E2. Link to code: Matlab

and Python.

As a direct consequence of Theorem 4.6, similar to the α-β kernel presented
in Theorem 4.2, the performance of kernel (spectral) methods with properly
scaling kernels also only depends on three parameters of the nonlinear function
f : a1 = E[ξf(ξ)], a2 = E[ξ2f(ξ)]/

√
2 and ν = E[f2(ξ)]. More precisely, the

parameters a1, a2, ν determine the limiting spectral measure and the possible
non-informative spikes (Theorem 4.4 and 4.5), while a1, a2 determine the low
rank informative structure (Theorem 4.6). However, different from the α-β
kernel, for which the key parameters relate to the behavior of f at a precise
value τ , the key parameters of properly scaling kernels depend on the “global”
behavior of the possibly non-smooth function f .

Universality and optimality. As a further consequence of Theorem 4.6, any
arbitrary (square-summable) nonlinear functions f (with a0 = 0) is asymptot-
ically equivalent to the simple cubic function c3x

3 + c2(x2 − 1) + c1x having
the same Hermite polynomial coefficients a1, a2, ν, with the coefficients being

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.3/html/proper_scale_kernel.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.3/proper_scale_kernel.ipynb
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related through

a1 = 3c3 + c1, a2 =
√

2c2, ν = (3c3 + c1)2 + 6c23 + 2c22.

It is worth mentioning that, within this large family of nonlinear function f ,
one may claim, for spectral methods such as kernel spectral clustering, that the
“optimal” sub-family is the quadratic function of the type c2(x2 − 1) + c1x for
which one has ν = a2

1 + a2
2 (the minimum possible value for ν, with ai = 0 for

i ≥ 3): recall from Theorem 4.4–4.6 that, for given a1 and a2, any ν larger than
a2

1 + a2
2 only impacts (in fact, enlarges) the support of the noisy main bulk,

resulting in a smaller eigengap [Joseph and Yu, 2016, Luxburg, 2007] which, in
general, degenerates the performance of spectral methods (as in Figure 2.12 for
the classical spiked models). This conclusion, however, is limited to the mixture
model defined in (4.20) (with C◦ = Ip), and it is particularly not clear whether
it holds beyond this setting for generic C◦ 6= Ip.

With ν = a2
1 + a2

2, one can then freely tune the ratio a1/a2 to appropriately
“weight” the first- and second-order statistical information (M versus t and S◦)
by Theorem 4.6, so as to design a data-dependent optimal kernel function f .
See numerical examples on real data later in Section 4.4.

Computationally efficient kernels. As already mentioned above, the per-
formance of properly scaling kernels depends on the kernel function f only via
the three parameters (a1, a2, ν). It is thus possible to design a prototypical fam-
ily F of functions f having (i) universal properties with respect to (a1, a2, ν),
i.e., for each (a1, a2, ν) there exists f ∈ F with these Hermite coefficients and
(ii) having numerically advantageous properties. Thus, any arbitrary kernel
function f can be mapped, through (a1, a2, ν), to a function in F with good nu-
merical properties. One such prototypical family F is the set of “ternary kernel”
functions f ’s, parametrized by a triplet (t, s−, s+), and defined as

f(x) =


−rt x ≤

√
2s−

0
√

2s− < x ≤
√

2s+

t x >
√

2s+

,


a1 = t√

2π
(e−s

2
+ + re−s

2
−)

a2 = t√
2π

(s+e
−s2+ + rs−e

−s2−)

ν = t2

2 (1− erf(s+)) (1 + r)

(4.31)
where r ≡ 1−erf(s+)

1+erf(s−) . That is, f only takes three discrete values so that the
resulting kernel matrix may be stored and operated on very efficiently. Figure 4.7
displays such a function f in (4.31) together with the cubic function c3x

3 +
c2(x2 − 1) + c1x sharing the same coefficients (a1, a2, ν).

The equivalence class of kernel functions induced by this mapping (i.e., those
having asymptotically equivalent spectral properties) is quite unlike the equiva-
lence class of the previous section for the “improper” scaling f(xT

i xj/p) regime.
In the latter, functions f(x) of the same class of equivalence are those having
common f ′(0) and f ′′(0) values while here these functions may have no similar
local behavior (as shown in the example of Figure 4.7).

In pursuit of computationally more efficient kernels by tuning the three key
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Figure 4.7: Piecewise constant F-family (in solid line) versus cubic (in dashed
line) function with equal (a1, a2, ν).

parameters (a1, a2, ν), one must be very careful since, by Theorem 4.5 and Fig-
ure 4.5, taking a2 6= 0 can result in up to two spurious non-informative spikes
that may be mistaken as informative ones by spectral clustering algorithms. We
refer the interested readers to [Liao et al., 2021] for a thorough discussion on the
“complexity and performance tradeoff” of properly scaling kernels for different
F families (e.g., sparse, quantized, and even binarized functions).

4.4 Implications to kernel methods

By simply “plugging” the random matrix equivalents of the kernel matrices
studied in the previous sections into kernel-based learning algorithms, it is now
possible to analyze the asymptotic performance of these algorithms in the large
n, p regime. The present section is dedicated to this analysis, successively for
unsupervised (kernel spectral clustering in Section 4.4.1), semi-supervised (with
kernel graph Laplacian in Section 4.4.2), and fully supervised (kernel ridge re-
gression in Section 4.4.3) learning.

We will discover in this section that, as a result of the curse of dimensionality
(following from the convergence ‖xi − xj‖2/p

a.s.−−→ τp) and of the induced in-
appropriate (low dimensional) intuitions when applied to the large dimensional
setting, all these algorithms (i) behave differently from what is expected, (ii)
sometimes fail to perform as intended and, (iii) are often far from optimal. The
random matrix analyses preformed in the previous section provide new intu-
itions and, as shall be seen, always allow for a proper adaptation (such as an
optimal hyperparameter tuning) and improvement (sometimes via very simple
but fundamental modifications) of the algorithms. As another important out-
come, the possibility to access the performance of these improved algorithms
provides a safer ground for further optimization and even to comparison to
the ultimate information-theoretic bounds associated to the machine learning
problem at hand.
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4.4.1 Application to kernel spectral clustering

From a machine learning perspective, spectral clustering is often seen as a
discrete-to-continuous relaxation of a graph min-cut problem [Luxburg, 2007].
More precisely, assuming K to be the adjacency matrix of a graph with nodes
x1, . . . ,xn ∈ Rp and edges f(‖xi − xj‖2/p), the min-cut problem consists in
determining a k-class partition S1 ∪ . . . ∪ Sk of {1, . . . , n} that minimizes the
affinity across classes, i.e.,

(S1, . . . ,Sk) ∈ arg min
S1∪...∪Sk={1,...,n}

k∑
a=1

∑
i∈Sa
j /∈Sa

f(‖xi − xj‖2/p)
|Sa|

(4.32)

where the division by the cardinality |Sa| ensures that classes have approxi-
mately balanced weights (this is formally known as the ratio-cut adaptation
of the original min-cut problem for which the denominator is simply 1). This
optimization problem has been shown to be equivalent to finding the isomet-
ric matrix S = [s1, . . . , sk] ∈ Rn×k (i.e., STS = Ik) with columns defined as
[sa]i = δi∈Sa/

√
|Sa| which minimizes

tr ST(D−K)S

where D = diag(K1n). Solving this discrete problem is known to be NP-hard
[Luxburg, 2007], but relaxing S to be merely an orthonormal matrix with no
structure constraint gives the straightforward solution that S ∈ Rn×k is the
collection of the k eigenvectors associated to the smallest eigenvalues of D−K.
This precisely leads to the spectral clustering algorithm. Solving the ratio-cut
problem is all the more “intuitive” that tr ST(D−K)S can be rewritten under
the form

1

2

k∑
a=1

n∑
i,j=1

[K]ij([S]ia − [S]ja)2

the minimization of which enforces close labels ([S]ia ' [S]ja) for data pairs
xi,xj with strong affinity ([K]ij � 1); importantly note in passing that this
viewpoint also intuitively conducts to letting [K]ij ≥ 0 for all i, j (otherwise,
[K]ij < 0 while |[K]ij | � 1 would enforce very different [S]ia and [S]ja).

Yet, performing spectral clustering directly on D−K is observed, in practice,
to lead to poor performance. It has instead been proposed to replace |Sa| in
the min-cut cost function by vol(Sa) =

∑
i∈Sa [D]ii which is the total weight of

the edges connecting the nodes of class Sa (rather than the number of nodes).
With this normalization, the problem now becomes equivalent to minimizing

tr ST(In −D−
1
2 KD−

1
2 )S
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still for S isometric, which led to the most popular Ng-Weiss-Jordan spectral
clustering algorithm [Ng et al., 2002], or equivalently to minimizing

1

2

k∑
a=1

n∑
i,j=1

[K]ij

(
[S]ia√
di
− [S]ja√

dj

)2

(4.33)

where di = [D]ii is the “degree” of node xi in the graph adjacency matrix K.

From a random matrix standpoint, the aforementioned heuristic consider-
ations to choose whether 1, |Sa| or vol(Sa) as the normalization of the score
labels [S]ia is somewhat irrelevant for large dimensional data, as we now know
that the behavior of K in the large n, p regime is prone to many erroneous small
dimensional interpretations. In particular, entry-wise [K]ij is neither small nor
large but essentially constant for large dimensional (and not trivially easily clas-
sified) xi’s. This implies that the intuition according to which |[S]ia− [S]ja| will
be small when [K]ij is large (and vice-versa) is now meaningless. Going even
further, the very fact that the above reasoning is fundamentally based on f be-
ing a decreasing “affinity” function (so that f(‖xi−xj‖2/p) ought to be large for
“close” xi,xj from the same class, and small otherwise) also becomes artificial
in large dimensions.

Instead, for a correct understanding spectral clustering in this regime, we
now need to resort to the “large dimensional spectral intuitions” developed in
the previous chapters. We start with the standard “improperly scaling” kernels
(such as the popular Gaussian kernel) in order to better capture the behavior
and limitations of the most classical kernel spectral clustering algorithms.

The case of standard distance-kernels

We have seen in Theorem 4.1 that the dominant eigenvectors of K contain the
class label information (through the indicator matrix J) and can thus be used
for spectral clustering. Yet, K has the inconvenience that its first two dominant
eigenvalues scale like O(n) and O(

√
n), and only the latter is informative, in

the sense that it depends on the covariance traces t, but not on the means M
or covariance “shapes”. As for the matrix D − K, it can be readily seen as
quite inappropriate for clustering. Indeed, while the informative spectrum of K
is essentially of order O(1) (if we exclude the little informative two dominant
eigenvectors), the matrix D has diagonal elements

[D]ii = nf(τp) + ζi +O(1), ζi = nf ′(τp)[ψ]i = O(
√
n)

where the random ζi terms are “essentially” of zero mean and asymptotically
independent across i. Consequently, the spectrum of D−K is largely dominated
by the non-informative diagonal elements of D, and the dominant eigenvectors
of D − K are thus uncorrelated to the structure in J: this comes in stark
opposition to the finite dimensional intuitions according to which the dominant
(here smallest) eigenvectors of D−K should be aligned to the vectors of classes.
As such, D−K is not appropriate for large dimensional spectral clustering, and
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this is largely confirmed by empirical results (as already empirically established,
but with no strong theoretical argument, in the spectral clustering literature).

The matrix D−
1
2 KD−

1
2 advocated by Ng-Weiss-Jordan is more interesting.

First, since di = Dii = O(n), it is more convenient to consider the said normal-
ized Laplacian matrix

L = nD−
1
2 KD−

1
2 (4.34)

than the difference (of matrices of misaligned orders of magnitude) D−K.14 In
addition, note that D

1
2 1n is an eigenvector for L with corresponding eigenvalue

n, since

nD−
1
2 KD−

1
2 (D

1
2 1n) = D−

1
2 K1n = nD−

1
2 D1n = nD

1
2 1n.

This is also the largest eigenvalue of L. Moreover, and quite surprisingly, a thor-
ough Taylor expansion of D−

1
2 pre- and post-multiplying the random equivalent

K̃ of K given in Theorem 4.1, reveals that the matrix

L′ ≡ nD−
1
2 KD−

1
2 − nD

1
2 1n1T

nD
1
2

1T
nD1n

= nD−
1
2

(
K− ddT

1T
nD1n

)
D−

1
2 (4.35)

with d = D1n, is asymptotically (with high probability) of bounded operator
norm as n, p → ∞. That is, both matrices An and A√n (of operator norm of
order O(n) and O(

√
n), respectively) from Theorem 4.1 asymptotically disap-

pear after normalization by D−
1
2 and projection against the dominant eigen-

direction D
1
2 1n. This makes L′ easier to handle mathematically (as no spurious

eigenvalue evades from the spectrum at a fast rate) and more “stable” from a
statistical viewpoint. In fact, the matrix K − ddT/(1T

nD1n) is already known
in the graph literature as the modularity matrix associated to the adjacency
matrix K [Newman, 2006]; the modularity matrix is interestingly related to yet
another heuristic metric of what ought to be a “good clustering” of graph nodes.

Formally, for the “modularity-normalized Laplacian” matrix L′, we have the
following result.

Theorem 4.7 (Random equivalent of the normalized Laplacian, Couillet and
Benaych-Georges [2016]). Under the notations and assumptions of Theorem 4.1,
for L′ defined in (4.35), we have

‖L′ − L̃′‖ a.s.−−→ 0,

D
1
2 1n√

1T
nD1n

=
1n√
n

+
1

n
√
c

f ′(τp)

2f(τp)

[
{ta1na}ka=1 +ψ

]
+ o(n−1)

where

L̃′ = −2
f ′(τp)

f(τp)

(
1

p
WTW + UBUT

)
+
f(0)− f(τp) + τpf

′(τp)

f(τp)
In

14In the graph literature, L is rather denoted Lnorm as it corresponds to the normalized
version of the actual Laplacian matrix D−K. Yet, since we shall no longer consider D−K
(which we just claimed to be irrelevant) in the following, we stick to the shorthand notation
L for D−

1
2 KD−

1
2 .
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and

U =
[

J√
p ,

WTM√
p ,ψ

]

B =

B11 Ik − 1kc
T
(

5f ′(τp)
8f(τp) −

f ′′(τp)
2f ′(τp)

)
t

∗ 0 0

∗ ∗ 5f ′(τp)
8f(τp) −

f ′′(τp)
2f ′(τp)


B11 = MTM +

(
5f ′(τp)

8f(τp)
− f ′′(τp)

2f ′(τp)

)
ttT − f ′′(τp)

f ′(τp)

S◦
√
p

+
p

n
· f(0)− f(τp) + τpf

′(τp)

2f ′(τp)
1k1

T
k

S◦
√
p

=

{
1

p
tr C◦aC

◦
b

}k
a,b=1

, C◦a = Ca −C◦

with c = [c1, . . . , ck]T.

The theorem first provides an explicit characterization of the dominant eigen-
vector of L′ associated with the eigenvalue n: up to a dominant constant 1/

√
n,

the eigenvector entries contain small deviations (of order 1/n) that are discrim-
inative class information when the ta’s are of order O(1). This information
can be exploited for clustering: indeed, although the deviations ta/n are small
compared to the dominant term 1/

√
n, the latter is (strictly) constant and is

thus merely a large shift of the eigenvector entries, which is inconsequential to
clustering/classification. However, if the ta’s are equal or only differ by o(1),
the information is “buried” in the noisy zero-mean and asymptotically Gaussian
vector ψ and cannot be used for clustering. Consequently, the dominant eigen-
vector of L′ only carries discriminative information between classes when the
“energy” ‖xi‖2 of the vectors xi vary across classes: in particular, if the data
are pre-treated so to be normalized (say ‖xi‖ =

√
p for all i), the dominant

eigenvector of L′ has (asymptotically) no classification power.
The projection L′ of the normalized Laplacian matrix L onto the space

orthogonal to D
1
2 1n is then well approximated by an up-to-(2k+1) rank spiked

model (of order O‖·‖(1)). The information appears here as a combination of the
statistical information MTM, ttT and S◦, again modulated by the successive
derivatives of f at τp.

A complete analysis of the asymptotic spectrum of L is then tractable, lead-
ing to the following remarks, fully justified in [Couillet and Benaych-Georges,
2016]:

• due to the presence of the non-informative vector ψ in U, one isolated non-
informative eigenvalue may be found in the spectrum of L′ (its presence
depends on the parameters ni/n, p/n and the traces tr Ca). This isolated
eigenvalue could be found at any position in the isolated eigenvalue spec-
trum. This has two main consequences: (i) even in the absence of classes,
L′, and thus also L, may contain an isolated eigenvalue which could be
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confused as information (as in the case of α-β or properly scaling kernel
discussed respectively in Section 4.2.4 and 4.3); (ii) in the presence of
classes, not all eigenvectors are informative and there is no deciding which
one of the isolated eigenvalues is possibly not useful. Figure 4.8 depicts
the typical behavior of the spectrum for a Gaussian mixture with equal
(identity) covariance, with emphasis on the non-informative eigenvalue-
eigenvector pair;

• unlike MMT and S◦ which are matrices of rank at most k − 1, ttT is a
rank-one matrix; as such, if data are mostly discriminable by the trace
of their covariances (i.e., the information in t), then only one informative
eigenvector of L′ (in addition to the eigenvector D

1
2 1n of L) can be ex-

ploited. This is again counterintuitive since, irrespective of the number
of classes, this information is gathered into a single eigenvector. The rule
of thumb according to which the number of relevant eigenvectors matches
the number of classes thus fails in this case. Figure 4.9 shows the dif-
ference between the two informative eigenvectors of L (the second and
third) under a Gaussian mixture with different means and equal covari-
ance, versus the two informative eigenvectors of L (the first and second)
under a common-mean and different-covariance trace scenario. The bot-
tom display confirms that the discriminative covariance trace information
is carried along a one-dimensional axis;

• similar to K, selecting f such that f ′(τp) ' 0 simultaneously discards the
discriminative information of the statistical means across classes as well
as the noise terms. The matrix S◦/

√
p emerges alone and classification

becomes asymptotically trivial if S◦ = O‖·‖(
√
p).

Implementation on real data. The above results are quite telling of the
many misconceptions of as simple and widely spread an algorithm in machine
learning as kernel spectral clustering.

These new large dimensional-based insights can be summarized as follows:
under a large dimensional Gaussian mixture model setting (as we will see though,
the conclusions are observed to hold in practice already for p, n rather small),
(i) the Euclidean distances between data vectors tend to be the same while
spectral clustering can still be performed in a non-trivial fashion, (ii) the num-
ber of isolated eigenvalues needs not necessarily match the number of classes,
(iii) some dominant eigenvectors may not be informative at all, and possibly
most importantly, (iv) the kernel function f needs not be decreasing and only
operates through its first derivatives in the vicinity of τp.

Yet, the large dimensional Gaussian mixture assumption is somewhat funda-
mental to our analysis as it brings forth the necessary degrees of independence
that induce the data concentration. One may wonder whether the results still
hold when applied to real-world datasets instead of Gaussian vectors.

As a first empirical answer, Figure 4.11 depicts the four dominant eigenvec-
tors of L for Gaussian kernel Kij = exp(−‖xi−xj‖2/(2p)) with x1, . . . ,xn ∈ Rp
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Figure 4.8: Eigenvalues of L and top four eigenvectors for Ca = Ip, f(t) =
4(t − τp)

2 − (t − τp) + 4 with τp = 2, f(0) = 22, f(τp) = 4, f ′(τp) = −1,
f ′′(τp) = 8, p = 2 048, n = 512, three classes with n1 = n2 = 128, n3 = 256
and [µa]i = 5δai. Emphasis made on the (third) non-informative eigenvalue-
eigenvector pair in red. Link to code: Matlab and Python.

extracted from three classes (images of zeros, ones, and twos) of the popular
MNIST dataset, each class containing 64 vectorized images of size 28×28 pixels
(so that n = 192 and p = 784). Each data vector xi is preprocessed by center-
ing and scaling by the empirical mean and variance computed from the whole
MNIST database (and then by√p to adhere to the normalization of the theorem
statement). An image example from each class is depicted in Figure 4.10.

Figure 4.11 precisely shows in red lines the genuine four dominant eigenvec-
tors of L and in black the eigenvectors of L̃ from Theorem 4.7. To obtain L̃, the
statistical means and covariances are empirically computed from averaging over
the whole set of images of zeros, ones and twos of the MNIST database;15 as for
W (and thus ψ), it is computed by discarding from X the evaluated average.
Finally, in blue are shown the theoretical class-wise eigenvector means and ±1
standard deviations obtained from a spiked-model analysis of L̃ (see [Couillet
and Benaych-Georges, 2016] for detail on this exact analysis).

It is surprising to see that, despite the obvious non-Gaussianity of the MNIST
dataset (see Figure 8.1 for a naive and failed attempt to produce the image of

15Since the MNIST database contains no more than 60 000 images in total, so about 6 000
images per class, the empirical means and covariances (of image vectors of size p = 784) do
not formally enter the n � p regime and thus for the covariance estimates to be accurate.
This nonetheless seems to have no strong impact on our comparison results in practice. When
later dealing with images produced by generative adversarial networks (GANs), the number
of images produced can be taken arbitrarily large and this side problem will vanish.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/kernel_spectral_clustering.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/kernel_spectral_clustering.ipynb
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Figure 4.9: Two dimensional representation of (top): eigenvectors two versus
three of L, [µa]i = 5δai, Ca = Ip, and of (bottom): eigenvectors one versus two
of L, µa = 0, Ca = (1+4(a−1)/

√
p)Ip. In both cases, p = 3 072, n1 = n2 = 192,

n3 = 384, f(t) = 3
2 (t− τp)2 − (t− τp) + 5. Link to code: Matlab and Python.

a ‘2’ with a Gaussian vector), the theoretical predictions are in almost perfect
accordance with empirical observations.

Figure 4.10: Samples from the MNIST database [LeCun et al., 1998].

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/kernel_spectral_clustering.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/kernel_spectral_clustering.ipynb
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Figure 4.11: Leading four eigenvectors of L (red) versus L̃ (black) and theo-
retical class-wise means and standard deviations (blue) for MNIST data. See
also [Couillet and Benaych-Georges, 2016, Figure 2]. Link to code: Matlab and
Python.

The case of “α-β” and properly scaling kernels

The previous section demonstrated that, despite the phenomenon of distance
concentration, spectral clustering with the normalized Laplacian L remains valid
under large dimensional data assumptions, at the expense of a few unexpected
outcomes (presence of non-informative isolated eigenvectors, incoherence be-
tween the number of classes and the number of informative eigenvectors, etc.).
These are immediate consequences of the theoretical study performed in Sec-
tion 4.2 and were shown to adequately match the actual performance of spectral
clustering on, not only Gaussian, but also real-world data.

But Section 4.2 also argued that kernels of the type f(‖xi−xj‖2/p), despite
their wide popularity, are sub-optimal when it comes to classifying data down
to their minimal statistical discrimination rate (particularly in exploiting the
covariance structures). We then proved in Section 4.2.4 that α-β kernels, sat-
isfying f(τp) = O(1), f ′(τp) = αp−1/2 and f ′′(τp) = 2β for some α, β = O(1),
are more powerful in discriminating data having close (even equal) means and

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/kernel_spectral_clustering.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/kernel_spectral_clustering.ipynb
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slightly differing covariances. In Section 4.3, α-β kernels were then shown to
be a special case of the family of properly scaling kernels, which yield as good
performance as α-β kernels (in exploiting covariance “shape” structure) and
have the additional advantage of being non-smooth and thus be computed more
efficiently.

We consider the α-β and properly scaling kernels here.
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Figure 4.12: Comparison of 2D representation of eigenvectors one and two of
(top) the Gaussian kernel Kij = exp(−‖xi − xj‖2/(2p)) and (bottom) the
(recentered) α-β kernel PKP with Kij = (‖xi−xj‖2/p−2)2 (such that α = 0).
Here k = 2 classes of even size, p = 400, n = 1 000, µa = 0, Ca = 2 · ZaZT

a/p
where Za ∈ Rp×p/2 have independent standard Gaussian entries. Link to code:
Matlab and Python.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/kernel_spectral_clustering.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/kernel_spectral_clustering..ipynb
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Figure 4.13: Comparison of 2D representation of eigenvectors one and two of
(top) the Gaussian kernel Kij = exp(−‖xi − xj‖2/p) and (bottom) the α-β
kernel Kij = (‖xi − xj‖2/p − τ̂p)2 with α = 0. Here k = 2 classes of even size
from the EEG dataset (class B versus class E) [Andrzejak et al., 2001], p = 100
and n = 1 000. Link to code: Matlab and Python.

Specifically, Figure 4.12 displays the comparative performance of Gaussian
versus α-β inner-product kernels in the setting of a two-class Gaussian mixture
data with equal means but slightly differing covariances (thus here with α = 0).
We observe that the Gaussian kernel is incapable of resolving the two classes
while the α-β kernel is fully adapted. Figure 4.13 then extends the analysis to a
real-world EEG dataset (epileptic versus sane patients) [Andrzejak et al., 2001]
specifically chosen since, being a more or less stationary zero-mean time series,
the critical class-discriminating features lie more in the second-order statistics

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/kernel_spectral_clustering.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/kernel_spectral_clustering.ipynb
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(i.e., in the covariance matrix structure) than in the first (i.e., in the structure
of the means). The data vectors were appropriately centered and normalized
(such that ‖xi‖ =

√
p) to specifically exploit the covariance “shape” structure.

In this case, the Gaussian kernel is observed to have less discriminating power
compared to the α-β kernel (chosen here again with α = 0, i.e., with f ′(τp) = 0).

We next go beyond the α = 0 scenario discussed above and focus on the more
general properly scaling kernels (which, we recall, generalize the α-β kernel in
the case of polynomial kernel functions). For a simplified comparison, with ν
fixed and varying the ratio a1/a2 (which, we recall, corresponds to α/β for α-β
kernels), k-means clustering is performed on the two dominant eigenvectors of
the kernel matrix under study. Figure 4.14 provides a comparison of the spec-
tral clustering performance for the properly scaling kernel, versus the standard
Gaussian kernel on two real datasets: the MNIST image database [LeCun et al.,
1998] and the previous EEG database [Andrzejak et al., 2001]. Specifically, Fig-
ure 4.14 evidences, for EEG data, the significant improvement provided by prop-
erly scaling kernels for a1/a2 close to zero (thus when voluntarily disregarding
the information about the means and focusing on the covariances instead), with
a boost of up to 10% of classification rate over the Gaussian kernel; on the other
hand, for MNIST data, good performance is achieved for large values of a1/a2,
in which case a stronger accent is put on the statistical means in the data. This
observation confirms the rather different nature of these two databases, as well
as the advantage of (optimally) tuning the ratio a1/a2 or α/β.

Setting up the proper value for a1/a2 or α/β beforehand is however not
immediate as they depends on the statistics of each class. Being unknown
under a fully unsupervised setting, only iterative procedures (whereby a first
iteration provides a crude classification and thus the possibility to estimate the
sufficient statistics) can seemingly be exploited to selectively adapt the algorithm
and improve its performance. Alternatively, an informed guess of the relative
importance of means versus covariances (based on the a priori information on
the data) may be used to adapt the algorithm.

4.4.2 Application to semi-supervised kernel learning

Semi-supervised learning is possibly the most natural, but paradoxically the
least studied, framework in machine learning in that it assumes the existence
of a large set of data (say to be classified) with only some of the data already
(manually) labeled. This both encompasses unsupervised learning in the ex-
treme case of no labeled data and supervised learning at the other extreme.

We will see in this section that the reason behind its not being profoundly
studied may precisely lie in a misunderstanding of the (not so) large dimensional
behavior of the devised methods. Such misunderstanding leads to often quite
erroneous outcomes, which have been worked around in the literature by various
intuitions, however rarely sustained by theory.

Built upon a novel large dimensional intuition, the random matrix approach
clarifies the main problems, demonstrates that some of the popular methods are
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Figure 4.14: Kernel spectral clustering of the MNIST and EEG databases with
properly scaling kernel [K]ij = f(xT

i xj/
√
p)/
√
p, f(t) = a2(t2 − 1) +

√
2a1t for

ν = a2
1 + a2

2 = 2 and varying a1/a2, versus Gaussian kernel [K]ij = exp(−‖xi −
xj‖2/(2p)), n = 512, p = 784 for MNIST (class 1 versus 7) and p = 100 for
EEG data (class A versus E). Performance obtained by averaging over 50 runs.
Link to code: Matlab and Python.

indeed inconsistent and must fail, and most importantly, allows for the design of
improved (again in a very counterintuitive fashion) schemes which are provably
consistent.

Semi-supervised graph Laplacian and random walk approaches

The likely most common approaches to semi-supervised learning are graph-
based methods, which have a dual interpretation. In these methods, the data
x1, . . . ,xn ∈ Rp are considered vertices of a weighted graph with edge weights
Kij ≡ κ(xi,xj) encoding the similarity between xi and xj . As usual, we take
K = {[K]ij}ni,j=1 to be of kernel form, e.g.,

[K]ij = f
(
‖xi − xj‖2/p

)
.

From a small dimensional classification intuition, the vectors xi which are
alike should aggregate in clusters, with some nodes in these clusters already
labeled. As such, a natural idea to recover the classes of the unknown nodes
consists in “spreading” the labels throughout the graph by means of deterministic
label propagation or of random walks on the graph: either starting from an
unlabeled node and having it walk on the graph according to edge weights,
until it reaches a labeled node, or, conversely, walking from labeled nodes to
unlabeled nodes; this procedure is iterated deterministically or randomly on the

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/kernel_spectral_clustering.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/kernel_spectral_clustering.ipynb
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graph until convergence. In this spirit, assuming k data classes C1, . . . , Ck, the
random walk method [Szummer and Jaakkola, 2002] or the label propagation
approach [Zhu and Ghahramani, 2002] allocate “soft scores” [Si1, . . . ,Sik] ∈ Rk
for an unlabeled node xi to belong to each class. These k scores are then
compared and the argument of the highest score is assigned to xi. Of utmost
interest for us in the sequel is the particularly popular PageRank approach
[Avrachenkov et al., 2012], which is known for its (empirical) robustness and
high performance.

The alternative viewpoint is more related to the optimization schemes (such
as the graph-cut problem (4.32)) in unsupervised spectral clustering. There
again, a matrix scores S = {[S]ia}1≤i≤n,1≤a≤k for the n data vectors in each of
the k classes needs to be filled, by solving an optimization problem of the type

S = arg min
S∈Rn×k

k∑
a=1

n∑
i,j=1

[K]ij
(
[S]iad

α
i − [S]jad

α
j

)2 (4.36)

s.t. [S]ia = δxi∈Ca for labeled nodes.

Here di =
∑n
j=1[K]ij is the degree of the node i in the graph representation

and α ∈ R is some hyperparameter to be specified. As already pointed out
in the similar case of (unsupervised) spectral clustering in Section 4.4.1, note
that the optimization scheme imposes [K]ij ≥ 0 to be meaningful (otherwise,
an arbitrarily small negative solution could be found). With this constraint,
the optimization scheme naturally induces the scores [S]ia and [S]ja to be close
for [K]ij large, and allows them to be distinct if [K]ij is close to zero. Unlike
spectral clustering though, we need not impose S to be isometric.

As expected, similar to spectral clustering, it was empirically observed that,
for α = 0, the algorithm tends to fail. From a large dimensional perspective,
we now understand the fundamental reason behind this observation is again the
erroneous assumption that [K]ij is either “small” or “large”, while past attempts
to understand this behavior rather blamed it on node imbalances in the graph.
To avoid some (too strongly connected) nodes to create biases, the natural first
solution has been to weigh the scores [S]ij by a negative power of the degree dα
for some α < 0. This is the approach essentially followed, for different choices
of α, in [Zhu et al., 2003, Belkin et al., 2004, Joachims, 2003, Zhou et al., 2004].

Quite interestingly, the explicit solutions of these (quadratic under linear
constraint) optimization problems can essentially be mapped to the stationary
points of the aforementioned label propagation or random walk on graphs, as
shown in [Avrachenkov et al., 2012] for α = 0, −1/2 and −1. The case α =
−1, which we shall discuss in depth in the following, precisely corresponds to
(a variation of) the PageRank algorithm, popularized by Google to classify
webpages.

Remark 4.8 (Laplacian versus manifold methods). Aside from graph-Laplacian
approaches, another popular family of semi-supervised learning schemes are
the manifold-based methods [Belkin and Niyogi, 2004, Goldberg et al., 2009,
Moscovich et al., 2016]. These algorithms rely on a first step of “manifold
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learning” which corresponds to the unsupervised projection of the data onto a
dominant subspace. However, we know, from the previous sections (see, e.g.,
Section 2.5), that unsupervised learning may lead (below a certain phase tran-
sition threshold) to a complete loss of information, so that learning could be
performed on a completely random projection space. The Laplacian-based ap-
proaches, as shall be seen in this section, do not suffer from this phase transition
limitation and are thus more robust (under a non-trivial classification regime,
the performance slowly decays with increasingly harder problems, but without
the presence of a sudden performance collapse).

The solution to (4.36) is explicitly given by

S[u] =
(
Inu −D−1−α

[u] K[uu]D
α
[u]

)−1

D−1−α
[u] K[ul]D

α
[l]S[l]. (4.37)

where D = diag{di}ni=1 ∈ Rn×n and where we subdivided S, K and D into
sub-blocks of labeled (l) versus unlabeled (u) data indices

S =

[
S[l]

S[u]

]
, K =

[
K[ll] K[lu]

K[ul] K[uu]

]
, and D =

[
D[l] 0
0 D[u]

]
. (4.38)

The final decision, i.e., the allocated class index Ĉxi for data xi, is then given
by

Ĉxi = Câ for â = arg max
1≤a≤k

[S]ia. (4.39)

Large dimensional performance analysis

As in the previous section for unsupervised classification, we consider data fol-
lowing a Gaussian mixture model, that is

xi ∈ Ca ⇔ xi ∼ N (µa,Ca)

for µa ∈ Rp and Ca ∈ Rp×p. We assume that there exist k classes C1, . . . , Ck of
sizes n1, . . . , nk, with in total n[l] labeled and n[u] unlabeled nodes. We denote
n[l]a, n[u]a the number of labeled and unlabeled nodes of class Ca which are all
assumed to be of order O(n).

Since our focus lies in the understanding of the behavior of the semi-supervised
learning algorithm, so in particular (but not only) in the statistics of the score
matrix S and the impact of the hyperparameter α, here we merely consider the
case [K]ij = f(‖xi − xj‖2/p) for f ′(τp) away from zero, where we recall

τp =
2

p
tr C◦, C◦ =

k∑
a=1

na
n

Ca

and position ourselves in the non-trivial regime where for a, b ∈ {1, . . . , k}

‖µa − µb‖ = O(1), tr(Ca −Cb) = O(
√
p), tr(Ca −Cb)

2 = O(p).

The fact that these distances are possibly sub-optimal for certain classification
tasks will not be our primary focus here.
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First intuitions. A first key observation is that, under the non-trivial growth
rate, since maxij |Kij − τp|

a.s.−−→ 0, there are strong reasons to believe that the
optimization scheme (4.36), through its solution in (4.37), is bound to fail. How-
ever, while the algorithm always behaves differently from our small dimensional
intuition, it may not fail in some cases. To see this, let us set α = −1 and
perform semi-supervised graph learning with a Gaussian kernel on two even-
sized classes N (±µ, Ip). Figure 4.15 illustrates the scores S for p = 1 (small
dimensional case) versus p = 20 (moderately large dimensional case).

Recall that the small dimensional intuition behind the optimization frame-
work in (4.36) (or its equivalent walk on graph and label propagation inter-
pretation) is that the unlabeled data scores should be “pulled” to the scores of
neighbors effectively from the same class. This expected behavior of the score
vector S·a ∈ Rn of class Ca is displayed at the top of Figure 4.15 for data of
dimension p = 1. Yet, as soon as p is slightly larger, this behavior is largely
disrupted, as observed in the bottom display, already for p as small as p = 20.
Note in particular that:

• the unlabeled data scores do not seem affected by the labeled data scores
(0 or 1); indeed, a pairwise comparison of [S]i1 and [S]i2 reveals that the
scores are extremely close to one another but their average is not a fixed
value (one would expect 0.5);

• despite this completely different behavior between the p = 1 and p = 20
scenarios, the algorithm seems to work properly since [S]i1 > [S]i2 for
most i ≤ n/2 (so for data genuinely from class C1) and conversely.

As a consequence, although the small dimensional intuition is largely disrupted
here, the semi-supervised learning scheme (for α = −1) does not completely
fail, at least in this very elementary Gaussian mixture toy model example.

What about real data scenarios? Figure 4.16 proposes the same setting as
Figure 4.15 for the MNIST dataset. The situation appears much closer to the
bottom than the top display of Figure 4.15, thereby suggesting a closer fit to the
large dimensional viewpoint. The situation is even worse since the unlabeled
data scores are further away from 0.5. Yet, the algorithm again works decently
as the comparison between [S]i1 and [S]i2 shows a clear advantage of class C1
on the first half of the unlabeled data and class C2 on the second half.

But all there are valid here for α = −1. The same simulation with for
example α = 0 or α = −1/2 reveals a total failure of the algorithm with all data
mapped to the same class (the readers are invited to adapt the codes linked to
the figures to observe by themselves). As we shall see below, a random matrix
analysis can reveal the actual behavior of the algorithm and clarify what is so
special about the choice α = −1.16

s
16Note that in the analysis of spectral clustering in Section 4.4.1, we instead found the

normalization [S]ia/
√
di in (4.33) (leading to the normalized Laplacian matrix L) to be best

performing. This discrepancy follows from remarking that with the constraint [S]ia = δxi∈Ca
in (4.36) for the labeled data, S is no longer naturally isometric as for spectral clustering in
Section 4.4.1. As such, the optimal (and only) choice of α = −1 for semi-supervised learning
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Figure 4.15: Scores S for Laplacian-based semi-supervised learning with two
classes xi ∼ N (±µ, Ip) with µ = [2, 1p−1], Gaussian kernel, α = −1, n = 200,
n[l] = 60, n[u] = 140 and (top) p = 1, (bottom) p = 20. Link to code: Matlab
and Python.
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Figure 4.16: Scores S of MNIST data (ones versus twos) with p = 784, in the
same setting as Figure 4.15. Link to code: Matlab and Python.

Derivations and main results. To understand the behavior of the graph-
based semi-supervised learning observed above, we shall first focus on the large
n, p asymptotics of the (large dimensional) score vectors S·a ∈ Rn for 1 ≤ a ≤ k.
Characterizing the ultimate performance of the algorithm will consist instead in
studying, for each xi unlabeled, the “joint” (small dimensional) vectors of scores

here is coherent with the optimal [S]ia/
√
di normalization in (4.33) for spectral clustering

(leading to the normalized Laplacian matrix L), with the extra 1/
√
di factor to ensure the

isometry of S.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/semi_supervised_kernel.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/semi_supervised_kernel.ipynb
https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/semi_supervised_kernel.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/semi_supervised_kernel.ipynb
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Si· ∈ Rk.
Recall from Theorem 4.1 that the kernel matrix K under study here admits

a random matrix equivalent K̃ in the sense that ‖K − K̃‖ a.s.−−→ 0 in the large
n, p limit. In particular, ‖K[ul] − K̃[ul]‖

a.s.−−→ 0 and similarly for all sub-blocks
of K under the decomposition in (4.38). From the explicit form (4.37) of the
unlabeled data scores S[u], it is thus tempting to replace all sub-blocks of K by
those of K̃. This is justified since, almost surely, for all large n, the resolvent
(Inu − D−1−α

[u] K[uu]D
α
[u])
−1 has bounded spectrum. After calculus, it indeed

comes that

D−1−α
[u] K[uu]D

α
[u] =

1

n
1n[u]

1T
n[u]

+O‖·‖(n
− 1

2 )

so that the resolvent can be further expanded as(
In[u]

−D−1−α
[u] K[uu]D

α
[u]

)−1

= In[u]
+

1

n[l]
1n[u]

1T
n[u]

+O‖·‖(n
− 1

2 ). (4.40)

We will see later that, although the O‖·‖(n−1/2) term contains statistical infor-
mation about the classes (as in the case of spectral clustering), this seemingly
“trivial” linearization of the resolvent is at the source of various counterintuitive
phenomena observed in large dimensional semi-supervised learning.

Once the linearization of the resolvent performed, characterizing the asymp-
totic behavior of S[u] becomes a matter of algebraic calculus from the result of
Theorem 4.1. This calculus leads to the following first central result (see details
in [Mai and Couillet, 2018])(

S[u]

)
·a =

n[l]a

n

(
1n[u]

+ v + (α+ 1)
f ′(τp)

√
p

f(τp)
√
n
·
ta1n[u]√

n

)
+O(n−1) (4.41)

where we recall that ta = tr C◦a/
√
p = O(1), O(n−1) is understood here entry-

wise, and v ∈ Rn[u] is a zero-mean random vector with entries of order O(n−1/2),
which is independent on the class index a.

This first result states that:

1. the score (S[u])ia of an unlabeled datum xi is largely dominated by the
constant n[l]a/n; as such, if n[l]1, . . . , n[l]k are distinct, all the unlabeled
data will be allocated to the class Ca corresponding to the largest (or
smallest) value of n[l]a;

2. the second dominant term in (S[u])ia is the sum of two terms of order
O(n−1/2): the zero-mean random noise [v]i and a term proportional to
(α+1)ta which does not depend on i: as such, provided the n[l]· are equal,
all unlabeled data xi will likely be classified into the class Ca for which ta is
maximal (or minimal), unless the ta’s are all equal (or distinct by at most
O(n−1/2)) or α = −1 (or at least equal to −1+O(n−1/2)); since the former
cannot be guaranteed in practice, one must set the parameter α close
to −1; this here explains the long observed advantage of the PageRank
algorithm over the other Laplacian alternatives;
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3. once all these constraints are set, what remains in (S[u])ia is a term of
order O(n−1), leading to the vector (S[u])·a being of norm O(n−1/2): this
“weak” O(n−1) term, as we shall see, is the one containing the relevant
classification information which must be “protected” from the dominant
higher O(n−1/2) order noise!

From Item 1, we thus conclude that S[u] is not the appropriate metric, and
one should instead consider the normalized score matrix

Ŝ[u] = S[u] diag

(
n

n[l]1
, . . . ,

n

n[l]k

)
. (4.42)

From Items 2 and 3, α must be set to −1 + β/
√
p for some β = O(1). This pre-

processing step discards all dominant noise in S[u] and therefore now reveals
the “hidden” (otherwise buried in noise) class information structure from the
residual O(n−1) term in the expansion of (S[u])·a in (4.41). An exhaustive and
careful random matrix analysis leads to the following result.

Theorem 4.8 (Mai and Couillet [2018, Theorem 2]). For xi ∈ Cb an unlabeled
data point, let Ŝ[u] be defined as in (4.42) and α = −1 + β/

√
p for some β ∈ R.

Then

pŜi· = p(1 + [v]i)1k + gi + o(1), gi ∼ N (Eb,Vb)

where [v]i = O(n−1/2) only depends on i and

[Eb]a = −2f ′(τp)

f(τp)
µ̃T
a µ̃b +

(
f ′′(τp)

f(τp)
− f ′(τp)

2

f(τp)2

)
t̃at̃b

+
2f ′′(τp)

f(τp)

1

p
tr C̃aC̃b +

nβ

n[l]

f ′(τp)

f(τp)
ta (4.43)

[Vb]a1a2 = 2

(
f ′′(τp)

f(τp)
− f ′(τp)

2

f(τp)2

)2

ta1ta2 ·
1

p
tr CbCb

+ 4
f ′(τp)

2

f(τp)2

[
(µ◦a1)TCbµ

◦
a2 +

nδa1a2
n[l]a1n[l]

tr Ca1Cb

]
(4.44)

where were introduce the “labeled data-centered” statistics

µ̃a ≡ µa −
k∑
b=1

n[l]b

n[l]
µb, t̃a ≡

1
√
p

tr C̃a, C̃a ≡ Ca −
k∑
b=1

n[l]b

n[l]
Cb.

The main message of Theorem 4.8 is that, up to the irrelevant dominant
term p(1 + vi)1k, the normalized score vector Ŝi· ∈ Rk of xi has a limiting
Gaussian behavior with precisely characterized mean and covariance, which,
not surprisingly, depend on the statistical means µa and covariance matrices
Ca of the data classes and on the first derivatives of f at τp. The parameter β
here also plays a non-trivial “debiasing” role which may be helpful in correcting
some inherent imbalance between classes.
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Yet, generally speaking, most conclusions drawn in the previous section on
spectral clustering remain valid, at the noticeable exception of the following
surprising remark.

Remark 4.9 (Sub-optimality of the Gaussian kernel). It is interesting to ob-
serve that the term f ′′(τp)/f(τp)− f ′(τp)2/f(τp)

2 plays a dominant role in dis-
criminating classes having various “amplitudes” (i.e., distinct values of ta). For
the Gaussian kernel f(t) = exp(−t/2σ2), this term is exactly zero for all choices
of τp and thus the Gaussian kernel, in this semi-supervised context, fails for
instance to separate two “nested balls” N (0, (1 ± ε/

√
p)Ip), as in the case of

Remark 4.5 for “regular” inner-product kernels, while most polynomial kernels
succeed. This is illustrated in Figure 4.17.
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Figure 4.17: Empirical misclassification rates of the semi-supervised Laplacian
approach on two-class Gaussian mixtures with µ1 = µ2, C1 = Ip and C2 =
(1 + 3/

√
p)Ip, for (left): Gaussian kernel f(t) = exp(−t/(2σ2)) and (right):

polynomial kernel of degree two with f(τp) = f ′′(τp) = 1, n = 1024, p = 512,
n[l]/n = 1/16, n[l]1 = n[l]2 and α = −1. Link to code: Matlab and Python.

Looking now more specifically into the “semi-supervised” aspect of the al-
gorithm, a major problem arises immediately: up to renaming β into βn/n[l]

which is a free parameter, the mean Eb in Theorem 4.8 depends neither on n[l]

nor on n[u]. As for the variance Vb, its diagonal elements decrease as n[l] in-
creases (for fixed p, n[u]) but does not decrease as n[u] increases (for fixed p, n[l]).
This suggests that the semi-supervised Laplacian approach does not learn from
unlabeled data. This surprising outcome is in fact well documented in the semi-
supervised learning literature: see in particular [Olivier et al., 2006, Chapter 4]
which we quote here

“Our concern is this: it is frequently the case that we would be better off just
discarding the unlabeled data and employing a supervised method, rather than
taking a semi-supervised route. Thus we worry about the embarrassing

situation where the addition of unlabeled data degrades the
performance of a classifier.”

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/semi_supervised_kernel.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/semi_supervised_kernel.ipynb
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The situation is depicted in Figure 4.19 where the performance of the classical
semi-supervised Laplacian approach (blue triangles) is indeed confirmed not to
increase with n[u]: the popular Laplacian method is thus merely reduced, at least
in the large n, p regime, to supervised classification. A particularly problematic
consequence is that the fully unsupervised spectral clustering method studied in
Section 4.4.1 tends to overtake the Laplacian method as the number of unlabeled
data n[u] continues to increase.

The next section is dedicated to a more profound analysis of the problem,
leading to a random matrix-inspired semi-supervised approach that benefits
from more unlabeled data (red circles in Figure 4.19).

Improving semi-supervised learning

In fact, the trivial linearization (4.40) of the resolvent in the expression of S[u]

holds the key to the inefficient exploitation of unlabeled data in the graph-based
semi-supervised learning algorithm. This is investigated here.

Main intuition. The situation may be loosely summarized as follows: S[u] =
A[uu]A[ul] with A[uu] the “unsupervised part” of the algorithm and A[ul] the
supervised part (note in passing that this is quite reminiscent of the solution
to the classical ridge regression problem). The dominant-order term of A[uu]

(in operator norm) contains the identity matrix In[u]
(as well as 1

n[l]
1n[u]

1T
n[u]

),
while the dominant term of A[ul] only contains 1

n1n[u]
1T
n[l]

; as for the informative
terms of least order, call them B[uu] and B[ul], they are both such that their
(i, j)-entry depends on the class of xi and on the index a of the class of xj .
For (S[u])ia to be informative, it must also depend on both the class of xi and
on a. However, taking the matrix product A[uu]A[ul], the only non-vanishing
informative terms are the cross-products between the dominant- and least-order
terms, so in particular In[u]

B[ul] and B[uu]
1
n1n[u]

1T
n[l]

. While the former has
entries (i, j) depending on both the class of xi and the class a of xj , this is
not true for the latter which does not depend on a. As a consequence, the
unlabeled informative B[uu] (asymptotically) vanishes from the output scores
and the unsupervised information is thus not used.

In order to remedy this situation, one must discard the dominant matrices
of the type 1n[u]

1T
n[l]

from the derivation above. This term is the first order ap-
proximation of K[ul]D

−1
[l] , and mainly unfolds from the non-negativity constraint

on the entries of K, which creates this large “bias”. From a purely mathematical
standpoint, it stands to reason to remove this bias, for example by changing K
into K̂ with

K̂ = PKP, P = In −
1

n
1n1T

n (4.45)

which is then “orthogonal” to the bias vector 1n. This is not so simple though,
as this implies that D = diag(K̂1n) = 0. Also, replacing K by K̂ in the original
optimization problem (4.36), now that K̂ has negative entries, leads (4.36) to
be arbitrarily negative and, as a result, to have no solution.
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Adapted optimization framework. The proposed workaround in [Mai and
Couillet, 2021] consists in starting from the optimization problem (4.36), replac-
ing K with K̂ (thus with α = 0 since di = 0 for all i) and imposing an additional
constraint on the Frobenius norm ‖S‖F to avoid the trivial unbounded negative
solution.

The optimization framework then becomes

Ŝ = arg min
Ŝ∈Rn×k

k∑
a=1

n∑
i,j=1

[K̂]ij

(
[Ŝ]ia − [Ŝ]ja

)2

(4.46)

s.t.


Ŝ[l] =

(
In[l]
− 1

n[l]
1n[l]

1T
n[l]

)
S[l]

[S]ia = δxi∈Ca for labeled nodes,
‖Ŝ[u]‖2F = n[u]γ, for some γ > 0

(4.47)

the solution of which is explicitly given by

Ŝ[u] =
(
αIn[u]

− K̂[uu]

)−1

K̂[ul]Ŝ[l] (4.48)

where α is the Lagrangian multiplier associated with the constraint ‖Ŝ[u]‖2F =

n[u]γ and satisfies α > ‖K̂[uu]‖.

Performance analysis. The performance of the random matrix-improved
semi-supervised learning approach in (4.48) is studied in [Mai and Couillet,
2021] under the simplified setting of k = 2 classes with C1 = C2 ≡ C and with
the “one-hot” Ŝ ∈ Rn×k replaced by the “sign” vector ŝ ∈ Rn such that

ŝ[l] =

(
In[l]
− 1

n[l]
1n[l]

1T
n[l]

)
s[l], [s]i = (−1)a for labeled node xi ∈ Ca.

(4.49)
The derivation of the asymptotic performance is more technically challeng-

ing as the resolvent (αIn[u]
− K̂[uu])

−1 no longer trivially expands around a
leading (non-informative) matrix. For K̂ = PKP, in the notations of Corol-
lary 4.1, it is easily seen that the random equivalent PK̃P is of order O‖·‖(1)
which is the order of the informative terms. Therefore, in its Taylor expansion,
PK̃P may be seen as a low rank perturbation of the (full rank) random ma-
trix −2f ′(τp)PWTWP/p, with known deterministic equivalent for its resolvent
(see, e.g., Theorem 2.8).

This leads to the following performance asymptotics.

Theorem 4.9 (Mai and Couillet [2021, Theorem 3]). Let ŝ[u] = (αIn[u]
−

K̂[uu])
−1K̂[ul]ŝ[l] with ŝ[l] defined in (4.49) such that ‖ŝ[u]‖2 = n[u]γ. Then, for

an unlabeled data point xi ∈ Cb with (a priori) probability P(xi ∈ Cb) = cb,
b ∈ {1, 2},

[ŝ]i = gi + o(1), gi ∼ N
(
(−1)b(1− cb)E, V

)
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with E ≡ E(ξ) and V ≡ V (ξ) for ξ the unique solution to c1c2E2(ξ)+V (ξ) = γ,
and with positive functions E(t) and V (t) defined as

E(t) =
2n[l]θ(t)

n[u](1− θ(t))
,

V (t) = c1c2
(2n[l] + E(t)n[u])

2ζ(t) + (4n[l] + E2(t)n[u])pη(t)

n[u](n[u] − pη(t))
,

where ∆µ ≡ µ1 − µ2 and

θ(t) = c1c2t∆µ
T(Ip − tC)−1∆µ,

η(t) = t2 tr
[
(Ip − tC)−1C

]2
/p,

ζ(t) = c1c2t
2∆µT(Ip − tC)−1C(Ip − tC)−1∆µ.

The formulations of Theorem 4.9, not being explicit, are not immediate to
interpret. In the proof of Theorem 4.9, it is shown that θ ≡ θ(ξ) is of the order
of ‖s[u]‖/‖s[l]‖. As such, θ increases with the constraint γ > 0, itself inversely
proportional to the Lagrangian multiplier α. Consequently, raising α → ∞
brings θ → 0 and E/

√
V no longer depends on n[u]: semi-supervised learning

is then turned into a mere supervised learning scheme. On the opposite, as
α ↓ ‖K̂[uu]‖, θ → ∞ and now E/

√
V only depends on n[u]: only unlabeled

data are used, making the algorithm fully unsupervised. In fact, [Mai and
Couillet, 2021] precisely show that the limit α ↓ ‖K̂[uu]‖ perfectly recovers
spectral clustering; this is not difficult to intuit: the resolvent (αIn[u]

−K̂[uu])
−1

is strongly dominated by the inverse of the projector vvT with v the eigenvector
associated with the largest eigenvalue ‖K̂[uu]‖, and thus ŝ[u] ∝ v(vTK̂[ul]ŝ[l]) ∝
v, i.e., this boils down to spectral clustering on the dominated eigenvector of
K̂[uu]. These remarks are confirmed by Figure 4.18 for fixed and varying values
of n[u] and n[l].

Figure 4.19, already discussed in the previous section, shows that the random
matrix-improved semi-supervised learning method significantly improves over
the standard Laplacian approach, overtaking both the classical semi-supervised
Laplacian and the non-supervised spectral clustering.

Application to real-world datasets. One may wonder why the after-all
quite simple solution proposed in [Mai and Couillet, 2021] has not appeared
earlier in the literature. A first reason was previously mentioned: the fact that
K̂ has negative entries, when placed in the optimization framework of (4.46), is
counterintuitive.

A second reason might follow from the actual output of simulations on (mod-
erately large dimensional) real data. The bottom left display of Figure 4.20
compares the performance of the Laplacian versus RMT-improved Laplacian
method for an increasing number of unlabeled data n[u]: while the RMT-
improved method consistently outperforms the standard approach, the antic-
ipated incapacity of the latter to use unlabeled data is not observed in practice.
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Figure 4.18: Asymptotic misclassification rates as a function of θ ≡ θ(ξ) with
c1 = c2 = 1/2, p = 100, ∆µ = [2; 0p−1], [C]i,j = .1|i−j|. (Left): different n[u]

with n[l] = 100. (Right): different n[l] with n[u] = 800. Minimal errors are
marked in circles. Link to code: Matlab and Python.
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Figure 4.19: Empirical misclassification rates as a function of n[u] with n[l] =

200, p = 100, c1 = c2 = 1/2, xi ∼ N (±µ, Ip) for µ = [1; 0p−1]; α = ‖K̂[uu]‖+ 1
for RMT-improved and α = −1 for classical Laplacian method. Gaussian kernel
with f(t) = exp(−t/2). Results averaged over 50 runs. Link to code: Matlab
and Python.

This is explained, in the top left display, by the slight but already too large av-
erage distance between intra- and inter-class data. Adding Gaussian white noise
to the data (middle and right displays), the gap between intra- and inter-class
distances vanishes and the performance gain of the RMT-improved method in-
creases significantly, with the standard Laplacian now saturating for larger n[u].

Attempts to reduce the observed limitations of the Laplacian method had
in fact been reported in the earlier literature, such as in [Zhou and Belkin,
2011], where an “iterated Laplacian” approach was devised. The basic idea is
to replace the kernel matrix K (or variations of its Laplacian, e.g., D−1K) by
powers of the type Km: from a label propagation or graph random walk view-

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/semi_supervised_kernel.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/semi_supervised_kernel.ipynb
https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/semi_supervised_kernel.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/semi_supervised_kernel.ipynb
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point, this consists in “iterating” m propagation steps at once, thereby partially
avoiding the problem of uninformative direct neighbors. The iterated Laplacian
approach, for a well-chosen m, in general outperforms the standard Laplacian.
Yet, from a purely large dimensional theoretical standpoint, a random matrix
analysis would also reveal that the problem of (asymptotic) uselessness of addi-
tional unlabeled data remains (although, for finite p, n, it might be “pushed” and
appear only at larger values of n[u]). We refer the interested readers to [Mai
and Couillet, 2021, Section 6] for a more detailed discussion and comparison
with other popular semi-supervised approaches including the iterated Laplacian
and manifold-based methods, on various real-world datasets or standard rep-
resentation of them. It is also shown in [Mai and Couillet, 2021, Section 6.2]
that the proposed RMT-improved approach yields performance extremely close
to the optimal Bayesian solution derived in [Lelarge and Miolane, 2019] (for
N (±µ, Ip)), by properly tuning the parameter γ.

These numerical and theoretical evidences again confirm the advantageous
performance offered by the simple yet counterintuitive RMT-improved semi-
supervised learning scheme, and more generally, the strong resilience of the large
dimensional statistics approach to real data (or, at least, to some appropriate
representation of these data).

Noiseless −3dB noise 3dB noise
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inter

0 0.5 1 1.5 2 0 0.5 1 1.5 2
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Figure 4.20: (Top) Histogram of normalized pairwise distances ‖xi−xj‖2, i 6= j
with additive white Gaussian noise of intra- and inter-class MNIST digits (8
versus 9). (Bottom) Average accuracy of standard Laplacian versus RMT-
improved semi-supervised learning as a function of n[u] with n[l] = 10, computed
over 1 000 random realizations with 99% confidence intervals represented by
shaded regions. Link to code: Matlab and Python.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/semi_supervised_kernel.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/semi_supervised_kernel.ipynb
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4.4.3 Application to kernel ridge regression
We have discussed applications of kernel methods to unsupervised learning (ker-
nel spectral clustering in Section 4.4.1) and semi-supervised learning (the graph-
based approaches of Section 4.4.2). This section closes the investigation of ker-
nel methods by considering now the most popular supervised learning scenario.
The first natural method to supervised learning with kernels is kernel ridge
regression, which can be used for both regression and classification purposes.
In classification applications, it is also referred to as the least-squares support
vector machine, or LS-SVM [Suykens and Vandewalle, 1999], and is considered
as a computationally efficient alternative to the classical SVM method (to be
discussed later in Section 6.2).

In a binary classification scenario, consider a training set {(xi, yi)}ni=1 of size
n with data xi ∈ Rp and labels yi = ±1. We denote xi ∈ C1 if yi = −1 and
xi ∈ C2 if yi = +1. The objective of LS-SVM is to devise a decision function

g(x) = wTφ(xi) + b (4.50)

which ideally maps all the (features φ(xi) of the) training data xi to the corre-
sponding yi, and subsequently an unknown test datum x to its corresponding y
value, by solving the optimization

arg min
w,b

‖w‖2 +
γ

n

n∑
i=1

e2
i (4.51)

s.t. yi = wTφ(xi) + b+ ei, i = 1, . . . , n

for some penalty factor γ > 0 which weighs the structural risk ‖w‖2 against the
empirical risk 1

n

∑n
i=1 e

2
i .

By introducing the Lagrange multipliers {αi}ni=1, the solution to (4.51) can
be expressed as w =

∑n
i=1 αiφ(xi), where α = Q

(
In − 1n1T

nQ
1T
nQ1n

)
y

b =
1T
nQy

1T
nQ1n

(4.52)

for y = [y1, . . . , yn]T, Q ≡ (K + n
γ In)−1 and K ≡ {φ(xi)

Tφ(xj)}ni,j=1 the kernel
matrix from the training data, which is, again, assumed to take the following
form

K =
{
f(‖xi − xj‖2/p)

}n
i,j=1

for some smooth function f .
Given α and b, a new datum x is then classified into C1 or C2 depending on

the value of the decision function

g(x) = αTk(x) + b, k(x) ≡
{
f(‖x− xi‖2/p)

}n
i=1

. (4.53)

One of the most popular choices is to use the sign of g(x), and assign x to class
C1 (that corresponds to y = −1) if g(x) < 0 and to class C2 otherwise. As we
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shall see, this decision criterion can be highly biased in some cases, when large
dimensional data are considered.

Again, to allow for a much larger range of functions f(·) (in particular func-
tions f which do not necessarily arise from a feature mapping φ(·)), in the
remainder of this section, we shall allow for arbitrary f with a minimalist set
of constraints. We shall in particular observe, as in the previous sections, that
some functions f , not positive definite and thus not necessarily deriving from a
feature map φ(·), prove extremely powerful in some specific scenarios.

Large dimensional performance analysis and its implications

As in previous sections on unsupervised or semi-supervised classification meth-
ods, we place ourselves under the following two-class “non-trivial” Gaussian
mixture model

xi ∈ Ca ⇔ xi ∼ N (µa,Ca), a ∈ {1, 2}

for µa ∈ Rp and Ca ∈ Rp×p such that ‖Ca‖ = O(1) and

‖µ1 − µ2‖ = O(1), tr(C1 −C2) = O(
√
p), tr(C1 −C2)2 = O(p). (4.54)

Again, as for kernel spectral clustering and semi-supervised learning, the possi-
bly sub-optimality of the distances above is not our primary focus.

We assume a training set of n1 samples in class C1 and n2 samples in class C2
so that n1 +n2 = n, and as usual, that n1, n2 and p grow at the same rate (i.e.,
p/na remains away from 0 and∞ in the large n, p limit). We recall from previous
sections on kernel methods that, letting τp = 2

p tr C◦ with C◦ = n1

n C1 + n2

n C2,
these non-trivial growth rate conditions ensure that

max
1≤i6=j≤n

{[K]ij − τp}
a.s.−−→ 0. (4.55)

As such, the kernel matrix is dominated by the rank-one matrix f(τp)1n1T
n,

which is of operator norm order O(n), and thus of the same order as the regu-
larization n

γ In for γ = O(1).
As a result, with the (asymptotic) Taylor expansion of the kernel matrix

K derived in Theorem 4.1, it is possible to similarly “linearize” the resolvent
Q ≡ (K + n

γ In)−1 with a Taylor expansion around the leading f(τp)1n1T
n +

n
γ In term. Since the decision function g(x) depends on α and b, which both
explicitly depend on Q, we can work out an asymptotic linearization of g(x).
An asymptotic expression of the misclassification rate of LS-SVM then unfolds,
which is a function of the local behavior of f around τp, as well as of the data
statistics µ1,µ2 and C1,C2. This result is detailed in the following theorem.

Theorem 4.10 ([Liao and Couillet, 2019b, Theorem 2]). Under the non-trivial
Gaussian mixture model in (4.54), we have, for g(x) defined in (4.53) that

n(g(x)−Ga)
d−→ 0, with Ga ∼ N (Ea, Va),
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for a ∈ {1, 2} and

Ea = c2 − c1 +
2

p
(−1)a(1− ca)γc1c2D, Va =

8

p2
γ2c21c

2
2Va

with ca = na/n as well as

D = −2f ′(τp)‖∆µ‖2 +
f ′′(τp)

p

(
tr2 ∆C + 2 tr(∆C2)

)
Va =

(f ′′(τp))
2

p2
tr2 ∆C · tr(C2

a) + 2(f ′(τp))
2

(
∆µTCa∆µ+

1

n
tr Ca

(
C1

c1
+

C2

c2

))
in which we denoted ∆µ ≡ µ1 − µ2 and ∆C ≡ C1 −C2.

An immediate remark from Theorem 4.10 is that, since under the non-trivial
classification setting (4.54) both D and Va are of order O(1), the decision func-
tion is of order g(x) = c2 − c1 + O(n−1). This result contradicts the classical
“sign-based” decision criterion, by which the decision threshold ξ equals zero,
i.e., the new datum x is assigned to C1 if g(x) < ξ = 0 and to C2 otherwise.
When c1 − c2 6= 0 (in unbalanced classification scenarios), this would lead to
an asymptotic classification of all new data into one of the two classes. Two
options to alleviate this issue are:

1. taking the decision threshold ξ, instead of ξ = 0 in the sign-based criterion,
to be ξ = ξn = c2 − c1 +O(n−1);

2. normalizing the labels yi ∈ {−1,+1} as y∗i ∈ {−n/n1,+n/n2}, while
maintaining the decision threshold to ξ = 0 (or technically speaking of
order O(n−1)). This is also referred to as the Fisher’s targets in the
context of kernel Fisher discriminant analysis [Mika et al., 1999]. It can
be shown that, when trained with y∗i , the associated decision function
satisfies g∗(x) = 0 +O(n−1).

As a corollary of Theorem 4.10, the asymptotic misclassification rate is a
function of the decision threshold ξn and the statistics Ea, Va in Theorem 4.10,
as detailed in the following result.

Corollary 4.2 (Asymptotic misclassification error rate). Under the setting of
Theorem 4.10, for a decision threshold ξn which may depend on n, as n→∞,

P (g(x) > ξn | x ∈ C1)−Q
(
ξn − E1√

V1

)
a.s.−−→ 0

P (g(x) < ξn | x ∈ C2)−Q
(
E2 − ξn√

V2

)
a.s.−−→ 0

for Ea and Va given in Theorem 4.10 and Q(x) = 1√
2π

∫∞
x

exp(−t2/2)dt.

Interestingly, Corollary 4.2 implies that, if one takes ξn = c2− c1 = n2

n −
n1

n ,
the asymptotic classification error is independent of the regularization parameter
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γ. It is however worth noting that this remark is only valid for γ = O(1), i.e.,
γ is considered to remain constant as n, p → ∞, and the threshold is taken to
be exactly c2 − c1.
Remark 4.10 (On non-trivial γ choices). Since K is dominated by f(τp)1n1T

n,
taking γ = O(1) is a mandatory choice to avoid the asymptotic singularity of
the resolvent Q = (K + n

γ In)−1. An alternative approach may consist in work-
ing with the centered kernel PKP for P = In − 1

n1n1T
n instead of K (as in

[Elkhalil et al., 2019]), thereby discarding the dominant (and non-informative)
matrix f(τp)1n1T

n and allowing for γ to be chosen, say of order γ = O(n). In
this case, its specific choice would have a non-trivial impact on the classification
performance, as in the case of RMT-improved semi-supervised learning in Sec-
tion 4.4.2. We do not further elaborate on this setting as this moves us rather
far from the conventional LS-SVM formulation.

Due to the concentration of Euclidean distances in large dimensions, the
performance of LS-SVM depends on the kernel function f solely via its succes-
sive derivatives at τp (which, as recalled from Remark 4.4, can be consistently
estimated from the data). More discussions on the choice of f are in order.

1. Note that with f ′(τp) = 0 the difference in statistical means ∆µ vanishes
from the expressions of D and Va in Theorem 4.10 and the classification
can only be performed based on the covariance structures. In this situa-
tion, as in both unsupervised and semi-supervised learning, if one further
assumes tr(C1−C2) = tr ∆C = o(

√
p) (which is below the tr ∆C = O(

√
p)

regime considered in (4.54)), then D = 2f ′′(τp) tr(∆C2)/p + o(1) and
Va = o(1) so that with, say tr(∆C2) = O(p), perfect classification can
be achieved. This remark is of particular interest when data in different
classes are of zero mean, unit Euclidean norm and thus have indistinguish-
able E[‖x‖2] = tr Ca. In this case, the covariance “shape” information can
be better exploited with the family of kernels such that f ′(τp) = 0. Fig-
ure 4.21 compares the empirical classification error rate for p = 512 to
the theoretical asymptotic error predicted in Corollary 4.2, and confirms,
in the tr ∆C = 0 scenario, the rapid drop of classification error (which
ultimately vanishes) as f ′(τp) gets close to zero.

2. Since |E1 −E2| is proportional to D and should, for fixed Va (which does
not depend on the signs of f ′(τp) and f ′′(τp)), be made as large as possible
to achieve optimal classification performance, the kernel function must
satisfy f ′(τp) < 0 and f ′′(τp) > 0. Incidentally, this condition is naturally
satisfied by the popular Gaussian kernel f(x) = exp(−x/σ2) for any σ,
which is instead not always the case of polynomial kernels.

3. When the difference in statistical means ‖∆µ‖ is largely dominant over the
difference in covariances (tr ∆C)2/p and tr(∆C2)/p, from Theorem 4.10,
both Ea − (c2 − c1) and

√
Va are approximately proportionally to f ′(τp),

making the choice of the kernel function eventually irrelevant in this case,
so long that f ′(τp) 6= 0.



4.4. IMPLICATIONS TO KERNEL METHODS 291

−2 0 2
0

0.25

0.5

f ′(τp)

M
is
cl
as
si
fic
at
io
n
ra
te

Empirical error
Theoretical error

Figure 4.21: Misclassification rates of LS-SVM, p = 512, n = 2 048, c1 = c2 =
1/2, γ = 1, second-order polynomial kernel with f(τp) = 4 and f ′′(τp) = 2.
For Gaussian data x ∼ N (0,Ca) with C1 = Ip and [C2]ij = .4|i−j|. Empirical
results averaged over 30 runs. Link to code: Matlab and Python.

Application to real-world data

Although derived from a simple Gaussian mixture model, the previous theo-
retical results, when applied to popular large dimensional real-world datasets,
again show a (at first unexpected) similar behavior. Figure 4.22 considers the
classification of (two from the ten classes of) MNIST and Fashion-MNIST data.
Despite the obvious non-Gaussianity as well as the clearly different natures of
the data (from the two datasets), the empirical histogram of the decision func-
tion g(x) always behaves surprisingly close to its limiting behavior predicted
by Theorem 4.10. Again, as in Section 4.4.1 for spectral clustering, the popula-
tion statistics (about means and covariances) are empirically estimated from the
whole set of available data from different classes, see more details in Remark 4.11
below.

In Figure 4.23, the classification error rates are displayed as a function of the
decision threshold ξ, again for both MNIST and Fashion-MINIST data. The
conclusion that the optimal decision threshold should approximately be c2 − c1
rather than 0 is conclusively observed to hold true in both cases.

4.4.4 Summary of Section 4.4

In this section, we discussed the implications of random matrix analyses to
unsupervised, semi-supervised, and supervised learning methods. By assum-
ing the data vectors independently drawn from a k-class Gaussian mixture
xi ∼ N (µa,Ca), a ∈ {1, . . . , k}, the precise asymptotic performance of various
algorithms (spectral clustering in Theorem 4.7, graph-based semi-supervised
learning in Theorem 4.8, and the LS-SVM classification approach in Theo-
rem 4.10) are derived, as a function of the dimensionality ratio p/n, the data

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/kernel_ridge.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/kernel_ridge.ipynb
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Figure 4.22: Empirical histogram of g(x) versus the Gaussian limiting behavior
predicted in Theorem 4.10, n = 2 048, p = 784, γ = 1 with Gaussian kernel, for
MINST (left, 7 versus 9) and Fashion-MNIST (right, 8 versus 9) data. Results
averaged over 30 runs. Link to code: Matlab and Python.
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Figure 4.23: Misclassification rates as a function of the decision threshold ξ,
with n = 512, p = 784, c2 − c1 = 1/8 in purple, γ = 1, Gaussian kernel for
MNIST (left) and Fashion-MNIST data (right). Empirical optimal decision
thresholds ξ∗ = 0.12 (left) and 0.11 (right) in red. Results averaged over 30
runs. Link to code: Matlab and Python.

(discriminative) statistics, generally under the form of

‖µa − µb‖, tr(Ca −Cb)/
√
p, tr(Ca −Cb)

2/p, (4.56)

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/kernel_ridge.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/kernel_ridge.ipynb
https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.4/html/kernel_ridge.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.4/kernel_ridge.ipynb
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as well as the hyperparameters of the algorithm such as the choice of the kernel
function, the graph regularization parameter α in (4.36), or the (ridge) reg-
ularization penalty γ in (4.51). As a result, with the access to (estimates of)
these key statistics, one can then optimally tune these hyperparameters by opti-
mizing over the theoretical performance formulas, which avoids cross-validation
procedures that may “consume” a certain amount of training data. In the semi-
supervised and supervised cases, these key statistics can be estimated from the
labeled data, as described in the following remark.

Remark 4.11 (Estimation of GMM discriminative statistics). Denote Xa ∈
Rp×na , Xb ∈ Rp×nb the data (sub)matrix of class Ca and Cb, respectively. Then,
‖µa − µb‖ and tr(Ca − Cb)/

√
p can be consistently estimated via their asso-

ciated empirical estimators, i.e., for µ̂a ≡ 1
na

Xa1na and Ĉa ≡ 1
na−1 (Xa −

µ̂a1
T
na)(Xa − µ̂a1T

na)T, one has

‖µ̂a − µ̂b‖ − ‖µa − µb‖ = o(1), tr(Ĉa − Ĉb)/
√
p− tr(Ca −Cb)/

√
p = o(1).

(4.57)
For the covariance (Frobenius) distance tr(Ca −Cb)

2/p, it follows from Exer-
cise 9 that(

1

p
tr(Ĉ2

a + Ĉ2
b)−

(tr Ĉa)2

pna
− (tr Ĉb)

2

pnb
− 2

p
tr(ĈaĈb)

)
−1

p
tr(Ca−Cb)

2 = o(1).

(4.58)

For kernels of the type f(‖xi − xj‖2/p) and f(xT
i xj/p), we saw that the

performance of kernel-based methods depends on the (smooth) function f only
via the successive derivatives f(τp), f ′(τp) and f ′′(τp) (with τp obtained from
Remark 4.4). As a consequence, all such f yield asymptotically the same perfor-
mance as the simple quadratic function f(t) = at2 +bt+c and it thus suffices to
perform a three-dimensional optimization procedure (of the coefficients) of the
“universal” quadratic function with the above estimated statistics. This remark
also holds for α-β and properly scaling kernels, discussed in Section 4.2.4 and 4.3.

In the unsupervised case, however, while it is always possible to estimate the
key parameter τp in a consistent manner (as in Remark 4.4 which does not need
labeled data), it is unlikely to make a good estimate of the class discriminative
statistics (similar to Remark 4.11 which depends on the data classes) without
performing any form of clustering beforehand.

To conclude, let us insist again on the capability of random matrix analyses
to unveil critical but systematic behavior in large dimensional learning prob-
lems, such as the crucial choice of the hyperparameter α = −1 + O(n−1/2) in
graph-based semi-supervised learning (as per Theorem 4.8) or of the decision
bias in unbalanced kernel LS-SVM classification (as per Theorem 4.10): these
behaviors are independent of the precise values of the data statistics, are empir-
ically observed on real-world datasets which are clearly nowhere close to Gaus-
sian, and, as discussed later in Chapter 8, are in fact theoretically supported by
universality arguments of large dimensional data.
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4.5 Concluding remarks

Before the present chapter, the first part of the monograph was mostly con-
cerned with the sample covariance matrix model XXT/n (and more marginally
with the Wigner model X/

√
n for symmetric X), where the columns of X are

independent and the entries of each column are independent or linearly de-
pendent. Historically, this model and its numerous variations (with a variance
profile, with right-side correlation, summed up to other independent matrices of
the same form, etc.) have covered most of the mathematical and applied inter-
est of the first two decades (since the early nineties) of intense random matrix
advances. The main drivers for these early developments were statistics, signal
processing, and wireless communications. The present chapter leaped much fur-
ther in considering now random matrix models with possibly highly correlated
entries, with a specific focus on kernel matrices. When (moderately) large di-
mensional data are considered, the intuition and theoretical understanding of
kernel matrices in small dimensional setting being no longer accurate, random
matrix theory provides accurate (and asymptotically exact) performance assess-
ment along with the possibility to largely improve the performance of kernel-
based machine learning methods. This, in effect, creates a small revolution in
our understanding of machine learning on realistic large datasets.

A first important finding of the analysis of large dimensional kernel statis-
tics reported here is the ubiquitous character of the Marc̆enko-Pastur and the
semi-circular laws. As a matter of fact, all random matrix models studied in
this chapter, and in particular the kernel regimes f(xT

i xj/p) (which concentrate
around f(0)) and f(xT

i xj/
√
p) (which tends to f(N (0, 1))), have a limiting

eigenvalue distribution akin to a combination of the two laws. This combina-
tion may vary from case to case (compare for instance the results of Practical
Lecture 3 to Theorem 4.4), but is often parametrized in a such way that the
Marc̆enko-Pastur and semicircle laws appear as limiting cases (in the context
of Practical Lecture 3, they correspond to the limiting cases of dense versus
sparse kernels, and in Theorem 4.4 to the limiting cases of linear versus “purely”
nonlinear kernels).

A second point of importance, worth recalling, is the range of valid kernels
analyzed: for the “natural” scaling 1/p (so kernels of the type f(xT

i xj/p) or
f(‖xi−xj‖2/p)), all kernel functions f(t) are equivalent as long as they are dif-
ferentiable and have the same first three derivatives at the concentration point
t = 0 (for inner-product) or τp (for distance kernels); for the “proper” scaling
1/
√
p (so kernels of the form f(xT

i xj/
√
p) or f(

√
p[‖xi − xj‖2/p− τp])), kernel

functions f are equivalent if they share in common three specific Gaussian mo-
ments (i.e.,

∫
P (t)f(t)µ(dt) for µ the Gaussian measure). As such, while it is

not necessarily surprising to see the naturally scaling kernels being equivalent
if they have similar behavior near the concentration point, it is quite surprising
at first that properly scaling kernel functions f , which “see” values in the whole
real axis, do not offer more flexibility or diversity. For both types of kernels,
only the first elementary moments of the data are accounted for. The main dif-



4.6. PRACTICAL COURSE MATERIAL 295

ference between naturally and properly scaling kernels though, is the possibility
of the latter to allow for very discontinuous kernel functions, such as the sign
(or more generally quantization) and thresholding functions: this finds a broad
range of applications in low-cost kernel techniques. On this aspect, Chapter 5
recalls the intimate connection between neural networks, random projections,
and their limiting kernels: a direct connection can be established between sparsi-
fication techniques in neural networks (such as the popular random or determin-
istic dropout procedure) and sparsification techniques in kernel methods. The
present chapter may then provide some keys to understanding and improving
computationally constrained methods in the performance-complexity tradeoff of
methods beyond kernels.

This being said, the analysis of kernel methods is far from over. Many
kernel matrices remain out of analytical reach by the current random matrix
machinery. This is in particular the case of “rank correlation” (also referred to
as U-statistics) matrices, such as Spearman-ρ [Spearman, 1987] or Kendall-τ
[Kendall, 1938]. For data vectors x1, . . . ,xn ∈ Rp, the entry [K]ij of a rank cor-
relation matrix K evaluates a function on the ranks of the entries [xi]1, . . . , [xi]p
and [xj ]1, . . . , [xj ]p of xi and xj . For Kendall-τ , [K]ij evaluates the num-
ber of pairs [xi]a, [xi]b such that sign([xi]a − [xi]b) = sign([xj ]a − [xj ]b). As
for Spearman-ρ, [K]ij evaluates the empirical correlation between the ranks
rk([xi]a) and rk([xj ]a), for a = 1, . . . , p. For these kernels, the rank variables
create involved correlations between the entries of the data matrix X which
prevent classical random matrix tools to immediately apply. The problem was
worked around in [Bandeira et al., 2017] for X having fully i.i.d. entries, ex-
ploiting there the very fact that the i.i.d. nature of variables induces an i.i.d.
distribution of the ranks. The generalization to non-i.i.d. random variables
would however fail in general.

Another important family of difficult-to-grasp kernels is that of k-nearest
neighbor (k-NN) kernels [Fix and Hodges, 1989]. These kernel matrices K are
such that [K]ij is only nonzero if xj is one of the k-nearest neighbors of xi, among
x1, . . . ,xn in the sense of a given metric (typically of the Euclidean distance).
The induced dependence between the entries of such matrices is more subtle to
grasp, leaving for the moment the study of these kernels, widely used in machine
learning applications, largely open.

4.6 Practical course material

In this section, Practical Lecture 3 (that evaluates the spectral behavior of
uniformly sparsified kernels) related to the present Chapter 4 is discussed, where
we shall see, as for α-β and properly scaling kernels in Section 4.2.4 and 4.3
that, depending on the “level of sparsity”, a combination of Marc̆enko-Pastur
and semicircle laws is observed.

Practical Lecture Material 3 (Complexity-performance trade-off in spectral
clustering with sparse kernel, Zarrouk et al. [2020]). In this exercise, we study
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the spectrum of a “punctured” version K = B � (XTX/p) (with the Hadamard
product [A � B]ij = [A]ij [B]ij) of the linear kernel XTX/p, with data matrix
X ∈ Rp×n and a symmetric random mask-matrix B ∈ {0, 1}n×n having indepen-
dent [B]ij ∼ Bern(ε) entries for i 6= j (up to symmetry) and [B]ii = b ∈ {0, 1}
fixed, in the limit p, n → ∞ with p/n → c ∈ (0,∞). This matrix mimics the
computation of only a proportion ε ∈ (0, 1) of the entries of XTX/n, and its
impact on spectral clustering. Letting X = [x1, . . . ,xn] with xi independently
and uniformly drawn from the following symmetric two-class Gaussian mixture

C1 : xi ∼ N (−µ, Ip), C2 : xi ∼ N (+µ, Ip) (4.59)

for µ ∈ Rp such that ‖µ‖ = O(1) with respect to n, p, we wish to study the effect
of a uniform “zeroing out” of the entries of XTX on the presence of an isolated
spike in the spectrum of K, and thus on the spectral clustering performance.

We will study the spectrum of K using Stein’s lemma and the Gaussian
method discussed in Section 2.2.2. Let Z = [z1, . . . , zn] ∈ Rp×n for zi = xi −
(−1)aµ ∼ N (0, Ip) with xi ∈ Ca and M = µjT with j = [−1n/2, 1n/2]T ∈ Rn
so that X = M + Z. First show that, for Q ≡ Q(z) = (K− zIn)−1,

Q = −1

z
In +

1

z

(
ZTZ

p
�B

)
Q +

1

z

(
ZTM

p
�B

)
Q

+
1

z

(
MTZ

p
�B

)
Q +

1

z

(
MTM

p
�B

)
Q.

To proceed, we need to go slightly beyond the study of these four terms. Specif-
ically, using Stein’s lemma, Lemma 2.13, show that, for arbitrary matrix A ∈
Rn×n of bounded norm,

E
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ZTZ

p
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)
Q

]
ij
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[
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where ai ∈ Rn is the i-th (transposed) row of A, bi ∈ Rn the i-th column of B,
Dai ≡ diag(ai), Dbi ≡ diag(bi) and

Dai,B = diag

{
1

n
tr(QDaiDbk)

}n
k=1

= diag

{
1

n
tr
(
Q� (aib

T
k )
)}n

k=1

(4.60)
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and conclude that

E[Qij ] = −1

z
δij +

1

z

[
Bii −

1

n
tr

(
QDbi

1

p
(Z + M)T(Z + M)Dbi

)]
E[Qij ]

+
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z
E
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MTM
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z
E
[
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p
Di,BQ

]
ij

+ o(1)

(4.61)

for

Di,B = Dbi,B = diag

{
1

n
tr(Q� bib

T
k )

}n
k=1

. (4.62)

The main difficulty here lies in the last term 1
nE[MT(Z+M)Di,BQ]ij, for which

we will admit the following result

[Di,B]kk =
1

n
tr(Q� bib

T
k ) =

{ ε
n tr Q + o(1), for i = k
ε2

n tr Q + o(1), otherwise,
(4.63)

which follows from the symmetry of B and a concentration argument. From this
result, along with the remark that A = A� 1n1T

n and ‖µ‖ = O(1), show that

E
[

MTM�B

p
Q

]
ij

= −E
[

MTMQ

p

]
ij

1

1 + ε
n tr Q

ε2

n
tr Q + o(1).

To obtain a self-consistent equation, we need to find a recursive relation for the
quantities

Lij ≡
1

n
tr

(
Q

(
1

p
(Z + M)T(Z + M)� bib

T
j

))
which appeared in the development of (4.61). By interchangeability, observe that
Lij = L6= + o(1) for all i 6= j while Lii = L= + o(1) for all i, for some L6= and
L=. Show further that

L6= =
ε2

n tr Q

1 + ε
n tr Q

, L= =
ε

n
tr Q−

ε3( 1
n tr Q)2

1 + ε
n tr Q

. (4.64)

Conclude from these developments that the following deterministic equivalent
relation holds

Q(z)↔ Q̄(z) = m(z)

(
In + ‖µ‖2 εm(z)

c+ εm(z)

jjT

n

)−1

(4.65)

where m(z) is the Stieltjes transform (the limit of 1
n tr Q(z)) solution to

z = b− 1

m(z)
− ε

c
m(z) +

ε3m2(z)

c(c+ εm(z))
(4.66)
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in which we recall that c = lim p/n and b = [B]ii for all i. Show in particular
that, up to a shift and scale, we retrieve the Marc̆enko-Pastur law in the limit ε =
1 and the semicircle law in the limit ε→ 0. Confirm numerically the “transition”
from semicircle to Marc̆enko-Pastur behavior by tuning ε as in Figure 4.24.

Using a spiked model approach (Section 2.5), define the functions

F (x) = x4 + 2x3 +
(

1− c

ε

)
x2 − 2cx− c,

G(x) = b+
ε

c
(1 + x) +

1

1 + x
+

ε

x(1 + x)
,

and let Γ be the largest real solution to F (Γ) = 0. Show that the largest
eigenvalue-eigenvector pair (λ̂, û) of K satisfy

λ̂→ λ =

{
G(ρ), ρ > Γ
G(Γ), ρ ≤ Γ

and
1

n
|jTû|2 → ζ =

{
F (ρ)

ρ(1+ρ)3 , ρ > Γ

0, ρ ≤ Γ

almost surely, where we denote ρ = lim ‖µ‖2.

(a) ε = 0.05 (b) ε = 0.5 (c) ε = 0.95

Figure 4.24: Eigenvalues of sparse kernel matrices K versus the limiting laws,
for µ = [1, 0p−1], b = 0, p = 512 and n = 2 048. Link to code: Matlab and
Python.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/4.6/html/sparse_clustering.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/4.6/sparse_clustering.ipynb


Chapter 5

Large Neural Networks

This chapter covers large neural networks with random weights, in both feed-
forward and recurrent settings. While being rather different from modern deep
neural networks, these preliminary results shed new light on the interplay be-
tween data, network structure, and nonlinear neurons, leading to the somewhat
surprising double descent phenomenon. The impact of gradient-based optimiza-
tion method on the resulting network and more advanced consideration of deep
networks are also discussed.

Neural networks, and particularly today’s popular deep neural networks, are
extremely challenging to study. Even in a large dimensional regime, several
technical barriers are to this day seemingly unbreakable. The most important
among these is the highly non-convex nature of their underlying optimization
framework. While Chapter 6 later shows that the present asymptotic perfor-
mance analyses accessible to the random matrix framework is not limited to
algorithms assuming explicit output functionals (such as linear regressions and
those studied in Chapter 3 and 4) and that some implicit (but convex) opti-
mization schemes can be studied in the limit, neural network learning, which
involves highly non-convex optimization, is still mostly out of reach.

5.1 Random neural networks

Although much less popular than modern deep neural networks, neural net-
works with random fixed weights are simpler to analyze. Such networks have
frequently arisen in the past decades as an appropriate solution to handle the
possibly restricted number of training data, to reduce the computational and
memory complexity and, from another viewpoint, can be seen as efficient ran-
dom feature extractors. These neural networks in fact find their roots in Rosen-
blatt’s perceptron [Rosenblatt, 1958] and have then been many times revisited,
rediscovered, and analyzed in a number of works, both in their feedforward
[Schmidt et al., 1992] and recurrent [Gelenbe, 1993] versions. The simplest

299
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modern versions of these random networks are the so-called extreme learning
machine [Huang et al., 2012] for the feedforward case, which one may see as a
mere linear regression method on nonlinear random features, and the echo state
network [Jaeger, 2001] for the recurrent case. Also see [Scardapane and Wang,
2017] for a more exhaustive overview of randomness in neural networks.

It is also to be noted that deep neural networks are initialized at random
and that random operations (such as random node deletions or voluntarily not-
learning a large proportion of randomly-initialized neural network weights, i.e.,
random dropout) are common and efficient in neural network learning [Srivastava
et al., 2014, Frankle and Carbin, 2019]. We may also point the recent endeavor
towards neural network “learning without backpropagation” which, inspired by
biological neural networks (which naturally do not operate backpropagation
learning), proposes learning mechanisms with fixed random backward weights
and asymmetric forward learning procedures [Lillicrap et al., 2016, Nøkland,
2016, Baldi et al., 2018, Frenkel et al., 2019, Han et al., 2019]. As such, the study
of random neural network structures may be instrumental to future improved
understanding and designs of advanced neural network structures.

As shall be seen subsequently, the simple models of random neural networks
are to a large extent connected to kernel matrices. More specifically, the classifi-
cation or regression performance at the output of these random neural networks
are functionals of random matrices that fall into the wide class of kernel ran-
dom matrices, yet of a slightly different form than those studied in Section 4.
Perhaps more surprisingly, this connection still exists for deep neural networks
which are (i) randomly initialized and (ii) then trained with gradient descent,
via the so-called neural tangent kernel [Jacot et al., 2018] by considering the
“infinitely many neurons” limit, that is, the limit where the network widths of
all layers go to infinity simultaneously. This close connection between neural
networks and kernels has triggered a renewed interest for the theoretical investi-
gation of deep neural networks from various perspectives including optimization
[Du et al., 2019, Chizat et al., 2019], generalization [Allen-Zhu et al., 2019, Arora
et al., 2019a, Bietti and Mairal, 2019], and learning dynamics [Lee et al., 2020,
Advani et al., 2020, Liao and Couillet, 2018a]. These works shed new light on
our theoretical understanding of deep neural network models and specifically
demonstrate the significance of studying simple networks with random weights
and their associated kernels to assess the intrinsic mechanisms of more elaborate
and practical deep networks.

5.1.1 Regression with random neural networks

Throughout this section, we consider a feedforward single-hidden-layer neural
network, as illustrated in Figure 5.1 (displayed, for notational convenience, from
right to left). A similar class of single-hidden-layer neural network models,
however with a recurrent structure, will be discussed later in Section 5.3.

Given input data X = [x1, . . . ,xn] ∈ Rp×n, we denote Σ ≡ σ(WX) ∈
RN×n the output of the first layer comprising N neurons. This output arises
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X ∈ Rp×n

σ
σ
σ
σ
σ

Σ ≡ σ(WX) ∈ RN×nβTΣ

W ∈ RN×pβ ∈ RN×d

Figure 5.1: Illustration of a single-hidden-layer neural network (from
right to left).

from the pre-multiplication of X by some random weight matrix W ∈ RN×p
with i.i.d. (say standard Gaussian) entries and the entry-wise application of
the nonlinear activation function σ : R → R. As such, the columns σ(Wxi)
of Σ can be seen as random nonlinear features of xi. The second layer weight
β ∈ RN×d is then learned to adapt the feature matrix Σ to some associated
target Y = [y1, . . . ,yn] ∈ Rd×n, for instance by minimizing the Frobenius norm
‖Y − βTΣ‖2F .

Remark 5.1 (Random neural networks, random feature maps and random
kernels). The columns of Σ may be seen as the output of the Rp → RN random
feature map φ : xi 7→ σ(Wxi) for some given W ∈ RN×p. In [Rahimi and
Recht, 2008], it is shown that, for every nonnegative definite “shift-invariant”
kernel of the form (x,y) 7→ f(‖x − y‖2), there exist appropriate choices for σ
and the law of the entries of W so that, as the number of neurons or random
features N →∞,

σ(Wxi)
Tσ(Wxj)

a.s.−−→ f(‖xi − xj‖2). (5.1)

As such, for large enough N (that in general must scale with n, p), the bivariate
function (x,y) 7→ σ(Wx)Tσ(Wy) approximates a kernel function of the type
f(‖x− y‖2) studied in the previous chapter. This result is then generalized, in
subsequent works, to a larger family of kernels including inner-product kernels
[Kar and Karnick, 2012], additive homogeneous kernels [Vedaldi and Zisser-
man, 2012], etc. Another, possibly more marginal, connection with the previous
sections is that σ(wTx) can be interpreted as a “properly scaling” inner-product
kernel function applied to the “data” pair w,x ∈ Rp. This technically induces
another strong relation between the study of kernels and that of neural networks.
Again, similar to the concentration of (Euclidean) distance extensively explored
in Chapter 5, the entry-wise convergence in (5.1) does not imply convergence
in the operator norm sense, which, as we shall see, leads directly to the so-called
“double descent” test curve in random feature/neural network models.

If the network output weight matrix β is designed to minimize the regular-
ized MSE L(β) = 1

n

∑n
i=1 ‖yi −βTσ(Wxi)‖2 + γ‖β‖2F , for some regularization
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parameter γ > 0, then β takes the explicit form of a ridge-regressor1

β ≡ 1

n
Σ

(
1

n
ΣTΣ + γIn

)−1

YT, (5.2)

which follows from differentiating L(β) with respect to β to obtain 0 = γβ +
1
nΣ(ΣTβ−YT) so that ( 1

nΣΣT +γIN )β = 1
nΣYT which, along with ( 1

nΣΣT +
γIN )−1Σ = Σ( 1

nΣTΣ + γIn)−1 for γ > 0, gives the result.
The single-hidden-layer random neural net model presented above, with fixed

random first layer and second layer performing a ridge regression, is sometimes
referred to as an “extreme learning machine” in the literature [Huang et al.,
2012].

Note that, for β defined in (5.2), the training MSE (on the given training
set (X,Y)) reads

Etrain =
1

n
‖YT −ΣTβ‖2F =

γ2

n
tr YQ2(γ)YT, Q(γ) ≡

(
1

n
ΣTΣ + γIn

)−1

(5.3)
for Q(γ) the resolvent of 1

nΣTΣ. Similarly, the test MSE on a test set (X̂, Ŷ) ∈
Rp×n̂ × Rd×n̂ of size n̂ is given by

Etest =
1

n̂
‖ŶT − Σ̂Tβ‖2F , Σ̂ = σ(WX̂) (5.4)

with β ∈ RN×d the same as used in (5.3) which only depends on W, the training
set (X,Y) and γ.

The objective of this section is to understand the asymptotic behavior of the
training and test MSE, in the large dimensional limit where n, p,N →∞ at the
same rate, and how they depend on the law of (the entries of) W, the activation
function σ(·), the regularization penalty γ, as well as the training and test data
(X,Y) and (X̂, Ŷ).

Intuition and main results

Consider first the training error Etrain defined in (5.3). Since

tr YQ2(γ)YT = − ∂

∂γ
tr YQ(γ)YT, (5.5)

a deterministic equivalent for the resolvent Q(γ) is sufficient to access the
asymptotic behavior of Etrain.

With a linear activation σ(t) = t, the resolvent of interest

Q(γ) =

(
1

n
σ(WX)Tσ(WX) + γIn

)−1

(5.6)

1Here we use a lowercase β to illustrate the fact that β ∈ RN×d is a “tall” matrix with
N � d (often d = 1), and acts like a vector from a random matrix point of view.
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is the same as in Theorem 2.6. In a sense, the evaluation of Q(γ) (and sub-
sequently Etrain) calls for an extension of Theorem 2.6 to handle the case of
nonlinear activations. Recall now that the main ingredients to derive a deter-
ministic equivalent for (the linear case) Q = (XTWTWX/n + γIn)−1 are (i)
XTWT has i.i.d. columns, and (ii) its i-th column [WT]·i has i.i.d. (or linearly
dependent) entries so that the key Lemma 2.11 applies. These hold, in the linear
case, due to the i.i.d. property of the entries of W.

However, while for Item (i) the nonlinear ΣT = σ(WX)T still has i.i.d.
columns, for Item (ii) its i-th column σ([XTWT]·i) no longer has i.i.d. or linearly
dependent entries. Therefore, the main technical difficulty here is to obtain a
nonlinear version of the trace lemma, Lemma 2.11. That is, we expect that
the concentration of quadratic forms around their expectation remains valid
despite the application of the entry-wise nonlinear σ. This naturally falls into
the concentration of measure theory discussed in Section 2.7 and is given by the
following lemma.

Lemma 5.1 (Concentration of nonlinear quadratic form, Louart et al. [2018,
Lemma 1] ). For w ∼ N (0, Ip), 1-Lipschitz σ(·), and A ∈ Rn×n,X ∈ Rp×n
such that ‖A‖ ≤ 1 and ‖X‖ bounded with respect to p, n, then

P
(∣∣∣∣ 1nσ(wTX)Aσ(XTw)− 1

n
tr AK

∣∣∣∣ > t

)
≤ Ce−cnmin(t,t2)

for some C, c > 0, p/n ∈ (0,∞) with2

K ≡ KXX ≡ Ew∼N (0,Ip)[σ(XTw)σ(wTX)] ∈ Rn×n. (5.7)

In particular, for p, n large together, 1
nσ(wTX)Aσ(XTw) = 1

n tr AK +

O(n−1/2) as in the linear case: the convergence rate of the linear case is thus
not affected by 1-Lipschitz σ(·) functions.

Lemma 5.1 is the core ingredient to generalize Theorem 2.6 to the nonlinear
setting, leading to the following result.

Theorem 5.1 (Nonlinear Gram matrix, Louart et al. [2018]). Let W ∈ RN×p
be a random matrix with i.i.d. standard Gaussian entries, σ(·) be 1-Lipschitz
continuous, and X ∈ Rp×n be of bounded operator norm (i.e., lim supn,p ‖X‖ <
∞). Then, as n, p,N → ∞ with p/n and N/n bounded away from zero and
infinity, for Q = (σ(XTWT)σ(WX)/n+ γIn)−1 with γ > 0,

Q↔ Q̄ =

(
N

n

K

1 + δ
+ γIn

)−1

for δ the unique positive solution to δ = 1
n tr Q̄K and K defined in (5.7).

As a direct consequence of Theorem 5.1, we have the following results on
the asymptotic training and test mean squared errors of a single-hidden-layer
random neural network model in Figure 5.1. We refer the interested readers to
[Louart et al., 2018] for the detailed proof and more discussions.

2This expectation is denoted K here as it corresponds to the limiting kernel of the nonlinear
random feature map xi 7→ σ(Wxi) as per in Remark 5.1.
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Corollary 5.1 (Asymptotic training and test MSEs, Louart et al. [2018]).
Under the setting and notations of Theorem 5.1, for X, X̂,Y, Ŷ such that
max(‖X‖, ‖X̂‖) < ∞ and max(‖Y‖∞, ‖Ŷ‖∞) < ∞, then the training and test
mean squared errors defined in (5.3) and (5.4), satisfy, as n, p,N →∞,

Etrain − Ētrain
a.s.−−→ 0, Etest − Ētest

a.s.−−→ 0,

with

Ētrain =
γ2

n
tr YQ̄

( 1
N tr Q̄K̄Q̄

1− 1
N tr K̄Q̄K̄Q̄

K̄ + In

)
Q̄YT

Ētest =
1

n̂
‖ŶT − K̄T

XX̂
Q̄YT‖2F

+
1
N tr YQ̄K̄Q̄YT

1− 1
N tr K̄Q̄K̄Q̄

(
1

n̂
tr K̄X̂X̂ −

1

n̂
tr(In + γQ̄)(K̄XX̂K̄T

XX̂
Q̄)

)
where, similarly to K = KXX = E[σ(XTw)σ(wTX)] in (5.7), we denoted

KXX̂ ≡ E[σ(XTw)σ(wTX̂)], KX̂X̂ ≡ E[σ(X̂Tw)σ(wTX̂)] (5.8)

and
K̄ ≡ N

n

K

1 + δ
, K̄XX̂ ≡

N

n

KXX̂

1 + δ
, K̄X̂X̂ ≡

N

n

KX̂X̂

1 + δ
.

The proof of Corollary 5.1 is based on a higher-order deterministic equivalent
of the type QAQ for some deterministic or structured random matrices A,
as proposed in Exercise 14. More precisely, for the training MSE Etrain, we
have from (5.5) that it suffices to derive a deterministic equivalent for Q2(γ) =
Q(γ)InQ(γ) (or, alternatively, by considering the derivative with respect to γ).
For the test MSE Etest, we deduce from (5.4) that

Etest =
1

n̂
tr ŶŶT − 2

nn̂
tr YQΣTΣ̂ŶT +

1

n2n̂
tr YQΣTΣ̂Σ̂TΣQYT (5.9)

which involves (a deterministic equivalent for) the more involved random matrix
QΣTΣ̂Σ̂TΣQ with Σ̂ = σ(WX̂).

To evaluate the asymptotic training and test errors of Corollary 5.1 in closed
form, the computation of the entries of K in (5.7) is needed (so far, they take the
inconvenient form of expectations). The matrix W being standard Gaussian,
the (i, j) entry of K can be expressed as

[K]ij ≡ κ(xi,xj) ≡ Ew∼N (0,Ip)[σ(wTxi)σ(wTxj)]

= (2π)−
p
2

∫
σ(wTxi)σ(wTxj)e

− 1
2‖w‖

2

dw

and indeed defines the limiting kernel of the random feature map xi 7→ σ(Wxi)
as discussed in Remark 5.1. For a set of commonly used activation functions
σ (which may not be necessarily Lipschitz), the corresponding kernel matrix K
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can be computed explicitly via an integration projection trick (see [Williams,
1997, Louart et al., 2018] for detail).3 Some of these results are provided in
Table 5.1.

For a given dataset X, Table 5.1 allows one to compute the “limiting” kernel
K for the listed activation functions σ(·). Then, by iterating the fixed-point
equation in Theorem 5.1, one obtains the effective kernel K̄ ≡ N

n
K

1+δ in the
more practical large n, p,N setting (compared to the N → ∞ alone limiting
kernel K). In this sense, Theorem 5.1, together with Corollary 5.1, characterizes
the impact of the effective kernel K̄ on the regression performance, and has the
strong advantage to be valid for arbitrary deterministic input data X (rather
than randomly modeled X).

Consequences for learning with large neural networks

To validate the asymptotic analysis in Theorem 5.1 and Corollary 5.1 on real-
world data, Figure 5.2 and 5.3 compare the empirical MSEs with their limiting
behavior predicted in Corollary 5.1, for a random network of N = 512 neu-
rons and various types of Lipschitz and non-Lipschitz activations σ(·), respec-
tively. The regressor β ∈ Rp maps the vectorized images from the Fashion-
MNIST dataset (classes 1 and 2) [Xiao et al., 2017] to their corresponding uni-
dimensional (d = 1) output labels Y1i, Ŷ1j ∈ {±1}. For n, p,N of order a few
hundreds (so not very large when compared to typical modern neural network
dimensions), a close match between theory and practice is observed for the Lip-
schitz activations in Figure 5.2. The precision is less accurate but still quite
good for the case of non-Lipschitz activations in Figure 5.3 which, we recall, are
formally not supported by the theorem statement – here for σ(t) = 1 − t2/2,
σ(t) = 1t>0 and σ(t) = sign(t). For all activations, the deviation from theory is
more acute for small values of regularization γ.

3In essence, since w is projected on xi and xj only, one may decompose w onto an or-
thonormal basis arising from the Gram-Schmidt decomposition of any set of n vectors starting
as {xi,xj , . . .}: this condenses the p-dimension integral into a 2-dimensional integral (or 1-
dimensional if xi and xj are linearly dependent) which is still Gaussian due to the rotational
invariance of the standard multivariate Gaussian measure and is much easier to handle.
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Figure 5.2: Neural network regression errors for Lipschitz σ(·) as a function
of the regularization penalty γ; σ(t) = t in red, σ(t) = erf(t) in green, and
σ(t) = ReLU(t) in blue, for 2-class Fashion-MNIST data (classes 1 and 2),
N = 512, n = 1 024, n̂ = 512, p = 784. Results averaged over 30 runs. Link to
code: Matlab and Python.
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Figure 5.3: Neural network regression errors for non-Lipschitz σ(·) as a function
of the regularization penalty γ; σ(t) = 1t>0 in red, quadratic σ(t) in green,
and σ(t) = sign(t) in blue, in the same setting as Figure 5.2. Link to code:
Matlab and Python.

Figures 5.2 and 5.3 confirm that, while the training error is a monotonically
increasing function of the regularization parameter γ, there always exists an
optimal value for γ which minimizes the test error. In particular, the theoretical
formulas derived in Corollary 5.1 allow for a (data-dependent) fast offline tuning
of the hyperparameter γ of the network, in the setting where n, p,N are not too
small and comparable. In terms of activation functions (those listed here), we

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/5.1/html/random_NN.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/5.1/random_NN.ipynb
https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/5.1/html/random_NN.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/5.1/random_NN.ipynb


308 CHAPTER 5. LARGE NEURAL NETWORKS

observe that, on the Fashion-MNIST dataset, the ReLU non-linearity σ(t) =
max(t, 0) is optimal and achieves the minimum test error, while the quadratic
activation σ(t) = 1− t2/2 is the worst and produces much higher training and
test errors compared to others. This observation will be theoretically explained
through a deeper analysis of the corresponding kernel matrix K, as performed
in Section 5.1.2. Lastly, although not immediate at first sight, the training and
test error curves of σ(t) = 1t>0 and σ(t) = sign(t) are indeed the same, up to a
shift in γ, as a consequence of the fact that sign(t) = 2 · 1t>0 − 1.

Model complexity and the double descent phenomenon. The limiting
(regression) performance provided in Corollary 5.1 explicitly depends on the
feature-to-sample ratio N/n (as well as, more implicitly, on the dimension p of
the data). The quantity N/n is of crucial significance from a machine learning
perspective, as it characterizes the (relative) model complexity of the neural
network model under investigation. For a training set of size n, increasing
the number of neurons N induces a growth in model complexity and, as a
consequence, increases the network capacity to fit the training set.

According to the golden “bias-variance tradeoff” rule [Friedman et al., 2001],
it is necessary to control the model complexity (N here) to achieve optimal
generalization rather than training-set performance: as the model size increases,
the model tends to better fit the training set, resulting in a smaller “bias”, but
on the other hand gradually overfits the given training set and may perform
poorly on an independent test set due to a possibly larger “variance”. To prevent
overfitting, explicit regularization schemes such as Tikhonov-type regularization
or early stopping are proposed to control the model capacity.

It has thus been long believed that the optimal choice of model complexity
should produce a small but nonzero training error, but the success of deep
learning seems to contradict this conventional wisdom. Modern deep neural
networks often have a huge number of parameters and are routinely trained to
fit the training data almost perfectly, while still yielding remarkably good test
performance in many cases [Zhang et al., 2016]. This particularly means that, in
some scenarios, it is possible to have good or even optimal models which contain
much more free parameters than intuitively needed (with typically N > n).

Risk

Model complexity

best tradeoff

(a) Classical U-shaped curve

Risk

Model complexity

phase transition

(b) Modern double descent “UL”-shaped test curve

Figure 5.4: Comparison between training risk (solid lines) and true/test risk
(dashed lines).
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This counterintuitive phenomenon is empirically observed for various large-
scale machine learning models and has recently been extensively investigated
from a theoretical standpoint [Belkin et al., 2019, Hastie et al., 2019, Mei and
Montanari, 2021, Adlam and Pennington, 2020]. Specifically, it has been ob-
served that, as the model becomes larger, the test error decreases and then
increases, following the traditional “bias-variance tradeoff” U-shaped curve, un-
til the interpolation threshold where the model fits perfectly the training set and
achieves zero training error, typically at N = n. Then, rather unexpectedly, in
the over-parameterization N > n regime, the test error starts to decrease again
as N further grows, reaching a test error which may (but not always) be even
smaller than the optimal error in the under-parameterization N < n regime, see
an illustration in Figure 5.4.

This so-called “double-descent” phenomenon (due to its “UL”-shaped curve)
is depicted in Figure 5.5 for the random neural network model in Figure 5.1,
with γ = 10−7 to mimic the unregularized case. Observe that, when N = n,
while the training error vanishes, the test error blows up. But then, in the
over-parameterized N > n regime, the test error monotonically decreases as N
further increases and reaches an even smaller error than the optimal error in
the N < n regime, at least in this particular setting.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

N/n

M
SE

Etrain

Etest

Ētrain

Ētest

Figure 5.5: Training and test MSEs of the single hidden layer random neural
network model as a function of the ratio N/n on Fashion-MNIST data (classes
1 and 2), with p = 784, n = 1 000, σ(t) = ReLU(t) and γ = 10−7. Results
averaged over 30 runs. Link to code: Matlab and Python.

This unexpected double-descent behavior with a test error singularity at
N = n can readily be anticipated from Theorem 5.1 in the unregularized γ → 0
case. Depending on whether N > n or N < n, we indeed have the following
phase transition behavior:

1. in the over-parameterized N > n regime, by taking γ → 0 in Theorem 5.1,

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/5.1/html/random_NN.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/5.1/random_NN.ipynb
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we obtain

δ =
1

n
tr K

(
N

n

K

1 + δ

)−1

=
n

N − n
(5.10)

where we assume K to be invertible, so that Q̄ ≡ (Nn
K

1+δ + γIn)−1 =
n

N−nK−1 is well defined in the γ → 0 limit;

2. on the other hand, in the under-parameterized N < n regime, δ diverges
when γ → 0, but we remark that

γδ =
1

n
tr K

(
N

n

K

γ + γδ
+ In

)−1

(5.11)

converges, as γ → 0, to γδ → θ = 1
n tr K(Nn

K
θ + In)−1; that is, δ and Q̄

both scale like 1/γ. We have in particular E[γQ] ' γQ̄ ' (Nn
K
θ + In)−1.

This is in accordance with the fact that the Gram matrix ΣTΣ ∈ Rn×n is
of rank at most min(N,n) and is thus not invertible for N < n (and thus
Q ≡ (ΣTΣ/n+ γIn)−1 scales as 1/γ as γ → 0).

With this remark, the behavior of the asymptotic test error in Corollary 5.1
as N approaches n, from both N < n and N > n sides, is better understood.
In particular, the denominator appearing in the second term of the expression
of Ētest reads,

1− 1

N
tr K̄Q̄K̄Q̄ = 1− n

N
+

2γ

N
tr Q̄− γ2

N
tr Q2 (5.12)

which, as N approaches n, scales as 1 − 1
N tr K̄Q̄K̄Q̄ ∼ ‖γQ̄‖ (in the small γ

regime).
The fact that this denominator scales like ‖γQ̄‖ as γ → 0 explains the major

difference between the training and test error behavior in Figure 5.5. Due to the
γ2 prefactor in Ētrain, the training error is guaranteed to be finite (even possibly
to vanish) as γ → 0. But for the test error, since γQ̄→ 0 asN approaches n from
each side, if the numerator term 1

n̂ tr K̄X̂X̂−
1
n̂ tr(In+γQ̄)(K̄XX̂K̄T

XX̂
Q̄) does not

scale like γQ̄, then Ētest diverges to infinity at N = n. A first counterexample
is of course when X̂ = X, for which the numerator term of Ētest is now

1

n̂
tr K̄X̂X̂ −

1

n̂
tr(In + γQ̄)(K̄XX̂K̄T

XX̂
Q̄) =

γ2

n
tr Q̄K̄Q̄

where we exploited the fact that K̄Q̄ = In − γQ̄; there, the test error Ētest

coincides with the training error Ētrain. In general though, when X̂ is different
from X, the numerator does not “compensate” the ∼ γQ̄ in the denominator
and the test error diverges at N = n and γ → 0.

Therefore, this double-descent singularity at N = n only occurs: (i) in the
unregularized case as γ → 0 where some sort of invertibility issue arises, and
(ii) when the test data X̂ is sufficiently “distinct” from the training data X, in
a kernel matrix sense, this being fully independent of the targets Y and Ŷ.
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5.1.2 Delving deeper into limiting kernels

To understand the quite varied behavior of the different activation functions
in Figure 5.2 and 5.3, we now wish to build up a “data structure”-dependent
theory (rather than purely data dependent results) which would provide the
performance of different nonlinear activations in a more explicit manner. Ac-
cording to our previous discussion, the neural network performance depends on
the nonlinear activation σ(·) only via the kernel matrix of the form

K ≡ Ew[σ(XTw)σ(wTX)] (5.13)

given explicitly in Table 5.1. The entries of K are nonlinear functions only of the
quantities ‖xi‖, ‖xj‖ or xT

i xj , which is reminiscent of the distance and inner-
product random kernel matrices studied in Section 4.2. Following the same idea,
under a k-class Gaussian mixture model for the data xi, i.e.,4

xi ∈ Ca ⇔
√
pxi ∼ N (µa,Ca)

for a ∈ {1, . . . , k} and under the non-trivial classification conditions

M = [µ◦1, . . . ,µ
◦
k] = O‖·‖(1), µ◦` = µ` −

k∑
a=1

na
n
µa

t = [t1, . . . , tk]T = O‖·‖(1), ta =
1
√
p

tr(Ca −C◦)

S = {Sab}ka,b=1 = O‖·‖(1), Sab =
1

p
tr CaCb.

for C◦ =
∑k
a=1

na
n Ca, we have, for xi = µa+C

1
2
a zi ∈ Ca and xj = µb+C

1
2

b zj ∈
Cb, i 6= j, that

xT
i xj = 0 +

1

p
zTi C

1
2
aC

1
2

b zj +
1

p
(µT

aC
1
2

b zj + µT
bC

1
2
a zi) +

1

p
µT
aµb

and

‖xi‖2 = xT
i xi =

1

p
tr C◦ +

1

p
tr(Ca −C◦) + [ψ]i +

1

p
‖µa‖2 +

2

p
µT
aC

1
2
a zi

with tr C◦/p = O(1) and zero-mean random vector ψ ∈ Rn such that its i-th
entry satisfies [ψ]i = zTi Cazi/p − tr Ca/p = O(p−1/2) as in Theorem 4.1. As
a consequence, a Taylor expansion (around 0 or tr C◦/p) can be performed, as
in Section 4.2, to asymptotically “linearize” these kernel functions κ(·, ·) arising
from different nonlinear activations in Table 5.1. This leads to the following
result, which specifies Theorem 4.1 to a Gaussian mixture model for X.

4Note that 1/
√
p normalization is (i) compatible with the ‖X‖ = O(1) setting in Theo-

rem 5.1 and Corollary 5.1, and (ii) closely relates to the properly scaling kernel model discussed
in Section 4.3.
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Theorem 5.2 (Liao and Couillet [2018b]). Under the previously listed condi-
tions, for all σ(·) in Table 5.1 and P = In− 1

n1n1T
n, we have, as n, p→∞ with

p/n→ c ∈ (0,∞) and na/n→ ca ∈ (0, 1),

‖PKP−PK̃P‖ a.s.−−→ 0

where

K̃ = d1 ·
1

p
(W + MJT)T(W + MJT) + d2 ·UBUT + d0 · In

for W ≡ [W1, . . . ,Wk] ∈ Rp×n, Wa ≡ C
1
2
aZa ∈ Rp×na and

U =
[

J√
p ψ

]
∈ Rn×(k+1), B =

[
ttT + 2S t

tT 1

]
, ψ ≡ 1

p
{‖wi‖2−E[‖wi‖2]}ni=1

with the corresponding coefficients d0 and d1, d2 given in Table 5.2.

Following the discussions in Remarks 4.2 and 4.5, for simplicity of analysis,
the result is presented here for the centered kernel matrix PKP, which essen-
tially performs a feature centering in the kernel space (the effect is to discard
non-informative spurious terms in the kernel approximation).

Theorem 5.2 states that, for the (non-trivial) classification of a mixture of
k Gaussian distributions, the (centered) kernel matrix K depends on the non-
linear function σ(·) solely via three scalars d0, d1 and d2, for all non-linearities
listed in Table 5.1. In addition, the coefficient d0 only introduces a constant
shift of all eigenvalues of the kernel matrix K, and thus adds a regulariza-
tion term to kernel-based algorithms such as kernel spectral clustering or kernel
ridge regression. The remaining two “universal” parameters (d1, d2) are in fact
strongly reminiscent of the parameters α and β of the α-β kernel presented in
Theorem 4.2 and of the properly scaling kernels parameterized by (a1, a2) in
Theorem 4.6. This is another evidence of the large dimensional universality
which will be discussed at length in Chapter 8.

Theorem 5.2 is proven here for all non-linearities σ(·) listed in Table 5.2,
essentially due to the fact that the expectation Ew[σ(xT

i w)σ(wTxj)] can only
be computed explicitly for the nonlinear functions listed in Table 5.1. The con-
clusion may be extended to generic σ(·) functions, following the idea exploited
in [Fan and Wang, 2020], by noticing the fact that, conditioned on xi,xj , for
w ∼ N (0, Ip), one has

wTxi ≡ ‖xi‖ · ξi ∼ N (0, ‖xi‖2), wTxj =
xT
i xj
‖xi‖

· ξi +

√
‖xj‖2 −

(xT
i xj)2

‖xi‖2
· ξj

for standard Gaussian random variables ξi, ξj ∼ N (0, 1) that are uncorrelated
and thus independent, following the same derivation as in Section 4.3. Since
‖xi‖ =

√
tr C◦/p + O(p−1/2) and xT

i xj/‖xi‖ = 0 + O(p−1/2), a Taylor expan-
sion directly of σ(wTxi) in (5.13) around σ(

√
τp/2 · ξi) for τp = 2 tr C◦/p and
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similarly of σ(wTxj) around σ(
√
τp/2·ξj) (instead of κ(·, ·) for K taking explicit

forms in Theorem 5.2) leads to the same expression of K̃ as in Theorem 4.6 with
now

d1 = E
[
σ′
(√

τp/2 · ξ
)]2

, d2 =
1

4
E
[
σ′′
(√

τp/2 · ξ
)]2

(5.14)

for ξ ∼ N (0, 1) and τp/2 = tr C◦/p, as an extension of the results in Table 5.2 to
arbitrary non-linearities σ(·) having finite d1, d2 (that are not limited to twice
continuously differentiable functions, in which sense the derivatives should be
understood in a “weak” sense).

Back to our discussion on Theorem 5.2, letting the term d0In aside, the
kernel matrix K̃ has two “information-plus-noise” type components, W + MJT

and U = [J/
√
p, ψ], weighted by d1 and d2, respectively (we recall that J =

[j1, . . . , jk] ∈ Rn×k contains the canonical class structure, thus present in both
terms). It is therefore impossible to get rid of the noisy terms (W and ψ) by
wisely choosing the function σ(·) without affecting J. This is in sharp contrast
to more general kernels (i.e., not arising from random neural networks) as in
Corollary 4.1, which allow for a more flexible treatment of information versus
noise.5

Moreover, since the matrix of statistical means M is multiplied by d1 and the
covariance information t and S by d2 (that are guaranteed to be non-negative
per (5.14)), Theorem 5.2 provides practical instructions for a “data structure”-
dependent choice of the non-linearity. Precisely, the functions σ(·) in Table 5.2
can be divided into the following three groups:

1. mean-oriented, where d1 6= 0 while d2 = 0: this is the case of the functions
σ(t) = t, sign(t), sin(t) and erf(t), which asymptotically capture only the
difference in means (M), with the information in covariance discarded;

2. covariance-oriented, where d1 = 0 while d2 6= 0: this concerns the func-
tions σ(t) = |t|, cos(t) and exp(−t2/2) which only exploit the information
in covariances (t and S);

3. balanced, where both d1, d2 6= 0: here for the ReLU σ(t) = max(t, 0),
Leaky ReLU (L-ReLU) a+ max(t, 0) + a−max(−t, 0) [Maas et al., 2013]
and the quadratic function a2t

2 + a1t+ a0.

Note in passing that all mean-oriented functions are odd and all covariance-
oriented functions are even, as predicted in (5.14). This remark is also remi-
niscent of a similar conclusion in the α-β kernel discussed in Section 4.2.4 as
well as of the properly scaling inner-product kernel in Section 4.3 on a closely
related, yet different, model.

5As a matter of fact, the limiting kernel K = E[σ(XTw)σ(wTX)] studied here, as the
expectation of a non-negative definite matrix, is guaranteed to be non-negative definite, while
the general kernels in Corollary 4.1 can be indefinite, depending on the (arbitrary) choice of
f(τp), f ′(τp) and f ′′(τp).
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Also, similarly to the random kernel matrices discussed in Section 4.4.1, K̃
in Theorem 5.2 follows a spiked random matrix model and contains the class
structural information matrix J. As a result, the top eigenvectors of the kernel
matrix K are expected to align to (the subspace spanned by the columns of) J
and can be used for spectral clustering.

To corroborate the findings of Theorem 5.2 along with the three-group split-
ting of the functions in Table 5.2, Figure 5.6 illustrates the performance of
spectral clustering on the matrix PKP on four classes of Gaussian mixture
vectors: N (µ1,C1), N (µ1,C2), N (µ2,C1) and N (µ2,C2) for the LReLU ac-
tivation function LReLU(t) ≡ a+ max(t, 0) + a−max(−t, 0), and compares the
effect of different values for a+ and a− (and thus of different resulting d1, d2

couples); for b = 1, 2, µb =
[
0b−1; 5; 0p−b

]
and Cb = (1 + 15(b − 1)/

√
p)Ip.

Choosing a+ = −a− = 1 (equivalent to σ(t) = |t|) and a+ = a− = 1 (equivalent
to the linear function σ(t) = t), with the leading two eigenvectors one always
recovers two classes instead of four, as each setting of parameters only allows
for a part of the statistical information (only means or only covariances) of the
data to be used for clustering. However, by taking a+ = 1, a− = 0 (i.e., for the
ReLU function) four classes appear in the leading two eigenvectors, to which
the k-means method can then be applied for a final classification, as shown in
Figure 5.7.

C1 C2 C3 C4

(a) σ(t) = |t|: eigenvector 1

C1 C2 C3 C4

(b) σ(t) = |t|: eigenvector 2

C1 C2 C3 C4

(c) σ(t) = t: eigenvector 1

C1 C2 C3 C4

(d) σ(t) = t: eigenvector 2

Figure 5.6: Leading two eigenvectors of PKP for the LReLU function with a+ =
−a− = 1 (top) and a+ = a− = 1 (bottom), performed on a four-class Gaussian
mixture data with p = 512, n = 256, cb = 1/4 and jb = [0nb−1

; 1nb ; 0n−nb ], for
b ∈ {1, 2, 3, 4}. Link to code: Matlab and Python.

Again, although derived here from a simple k-class Gaussian mixture model,
Theorem 5.2 establishes an unexpected close match between theory and practice

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/5.1/html/random_feature_GMM.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/5.1/random_feature_GMM.ipynb
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C1 C2 C3 C4

Eigenvector 1

C1 C2 C3 C4

Eigenvector 2

Eigenvector 1

E
ig
en
ve
ct
or

2

Figure 5.7: Leading two eigenvectors of PKP (top) for the LReLU function with
a+ = 1, a− = 0 (equivalent to ReLU(t)) and two dimensional representation of
these eigenvectors (bottom), in the same setting as Figure 5.6. Link to code:
Matlab and Python.

when applied to real-world datasets. To illustrate this claim, we consider two
different types of classification tasks: one on the MNIST [LeCun et al., 1998]
database (digits 6 and 8), and the other on epileptic EEG time series data
[Andrzejak et al., 2001] (sets B and E). These two datasets are typical examples
of means-dominant (handwritten digits recognition) and covariances-dominant
(EEG times series classification) tasks: this is numerically confirmed in Table 5.3
and agrees with the empirical observations in Figure 4.14 for spectral clustering
using properly scaling kernels.

Table 5.3: Empirical estimation of (normalized) differences in means and co-
variances of the MNIST and epileptic EEG datasets.

‖MTM‖ ‖ttT + 2S‖
MNIST data 172.4 86.0
EEG data 1.2 182.7

Recall from (5.13) that the random feature Grammatrix 1
N σ(XTWT)σ(WX) =

1
NΣTΣ is an (empirical) estimate of the (expected) kernel matrix K, and is
therefore expected to behave similarly to K for not-too-small N .

Here we perform random feature-based spectral clustering on data matrices
X which consist of n = 32, 64 and 128 randomly selected vectorized images of

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/5.1/html/random_feature_GMM.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/5.1/random_feature_GMM.ipynb
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size p = 784 from the MNIST dataset. The k-means method is then applied
to the leading two eigenvectors of the Gram matrix 1

nΣTΣ which comprise
N = 32 random features to perform unsupervised classification. The resulting
accuracies (averaged over 50 runs) are reported in Table 5.4. As suggested
by Table 5.3, the mean-oriented σ(t) functions are expected to outperform the
covariance-oriented functions in this task, which is consistent with the results
in Table 5.4.

Table 5.4: Classification accuracies for random feature-based spectral clustering
with different σ(t) on the MNIST dataset.

σ(t) n = 32 n = 64 n = 128

mean-
oriented

t 85.31% 88.94% 87.30%
1t>0 86.00% 82.94% 85.56%

sign(t) 81.94% 83.34% 85.22%
sin(t) 85.31% 87.81% 87.50%
erf(t) 86.50% 87.28% 86.59%

cov-
oriented

|t| 62.81% 60.41% 57.81%
cos(t) 62.50% 59.56% 57.72%

exp(−t2/2) 64.00% 60.44% 58.67%
balanced ReLU(t) 82.87% 85.72% 82.27%

For the epileptic EEG dataset [Andrzejak et al., 2001], which instead is more
“covariance-dominant” according to Table 5.4, we perform random feature-based
spectral clustering on n = 32, 64 and 128 randomly selected EEG segments of
length p = 100 from the dataset. After k-means classification on the leading two
eigenvectors of the (centered) Gram matrix composed of N = 32 random fea-
tures, the accuracies (averaged over 50 runs) are reported in Table 5.5. We here
observe that covariance-oriented activation functions (i.e., σ(t) = |t|, cos(t) and
exp(−t2/2)) far outperform all other functions with almost perfect classification
accuracies. It is particularly interesting to note that the popular ReLU function
is sub-optimal in both tasks, but never performs poorly, thereby offering a good
“risk-performance” tradeoff.

The classification of “mean-oriented”, “covariance-oriented” and “balanced”
non-linearities for the nonlinear Gram matrix 1

nΣTΣ also helps explain the
performance of different activation functions in neural network models in Fig-
ure 5.2 and 5.3. Since the MNIST data have more information in the statistical
means, it is not surprising to observe in Figure 5.3 that both training and test er-
rors of the (covariance-oriented) quadratic activation σ(t) = 1− t2/2 are much
higher that the others and the flexible ReLU function achieves the minimal
training and test errors in Figure 5.2.



318 CHAPTER 5. LARGE NEURAL NETWORKS

Table 5.5: Classification accuracies for random feature-based spectral clustering
with different σ(t) on the epileptic EEG dataset.

σ(t) n = 32 n = 64 n = 128

mean-
oriented

t 71.81% 70.31% 69.58%
1t>0 65.19% 65.87% 63.47%

sign(t) 67.13% 64.63% 63.03%
sin(t) 71.94% 70.34% 68.22%
erf(t) 69.44% 70.59% 67.70%

cov-
oriented

|t| 99.69% 99.69% 99.50%
cos(t) 99.00% 99.38% 99.36%

exp(−t2/2) 99.81% 99.81% 99.77%
balanced ReLU(t) 84.50% 87.91% 90.97%

5.2 Gradient descent dynamics in learning linear
neural nets

In Section 5.1 we considered a single-hidden-layer neural network model with
a random first layer which, as pointed out in Remark 5.1, is closely connected
to random feature maps and kernel methods. Precisely, the analyses of Theo-
rem 5.1 and Corollary 5.1 provided an access to the model performance (training
and test MSEs) as a function of the nonlinear activation function σ(·), through
the underlying kernel matrix K.

On top of these nonlinear transformations discussed in Section 5.1, another
salient feature of neural network models is that they are routinely trained by
means of a (possibly stochastic) gradient descent procedure. As a consequence,
the network, and thus its performance, are functions of the training time (or
the number of descent steps) as well as of the loss landscape of the cost function
to be minimized (e.g., locally flat regions or saddle points of the loss landscape
may “trap” the descent algorithm).

In this section, the gradient descent dynamics (GDDs) of ridge regression
learning (i.e., of a single-layer linear network) are considered. Specifically, for
a given training data matrix X = [x1, . . . ,xn] ∈ Rp×n with associated la-
bels/targets y = [y1, . . . , yn] ∈ Rn, a regression vector w ∈ Rp is learned via
gradient descent by minimizing the (ridge-regularized) squared loss

L(w) =
1

2n
‖y −XTw‖2 +

γ

2
‖w‖2 (5.15)

with some regularization penalty γ ≥ 0. Of course, the solution to (5.15) is
here explicit and gradient descent learning is not formally necessary. This being
said, following the (simple) dynamics of gradient descent for this tractable op-
timization problem is instrumental to qualitatively understand the dynamics of
more elaborate gradient descent mechanisms (for more elaborate cost functions
or for more elaborate descent techniques) on more elaborate models (such as
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random feature models, kernel ridge regression, as well as infinitely wide neural
networks via the so-called neural tangent kernel, see more discussions in Sec-
tion 5.4). We will in particular discover that, already in this simple setting, the
descent dynamics are not completely trivial.

The gradient of the objective function L with respect to w is given by the
linear form ∇L(w) = − 1

nX(y−XTw) + γw so that, for small gradient descent
steps (or learning rate) α, we obtain the continuous-time approximation of the
time evolution w(t) of w:

dw(t)

dt
= −α∇L(w) =

α

n
Xy − α

(
1

n
XXT + γIp

)
w

the solution of which is explicitly given by

w(t) = e−αt(
1
nXXT+γIp)w0 +

(
Ip − e−αt(

1
nXXT+γIp)

)
w∞ (5.16)

where we introduced the notation w0 = w(t = 0) (the initialization of gradient
descent) and

w∞ =

(
1

n
XXT + γIp

)−1
1

n
Xy (5.17)

the ridge regression solution with regularization parameter γ. We used in this
expression the exponential of a symmetric matrix A which we recall is given by
eA =

∑∞
k=0

1
k!A

k = VeΛVT, with A = VΛVT the spectral decomposition of
A.

To further study the statistical evolution of w(t), we consider the following
symmetric binary Gaussian mixture model for the input data

C1 : xi ∼ N (−µ, Ip) C2 : xi ∼ N (µ, Ip)

with associated labels yi = −1 and yi = 1, respectively, and we assume as in
previous sections the non-trivial setting where ‖µ‖ = O(1).

For the linear classifier with w(t) given by (5.16), the GDDs can be studied
by considering the training and test misclassification error rates as

P(xT
i w(t) > 0 | yi = −1), and P(x̂Tw(t) > 0 | ŷ = −1)

respectively, for x̂ ∼ N (−µ, Ip) a new test datum (independent of the training
set (X,y)) of genuine label ŷ = −1.

To evaluate the test performance, since the test datum x̂ is independent of
(X,y) (and thus of w(t)), conditioned on w(t), w(t)Tx̂ is a Gaussian random
variable of mean w(t)Tµ and variance ‖w(t)‖2. The misclassification probability
can then be expressed as the Gaussian Q-function evaluated at the ratio between
the mean w(t)Tµ and the standard deviation ‖w(t)‖, which thus need be both
evaluated.

The difficulty is of course to handle the statistics of the exponential of XXT

(and the subsequent product with w∞) appearing in the expression of w(t).
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This, again, can be solved using the powerful Cauchy’s integral (Theorem 2.2).
Specifically, noticing that

e−αt(
1
nXXT+γIp) = − 1

2πı

∮
Γ

ft(z)

(
1

n
XXT + γIp − zIp

)−1

dz

with ft(z) ≡ exp(−αtz) and Γ a positive closed path circling around all the
eigenvalues of the (shifted) sample covariance 1

nXXT+γIp, we find in particular
that

µTw(t) = µTe−αt(
1
nXXT+γIp)w0 + µT

(
Ip − e−αt(

1
nXXT+γIp)

)
w∞

= − 1

2πı

∮
Γ

ft(z)µ
T

(
1

n
XXT + γIp − zIp

)−1

w0 dz

− 1

2πı

∮
Γ

1− ft(z)
z

µT

(
1

n
XXT + γIp − zIp

)−1
1

n
Xy dz.

As such, µTw(t) is again expressible under the convenient form of a functional
of the resolvent of 1

nXXT.
Exploiting now the statistical description of X, i.e., X = µyT +Z for Z with

i.i.d. standard Gaussian entries, we have with Lemma 2.7 that(
1

n
XXT + γIp − zIp

)−1

= Q(z)−Q(z)U

[
‖µ‖2m(z) 1

1 − 1
1+cm(z)

]−1

UTQ(z)+o(1)

for U =
[
µ 1

nZy
]
∈ Rp×2 and Q(z) ≡

(
1
nZZT + γIp − zIp

)−1 admitting the
deterministic equivalent relation (from Theorem 2.4) Q(z)↔ m(z)Ip, withm(z)
the Stieltjes transform of the Marc̆enko-Pastur law, unique solution to

c(z − γ)m2(z)− (1− c− z + γ)m(z) + 1 = 0. (5.18)

From there, the explicit evaluation of µTw(t) boils down to algebraic calcu-
lus and a complex integral only involving (in the large dimensional limit) the
Stieltjes transform m(z) and the parameters ‖µ‖2, c and γ of the model. A
similar development is then performed on ‖w(t)‖2 = w(t)Tw(t) which can also
be expressed as a sum of complex integral involving the same resolvent.

These complex integrals can then be evaluated by means of a careful com-
plex integration calculus. One must only be careful here that the expressions
obtained here are limiting equations, and not finite-dimensional rational func-
tions, as presented in previous sections; as such, residue calculus may not be
feasible and more advanced contour integration tools are in fact needed; details
are provided in [Liao and Couillet, 2018a]. Ultimately, the calculus leads to the
results presented next.

Main results

From the complete derivation of the limiting behaviors of µTw(t) and ‖w(t)‖,
the temporal dynamics of training and test for the GDD procedure are obtained
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(via continuous mapping theorem for ‖w(t)‖ away from zero) and provided
below.

Theorem 5.3 (Training and test performance of GDD, Liao and Couillet
[2018a]). For a random initialization w0 ∼ N (0, σ2Ip/p) independent of X,
x a column of X of mean µ and x̂ an independent copy of x, as n, p→∞ with
p/n→ c ∈ (0,∞), we have6

P(x̂Tw(t) > 0 | ŷ = −1)−Q
(
Etest√
Vtest

)
→ 0,

P(xTw(t) > 0 | y = −1)−Q
(
Etrain√
Vtrain

)
→ 0,

almost surely, where

Etest = − 1

2πı

∮
Γ

1− ft(z)
z

ρm(z) dz

(ρ+ c)m(z) + 1

Vtest =
1

2πı

∮
Γ

[
1
z2 (1− ft(z))2

(ρ+ c)m(z) + 1
− σ2f2

t (z)m(z)

]
dz

Etrain = − 1

2πı

∮
Γ

1− ft(z)
z

dz

(ρ+ c)m(z) + 1

Vtrain =
1

2πı

∮
Γ

[
1
z (1− ft(z))2

(ρ+ c)m(z) + 1
− σ2f2

t (z)zm(z)

]
dz − E2

train

with ρ = limp→∞ ‖µ‖2, Γ a positive contour surrounding the support of the
Marc̆enko–Pastur law (shifted by γ ≥ 0) and the points (γ, 0) and (γ + λs, 0)
with λs = c+ 1 + ρ+ c/ρ, ft(z) ≡ exp(−αtz) and m(z) given by (5.18).

In the theorem statement, the point (γ + λs, 0) is the (possible) spike due
to the low rank structure µyT in X. Upon existence, we have specifically the
expression

λs = 1 + ρ+ c
1 + ρ

ρ
≥ (1 +

√
c)2 (5.19)

with equality if and only if lim ‖µ‖2 = ρ =
√
c. As in Theorem 2.13, the spike

isolates from the main bulk of the Marc̆enko–Pastur support (with right edge
(1 +

√
c)2) only when ρ ≥

√
c.

The contour integral expressions of Theorem 5.3 are however not easy to
analyze and even less to interpret. To obtain a more explicit expression, it is
convenient to choose Γ as the rectangular contour as in Figure 2.9 which circles
around both the main bulk and the isolated eigenvalue (if any). For the main

6The gradient descent initialization w0 is taken random here following the popular random
initialization schemes in deep neural network training [Glorot and Bengio, 2010, He et al.,
2015], the present technical approach extends to w0 fixed or (simple) functions of X,y.
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bulk of the Marc̆enko–Pastur law, between λ− ≡ (1−
√
c)2 and λ+ ≡ (1 +

√
c)2

(here shifted by γ), given by

µ(dx) =

√
(x− λ−)+(λ+ − x)+

2πcx
dx+ (1− c−1)+δ(x), (5.20)

we know from Theorem 2.10 that the limit limεy↓0m(x+ ıεy) exists for x within
the support and thus the rectangular contour may be shrunk back to the real
axis; for the part of Γ which encloses the isolated eigenvalue at (γs + γ, 0), the
integral can be evaluated via a residue calculus. This together leads to the
following expressions of (Etest, Vtest) and (Etrain, Vtrain)

Etest =

∫
1− ft(x+ γ)

x+ γ
ω(dx) (5.21)

Vtest =
ρ+ c

ρ

∫
(1− ft(x+ γ))2ω(dx)

(x+ γ)2
+ σ2

∫
f2
t (x+ γ)µ(dx) (5.22)

Etrain =
ρ+ c

ρ

∫
1− ft(x+ γ)

x+ γ
ω(dx) (5.23)

Vtrain =
ρ+ c

ρ

∫
x(1− ft(x+ γ))2ω(dx)

(x+ γ)2
+ σ2

∫
xf2

t (x+ γ)µ(dx)

− E2
train (5.24)

where we recall ρ = lim ‖µ‖2, ft(x) = exp(−αtx), µ(x) given by (5.20) and we
introduce the measure

ω(dx) ≡
√

(x− λ−)+(λ+ − x)+

2π(λs − x)
dx+

(ρ2 − c)+

ρ
δλs(x) (5.25)

for λs defined in (5.19). The expressions in (5.21)-(5.24), which are supported
by numerical results in Figure 5.8 with p = 256 and n = 512, now bring more
lights into the behavior of the gradient descent dynamics in neural networks as
detailed next.

Practical implications

The short-hand expressions in (5.21)-(5.24) raise several interesting remarks.

Remark 5.2 (Optimal performance). By Cauchy-Schwarz inequality and the
fact that

∫
ω(dx) = ‖µ‖2 (ω is not a probability measure), we have

E2
test ≤

∫
(1− ft(x+ γ))2

(x+ γ)2
ω(dx) ·

∫
ω(dx) ≤ ρ2

ρ+ c
Vtest

with equality in the rightmost inequality only when the variance of the random
initialization is σ2 = 0. We thus have Etest/

√
Vtest ≤ ρ/

√
ρ+ c so that the opti-

mal test performance (lowest misclassification rate) is given by Q(ρ/
√
ρ+ c).

This performance bound holds for any classifier obtained by minimizing the
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Figure 5.8: Training and test misclassification rates of a linear network as a
function of the gradient descent training time t, for p = 256, n = 512, γ = 0,
α = 10−2, σ2 = 0.1 and µ = [−1p/2, 1p/2]/

√
p. Empirical results averaged over

50 runs. Link to code: Matlab and Python.

ridge-regularized squared loss in (5.15) with gradient descent (for any t ≥ 0
and any regularization γ ≥ 0). As seen later in Section 6.1, the bound in fact
holds for an even larger class of generalized linear classifiers.

Remark 5.3 (Double descent in linear networks). As t→∞, one obtains the
ridge regression solution w∞ = (XXT + nγIp)

−1Xy, γ ≥ 0 for which

µTw∞
‖w∞‖

→ ρ√
ρ+ c

·

√
cγm2(−γ) + 1

cm(−γ) + 1
(5.26)

as n, p → ∞, for m(−γ) the unique positive solution to the Marc̆enko-Pastur
Stieltjes transform equation −cγm2(−γ)− (1− c+ γ)m(−γ) + 1 = 0.

In particular, in the limit where γ → 0, w∞ reduces to the “ridgeless”
least squares solution wLS = (X+)Ty with X+ the Moore–Penrose pseudoin-
verse of X, or equivalently wLS = (XXT)−1Xy for invertible XXT and wLS =
X(XTX)−1y for invertible XTX. As a result, in the limit of large n, p,

µTwLS

‖wLS‖
→ ρ√

ρ+ c
·
√

1−min(c, c−1) (5.27)

when either XXT or XTX is invertible and with smallest eigenvalue bounded
away from zero (which is almost surely the case for c = lim p/n 6= 1).7 This pre-
cisely means that the least squares solution wLS overfits the training set and the

7One must be particularly careful here that we implicitly cascade two limiting regimes
(n, p→∞ with p/n→ c, and γ → 0). Exchanging the limits is only valid if the quantities of
interest remain bounded, which occurs for all c 6= 1.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/5.2/html/grad_descent_dynamics.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/5.2/grad_descent_danamics.ipynb
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mean-over-standard deviation performance drops by a factor
√

1−min(c, c−1)
compared to the theoretical optimal evaluated in Remark 5.2 (i.e., ρ/

√
ρ+ c).

This becomes even worse when the ratio p/n gets close to 1 and can be viewed
as another manifestation of the “double descent” behavior discussed at the end
of Section 5.1.1 (in the present linear setting, unlike in Section 5.1.1, the di-
mension of w ∈ Rp coincides with the input data dimension p).

Since positive ridge regularization γ > 0 is known to help alleviate this
sharp performance drop at c = 1 [Hastie et al., 2019, Mei and Montanari, 2021]
(check also, e.g., Equation (5.26) above), we compare, in Figure 5.9, the test
misclassification rate as a function of the training time, for γ = 0 and γ = 0.1. As
t grows large, the test error of the regularized classifier with γ = 0.1 saturates at
a much lower level than the test error of the unregularized classifier with γ = 0,
which instead continues to grow (to 0.5, i.e., to random guess performance) as
predicted in (5.27).
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Figure 5.9: Test performance as a function of the training time t, for n = p =
512, γ ∈ {0, 0.1}, α = 0.1, σ2 = 0.1 and µ = [

√
2, 0p−1]. Empirical results

averaged over 50 runs. Link to code: Matlab and Python.

Similar to the results discussed above, the authors of [Advani et al., 2020]
considered the problem of learning, with a gradient descent approach, the same
linear regressor (or a linear single-layer neural network) from n training samples
of dimension p, which are however generated by a noisy teacher network; that
is, the training labels/targets y are generated from an independent “teacher”
network taking the same training data X as input, and then corrupted with
additive Gaussian noise. Under the setting where n, p → ∞ with p/n → c ∈
(0,∞), the authors found, by studying the training and test MSEs as a function
of the training time (i.e., the number of descent steps), that the overfitting
problem becomes most critical when c is close to 1, namely, when the number
of parameters of the linear regressor (i.e., the model complexity) p gets close to
the number of training data n. Although their theoretical results are limited to
the linear regression model, they additionally carried experiments which provide

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/5.2/html/grad_descent_dynamics.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/5.2/grad_descent_danamics.ipynb
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strong evidence that these conclusions extend to deep linear and nonlinear neural
networks, as already discussed in Section 5.1.1.

In Section 5.1 and 5.2 we discussed two salient features of feedforward neural
networks, i.e., they are (i) equipped with nonlinear activation functions and (ii)
trained with gradient-based methods. In the next section, we move on to the
discussion of another popular type of neural networks: the recurrent neural
network model which is particularly effective in handling time series data.

5.3 Recurrent neural nets: echo state networks

xt+1 ∈ Rp

Win ∈ RN×p
W ∈ RN×N

βTst+1

β ∈ RN×d

ηεt+1

Figure 5.10: Illustration of an echo state network (from right to left
as in Figure 5.1).

5.3.1 Preliminaries and echo state networks

Echo-state neural networks (ESNs), popularized by Jaeger [2001], are elemen-
tary and simply parametrized, yet already quite efficient, recurrent neural net-
works. Also referred to as reservoir computing networks (see e.g., [Tanaka et al.,
2019] for a review), they consist of a single-hidden layer of size N with state
st ∈ RN at time t, which evolves according to:

st+1 = σ (Wst + Winxt+1 + ηεt+1)

for σ : R → R an entry-wise activation function, W ∈ RN×N the neuron con-
nectivity matrix (which induces the recursion), Win ∈ RN×p the input layer
connection and xt ∈ Rp the input data at time t. Added to the state is some-
times an independent noise term ηεt+1 for η ∈ R, ε ∼ N (0, IN ) mimicking
thermal noise inside the network (of relevance in biological modeling of short-
term memory neural networks).

In particular, for W = 0 and η = 0, the network reduces to a nonlinear
single-layer projection map, which boils down to a random feature map discussed
in Section 5.1 if Win is randomly designed.
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Given a training dataset {(xt,yt)}T−1
t=0 over a “time” window T , where yt ∈

Rd is the expected output at time t, the echo state network learning consists in
a mere linear regression from the state st into the output yt by minimizing

L(β) =
1

T

T−1∑
t=0

‖yt − βTst‖2 =
1

T
‖Y − βTS‖2F

over the regression matrix β ∈ RN×d, where X = [x0, . . . ,xT−1] ∈ Rp×T ,
Y = [y0, . . . ,yT−1] ∈ Rd×T and S = [s0, . . . , sT−1] ∈ RN×T . The explicit form
of β is given by

β =

{
S(STS)−1YT , N > T,
(SST)−1SYT , N < T

(5.28)

assuming STS or SST invertible, respectively. Once β is set, the corresponding
test error on a test set X̂ ∈ Rp×T̂ with underlying associated output Ŷ ∈ Rd×T̂
is then given by

Etest =
1

T̂
‖Ŷ − βTŜ‖2F

where Ŝ = [ŝ0, . . . , ŝT̂−1] ∈ RN×T̂ and ŝt+1 = σ(Wŝt + Winx̂t+1 + ηε̂t+1), with
random ε̂t independent of εt.

Being recursive networks, the typical tasks of ESNs are time series regression
when yt is a function of xt,xt−1, . . ., or time series prediction when yt = xt+τ
for a certain τ > 0.

As opposed to more involved recursive networks, such as the popular long
short term memory (LSTM) nets [Hochreiter and Schmidhuber, 1997], echo state
networks are extremely easy to train. Although they are hyper-parametrized
by the same key variables as LSTMs, that is the reservoir connectivity matrix
W ∈ RN×N , the input layer Win ∈ RN×p and the activation function σ(·), these
parameters will in general, in the case of echo state networks, not be trained
but kept constant during training. Due to the recursive structure of the network
though, even in this simplest settings, theoretically establishing the training and
test performance remains complex.

Possibly the most impactful hyperparameter (on the resulting network per-
formance) is the spectral radius ρ(W) = max1≤i≤N |λi(W)| (note that the
square matrix W is not imposed to be symmetric so the spectral radius is not
necessarily the spectral norm). Indeed, “in spirit”, the recursive nature of ESNs
connects their performance to the successive powers Wt which, for t large, ei-
ther decays exponentially with t for ρ(W) < 1, thereby only maintaining short
term memory in the reservoir, or diverges exponentially for ρ(W) > 1, leading
to quickly unstable behavior. The key property of echo state networks is that,
for a carefully chosen nonlinear activation σ(·), values of ρ(W) slightly greater
than 1 are still admissible and preserve the stability of the network, placing it
in a near-chaotic mode [Jaeger, 2001].

Yet, the successive iterations involving the non-linearity σ(·) are (mathemat-
ically) much less tractable, especially under the convenient near-chaotic mode,
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and we will discuss here the simplified (but already quite theoretically elab-
orate) setting where σ(t) = t – hence the linear network case – and where
W and Win are successively fixed deterministically and then randomly drawn
from some distribution. We also assume the scalar case where p = d = 1 for
both input and output variables, so letting in particular Win = win ∈ RN ,
XT = x = [x0, . . . , xT−1]T ∈ RT , YT = y = [y0, . . . , yT−1]T ∈ RT , and work
under the simultaneously large N,T regime.

5.3.2 Results on ESN asymptotics
Gathering the simplifications above, we consider here the model

st+1 = Wst + winxt+1 + ηεt+1

with the associated training and test errors

Etrain =
1

T
‖y − STβ‖2, Etest =

1

T̂
‖ŷ − ŜTβ‖2 (5.29)

and β ∈ RN such that

β =

{
S(STS)−1y , N > T,
(SST)−1Sy , N < T.

(5.30)

For further simplicity of exposition, we particularly focus here on the train-
ing performance, which already conveys quite insightful results. The complete
analyses of both train and test performances are available in [Couillet et al.,
2016b].

To investigate the large N,T asymptotics of the training error Etrain defined
in (5.29), first remark that, letting

Q(γ) ≡
(

1

T
SST + γIN

)−1

and Q̃(γ) ≡
(

1

T
STS + γIT

)−1

(5.31)

we have, irrespective of the sign of N − T ,

Etrain = lim
γ↓0

γ

T
yTQ̃(γ)y.

The estimation of Etrain thus reduces to the characterization of a quadratic
form over the resolvent Q̃(γ) of 1

T STS, which is reminiscent of the (similar yet
different) expression in (5.5) for feedforward networks.

The specific difficulty induced by S lies in the intricate dependence between
its columns, as successive observations of a multivariate time series. In particu-
lar, in order to simplify the analysis and to avoid edge problems at time t = 0, we
assume (as is conventionally done in practice) that a sufficiently long “washout
period” is performed preliminary to observing x0, i.e., the considered time series
x0, . . . , xT−1 is a finite time extraction of an infinite series . . . , x−1, x0, x1, . . .;
this discards the transition phase of the random network states s0, . . . , sT−1.
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With these conventions in mind, we may first describe the state evolution
S = [s0, . . . , sT−1] through the following convenient expressions

S =
√
T (A + Z), A = MX ∈ RN×T , M = {Wjwin}T−1

j=0 ∈ RN×T ,

X =
{xj−i}T−1

i,j=0√
T

∈ RT×T , Z =
η√
T

{∑
k≥0 Wkεj−k

}T−1

j=0
∈ RN×T .

This formulation of S isolates the random part of S into Z and the determin-
istic time series x into the Toeplitz matrix X. The presence of the powers Wk

emphasizes the importance of the stability condition ρ(W) < 1 for the network
dynamics. We thus impose this condition from now on.

Using the Gaussian method and Stein’s lemma, Lemma 2.13, we can then
evaluate the behavior of the resolvents Q ≡ Q(γ) and Q̃ ≡ Q̃(γ) by remarking
that, for Q, one has γQ = IN − 1

T SSTQ so that

E[Q]ij =
1

γ
δij −

1

γ

(
E[ZZTQ]ij︸ ︷︷ ︸

(I)

+E[ZATQ]ij︸ ︷︷ ︸
(II)

+E[AZTQ]ij︸ ︷︷ ︸
(III)

+E[AATQ]ij︸ ︷︷ ︸
(IV )

)

which then requires to handle the terms (I), . . . , (IV ) individually (similar re-
lations can be obtained for Q̃). From the expansion

[Z]ab =
η√
T

∑
k≥0

N∑
q=1

[Wk]aq · εq,b−k

we have in particular that

∂[Z]ab
∂εil

=
η√
T

∑
k≥0

N∑
q=1

δqiδl,b−k[Wk]aq

and therefore

∂[Q]mj
∂εil

= − η√
T

N∑
q=1

δl≤q

(
[Q(Z + A)]mq

[
(Wq−l)TQ

]
ij

+
[
(Z + A)TQ

]
qj

[
QWq−l]

mi

)
.

These relations are then exploited to develop the terms (I), . . . , (IV ), however
with a specific difficulty: quite unlike the random matrix models studied so
far in the monograph, this formula involves a large sum (over the index q) of
successive powers of W. Fortunately, the exponentially fast decrease of Wq−l

(with respect to q for a given l, due to ρ(W) < 1) makes most of these powers
negligible and only roughly q − l = O(log T ) of them effectively remain. This,
as such, does not impede the technical development and the control of small
terms via the Nash-Poincaré inequality, Lemma 2.14, the development is only
more cumbersome.
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To facilitate the computations and to present the results in a simpler form,
it is convenient to define the shift matrix J ∈ RT×T with [Jq]ij ≡ δi+q,j , for
which [JqB]ij = [B]i+q,j . A careful control of the development ultimately leads
to the following deterministic equivalents for Q(γ) and Q̃(γ), established in the
limit of simultaneously large N,T ,

Q(γ)↔ Q̄(γ) ≡ 1

γ

(
IN + η2R̃(γ) +

1

γ
A
(
IT + η2R(γ)

)−1
AT

)−1

Q̃(γ)↔ ¯̃Q(γ) ≡ 1

γ

(
IT + η2R(γ) +

1

γ
AT

(
IN + η2R̃(γ)

)−1

A

)−1

where R(γ) ∈ RT×T and R̃(γ) ∈ RN×N are solutions to

R(γ) =

{
1

T
tr
(
Wi−jQ̄(γ)

)}T
i,j=1

, R̃(γ) =

∞∑
q=−∞

1

T
tr
(
Jq ¯̃Q(γ)

)
·Wq

where Wq ≡
∑
k≥0 Wk+(−q)+(Wk+(q)+)T with (a)+ = max(a, 0). A detailed

development is provided in [Couillet et al., 2016b].

Taking the limit limγ↓0 γQ̃(γ), we thus find as an immediate corollary that,
as N,T → ∞ with N/T → c ∈ (0,∞) \ {1}, Etrain − Ētrain → 0 almost surely,
with

Ētrain =
1

T
yTQ̃y · 1c<1 + 0 · 1c>1 (5.32)

so that the limiting training error is zero in the c > 1 regime, as expected, and

Q̃ ≡
(

IT · δc<1 + R +
1

η2
AT

(
IN · δc>1 + R̃

)−1

A

)−1

Q ≡
(

IN · δc>1 + R̃ +
1

η2
A (IT · δc<1 + R)

−1
AT

)−1

and

R =

{
1

T
tr

(
Wi−j

(
IN · δc>1 + R̃

)−1
)}T

i,j=1

R̃ =

∞∑
q=−∞

1

T
tr
(
Jq(IT · δc<1 + R)−1

)
·Wq.

Due to the ill-defined nature of some of these limits when γ ↓ 0, the relations
betweenR, R̃,Q, Q̃, and their associated R(γ), R̃(γ), Q(γ), Q̃(γ) are not mere
corresponding limits as γ ↓ 0. Specifically, when c < 1, we have, as γ ↓ 0 that:
η2R(γ) → R, γR̃(γ) → R̃, η2Q̄(γ) → Q, and γ ¯̃Q(γ) → Q̃. When instead
c > 1, we have correspondingly: γR(γ) → R, η2R̃(γ) → R̃, γQ̄(γ) → Q, and
η2 ¯̃Q(γ)→ Q̃.
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It is particularly useful to expand Q̃ in the expression of Ētrain in (5.32) to
retrieve some intuition on this result. Indeed, for c < 1, we precisely have

Ētrain =
1

T
yT

(
IT + R +

1

η2
XT

{
wT

in(Wi)TR̃−1
Wjwin

}T−1

i,j=0
X

)−1

y.

As such, the memory (training) performance of the network particularly
depends on the typical speed of decay of the entries of the matrix{

wT
in(Wi)TR̃−1

Wjwin

}T−1

i,j=0
(5.33)

as one moves away from its (1, 1) entry. A particularly telling example is the
pure-memory task for which x = [

√
T , 0T−1] (all the vector energy is concen-

trated at time 0) and y = [0τ−1,
√
T , 0T−τ ], that is we wish to recover at time

τ > 1 the value of x0. Then, we find that

Ētrain =

[(
IT + R +

1

η2
XT

{
wT

in(Wi)TR̃−1
Wjwin

}T−1

i,j=0
X

)−1
]
τ+1,τ+1

.

As shown subsequently, for W (non-symmetric) having random independent
zero mean entries, all off-diagonal entries ofR and {wT

in(Wi)TR̃−1
Wjwin}T−1

i,j=0

asymptotically vanish, and we have in this case

Ētrain =
η2

η2(1 + [R]11) + wT
in(Wτ )TR̃−1

Wτwin

+ o(1).

For arbitrary W and win, these performance asymptotics may not be quite
expressive though. Simpler forms of the performance emerge when considering
randomly drawn connectivity matrices. In particular, for c < 1, letting win be
independent of W and of unit norm and W = αW◦ where W◦ ∈ Rn×n is a
Haar matrix, i.e., a unitarily-invariant unitary matrix (see Section 2.6.2), and
α < 1, we find that

Ētrain = (1− c) 1

T
yT

(
IT +

1

η2
XTDX

)−1

y (5.34)

where D = diag{(1− α2)α2(i−1)}Ti=1 and α < 1 plays the role of a (short-term)
memory depth parameter.

This result may be further expanded into a “multi-modal memory” structure
for W ∈ RN×N by letting W = diag(W1, . . . ,Wk) where Wi = αiW

◦
i and

W◦
i ∈ RNi×Ni is a Haar random matrix independent of all other W◦

j ’s as well
as
∑k
i=1Ni = N . Writing ci = limN Ni/N ∈ (0, 1), Ētrain has the same form as

in (5.34) above, however with D = diag{[D]ii}Ti=1 now given by

[D]ii =

∑k
j=1 cjα

2(i−1)
j∑k

j=1 cj(1− α2
j )
−1
.
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By letting α1 < . . . < αk < 1, this form of D is interesting as it exhibits a
“controlled” decay of the memory capacity for a range of memory depths αj .

In particular, defining formally the memory capacity MC(τ ; W) as the in-
verse training error for a pure data recovery shifted by τ in the noiseless limit,
i.e.,

MC(τ ; W) = lim
η↓0

η2E−1
train, for x = [

√
T , 0T−1], y = [0τ−1,

√
T , 0T−τ ] (5.35)

we obtain the typical memory curves depicted in Figure 5.11. This expression
of the “memory capacity” of the network is tightly connected with the so-called
Fisher memory curve proposed in [Ganguli et al., 2008] as an alternative measure
of the network memory.
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Figure 5.11: Memory curves for W = diag(W1,W2,W3), Wj = αjW
◦
j , W◦

j ∈
RNj×Nj Haar distributed, α1 = 0.99, N1/N = 0.01, α2 = 0.9, N2/N = 0.1, and
α3 = 0.5, N3/N = 0.89, compared to single-mode memory with W+

i such that
W+

i = αiW
+◦
i for Haar W+◦

i ∈ RN×N , N/T = 0.75. Link to code: Matlab
and Python.

In these recurrent network structures, symmetry constraints in W were
shown in the literature not to be generally profitable, although few arguments
are proposed to support this claim [Canaday, 2019, Section 5.5]. The determin-
istic equivalents obtained above allow for a better understanding, as exemplified
by Figure 5.12 which compares the matrices R for W Gaussian symmetric or
non-symmetric: the symmetric W case exhibits an erratic behavior with a quite
specific and structured correlation of the time-delayed source data; the associ-
ated loss in performance in both memory capacity and mean squared error of
symmetric reservoirs is corroborated by the theoretical results displayed in Fig-
ure 5.13.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/5.3/html/ESN.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/5.3/ESN.ipynb
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Figure 5.12: Upper 9×9 part of R for c = 1/2 for W = αW◦, α = 0.9, and W◦

with i.i.d. zero mean and variance 1/N non-symmetric Gaussian entries (left)
and symmetric-Gaussian (right). Linear grayscale representation with black
being 1 and white being 0. Link to code: Matlab and Python.
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Mackey, 1979].
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The asymptotic results established in this section, along with the further
studies carried out in [Couillet et al., 2016b], allow for a thorough understanding
and further improvement of the design of random connectivity matrices aiming
for enhanced (possibly selective) memory performance of the networks.

The above study, and the theoretical literature on echo state network per-
formance as a whole, is nonetheless limited to the case of linear nets, while we
claimed above the very interest of these networks to lie in the combination of
a nonlinear function σ(·) and of a carefully chosen spectral radius ρ(W) > 1.
In the same way as the performance of deep feedforward neural networks (even
networks with fully random weight matrices) is difficult to study, notably due to
their accumulating non-linearities under the form σ(WLσ(WL−1 · · ·σ(W1xi))),
the performance of nonlinear echo state networks remains an open riddle.

5.4 Concluding remarks

In this chapter, by leveraging tools from the concentration of measure theory
(see Section 2.7), we went beyond the simple Taylor expansion-based approach
devised to understand kernel methods in Chapter 4 and were able to evaluate the
large dimensional asymptotics of (single-hidden-layer) nonlinear neural network
models (Section 5.1) for real-world data. As we shall see later in Chapter 8,
this “universal large dimensional concentration” argument has an even more
significant impact in practical applications and will be exploited to extend the
current analyses and insights (on the choice of the kernel functions and the
activation functions) to a much broader and more realistic setting.

The eigenspectra, or more generally the large dimensional asymptotics of
(random) neural network models have known a recent resurgence of interest.
These investigations include the (limiting) spectral measure of the nonlinear
Gram matrices [Pennington and Worah, 2017, Benigni and Péché, 2019] (simi-
lar to Section 5.1), as well as that of the input-output Jacobian matrices [Pen-
nington et al., 2017, Pastur, 2020, Pastur and Slavin, 2020] (closely connected
to the behavior of back propagation gradients) of a multi-layer neural network
with random Gaussian or orthogonal weights. These analyses are not limited
to classical feedforward and fully connected networks but have been performed
on networks with convolutional [Novak et al., 2019, Xiao et al., 2018], recurrent
[Chen et al., 2018, Gilboa et al., 2019], and skip-connection structures [Ling
and Qiu, 2019] (as in the case of the popular residual network architecture [He
et al., 2016]), to name a few. Since random (Gaussian) initializations are widely
used in training such deep networks [Glorot and Bengio, 2010, He et al., 2015],
these works shed a new light on the “landscape” of deep neural networks at the
initialization point as well as on the impact of nonlinear activations.

The investigations on randomly weighted neural networks are of even greater
interest to the neural tangent kernel recently introduced by Jacot et al. [2018]
as an approximation of extremely “wide” layers: while the weight matrices after
training are no longer random, the underlying neural tangent kernel is deter-
mined only by the random initialization and remains unchanged during the
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whole training procedure in the “infinite-neurons” limit. As such, the eigen-
spectral assessments of the neural tangent kernel for randomly weighted deep
networks go beyond the initial stage of training and leads to much richer re-
sults on, for example, the learning dynamics of networks [Fan and Wang, 2020,
Adlam and Pennington, 2020] – at least in this neural tangent limit where the
network widths are much larger than both the number of training data n and
their dimension p. Nonetheless, most of these works are concerned with random
noise-like input data (e.g., i.i.d. Gaussian data or almost orthonormal data [Fan
andWang, 2020, Adlam et al., 2019]) with no information structure, and thus fail
to provide sharp qualitative predictions on real-world datasets. In this respect,
considering more involved structural data models, together with the “universal
large dimensional concentration” to be discussed later in Chapter 8, is expected
to bring greater insights into these elaborate learning systems in a more precise
and quantitative manner that better match real-world observations.

Focusing on the optimization perspective of training neural networks, we
discussed in Section 5.2 the gradient descent dynamics in learning a simple
ridge regression model arising from the minimization of the (ridge-regularized)
squared loss, which enjoys the advantage of having an explicit solution. In the
more general context of modern machine learning, however, this is rarely the
case: (i) the optimization problem often has no closed-form solution and, per-
haps even worse, (ii) it may not be guaranteed to have a unique solution, due
to the non-convex nature of the problem – particularly in the most interesting
case of deep neural network models. The non-convexity of the underlying opti-
mization is one of the main technical difficulties to be broken in hope for a more
solid theoretical understanding of deep learning (and other classes of elaborate
machine learning algorithms).

In pursuit of the theoretical understanding of the non-convex “loss land-
scape” of deep networks, Bray and Dean [2007] studied the nature of the critical
points (the points in the “parameter space” of zero gradient) of Gaussian random
fields in a large dimensional setting, following a statistical physics approach, by
evaluating the fraction of negative eigenvalues of the Hessian at critical points.
This type of analyses provides precise descriptions on the “chance” of continuing
to decrease the loss function as well as on the number of saddle points (with
indefinite Hessian) and of “bad” local minima (that have significantly larger loss
values) [Dauphin et al., 2014, Choromanska et al., 2015, Pennington and Bahri,
2017]. The interesting main finding of these works is that, at least within the
Gaussian random field model, as the system dimension grows, the number of
local minima increases exponentially fast but the vast majority of these local
minima tends to be constricted to a “thin” loss layer (i.e., most local minima
approximately have the same corresponding loss): a daring generalization to
deep neural networks would suggest that DNNs similarly have a loss landscape
composed of a large number of “somehow equivalent” local minima, thereby
justifying the stability of these networks and their systematic (good) perfor-
mances irrespective of initialization. This extrapolation is nonetheless indeed
quite daring as the formal results apply to statistical physics models quite dif-
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ferent from actual neural networks (such as spin glass models) and require quite
restrictive assumptions. As we write these words, a clear and more precise pic-
ture of the large dimensional statistical loss landscape of deep networks, which
would account for the influence of the network depth, width, choice of nonlinear
activation, etc., is unfortunately still out of theoretical reach.

While optimization problems with non-explicit solutions are ubiquitous in
machine learning and pose additional technical difficulties in evaluating their
performance, many of the convex problems (that admit a unique solution) still
remain accessible to our large dimensional framework. As a telling example,
when the more commonly used cross-entropy loss (rather than the squared loss)

L(β) = − 1

n

n∑
i=1

[
yi log(σ(βTxi)) + (1− yi) log(1− σ(βTxi))

]
(5.36)

is adopted to learn a (generalized) linear classifier β from a training set {(xi, yi)}ni=1,
with σ(t) = (1 + e−t)−1 the logistic sigmoid function and label yi ∈ {0, 1}, no
closed-form solution exists for the loss-minimizing solution β [Bishop, 2006].
Because of the intricate dependence of the learned classifier β on {xi, yi}ni=1,
the statistical behavior of β is highly non-trivial to tackle and this gets even
worse with the application of the logistic sigmoid non-linearity σ(·). Despite all
these technical difficulties, it is nonetheless possible to pursue a large dimen-
sional stochastic description of β and consequently to evaluate the performance
of, not only the logistic regression classifier, but also any smooth convex loss L
which falls into the general empirical risk minimization framework discussed in
the next chapter.

5.5 Practical course material
In this section, a practical lecture on the (perhaps most) popular random Fourier
feature approach, initially proposed to approximate the Gaussian kernel [Rahimi
and Recht, 2008], is discussed, the large dimensional characterization of which
is almost identity to that performed in Section 5.1.1, except for the major differ-
ence of employing two types of nonlinear activations (‘sin’ and ‘cos’) for random
Fourier features. Both the training and test performance can be assessed, which,
despite taking slightly more involved forms, (i) significantly differ from those of
Gaussian kernel and (ii) also establish a double-descent-type test curve, as ex-
pected.

Practical Lecture Material 4 (Performance of large dimensional random
Fourier features, Liao et al. [2020]). As discussed in Remark 5.1, instead of the
single-type non-linearity setting in Figure 5.1 thoroughly investigated in Sec-
tion 5.1.1, from a random feature map and kernel approximation perspective,
a mixture of non-linearities such as ‘cos + sin’ in the case of random Fourier
features [Rahimi and Recht, 2008] turns out to be a more natural choice. Specif-
ically, for W ∈ RN×p with independent standard Gaussian entries, the random
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Fourier features refer to the cascade of the random features from both ‘cos’ and
‘sin’ activations as

ΣT =
[
cos(WX)T sin(WX)T

]
∈ Rn×2N . (5.37)

Check first that

Ew[cos(wTxi) cos(wTxj) + sin(wTxi) sin(wTxj)] = [Kcos]ij + [Ksin]ij (5.38)

so that by the strong law of large numbers, one has

1

N
[ΣTΣ]ij

a.s.−−→ [Kcos + Ksin]ij = [KGauss]ij (5.39)

as N → ∞, for Kcos and Ksin the limiting kernels of ‘cos’ and ‘sin’ non-
linearities enlisted in Table 5.1, and KGauss = {exp(−‖xi − xj‖2/2)}ni,j=1 the
Gaussian kernel. This justifies the use of random Fourier features, however only
in the N � n regime.

We move on to a large n, p,N characterization of random Fourier features.
Using the fact that Ew[cos(wTxi) sin(wTxj)] = 0 for w ∼ N (0, Ip) and that
both cos(·) and sin(·) are 1-Lipschitz, show, with the help of Lemma 5.1 and
similar to Theorem 5.1, that the random Fourier resolvent ( 1

nΣTΣ + γIn)−1

admits the deterministic equivalent

Q↔ Q̄, Q̄ ≡
(
N

n

(
Kcos

1 + δcos
+

Ksin

1 + δsin

)
+ γIn

)−1

for (δcos, δsin) the unique positive solution to

δcos =
1

n
tr KcosQ̄, δsin =

1

n
tr KsinQ̄.

Then, similar to Corollary 5.1, show that the asymptotic training and test
MSEs take the forms

Ētrain =
γ2

n
tr YQ̄2YT

+
N

n

γ2

n

[
1
n tr Q̄K̄cosQ̄

1
n tr Q̄K̄sinQ̄

]
Ω

[
tr YQ̄K̄cosQ̄YT

tr YQ̄K̄sinQ̄YT

]
Ētest =

1

n̂
‖ŶT −ΦT

XX̂
Q̄YT‖2F +

(
N

n

)2
1

n̂

[
Θcos Θsin

]
Ω

[
tr YQ̄K̄cosQ̄YT

tr YQ̄K̄sinQ̄YT

]
with K̄cos ≡ Kcos

1+δcos
, K̄sin ≡ Ksin

1+δsin
,

Ω−1 = I2 −
N

n

[ 1
n tr Q̄KcosQ̄Kcos

(1+δcos)2

1
n tr Q̄KcosQ̄Ksin

(1+δsin)2
1
n tr Q̄KsinQ̄Kcos

(1+δcos)2

1
n tr Q̄KsinQ̄Ksin

(1+δsin)2

]
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with, for σ ∈ {cos, sin}, the notations

Θσ ≡
1

1 + δσ

(
1

N
tr K̄X̂X̂

σ +
N

n

1

n
tr Q̄ΦXX̂ΦT

XX̂
Q̄Kσ −

2

N
tr Q̄ΦXX̂(KXX̂

σ )T
)

Φ =
N

n
(K̄cos + K̄sin), ΦXX̂ =

N

n
(K̄XX̂

cos + K̄XX̂
sin ).

Confirm numerically that, for not-too-large ratios N/n (as in Figure 5.14),
a significant gap exists between the empirical training MSE of random Fourier
ridge regression and the classical Gaussian kernel prediction (for instance on the
MNIST dataset), while the large N, p, n asymptotics derived above consistently
fit the empirical observations.

Check also that a double-descent singularity behavior occurs when γ → 0, but
this time at 2N = n (rather than at N = n as in the case of single non-linearity
discussed at the end of Section 5.1.1), due the singular behavior of the two by
two matrix Ω−1.
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Figure 5.14: Training MSEs of random Fourier feature ridge regression on
MNIST data (class 3 versus 7), as a function of the regression penalty γ, for
p = 784, n = 1 024, N = 256 and 512. Empirical results displayed in blue
circles; Gaussian kernel predictions (assuming N → ∞ alone) in black dashed
lines; and RMT predictions in red solid lines. Results obtained by averaging
over 10 runs. Link to code: Matlab and Python.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/5.5/html/random_Fourier.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/5.5/random_Fourier.ipynb
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Chapter 6

Large-Dimensional Convex
Optimization

This chapter discusses the generalized linear classifier that results from con-
vex optimization problem and takes in general nonexplicit form. Random ma-
trix theory is combined with leave-one-out arguments to handle the technical
difficulty due to implicity. Again, counterintuitive phenomena arise in popu-
lar machine learning methods such as logistic regression or SMV in the large-
dimensional setting, a well-defined solution may not even exist, and if it does,
it behaves dramatically from its small-dimensional counterpart.

Unlike the kernel methods discussed in Section 4 or the simple neural net-
work models of Section 5, where the objects under study (kernel matrices and
random feature ridge regressors) assume an explicit form, many other machine
learning algorithms are the solutions of optimization problems having in gen-
eral no closed-form formulation. A first example is the popular logistic re-
gression method, where one aims to find (say in a binary classification set-
ting) an optimal (generalized) linear classifier β ∈ Rp by minimizing the lo-
gistic loss 1

n

∑n
i=1 log(1 + e−yiβ

Txi) over a training set {(xi, yi)}ni=1 with labels
yi ∈ {−1,+1}.1 More generally, by choosing other loss functions beyond the
logistic loss, logistic regression can be viewed as a special case of the empirical
risk minimization [Vapnik, 1992] problem

arg min
β∈Rp

1

n

n∑
i=1

L(yiβ
Txi) +

γ

2
‖β‖2 (6.1)

for some convex loss L : R → R+ and regularization factor γ ≥ 0. With
the logistic loss L(t) = log(1 + e−t) one gets the logistic regression, while the
least-squares classifier (or ridge regressor) can be obtained with the squared

1It can be checked that, up to the relabeling of yi = 0 to yi = −1, this is equivalent to the
cross-entropy formulation in (5.36).

339



340 CHAPTER 6. LARGE-DIMENSIONAL CONVEX OPTIMIZATION

loss L(t) = (t− 1)2. Other popular choices of L(·) include the exponential loss
L(t) = e−t widely used in boosting algorithms [Schapire, 1999] and the hinge
loss L(t) = max(0, 1−t) in the case of support vector machines (SVMs) [Rosasco
et al., 2004]. Figure 6.1 illustrates these different losses.

Figure 6.1: Different loss functions for classification: 0–1 loss (red), logistic loss
(green), exponential loss (purple), squared loss (blue) and hinge loss (black).

Except for the least-squares solution where L(t) = (t−1)2, the minimization
of (ridge-regularized) a generic loss L generally leads to a classifier β that only
takes an implicit form. It is thus not clear how the resulting β depends on the
data X and labels y, making its (large dimensional) statistical behavior more
challenging to investigate.

The technical challenge posed by implicit optimization problems appears
not only in the analysis of logistic regression, but also in most machine learning
algorithms of daily use, starting with the popular deep learning schemes. It is
therefore of crucial importance to adapt the random matrix analysis framework
discussed in the previous chapters to assess the performance of non-explicit
optimization-based learning methods. In this chapter, we focus on the quite
generic empirical risk minimization example of (6.1) and evaluate the large di-
mensional behavior of the resulting classifier β. Technically, a major emphasis
will be cast on the “leave-one-out” approach, which aims to “decouple” the in-
tricate statistical dependencies induced by the optimization scheme into the
statistical learning algorithms. Other approaches to overcome this technical
difficulty of “intrinsic dependence” will be discussed in Section 6.3 at the end of
this chapter.

6.1 Generalized linear classifier

6.1.1 Basic setting
For simplicity of exposition, we consider the problem of classifying a binary
“symmetric” Gaussian mixture of the form

C1 : xi ∼ N (−µ,C), yi = −1 and C2 : xi ∼ N (+µ,C), yi = +1 (6.2)
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each with a class prior probability of 1/2, for some µ ∈ Rp and positive definite
C ∈ Rp×p. As in the previous chapters, we ensure the classification problem is
asymptotically non-trivial by specifying the following growth rate assumptions

‖µ‖ = O(1), and max{‖C‖, ‖C−1‖} = O(1) (6.3)

as n, p→∞ at the same pace.
Note that the mixture model in (6.2) satisfies the logistic model in the sense

that the conditional class probability is

P (y | x) =
P (y)P (x | y)

P (x)
=

e−
1
2 (x−yµ)C−1(x−yµ)

e−
1
2 (x−µ)C−1(x−µ) + e−

1
2 (x+µ)C−1(x+µ)

=
1

1 + e−2yµTC−1x
≡ σ(βT

∗ yx), for β∗ ≡ 2C−1µ (6.4)

with σ(t) = (1 + e−t)−1 the logistic sigmoid function and the optimal Bayes
solution β∗ = 2C−1µ. By the symmetry of (6.2), it is convenient to use the
shortcut notation x̃i ≡ yixi so that

x̃i ∼ N (µ,C)

regardless of the class of xi.

To investigate the large dimensional asymptotics of the implicit classifier
which minimizes the empirical risk in (6.1), the main technical difficulty lies in
the fact that β, as the solution of a convex optimization problem, depends on
all the random x̃i’s in a rather involved (and implicit) manner. Nonetheless,
by canceling the loss function gradient with respect to β in (6.1), we can still
obtain the following seemingly simple equation satisfied by β:

γβ =
1

n

n∑
i=1

−L′(βTx̃i)x̃i (6.5)

where we assume the loss function L is convex and at least three-times con-
tinuously differentiable (making β unique for γ > 0). Of course, the technical
difficulty remains: while β appears to be a linear combination of the indepen-
dent x̃i’s, the coefficients of the linear combination are themselves functions of
β, and thus functions of all x̃j ’s. Also, and possibly more fundamentally, unlike
in Section 3.3 on the robust estimators of scatter, where we already met simi-
lar fixed-point equations, the variables βTx̃i will be seen not to converge (and
thus cannot be “replaced” by a deterministic limit). This last remark crucially
modifies the approach to study the large dimensional statistics of β. The next
section introduces one of the natural angles of attack, based on a “leave-one-out”
procedure. The method being somewhat intricate, we start by presenting the
main intuitions and the basic developments to retrieve the system of equations
which (asymptotically) characterizes the statistical behavior of β.
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6.1.2 Intuitions and main results
In a way, the proof of the main results on the asymptotic characterization of β
is based on a similar leave-one-column-out perturbation approach used in the
Bai-Silverstein method (for instance when applied to the proof of the Marc̆enko-
Pastur law, Theorem 2.4). Specifically here, we will compare the original β, so-
lution of (6.5), to β−i, solution of a modified version of (6.5) in which the sum
does not include the i-th datum x̃i. For n large, β and β−i should be (asymptot-
ically) close and in particular, behave similarly when projected on deterministic
vectors as well as on the x̃j ’s, except when j = i. When comparing β to β−i,
due to their asymptotic closeness, the nonlinear functions (here L′) in (6.5) will
be “linearized” by a Taylor expansion: this ultimately gives rise to a character-
ization of β involving only the sample mean and sample covariance of the x̃i’s,
and the first derivatives of L. This will, possibly surprisingly at first glance,
allow us to fall back on classical sample covariance matrix characterizations as
studied thoroughly in the monograph. We develop here the main ingredients
and intuitive arguments of the approach, a complete and exhaustive proof being
available in [Mai and Liao, 2019].

From (6.5), β can be viewed as a linear combination of all x̃i’s, weighted by
the coefficient −L′(βTx̃i). The idea is then to understand how each x̃i affects
the corresponding coefficient −L′(βTx̃i). To handle the complex dependence of
β on all x̃j ’s, we create a “leave-one-out” version of β, denoted β−i, which is (i)
asymptotically close to β by removing the contribution of a single datum and
(ii) independent of x̃i, by solving (6.1) for all data x̃j different from x̃i, so that

γβ−i =
1

n

∑
j 6=i

−L′(βT
−ix̃j)x̃j .

As a consequence, the difference γ(β − β−i) satisfies

γ(β − β−i) =
1

n

∑
j 6=i

(
L′(βT

−ix̃j)− L′(βTx̃j)
)
x̃j −

1

n
L′(βTx̃i)x̃i. (6.6)

Intuitively, the difference ‖β−β−i‖ must vanish as n, p→∞ (the contribu-
tion of one datum x̃i out of the n data x̃j ’s should have a negligible effect) so
that, by Taylor expanding L′(t) around t = βT

−ix̃j , j 6= i, one obtains

L′(βTx̃j) = L′(βT
−ix̃j) + L′′(βT

−ix̃j)(β − β−i)Tx̃j +O(‖β − β−i‖2).

Ignoring higher order terms, together with (6.6), this leads to the following
equation for β − β−i:

γ(β − β−i) ' −
1

n

∑
j 6=i

L′′(βT
−ix̃j)x̃jx̃

T
j (β − β−i)−

1

n
L′(βTx̃i)x̃i

or equivalently(
1

n
X̃−iD−iX̃

T
−i + γIp

)
(β − β−i) ' −

1

n
L′(βTx̃i)x̃i
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with X̃−i = [x̃1, . . . , x̃i−1, x̃i+1, . . . , x̃n] ∈ Rp×(n−1) and diagonal D−i ∈ R(n−1)×(n−1)

with [D−i]jj = L′′(βT
−ix̃j) which are both independent of x̃i. In particu-

lar, it can be checked that the difference ‖β − β−i‖ is of the same order as
‖x̃i/n‖ = O(n−1/2).

Note further by the convexity of L that L′′(t) ≥ 0 for all t, so that for any
γ > 0, the matrix 1

nX̃−iD−iX̃
T
−i+γIp is positive definite (and invertible). Thus

we may write

β − β−i ' −
1

n
L′(βTx̃i)

(
1

n
X̃−iD−iX̃

T
−i + γIp

)−1

x̃i

which, while not solving a linear regression problem, again involves the resolvent
of (a weighted version of) the sample covariance matrix of the training data.

In particular, projecting against x̃i gives

(β − β−i)Tx̃i ' −
1

n
L′(βTx̃i)x̃

T
i

(
1

n
X̃−iD−iX̃

T
−i + γIp

)−1

x̃i. (6.7)

At this point, note that ( 1
nX̃−iD−iX̃

T
−i + γIp)

−1 is of bounded spectral
norm (by 1/γ) and independent of x̃i = µ + C

1
2 zi for zi ∼ N (0, Ip). By the

trace lemma (Lemma 2.11) and Theorem 2.7, one must therefore have under
the growth rate (6.3) that, as n, p→∞, with p/n→ c ∈ (0,∞),

1

n
x̃T
i

(
1

n
X̃−iD−iX̃

T
−i + γIp

)−1

x̃i − δ
a.s.−−→ 0 (6.8)

with δ the unique positive solution to2

δ =
1

n
tr C

(
E
[

L′′(βTx̃)

1 + δL′′(βTx̃)

]
C + γIp

)−1

. (6.9)

The positiveness of δ follows from the quadratic form in (6.8). As for uniqueness,
it is guaranteed by rewriting the trace relation under the equivalent form

1 =
1

n

p∑
i=1

λi(C)(
1− E

[
1

1+δL′′(·)

])
λi(C) + γδ

≡ g(δ)

with {λi(C)}pi=1 the eigenvalues of C, and by noticing that, for L′′(·) ≥ 0, g(δ) is
a continuous decreasing function of δ with limδ→0 g(δ)→∞ and limδ→∞ g(δ)→
0: g is thus a one-to-one function from (0,∞) onto (0,∞).

2In the present setting, D−i plays the role of matrix C̃ in Theorem 2.7 and the
equality −zδ̃p(z) = 1

n
tr C̃(In + δp(z)C̃)−1 thus becomes, here for z = −γ, γδ̃p =

1
n−1

∑
j 6=i[D−i]jj/(1 + δ[D−i]jj)

a.s.−−−→ E[L′′(βTx̃)/(1 + δL′′(βTx̃))]. Here β−i is replaced
by β in the expectation since, for x̃ independent of x̃i, βT

−ix̃ and βTx̃ are asymptotically
equivalent.
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Back to the expression of (6.7), it now unfolds from (6.8) that

βTx̃i ' βT
−ix̃i − δL′(βTx̃i)

from which we can write the inconvenient βTx̃i (inconvenient because β depends
in an intricate manner on x̃i) as a function of the convenient βT

−ix̃i (which is
the inner product between independent random vectors). Specifically, solving
for βTx̃i, we find that βTx̃i is (approximately) given by the proximal operator
of βT

−ix̃i for the function δL, i.e.,

βTx̃i ' proxδL(βT
−ix̃i)

with proxδL(t) the proximal mapping [Bauschke and Combettes, 2017], defined
as the unique solution of the minimization problem

proxδL(t) ≡ arg min
x∈R

{
δL(x) +

1

2
(x− t)2

}
. (6.10)

As a consequence, replacing the term βTx̃i in (6.5) gives the approximation

γβ ' 1

n

n∑
i=1

−L′(proxδL(βT
−ix̃i))x̃i ≡

1

n

n∑
i=1

f(βT
−ix̃i)x̃i, (6.11)

where we denoted f(x) ≡ −L′(proxδL(x)) = (proxδL(x) − x)/δ, which follows
from differentiating the (convex) right-hand side of (6.10).

Equation (6.11) establishes an asymptotic connection between β and (the
average of) the “leave-one-out” version β−i.3 At this point, one may want to
take the expectation of both sides of (6.11) to retrieve E[β] as a function of the
expectation of x̃i. However, the expectation of the type Ex̃i [f(βT

−ix̃i)x̃i] is deli-
cate to handle due to the x̃i vector still appearing inside the nonlinear function
f(·) (recall that, unlike for the robust estimator of scatter in Section 3.3, βT

−ix̃i
here does not converge). This can be worked around by using the Gaussianity
of x̃i with the following decomposition: since x̃i = µ+ C

1
2 zi for zi ∼ N (0, Ip),

by conditioning on β−i (which is independent of zi), zi may be decomposed
under the form

zi = ηi
C

1
2β−i√

βT
−iCβ−i

+ z⊥i , ηi =
βT
−iC

1
2 zi√

βT
−iCβ−i

(6.12)

with C
1
2β−i/

√
βT
−iCβ−i the unit vector oriented in the direction of C

1
2β−i and

z⊥i ∈ Rp lying on the (p− 1)-dimensional subspace orthogonal to C1/2β−i. By
the orthogonal invariance of the standard multivariate Gaussian distribution,
ηi and z⊥i are jointly Gaussian and uncorrelated, thus independent. This is a

3Note in passing that the mapping between the initial function L′ and the new function f
in (6.11) is extremely reminiscent of the functional change u(·) into v(·) in the development
of the robust estimator of scatter asymptotics in Section 3.3.
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natural decomposition of zi to reduce the fluctuation βT
−iC

1/2zi in the expansion
of βT

−ix̃i to the scalar fluctuation of ηi ∼ N (0, 1) (since βT
−iC

1/2z⊥i = 0). This
is, as we recall, the same decomposition technique exploited in Section 4.3 in
the study of properly scaling kernels.

Exploiting this decomposition, (6.11) becomes

γβ ' 1

n

n∑
i=1

f(βT
−ix̃i)(µ+ C

1
2 zi) =

1

n

n∑
i=1

f(βT
−iµ+ βT

−iC
1
2 zi)(µ+ C

1
2 zi)

=
1

n

n∑
i=1

f

(
βT
−iµ+

√
βT
−iCβ−iηi

)µ+
ηiCβ−i√
βT
−iCβ−i

+ C
1
2 z⊥i


for ηi ∼ N (0, 1) (conditioned on β−i) that is independent of z⊥i , which, as we
will see, is more convenient to work with.

By construction, β−i is independent of x̃i, with its norm converging to a limit
as n, p→∞ (the same as that of ‖β‖), so one expects to have βT

−ix̃i ∼ N (M,σ2)
in the large p, n limit. The deterministic pair (M,σ2) is however so far unknown,
but it must satisfy

M ' E[β−i]
Tµ ' βT

−iµ, σ2 ' E[βT
−iCβ−i] ' βT

−iCβ−i (6.13)

by a concentration argument. Intuitively, the random variable βTµ character-
izes the (expected) projection of β on a new datum (of mean µ) and determines
the classification performance of β that should be asymptotically deterministic.
A similar argument holds for βT

−iCβ−i ' βTCβ.
Assuming this indeed holds, we have, as n, p→∞,

1

n

n∑
i=1

f(βT
−ix̃i)µ ' E[r]µ,

1

n

n∑
i=1

f(βT
−ix̃i)

ηiCβ−i√
βT
−iCβ−i

=
1

n

n∑
i=1

f

(
βT
−iµ+

√
βT
−iCβ−i · ηi

)
ηiCβ−i√
βT
−iCβ−i

'

(
1

n

n∑
i=1

f(M + σηi)ηi

)
· Cβ
σ

' E[f(r)(r −M)]

σ2
Cβ,

for r ∼ N (M,σ2) with the law of large numbers, where for the second term
we used β−i ' β (since x̃i is not involved in this expression). As such, (6.11)
further reads

γβ ' E[f(r)]µ+
E[f(r)(r −M)]

σ2
Cβ +

1

n

n∑
i=1

f(M + σ · ηi)C
1
2 z⊥i . (6.14)

It is important to understand that, unlike the second term where all β−i are
asymptotically “in the same direction”, the z⊥i ’s asymptotically behave like zi



346 CHAPTER 6. LARGE-DIMENSIONAL CONVEX OPTIMIZATION

and are thus totally random (in fact, uniformly distributed on the unit sphere of
radius √p), so in (6.14) there is no “coherent averaging effect” for the third term
as for the second term. Yet, we can still go further since, with the decomposition
in (6.12), z⊥i is independent of ηi, so that by denoting u = 1

n

∑n
i=1 f(M + σ ·

ηi)C
1
2 z⊥i , we should have

E[u] = 0, E[uuT] ' E[f2(r)]

n
C (6.15)

which, together with an asymptotically Gaussian fluctuation argument, leads to

u ∼ N
(

0,
E[f2(r)]

n
C

)
.

This term is of the same amplitude as µ, and thus not negligible.
Solving (6.14) for β finally gives

(γIp − E[f ′(r)]C)β ' E[f(r)]µ+ u (6.16)

which unfolds from an integration by parts to write E[f(r)(r − M)]/σ2 =
E[f ′(r)]. This provides a statistical characterization of β as the sum of a deter-
ministic (E[f(r)]µ) and a random (u) part.

To close the loop and connect (M,σ2) to the data statistics µ,C and par-
ticularly to those of β, recall from (6.13) and β−i ' β that

M ' E[β]Tµ, σ2 ' tr(CE[ββT]).

Therefore, taking the expectation of both sides of (6.16) and solving for E[β],
one reaches

E[β] ' E[f(r)](γIp − E[f ′(r)]C)−1µ.

Recalling the definition f : x 7→ −(x− proxδL(x))/δ where δ > 0, by the firmly
non-expansive nature of the proximal mapping (see detail in [Bauschke and
Combettes, 2017, Chapter 12]), it unfolds that the inverse in (6.16) is unique
and thus well defined for any γ > 0.

Lastly, using again (6.16),

E[ββT] ' (E[f(r)])2(γIp − E[f ′(r)]C)−1µµT(γIp − E[f ′(r)]C)−1

+ (γIp − E[f ′(r)]C)−1E[uuT](γIp − E[f ′(r)]C)−1

so that

σ2 ' (E[f(r)])2 · µT(γIp − E[f ′(r)]C)−1C(γIp − E[f ′(r)]C)−1µ

+ E[f2(r)] · 1

n
tr
[
(γIp − E[f ′(r)]C)−2C2

]
.

This derivation gives access to all the necessary quantities: (i) an asymptotic
Gaussian behavior for β characterized by (ii) the corresponding mean E[β] and
correlation E[ββT] both function of moments of the Gaussian random variable
r ∼ N (M,σ2) with (iii) M ' E[β]Tµ and σ2 ' E[βTCβ]. All three ingredients
form a system of fixed-point equations summarized in the following theorem.
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Theorem 6.1 (Asymptotic behavior of β, Mai and Liao [2019, Theorem 1]
). For max{‖µ‖, ‖C‖, ‖C−1‖} = O(1), convex and three-times continuously
differentiable L and β the unique solution to (6.1), we have, as n, p→∞,

‖β − β̃‖ → 0, (γIp − E[f ′(r)]C)β̃ ∼ N (E[f(r)]µ,E[f2(r)]C/n)

where f(r) = −L′(proxδL(r)), r ∼ N (M,σ2), and (M,σ2) solution to

M = E[f(r)] · µT(γIp − E[f ′(r)]C)−1µ,

σ2 = (E[f(r)])2 · µT(γIp − E[f ′(r)]C)−1C(γIp − E[f ′(r)]C)−1µ

+ E[f2(r)] · 1

n
tr
[
(γIp − E[f ′(r)]C)−2C2

]
with δ the unique positive solution to

δ =
1

n
tr C

(
E
[

L′′(proxδL(r))

1 + δL′′(proxδL(r))

]
C + γIp

)−1

.

The raw statement of the theorem is quite intricate and does not seem to
carry much intuition. The next section will be dedicated to a better use of
the theorem statement. Before delving into these corollaries, a few technical
remarks and immediate consequences are in order.

First note that here the norm of β̃ (and thus of β) is of order O(1) (which
is the same order of ‖µ‖ and of the Bayes optimal solution ‖β∗‖ in (6.4)), so if
µ ∈ Rp (and thus the mean E[f(t)](γIp − E[f ′(r)]C)−1µ of β̃) is delocalized in
the sense that its entries are of order O(1/

√
p), the entries of β̃ then fluctuate

as O(1/
√
p), thus at the same order as their means: the vector is therefore not

asymptotically deterministic. We will come back to this point in more detail
later.

From the above “leave-one-out” derivation, since β−i is by construction in-
dependent of x̃i, the random variable ri = βT

−ix̃i is asymptotically close to βTx̃,
that is, the projection of the classifier β on a new datum x̃ ∼ N (µ,C). This
gives direct access to the asymptotic test classification error rate

P(βTx̃ < 0)−Q(M/σ)→ 0 (6.17)

with Q(·) the Gaussian Q-function. Similarly, since βTx̃i ' proxδL(βT
−ix̃i), the

training classification error is given by

P(βTx̃i < 0)− P (proxδL(r) < 0)→ 0 (6.18)

for r ∼ N (M,σ2) given in Theorem 6.1.

6.1.3 Practical consequences and further discussions
To validate the asymptotic results given in Theorem 6.1 for n, p of reasonable
sizes, Figure 6.2 compares the empirical distribution of {βT

−ix̃i}ni=1 to the lim-
iting Gaussian distribution N (M,σ2) from the system of fixed-point equations
in Theorem 6.1. The theoretical results are seen to fit the simulations almost
perfectly, already for p = 256 and n = 1 024.
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Figure 6.2: Histogram of βT
−ix̃i and the Gaussian distribution N (M,σ2) defined

in Theorem 6.1 with µ = 1p/
√
p, C = diag[1p/4; 3·1p/4; 5·1p/2], for the logistic

loss L(t) = log(1 + e−t), λ = 0.1, p = 256 and n = 1 024. Link to code: Matlab
and Python.

The existence and uniqueness of the empirical risk minimizer

We now interpret the results in Theorem 6.1. First, let us for simplicity restrict
ourselves to the unregularized case where γ = 0 and assume the existence and
uniqueness of the solution to the (unregularized) optimization problem

arg min
β∈Rp

1

n

n∑
i=1

L(yiβ
Txi) (6.19)

and the asymptotic boundedness of the solution (i.e., lim supp ‖β‖ <∞). This
assumption is necessary since, in the unregularized γ = 0 case, such a minimizer
may not exist, and if it does, may not be unique or may have a diverging
behavior. A classical counterexample in the logistic regression L(t) = log(1 +
e−t) setting is as follows: if the training data {(xi, yi)}ni=1 are linearly separable
in the sense that there exists a linear decision boundary b ∈ Rp such that

yix
T
i b ≥ 0, for all i ∈ {1, . . . , n}

then, since L(t) is strictly decreasing, one can always decrease the objective
function and have 1

n

∑n
i=1 L(yiα1b

Txi) <
1
n

∑n
i=1 L(yiα2b

Txi) as long as α1 >
α2 > 0, and the (global) minimizer of (6.19) does not exist.

Remark 6.1 (Existence and uniqueness of a well-defined empirical risk min-
imizer). In the large dimensional setting under consideration, the existence of
a unique and well-behaved minimizer can be characterized, as a function of the
problem setting (here µ,C and the loss L) and of the ratio p/n. For instance,
it was shown in [Candès and Sur, 2020] for the logistic regression that a sharp
phase transition exists for the existence of the minimizer of (6.19) in the sense

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/6.1/html/empirical_risk_min.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/6.1/empirical_risk_min.ipynb
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that, for g(·) some decreasing function, if p/n > g(µTC−1µ), the minimizer ex-
ists with probability approaching zero; but if p/n < g(µTC−1µ), the probability
approaches one. The function g additionally has the property that g(·) ≤ 1/2,
meaning that the minimizer (asymptotically) does not exist if n < 2p.4 This
result was then extended in [Taheri et al., 2019] to more general convex losses.

According to the above discussion, assume the existence of a bounded so-
lution to the unregularized optimization problem (6.19), from which one may
simplify the expression in Theorem 6.1 as

β̃ ∼ N
(
E[f(r)]

E[f ′(r)]
C−1µ,

E[f2(r)]

(E[f ′(r)])2

C−1

n

)
(6.20)

for r ∼ N (M,σ2), f(r) = −L′(proxδL(r) with

M =
E[f(r)]

E[f ′(r)]
µTC−1µ, σ2 =

(
E[f(r)]

E[f ′(r)]

)2

µTC−1µ+
E[f2(r)]

(E[f ′(r)])2

p

n

and δ the unique positive solution of

E
[

1

1 + δL′′(proxδL(r))

]
= 1− p

n
. (6.21)

Note already from the convexity of L that one must have (at least) n > p so
as to have δ > 0, in accordance with the existence and uniqueness condition
in [Candès and Sur, 2020, Taheri et al., 2019]. Also, taking L′′(t) = 0, which
excludes the existence of δ > 0 for p/n > 0, is not allowed.

Implications to large dimensional empirical risk minimization

Debiasing the estimator in large dimensions. Recall from (6.4) that the
underlying statistical model satisfies a logistic model, with the optimal Bayes
solution given by β∗ = 2C−1µ. However, from the asymptotic characterization
in (6.20), the expectation of the minimizer β of the logistic loss L(t) = log(1 +
e−t), despite being the maximum likelihood estimator, is not equal to β∗ as the
large-n asymptotic would suggest [Rosasco et al., 2004], but rather to a scaled
version of β∗, due to the non-vanishing ratio p/n.

Although in a classification context one has sign(βTx) = sign(αβTx) for
any α > 0, so that a positive constant rescaling of the classifier β does not
affect the classification performance, it remains often desirable to have a large-
(n, p) consistent estimator for β∗, for inference or risk management purposes.
For instance, such an estimator is necessary to predict the variability of the
obtained solution by means of standard errors, confidence intervals or p-values
[Sur and Candes, 2019].

4This remark is reminiscent of the similar, yet formally different, phenomenon where the
minimizer to (6.19) for squared loss L(t) = (t − 1)2/2 and γ = 0 exists but is not unique in
the under-determined regime n < p.



350 CHAPTER 6. LARGE-DIMENSIONAL CONVEX OPTIMIZATION

To this end, we see from (6.20) that it suffices to estimate E[f(r)] and E[f ′(r)]
in a consistent manner, which, according to the derivation in the previous sec-
tion, can be evaluated as follows.

Lemma 6.1. Under the notations of the conditions of Theorem 6.1, we have

− 1

n

n∑
i=1

L′(βTx̃i)− E[f(t)] = o(1)

1

n

n∑
i=1

[
L′(βTx̃i)

]2 − E[f2(t)] = o(1)

1

n

n∑
i=1

L′(βTx̃i)(ri − 1
n

∑n
j=1 rj)

1
n

∑n
i=1

(
ri − 1

n

∑n
j=1 rj

)2 − E[f ′(t)] = o(1)

for ri = βTx̃i + δ̂L′(βTx̃i) with δ̂ the (unique) positive solution to

δ̂ =
p

n

(
1

n

n∑
i=1

L′′(βTx̃i)

1 + δ̂L′′(βTx̃i)

)−1

.

We have in particular δ̂ − δ = o(1).

Figure 6.3 compares the empirical mean (as an estimate of the expecta-
tion) of β, its proposed rescaled version β, and the optimal Bayes solution β∗.
The results visually confirm that, by rescaling β with the plug-in estimators
in Lemma 6.1, one retrieves on average the correct value of the optimal β∗ (in
expectation).
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] i

Optimal β∗
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Figure 6.3: Comparison of the averaged β (over 500 realizations, to estimate the
expectation), the optimal Bayes solution β∗ and the (averaged) rescaled solution
β proposed in Lemma 6.1, for the logistic loss with µ = [1p/4,−1p/4,

3
4 ·1p/2]/

√
p,

C = 2 · Ip, for p = 64 and n = 512. Matlab and Python.

Let us now focus on the random fluctuations of β, which are (asymptotically)
Gaussian with covariance C−1/n (so that the entry-wise noise is typically of the

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/6.1/html/empirical_risk_min.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/6.1/empirical_risk_min.ipynb
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order O(n−1/2)) under (6.3). Therefore, since ‖β∗‖ = O(1), depending on the
nature of β∗, either of the following two situations may arise:

1. β∗ ∈ Rp is sparse in the sense that the number of its nonzero entries (i.e.,
its `0 norm) is of order O(1) and each nonzero element is of order O(1).
In this case, one may wish to perform some sort of thresholding and to
set noise-like small valued entries to zero, with a wisely chosen threshold;

2. β∗ ∈ Rp is more “delocalized ” with ‖β∗‖0 = O(n) and ‖β∗‖∞ = O(n−1/2),
which is of the same order as the random noise. Intuitively, the energy
of β∗ is spread over all O(n) entries and it is unlikely to recover the
desired β∗ from a single realization in this case. An (computationally
more burdensome) alternative approach is to solve n times the “leave-
one-out” version of (6.19) by removing different data each time, and then
averaging the obtained solutions.

Optimal loss for classification. From a classification standpoint, it follows
from (6.17) that, if the loss L(·) is not a priori fixed, the optimal choice of L is
the function which maximizes the ratio M2/σ2 or, equivalently, as per (6.20),
the (function) solution to

max
f

M2

σ2
= max

f

(E[f(r)])2(µTC−1µ)2

(E[f(r)])2(µTC−1µ)2 + E[f2(r)] pn
.

An immediate remark is that, by the Cauchy-Schwarz inequality,

(E[f(r)])2 ≤ E[f2(r)]

with equality if and only if f(r) = −L′(proxδL(r)) is constant. Such an f is
however not attainable within the present (asymptotic) framework, as discussed
previously (see below (6.21)). Yet, a theoretical misclassification error rate
“lower bound” is given by

Q

(
M

σ

)
= Q

(
µTC−1µ√

µTC−1µ+ p/n

)
.

This extends the optimal performance bound obtained for linear classifiers
solved by gradient descent under a squared loss constraint discussed in Re-
mark 5.2 to more general loss functions (here all convex and three-times con-
tinuously differentiable losses).

Although the Cauchy-Schwarz inequality cannot be met with equality, for a
given problem with fixed µTC−1µ and p/n, finding an optimal cost function still
reduces to maximizing the ratio (E[f(r)])2/E[f2(r)] or, equivalently for all large
n, p, according to Lemma 6.1, to maximizing the following empirical version

max
L

|L′(βTX̃)1n|√
L′(βTX̃)L′(X̃Tβ)

(6.22)
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where the function L′(·) is applied entry-wise to the vector βTX̃ ∈ Rn. At this
point, note from (6.5) that in the unregularized case (γ = 0) one must have

X̃L′(X̃Tβ) = 0

so that, by considering the singular value decomposition of X̃

X̃ = UΣVT = U
[
S 0

] [VT
1

VT
2

]
for X̃ ∈ Rp×n with Σ ∈ Rp×n, orthogonal U ∈ Rp×p,V ∈ Rn×n, diagonal
S ∈ Rp×p and V1 ∈ Rn×p,V2 ∈ Rn×(n−p) (recall the necessary n > p condition
when γ = 0), one must have

VT
1L
′(X̃Tβ) = 0.

That is, L′(X̃Tβ) lies on the subspace spanned by the column vectors of V2,
i.e., there exists a vector a ∈ Rn−p for which

L′(X̃Tβ) = V2a

and thus (6.22) further simplifies to

max
L

aTVT
2 1n
‖a‖

.

This expression reaches its maximum if and only if a is aligned to VT
2 1n, i.e.,

a = αVT
2 1n for some α > 0. This optimality condition can be easily checked to

be met with the squared loss L(t) = (t− 1)2/2.
Consequently, the surprising conclusion of the analysis in this section is that,

in the unregularized case, among all convex and smooth functions, the simplest
squared loss function turns out to be optimal. In particular, it uniformly out-
performs the maximum likelihood solution induced by the logistic loss, as it
systematically reaches lower classification error. Perhaps even more surpris-
ingly, a similar conclusion can be reached in the regularized case, which is more
subtle to establish as one needs to consider the possible different levels of regu-
larization for different losses; we refer the interested readers to [Mai and Liao,
2019] for more details.5

Despite the non-converging behavior of the quantity βTx̃i in the nonlinear
function L(βTx̃i), the analysis framework presented in this section is still based
on a local Taylor expansion of the loss L, obtained by a perturbation approach
relating β to the close quantity β−i. This analysis however excludes the non-
differentiable hinge loss of the popular and important method of support vector
machines (SVMs). The following section develops the intuitive ideas to handle
this non-smooth implicit optimization case.

5The (approximate) optimality of the squared loss among all convex (and thus possibly non-
smooth) losses was recently established by Taheri et al. [2020c,a,b] on similar, yet formally
different, models, showing again the unexpected advantageous performance of the simple
squared loss in large dimensional problems.
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6.2 Large dimensional support vector machines
As one of most popular classification methods in the machine learning literature,
the support vector machine (SVM), and in particular the hard-margin SVM,
is based on the idea of finding two separating hyperplanes with a maximum
“margin” between them, so as to make robust future predictions.

Assuming the linear separability of the training set {(xi, yi)}ni=1 with label
yi ∈ {−1,+1}, the maximum margin classifier, solution to the hard-margin
SVM, is formulated as the solution to the optimization problem

arg min
β∈Rp

‖β‖2,

s. t. yiβ
Txi ≥ 1, i ∈ {1, . . . , n}. (6.23)

It is interesting to note that, unlike for logistic regression where the training
set must not be linearly separable as mentioned in Remark 6.1, the hard-margin
SVM, on the contrary, assumes explicitly the linear separability of data.

Remark 6.2 (Connection between linear regression, logistic regression, and
SVM). It has been shown in [Soudry et al., 2018] that, on a linearly separable
dataset, the gradient descent method, when applied to minimize the unregular-
ized logistic loss, converges in direction of the maximum margin classifier; that
is, the solution to the hard-margin SVM.

This can be understood by drawing an analogy to the linear (ridgeless) re-
gression on the pair (X,y) for X ∈ Rp×n, y ∈ Rn: in the under-parameterized
p < n regime there exists a unique solution β = (XXT)−1Xy which minimizes
the unregularized squared loss L(β) = ‖yT − βTX‖2 (when XXT ∈ Rp×p is
invertible); while for p > n there are infinitely many solutions, and by running
gradient descent (for almost all initializations) we obtain the minimal norm so-
lution given by the Moore–Penrose pseudo-inverse (XXT)+Xy = X(XTX)−1y
(when XTX ∈ Rn×n is invertible). In the linear regression case, having full rank
X ∈ Rp×n with p > n implies that there always exists β0 ∈ Rp that can “in-
terpolate” all the n training samples so that XTβ0 = y. Analogously, when the
training set is linearly separable, there also exists β0 such that sign(βT

0 xi) = yi
for i ∈ {1, . . . , n} which perfectly classifies all training samples. In this respect,
the hard-margin SVM solution is nothing more than the minimum-norm solution
(as per (6.23)) among all “interpolation” classifiers.

When the training set is not linearly separable, the “hard” constraints in
(6.23) are not attainable. By allowing residual small errors in the linear “sepa-
ration”, a “soft-margin” alternative can be introduced

arg min
β∈Rp, εi≥0

1

2
‖β‖2 +

γ

n

n∑
i=1

εi

s. t. yiβ
Txi ≥ 1− εi, i ∈ {1, . . . , n} (6.24)

for some regularization parameter γ > 0. This is equivalent to solving the
general empirical risk minimization problem in (6.1) with the hinge loss L(t) =
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max(0, 1− t), by introducing the variable εi = max(0, 1− yiβTxi) which is the
smallest nonnegative number satisfying yiβTxi ≥ 1− εi.

Solving the associated Lagrangian dual, Equation (6.24) can be further re-
duced to the following simplified optimization problem

max
ci

n∑
i=1

ci −
1

2n

n∑
i,j=1

cicjx̃
T
i x̃j

s. t.

n∑
i=1

ciyi = 0, 0 ≤ ci ≤ γ, i ∈ {1, . . . , n} (6.25)

where we use again the shortcut notation x̃i ≡ yixi and consider the symmetric
Gaussian mixture

C1 : xi ∼ N (−µ,C), yi = −1 versus C2 : xi ∼ N (+µ,C), yi = +1 (6.26)

with class prior probability equal to 1/2 as in the previous section. The hard-
margin solution, if it exists, can be retrieved by letting γ →∞. With the dual
variables ci, the SVM classifier β is given by

β =
1

n

n∑
i=1

cix̃i (6.27)

which is very reminiscent of (6.5) in the previous section, with the dependence of
ci on the β and all x̃i’s seemingly more involved. Yet, the core idea remains the
same: we need to “unwrap” this complex statistical dependence by introducing a
series of self-consistent nonlinear equations as in (6.11) in the previous section,
which eventually allows for the (asymptotic) statistical evaluation of β.

Specifically, from the Karush–Kuhn–Tucker (KKT) conditions of convex op-
timization theory [Boyd et al., 2004], the variable ci must satisfy the constraints: ci = 0, for βTx̃i > 1

0 < ci < γ, for βTx̃i = 1
ci = γ, for βTx̃i < 1

(6.28)

which, by (6.27), can be compactly (and extremely conveniently!) rewritten as

ci = f

(
1− 1

n

∑
j 6=i cjx̃

T
j x̃i

‖x̃i‖2/n

)
≡ f

(
1−αT

(i)x̃i

‖x̃i‖2/n

)
, α(i) =

1

n

n∑
j 6=i

cjx̃j (6.29)

for f(t) = max(0,min(t, γ)). Note importantly here that α(i) may be seen as a
(first) “leave-one-out” version of the solution β in the sense that

β = α(i) +
ci
n

x̃i (6.30)

with the contribution from a single datum cix̃i being of negligible impact to β
(as long as β is not projected on x̃i).
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Similar to the derivation in Section 6.1, we introduce a second (more conven-
tional) “leave-one-out” solution β−i by solving the optimization problem (6.24)
for all training data except xi. As a consequence, we have the parallel relations

β−i =
1

n

n∑
j 6=i

c−ij x̃j , c−ij = f

(
1− 1

n

∑
l 6=i,j c

−i
l x̃T

l x̃j

‖x̃j‖2/n

)
(6.31)

with c−ij the associated dual coefficients. Despite taking similar forms, α(i) and
β−i crucially differ from each other in the fact that α(i) does depend on xi
(through the coefficients cj), while β−i does not. Our objective is, again similar
to Section 6.1, to derive the (asymptotic) relation between the dual coefficient
c−ij and cj , as well as betweenα(i) and β−i (which should both be asymptotically
“close to” β).

We start by writing, for all j 6= i,

cj − c−ij = f

(
1− 1

n

∑
l 6=i,j clx̃

T
l x̃j − 1

ncix̃
T
i x̃j

‖x̃j‖2/n

)
− f

(
1− 1

n

∑
l 6=i,j c

−i
l x̃T

l x̃j

‖x̃j‖2/n

)
.

The function f not being differentiable, the difference can here not be Taylor
expanded. Instead, observe that, since f(t) = max(0,min(t, γ)), there exists
d ∈ [0, 1] such that, for t1, t2 ∈ R, we have f(t1)− f(t2) = d(t1 − t2). Denote in
particular dj ∈ [0, 1] the constant which satisfies6

cj − c−ij = dj

(
− 1
n

∑
l 6=i,j(cl − c

−i
l )x̃T

l x̃j − 1
ncix̃

T
i x̃j

‖x̃j‖2/n

)
≡ [∆c]j (6.32)

so that, for ∆c ∈ Rn−1 the column vector composed of the differences cj − c−ij
and D−i ∈ R(n−1)×(n−1) the diagonal matrix of all dj ’s, we have the (matrix
form) relation(

1

n
D−iX̃

T
−iX̃−i + diag

(
1

n
X̃T
−iX̃−i −

1

n
D−iX̃

T
−iX̃−i

))
∆c = −ci

n
D−iX̃

T
−ix̃i.

This then implies that

∆c = −ci
n

M−1
−i X̃

T
−ix̃i, M−i ≡

1

n
X̃T
−iX̃−i + diag

(
(D−1
−i − In−1)

1

n
X̃T
−iX̃−i

)
.

(6.33)
This thus provides an expression for the difference between α(i) and β−i:

α(i) − β−i =
1

n

∑
j 6=i

(cj − c−ij )x̃j =
1

n
X̃−i∆c = − ci

n2
X̃−iM

−1
−i X̃

T
−ix̃i (6.34)

6Here we observe a similar form as (6.6) in the previous section, the main difference being
that, due to the non-differentiability of the hinge loss, the statistics of the additional auxiliary
variables dj ’s will need to be determined.
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which again takes a similar form as (6.7) in the previous section. Projecting
against x̃i further gives

βTx̃i = αT
(i)x̃i +

ci
n
‖xi‖2 = βT

−ix̃i + ciδ̃i, ci = f

(
1− βT

−ix̃i

δ̃i

)
(6.35)

where we recall that f(t) = max(0,min(t, γ)) and where we defined

δ̃i ≡
1

n
x̃T
i

(
Ip −

1

n
X̃−iM

−1
−i X̃

T
−i

)
x̃i. (6.36)

As in (6.8) in the previous section, δ̃i is expected to “converge” to a deterministic
limit δ as n, p→∞ (by the trace lemma, Lemma 2.11). As a consequence, from
(6.35), the random variable ci is expected to behave as a nonlinear function of a
Gaussian random variable (depending on the data statistics µ,C and δ) in the
large n, p→∞ limit (since βT

−ix̃i is Gaussian conditioned on β−i, the norm of
which should converge to a limit). Nonetheless, the self-consistent equation of
δ must involve the statistics of the dj ’s which remain unknown for the moment.

To investigate the behavior of the dj ’s as well as that of δ, we proceed to a
careful Taylor expansion-type argument on the regions where f is differentiable
(which, in essence, is expected to contain the overwhelming majority of the
(1− βT

−ix̃i)/δ̃i coefficients). Specifically, for t ∈ R \ {0, γ},

f(t+ ε)− f(t) = f ′(t) · ε+O(ε2)

for f ′(t) = 1 for t ∈ (0, γ) and 0 otherwise. Therefore, by (6.32) we have that
dj is nonzero only when the associated c−ij lies in (0, γ).

With (6.36) we thus conclude that

δ̃i =
1

n
x̃T
i

(
Ip − X̃−i(X̃

T
−i,SX̃−i,S)−1X̃T

−i

)
x̃i (6.37)

where the columns of X̃−i,S are those x̃j ’s for which c−ij lies in (0, γ), and
δ̃i

a.s.−−→ δ for δ the unique solution to

δ =
1

n
tr C

(
Ip +

E[c · 1(0,γ)]

δ
C

)−1

, c ∼ f
(

1− r
δ

)
(6.38)

for r ∼ N (M,σ2) with

M = E[β]Tµ, σ2 = tr(CE[ββT]). (6.39)

This result is analogous to (6.9) and (6.13) from the previous section.
To close the loop, it remains, as in the previous section, to express the

statistics of β via (6.27) as a function of those of ci and µ,C. This leads to the
following result on the (asymptotic) statistical behavior of SVM, which may be
seen as an extension of Theorem 6.1 in the previous section to the setting of a
not-everywhere-differentiable loss function.
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Theorem 6.2 (Asymptotic behavior of β for SVM, Mai [2019, Theorem 5.3.1]).
For max{‖µ‖, ‖C‖, ‖C−1‖} = O(1) and β the unique solution to (6.24), we
have, as n, p→∞,

‖β − β̃‖ → 0,

(
Ip +

E[c · 1(0,γ)]

δ
C

)
β̃ ∼ N (E[c]µ,E[c2]C/n)

where c ∼ f((1 − r)/δ) for f(t) = max(0,min(t, γ)) and r ∼ N (M,σ2) for
(M,σ2) solution to

M = E[β̃]Tµ, σ2 = tr(CE[β̃β̃T]) (6.40)

with δ the unique positive solution to

δ =
1

n
tr C

(
Ip +

E[c · 1(0,γ)]

δ
C

)−1

.

One may wish to take the limit of γ →∞ in the above theorem to retrieve
the solution of the hard-margin SVM (which may indeed be seen as the limit of
the soft-margin SVM with an arbitrarily large constraint). However, attention
must be paid here since, as for logistic regression (recall Remark 6.1), a sharp
phase transition on the ratio p/n also occurs in the case of the hard-margin
SVM (which practically means that the exchange of the n, p→∞ and γ →∞
limits cannot always be performed). Kammoun and Alouini [2021] provide a
detailed discussion on this point.

Analogously to (6.17) and (6.18), the asymptotic test classification error rate
of SVM, for a new datum x̃, natural unfolds from the derivation steps

P(βTx̃ < 0)−Q(M/σ)→ 0 (6.41)

with Q(·) the Gaussian Q-function, and similarly for the asymptotic training
classification error

P(βTx̃i < 0)− P(r + cδ < 0)→ 0 (6.42)

for r ∼ N (M,σ2) and c ∼ f((1− r)/δ) defined in Theorem 6.2.

In this section, we provided the heuristic derivation of the asymptotic per-
formance of the soft-margin SVM classifier defined in (6.24) arising from the
minimization of the non-smooth hinge loss L(t) = max(0, 1− t), with a focus on
the similarities and differences from the large dimensional analysis of the logistic
regression in Section 6.1 where the loss is (at least) three-times differentiable.

The theoretical analyses in these two sections unveiled the surprising and
counterintuitive facts that, for large dimensions problems, classical empirical
risk minimization solutions may fail to exist (e.g., the maximum likelihood so-
lution discussed in Remark 6.1 or the hard-margin SVM), and if they exist, may
fail to meet the performance of the simple squared loss (see our discussions at the
end of Section 6.1.3 as well as in [Taheri et al., 2020c,a,b]). These results chal-
lenge the conventional wisdom from classical statistical learning theory where
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the data dimension p is considered negligibly small with respect to the sample
size n, in which case the maximum likelihood solution is believed to produce the
minimum regression error and the hinge loss is proved to be optimal in a classi-
fication context [Rosasco et al., 2004]. The theoretical analysis proposed in this
section, although performed on relatively simple statistical models, therefore
opens the door to a renewed understanding of machine learning basics, starting
with the long-proclaimed superiority of the SVM method, when dealing with
large (and even moderately large) dimensional data.

6.3 Concluding remarks
After covering the analysis of machine learning algorithms involving optimiza-
tion methods with explicit solutions (such as least squares regression or spectral
methods), this chapter pushed into the large dimensional analysis of algorithms
with solution expressed as the (in general unique) minimum of a convex op-
timization problem. Unlike in the explicit case where the structure of depen-
dence within the solution (such as between the entries of a least squares regres-
sor) more-or-less easily relates to a functional of the underlying random matrix
model, the main difficulty involved in the implicit case lies in a possibly very
intricate structure of dependence. The chapter proposed to “break” this de-
pendence by exploiting a “leave-one-out” approach, by which an arbitrary (large
dimensional) data vector is isolated from the training set to perturb the solution
in a well-controlled manner.

Other options in the large dimensional statistics literature exist which may
tackle the same problem in a different manner. Among these, we find

• the “double leave-one-out” approach adopted early on in [El Karoui et al.,
2013], in order to study the statistical behavior of a family of (robust)
M-estimators. This approach hinges on the intuition that, as both dimen-
sions n, p grow, the “leave-one-sample-out” approach, popular in asymp-
totic (large-n alone) statistics and upon which we based our derivations in
the present chapter, could be extended into a double “leave-one-sample-
out” and “leave-one-feature-out” approach. Specifically, having reached
step (6.11) in Section 6.1, in order to evaluate the statistics of β, the dou-
ble leave-one-out method would not decompose x̃i as in (6.12) but rather
extract an arbitrary entry j from each vector x̃i (and accordingly from β)
to understand the statistics of the entry [β]j . However, this approach is
only valid (or easily adaptable) when the [β]j ’s are statistically exchange-
able or linearly related, so essentially for “unstructured ” feature vectors
with no informative pattern. This is, in particular, not directly applicable
to data mixture models as simple as N (±µ,C) discussed at length in this
chapter;

• the convex Gaussian min-max theorem (CGMT), first introduced by Gor-
don [1985] and then largely popularized by Thrampoulidis et al. [2018].
The idea of the CGMT framework lies in the (opportunistic) exploitation
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of a result relating two “Gaussian” min-max optimization problems:

Φ(G) = min
v

max
u
{uTGv + ψ(v,u)} (6.43)

φ(g,h) = min
v

max
u

{
‖v‖ · gTu + ‖u‖ · hTv + ψ(v,u)

}
(6.44)

where G ∈ Rn×p, g ∈ Rn and h ∈ Rp are matrix and vectors composed
of i.i.d. N (0, 1) entries, and ψ : Rp × Rn → R is continuous and convex-
concave (convex in its first variable and concave in the second), and for
which it can be shown that, for any x, t ∈ R,

P(|Φ(G)− x| > t) ≤ 2P(|φ(g,h)− x| > t).

Evidently, the second optimization being simpler than the first (since it
decouples the bilinear form in u and v in almost linear forms in each
vector), if φ(g,h) concentrates around x as n, p→∞, then so does Φ(G).
To apply the CGMT inequality, one then needs to express the studied
optimization problem under a form Φ(G). While this may seem restrictive,
a large number of optimization schemes are indirectly consistent with the
Φ(G) expression (in particular, most of the nonlinear regression methods
studied in this chapter). A classical preliminary step to fall into the form
Φ(G) consists in introducing a slack variable u to enforce the constraints
of the problem at hand. For instance, in the hard-margin SVM setting,
one may rewrite (6.23) under the form

min
β

max
ui≤0

{
‖β‖2 +

1

n

n∑
i=1

ui(yiβ
Txi − 1)

}

= min
β

max
ui≤0

{
1

n
uTX̃Tβ + ‖β‖2 − 1

n
uT1n

}
for X̃ = [y1x1, . . . , ynxn] ∈ Rp×n and ui ≤ 0 for all i ∈ {1, . . . , n}. We
here indeed recognize the form uTGv of Φ(G) in the term 1

nuTX̃Tβ.
A thorough analysis of SVM and logistic regression under the CGMT
framework is performed in [Deng et al., 2021].
As such, the CGMT approach does not solve the “zero-gradient” equation
implied by the optimization problem (as preformed in the section), but
rather rewrites the optimization problem itself to make it simpler to solve
and analyze. Specifically, the major interest here is to “break” the bilinear
form uTGv in the primal optimization (6.43) into the sum of two “almost
linear” optimizations ‖v‖ ·gTu+‖u‖ ·hTv (when successively conditioned
on the norms of v and u) in (6.44). This interestingly “breaks” the random
matrix structure of the original problem, turning, for instance, the random
Gaussian matrix G into two random Gaussian vectors g and h. The
method however strongly relies on the CGMT inequality and thus requires
G to have strictly i.i.d. N (0, 1) entries. Any deviation from this setting
(for instance by adding correlation structures within G) may pose new
challenges to the CGMT framework;
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• the approximate message passing (AMP) and the state evolution tech-
niques [Donoho and Montanari, 2016]. Unlike the previous methods, AMP
proposes to directly solve the optimization problem by following the dy-
namics of an iterative fixed-point algorithm ultimately converging to the
sought-for solution. The method is reminiscent and indeed strongly re-
lated to the message passing (also known as belief propagation [Pearl,
1986]) approach from statistical physics, yet enjoys a mathematical sound
framework (unlike belief propagation). The AMP approach however re-
quires the introduction of many additional tools and would drive us too
far from our present topic.

Having in hand numerous tools to handle convex optimization problems in
machine learning, a natural next step would be to deal with non-convex opti-
mization problems. These problems are deemed hard to solve (and consequently
to study) due to the possible existence of multiple, even perhaps infinity many,
critical points which can all be candidate solutions of the problem. In practice,
initialization may play a crucial role in gradient-based learning and one may
wish to start the algorithm at a “good guess” starting point, sufficient close to
the expected (global) optimum. In this respect, random matrix analyses pro-
vide efficient spectral initialization schemes widely used in many non-convex
problems, such as phase retrieval [Fienup, 1982], matrix completion [Keshavan
et al., 2010], low-rank matrix recovery [Jain et al., 2013], blind deconvolution
[Lee et al., 2017], sparse coding [Arora et al., 2015], to name a few; a detailed
example on the problem of phase retrieval is developed as a practical course
exercise in the next section. Yet, many non-convex optimization problems need
to be confronted with directly, without resorting to first approximations. This
is the case notably of neural network training, and particularly in the large
dimensional setting of deep learning, as well as of other popular, yet still ill-
understood, machine learning methods such as stochastic neighborhood embed-
ding (SNE [Hinton and Roweis, 2003] or its popular t-SNE variant [Maaten and
Hinton, 2008]). For these challenging problems, the strong hope is that, while as
n, p → ∞, the number of critical points in these problems typically grows at a
fast (possibly exponential) rate, these critical points share numerous symmetries
and their associated performances (the “depth” of a given local minimum for in-
stance) often reduce to a few states. This is indeed one of the leading arguments
in favor of the observed very stable behavior of deep neural networks [Choro-
manska et al., 2015]: irrespective of the learning initialization point, gradient
descent learning in these highly non-convex optimization problems is expected
to converge to a local minimum with essentially the same performance level as
the vast majority of the local minima (which may, in some cases, yield compa-
rable performance as the global minimum). Choromanska et al. [2015] provides
tentative theoretical insights in this direction, yet possibly for an overly simpli-
fied version of a deep learning network (modeled as a mere Gaussian random
field), using the Kac-Rice formula (to assess the number of critical points of a
problem) in conjunction to random matrix arguments.
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6.4 Practical course material

In this section, a practical lecture on the popular non-convex phase retrieval
model related to the present Chapter 6 is discussed. Our focus here is on the
spectral initialization approach as a “first guess” of the signal vector to recover,
which can be used as the initialization of further gradient-based methods.

Practical Lecture Material 5 (Phase retrieval). The object of phase retrieval
is to recover an unknown (deterministic) signal a ∈ Rp (say with ‖a‖ = 1) from
magnitude measurements of the type yi = (aTxi)

2, for i.i.d. Gaussian sensing
vectors xi ∼ N (0, Ip), i ∈ {1, . . . , n}. One popular algorithm to solve this
problem is the so-called “Wirtinger Flow algorithm” [Candès et al., 2015] which
comes in two steps: (i) a careful initialization obtained by means of a spectral
method, and (ii) gradient descent updates to “fine-tune” this initial estimate on
a target cost function. Due to the non-convex nature of the underlying problem,
the initialization step (i) is of crucial significance for good performance. Candès
et al. [2015] proposed to use the dominant eigenvector of the sample covariance-
type matrix H = 1

n

∑n
i=1 yixix

T
i as a first estimate. The objective of this exercise

is to understand the relevance of this idea through the analysis of the spectral
properties of H.

To this end, first decompose (the columns of) X = [x1, . . . ,xn] ∈ Rp×n into
the sum of a component aligned to a and a component orthogonal to a, and
show that X can be expressed under the form X = aaTX+X⊥ with X⊥ = (Ip−
aaT)X ∈ Rp×n; confirm in particular that aTX⊥ = 0 and, more importantly,
that XTa = v ∈ Rn and X⊥ are jointly Gaussian and independent of each
other.

Based on the above decomposition, show, using Lemma 2.9, that the limiting
spectral measure of 1

nX⊥D(X⊥)T for diagonal D = diag{yi}ni=1, if it exists,
coincides with that of the original H = 1

nXDXT = 1
n

∑n
i=1 yixix

T
i .

With this decomposition in mind, and using similar steps as in the proof
of Theorem 2.6, determine the limiting spectrum of 1

nXDXT via its Stieltjes
transform. Show that it is asymptotically close to that of 1

n

∑n
i=1 τixix

T
i for

i.i.d. τi following a chi-square distribution with one degree of freedom which is
independent of xi. In other words, the dependence between yi = (xT

i a)2 and xi
does not “contribute” to the limiting spectral measure of 1

nXDXT.
Recalling that a chi-square distribution with one degree of freedom admits

the density

ν(dt) =
1√

2Γ(1/2)

e−
t
2

√
t
, t > 0 (6.45)

and has unbounded support, conclude, using the argument in Section 2.3.1, that
the support of limiting spectrum of H = 1

nXDXT is also unbounded and that it
will not be possible to have (an almost sure) isolated eigenvalue “jumping out”
in the large n, p limit.

As a workaround for this limitation, next consider the “truncated” model
1
nXf(D)XT = 1

n

∑n
i=1 f(yi)xix

T
i for some function f : R+ → R+ (applied
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entry-wise to the diagonal elements of D) which is of bounded image – for in-
stance f(t) = 1t≤τ for some (predefined) threshold τ > 0. This is indeed the
trimming strategy proposed in [Chen and Candès, 2017] which was shown to
play a crucial role in the success of the algorithm in the large n, p regime. Again
with the decomposition used above and Theorem 2.6, show that the resolvent
Q = ( 1

nX⊥f(D)(X⊥)T − zIp)−1 admits the following deterministic equivalents

Q↔ m(z)(Ip − aaT)− 1

z
aaT,

for (z,m(z)) the unique solution in Z(C \ R+) to

m(z) =

(
−z +

1

n
tr f(D)(In + cm(z)f(D))−1

)−1

or equivalently

m(z) =

(
−z +

∫
f(t)ν(dt)

1 + cm(z)f(t)

)−1

for ν the chi-square distribution with one degree of freedom (recall that ‖a‖ = 1
and E[x⊥(x⊥)T] = Ip − aaT) defined in (6.45). With the deterministic equiva-
lents derived above, following the proof of Theorem 2.13, solve det( 1

nXf(D)XT−
λIp) = 0 to find an (hypothetically) isolated spike λ and check that the associated
m(λ) then satisfies

− 1

m(λ)
+

∫
f(t)ν(dt)

1 + cf(t)m(λ)
=

∫
tf(t)ν(dt)

1 + cf(t)m(λ)
. (6.46)

Determine then µ, the limiting spectral support of 1
nX⊥f(D)(X⊥)T (and thus

of 1
nXf(D)XT), with the help of the functional inverse

x(m) = − 1

m
+

∫
f(t)ν(dt)

1 + cmf(t)

introduced in Section 2.3.1. Conclude on the (phase transition) condition for
the spike λ to exist, using the sign of the derivative x′(m∗), with m∗ the solution
to (6.46).

Denote the shortcut α ≡ − 1
cm , α∗ ≡ − 1

cm∗
and

x(m) = ψc (α) = α

(
c+

∫
f(t)ν(dt)

α− f(t)

)
as well as

φ(α) = α

∫
tf(t)ν(dt)

α− f(t)

so that (6.46) can be compactly rewritten as φ(α∗) = ψc(α∗).
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Check that, on the interval α ∈ (τ,∞) (recall that τ is the upper bound of
the truncation function f , i.e., f(·) ≤ τ), φ(α) is a non-increasing function and
ψc(α) is a convex function, attaining its unique minimum at ᾱ that satisfies

ψ′c(ᾱ) = 0⇔
∫

f2(t)ν(dt)

(ᾱ− f(t))2
= c.

Check that the phase transition condition on the sign of x′(m∗) derived above is
equivalent to {

φ(ᾱ) > ψc(ᾱ)⇔ ᾱ < α∗ and ψ′c(α∗) > 0;
φ(ᾱ) ≤ ψc(ᾱ)⇔ ᾱ ≥ α∗ and ψ′c(α∗) ≤ 0.

As a consequence, in pursuit of an optimal design for the truncation function
f(·) with maximum phase transition threshold c∗, it suffices to find f(·) such
that ∫

f2(t)ν(dt)

(ᾱ− f(t))2
= c,

∫
f(t)(t− 1)ν(dt)

ᾱ− f(t)
> c (6.47)

both hold for a maximal value of c. Using the Cauchy-Schwarz inequality, show
that we must then have

c2 ≤ 2c

with equality if and only if
∫ f2(t)ν(dt)

(ᾱ−f(t))2 =
∫

(t−1)2ν(dt). Deduce that the optimal
phase transition threshold is then c∗ = 2, in the sense that there is (almost
surely) no spike in the spectrum of 1

nXf(D)XT for all c > c∗ = 2. Conclude
then that the associated optimal truncation function is therefore given by

f(t) =
max(t, 0)− 1

max(t, 0) +
√

2/c− 1
(6.48)

for which f(t)
1−f(t) − (t − 1) → 0 as c → c∗ = 2. Confirm the theoretical findings

above numerically as in Figure 6.4.

We refer the interested readers to [Lu and Li, 2019] for the asymptotic behav-
ior of the associated isolated eigenvector and [Mondelli and Montanari, 2019]
for the complex sensing matrix case.
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Figure 6.4: Empirical alignment (aTû)2 for û the dominant eigenvector of
1
nXf(D)XT as a function of the ratio p/n, for different processing functions
f with p = 512 and a = [−1p/2, 1p/2]/

√
p. Results averaged over 50 runs. Link

to code: Matlab and Python.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/6.4/html/phase_retrieval.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/6.4/phase_retrieval.ipynb


Chapter 7

Community Detection on
Graphs

This chapter studies the problem of (unsupervised) community detection on
large random graphs, with a focus on the dense graph setting for both stochastic
block model and its degree-corrected variant. Discussion on sparse graphs are
made, however, via a stats-physics-inspired heuristic approach.

In the previous chapters, our attention has been long cast on numerous ap-
plications involving the sample covariance matrix of the type XXT/n ∈ Rp×p for
some random matrix X ∈ Rp×n following a certain statistical model, or involving
the quite related Gram matrix XTX/n ∈ Rn×n and kernel matrices f(XTX/n)
(with f applied here entry-wise). The starting point of the asymptotic analysis
of machine learning algorithms for most of these models is the Marc̆enko-Pastur
law (Theorem 2.4) and its various generalizations (e.g., Theorem 2.6).1

When it comes to studying the statistical behavior of randomly generated
graphs and networks, starting with the so-called Erdős-Rényi graph, which ran-
domly and independently draws links between each pair of nodes in the graph
according to a Bernoulli law, the related random matrix model will be instead a
Wigner matrix (for undirected graphs) and theoretical analyses will rely instead
on Wigner semicircle law (Theorem 2.5) and its variations (e.g., Theorem 2.9).

In this chapter, we will be particularly interested in the problem of com-
munity detection on large dimensional and dense undirected and unweighted
n-node graphs. By unweighted, we mean that when an edge exists between
node i and node j, its weight is set to 1, and a zero weight is affected otherwise.
By undirected, we mean that, if node i connects to node j, then node j connects
to node i, which in particular implies that the adjacency matrix A ∈ {0, 1}n×n
of the graph is symmetric (i.e., [A]ij = [A]ji). By dense graphs, we mean graphs
for which the typical number of neighbors of each node scales proportionally to

1Except the α-β (in Section 4.2.4) and the properly-scaled (in Section 4.3) kernels which
are linked to a “mixture” of the Marc̆enko-Pastur and semi-circular laws.

365
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the graph size n as n→∞. This will cover the main Section 7.1 of this chapter.
A few remarks on the more involved case of sparse graphs, for which each node
instead has O(1) neighbors, will be made in Section 7.2.

7.1 Community detection in dense graphs

7.1.1 The stochastic block model
Erdős-Rényi random graphs and the modularity matrix

The adjacency matrix. The most natural random undirected graph is the
Erdős-Rényi graph, defined by the fact that its adjacency matrix A ∈ {0, 1}n×n
is composed, up to symmetry ([A]ij = [A]ji) and to a null diagonal ([A]ii = 0),
of i.i.d. Bernoulli entries: for all i 6= j,

[A]ij = [A]ji ∼ Bern(p)

where p ∈ (0, 1). To ensure that the graph is dense, we demand that, for each
i,
∑
j Aij = O(n), which implies that p = O(1) with respect to n (so p can be

set constant irrespective of n). Note that, unlike in previous sections, p denotes
here the Bernoulli parameter rather than a vector dimension: no confusion is
possible in this section where the only large dimension is the size n of the graph
and no “data” are (at least explicitly) involved.

This setting implies that, for all i < j, the [A]ij ’s are independent with
E[Aij ] = p and Var[Aij ] = p(1−p). In particular, by the central limit theorem,
the degree di of node i, satisfies

di ≡
n∑
j=1

[A]ij = np+
√
p(1− p)n · (N (0, 1) + o(1)) .

and the average degree di/n converges almost surely to p.

Writing in matrix form

A = E[A] +
√
p(1− p)X− diag(·) = p(1n1T

n − In) +
√
p(1− p)(X− diag(X))

(7.1)
where X ∈ Rn×n has, up to symmetry, independent entries of zero mean and
unit variance and diag(X) is the diagonal matrix containing only the diagonal
entries of X, we find that

A√
n

=
p√
n

1n1T
n +

√
p(1− p)√

n
X +O‖·‖(n

− 1
2 )

is a rank-one perturbation of a rescaled Wigner matrix (where O‖·‖(·) is in
probability). Theorem 2.5 therefore applies and we have

• in the first order, 1
nA = p

n1n1T
n + O‖·‖(n

−1/2) is essentially a rank-one
matrix with eigen-direction 1n and eigenvalue p.

• the limiting spectral measure of 1√
n
A is a semicircle law scaled by

√
p(1− p),

so in particular supported on [−2
√
p(1− p), 2

√
p(1− p)].
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The modularity matrix. To avoid the technically problematic, and practi-
cally irrelevant, largely dominant p√

n
1n1T

n matrix in A, it is customary to rather
work with the modularity matrix

B =
1√
n

(
A− ddT

dT1n

)
introduced in [Newman, 2006], where d = [d1, . . . , dn]T = A1n is the degree
vector. The advantage of working with B versus A is that B1n = 0. This
eliminates the dominant contribution of the eigen-direction 1n in A. However,
as a negative side effect, the matrix A− ddT

dT1n
is the summation of two strongly

dependent random matrices. Our objective here is to decipher this dependence
and study the spectrum of B for n large.

First, the fact that d = A1n gives

d = pn1n +
√
p(1− p)X1n +O(1)

where O(1) is understood entry-wise, from which it follows that

dT1n = pn2 +O(n)

ddT = p2n21n1T
n + pn

√
p(1− p)(X1n1T

n + 1n1T
nX) +O‖·‖(n

2)

so that

1√
n

ddT

dT1n
= p

1n1T
n√
n

+
√
p(1− p)1n1T

nX + X1n1T
n

n
√
n

+O‖·‖(n
− 1

2 ).

Thus, we obtain

B√
p(1− p)

=
X√
n
− 1n1T

nX + X1n1T
n

n
√
n

+O‖·‖(n
− 1

2 ). (7.2)

As a consequence, the modularity matrix B may be asymptotically seen as
a rank-two perturbation of a random Wigner matrix X/

√
n. Solving det(B −

λIn) = 0 for λ /∈ [−2
√
p(1− p), 2

√
p(1− p)] (the support of the limiting spec-

tral measure of B) reveals that, perhaps rather surprising at first glance, there
asymptotically exists no solution. As such, as one would have expected (since
there exits no structure or community in B), all the eigenvalues of B are com-
pactly supported within the limiting semicircle support. A detailed derivation
will be provided in the next section for the more interesting stochastic block
model.

From Erdős-Rényi to the SBM

In order to account for the presence of communities of nodes in the graphs, we
introduce now the stochastic block model (SBM) by assuming the possibility for
the Bernoulli parameter of [A]ij to depend on the pair of nodes (i, j). Specif-
ically, letting C1, . . . , Ck be k communities of cardinalities na ≡ |Ca|, we define
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C ∈ Rk×k the matrix of Bernoulli parameters such that, if node i belongs to
class Ca and node j 6= i belongs to class Cb with a, b ∈ {1, . . . , k} (of course a
can be equal to b),

[A]ij = [A]ji ∼ Bern([C]ab).

We further consider that all classes are of “large size” in the sense that
na/n→ ca ∈ (0, 1) as n→∞.

As in the case of spectral clustering discussed in Chapter 4, in order to avoid
trivial scenarios in the large-n asymptotics, a careful control of the differences
between the elements of the matrix C is needed. As we shall see below, the
proper normalization turns out to be

[C]ab = p

(
1 +

[M]ab√
n

)
(7.3)

for M ∈ Rk×k a deterministic matrix, independent of n, and p ∈ (0, 1) as above,
also independent of n. That is, as n increases, communities with Bernoulli
parameter differences scaling as 1/

√
n can still be distinguished (with spectral

methods) in SBM.

Following the same analysis as above, it follows that

E[A] = p

(
1n1T

n +
1√
n

JMJT

)
(7.4)

where, as in the previous chapters, we defined J = [j1, . . . , jk] ∈ Rn×k with ja
the canonical vector of community Ca ([ja]i = δ[node i]∈Ca). Also,

Var[Aij ] = p

(
1 +

Mab√
n

)[
1− p

(
1 +

Mab√
n

)]
= p(1− p) +O(n−

1
2 ). (7.5)

As such, since J1k = 1n and thus 1n1T
n = J1k1

T
kJT, we can anticipate from

the previous section that, in the SBM setting, A/
√
np(1− p) is well approxi-

mated by a rank (at most) k perturbation of a random Wigner matrix X/
√
n

having i.i.d. entries of zero mean and unit variance. The perturbation matrix
has a largely dominant eigenvalue of order O(

√
n) and up to k − 1 isolated

eigenvalues outside the bulk of the limiting semicircular spectrum; here “up to”
translates the fact that, 1

nJMJT being of operator norm O(1) (the same order
as for X/

√
n), phase transition phenomena are bound to occur.

As for the modularity matrix B = 1√
n

(A− ddT

dT1n
), similar to the Erdős-Rényi

case, it will discard the dominant O(
√
n) eigenvalue-eigenvector pair, thereby

ensuring that ‖B‖ = O(1) and that the possibly isolated and bulk eigenvalues
of B are all comparable.

Performing the same analysis as in the Erdős-Rényi setting brings additional
terms which, after carefully discarding the terms of vanishing norms (as usual,
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special attention is demanded when taking the product of matrices or vectors
with different norms and different levels of dependence), gives the SBM version
of (7.2):

B√
p(1− p)

=
X√
n

+

√
p

1− p
JM◦JT

n
− 1n1T

nX + X1n1T
n

n
√
n

+O‖·‖(n
− 1

2 ) (7.6)

where we defined
M◦ = (Ik − 1kc

T)M(Ik − c1T
k ) (7.7)

with c = [n1

n , . . . ,
nk
n ]T ∈ Rk the community size ratios. The matrix M◦ is a

“centered” version of M accounting for the community sizes in the sense that
M◦c = 0, i.e., for all a,

∑k
b=1 nb[M

◦]ab = 0.2

Consequently, B is again (up to scaling) the sum of a symmetric random
matrix X with zero mean unit variance entries and of a perturbation matrix
of rank up to k (since 1n is in the span of the columns of J). Clearly, in
expectation,

E [B] = p
JM◦JT

n
+O‖·‖(n

− 1
2 )

so that the dominant eigenvectors of B are, as one would expect, linear com-
binations of the community structure vectors j1, . . . , jk, weighted here by the
entries of M◦. The additional random fluctuations being due to the matrices X
and 1n1T

nX+X1n1T
n, which are “isotropic” with respect to the class structures,

they should not taint the expected (noisy plateaus) shape of the eigenvectors
of B and thus not affect the quality of a k-means or expectation-maximization
(EM) clustering of the informative eigenvectors of B. We will see in the next
section that this important remark no longer holds for stochastic block models
with heterogeneous degrees.

Pursuing our derivation, to stress the presence of a rank-k perturbation, note
that B can be compactly rewritten as

B√
p(1− p)

=
X√
n

+
[

J√
n

X1n
n

] [√ p
1−pM◦ −1k

−1T
k 0

][
JT
√
n

1T
nXT

n

]
+O‖·‖(n

− 1
2 ) (7.8)

where we used the fact that J1k = 1n.
Again, as in the kernel matrix case in Section 4.2, note that B is here a

rank-k perturbation of X which, due to the presence of the vector X1n, is not
independent of X (although, as we will see subsequently, the term X1n will
have asymptotically no effect on the limiting spectral properties of B).

2It is interesting to note that, similar to the effect of the centering matrix P = In− 1
n

1n1T
n

applied left and right on kernel matrices K or directly applied right on the data matrix
X ∈ Rp×n, the modularity rank-one component ddT/(dT1n) centers the information statistics
(here M) of the random graph model.
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Studying the (limiting) location of the (possibly) isolated eigenvalues of
B/
√
p(1− p) thus consists in solving, for λ > 2 (i.e., beyond the right edge

of the limiting semicircle support of the eigenvalues of X/
√
n),

det

(
X√
n
− λIn +

[
J√
n

X1n
n

] [√ p
1−pM◦ −1k

−1T
k 0

][
JT
√
n

1T
nXT

n

])
= 0

⇔det Q−1 · det

(
In + Q

[
J√
n

X1n
n

] [√ p
1−pM◦ −1k

−1T
k 0

][
JT
√
n

1T
nXT

n

])
= 0

⇔det

(
Ik+1 +

[
JT
√
n

1T
nXT

n

]
Q
[

J√
n

X1n
n

] [√ p
1−pM◦ −1k

−1T
k 0

])
= 0

where we introduced the resolvent Q = Q(λ) = ( X√
n
−λIn)−1 and used the fact

that det Q−1 6= 0 in the second line.
From the deterministic equivalent Q↔ m(λ)In in Theorem 2.5, where m(λ)

is here the unique negative solution to m2(λ) + λm(λ) + 1 = 0, we find that[
JT
√
n

1T
nXT

n

]
Q
[

J√
n

X1n
n

]
=

[
m(λ)Dc (1 + λm(λ))c

(1 + λm(λ))cT λ(1 + λm(λ))

]
+ o‖·‖(1)

(almost surely) where Dc = diag(c) and the approximation 1
n2 1T

nXTQX1n fol-
lows from a repeated use of the relation QX/

√
n = In + λQ and of the above

deterministic equivalent. This gives the following (asymptotically) determinan-
tal equation

det

([
Ik +m(λ)

√
p

1−pDcM
◦ − (1 + λm(λ))c1T

k −m(λ)c

−λ(1 + λm(λ))1T
k −λm(λ)

])
= 0 (7.9)

which, using the block-determinant relation det( A u
vT w

) = det(A − 1
wuvT), is

simply

det

(
Ik +m(λ)

√
p

1− p
DcM

◦
)

= det

(
Ik +m(λ)

√
p

1− p
D√cM

◦D√c

)
= 0

where we denote
√

c = (
√

n1

n , . . . ,
√

nk
n )T. The “automatic” cancellation of the

term proportional to c1T
k indeed stresses the asymptotic “inaction” of the vector

X1n in (7.6) on the informative (for community detection purpose) eigenvalues
of B.

This leads to the following result on isolated eigenvalues.

Theorem 7.1 (Isolated eigenvalues in the SBM, Ali and Couillet [2018]). Under
the setting of (7.3) and na/n → ca ∈ (0, 1), for each eigenvalue ` of DcM

◦

satisfying

|`| >
√

1− p
p
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there exists an associated eigenvalue λ̂` of 1√
p(1−p)

B such that, for all large n

almost surely, |λ̂`| > 2 and

λ̂` → λ` = m−1

(
−
√

1− p
p

1

`

)
=

p`+ 1−p
`√

p(1− p)

for m−1(·) : (−1, 0)→ (2,∞), t 7→ (−1− t2)/t the local inverse of m(·).

Again, here as in the case of spectral clustering in Section 4.4.1, isolated
eigenvalues (λ̂`) of B are associated with eigenvectors (û`) aligned to the infor-
mative linear combination of the class vectors j1, . . . , jk.

To assess the (limiting) projection of these eigenvectors û` of B/
√
p(1− p)

on each (normalized) direction j1, . . . , jk, we may next evaluate

1

n
D
− 1

2
c JTû`û

T
` JD

− 1
2

c = − 1

2πı

∮
Γ`

1

n
D
− 1

2
c JT

(
B√

p(1− p)
− zIn

)−1

JD
− 1

2
c dz

(7.10)
where 1

nJD−1
c JT is a projector on the subspace spanned by j1, . . . , jk

3 and Γ` a
fixed complex contour circling around the isolated eigenvalue λ̂` of B only (for
all large n). Similar to the determination of the limiting location of the isolated
eigenvalues, by isolating X/

√
n− zIn from B/

√
p(1− p)− zIn with the matrix

inversion lemmas, Lemma 2.7 and 2.5, we obtain

1

n
D
− 1

2
c JTû`û

T
` JD

− 1
2

c = − 1

2πı

∮
Γ`

m(z)

(
Ik +

√
pm(z)D√cM

◦D√c√
1− p

)−1

dz + o‖·‖(1).

To obtain this result, note from (7.8) that the desired matrix 1
nJT(B/

√
p(1− p)−

zIn)−1J is the (1, 1) block of[
JT
√
n

1T
nXT

n

](
B√

p(1− p)
− zIn

)−1 [
J√
n

X1n
n

]

=

(
Ik+1 +

[
JT
√
n

1T
nXT

n

]
Q
[

J√
n

X1n
n

] [√ p
1−pM◦ −1k

−1T
k 0

])−1 [
JT
√
n

1T
nXT

n

]
Q
[

J√
n

X1n
n

]
+ o‖·‖(1)

where we recall that Q = Q(λ) = ( X√
n
− λIn)−1. Again with the deterministic

equivalent result Q↔ m(λ)In in Theorem 2.5, we deduce

1

n
D
− 1

2
c JTû`û

T
` JD

− 1
2

c

= − 1

2πı

∮
Γ`

m(z)

(
Ik +

√
pm(z)D√cM

◦D√c√
1− p

)−1 (
Ik −

√
c
√

c
T
)
dz + o‖·‖(1)

3The diagonal matrix D−1
c does nothing more than weighting the 1

n
jajTa by the factor 1/ca.
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where we neglected all terms leading to a vanishing residue in the large n limit.
Since M◦D√c

√
c = M◦c = 0, it follows after development that the term (Ik +

√
pm(z)D√cM

◦D√c/
√

1− p)−1
√

c
√

c
T will not have a residue in Γ`, so that

(Ik −
√

c
√

c
T

) above can be replaced by Ik.
Completing the residue calculus leads to the existence of a unique pole (of

order 1) with associated residue given by

1

n
D
− 1

2
c JTû`û

T
` JD

− 1
2

c = lim
z→λ`

(λ` − z)m(z)

(
Ik +

√
pm(z)D√cM

◦D√c√
1− p

)−1

+ o‖·‖(1)

=
−m(λ`)√
p

1−p`m
′(λ`)

u`u
T
` + o‖·‖(1)

where u` is the eigenvector of D√cM
◦D√c associated with eigenvalue `.

Recalling from Theorem 7.1 that λ` is solution to 1+
√
p/(1− p)`m(λ`) = 0

and that m2(z) + zm(z) = −1 (which we can differentiate along z), this can be
further simplified as

1

n
D
− 1

2
c JTû`û

T
` JD

− 1
2

c = (1−m2(λ`))u`u
T
` +o‖·‖(1) =

(
1− 1− p

p`2

)
u`u

T
` +o‖·‖(1).

These two alternative formulas have nice interpretations: outside the support
of the semicircle law, λ 7→ 1 −m2(λ) is positive, increasing, and maps (2,∞)
onto (0, 1). In particular, the alignment of û` onto the subspace spanned by
j1, . . . , jk is given by 1

n‖D
− 1

2
c JTû`‖2 = 1−m2(λ`)+o(1). Equivalently, recalling

from Theorem 7.1 that one needs |`| >
√

(1− p)/p to have isolated eigenvalues,
as |`| increases in (

√
(1− p)/p,∞), the alignment increases to 1 at a rate 1/`2.

This is summarized in the following result.

Theorem 7.2 (Eigenvector alignment in the SBM). Under the setting and no-
tations of Theorem 7.1, if |`| >

√
(1− p)/p for (`,u`) an eigenvalue-eigenvector

pair of D√cM
◦D√c, then the eigenvalue-eigenvector pair (λ`, û`) of B satisfies

1

n
D
− 1

2
c JTû`û

T
` JD

− 1
2

c = (1−m(λ`)
2)u`u

T
` + o‖·‖(1) =

(
1− 1− p

p`2

)
u`u

T
` + o‖·‖(1),

as n→∞, almost surely.

Case study: 2-class symmetric SBM

Let us discuss the consequences of the results in Theorem 7.1 and 7.2 on the
case of the two-class symmetric SBM. In this setting, we define the connection
probability matrix C in (7.3) as

C =

[
pin pout

pout pin

]
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for some pin, pout ∈ (0, 1) the inner-class and outer-class connection probabilities.
We also set the class cardinalities as c = [1/2, 1/2]T. By an exchangeability
argument, the statistics of the eigenvectors of B are, in this case, symmetric
and thus more expressive.

In the context of the previous section, this choice implies that

p = pout, M =
√
n · pin − pout

pout
I2 (7.11)

which indicates that pin must depend on n and scale as pout + O(n−
1
2 ) for M

to remain of bounded norm as n→∞.4 As a consequence,

D√cM
◦D√c =

√
n(pin − pout)

pout

1

2

(
I2 −

1

2
121

T
2

)
(7.12)

which has a unique nonzero eigenvalue, equal to

` =

√
n(pin − pout)

2pout

and with associated eigenvector (up to its indefinite sign)

u` =
1√
2

[
1
−1

]
.

It follows from Theorem 7.1 that the community detectability phase transi-
tion occurs under the condition

|pin − pout| >
2
√
pout(1− pout)√

n
. (7.13)

The isolated eigenvalue λ̂` of 1√
pout(1−pout)

B thus satisfies λ̂`
a.s.−−→ λ` with λ`

defined via its Stieltjes transform as

m(λ`) = −
2
√
pout(1− pout)√
n(pin − pout)

or equivalently, using m(·)−1(t) = (−1− t2)/t,

λ` =

√
n(pin − pout)

2
√
pout(1− pout)

+
2
√
pout(1− pout)√
n(pin − pout)

.

Consequently, the (asymptotic) projection of the associated eigenvector û` onto
j1, j2 is given by

2

n

[
j1 j2

]T
û`û

T
`

[
j1 j2

]
=

1

2

(
1− 4pout(1− pout)

n(pin − pout)2

)[
1 −1
−1 1

]
+ o(1).

4Of course, the (symmetric) choice p = pin and M =
√
n(pout−pin)/pinI2 is equally valid.
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By exchangeability and symmetry, these results also give access to the mean
and variance of every entry [û`]i of the eigenvector û`. Specifically, set, without
loss of generality, that j1 = [1n/2, 0n/2]T, we have

2

n
(jT1 û`)

2 =
n

2

 1

n/2

n/2∑
i=1

[û`]i

2

which provides access to the empirical average value of the entries [û`]i that are
identically distributed on i = 1, . . . , n/2 and on i = n/2 + 1, . . . , n, respectively.
Also

2

n
(jT1 û`)(j

T
2 û`) =

n

2

 1

n/2

n/2∑
i=1

[û`]i

 1

n/2

n∑
i=n/2+1

[û`]i


gives access to the (empirical) correlation between the first n/2 and last n/2
elements of û`. We thus find

E[û`]i =


√

1
n

(
1− 4pout(1−pout)

n(pin−pout)2

)
+ o(1), 1 ≤ i ≤ n

2

−
√

1
n

(
1− 4pout(1−pout)

n(pin−pout)2

)
+ o(1), n

2 + 1 ≤ i ≤ n

Var[û`]i =
4pout(1− pout)

n2(pin − pout)2
+ o(1)

where the result on the expectation is valid up to sign (since eigenvectors are
defined up to a sign) and the result on the variance exploits the constraint∑n
i=1[û`]

2
i = 1. These results fully exploit the symmetry of the problem (of

both the structure of C in the symmetric SBM setting and the equal class
cardinalities) and are far less trivial in more generic settings.

It can further be shown that the fluctuations of [û`]i are asymptotically
Gaussian and independent across i – see Remark 7.1 below – (this holds only
asymptotically since the constraint ‖û`‖ = 1 creates a finite-dimensional depen-
dence); the above results on the expectation and variance thus immediately lead
to the (asymptotic) classification error based on û`. Letting Ĉi = sign([û`]i) be
the estimate of the underlying community Ci of the node i, with the sign con-
vention [û`]1 ≥ 0, the classification error rate satisfies

1

n

n∑
i=1

δĈi 6=Ci −Q

(√
n(pin − pout)2

4pout(1− pout)
− 1

)
a.s.−−→ 0 (7.14)

for Q(t) = 1√
2π

∫∞
t
e−

u2

2 du the Gaussian Q function. Note in particular that
this classification error is of (non-trivial) order O(1) (i.e., it does not scale with
the dimension n) since n(pin − pout)

2 = O(1) under (7.11).
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Remark 7.1 (On the asymptotic Gaussianity of the error rate). It is interesting
to realize that the asymptotic Gaussianity of the misclassification probability,
despite depending on all the entries of û`, only requires to prove the asymptotic
two-dimensional Gaussianity of any pair ([û`]i, [û`]j) of the entries of û`. It
suffices indeed to proceed as follows:

1. Pairwise Gaussianity using the resolvent. As usual, we first seek to
express the quantities of interest (here the i-th entry [û`]i of eigenvector
û`) as a function of the resolvent Q(z) = (X/

√
n − zIn)−1. We start by

writing

1√
pout(1− pout)

Bû` = λ̂`û`

which, with (7.6) and basic algebraic manipulations, leads to

√
n[û`]i = −

√
pout

1− pout

(√
neT

i Q(λ̂`)
J√
n

)(
M◦ JT

√
n

û`

)
+ o(1)

with [ei]j = δij the canonical basis vector of Rn. The rightmost parenthe-
ses term converges to known limits (from standard eigenvector alignment
results, e.g., Theorem 2.14), while the first parentheses term remains “fluc-
tuating”. Using central limit arguments for random matrices (either based
on a martingale difference approach as in [Bai and Silverstein, 2010] or
a Gaussian integration-by-parts technique as in [Pastur and Shcherbina,
2011]; see Section 2.6.3 for more discussions), it can be further shown that
the vector [

√
n[û`]i,

√
n[û`]j ]

T has a two-dimensional Gaussian limit.

2. From there, the misclassification rate in the left-hand side of (7.14) cor-
responds to

S ≡ 1

n

n∑
i=1

δĈi 6=Ci =
1

n

∑
i≤n/2

δ√n[û`]i<0 +
1

n

∑
j>n/2

δ√n[û`]j>0.

Writing S = E[S]+S−E[S], by exchangeability we have from the previous
item that E[S] = P(

√
n[û`]1 < 0) for

√
n[û`]1 having a known Gaussian

limit derived above, while the fluctuation P(|S − E[S]| > t) ≤ Var[S]/t2

which exclusively depends on E[n[û`]i[û`]j ] for any pair (i, j), is bound to
vanish. This completes the proof of (7.14) without having to resort to any
further (higher-order) joint statistics of the entries of û`.

Figure 7.1 depicts the probability of correct classification for a 2-class SBM
under the present symmetric setting. The asymptotic predictions in (7.14)
closely match the empirical performance, with a slight mismatch for small n
around the phase transition (around 1 in the x-axis). Indeed, the limiting dis-
continuity can hardly be observed in finite (especially small) dimensions, as a
typical example where the convergence to random matrix asymptotics tends to
be slow, as in the case of Figure 2.12 in Section 2.5 for standard spiked models.
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Figure 7.1: Classification accuracy for a 2-class SBM with n1 = n2, as a function
of pin − pout with pout = 0.4. Simulations averaged over 100 realizations. Link
to code: Matlab and Python.

The limiting results derived in this section for SBM are quite simple and
have the advantage of being in closed form. The SBM setting is however quite
unrealistic in the sense that the average degree of each node is constant (con-
verging to p), which does not translate the heterogeneity of node connectivity in
real graphs and, as a result, cannot provide a typical “power-law” scaling of the
degrees, that is of more practical interest for real-world graph problems [Adamic
and Glance, 2005, Borgs et al., 2019].

The next section brings the present analysis into more realistic graph mod-
els by considering a degree-corrected SBM (DC-SBM, Coja-Oghlan and Lanka
[2010], Karrer and Newman [2011]) which takes into account the degree het-
erogeneity. This has several non-trivial consequences on: (i) the “shape” of the
limiting eigenvalue distribution of B (which is no longer a scaled semicircle in
general), (ii) the resulting phase transition condition, and (iii) the “content” of
the dominant eigenvectors which do not straightforwardly lead to the classes
as in the SBM case (but are “tainted” by the degree distribution). The ex-
pressions to characterize these limiting behaviors are less simple but provide
a sufficiently clear account of the (mis-)behavior of spectral-based community
detection methods to envision several directions for improvement.

7.1.2 The degree-corrected stochastic block model

In this section, we generalize the stochastic block model by allowing, in addition
to the existence of communities (compared to), different “intrinsic” degrees for
the nodes in the graph. This better translates the nature of real-world graphs

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/7.1/html/SBM.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/7.1/SBM.ipynb
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in which nodes possibly have very heterogeneous degrees.
Precisely, we demand here that

[A]ij = [A]ji ∼ Bern(qiqj [C]ab)

for qi > 0 some weight factor accounting for the connectivity of node i and
Ca, Cb ∈ {1, . . . , k} the communities of node i and j, respectively. Similar to
before, we assume the cardinality na = |Ca| of class Ca to be of the same order
as n so that na/n → ca ∈ (0, 1). For the moment, we consider the qi’s to be
deterministic, but we will soon take them random i.i.d., yet independent of the
Bernoulli realization.

As in the SBM case in (7.3), we also consider the following non-trivial clus-
tering setting

[C]ab = 1 +
[M]ab√

n
(7.15)

where, as opposed to the SBM scenario, the parameter p is no longer necessary.
A first important remark is that, similar to (7.4) for SBM, we have in this

configuration,

E[A] = Dq

(
1n1T

n +
1√
n

JMJT

)
Dq (7.16)

where q = [q1, . . . , qn]T ∈ Rn denotes the connectivity vector and Dq = diag(q).
In particular, observe that the eigenvectors of E[A] are no longer linear combi-
nations of j1, . . . , jk (as in the SBM setting) but are “deformed” by the (usually
unknown) weights q1, . . . , qn. Compensating for this “eigenvector deformation”
is not completely obvious and will be one of the major technical points of interest
in this section.

As for the variance of the elements of A, similar to the SBM setting in (7.5),
we find that

Var[Aij ] = qiqj(1− qiqj) +O(n−
1
2 )

which does not depend on the communities of nodes i and j.
As such, up to a low-rank perturbation, A is a matrix with independent

entries of zero mean and variance qiqj(1 − qiqj). Consequently, the limiting
spectral measure of 1√

n
A, as well as of its rank-one perturbation B = 1√

n
(A−

ddT

dT1n
), is that of a deformed Wigner matrix with variance profile characterized

in Theorem 2.9.
It is instructive to first analyze the (limiting) spectrum of B. From Theo-

rem 2.9 in which we set σ2
ij = qiqj(1− qiqj), we find that the Stieltjes transform

of the eigenvalue distribution of B satisfies

1

n
tr(B− zIn)−1 − 1

n
tr(diag(g)− zIn)−1 a.s.−−→ 0
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with g = [g1, . . . , gn]T such that

gi = − 1

n

n∑
j=1

qiqj − q2
i q

2
j

−z + gj
= −qi

1

n

n∑
j=1

qj
−z + gj

+ q2
i

1

n

n∑
j=1

q2
j

−z + gj

≡ −qig10 + q2
i g20

where we introduced g10 and g20 the solutions to

g10 =
1

n

n∑
i=1

qi
−z − qig10 + q2

i g20
, g20 =

1

n

n∑
i=1

q2
i

−z − qig10 + q2
i g20

. (7.17)

Thus,

1

n
tr(B− zIn)−1 − 1

n
tr(−g10Dq + g20Dq2 − zIn)−1 a.s.−−→ 0

where q2 = [q2
1 , . . . , q

2
n]T and g10, g20 are defined in (7.17).

−1 0 1 2 3

2 spikes

−1 −0.5 0 0.5 1

1 spike

Figure 7.2: Two graphs generated from DCSBM with k = 3 communities, n =
3 000, c1 = 0.1, c2 = 0.3, c3 = 0.6, qi’s drawn i.i.d. from the measure 1

2δq(1) +
1
2δq(2) with affinity matrix M. (Left): q(1) = 0.8, q(2) = 0.9 and M = 10 · I3;
(Right): q(1) = 0.1, q(2) = 0.9 and M = 5 · I3. Eigenvalue distribution (top)
and two dominant eigenvectors of B (bottom). Link to code: Matlab and
Python.

As shown in Figure 7.2, unlike in the case of SBM, the spectrum of B in
the DCSBM setting can be more spread out than a semicircle when the qi’s
are independently drawn from a bimodal law. As a consequence, it is expected

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/7.1/html/DCSBM.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/7.1/DCSBM.ipynb
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that phase transitions for the appearance of isolated eigenvalues due to the pres-
ence of communities will occur more or less easily depending on this eigenvalue
spreading. Here in Figure 7.2, depending on M, either two isolated eigenvalues
or only one are found in the spectrum of B (with corresponding eigenvectors
displaying more or less informative structure).

An intuitive way to reduce this spread is to pre-process the matrix B in such
a way that its spectrum is “as close as possible” to a semicircle. For not-too-large
qi, qiqj(1− qiqj) ' qiqj , and at the same time di/

√
dT1n ' qi (see Lemma 7.1

below), so an idea is to pre- and post-multiply B by D−1 for D = diag{di}ni=1

containing the node degrees, as proposed in [Coja-Oghlan and Lanka, 2010,
Gulikers et al., 2017].

However, while affecting positively the spread of the spectrum of B, such
“normalization” also has a non-trivial effect on isolated eigenvalues and, as
we will see next, may be deleterious. An improved strategy consists in pre-
and post-multiplying B by D−α for some wisely chosen hyperparameter α and
then multiplying the retrieved eigenvectors by Dα−1 (see below why). We will
hereafter denote

Lα ≡
(dT1n)α√

n
D−α

(
A− ddT

dT1n

)
D−α (7.18)

for which the normalization by (dT1n)α will appear later to be the natural one.
This strategy in particular allows one to retrieve, for α = 0 the modularity
matrix B, for α = 1/2 the normalized Laplacian matrix [Qin and Rohe, 2013,
Chung, 1996]

L 1
2

=

√
dT1n
n

D−
1
2

(
A− ddT

dT1n

)
D−

1
2

and for α = 1 the bi-lateral random walk Laplacian matrix [Coja-Oghlan and
Lanka, 2010, Gulikers et al., 2017]

L1 =
dT1n√
n

(
D−1AD−1 − 1n1T

n

dT1n

)
.

In a similar manner as in the previous decomposition of A and B for the
Erdős-Rényi and SBM cases, it can be shown (see details in [Ali and Couillet,
2018]) that, in the large n regime,

Lα =
1√
n

D−αq XD−αq +
[
D1−α

q
J√
n

D−αq X1n
qT1n

] [M◦ −1k
−1T

k 0

] JT
√
n
D1−α

q

1T
nXD−αq

qT1n

+ o‖·‖(1)

where we recall that M◦ = (Ik − 1kc
T)M(Ik − c1T

k ).
We immediately see from this expression that, in the high SNR regime (i.e.,

when the nonzero eigenvalues of the informative M◦ dominate those of random
X), the dominant eigenvectors of Lα are aligned to the linear combination of the
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vectors D1−α
q ja for a = 1, . . . , k. To retrieve the sought ja’s, it is thus necessary

to post-process the obtained eigenvectors of Lα by Dα−1
q which, in the absence

of a perfect knowledge of the vector q, can be performed empirically by post-
processing the eigenvectors by Dα−1 instead (see again Lemma 7.1 below).

The resulting algorithm for spectral-based community detection under real-
istic heterogeneous degree graphs is thus summarized as follows:

1. select a scalar α ∈ R;

2. identify isolated eigenvalues in the spectrum of Lα defined in (7.18) and
extract the corresponding eigenvectors, say V = [v1, . . . ,vm] ∈ Rn×m,
where m < k;

3. perform a k-class k-means (or expectation-maximization) clustering based
on the m-dimensional row vectors of the matrix Dα−1V ∈ Rn×m (and not
on V itself!).

By an asymptotic analysis similar to the SBM case (see [Ali and Couillet,
2018] for details) as in the previous section, this method is granted to outperform
standard spectral clustering approaches. Yet, it remains to properly identify
an appropriate value for α. An idea would be to select the value α which
maximizes the asymptotic classification performance as n → ∞: however, this
choice strongly depends on M which is of course unknown (and cannot be
estimated without performing any sort of clustering in the first place).

Instead, we may choose α to be the value for which the “worse case de-
tectability” is achieved (in the same vein as in Practical Lecture 5). That is, for
each α, there exists a smallest value of ‖M◦‖ for which community detection
performs asymptotically better than random guess. We thus decide to choose
the value of α such that, under the constraint that community detection remains
doable, ‖M◦‖ is the smallest possible. This does not require any information
on the actual M◦.

To identify this “optimal” value of α, it suffices to evaluate the limiting
spectrum of Lα and the condition under which (informative) isolated eigenvalues
appear (by solving det(Lα − λIn) = 0 as in the SBM case). The result is
summarized as follows.

Theorem 7.3 (Limiting spectrum and isolated eigenvalues for Lα, Ali and
Couillet [2018]). For α ∈ R, as n → ∞, the empirical spectrum measure µL of
Lα satisfies µL−µα

a.s.−−→ 0 weakly, where µα is defined by its Stieltjes transform
mµα(z) as

mµα(z) =
1

n

n∑
i=1

1

−z − gα(z)q1−2α
i + g̃α(z)q2−2α

i
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with (gα(z), g̃α(z)) the unique Stieltjes transforms solution to

gα(z) =
1

n

n∑
i=1

q1−2α
i

−z − gα(z)q1−2α
i + g̃α(z)q2−2α

i

,

g̃α(z) =
1

n

n∑
i=1

q2−2α
i

−z − gα(z)q1−2α
i + g̃α(z)q2−2α

i

.

The limiting spectrum µα is continuous and of compact symmetric support
[−Sα, Sα]. Moreover, if there exists an eigenvalue ` of D√cM

◦D√c such that

|`| > τα ≡ − lim
x↓Sα

1

g̃α(x)

then there exists a corresponding isolated eigenvalue λ̂` of Lα satisfies λ̂` −
λ`

a.s.−−→ 0 with

λ` = g̃−1
α

(
−1

`

)
.

In particular, taking α = 0 in the fixed-equation above we obtain the results
in (7.17) as a special case.

When compared to the SBM setting in Theorem 7.1, the main difference
is that the Stieltjes transform mµα and its inverse do not assume closed-form
formulas.

The optimal value for α discussed above is thus defined as

α∗ ∈ arg min
α∈R

τα

where we used an inclusion (rather than equality) sign in case the minimum is
not unique (which is for instance the case in the SBM setting where all qi’s are
equal). With this definition, α∗ is indeed the smallest possible phase transition
value which ensures, in the worst case, the existence of isolated eigenvalues, as
desired.

From a practical standpoint, of course, since the qi’s are unknown, it is not
possible to identify α∗ in a precise manner. Yet, as claimed several times above,
it can be shown that di/

√
dT1n

a.s.−−→ qi uniformly over i. More specifically, we
have the following result.

Lemma 7.1. Under the setting of (7.15), assume that 0 < lim infn min1≤i≤n{qi} ≤
lim supn max1≤i≤n{qi} < 1. Then as n→∞

max
1≤i≤n

∣∣∣∣∣ di√
dT1n

− qi

∣∣∣∣∣ a.s.−−→ 0.

It is important to understand here that the condition [C]ab = 1 + [M]ab/
√
n

in (7.15) and thus [C]ab − [C]a′b′ = O(1/
√
n), plays a fundamental role in the
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above estimate: di is, up to scaling, a consistent estimate of qi, irrespective
of the class affinities of node i because the difference between the affinities is
asymptotically negligible. Note also that the condition for all qi’s to be bounded
away from zero, which ensures that the graph is nowhere sparse, is somewhat
limited when applied to realistic graph models (typically having power laws for
their degrees [Adamic and Glance, 2005, Borgs et al., 2019]), but is theoretically
necessary here.

With Lemma 7.1, one is then able to estimate the desired τα (in pursuit
of the optimal α∗) by substituting the qi’s in Theorem 7.3 with the estimate
q̂i = di/

√
dT1n. The last difficulty consists in estimating the right edge Sα of

the support so as to assess the quantity limx↓Sα 1/g̃α(x). This is unfortunately
not easily performed, and to our knowledge there exists no simple estimate of Sα
(or of any limiting spectrum edge based on the defining fixed-point equations in
general). Numerically, the idea implemented in [Ali and Couillet, 2018] consists
in solving the fixed-point equation in (gα(x), g̃α(x)) of Theorem 7.3 for decreas-
ing values of x until the convergence fails numerically (indeed, the fixed-point
equation must not have a solution inside the support of µα). More practically, a
dichotomy approach can be pursued to identify the pivotal value of x for which
solving for (gα(x), g̃α(x)) becomes possible. This value (the smallest x for which
the fixed-point algorithm does converge) is then used as an estimate for the right
edge Sα.

To evaluate the performance gains incurred by the improved choice of α
discussed above, Figure 7.3 and Figure 7.4 depict the “overlap” metric (adapted
to k > 2 classes) proposed by Krzakala et al. [2013] defined as5

Overlap =
1
n

∑n
i=1 δĈi=Ci −

1
k

1− 1
k

where Ĉi is the community allocated (by the algorithm) to node i and Ci the
genuine class, compared for various algorithms (notably against the default ver-
sion of the Bethe Hessian approach [Saade et al., 2014]; see next section for
detail and improvement on this approach). Figure 7.3 considers a DCSBM with
fixed M, while 3/4 of the nodes connect with a fixed weight q(1) = 0.1 and 1/4
with a higher varying weight q(2). In Figure 7.4, a more realistic synthetic graph
setting is considered with the qi’s following a power law truncated to [0.05, 0.3]
(to avoid nodes with too few or even no neighbors) and with varying M pro-
portional to the identity matrix. In both cases, choosing α optimally (at least
in such a way that phase transitions are observed at the lowest values of ‖M‖)
largely overtakes the performance of standard methods, even above the phase
transition point.

The DC-SBM setting is another telling example of a scenario where the con-
ventional algorithms (here spectral clustering based on the adjacency or modu-
larity matrices) may severely fail. Spectral clustering on the matrix D−αAD−α

5Note that this overlap metric is, up to normalization, a generalization of the classification
error rate defined in (7.14) under the 2-class symmetric SBM setting.



7.1. COMMUNITY DETECTION IN DENSE GRAPHS 383

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

q(2)

C
la
ss
ifi
ca
ti
on

ov
er
la
p

α = 0

α = 0.5

α = 1

α = α̂∗

Bethe Hessian

Figure 7.3: Classification overlap for n = 3 000, k = 3 with c1 = c2 = c3 = 1/3,
qi’s i.i.d. with law 3

4δq(1) + 1
4δq(2) for q(1) = 0.1 and different q(2), M defined by

[M]ii = 10 and [M]ij = −10 for i 6= j. Results averaged over 50 runs. Link to
code: Matlab and Python.

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

∆

C
la
ss
ifi
ca
ti
on

ov
er
la
p

α = 0

α = 0.5

α = 1

α = α̂∗

Bethe Hessian

Figure 7.4: Overlap for n = 3 000, k = 3, c1 = c2 = c3 = 1/3, qi’s following a
power law with exponent 3 and support [0.05, 0.3], M = ∆ · I3. Here α̂∗ = 0.28.
Circles indicate the theoretical phase transition positions. Results averaged over
50 runs. Link to code: Matlab and Python.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/7.1/html/DCSBM.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/7.1/DCSBM.ipynb
https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/7.1/html/DCSBM.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/7.1/DCSBM.ipynb
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provides a workaround, but does not come along with a proof of optimality
(more elaborate algorithms may perform better, and even improve the phase
transition point).

More generally, another important limitation of the aforementioned analysis
of spectral clustering for graphs here and data (in Section 4.4.1) is that they
fundamentally rely on “dense” graphs and affinity matrices, which are possibly
unrealistic in practice: real graphs tend to be rather sparse, with each node
having a number of neighbors not scaling with the size of the graph [Decelle
et al., 2011]. It is indeed central to the random matrix framework that the
rows and columns of the adjacency matrices have O(n) degrees of freedom (i.e.,
are constituted from O(n) independent random variables), so that the random
matrix itself has O(n2) degrees of freedom. If instead the number of degrees of
freedom per row or column scales as O(1), most random matrix results presented
here collapse. Remark for instance that the trace lemma, Lemma 2.11, according
to which 1

nxTAx ' 1
n tr A (which is at the core of most of the derivations in

this monograph), would no longer be valid if x ∈ Rn had independent Bernoulli
entries with parameter p = O(1/n): in this case, E[xTAx] = 1

n tr A remains
valid but xTAx no longer converges and remains random; for instance, we have
for A = In that Var[xTx] = 1 − 1

n which is of the same order as the mean
E[xTx] = 1 and thus xTAx cannot converge.

Handling sparse randommatrices requires fundamentally different approaches
and the mathematical tools under this setting are, to our knowledge, not well
established yet. These will not be presented in detail in this monograph, as
they would demand an altogether different set of mathematical prerequisites
(based on random graph theory). Instead, the subsequent section discusses a
few findings arising either from these alternative mathematical tools or, more
often, from strikingly different intuitions from statistical physicists (however
sometimes non rigorous).

7.2 From dense to sparse graphs: a different ap-
proach

In sparse graph settings, spectral clustering on the adjacency matrix is largely
sub-optimal, even under a stochastic block model for the graph. This follows
from the fact that, for a Erdős-Rényi graph with O(1) node degrees (that is,
[A]ij ∼ Bern(p/n) where p = O(1)), the limiting spectrum of A is no longer a
semicircle law. Surprisingly enough, while a limiting spectrum does exist, very
little is known about it. The main (striking) result obtained so far is that, as
opposed to the semicircle law, the limiting spectrum has an unbounded support
and has regularly spaced localized point masses [Salez, 2019].

The unboundedness of the support in the sparse regime is problematic for
spectral clustering in presence of communities (since isolated eigenvalues cannot
emerge from the support) and explains why spectral clustering on A (or the
modularity matrix B) is bound to fail in the sparse regime. One must then devise
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other methods and in particular, find alternative matrices (to the unbounded
limited spectrum adjacency matrix).

7.2.1 The non-backtracking matrix
The first convincing idea arose from a statistical physics interpretation [Krzakala
et al., 2013]: the nodes of a graph may be seen as interacting particles with
interaction strength given by the entries of the adjacency matrix (in the binary
case, particles i and j interact if [A]ij = 1). If let free of external “force fields”,
the system tends to minimize its energy, which corresponds to falling into a state
of (local) maximal probability. By establishing expressions for the probability
of each state and performing linear approximations around the said “ground
state” solution (the solution with globally minimal energy), it appears that
the dominant eigenvectors of the so-called non-backtracking matrix must be
correlated to the communities of the graph. The non-backtracking matrix N is
defined on the set E of edges of the graph as

N(ij)(kl) = δjk(1− δil), ∀ (ij), (kl) ∈ E (7.19)

which is thus a non-symmetric matrix. Its limiting spectrum is mostly unknown
but, in the SBM case, it has been importantly proved that all eigenvalues are
asymptotically found inside a disc (on the complex plane) of controlled radius,
with a possible exception for finitely many real eigenvalues of larger amplitude:
the associated eigenvectors are those correlated to the communities [Gulikers
et al., 2017] (in addition to some isolated real eigenvalues within the disc).
Precisely, letting v be such an eigenvector (of size the number of edges in the
graph), the vector ṽ ∈ Rn defined by

ṽi =
∑
j∈∂i

v(ij), ∂i ≡ {j | (i, j) ∈ E} (7.20)

provides a clustering vector of the graph communities. As in the dense setting,
the presence of isolated eigenvalues is ruled by a phase transition phenomenon.
In the symmetric SBM where [A]ij ∼ Bern(pin/n) if nodes i, j are in the same
community and [A]ij ∼ Bern(pout/n) otherwise (with pin and pout fixed with
respect to n), this phase transition has been rigorously proven in [Mossel et al.,
2015, Massoulié, 2014] to occur when

|pin − pout|√
1
2 (pin + pout)

> 2.

In particular, unlike for the dense regime in (7.13) where (pin−pout)/(pin +pout)
would be requested to scale as O(n−1/2), here it is necessary to have (pin −
pout)/(pin + pout) = O(1) for communities to arise in spectral clustering: in the
absence of strong redundancy (that is, when each node has very few neighbors),
the minimum required “difference” for classification is thus, not surprisingly, an
order of magnitude higher.



386 CHAPTER 7. COMMUNITY DETECTION ON GRAPHS
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Figure 7.5: Complex spectrum of the non-backtracking matrix N; n = 1 000,
pin = 12, pout = 1. Emphasized in red circles are the two informative eigenval-
ues. Link to code: Matlab and Python.

The non-backtracking approach is however quite expensive to implement
as the matrix is non-symmetric and possibly of large dimensions (of size the
number of edges rather than the number of nodes in the graph). Also, the vector
ṽ defined in (7.20), while correlated to the node classes, is empirically seen to
be largely affected by the heterogeneity in the node degrees: that is, beyond
the SBM setting, it becomes quite inconsistent with the linear combinations of
canonical class vectors, as one would expect.

In fact, it turns out that the spectrum of the non-backtracking matrix is
intimately related to that of another more convenient matrix, called the Bethe
Hessian matrix, also familiar of statistical physicists and which, as shown later
in Section 7.2.4, can be exploited to naturally fight against degree heterogeneity.

7.2.2 The Bethe Hessian matrix
It can be shown that, for an eigenvector v of N with (say real) eigenvalue γ,
i.e., Nv = γv, letting ṽi =

∑
j∈∂i v(ij) as defined in (7.20),(

(γ2 − 1)In + D− γA
)
ṽ = 0.

Thus, ṽ is also an eigenvector (associated to a zero eigenvalue) of the symmetric
Bethe Hessian matrix

Hγ ≡ (γ2 − 1)In + D− γA. (7.21)

The parameter γ defining Hγ is however unknown, since it requires to solve an
eigenvector equation for N, which we precisely would like to avoid.

The Bethe Hessian Hγ also finds a parallel origin from a statistical physics
interpretation: the isolated eigenvectors of Hγ (associated to its smallest eigen-
values) correspond to particle states of minimal Bethe free energy, where 1/γ is

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/7.2/html/sparse_graph.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/7.2/sparse_graph.ipynb
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the temperature of the system of interacting particles. Under this interpretation,
[Saade et al., 2014] heuristically propose to chose γ =

√
ρ(N) with ρ(N) the

spectral radius (largest eigenvalue in amplitude) of N and to perform clustering
on the eigenvector associated with the second smallest eigenvalue of Hγ . Fig-
ure 7.6 reports the histogram of the eigenvalues and the informative eigenvector
of Hγ for different choices of γ.

In the specific case of an SBM, the choice γ =
√
ρ(N) corresponds in the

limit to γ =
√

(pin + pout)/2. This choice of γ, inspired by an SBM analysis,
seems indeed rather optimal in this setting. Yet, the same remark on degree
heterogeneity reported for the non-backtracking matrix still holds here: for
γ =

√
(pin + pout)/2, spectral clustering on Hγ is tainted by the heterogeneity of

node degrees and therefore appears to be sub-optimal for DC-SBM, as reported
in the left plot of Figure 7.6.

7.2.3 Degree regularization

An alternative approach to improving the adjacency matrix A or the various
normalized Laplacian matrices D−1A or D−

1
2 AD−

1
2 consists in observing that

their main defect in dealing with sparse graphs is due to: (i) the instability in
the inverse D−1 caused by nodes with low connectivity and (ii) the existence
of spurious “hubs”, that is, nodes i with exceptionally high degrees (very rare
in dense graphs but not so uncommon in sparse graphs): these nodes tend to
“pull” their own eigenvectors.

The non-backtracking matrix N precisely handles item (ii) by reducing the
number of rows with large “degrees” (through “non-backtracking” steps when
moving on the graph which escape hubs without returning to them, unlike steps
taken when moving on the graph according to the adjacency matrix).

Alternatively, several authors proposed (heuristically) to correct the adja-
cency or normalized Laplacian matrices by adding a regularization term: e.g.,
Aτ = A + τ1n1T

n in [Amini et al., 2013] or Lτ = (D + τIn)−
1
2 A(D + τIn)−

1
2

in [Qin and Rohe, 2013]. In the latter, the authors, still heuristically, propose
to take τ = (pin + pout)/2 (despite their few theoretical results which instead
suggest to take much larger values for τ).

Interestingly, as opposed to the Bethe Hessian and non-backtracking meth-
ods described above which sometimes fail on realistic (especially heterogeneous)
graphs, spectral clustering on Lτ with this particular choice of τ is empirically
seen extremely efficient and resilient to realistic graph clustering.

7.2.4 A unifying approach adapted to DC-SBM

In [Dall’Amico et al., 2019, 2020], a unified approach is proposed to explain how
the Bethe Hessian Hγ and the regularized Laplacian Lτ relate to each other, and
most importantly, to provide an improved control of the key hyperparameters
γ and τ , which, in particular, makes spectral clustering insensitive to degree
heterogeneity.



388 CHAPTER 7. COMMUNITY DETECTION ON GRAPHS

The article observes that, in a two-class symmetric DC-SBM setting, letting
j = [1n/2, − 1n/2]T, one has

[(D− γA)j]i = di[j]i

[
1− γ

(
|∂(in)
i |
di

− |∂
out
i |
di

)]

with ∂(in)
i the nodes connected to i within the same community and ∂(out)

i the
nodes connected to i within the other community. Assuming the average degree
not too small, this gives

[(D− γA)j]i ' di[j]i
(

1− γ · pin − pout

pin + pout

)
.

Thus, j is an approximate eigenvector of D− γA if one chooses

γ =
pin + pout

pin − pout
.

As opposed to the regularization values (γ =
√

(pin + pout)/2 and τ) heuris-
tically proposed in previous literature, it is interesting to note that this choice
of γ now depends on the clustering task difficulty (via pin − pout).

Since D − γA has the same eigenvectors as Hγ per (7.21), this choice of
γ offers a new value for the Bethe Hessian parameter which is now insensitive
to degree heterogeneity. Yet, as opposed to γ =

√
(pin + pout)/2 that can be

estimated consistently by evaluating the average node degree in the graph, γ =
(pin+pout)/(pin−pout) cannot be directly estimated from the graph (since pin and
pout are unknown). Nonetheless, Dall’Amico et al. [2019] showed that γ = (pin+
pout)/(pin − pout) corresponds (asymptotically) to the smallest value for which
λ2(Hγ) = 0 (with λ2(·) the second smallest eigenvalue). The eigenvector v
carrying the class information is then the one associated with the zero eigenvalue
of Hγ (i.e., such that Hγv = 0). The right-hand side display of Figure 7.6
demonstrates the better resilience of this choice to graph heterogeneity.

In a k-class setting, it is similarly shown that spectral clustering can be
performed, no longer on a single matrix Hγ , but on the matrices Hγ2 , . . . ,Hγk

where γp is the value of γ such that λp(Hγ) = 0 (with λp(·) the p-th smallest
eigenvalue) and the corresponding informative eigenvector vp is the one for
which Hγvp = 0.

Besides, it is observed that the following two equations are equivalent:[
(γ2
p − 1)In + D− γpA

]
vp = 0⇔ (D + (γ2

p − 1)In)−1Avp =
vp
γp
, (7.22)

meaning that vp is also an eigenvector of the regularized random-walk Laplacian
(D + (γ2

p − 1)In)−1A. Since the eigenvalues of the latter are the same as the
eigenvalues of (D + (γ2

p − 1)In)−
1
2 A(D + (γ2

p − 1)In)−
1
2 and that the associated

eigenvectors are just scaled by the normalized degrees, we also find a natural
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γ =
√

(pin + pout)/2 γ = pin+pout
pin−pout

0

info spike

0

info spike

Figure 7.6: Eigenvalues of Bethe Hessian Hγ and informative eigenvec-
tor under a DC-SBM setting for (left) γ =

√
(pin + pout)/2 and (right)

γ = (pin + pout)/(pin − pout). Here n = 1 000, pin = 35, pout = 5 and
q = [linspace(0.2, 0.9, n/2), linspace(0.2, 0.9, n/2)]T. Link to code: Matlab and
Python.

connection to the regularized Laplacian matrix Lτ of [Qin and Rohe, 2013]
discussed in the previous section, but for another value of τ .

Using an efficient procedure to estimate the number of communities/classes k̂
and the values γ2, . . . , γk̂ (without resorting to expensive line searches), Dall’Amico
et al. [2019] provide a comparative performance table of all aforementioned spec-
tral clustering procedures on realistic benchmark graphs. This is reported in
Table 7.1, in which d̄ denotes the average node degree.

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/7.2/html/sparse_graph.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/7.2/sparse_graph.ipynb
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However, it must be pointed out that these studies remain largely at a heuris-
tic level though. To the noticeable exception of [Massoulié, 2014] which theo-
retically proves that the phase transition proposed by the statistical physics
approach for the non-backtracking operator is indeed optimal. To our knowl-
edge, until now very few random matrix analyses exist which are able to tackle
the spectrum of sparse graphs. Here, Stieltjes transform approaches collapse
and are mostly replaced by more burdensome combinatorics and random graph
techniques.

Yet, the analysis of sparse graphs is fundamental for at least two reasons:
(i) as said, the reality of real networks tends more towards the sparse than the
dense side, and (ii) sparsification techniques may also be used in practice to
reduce computational costs: in clustering data using kernel methods, one may
use k-NN (k-nearest neighbors) with a relatively small value of k, or alternatively
only compute few entries of the whole kernel matrix. The spectral and, more
generally, algorithmic implications of sparse data and sparsification procedures
will surely be a subject of active future interest in large dimensional statistics
and random matrices for machine learning.

7.3 Concluding remarks
Spectral methods for community detection are the “Wigner semicircular” coun-
terpart of spectral clustering for large dimensional data (which, in its simplest
setting, is the “Wishart Marc̆enko-Pastur” equivalent) discussed in Chapter 4.
The random matrix tools and proof techniques being equally applicable to each
setting, their ultimate study is quite similar.

A second difference relates to the random matrix entries under study: the
entries of the graph adjacency matrices are typically Bernoulli distributed (at
least in unweighted graphs) where instead kernel matrices tend to be filled with
continuous variables (aside from k-NN kernels). Nonetheless, in dense (or mod-
erately dense) graphs, from the universality of random matrix results, this dif-
ference vanishes asymptotically. In particular, the case of weighted dense graphs
(including the DC-SBM), despite not quite studied in the literature, would be
easily handled with the proposed random matrix toolbox.

Major differences start to appear when considering sparse graph settings. It
is likely that the limiting spectral measure of the adjacency matrix A of such a
graph, as well as of its associated Laplacian, depends on the law of the entries
beyond its first and second moments. This may be understood from the fact
that the columns of A no longer “concentrate” in the sparse regime (e.g., their
norm does not converge but remains a random variable fully dependent on the
law of the entries). This behavior, although possibly averaged over the columns
to some extent, breaks the convenient universality phenomena arising in dense
random matrices.

An alternative approach to “partially” account for the sparse regime while
remaining tractable to classical tools in random matrix theory is to assume that
the average degree of the nodes in the graph grows slowly (e.g., as O(log n))
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with the size n of the graph. In doing so, a slow convergence behavior arises,
with Wigner semicircle law being valid again. The major problem though is
that, under the classical sparse SBM setting discussed in Section 7.2, for which
pin − pout = O(1), classification becomes asymptotically trivial: that is, the
dominant eigenvalue of A grows unboundedly, yet at a very slow rate, as the
graph size n grows large. Studying this setting remains interesting, as one is
able to precisely characterize the evolution, for all finite but large n, of the
spectrum of A and of the Laplacian, Bethe Hessian, non-backtracking matrices,
etc. Under the not completely unsatisfying O(log n) ≈ O(1) approximation, for
large but finite sizes n, these studies may provide a sufficiently accurate picture
of the behavior of real sparse graphs. This path is currently at the central focus
of modern random matrix research for graphs; see e.g., [Coste and Zhu, 2020]
in which results on the position of the real eigenvalues of the non-backtracking
matrix are “tracked”.

7.4 Practical course material
In this section, a practical lecture related to the present Chapter 7 is discussed,
which completes Remark 7.1 by showing the asymptotic joint Gaussian behavior
of the dominant eigenvector in the SBM setting.

Practical Lecture Material 6 (Asymptotic Gaussian fluctuations of the
SBM dominant eigenvector). This exercise aims to complete Remark 7.1 on the
asymptotic joint Gaussian fluctuations of (the entries of) the dominant eigen-
vector for the modularity matrix B = 1√

n
(A− ddT

dT1n
) in a stochastic block model

under (7.3), thereby leading to the asymptotic misclassification rate in the form
of a Gaussian Q-function.

We consider for simplicity the case of two balanced classes/communities
C1, C2 with |C1| = |C2| where the adjacency matrix A ∈ Rn×n has i.i.d. Bernoulli
entries [A]ij ∼ Bern(Cab) with [node i] ∈ Ca, [node j] ∈ Cb and C = [ pin pout

pout pin ],
where we positive ourselves in the non-trivial setting

pin − pout = O(n−1/2). (7.23)

We denote d = [d1, . . . , dn]T where di =
∑
j [A]ij.

For B = 1√
n

(A − ddT

dT1n
), first establish, from the results of this chapter (in

particular (7.6) and (7.12)) that

1√
pout(1− pout)

B =
X√
n

+
pin − pout

2
√
n
√
pout(1− pout)

jjT

−
(

1n1T
n

n

X√
n

+
X√
n

1n1T
n

n

)
+O‖·‖(n

− 1
2 )

where j = [1n/2, − 1n/2]T ∈ Rn and X ∈ Rn×n is a symmetric random matrix
with i.i.d. zero mean and unit variance entries. Since pin − pout = O(n−1/2),
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we focus on the matrix

Y ≡ X√
n

+
γ

n
jjT −

(
1n1T

n

n

X√
n

+
X√
n

1n1T
n

n

)
(7.24)

for some γ > 0. We further assume γ large enough (in fact γ > 1) so that
an isolated eigenvalue-eigenvector pair (λ̂, û) emerges (almost surely) in the
spectrum of Y.

Using the fact jT1n = 0, establish that 1n is an eigenvector of Y associated
with an eigenvalue tending to zero (as n→∞) and conclude that ûT1n = 0.

Based on this observation and eigenvalue-eigenvector equation Yû = λ̂û,
show that

û =
1T
nXû

n
√
n

Q(λ̂)1n −
γjTû

n
Q(λ̂)j

where Q(z) ≡ (X/
√
n−zIn)−1 and that, in particular, for ei ∈ Rn the canonical

basis vector with [ei]j = δij,

√
n · [û]i =

1T
nXû

n
eT
i Q(λ̂)1n −

γjTû√
n

eT
i Q(λ̂)j. (7.25)

Note that no asymptotic approximation has been performed to obtain this equa-
tion.

Following a spiked model approach as in 7.1.1, establish that the dominant
eigenpair (λ̂, û) satisfies

λ̂ = λ+ o(1) ≡ γ +
1

γ
+ o(1),

∣∣∣∣ 1√
n

jTû

∣∣∣∣ =

√
1− 1

γ2
+ o(1), (7.26)

almost surely, for λ = γ + γ−1, as well as

1√
n

1T
nXû

a.s.−−→ 0. (7.27)

Note in particular that the behavior of (λ̂, û) is the same asymptotically as the
isolated eigenvalue-eigenvector pair of the model X√

n
+ γ

n jjT: that is, the addi-
tional term (1n1T

nX + X1n1T
n)/(n

√
n) in (7.24) has asymptotically no impact

on the spectrum of Y, as previously claimed in Section 7.1.
Next, we would like to show that the bilinear form eT

i Q(λ̂)1n/
√
n is of or-

der O(1) which, together with (7.27), allows us to (asymptotically) discard the
first term in (7.25). To this end, note that the term eT

i Q(λ̂)1n/
√
n, despite

being a “classical” bilinear form, contains a (in fact “vanishing”) dependence be-
tween X and λ̂ (which, as an eigenvalue of Y, depends on X). To get rid of
this dependence, establish, with the resolvent identity, Lemma 2.1, that for any
deterministic vectors v1,v2 and scalars `1, `2

vT
1 Q(`1)v2 = vT

1 Q(`2)v2 − (`1 − `2)vT
1 Q(`1)Q(`2)v2



394 CHAPTER 7. COMMUNITY DETECTION ON GRAPHS

so that |eT
i Q(λ̂)1n − eT

i Q(λ)1n|/
√
n ≤ |λ̂ − λ| · ‖Q(λ̂)Q(λ)‖ for λ = γ + γ−1.

Apply similarly this result to eT
i Q(λ̂)j.

Using the deterministic equivalent result Q(z)↔ m(z)In in Theorem 2.5 and
the second-order deterministic equivalent Q(z)eie

T
i Q(z) ↔ m′(z)

n In,6 establish
that

E[eT
i Q(z)1n] = m(z), E[(eT

i Q(z)1n)2] = m′(z), (7.28)

which, together with a central limit theorem argument, yields

eT
i Q(z)1n ∼ N

(
m(z),m′(z)−m2(z)

)
+ o(1)

in probability, for m(z) the Stieltjes transform of the semicircle law in Theo-
rem 2.5 and m′(z) its derivative (with respect to z).

Use m2(z) + zm(z) + 1 = 0 and m(λ) = −1/γ to conclude that

√
n · [û]i = ±

√
1− γ−2 + γ−1wi + o(1)

where wi ∼ N (0, 1).
Generalize now this result to a k-dimensional setting by showing that, for

any (finite) k entries [û]i1 , . . . , [û]ik of û, with the same line of arguments

√
n

[û]i1
...

[û]ik

 = ±
√

1− γ−2 · 1k + γ−1w + o(1)

where w ∼ N (0, Ik). In particular, the fluctuations of the entries of û are
asymptotically decorrelated under the SBM setting.

Conclude, from this result and Item 2 of Remark 7.1, that the probability
of misclassification is asymptotically given by Q(

√
γ2 − 1), with Q(·) the Gaus-

sian Q-function, and translate this result in terms of the parameters pout and√
n(pin − pout) to recover, as expected, the asymptotic error rate

Q

(√
n(pin − pout)2

4pout(1− pout)
− 1

)

established in Equation (7.14).

6This second result can be “intuited” from
∑n
i=1 Q(z)eie

T
i Q(z) = Q2(z) = ∂Q(z)/∂z ↔

m′(z)In together with the fact that the index i in Q(z)eie
T
i Q(z) is interchangeable, or formally

derived following the idea in Exercise 14.



Chapter 8

Universality and Real Data

This chapter exploits the concentration-of-measure phenomenon for real data
modeling, via the recent advance of deep generative adversarial networks (GANs).
This assessment theoretically supports the surprisingly good match between the-
ory and practice observed on real-world data in previous chapters. Conclusion
on the universality of large dimensional machine learning is drawn at the end
of the chapter.

8.1 From Gaussian mixtures to concentrated ran-
dom vectors and GAN data

8.1.1 On data models in large dimensions
In the previous chapters, we have repeatedly worked under the assumption
that data arise from a Gaussian mixture model to elaborate asymptotic per-
formance analyses of a wide range of machine learning algorithms. This as-
sumption primarily arises for mathematical convenience: the Gaussian model
has many mathematical virtues: it is parameterized only through its first two
moments, specific mathematical tools (such as those detailed in Section 2.2.2)
are available, Gaussian vectors are (up to centering and scaling) vectors with
independent entries, etc.

From a small dimensional viewpoint (p small), it is clear that Gaussian
vectors x ∼ N (µ,C) ∈ Rp are extremely limited models for most realistic
datasets: Gaussian vectors of small dimensions are restricted to ellipsoid-shaped
distributions and cannot account for the possibly complex dependence relations
between the entries of x (such as in curved shapes in two or three dimensions).
By extrapolation, the many possible interactions between the entries of a large
dimensional vector x are even less prone to modeling by means of a Gaussian
random vector.

Yet, we have seen in previous chapters a systematic, sometimes seemingly
perfect, match between the performance achieved by machine learning algo-
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rithms on real datasets and those predicted on Gaussian (mixture) models shar-
ing the same statistical means and covariances as the real data.1

The objective of this chapter is to demonstrate that this is far from a coinci-
dence. It is indeed possible to prove mathematically that many of the results in
this monograph do extend to a wide range of “almost” real data. More specifi-
cally, we will successively show in this chapter that

• as already hinted at in Theorem 2.18 which proves that Theorem 2.6
not only holds for vectors with independent entries (up to centering and
scaling) but also for the much larger class of concentrated random vectors,
many core results from the previous chapters hold almost identically under
a data modeling of (mixture of) concentrated random vectors. In partic-
ular, it appears that the salient information, that dictates the behavior
of most machine learning algorithms in the large dimensional setting, lies
in the first two statistical moments of the data: those are sufficient to
capture the essence of most learning mechanisms;

• the class of concentrated random vectors naturally contains all random
vectors arising from a Lipschitz transformation of large standard Gaussian
vectors, which in particular comprises all random vectors produced by
generative adversarial networks (better known as GANs, i.e., deep neural
networks that are designed to generate fake, but extremely close to real,
data) [Goodfellow et al., 2014]: as a consequence of the previous item, the
performance of many machine learning algorithms on (raw or Lipschitz
features of) large dimensional data produced by GANs is asymptotically
and theoretically predictable;

• extensive simulations have been run on state-of-the-art classification frame-
works (based on deep neural networks) for real versus GAN-generated
data: while the performance are not identical between GAN and real data
(GAN data are easier to discriminate), the theoretical performance pre-
dicted by random matrix theory on real data are indeed a systematically
accurate match to the actual performance.

From these observations, a careless conclusion may be to claim that Gaus-
sian (mixture) vectors are accurate models for real data. In a way, this hasty
conclusion is not necessarily inappropriate: it all depends on what is meant by
“an accurate model”. If a model is appropriate because a human observer (or
a machine) cannot distinguish real data from the model (as GANs have been
designed to do), then Gaussian models are clearly not accurate: Figure 8.1 ev-
idences this fact by comparing digits from the MNIST database to Gaussian
random vectors having the same first- and second-order statistics.

1More precisely, the key statistics (functions of Gaussian means and covariances that deter-
mine the performance of machine learning methods in the asymptotic and Gaussian mixture
setting) are empirically estimated from the whole dataset, by considering the real data as if
they were a Gaussian mixture.
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Figure 8.1: Images of digit “1” and “2” from the MNIST database (left) and
random Gaussian generated from a model with the same mean and covariance
(right), empirically estimated from all digits of “1” and “2” from the entire
MNIST database. Link to code: Matlab and Python

But, if an “accurate model” is defined as correctly testifying of the perfor-
mance of a given data processing method on real data, then, as we already saw
and will see next in more detail, that the large-dimensional Gaussian model is
quite accurate when studying a host (but very likely not all) of classification
and regression problems in machine learning. Figure 8.2 illustrates this idea of
“large dimensional universality” via the data modeling approach of concentrated
random vectors.

Figure 8.2: An illustration of the idea for large dimensional universality.

The conclusion here is quite fundamental to the vision of machine learn-
ing methods for (not necessarily so) large dimensional data: the conservative
small-dimensional approach according to which real data need be appropriately
modeled from a human observer standpoint to be worth theoretical analysis,
reducing Gaussian vectors to “toy examples”, is strikingly disrupted in large

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/8/html/RMT_universality.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/8/RMT_universality.ipynb
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dimensions. For large data, Gaussian (mixture) models are often more than
enough to account for the behavior of statistical learning mechanisms.

8.1.2 A study of GAN-generated data
Reminders on deep neural networks and GANs

The field of computer vision has recently experienced two successive tidal waves
that brushed aside (i) years of conventional mathematical research in image clas-
sification with the emergence of deep convolutional neural networks [Krizhevsky
et al., 2017], the performance of which is now near superhuman in some tasks
(while previous, e.g., wavelet-based approaches, were far below human perfor-
mance), and (ii) the conventional thinking that modern computers could not
generate arbitrary samples of deceivingly realistic images, here with the con-
struction of generative adversarial networks (GANs) [Goodfellow et al., 2014]
(which are merely two competing instances of deep convolutional networks).

As a reminder, a neural network is a succession of L “layers” of linear and
entry-wise nonlinear maps, associating input datum x ∈ Rp to an output z =
φ(x) ∈ Rq as

z = φ(x) = σL (WLσL−1(WL−1 . . . σ1(W1x) . . .)) (8.1)

with Wi ∈ Rli×li−1 the linear maps (sometimes with additional bias terms
bi ∈ Rli) and σi : R → R the nonlinear maps applied entry-wise. Based on a
(usually quite long) sequence of known input-output pairs (xi,yi) and from a
random initialization of the weights W1, . . . ,WL, neural networks adapt these
weights (for fixed σi) by running gradient descent to minimize some loss function
of the type

1

n

n∑
i=1

` (σL (WLσL−1(WL−1 . . . σ1(W1xi) . . .)) ,yi) .

When the gradient vanishes, the algorithm stops and the weights W1, . . . ,WL

ideally correspond to a (not too bad) local minimum of the above loss function.
Convolutional neural networks are simply more structured versions of this

generic neural network for which the weight matrices Wi have a block Toeplitz
structure (so to enforce local filtering of the data).2 State-of-the-art methods
also use more elaborate optimization methods, add extra tricks to the general
architecture, but are essentially based on the elementary model above. They
are called “deep” whenever both the number of “layers” L and the number li of
“neurons” per layer i are large.

Generative adversarial networks (GANs) are the combination of two such
neural networks: (i) a generator which generates, from Gaussian input vectors
x ∼ N (0, Ip), output “data” vectors z ∈ Rq, which are then compared by (ii) the

2This is today rather expressed under the form of tensor operations but is indeed equivalent
to block-Toeplitz matrix products.
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discriminator to real data. The objective of the generator is to generate “data”
z that maximize the loss function of the discriminator (hence the “adversarial”
name), which aims instead to best discriminate genuine data from the generated
ones. Upon convergence of this adversarial game, the expected output is that
the discriminator, while having become skillful in discriminating fake from real
data, can no longer distinguish them: the GAN (precisely the generator) has
learned to generate fake but extremely realistic data.

The top display of Figure 8.3 schematically depicts the diagram of a GAN.

Figure 8.3: Schematics of modern data generation and representation frame-
works: GANs (top) and CNNs (bottom).

GAN-induced data are concentrated random vectors

It is generally assumed (in fact constrained during learning) that the weight
matrices Wi in neural networks have bounded/controlled operator norms (with
respect to the data dimensions and numbers, which is one of the key ingredi-
ents for good network performance [Bartlett et al., 2017, Miyato et al., 2018]).
Similarly, the functions σi are restricted to be 1-Lipschitz (typical functions are
the ReLU function σ(x) = max(x, 0), the sign function, or sigmoid functions).

As such, since the input of GANs are random Gaussian vectors x ∼ N (0, Ip)
and that the successive operations x 7→ Wix and x 7→ σi(x) are all bounded
Lipschitz operations, the output of a GAN is, by definition, a bounded Lipschitz
function of a Gaussian random vector.

From the Lipschitz stability of concentrated random vectors (recall (2.62))
and the fact that x ∼ N (0, Ip) is concentrated, it then comes that the out-
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put of the GAN generator are concentrated random vectors with head and tail
parameters of order O(1) (i.e., the same as for x). In practice, other opera-
tions are performed on neural networks, such as pooling operations, random or
deterministic dropouts [Srivastava et al., 2014], various connectivity matrix nor-
malization procedures (such as the popular Batch Normalization scheme [Ioffe
and Szegedy, 2015]), etc. All these, sometimes precisely designed to avoid the
“explosion” of the norm of the weight matrices, can be shown to also consist in
Lipschitz operations with O(1) Lipschitz constants [Seddik et al., 2020]. This
thus extends our previous statement on the concentration of GAN outputs to
state-of-the-art deep neural networks, and in particular to the very popular
convolutional neural networks (CNNs).

While being concentrated vectors, GAN-generated data (say fake images of
dogs and cats) do not necessarily “cluster” in their ambient space as a well-
separated mixture of concentrated random vectors. This is even obviously far
from being the case: well-performing GANs must have a large variance (or
entropy) in their ambient space so to avoid generating systematically similar
data. Images of dogs (class C1) versus images of cats (class C2) differ by the
fact that they are generated by different neural network maps x 7→ φ1(x) and
x 7→ φ2(x) having distinct statistical means µa = E[φa(x)] and covariances
Ca = E[φa(x)φa(x)T] − µaµT

a for a ∈ {1, 2} (or alternatively by a conditional
GAN [Mirza and Osindero, 2014] having the same effect). Yet, they are clearly
not linearly separable (as are real images), implying that ‖µ1−µ2‖, ‖C1−C2‖
are likely quite small (when, for instance, compared to the typical values of ‖µa‖
and ‖Ca‖) and thus not prone to immediate classification by, e.g., standard
clustering methods, at least in their ambient space. Feature extraction methods
(from simple histograms of oriented gradients (HOG) [Dalal and Triggs, 2005] to
modern CNNs such as VGG [Simonyan and Zisserman, 2014], ResNet [He et al.,
2016], etc.) precisely aim at “increasing” these distances by further transforming
φa(x) into some ψ(φa(x)) for which distances in means and covariances are
much larger (so to be eventually linearly separable). The corresponds to the
feature extraction or representation learning [Bengio et al., 2013] procedure in
the bottom display of Figure 8.3.

From GAN-data to CNN-features to GMM

State-of-the-art feature extractors in modern machine learning are based on
deep neural networks, and specifically for multimedia data on convolutional
neural networks. These networks, such as the popular VGG nets [Simonyan and
Zisserman, 2014] or ResNets [He et al., 2016], have been pre-trained on huge
collections of (independent) databases and are thus fixed, independent functions
of the (different) dataset of interest to the experimenter. The associated feature
extractor, say ψ : Rp → Rq, is then usually taken to be the function that maps
the data to the second-to-last layer of the trained deep network, with the very
last layer (in general a fully connected “decision” layer from Rq → Rd, with d the
number of classes that the deep network was trained to classify in a classification
context) discarded, that is, only the mapping from input to the q-dimensional



8.1. FROM GAUSSIAN MIXTURES TO CONCENTRATED RANDOM VECTORS AND GAN DATA401

internal representation of the networks is maintained to form ψ.
Being a neural network map, ψ is naturally Lipschitz with well-controlled

and bounded Lipschitz parameter [Bartlett et al., 2017, Miyato et al., 2018]. The
features ψ(zi) ∈ Rq “learned” by neural networks are therefore some bounded
Lipschitz images of the raw data zi ∈ Rp. When these raw “data” zi are them-
selves the (close to realistic data) output from a GAN, i.e., zi = φa(xi) with our
previous notations, we obtain that the second-to-last layer network features x̃i
are of the form x̃i = ψ(φa(xi)) with xi ∼ N (0, Ip), which by definition are con-
centrated random vectors (since ψ ◦ φa is Lipschitz with bounded parameter).
The whole procedure is illustrated in Figure 8.3.

As a consequence, the features or representations {x̃i}ni=1 in which each x̃i
takes the form x̃i = ψ(φa(xi)), for some a ∈ {1, . . . , k} identifying the class of
x̃i, is a mixture of concentrated random vectors.

As such, to treat data models that are more realistic than the “toy” Gaus-
sian mixture models, the results presented in the previous chapters should be
updated to data of the form {x̃i = ψ(φa(xi))}ni=1 for xi ∼ N (0, Ip) (where a ∈
{1, . . . , k} denotes the class index of x̃i) arising from a mixture of concentrated
random vectors. This being said, from a purely mathematical concentration-
theoretic standpoint, it is not formally necessary to specify the concentration
origin of x̃i and we may, in all generality, simply ask for the data to be generic
concentrated random vectors from a mixture model.

Therefore, in the following, we will assume that the data (be they the raw
random data or any kind of “representations” of the raw data), which we redefine
now as x1, . . . ,xn ∈ Rp (that is, what used to be x̃i = ψ(φa(xi)) is now redefined
as xi), are simply drawn from a mixture of concentrated random vectors as
follows:

x1, . . . ,xn1 ∼ L1, . . . , xn−nk , . . . ,xn ∼ Lk

where La is the law of a concentrated random vector of dimension p. We further
denote, as usual, the statistical mean and covariance of the law La as µa ∈ Rp
and Ca ∈ Rp×p. For technical reasons, it is also necessary to demand that the
(joint) data matrix X = [x1, . . . ,xn] ∈ Rp×n also be concentrated.

The fundamental result and message of this section are the following: from
Theorem 2.18, it appears, in a single-class setting (k = 1), that the resolvent
Q(z) = ( 1

nXXT− zIn)−1 of 1
nXXT, which is at the core of most of the machine

learning algorithms studied thus far, admits a deterministic equivalent Q̄(z)
that only depends on E[xix

T
i ] = µ1µ

T
1 + C1 for xi ∼ L1, and thus on the

first- and second-order statistics of the law L1.
It is thus reasonable to infer from Theorem 2.18 that, for a multi-class set-

ting (1 < k � n), the same will hold for the large family of concentrated
random vectors. Besides, from Theorem 4.1 and the discussion preceding it,
it is likely that kernel matrices with the standard normalization, e.g., K =
{f(‖xi − xj‖2/p)}ni,j=1 or K = {f(xT

i xj/p)}ni,j=1, and their spectral properties,
which (asymptotically) essentially depend on the behavior of a low-rank pertur-
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bation of XTX, will also depend, in the case of concentrated random vectors,
on the first two order statistics of the data distribution.

Kernel asymptotics and GAN-generated data

The above intuition on kernel matrices turns out to be correct, at least to
some extent. It is shown in [Seddik et al., 2019] that Theorem 4.1 indeed
holds identically for (a mixture of) concentrated random vectors. Precisely, it is
shown (for technical simplicity) that, as in Corollary 4.1, ‖P(K− K̃)P‖ a.s.−−→ 0
with P = In − 1

n1n1T
n which, compared to Theorem 4.1, discards several terms

in the expansion of K̃ without affecting the practical relevance of the result.
This fact notwithstanding, the random K̃ has the same expression under a
Gaussian or a “concentrated” mixture model. However, K̃ does not solely depend
on the first- and second-order moments of the data distribution, due to the
presence of the random vector ψ = {‖wi‖2/p − E[‖wi‖2]/p}ni=1, the entries of
which have mean zero but variance depending on the fourth-order moment of xi
(precisely of wi = C

−1/2
a (xi − µa) for xi ∼ La). Yet, this vector ψ (i) appears

in the low-rank part of the expansion of K̃ and thus does not asymptotically
affect the limiting spectrum of K, and (ii) does not affect the component A1,11

which, in Corollary 4.1, rules the informative isolated spectrum behavior of
K (in particular, position of isolated eigenvalues and content of the associated
eigenvectors). As a consequence, various machine learning algorithms based
on K, such as the unsupervised extraction of “informative” eigenvectors, or its
use within a semi-supervised or supervised learning framework as presented in
Section 4.4, are essentially universal with respect to the laws La(µa,Ca) in that
they only depend on the first two order statistics µa and Ca.

The immediate outcome of this discussion is that most results discussed
above, defined for machine learning algorithms based on K, provably hold iden-
tically for almost realistic (GAN-generated) data as for their Gaussian mix-
ture model counterpart (i.e., for the Gaussian mixture model having same first-
and second-order statistics).

This is visually confirmed in Figure 8.5 which provides a concrete comparison
of the finite-dimensional spectrum (eigenvalues and two dominant eigenvectors)
of K = {exp(−‖xi−xj‖2/p)}ni,j=1 for xi CNN-features of real images, or of GAN
images (arising from the training of a GAN on the same real images), versus a
Gaussian mixture with same empirical (mean and covariance) statistics as those
of CNN-features. The visual match, which we now know to be theoretically and
asymptotically perfect in the GAN-data setting, is extremely accurate in this
finite-dimensional illustration (p is of the order a few thousands), even on the
real data for which no guarantee can be claimed (as long as a theoretical relation
between real data and their GAN-generated counterpart is not elucidated).

Beyond “classical” kernels

The previous section discussed the universality of the kernel matrices of the
type K = {f(‖xi−xj‖2/p)}ni,j=1 with respect to the (mixture of) concentrated
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Figure 8.4: Images produced by the BigGAN model [Brock et al., 2019] for
three data classes (“hamburger”, “mushroom”, “pizza”): (top) versus the real
images used to learn the GAN from the ImageNet dataset [Deng et al., 2009]
(bottom).

random vector statistics of xi. The main reason follows from the fact that
the higher-than-two order moments of xi play a rather marginal role in the
asymptotics of K (as we saw, the higher order moments only arise from the
random vector ψ that has asymptotically no impact on the relevant eigenvectors
and low-rank informative terms in K).

This may no longer be the case for more elaborate kernels, such as the α-
β kernel and the properly scaling kernel, discussed in Section 4.2.4 and 4.3,
respectively.

For the α-β kernel (in Theorem 4.2), the entries of the “second-order noise”
matrix Φ are related to (wT

i wj)
2: from the independence of wi and wj , the

variance of this term depends on the fourth order moments of the (independent)
entries of wi and wj , which impacts the overall spectrum of Φ.3 The universality
thus holds, in this case, only up to the fourth order moments: the Gaussian
mixture model likely becomes insufficient to properly account for the behavior
of these kernel matrices on concentrated random vectors and thus on realistic
datasets.

As for the more involved properly scaling kernel, such as K = {f(xT
i xj/

√
p)}ni,j=1

(studied in Theorem 4.6), recall that their asymptotics are inherently related
3Since the diagonal terms arising from (wT

i wi)
2 are discarded, the up-to-eighth order

moments are not accounted for.
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Figure 8.5: Figure borrowed from [Seddik et al., 2020]: eigenvalues and two
dominant eigenvectors of K = {exp(−‖xi − xj‖2/p)}ni,j=1 for CNN features
from different deep convolutional networks (from left to right: ResNet-50 [He
et al., 2016] with p = 2 048 features, VGG-16 [Simonyan and Zisserman, 2014]
with p = 4 096 features and DenseNet-201 [Huang et al., 2017] with p = 1 920
features) of the images in Figure 8.4. Comparison of the results obtained for the
GAN-generated data (top) versus the real data (bottom), empirically on the
dataset (gray) and on independent Gaussian vectors with the same first order
(means and covariances) statistics (green).

to the Gaussian asymptotics (central limit) of xT
i xj/

√
p for independent xi,xj .

This central limit must be preserved in concentrated random vectors for random
matrix universality to hold. Yet, this is far from obvious and demands additional
constraints on the laws of the concentrated vectors (for instance, xT

i xj/
√
p may

not necessary be expressed as the sum of independent variables for concentrated
xi,xj for the central limit theorem to apply). In this setting, it is quite possible
that significant deviations from (Gaussian) universality could be observed. In
the specific case of GAN-data, which arise from deep neural network learning,
one is tempted to assume some sort of an inherent “isotropic” nature of the suc-
cessive layers of the large dimensional trained neural network, which may thus
“smooth-out” the concentrated random vectors in a way to make them more
“Gaussian-like”; one may therefore still be confident that the Gaussian mixture
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modeling may still be satisfying.

8.2 Wide-sense universality in large dimensional
machine learning

The example of GANs in the previous section underlies a seemingly more fun-
damental aspect of real (large dimensional) data processing: if real data can be
assumed to be inherently constituted of a large number of degrees of freedom
(or of randomness), a dual phenomenon arises:

• these degrees of freedom tend to regularize and induce robustness into ma-
chine learning algorithms: this is in particular at the very source of well-
behaved deep neural networks (based on numerous data and numerous
randomly-initialized neurons) versus ill-behaved small and shallow per-
ceptrons with a limited amount of data;

• the machine learning algorithms essentially extract basic “small” dimen-
sional statistics (scalar comparisons of first order moments and determinis-
tic patterns) from the (not so) large dimensional data, thereby completely
“eliminating” the noise, irrespective of its nature (i.e., the higher order
moments of the distribution contribute to the algorithm performance in a
rather marginal manner).

This suggests that, beyond images and sounds (which can be adequately
modeled by GAN-generated data), data representations which are sufficiently
rich in “degrees of freedom” should be similarly handled in a robust and theo-
retically tractable manner by standard machine learning methods. The recent
success of word embeddings (such as the word2vec approach [Mikolov et al.,
2013]) which manage to represent words, sentences and other structures in the
field of natural language processing via vectors in a rather large dimensional
space, confirms this intuition: these representations are sufficiently rich and
diverse (in information-theoretic terms, have a sufficiently large “entropy”) to
perform theoretical analysis by means of Gaussian (or concentration-type) mix-
ture approximations [Couillet et al., 2020]. A typical counterexample in this
very field of natural language processing is the so-far exploited “bag-of-words”
(or tf*idf) representation [Manning et al., 2008] which consists in large dimen-
sional but extremely sparse dictionary vectors (each sentence being represented
by one such vector counting the number of instances of each dictionary word
in the sentence): being very sparse, these vectors do not concentrate, thereby
hardly contributing to adding degrees of freedom to stabilize the machine learn-
ing algorithms.

Figure 8.6 compares the popular Gaussian kernel matrix structures observed
when evaluating the CNN features for real images (of dimension p = 1 024)
in two classes, versus the word2vec embeddings for words (of dimensions p =
300) in two categories. The colormap strongly suggests the aforementioned
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concentration effect arising in real data, in both computer vision and natural
language processing contexts.

v2 =

[ ]

K =




(a) VGG-16 features of CIFAR-10

v2 =

[ ]

K =




(b) Word2vec features of GoogleNews

Figure 8.6: Gaussian kernel matrices K and the second dominant eigenvectors
v2 for (left) VGG-16 [Simonyan and Zisserman, 2014] features of CIFAR-10 data
(“airplane” versus “bird”) and (right) word2vec [Mikolov et al., 2013] features of
GoogleNews-vectors data (“sports” versus “sales”), with x1, . . . ,xn/2 ∈ C1 and
xn/2+1, . . . ,xn ∈ C2. Link to code: Matlab and Python

This being said, we must note that the validity of all aforementioned ran-
dom matrix predictions and improvements fundamentally rely on the existence
of convenient data representations. Aside from subspace or manifold-based al-
gorithms (such as PCA [Wold et al., 1987] or principle Hessian directions [Li,
1992]), the field of random matrix theory does not, in itself, propose such elabo-
rate representations. If anything, it would naturally suggest to operate random
(linear or nonlinear) projections on the data so to (artificially) “generate” more
randomness, and thus more predictability and robustness. However, random
projections are a rather elementary representation technique that does not ac-
count for the data context and structure (as opposed to more advanced tech-
niques such as deep convolutional neural nets which intrinsically exploit the
locality and multi-class nature of the data).

Recalling that machine learning can be seen as the elegant combination of
“representation + decision” [Domingos, 2012], random matrix theory is so far
only able to operate on the “decision” aspect of machine learning, assuming that
the data representation is given and rather convenient to work with. Better
understanding and contributing to the “representation” part of machine learn-
ing would require to add supplementary data-related contextual ingredients to
random matrix theory, so most likely more complex random and deterministic

https://htmlpreview.github.io/?https://github.com/Zhenyu-LIAO/RMT4ML/blob/master/8/html/RMT_universality.html
https://nbviewer.jupyter.org/github/Zhenyu-LIAO/RMT4ML/blob/master/8/RMT_universality.ipynb
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structures. Alternatively, empirically witnessing the powerful capability of deep
neural networks to design appropriate representations of data, random matrix
theory could also contribute to a better theoretical control of the deep learning
mechanisms. This would mean characterizing the dynamics of learning in the
multi-layer, nonlinear, and non-convex setting of deep networks; this however
raises multiple (so far unsurpassable) technical difficulties:

• several works predict that, despite the highly non-convex nature of the
underlying optimization procedure, deep network learning owes its sta-
bility to the simultaneously large data dimension and number as well as
to the network depth and width. This has not yet been formally proved
but related problems in random Gaussian fields (strictly not neural net-
works but which share common features [Choromanska et al., 2015]) show
that in the large dimensional regime, while the number of local minima
increases exponentially with the model size, these minima tend to locate
at the same (loss) level, thereby ensuring that almost all initialization
points reach the approximately same (good) performance upon conver-
gence. These results however do not say much more: what precisely are
the performance levels reached? How do they relate to the data statistics
and the task? How could they be improved? Is there a training-test mis-
match in the associated loss “landscape” (e.g., is reaching or getting close
to the global training minimum a necessary and sufficient condition for
good test performance)? Besides, the setting of Gaussian random fields
remains formally far from actual deep networks and notably ignores some
of its key features, such as the nonlinear activations, their structure in
multiple layers, their convolutive nature in the case of convolutional nets,
etc;

• by considering the infinite-width limit (that is, the limit of infinitely many
neurons per layer), Jacot et al. [2018] proposed the so-called neural tan-
gent kernel (NTK) as the key object to study the limiting behavior of
deep neural networks. The NTK depends on both the data and the net-
work random initialization and, most importantly, remains unchanged in
the infinite-width limit during gradient descent [Lee et al., 2020] under
some (in fact rather restrictive) assumptions. In this NTK regime, as a
consequence of the fact that the kernel does not evolve during training,
the resulting deep network behaves, in the infinite-width limit, as a kernel
regression model, yielding performance levels which are closer to classical
kernel methods than to modern deep networks [Chizat et al., 2019, Arora
et al., 2019b]. In this vein, random matrix theory may come into play, as
in the example of sample covariance matrices and the Marc̆enko-Pastur
law, to account for a non-trivial ratio between the input dimension/sample
size and the network width, as well as to account for the different widths of
each layer (thereby allowing for a “layer-by-layer” characterization of the
network statistical behavior) [Adlam and Pennington, 2020, Hanin and
Nica, 2020].
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While it has been empirically observed that modern deep networks yield sig-
nificantly better performance than the (limiting) NTKs [Chizat et al., 2019,
Arora et al., 2019b], it remains true that neural networks and kernels are inti-
mately related, so that further studies and explorations of this connection may
help improve the understanding of these now broadly spread and used neural
networks.

8.3 Discussions and conclusions
Concentration of measure theory provides a powerful tool, quite complementary
to random matrix theory, to analyze the performance of statistical learning al-
gorithms applied to a host of realistic data models. According to our previous
discussions, one is tempted to state that the existence of “good concentrated
vector modeling” of real data, such as the images produced by GANs, fully
justifies (through the proofs of universality) the further development of ran-
dom matrix theory for the performance analysis and improvement of Gaussian
mixture-based algorithms. However, claiming that a model is “good” is a fairly
subjective statement (e.g., do GANs produce all images of a class one could
possibly think of or do they over-reproduce a limited set of images?), and if ever
a measure of goodness was appropriately designed, confirming that the analyses
made on Gaussian mixtures are robust to deviations in the data models in order
to include real data is likely difficult. On this point, only extensive empirical
experiments can be used as a measure of faith.

This is the case of generators of images, which differ from text, language, and
some complex signals, in their not requiring “long-term memory”: correlations
in images are mostly “localized” and may thus be produced by (convolutional)
feedforward networks. Textual contents can instead be produced by recurrent
networks, and most particularly by long short-term memory (LSTM) networks
[Hochreiter and Schmidhuber, 1997]. A possible parallel path to proving that
learning in natural language processing can be theoretically analyzed by ran-
dom matrix and concentration of measure framework would then consist in
showing that LSTM networks are also Lipschitz mappings (for instance from
and into some word embedding space). Similar to deep feedforward networks,
understanding the behavior of LSTMs is difficult (as they use the same gradient
descent learning) but the study of simpler networks, such as echo state networks
as in Section 5.3, already capable of faithful predictions, may help remedy our
present lack of understanding.

In spirit though, without having to formally prove that “real data learning” is
amenable to random matrix analysis, the validity of the random matrix approx-
imation mostly holds on two complementary pillars: (i) a “concentration-like
behavior” of the data representation, and (ii) a good “Lipschitz mixing behav-
ior” of the studied algorithm. That is: (i) the data representation under study
should resemble a vector with rather independent and delocalized entries, so
as to exploit most of the degrees of freedom offered by its (large dimensional)
ambient space, in the manner of Gaussian random vectors: this ensures that
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their scalar Lipschitz observations have a (more or less) concentrated and pre-
dictable behavior; and (ii) the learning algorithm maintains the “delocalized”
behavior of the data and, if not, at least reinforces it: this avoids the creation of
outlying (thus difficult to predict) behavior. Most well-performing algorithms
tend to satisfy this rule (activation functions in neural networks are Lipschitz,
their weight matrices are normalized, etc.). In a sense, even data which would
not be concentrated per se may be appropriately mixed (Gaussianized one may
say) by the learning algorithm so to stabilize the performance. Conversely,
well-concentrated data may suffer the effects of non-strictly Lipschitz transfor-
mations (so to extract exotic or marginal features for instance) while remaining
stable under random matrix analysis. This in essence justifies the wide appli-
cability and robustness of the various random matrix analyses presented in the
course of this monograph on various real data.

Some data, however, are clearly not concentrated: this is notably the case of
sparse vectors and sparse graphs. A typical example in natural language process-
ing is that of the bag-of-words or tf*idf (for term frequency–inverse document
frequency) methods [Manning et al., 2008], which use large dictionary vectors
(of size at least in the hundreds or thousands of words) filled with the number of
occurrence or frequency of each word in a paragraph or text. These vectors are
naturally quite “sparse” and, for instance, do not adhere to the concentration
of distance phenomenon observed for Gaussian-like vectors in Figure 8.6. The
adjacency matrix of sparse graphs (that have n nodes with O(1) neighbors per
node) also looses key concentration properties required for a standard random
matrix analysis: the norm or inner product between arbitrary rows or columns of
the adjacency matrix do not converge and this makes most classical random ma-
trix tools (starting with the trace lemma, Lemma 2.11) collapse at once. When
additional statistical symmetries are assumed, for instance if the entries of the
adjacency matrix are i.i.d., stable asymptotic behavior (of the eigenspectrum
in particular) is empirically observed, but is to date not theoretically tractable,
at least by the random matrix analysis proposed in this monograph. If ever
possible, the observed behavior would, at any rate, not be universal and thus
quite dependent on the (detailed) model statistics: this raises a major issue in
practice since, Gaussian approximations being no longer valid, the data mod-
els must be extremely accurate for the theoretical analysis to be of any value.
With difficult-to-understand real data, this severely reduces the interest of large
dimensional statistical results.

Nonetheless, where random matrix theory fails to work, ingredients of sta-
tistical physics (despite their sometimes lack of mathematical rigor) can be
exploited. Informal techniques such as the replica method, the various lineariza-
tions and approximations of the belief-propagation algorithm which all exploit
statistical physics concepts (of free energy, Hamiltonian, Bethe-Hessian approxi-
mation, etc.) [Mézard and Montanari, 2009] have provided tremendous advances
in large dimensional statistical learning, precisely under scenarios where large
dimensional random matrix theory still lag behind. This is particularly the
case of sparse graph mining, where heuristic but powerful new algorithms were
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designed out of statistical physics ideas [Krzakala et al., 2013, Saade et al.,
2014]. Mathematicians have only recently managed to formally prove some of
the fundamental predictions proposed in these articles. Until a formal unified
theory of sparse random matrices emerges, the future of large dimensional sta-
tistical learning may in part lie in this two-stage process where physicists come
first with intuitive ideas and new algorithm proposals, before random matrix
experts formalize and mathematically push these ideas further.
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