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Méthodes d’estimation robuste dans le
régime des grandes matrices aléatoires
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Prof. Pascal BONDON, CNRS/Université Paris Sud Examinateur
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0.5 Research activity

My research activity is mostly involved with the mathematical study of large dimensional random
matrix models in view of their applications to signal processing at large. As a PhD student
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(2007–2010), the focus was primarily on the performance analysis of multi-user communication
systems (multiple access MIMO channels, broadcast channels, cognitive radio settings) as well as
on detection and estimation methods for wireless communication purposes. After my graduation
in Nov. 2010 I joined CentraleSupélec (by then Supélec) as an assistant professor (Jan. 2011)
where I still work within the Telecommunication Department. From 2011 on, I steered my
research orientation on random matrix theory towards array processing applications and opened
up my scope of research to a larger palette of random matrix models for various uses in signal
processing. In 2013, I initiated an important project on the random matrix study of so-called
robust estimators of scatter, a subject that had not received any attention at the time. This first
led to a fundamental technical result on the limiting behavior of robust estimators of the Maronna
type, which was then followed by several applied publications in array processing (with a novel
improved MUSIC algorithm for impulsive data and a novel improved GLR detector) as well as in
other fields (in finance with an improved method for Markowitz risk minimization for portfolio
optimization). These latest results contribute to a major extent to an ERC Grant program
(ERC MORE) for the period 2013–2017 that Mérouane Debbah, professor at CentraleSupélec
and principal investigator, and I built and received. To a lesser extent, the array processing
contributions are part of the ANR project DIONISOS (2012–2016) in collaboration with Telecom
ParisTech and the University of Marne la Vallée both located in the Parisian area.

The main findings of the latest two years of my research activity will form the main part of
the technical chapter of the present report.

As a result of these breakthroughs in robust statistics, I decided to launch a wider project
of my own on the random matrix analysis of system models at the crossroads between signal
processing and machine learning, thus extending the scope of my research to the big data
paradigm. The ambition is precisely here to understand and then improve on standard methods
used in machine learning (such as classification and clustering methods) and that have yet
received little attention in the large dimensional regime typical of big data. As a subset of the
many problems that this project covers, system models involved with graphs are quite common
and in need of a theoretical understanding. The random matrix analysis of such graphical
problems constitutes the core of the ANR JCJC RMT4GRAPH project (2014–2017) that I
received in 2014. This project shall serve as a ramp for a wider application to a second ERC
(Starting) Grant on random matrix tools for big data, with myself as a principal investigator.

0.5.1 Publication Record, Awards, and Projects

0.5.1.1 Publication Record (as of January 2015)

Publications Book: 1, Book chapters: 3, Journals: 25+, Conferences: 45+, Patents: 4.
Citations 879 (five best: 187, 131, 72, 43, 24)
h-index 15
i10-index 23
Tutorials 6.

(see Section 0.5.6 for a complete list of publications)
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The major means of diffusion of my results are through publications to mathematical journals
for the most theoretical part of my research (Elsevier Journal of Multivariate Analysis, Markov
Processes and Related Fields, etc.) and to information theory and signal processing IEEE
journals for the more applied research (IEEE Transactions on Information Theory, on Signal
Processing, etc.). I regularly attend international applied conferences and local workshops (par-
ticularly the IEEE Asilomar, ICASSP, and SSP conferences) where I present my recent results.
For the sake of broader diffusion of my research breakthroughs, I also regularly intervene as a
tutorial speaker in international conferences and write articles in larger scope magazines (IEEE
Signal Processing Magazine), along with book chapters, and books.

0.5.1.2 Awards

Throughout my activity as a researcher, some of our articles were awarded best article or
conference paper prizes. My first major achievement was my being awarded the EEA/GdR
ISIS/GRETSI best PhD thesis prize for my work as a PhD student. More recently, I was
elected recipient of the 2013 CNRS Bronze Medal in the section “science of information and
its interactions” and of the 2013 IEEE ComSoc Outstanding Young Researcher Award (EMEA
Region).

CNRS Bronze Medal (section INS2I) 2013
Awarding my work in Signal Processing and Wireless Communications as a young
researcher since 2008.

IEEE ComSoc Outstanding Young Researcher Award (EMEA Region) 2013
Awarding my work in Communications-related topics as a young researcher since
2008.

EEA/GdR ISIS/GRETSI 2011 Award of the Best 2010 Thesis 2011
Thesis “Application of random matrix theory to future wireless flexible networks”

Second prize of the IEEE Australia Council Student Paper Contest 2013
G. Geraci, R. Couillet, J. Yuan, M. Debbah, I. B. Collings, “Large System Analysis
of Linear Precoding in MISO Broadcast Channels with Confidential Messages”

Best Student Paper Award Final of the 2011 Asilomar Conference 2011
J. Hoydis, R. Couillet, M. Debbah, “Asymptotic Analysis of Double-Scattering
Channels”

Best Student Paper Award of the 2008 ValueTools Conference 2008
R. Couillet, S. Wagner, M. Debbah, A. Silva, “The Space Frontier: Physical Limits
of Multiple Antenna Information Transfer”
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0.5.1.3 Projects

As a PhD student, I contributed to the following projects.

Project Name Contribution
ANR SESAME 20% 2008-2012
FP7 NEWCOM++ 10% 2009-2011

As of January 2011, as an assistant professor at CentraleSupélec, I took a more active
part to several projects, some of which I essentially wrote on my own (ERC MORE, ANR
RMT4GRAPH, and HUAWEI RMTin5G projects).

Project Name Contribution
HUAWEI RMTin5G 100% (PI) 2015-2016
ANR RMT4GRAPH 100% (PI) 2014-2017
ERC MORE 50% 2012-2017
ANR DIONISOS 25% 2012-2016
FP7 NEWCOM# 10% 2012-2015

0.5.1.4 Visiting Appointments

Mathematics Department, North Carolina State University, NC, USA Nov. 2010
Host Jack W. Silverstein, professor at NCSU
Duration 1 month
Details joint work on statistical inference using random matrix theory

0.5.2 PhD thesis

Location CentraleSupélec, Gif-sur-Yvette, France and ST-Ericsson, Biot, France
Contract CIFRE (80% at ST-Ericsson, 20% at CentraleSupélec)
Advisor Mérouane Debbah, Professor at CentraleSupélec, France
Title Application of random matrix theory to future wireless flexible networks
Defense November 12th, 2010
Publications Book: 1, Book chapters: 2, Journals: 9, Conferences: 19, Patents: 4.

The subject of my PhD thesis involved the use of random matrix theory for the performance
analysis and the design of wireless communication systems as well as for the estimation and
detection of signal sources for cognitive radio protocols.

The fundamental interest behind random matrix theory for wireless communications lies its
ability to evaluate various functionals of (often large dimensional) matrices modelling wireless
channels, among which the ergodic capacity or sum rate of multi-antenna point-to-point or
multipoint fading channels. These evaluations provide an understanding of the performance of
sometimes complex (since large dimensional and mobile) communication systems from which
improved system designs can be considered. In terms of detection and estimation for wireless
communications, random matrix theory rather aims at retrieving hidden parameters in a likely
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large number of large dimensional vector observations, mostly by means of sample covariance
matrix analysis. For all these problems, most of the necessary mathematical background was only
loosely in place by 2008, in the sense that the system models of interest to wireless communication
and signal processing engineers had not been studied by mathematicians. This led a few groups
of researchers of our community, notably in the Parisian area, to tackle these mathematical
problems in view of these underlying applications.

My PhD project fell into this setting. My first concern was with the extension of the
capacity analysis of point-to-point multi-antenna (MIMO) ergodic channels to multipoint-to-
point systems, and particularly with the ergodic rate region of multiple access fading channels
with MIMO transmitters and receiver. Assuming correlation structures at both communication
ends of the wireless channel (modeled then as a Kronecker fading channel), my main contribution
was first to characterize this rate region thanks to new mathematical results for a random
matrix model of the type “sum of Gram matrices” and to establish the asymptotically rate
optimal precoders at the transmitters (that is the precoders used to closely reach the rate region
boundaries). This work was performed in collaboration with Jack W. Silverstein, professor at
North Carolina State University and world expert in random matrix theory. Aside conference
articles, this work is contained in:

R. Couillet, M. Debbah, J. W. Silverstein, “A Deterministic Equivalent for the Anal-
ysis of Correlated MIMO Multiple Access Channels”, IEEE Transactions on Infor-
mation Theory, vol. 57, no. 6, pp. 3493-3514, 2011. [Citations: 72]

In parallel, along with my colleague Sebastian Wagner, PhD student at the Eurecom Institute
with D. Slock at the time, we investigated linearly-precoded multi-user MIMO broadcast chan-
nels which are of fundamental importance to today’s 4G and 5G communication systems. Unlike
my previous work of a rather theoretical nature, the system models we considered were pushed
to an advanced degree of practical relevance. Specifically, we considered a setting in which a base
station equipped with multiple antennas serves a possibly large number of users in the down-
link through correlated fading channels, while only possessing estimates of the actual channels
(i.e., with imperfect channel state information). This study led to a fine characterization of the
achievable sum rates of such systems as a function of the channel state information at the base
station and as a function of the channel statistics. This in turn allowed for an improvement
of the precoding structures employed by such broadcast systems. These results and numerous
associated ones are collected in:

S. Wagner, R. Couillet, M. Debbah, D. T. M. Slock, “Large System Analysis of Linear
Precoding in MISO Broadcast Channels with Limited Feedback”, IEEE Transactions
on Information Theory, vol. 58, no. 7, pp. 4509-4537, 2012. [Citations: 131]

In a similar setting, with my colleague Jakob Hoydis, by then PhD student at CentraleSupélec,
we studied the performance of a class of systems implementing isometric precoders which, al-
though of lesser practical use, constituted a first theoretical characterization of advanced models
of such precoder types. The main relevance of this article lay in the observation that, although
different in nature, the equations ruling the performance of precoders built upon matrices of
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independent entries or of isometric matrices take an outstandingly similar form, allowing one to
relate both a priori different system types. The results were reported in:

R. Couillet, J. Hoydis, M. Debbah, “Random Beamforming over Quasi-Static and
Fading Channels: A Deterministic Equivalent Approach”, IEEE Transactions on
Information Theory, vol. 58 , no. 10, pp. 6392-6425, 2012. [Citations: 24]

These works and a few others of least importance constituted the main core of the performance
analysis side of my PhD thesis.

In the course of the PhD it then occurred to us, as first random matrix-based results on
detection and estimation in signal processing started being brought forward, that such random
matrix tools could be developed and used in the context of spectrum sensing for cognitive radios,
and especially so for large dimensional systems (e.g., secondary networks made of several sensing
nodes capturing data from a primary multi-user MIMO network). As part of a one-month visit
to Prof. Jack W. Silverstein in North Carolina State University, NC, USA, we developed a
multi-user power estimation method based on recent array processing results for the estimation
of angles of arrival. The result we obtained takes a surprisingly simple form but allows for an
important performance gain against more classical non-random matrix based approaches. The
result, which may be considered as the most theoretically advanced while practically important
outcome of the PhD, is contained in:

R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-Inference for Energy Es-
timation of Multiple Sources”, IEEE Transactions on Information Theory, vol. 57,
no. 4, pp. 2420-2439, 2011. [Citations: 43]

In another article, using finite-dimensional random matrix considerations (a topic of rather
marginal interest of the PhD thesis), we also studied the performance of Bayesian-optimal
Neyman–Pearson tests for signal detection (in a cognitive radio setting although not restricted
to it) which we compared against large dimensional random matrix approaches provided a little
before by independent teams. The main outcome was to observe that, while the optimality
of our novel test obviously led to better performances than achieved by large dimensional ap-
proaches, the latter proved to loose so little in performance that their advantageous simplicity
easily overcomes this limitation. The results of this study are reported in:

R. Couillet, M. Debbah, “A Bayesian Framework for Collaborative Multi-Source
Signal Sensing”, IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5186-
5195, 2010. [Citations: 22]

In parallel to these scientific contributions, an effort was made during the thesis to broad-
cast and teach random matrix theory to the wireless communication community mainly. This
was performed by means of several written tutorials, book chapters, book, and oral tutorials
delivered in international conferences during or soon after my PhD thesis. The contribution of
utmost importance is the redaction of a 600-page book on random matrix theory for wireless
communications covering both theoretical and applied aspects:
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R. Couillet, M. Debbah, “Random matrix theory methods for wireless communica-
tions”, Cambridge University Press, 2011. [Citations: 187]

The tutorials in international wireless communication conferences, listed below, allowed us in
particular to reach an interested audience of up to fifty attendees to whom we taught basic
theoretical tools as well as advanced practical results.

R. Couillet, M. Debbah, “Random Matrix Theory for Signal Processing Applica-
tions”, IEEE International Conference on Acoustics, Speech and Signal Processing,
Prague, Czech Republic, 2011.
R. Couillet, M. Debbah, “Random Matrices in Wireless Flexible Networks”, Inter-
national Conference on Cognitive Radio Oriented Wireless Networks and Communi-
cations (Crowncom), Cannes, France, 2010.
R. Couillet, M. Debbah, “Eigen-Inference Statistical methods for Cognitive Radio”,
European Wireless, Lucca, Italy, 2010.

I defended my PhD thesis on November 12th, 2011 which was graded “Très horonable” by
the following jury:

Mérouane Debbah CentraleSupélec PhD advisor
Pierre Duhamel CNRS/CentraleSupélec President of the Jury
Walid Hachem CNRS/Telecom ParisTech Member of the Jury
Philippe Loubaton Université de Marne la Vallée Examiner
Xavier Mestre CTTC Catalunya Examiner
Aris Moustakas University of Athens Member of the Jury
Jack W. Silverstein North Carolina State University Member of the Jury.

0.5.3 Activities as an Assistant Professor

Location Telecom. Department, CentraleSupélec, Gif-sur-Yvette, France
Position Assistant Professor (CDI)
Group leader Hikmet Sari, Professor at CentraleSupélec, France
Publication total Book: 1, Book chapters: 3, Journals: 28, Conferences: 47, Patents: 4.

Since January 1st, 2011, I hold a position as an assistant professor at CentraleSupélec,
Gif-sur-Yvette, within the Telecommunication Department. By then, while maintaining a side
occupation for new problems in wireless communication-related random matrix theory, I steered
my research orientation towards signal processing applications of random matrix theory and
increased my involvement in purely theoretical questions in the field. Generally speaking, I
started to realize at that time that the extent of applications that random matrix tools can
embrace extends well beyond the sole scope of wireless communications and that much more
results are awaited in the wider area of signal processing. This general state of mind, which
paralleled the ambition of my former advisor Mérouane Debbah, led the two of us to apply for
and be granted an ERC Consolidator Grant (with M. Debbah as the principal investigator) on
the development of mathematical tools for large dimensional systems (ERC MORE EC–120133).
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In collaboration with colleagues of the Parisian area (notably Walid Hachem, Philippe Loubaton,
Jamal Najim, Djalil Chafai, etc.) we also obtained an ANR grant on random matrix theory for
array processing (ANR DIONISOS).

Aside from marginal continuity work on my previous activities on the performance analysis
of large dimensional communication systems, as in our recent contribution to the design of
interference-aware linear precoders for multi-cell broadcast systems:

A. Müller, R. Couillet, E. Bjornson, S. Wagner, M. Debbah, “Interference-Aware
RZF Precoding for Multi-Cell Downlink Systems”, (submitted to) IEEE Transactions
on Signal Processing, 2014.

my main remaining activity in wireless communications is oriented towards the second-order er-
ror probability performance of finite block-size MIMO communications. For such considerations,
first order convergence results of large dimensional random matrix functionals, as required in my
previous works, are no longer sufficient and one needs to move to second order results (central
limit theorems) for technically more complex random matrix models. Our main contribution
in this area was the determination of good lower and upper bounds on the error probability
performance of point-to-point fading systems for which the number of antennas at both trans-
mit and receive sides and the number of channel uses are of the same order of magnitude. The
respective impacts of the fading channel on the one hand and of the finiteness of the block length
on the other are easily isolated. Comparisons against practical (suboptimal) schemes were also
performed from which intuitive considerations were extracted. These results are reported in:

J. Hoydis, R. Couillet, P. Piantanida, M. Debbah, “A Random Matrix Approach to
the Finite Blocklength Regime of MIMO Fading Channels”, IEEE International Sym-
posium on Information Theory, Boston, Massachusetts, USA, 2012. [Citations: 13]

J. Hoydis, R. Couillet, P. Piantanida, “The Second-Order Coding Rate of the MIMO
Rayleigh Block-Fading Channel”, (to appear in) IEEE Transactions on Information
Theory. [Citations: 5]

As part of my research activity for the aforementioned projects (ERC-MORE and ANR-
DIONISOS), I initiated works on random matrix models of the spike-type; these can be seen
as small rank perturbations of well-understood random matrix models which have the same
eigenvalue behavior as these well-known matrices but for finitely many eigenvalues that enjoy an
exceptional (but of practical importance) behavior. Among the various applications of such spike
models, one involves the detection and localization of failures in a network whose interconnected
nodes report sequences of correlated data. Upon local failure in the network, the data correlation
matrix is perturbed in a rank-one modification fashion which the empirical sample covariance
matrix can exhibit and identify. These resulted are reported in the following article:

R. Couillet, W. Hachem, “Fluctuations of spiked random matrix models and failure
diagnosis in sensor networks”, IEEE Transactions on Information Theory, vol. 59,
no. 1, pp. 509-525, 2013. [Citations: 15]
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Subsequently, I took part of a more theoretical study of spiked models for more involved matrix
models. That is, instead of considering small rank perturbations of identity matrices, we studied
a more elaborate small rank perturbation model for generic matrices. This theoretical work
served as a support to a novel type of applications in array processing for signal buried in colored
noise (or spatially white noise with time correlation, such as a vector time series process). These
articles were respectively published in a mathematical and an applied journal:

F. Chapon, R. Couillet, W. Hachem, X. Mestre, “The outliers among the singular
values of large rectangular random matrices with additive fixed rank deformation”,
Markov Processes and Related Fields, vol. 20, pp. 183-228, 2014. [Citations: 6]

J. Vinogradova, R. Couillet, W. Hachem, “Statistical Inference in Large Antenna
Arrays under Unknown Noise Pattern”, IEEE Transactions on Signal Processing,
vol. 61, no. 22, pp. 5633-5645, 2013. [Citations: 5]

While the aforementioned lines of work followed more or less a natural gradual continuation
of my earlier works as a PhD student, based on rather classical random matrix tools, I was
recently proposed to study the large dimensional behavior of a random matrix model of profound
importance in the field of robust statistics but whose structure is quite unlike any work in the
random matrix theory literature. Those matrices, referred to as robust M-estimators of scatter,
are designed as an improvement of the classical sample covariance matrix against outliers or
impulsiveness among the collected data. As an M-estimator, the robust estimator of scatter is
the solution of an optimization problem which remains in general implicit, unlike the explicit
sample covariance matrix. From a random matrix technical outlook, this induces an involved
dependence structure between the entries of the matrix which classical random matrix tools
cannot tackle. During the last two to three years, I intensively studied these random matrix
models and made a series of substantial contributions which shall be discussed in Chapter II of
this report. To start with, initially not managing to handle more interesting models, we began
to analyze a very simple model of robust estimators of scatter for vector observations made of
independent entries, the interest of which is in fact quite limited in robust estimation theory:

R. Couillet, F. Pascal, J. W. Silverstein, “Robust Estimates of Covariance Matrices
in the Large Dimensional Regime”, (to appear in) IEEE Transactions on Information
Theory, 2014, arXiv Preprint 1204.5320. [Citations: 19]

This work nonetheless allowed us to set the stage for our subsequent major contributions dealing
with more fundamental models of high practical relevance. The most fundamental result we
obtained deals with the robust estimate of scatter of the Maronna-type for elliptical vector
observations (as opposed to vectors made of independent entries). It was precisely discovered
that, in the large dimensional regime, such estimators show a close behavior to standard families
of random matrices of the “separable covariance” type, while significantly differing from the
standard sample covariance matrix obtained on the same samples. In particular, while the
latter usually has an asymptotically unbounded eigenvalue spectrum, the robust estimator of
scatter has a provably bounded spectrum which can be fully characterized. Moreover, any
outlying observation entails a possibly large isolated eigenvalue in the sample covariance matrix
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spectrum, whereas robust estimates tame down the outlier contribution to the spectrum. The
details of this work are found in:

R. Couillet, F. Pascal, J. W. Silverstein, “The Random Matrix Regime of Maronna’s
M-estimator with elliptically distributed samples”, (to appear in) Elsevier Journal
of Multivariate Analysis, 2014. [Citations: 12]

Theoretical relevance set aside, the ability to approximate the structurally involved robust es-
timators by technically accessible and well-understood random matrix objects allows for the
design of new estimation techniques based on robust estimates of scatter (rather than on sam-
ple covariance matrices) for large dimensional systems. The main blessing of these techniques
lies in their controlling the natural spectrum spreading induced by heavy-tailed observations
and outliers, so for instance in models involving information and impulsive noise, where sample
covariance matrix-based approaches are either provably erroneous or at best inefficient. In the
simple case of a spiked-model extension of the aforementioned work, we devised such a statistical
inference technique along with a practical application to array processing under the form of a
novel improved MUSIC algorithm:

R. Couillet, “Robust spiked random matrices and a robust G-MUSIC estimator”,
(submitted to) Elsevier Journal of Multivariate Analysis, 2014, arXiv Preprint 1404.7685.

As is quite common to signal processing, to evaluate the performance of a given estimator (and
subsequently tune it appropriately), central limit theorems and second order variance figures are
often required. The asymptotic approximation results obtained in the previous contributions
are unfortunately too weak to ensure that central limit theorems for generic functionals of the
robust estimators of scatter extend to the same central limit theorems for the same functionals
applied to their approximations. In a recent work, we showed that this holds indeed true for
functionals of the quadratic form-type. That is, whenever the performance figure of interest is
a quadratic form induced by the (necessarily nonnegative definite) robust estimator of scatter,
the fluctuations of the quadratic form are in the limit the same as those of the quadratic form
induced by the approximating matrix. This result was applied to a fundamental GLR detection
problem in array processing and allowed for the introduction of a novel false-alarm minimizing
robust detector:

R. Couillet, A. Kammoun, F. Pascal, “Second order statistics of robust estimators of
scatter. Application to GLRT detection for elliptical signals”, (submitted to) Journal
of Multivariate Analysis, 2014.

The works above mainly considered the setting of impulsive noise following a given distribution
for all samples but only hand wavingly considered the impact of outliers among the observations.
In a recent work, we treated instead the scenario of non-impulsive regular data corrupted by a
certain quantity of outliers, and observed precisely the action of the robust estimators of scatter
on the individual observations. Our main findings are collected in:

D. Morales, R. Couillet, M. McKay, “The impact of outliers on large dimensional
robust estimators of scatter”, IEEE Conference on Acoustics, Speech and Signal
Processing (ICASSP’15), Brisbane, Australia, 2015.
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It was mentioned above that the robust estimators of scatter exhibit a close behavior to random
matrices of so-called separable-covariance model type. These models, somewhat studied in the
mathematical literature, are usually of lesser interest to practitioners to the point that some
fundamental results on the structural properties of the limiting spectrum for these models was
left unexplored. As part of a much theoretical project, we devised such an analysis in the
following article:

W. Hachem, R. Couillet, “Analysis of the limiting spectral measure of large random
matrices of the separable covariance type”, (submitted to) Random Matrix Theory
and Applications, 2013. [Citations: 6]

The last five listed works, along with the inspirational ideas and a few key technical lemmas
from the sixth to last reference, constitute the main core of our findings for this important
project.

More theoretically marginal but of practical importance, we extended the analysis of es-
timators of the Maronna-type to another important class of robust estimators derived from a
hybridization of Tyler’s robust estimator of scatter and Ledoit–Wolf’s famous shrinkage estimate
and which I shall refer to as robust-shrinkage estimators. Similar to the Maronna-type estima-
tors, the robust-shrinkage estimates asymptotically behave similar to a well-understood random
matrix from which improvement over classical applications may be brought. The interest of
the hybridization is to further improve the approximation of the population covariance matrix
by harnessing both the impact of outliers or impulsive noise and the impact of the paucity of
observations. This then finds applications in several problems related to the optimization of a
functional of population covariance matrices for which data are far from Gaussian and scarce. A
first main contribution in this area was to reconcile two schools which considered different nor-
malization procedures for the robust shrinkage estimator which we proved to be asymptotically
equivalent and in fact equivalent to a mere Ledoit–Wolf estimator for the impulsion-free obser-
vations. As a second contribution, we derived an online procedure for minimizing the Frobenius
norm between the robust shrinkage estimator and the population covariance matrix. In another
article, we provided an application to financial portfolio risk minimization, which proved on
actual financial datasets to systematically improve upon existing approaches. These results may
be found in:

R. Couillet, M. McKay, “Large Dimensional Analysis and Optimization of Robust
Shrinkage Covariance Matrix Estimators”, Elsevier Journal of Multivariate Analysis,
vol. 131, pp. 99-120, 2014. [Citations: 13]

L. Yang, R. Couillet, M. McKay, “Minimum Variance Portfolio Optimization with
Robust Shrinkage Covariance Matrix Estimator”, Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, CA, USA, 2014.

As a side comment, it is interesting to point out that the first of the two works above found an
unexpected application to distributed power minimization problems in wireless communications
(Sanguinetti et al., 2014).
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0.5.4 Present and Future Activities

My recent work on robust estimation brought recently to light the possibility for random matrix
theory to become a major enabling tool for the future big data challenge. Robust statistics may
indeed be considered as one device among others to handle large sets of heterogeneous data,
therefore bridging to some extent the gap between pure signal processing (where data are accu-
rately described in probabilistic terms) and machine learning (where data are merely collections
of inputs of possibly various nature, in particular prone to outliers). In the machine learning
realm, most questions relate to data clustering, classification in independent components, sudden
change detection, etc., where the data, of intrinsic heterogeneous nature, are barely modelled
probabilistically. The big data challenge consists in establishing efficient means of performing
these tasks for vast quantities of possibly large dimensional such data. Assigning probabilistic
models in a first approximation, whose inaccuracies may be corrected by tools such as robust
estimates, makes it arguably useful to consider the performance of machine learning algorithms
on large dimensional datasets.

This spirit guided the redaction of a proposal to the ANR Jeunes Chercheuses Jeunes
Chercheurs program, which I obtained in August 2014 (ANR RMT4GRAPH). In this program,
I propose to consider a subclass of the many big data problems that relate to large dimensional
graphs. Classical methods of machine learning, among which kernel methods (e.g., spectral
clustering) or echo-state neural network approaches, are indeed often associated to the spectral
properties of (possibly large and random) graphs. The random matrices involved are of various
structures often loosely studied by the random matrix community. I propose in particular to
study kernel random matrices for which only prior works of little practical relevance are available
and which are therefore waiting yet for useful results. Similar to the robust estimation of scatter
framework developed during the last two to three years, I expect to successively analyze the
performance of existing machine learning methods from a probabilistic viewpoint in order then
to improve these techniques. The objective of RMT4GRAPH and of the expected follow-up
programs is thus to develop an original framework of random matrix techniques to address a
variety of machine learning problems falling within the big data challenge.

0.5.5 PhD and postdoctoral students advising

0.5.5.1 PhD students having defended by 2015

Julia VINOGRADOVA 2011–2014
Subject Random matrices and applications to detection and estimation in array processing
Details 50%, with W. Hachem (Telecom ParisTech)
Publications 2 articles in IEEE-TSP, 2 IEEE conferences
Defense November 27th, 2014
Funding DIGITEO grant

Axel MÜLLER 2011–2014
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Subject Random matrix models for multi-cell communications
Details 50%, with M. Debbah (CentraleSupélec)
Publications 3 articles in IEEE-JSTSP (published), -TIT, -TSP, 5 IEEE conferences
Awards 1 best student paper award
Defense November 13th, 2014
Funding Private funding by Intel
Position Engineer at HUAWEI, Paris, France.

Axel Müller. The PhD work of Axel Müller involves the use of random matrix theoretical
tools to improve the performance of wireless communications in more practical future-oriented
scenarios. In particular, while most works prior to the thesis focused on single-cell communica-
tions omitting the existence of interfering adjacent cells and often assuming perfect knowledge
of the channel states of each point-to-point link, the purpose of the thesis was instead to turn
theoretical considerations into practice by incorporating as much complexity in the systems as
theoretically tractable. The major contributions (only a subset of all the work carried out) of
the thesis went into two specific directions.

The first main result deals with the performance analysis of polynomial precoders in a
downlink multi-user MIMO setting, which have the practical advantage to bear less complexity
than optimal linear precoders when a large number of antennas are used at the transmitter (such
as in a massive MIMO setting), yet perform better than matched-filters. An accurate estimation
of the weight parameters intervening in the precoder structure was performed to improve the
resulting system performance.

The second contribution is the development of a new precoder structure for multi-cell com-
munications with interference reduction. The latter is named ia-RZF for interference-aware
regularized zero-forcing precoder and is parametrized so to balance the power transmitted to
the legitimate users in the base station’s own cell against the power leakage compromising the
other cells’ users. By partial or full knowledge of the adjacent cell users’ channels, the afore-
mentioned parameters can be selected to optimize the overall cell throughput, which takes on
intuitive forms in simple system settings.

These works and others were the objects of two articles submitted to IEEE Transactions
on Information Theory and IEEE Transactions on Signal Processing, of one article published in
IEEE Journal of Selected Topics in Signal Processing, and of five conference articles presented at
the IEEE Global Communications Conference and the Workshop on Spatial Stochastic Models
for Wireless Networks in 2012, the IEEE Asilomar Conference on Signals, Systems, and Com-
puters in 2013, the EUSIPCO conference and the IEEE Sensor Array and Multichannel Signal
Processing Workshop in 2014. For the latter work, Axel Müller received a best student paper
award.

Julia Vinogradova. The PhD thesis of Julia Vinogradova targeted the generalization of
recent random matrix methods of detection and estimation for array processing applications,
when the additive noise in the system has memory. This appropriately models situations of high
data sampling rate, hardware imperfections, large band interference, etc. In this setting, the
classical white noise assumption falls apart and so do many detection and estimation schemes
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that generally assume a temporally uncorrelated (often spatially white) noise setting. Two
specific considerations were made which constituted the major two results of the thesis: (i) the
noise temporal correlation has an a priori unknown structure and (ii) the noise is a stationary
time series with finite-time correlation structure thus modelled as a Toeplitz matrix. In both
settings, we assumed the noise i.i.d. across the antenna elements (so that noise correlation is
modelled as a single time-covariance operator) and we also supposed that the information carried
by the observation signal is a low rank perturbation perturbation of the noise-only signal.

In scenario (i), improved spiked-model based random matrix schemes were designed which
allow for detection and estimation of the information parameters, under two (unfortunately
rather stringent) assumptions: (i-a) the noise correlation structure is such that the resulting
noise-only sample covariance matrix does not exhibit isolated eigenvalues (that could be wrongly
detected as signal bearers) and more importantly (i-b) the information time correlation must be
white (to ensure that the product of time correlations which naturally intervenes in the calculus
prohibits the estimation). The crux of the method lies in gathering a sufficient statistics from
the main bulk of eigenvalues of the (time) sample covariance matrix to extract the required
knowledge on the noise correlation; this is then used along with the information versus noise
“freeness in time” to proceed to estimation upon isolated (signal bearing) eigenvalues.

In scenario (ii), a consistent Toeplitz correlation matrix estimate was designed, based on
a simple version of existing methods relying on Toeplitzifying the sample covariance matrix.
The major novelty is that this estimation is performed in spite of the presence of a low rank
information in the signal and does not require any arbitrary truncation procedure (which might
nonetheless improve our method if appropriately exploited). The Toeplitz estimate is then used
to approximately whiten the signal data from which, due to consistency in the random matrix
regime, the model becomes essentially equivalent to an information-plus-white noise model.
Classical detection and estimation schemes can then operate straightforwardly. Unlike (i), no
strong assumption is required but for the Toeplitz structure of the noise correlation.

These two works led to two articles published in IEEE Transactions on Signal Processing
and to two conference papers in ICASSP’13 and EUSIPCO’14, respectively.

0.5.5.2 PhD students under my current supervision

Azary ABBOUD 2012–2015
Subject Distributed optimization for smart grids
Details 33%, with M. Debbah and H. Siguerdidjane (CentraleSupélec)
Publications 1 article in progress, 1 IEEE conference
Funding CentraleSupélec grant
Status Defense expected in Sept. 2015.

Gil KATZ 2013–2016
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Subject Interactive communication for distributed computing
Details 33%, with M. Debbah, P. Piantanida (CentraleSupélec)
Publications 1 IEEE conference
Funding ERC MORE
Status Defense expected in Sept. 2016.

Evgeny KUSMENKO 2015–2018
Subject Random matrix and machine learning
Details 80%, with M. Debbah (CentraleSupélec)
Funding ERC MORE
Status Defense expected in 2018.

Adrien PELLETIER 2012–2014
Subject New random matrix tools for wireless communications
Details 50%, with J. Najim (University of Marne-la-Vallée)
Publications 1 IEEE conference
Funding DIGICOSME grant
Status PhD aborted, looking for PhD in mathematics.

Azary Abboud. In order to bring together various research entities within CentraleSupélec
and partly in relation to the ERC MORE on applications to smart grids, a PhD subject was
designed by M. Debbah, H. Siguerdidjane, and myself on communication tools for smart grids.
The PhD consists precisely in devising advanced distributed communication methods to opti-
mize the regulation of power grids. Azary Abboud, a student with expertise in communication
engineering, was selected for this position. Her work focuses on distributed optimization meth-
ods, such as the alternating direction method of multipliers (ADMM), which she analyzes from
a theoretical viewpoint.

Relying on recent publications on (random) asynchronous distributed adaptations of the
standard ADMM, she produced a practical application to asynchronous smart grids communi-
cations for power-flow optimization that guarantees convergence to the optimal solution of the
problem, while requiring little synchronization between the network nodes. The results of this
study were presented at the IEEE ICASSP conference in 2014. An extended version of this work
was then submitted to IEEE Transactions on Signal Processing and is currently under revision.

Gil Katz. One of the main directions of the ERC MORE project (aside from the random
matrix analysis of large systems) goes towards the theoretical analysis of large dimensional net-
works from an information theoretic perspective. Being a subject of his own interest, Pablo
Piantanida, assistant professor at CentraleSupélec, thus joined Mérouane Debbah and myself to
propose a PhD thesis on distributed computing for interactive communications. The idea behind
the subject is to establish tight performance lower and upper bounds for network distributed
computing problems accounting for the cost of data exchanges within the network. This ap-
proach tends to unite information theory, most of which restricted to communication questions,
and distributed signal processing, for which communications between nodes is only loosely con-
sidered. Gil Katz, former master student at Technion, Israel, specialized in information theory,
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was selected to carry out this task as PhD student.

A first article was published at the IEEE Allerton 2014 conference in which the exact region
of joint detection and estimation by a pair of nodes communicating over a lossy channel was
established. This work brought to light the difficulties to extend such considerations to more
than two nodes in the network, which the remainder of the PhD shall try to establish.

My personal involvement in the PhD relates to my earlier works on signal processing for
large dimensional systems. As of now, since the work concentrates mostly on two-nodes commu-
nication networks, my contribution has remained limited, P. Piantanida having handled most of
the supervision of the PhD student.

Evgeny Kusmenko. Straddled across the ERC MORE and the RMT4GRAPH project, an
objective of present research is to better understand the structure of random matrices describing
graphical models. In particular, the focus of the PhD is here on the spectrum of kernel random
matrices and their associated Laplacian matrices. Applications are numerous and of particular
interest to machine learning topics, such as that of spectrum clustering. Evegeny Kusmenko, who
started his PhD in January 2015, will have the dual task of extracting the relevant features and
open questions of theoretical machine learning and of analyzing random matrix models about
which the current literature is quite scarce. As machine learning is a topic of high practical
relevance in various fields (rather than one of theoretical predominance), another aspect of
the PhD consists in connecting both practical and theoretical considerations to bring to light
fundamental design elements in the so far quite heuristic machine learning methods. Evgeny
Kusmenko received a solid background in engineering from TU Dresden, specialized in wireless
communications.

Adrien Pelletier. Random matrix theory has provided a large amount of fundamental results
for the performance analysis, optimization, and improved design of large dimensional wireless
communication systems. The technical tools to tackle the majority of problems of present
interest have now been in place for a few years. Nonetheless, these tools are mostly adequate to
fast channel fading considerations in local single- or several-cell scenarios with fixed terminals.
In parallel the opposite large-scale long-term fading consideration is tackled by tools such as
stochastic geometry, however for restrictively simple communication systems. The PhD thesis,
under a DIGICOSME grant, intended to devise new tools at the boundary between random
matrix theory and stochastic geometry to handle such problems. More generally, the PhD had
the ambition to propose a fresh toolbox of random matrix methods for large communication
systems. As such, the PhD was of a quite theoretical nature and required the expertise of a
student with strong mathematical background. Adrien Pelletier, MSc. at Cachan and MSc. at
Paris VI in probability theory, was selected for these skills.

During the first year of his PhD we produced a new result for the joint performance of
multiple users in a single-cell communication scenario (uplink and downlink). This (a priori
initial) work was published at the 2013 IEEE Asilomar Conference and was in the process of
being extended to a journal article (extension for a more general model). However, after a year
of work, Adrien Pelletier’s involvement in his PhD started to decay dramatically (regular long
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absences from work, complete absence of production, no answer to email exchanges) so we had
to take the decision to interrupt the PhD after two years.

0.5.5.3 PhD student open position

PhD-1 2015–2018
Subject Random matrix and graphical models
Details 100%
Funding ANR JCJC RMT4GRAPH
Status Defense expected in 2018.

PhD-1. The ANR JCJC project RMT4GRAPH is built on two major pillars: the analysis
of specific graphical Hermitian random matrix models, such as symmetric kernel matrices, and
the study of more fundamental non-Hermitian matrices with i.i.d. entries modelling more ele-
mentary random directed graphs. Of interest in particular will be the spectrum analysis (from
weak eigenvalue convergence to isolated eigenvalue considerations) of advanced models in which
e.g., the matrix entries have a variance profile rather than purely i.i.d. entries or exhibit some
correlation pattern. These models find numerous applications in systems surrounding random
graphs, such as neural networks. In the latter example, the dynamics of the system is ruled
by the amount of isolated eigenvalues of the random matrix which is therefore an object of
fundamental relevance. The PhD will tend to produce theoretical results in this direction.

0.5.6 Full publication record (with clickable links)

In this section are listed all publications in book, journals, and conferences. Dark blue titles in
the electronic version of the report are clickable URL links allowing for an immediate access to
the article. The section starts by a list of the most cited publications overall and restricted to
articles produced after my PhD thesis.

0.5.6.1 Five most cited publications overall

Article Cites

R. Couillet, M. Debbah, “Random Matrix Methods for Wireless Communications,”
Cambridge University Press, 2011.

187

S. Wagner, R. Couillet, M. Debbah, D. T. M. Slock, “Large System Analysis of Linear
Precoding in MISO Broadcast Channels with Limited Feedback”, IEEE Transactions
on Information Theory, vol. 58, no. 7, pp. 4509-4537, 2012.

131

R. Couillet, M. Debbah, J. W. Silverstein, “A Deterministic Equivalent for the Analysis
of Correlated MIMO Multiple Access Channels”, IEEE Transactions on Information
Theory, vol. 57, no. 6, pp. 3493-3514, 2011.

72

26

http://couillet.romain.perso.sfr.fr/docs/book_outline.pdf
http://arxiv.org/abs/0906.3682
http://arxiv.org/abs/0906.3682
http://arxiv.org/abs/0906.3667
http://arxiv.org/abs/0906.3667
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R. Couillet, J. W. Silverstein, Z. Bai, M. Debbah, “Eigen-Inference for Energy Estima-
tion of Multiple Sources”, IEEE Transactions on Information Theory, vol. 57, no. 4,
pp. 2420-2439, 2011.

43

R. Couillet, J. Hoydis, M. Debbah, “Random beamforming over quasi-static and fading
channels: A deterministic equivalent approach,” IEEE Transactions on Information
Theory, vol. 58, no. 10, pp. 6392-6425, 2012.
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0.5.6.2 Five most cited publications produced after 2011

Article Cites

R. Couillet, F. Pascal, J. W. Silverstein, “Robust Estimates of Covariance Matrices in
the Large Dimensional Regime,” (in Press) IEEE Transactions on Information Theory,
arXiv Preprint 1204.5320, 2014.

19

G. Geraci, R. Couillet, J. Yuan, M. Debbah, I. B. Collings, “Large System Analysis
of Linear Precoding in MISO Broadcast Channels with Confidential Messages,” IEEE
Journal on Selected Area in Communications, vol. 31, no. 9, pp. 1660-1671, 2013.
2nd prize of the 2012-2013 IEEE Australia Council Student Paper Contest.

18

R. Couillet, W. Hachem,“Fluctuations of spiked random matrix models and failure
diagnosis in sensor networks,” IEEE Transactions on Information Theory, vol. 59, no.
1, pp. 509-525, 2013.

15

J. Hoydis, A. Müller, R. Couillet, M. Debbah, “Analysis of Multicell Cooperation with
Random User Locations Via Deterministic Equivalents,” Eighth Workshop on Spatial
Stochastic Models for Wireless Networks, Paderborn, Germany, 2012.

15

R. Couillet, M. McKay, “Large Dimensional Analysis and Optimization of Robust
Shrinkage Covariance Matrix Estimators” Elsevier Journal of Multivariate Analysis,
vol. 131, pp. 99-120, 2014.

13

0.5.6.3 Books

• R. Couillet, M. Debbah, “Random Matrix Methods for Wireless Communications,” Cam-
bridge University Press, 2011.

– Content: Theoretical random matrix tools (finite dimensional analysis, limiting spec-
tral laws, free probability, deterministic equivalents, statistical inference) and ap-
plications to wireless communications (SU-MIMO, MU-MIMO, CDMA, detection,
estimation, channel modelling).

– Nb. pages: 600+.
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0.5.6.4 Book Chapters

• Chapter “Random matrix theory” in E. Serpedin, T. Chen, D. Rajan, “Mathematical
Foundations for Signal Processing, Communications and Networking”, CRC Press, Taylor
& and Francis Group, 2011.

• Several chapters in J. Palicot, C. Moy, M. Debbah, R. Couillet, H. Tembine, “De la radio
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2010.

• R. Couillet, M. Debbah, “Mathematical foundations of cognitive radios”, Journal of Telecom-
munications and Information Technologies, no. 4, 2009.

• R. Couillet, M. Debbah, “Outage performance of flexible OFDM schemes in packet-
switched transmissions”, Eurasip Journal on Advances on Signal Processing, Volume 2009,
Article ID 698417, 2009.

Smart Grids

• R. Couillet, S. Medina Perlaza, H. Tembine, M. Debbah, “Electrical Vehicles in the Smart
Grid: A Mean Field Game Analysis,” IEEE Journal on Selected Areas in Communications:
Smart Grid Communications Series, vol. 30, no. 6, pp. 1086-1096, 2012.

0.5.6.6 International Conference Articles

Signal Processing

• D. Morales-Jimenez, R. Couillet, M. McKay,“Large dimensional analysis of Maronna’s M-
estimator with outliers”, IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP’15), Brisbane, Australia, 2015.

• A. Kammoun, R. Couillet, F. Pascal, “Second order statistics of bilinear forms of ro-
bust scatter estimators”, IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP’15), Brisbane, Australia, 2015.

30

http://arxiv.org/abs/1105.5305
http://arxiv.org/abs/1105.5305
http://couillet.romain.perso.sfr.fr/docs/articles/secrecy.pdf
http://couillet.romain.perso.sfr.fr/docs/articles/secrecy.pdf
http://arxiv.org/abs/0906.3682
http://arxiv.org/abs/0906.3682
http://couillet.romain.perso.sfr.fr/docs/articles/updatechest_journal.pdf
http://couillet.romain.perso.sfr.fr/docs/articles/updatechest_journal.pdf
http://couillet.romain.perso.sfr.fr/docs/articles/REE.pdf
http://couillet.romain.perso.sfr.fr/docs/articles/REE.pdf
http://www.supelec.fr/d2ri/flexibleradio/pub/Conferences2009/C0928.pdf
http://couillet.romain.perso.sfr.fr/docs/articles/alpha_OFDM_article.pdf
http://couillet.romain.perso.sfr.fr/docs/articles/alpha_OFDM_article.pdf
http://couillet.romain.perso.sfr.fr/docs/articles/Perlaza_JSAC_PHEV.pdf
http://couillet.romain.perso.sfr.fr/docs/articles/Perlaza_JSAC_PHEV.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/robust_outlier.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/robust_outlier.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/robust_clt.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/robust_clt.pdf


0.5. RESEARCH ACTIVITY

• R. Couillet, M. McKay, “Robust covariance estimation and linear shrinkage in the large
dimensional regime”, IEEE International Workshop on Machine Learning for Signal Pro-
cessing (MLSP’14), Reims, France, 2014.

• L. Yang, R. Couillet, M. McKay, “Minimum variance portfolio optimization with robust
shrinkage covariance estimation”, Asilomar Conference on Signals, Systems, and Comput-
ers, Pacific Grove, CA, USA, 2014.

• P. Vallet, X. Mestre, Ph. Loubaton, R. Couillet, “Asymptotic analysis of Beamspace-
MUSIC in the context of large arrays”, IEEE Sensor Array and Multichannel Signal Pro-
cessing Workshop (SAM’14), A Coruna, Spain, 2014.

• R. Couillet, A. Kammoun, “Robust G-MUSIC”, European Signal Processing Conference
(EUSIPCO’14), Lisbon, Portugal, 2014.

• R. Couillet, F. Pascal, “Robust M-estimator of scatter for large elliptical samples”, IEEE
Worshop on Statistical Signal Processing (SSP’14), Gold Coast, Australia, 2014.

• R. Couillet, F. Pascal, J. W. Silverstein, “A Joint Robust Estimation and Random Matrix
Framework with Application to Array Processing,” IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP’13), Vancouver, Canada, 2013.

• J. Vinogradova, R. Couillet, W. Hachem, “A new method for source detection, power
estimation, and localization in large sensor networks under noise with unknown statistics,”
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’13),
Vancouver, Canada, 2013.

• R. Couillet, P. Bianchi, J. Jakubowicz, “Decentralized convex stochastic optimization with
few constraints in large networks,” IEEE International Workshop on Computational Ad-
vances in Multi-Sensor Adaptive Processing (CAMSAP’11), San Juan, Puerto Rico, 2011.

• R. Couillet, W. Hachem, “Local Failure Localization in Large Sensor Networks,” IEEE
Asilomar Conference (ASILOMAR’11), Pacific Grove, CA, USA, 2011.

• R. Couillet, M. Guillaud, “Performance of Statistical Inference Methods for the Energy
Estimation of Multiple Sources,” (Invited Paper) IEEE Statistical Signal Processing Work-
shop (SSP’11), Nice, France, 2011.

• R. Couillet, J. W. Silverstein, M. Debbah, “Eigen-inference for multi-source power esti-
mation,” IEEE International Symposium on Information Theory, Austin TX, USA, 2010.

• R. Couillet, M. Debbah, “Bayesian inference for multiple antenna cognitive receivers”,
IEEE Wireless Communications & Networking Conference, Budapest, Hungary, 2009.

Information Theory

• G. Katz, P. Piantanida, R. Couillet, “Joint Estimation and Detection Against Indepen-
dence”, Fifty-second Allerton Conference on Communication, Control, and Computing,
Allerton, IL, USA, 2014.

31

http://couillet.romain.perso.sfr.fr/docs/conf/MLSP.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/MLSP.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/portfolio2014.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/portfolio2014.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/SAM_2014.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/SAM_2014.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/MUSIC_elliptic.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/robust_est_elliptic.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/robust_est.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/robust_est.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/icassp.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/icassp.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/camsap.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/camsap.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/multiplicative_spike_Asilomar.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/user_detect_ssp.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/user_detect_ssp.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/eigeninference.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/eigeninference.pdf
http://hal-supelec.archives-ouvertes.fr/hal-00392392/en
http://couillet.romain.perso.sfr.fr/docs/conf/gil_joint_estimation_detection.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/gil_joint_estimation_detection.pdf


• J. Hoydis, R. Couillet, P. Piantanida, “Bounds on the Second-Order Coding Rate of the
MIMO Rayleigh Block-Fading Channel,” IEEE International Symposium on Information
Theory, Istanbul, Turkey, 2013.

• J. Hoydis, R. Couillet, P. Piantanida, M. Debbah, “A Random Matrix Approach to the
Finite Blocklength Regime of MIMO Fading Channels,” IEEE International Symposium
on Information Theory, Boston, Massachusetts, USA, 2012.

Wireless Communications

• A. Pelletier, R. Couillet, J. Najim, “Second-Order Analysis of the Joint SINR distribution
in Rayleigh Multiple Access and Broadcast Channels,” Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, CA, USA, 2013.

• A. Müller, E. Björnson, R. Couillet, M. Debbah, “Analysis and management of hetero-
geneous user mobility in large-scale downlink systems,” Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, CA, USA, 2013.

• G. Geraci, R. Couillet, J. Yuan, M. Debbah, I. Collings, “Secrecy Sum-Rates with Reg-
ularized Channel Inversion Precoding under Imperfect CSI at the Transmitter,” IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP’13), Van-
couver, Canada, 2013.

• M. de Mari, R. Couillet, M. Debbah, “Concurrent data transmissions in green wireless
networks: when best send one’s packets?,” (Invited paper) IEEE International Symposium
on Wireless Communication Systems (ISWCS’12), Paris, France, 2012.

• A. Müller, J. Hoydis, R. Couillet, M. Debbah, “Optimal 3D Cell Planning: A Random Ma-
trix Approach,” IEEE Global Communications Conference (GLOBECOM’12), Anaheim,
Caligornia, USA, 2012.

• M. Rezaee, R. Couillet, M. Guillaud, G. Matz, “Sum-Rate Optimization for the MIMO IC
under Imperfect CSI: a Deterministic Equivalent Approach,” IEEE International Work-
shop on Signal Processing Advances for Wireless Communications, Cesme, Turkey, 2012.

• J. Hoydis, A. Müller, R. Couillet, M. Debbah, “Analysis of Multicell Cooperation with
Random User Locations Via Deterministic Equivalents,” Eighth Workshop on Spatial
Stochastic Models for Wireless Networks, Paderborn, Germany, 2012.

• A. Kammoun, M. Kharouf, R. Couillet, J. Najim, M. Debbah, “On the fluctuations of the
SINR at the output of the Wiener filter for non centered channels: the non Gaussian case,”
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’12),
Kyoto, Japan, 2012.

• J. Hoydis, R. Couillet, M. Debbah, “Asymptotic Analysis of Double-Scattering Channels,”
IEEE Asilomar Conference on Signals, Systems, and Computers (ASILOMAR’11), Pacific
Grove, CA, USA, 2011. Best student paper award finalist

32

http://couillet.romain.perso.sfr.fr/docs/conf/finiteBlocklengthISIT2013.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/finiteBlocklengthISIT2013.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/finite_blocklength_submitted.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/finite_blocklength_submitted.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/adrien_asilomar_2013.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/adrien_asilomar_2013.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/axel_Asilomar13-HetMob.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/axel_Asilomar13-HetMob.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/giovanni.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/giovanni.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/green_MFG.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/green_MFG.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/3Dcellplanning.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/3Dcellplanning.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/SPAWC_Mohsen.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/SPAWC_Mohsen.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/SPASWIN2012_RMT_SG_submitted.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/SPASWIN2012_RMT_SG_submitted.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/ICASSP_SINR_Abla.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/ICASSP_SINR_Abla.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/doubly_scattering_Asilomar.pdf


0.5. RESEARCH ACTIVITY

• A. Kammoun, R. Couillet, J. Najim, M. Debbah, “Performance of fast rate adaption
techniques in interference-limited networks,” IEEE Global Communications Conference
(GLOBECOM’11), Houston, TX, USA, 2011.

• J. Yao, R. Couillet, J. Najim, E. Moulines, M. Debbah, “CLT for eigen-inference meth-
ods in cognitive radios,” IEEE International Conference on Acoustics, Speech and Signal
Processing, Prague, Czech Republic, 2011.

• J. Hoydis, R. Couillet, M. Debbah, “Deterministic Equivalents for the Performance Anal-
ysis of Isometric Random Precoded Systems,” IEEE International Conference on Commu-
nications, Kyoto, Japan, 2011.

• J. Hoydis, J. Najim, R. Couillet, M. Debbah, “Fluctuations of the Mutual Information in
Large Distributed Antenna Systems with Colored Noise,” Forty-Eighth Annual Allerton
Conference on Communication, Control, and Computing, Allerton, IL, USA, 2010.

• R. Couillet, H. V. Poor, M. Debbah, “Self-organized spectrum sharing in large MIMO
multiple-access channels,” IEEE International Symposium on Information Theory, Austin
TX, USA, 2010.

• S. Wagner, R. Couillet, D. T. M. Slock, M. Debbah, “Optimal Training in Large TDD
Multi-user Downlink Systems under Zero-forcing and Regularized Zero-forcing Precoding,”
IEEE Global Communication Conference, Miami, 2010.

• S. Wagner, R. Couillet, D. T. M. Slock, M. Debbah, “Large System Analysis of Zero-
Forcing Precoding in MISO Broadcast Channels with Limited Feedback” IEEE Interna-
tional Workshop on Signal Processing Advances for Wireless Communications, Marrakech,
Morocco, 2010.

• R. Couillet, M. Debbah, “Information theoretic approach to synchronization: the OFDM
carrier frequency offset example”, Advanced International Conference on Telecommunica-
tions, Barcelona, Spain, 2010.

• R. Couillet, M. Debbah, “Uplink capacity of self-organizing clustered orthogonal CDMA
networks in flat fading channels” IEEE Information Theory Workshop Fall’09, Taormina,
Sicily, 2009.

• R. Couillet, M. Debbah, J. W. Silverstein, “Asymptotic Capacity of Multi-User MIMO
Communications” IEEE Information Theory Workshop Fall’09, Taormina, Sicily, 2009.

• R. Couillet, M. Debbah, J. W. Silverstein, “Rate region of correlated MIMO multiple
access channel and broadcast channel” IEEE Workshop on Statistical Signal Processing,
Cardiff, Wales, UK, 2009.

• R. Couillet, M. Debbah, “Mathematical foundations of cognitive radios” U.R.S.I.’09, War-
saw, Poland, 2009.

• R. Couillet, M. Debbah, “A maximum entropy approach to OFDM channel estimation”,
IEEE International Workshop on Signal Processing Advances for Wireless Communica-
tions, Perugia, Italy, 2009.

33

http://couillet.romain.perso.sfr.fr/docs/conf/globecom_rate_adaption.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/globecom_rate_adaption.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/detect_CDMA.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/detect_CDMA.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/haar_sums.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/haar_sums.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/allerton_det_eqn_network_MIMO.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/allerton_det_eqn_network_MIMO.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/MACBC_freqshare.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/MACBC_freqshare.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/globecom_optimal-training.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/globecom_optimal-training.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/spawc_seb.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/spawc_seb.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/cfoe_conf.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/cfoe_conf.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/ITW_CDMA_revised.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/ITW_CDMA_revised.pdf
http://hal-supelec.archives-ouvertes.fr/hal-00407930/en
http://hal-supelec.archives-ouvertes.fr/hal-00407930/en
http://www.supelec.fr/d2ri/flexibleradio/pub/Conferences2009/C0933.pdf
http://www.supelec.fr/d2ri/flexibleradio/pub/Conferences2009/C0933.pdf
http://hal-supelec.archives-ouvertes.fr/hal-00392319/en
http://hal-supelec.archives-ouvertes.fr/hal-00392321/en


• R. Couillet, M. Debbah, “Flexible OFDM schemes for bursty transmissions”, IEEE Wire-
less Communications & Networking Conference, Budapest, Hungary, 2009.

• R. Couillet, S. Wagner, M. Debbah, “Asymptotic Analysis of Correlated Multi-Antenna
Broadcast Channels”, IEEE Wireless Communications & Networking Conference, Bu-
dapest, Hungary, 2009.

• R. Couillet, S. Wagner, M. Debbah, A. Silva, “The Space Frontier: Physical Limits of Mul-
tiple Antenna Information Transfer”, ValueTools, Inter-Perf Workshop, Athens, Greece,
2008. Best student paper award

• R. Couillet, M. Debbah, “Free deconvolution for OFDM multicell SNR detection”, IEEE
Personal, Indoor and Mobile Radio Communications Symposium, Cognitive Radio Work-
shop, Cannes, France, 2008.

Smart Grids

• R. Couillet, E. Zio, “A subspace approach to fault diagnostics in large power systems”
(Invited Paper) IEEE International Symposium on Communications, Control, and Signal
Processing (ISCCSP’12), Rome, Italy, 2012.

• A. Abboud, R. Couillet, M. Debbah, H. Siguerdidjane, “Asynchronous alternating direc-
tion method of multipliers applied to the direct-current optimal power flow problem,”
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’14),
Florence, Italy, 2014.

• R. Couillet, S. Medina Perlaza, H. Tembine, M. Debbah, “A mean field game analysis of
electric vehicles in the smart grid,” IEEE International Conference on Computer Commu-
nications (INFOCOM’12), Orlando, FL, USA, 2012.

0.5.6.7 Patents

All patents listed below belong to the society ST-Ericsson.

• R. Couillet, M. Debbah, No. 08368028.0 “Process and apparatus for performing initial
carrier frequency offset in an OFDM communication system”

• R. Couillet, M. Debbah, No. 08368023.1 “Method for short-time OFDM transmission
and apparatus for performing flexible OFDM modulation”

• R. Couillet, S. Wagner, No. 09368025.4 “Precoding process for a transmitter of a MU-
MIMO communication system”

• R. Couillet, No. 09368030.4 “Process for estimating the channel in an OFDM commu-
nication system, and receiver for doing the same”

34

http://hal-supelec.archives-ouvertes.fr/hal-00392391/en
http://hal-supelec.archives-ouvertes.fr/hal-00392393/en/
http://hal-supelec.archives-ouvertes.fr/hal-00392393/en/
http://hal-supelec.archives-ouvertes.fr/hal-00328141/en/
http://hal-supelec.archives-ouvertes.fr/hal-00328141/en/
http://hal-supelec.archives-ouvertes.fr/hal-00328156/en/
http://couillet.romain.perso.sfr.fr/docs/conf/isccsp.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/azary_admm.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/azary_admm.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/PHEV2.pdf
http://couillet.romain.perso.sfr.fr/docs/conf/PHEV2.pdf


0.5. RESEARCH ACTIVITY

0.5.7 Community Life

0.5.7.1 Technical Committees

• Member of the Signal Processing Theory and Methods Technical Committee, since 2014.

• TPC of several wireless communication and signal processing international conferences.

0.5.7.2 Special Issue Editorship
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Chapter 1

Foreword

1.1 Timetable of the technical contributions

The report introduces a contribution of my recent research activities, which I consider to be
the most advanced and elaborate work I have conducted so far and to be an appropriate topic
to account for my latest research as an assistant professor at CentraleSupélec. Indeed, quite
unlike my other activities which are to some extent in natural continuation to existing works,
this work results from an open discussion back in September 2011 with my colleague Frédéric
Pascal at CentraleSupélec on an ambitious problem never considered in the literature at that
time: that of analyzing the behavior of robust M-estimators of scatter in the random matrix
regime. This discussion led to several months of frustrating trials and errors until an important
first breakthrough was made in early 2012. This breach in the problem was large enough to
produce a first article (Couillet et al., 2014b) which set the stage to future work but for which we
had to assume hypotheses of little practical relevance, i.e., that the data vectors upon which the
M-estimator is built have independent entries. As such, in spite of the important breakthrough
from our outlook, this article suffered a lot of criticism and little understanding from the research
community.

It then took yet another year, after again several months of vain explorations, to finally reach
the most fundamental result of this work, which anecdotally resulted from a sudden inspirational
albeit simple idea. The complete derivation of the main theorem was heavily technical but the
crux of the proof still lay in this one simple ingredient. The result consisted in the understanding
of the large dimensional behavior of the M-estimator for elliptically distributed data vectors. The
main theorem shows that the M-estimator can be asymptotically well approximated by a random
matrix model of the separable variance profile type, which we had incidentally recently analyzed
in depth in (Couillet and Hachem, 2014). The result got published in (Couillet et al., 2013), a
work which we broadly advertised and which received quite positive feedback. If structurally
central to the work, the result however remained of a theoretical nature, but applications could
easily be derived from it. A first application consisted in appending a small perturbation to the
elliptically distributed data model (that in applications stands for impulsive noise observations)
to account for the presence of informative signals. Technically, this merely boiled down to
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developing a spiked version of the model studied in (Couillet et al., 2013). This entailed yet
another important article (Couillet, 2014), of practical interest this time, the main contribution
of which was the introduction of an improved MUSIC algorithm for array processing which
accounts both for large system dimensions and for noise impulsiveness. In recollection, this
precise application was considered two years before as the ultimate, most likely infeasible, task
I had expected to achieve in this vast project.

All these contributions mainly rely on finding an asymptotically (as the system dimensions
get large) close matrix approximation of the M-estimator having the key property of being
mathematically tractable, unlike the M-estimator itself. For practical purposes though, when
devising consistent estimators (as with the improved MUSIC estimator of (Couillet, 2014)),
for fair comparison against other consistent estimators or for appropriate selection of a free
parameter in the model, one requires not only consistency results but second-order statistics
(i.e., finite dimensional variance or central limit theorems). To delve into such considerations,
the aforementioned matrix approximation of the M-estimator needs be very accurate in the
sense that the approximation error (in spectral norm difference) must remain small enough not
to induce additional fluctuations in the second-order regime of the M-estimator. Unfortunately,
simulations suggest that this error is too large to allow for a simple analysis. Nonetheless, for
many practical applications, the eventual objective function often deals with quadratic forms
involving the M-estimator. For these quadratic forms, it turned out that the approximation error
(obtained by replacing the M-estimator by its matrix approximation) is significantly reduced
due to a salutary fluctuation self-averaging effect. The latter makes the error smaller than the
fluctuations of the quadratic form of interest, which further allows for an easy study of these
fluctuations. Being a technically heavy work, instead of studying the fluctuations of the improved
MUSIC algorithm (which we however strongly believe to behave the same), we restricted our
attention to a simpler application in robust signal detection by generalized likelihood ratio
tests. This unfolded into a novel false-alarm rate minimizing estimator which again accounts for
both large system sizes and noise impulsiveness, and the second-order performance of which is
accurately determined. This work was published in (Couillet et al., 2014a).

The latter contribution constitutes the last technically challenging result of this whole line of
work since 2012, which I conducted in collaboration with Frédéric Pascal, assistant professor at
CentraleSupélec and expert in robust statistics, Abla Kammoun, postdoctoral student at King
Abdullah’s University of Science and Technology and expert in advanced technical considerations
in random matrix theory, as well as Jack W. Silverstein, professor of mathematics at North
Carolina State University and one of the pioneers of the random matrix theory. Frédéric Pascal
was at the onset of the whole work and brought to light the intuitive notions behind robust
estimation. Abla Kammoun enriched several technical discussions throughout these years and
contributed among other things to prove a lemma of fundamental importance in (Couillet et al.,
2014a). As for Jack Silverstein, he took part to the early work in relation with the first articles
and provided some interesting ideas and references to handle a few nontrivial technical details
of these articles.

Once we had obtained a first set of important results in early 2013, we could envision a much
wider applicative scope than I had initially anticipated. I started at that point to share these,
by then vague, ideas to several colleagues, among which Walid Hachem, Philippe Loubaton, and
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Leonid Pastur, the three of whom are known for their contributions to both theoretical and
applied random matrix theory. All of them showed a deep interest in the work, although it was
not until I later met with Matthew McKay, professor at Hong Kong University of Science and
Technology, that the work broadened towards other models and other applications. His own
interest in shrinkage estimation methods along with my interest in robust statistics led us then
to work on so-called robust shrinkage methods which had been studied at several occasions in the
literature but never really took off for lack of appropriate theoretical tools. Together we wrote
an article on such robust shrinkage methods based on rather simpler proof techniques almost
immediately deriving from (Couillet et al., 2013). Our main finding, published in (Couillet and
McKay, 2014), was to show that the two types of robust shrinkage estimators studied in parallel
in the literature, each of which claimed by the authors to be better than the other (for rather
unclear reasons), turn out to be asymptotically equivalent for elliptical data and to be equivalent
to the well-known Ledoit–Wolf shrinkage estimator obtained for a scaled version of the data.
An algorithm was devised in the same article to determine the asymptotically best shrinkage
approximation of the population covariance matrix in terms of Frobenius norm error. Such
techniques have the advantage of accounting for impulsiveness in the vector norms and also of
benefiting from the positive effect of linear shrinkage methods à la Ledoit–Wolf when only few
observations are available. As a concrete application of this result, along the same lines, a risk
minimizing robust estimator for portfolio optimization in finance was then proposed in (Yang
et al., 2014) which, from a purely simulation-based standpoint, proved to often (if not always)
outperform alternative methods of the literature.

Although these various applications constituted a much lesser theoretical thrill and were
restricted to specific models, they underline the important potential that robust estimation
in the random matrix regime may bring to many other similar problems relying on sample
covariance matrices but expecting instabilities due to impulsiveness in the model.

From an even deeper practical standpoint though, all these contributions kept considering
the M-estimation side of the “robust M-estimators”, in that data were until that point assumed
to be clean elliptically distributed vectors (i.e., impulsiveness in the noise means heavy-tailed
randomness in the norm of a conditionally Gaussian noise vector). As we got increasingly
acquainted with the subject, we realized that some of our results suggested that (i) under these
assumptions the M-estimators are sometimes asymptotically no better than other much simpler
estimators (such as per-sample normalized sample covariance matrices) and (ii) when it comes
to selecting an optimal M-estimator from a given class of estimators for a specific problem, these
assumptions sometimes led to trivial optima (such as finding that the optimal estimator within
the open Maronna class is the Tyler’s estimator which no longer belongs to the Maronna class).
These two negative features however do not take into account the robust aspect of the estimator
in the sense that the simpler models of Item (i) and the trivial solutions of Item (ii) are naturally
extremely sensitive to the introduction of some types of outliers in the observed data. As such,
the results of our works at this point, not integrating the outlier-resilient component, could lead
to unfortunate hasty conclusions. In fact, once faced with real data such as financial time series
(instead of synthetic data), the robust estimators we devised often proved in stark opposition to
these conclusions. It is in particular at first quite surprising to observe that robust estimators
acting on supposedly close-to-elliptical real data, and thus presumably no better than some

41



CHAPTER 1. FOREWORD

theoretically equivalent methods for elliptical data, often show an outstanding performance gain
against these. Since integrating elliptical vectors and outliers in a joint model would lead to too
specific models and would ill serve our purpose, in order to bring these observations to light, we
recently investigated the action of the robust M-estimators on Gaussian data corrupted by rare
(deterministic or random) outliers. We understood through this work the fundamental hinges
on which robust estimators adequately tame down the impact of the outliers. A noticeable
observation was that, while strong-energy outliers are nicely harnessed by most M-estimator
families, outliers of weak amplitude could provoke dramatic performance loss for certain types
of M-estimators and particularly for those M-estimators which would systematically perform best
in outlier-free scenarios (such as the Tyler estimator which suffers from weak energy outliers).
From a technical viewpoint, the latter work does not meet much difficulties but instead follows
rather straightforwardly from the results in (Couillet et al., 2013).

1.2 Outline

The report describes in full technical details the aforementioned contributions following the
chronological thread described above.

Before getting into the actual contributions, Chapter 2 provides an introduction to the main
notations and objects under study in the report along with some mostly hand-waving discussions
that should bring some important insights to the reader. This, we expect, will help the reader
through the manuscript.

As the main results take the form of an approximation of M-estimation matrices by random
matrices of the separable variance type, our first technical section, Chapter 3 shall recollect the
latest findings about the spectrum of such important mathematical objects. The (recent) results
of this section are extracted from

W. Hachem, R. Couillet, “Analysis of the limiting spectral measure of large random
matrices of the separable covariance type”, Random Matrix Theory and Applications
(under revision).

Having set a solid theoretical ground for the mathematical objects under study, we shall
then be in position to introduce the most fundamental result of the present manuscript and to
describe its proof in length. This result, on the asymptotic equivalence between robust estimators
of scatter of the Maronna class for elliptical data and a certain random matrix model, along
with its associated proof, are presented in Section 4.1 of Chapter 4 and are an excerpt of

R. Couillet, F. Pascal, J. W. Silverstein, “The Random Matrix Regime of Maronna’s
M-estimator with elliptically distributed samples”, (to appear in) Elsevier Journal
of Multivariate Analysis.

The second part of Chapter 4, Section 4.2, describes the extension of this work to a perturbed
elliptical noise model of the data and the resulting improved detection and estimation procedures,
in particular to array processing. The results from this section closely follow the article
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R. Couillet, “Robust spiked random matrices and a robust G-MUSIC estimator”,
(submitted to) Elsevier Journal of Multivariate Analysis.

The adaption of the results for the robust M-estimate of the Maronna type to the hybrid
robust shrinkage model is subsequently discussed in Chapter 5. The main results and technical
proofs are first provided in Section 5.1. It is to be noted that, while the proof for the so-called
Chen model first relies on some additional technical ingredients and is moreover rather hard to
follow, the proof for the Abramovich–Pascal estimate is quite easy to understand and is in fact
much simpler than that of the Maronna M-estimator of the previous section. The innate reason
for this simplicity lies in the spectral norm boundedness of the robust estimate inverse ensured
by the shrinkage component. The reader finding it hard to follow the proof for the Maronna
estimator, the readability of which gets reduced by technical aspects of spectral norm control
and other similar subtleties, should be more at ease with the present section. These results,
along with some immediate applications to Frobenius norm minimizing robust shrinkage, follow
from the article

R. Couillet, M. McKay, “Large Dimensional Analysis and Optimization of Robust
Shrinkage Covariance Matrix Estimators”, Elsevier Journal of Multivariate Analysis,
vol. 131, pp. 99-120, 2014.

The adaptation of these results to yet another minimization problem, that of minimizing risk in
the Markowitz portfolio optimization problem is treated next in Section 5.2. This result and its
complete proof, which follows from classical derivations not fully reproduced here, are found in:

L. Yang, R. Couillet, M. McKay, “Minimum Variance Portfolio Optimization with
Robust Shrinkage Covariance Matrix Estimator”, on-going work.

The next section, Chapter 6, introduces our results on second-order statistics for quadratic
forms built upon hybrid robust shrinkage estimators and an associated application in signal
detection. The choice of hybrid robust shrinkage estimators against Maronna type estimators
was mostly made out of mathematical simplicity, for the reasons evoked above, and is mostly
instrumental to the understanding of similar second-order results for robust estimators. The
proof of the result, however complex and quite involved, is thus at least not overloaded by
additional technical aspects. This proof is presented in full length in Section 6.1. The application
of this result to a robustness-improved generalized likelihood ratio test appropriate for source
detection in impulsive noise environments is then introduced in Section 6.2. These results are
originally found in:

R. Couillet, A. Kammoun, F. Pascal, “Second order statistics of robust estimators
of scatter. Application to GLRT detection for elliptical signals”, (submitted to)
Elsevier Journal on Multivariate Analysis.

Finally, the report will be concluded by an account of the effect of robust estimators of the
Maronna type on data collections which, unlike in the previous sections, include outliers. The
results in this section, Chapter 7, provide a clear understanding of the “magic in play” that
many simulation trials on actual real-world data convey. These are mostly extracted from
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D. Morales, R. Couillet, M. McKay, “Large dimensional analysis of Maronna’s M-
estimator with outliers”, on-going work.
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Chapter 2

Introduction

The present work discusses our first breakthroughs in an, as of 2012, unexplored yet fundamental
research field: that of robust statistics in the random matrix regime. Before precisely defining
what we mean by the latter and discussing our contributions, let us start by motivating the
work by a fifty-year old challenge.

2.1 Motivation

Back in the sixties, John W. Tukey, who became famous for his contributions to modern signal
processing, was one of the first to understand the important need for improved mathematical
methods to automatically deal with large datasets. Fifty years later, the demand for big data
analysis tools has grown fast and has now become a topic of major concern in the statistics
and signal processing communities. Of particular importance among big data challenges is the
stringent need for breaking the curse of dimensionality that naturally occurs when dealing with
exact statistics of large dimensional populations. Recent mathematical tools have made it clear
that the curse of dimensionality paradigm can be turned into a “dimensionality blessing”, a term
coined by the statistician David L. Donoho in (Donoho, 2000). The key idea somehow follows
from a similar viewpoint as long taken in statistical mechanics by which the many degrees of
freedom (or randomness) in both the system observations and the system dimensions result in
a statistical “hardening” effect, such as met in probability theory with the classical law of large
numbers.

Random matrix theory is one of today’s major driving tools (along for instance with compres-
sive sensing) for bringing dimensionality blessings in signal processing, although its roots date
back to the works of Vyacheslav Girko on generalized statistics (Girko, 1987). Let us describe
how generalized statistics provide dimensionality blessings. Denoting X = [x1, . . . , xn] ∈ CN×n
the matrix of n stacked observed random data x1, . . . , xn, with xi ∈ CN , it is assumed that N
and n are both large but that the ratio N/n is non trivial (i.e., sufficiently remote from zero or
infinity). This regime is appropriate to model engineering systems built upon a large number N
of nodes which extract n successive observations of a shortly stationary environment. Statistical
methods based on X mostly rely on functionals of the type

∫
f(X)µ(dX), with µ the measure of
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the joint entry distribution of X, which are usually difficult objects to evaluate. Moreover, since
the paradigm n� N is not valid here, classical asymptotic statistics (law of large numbers and
central limit theorems relying on n→∞ and N fixed) are impractical. This is mostly what char-
acterizes the curse of dimensionality for large data matrix operations. Spurred by the ideas of
Girko, the last ten years of random matrix studies for signal processing have successfully turned
these curses into blessings, in particular by providing improved methods that supplement and
often largely outperform classical asymptotic signal processing techniques; among those meth-
ods are notably novel detection and estimation techniques for array processing (Mestre, 2008b;
Couillet et al., 2011b). Technically speaking, the dimensionality blessings appear whenever,
in addition to independence between the vectors {xi}ni=1, degrees of independence among the
entries of the vectors are exploited (Bai and Silverstein, 2009) (or more generally when a con-
centration of measure phenomenon can be exhibited (El Karoui, 2009)). Now, since each xi may
be built upon up to O(N) statistical degrees of freedom and since N = O(n) in the large random
matrix assumptions, exploiting these degrees of freedom often results in fast converging meth-
ods, with in particular central limit theorems with speed O(n) instead of the standard O(

√
n).

This empowers methods originating from random matrix theory against classical asymptotic
approaches, even for N not so large as often observed in practice.

Another point made by Tukey was that practical data, upon which statistical treatment is
to be performed, often diverge from their expected model. Since practical systems are often
designed out of modelling, this lack of control on data negatively affects the system to a point
usually not accounted for. Along with Peter Huber, Tukey then became one of pioneers of the
then new field of robust statistics. The latter precisely consists in determining the impact of ill-
behaved data on systems and in designing improved systems that cope with such shortcomings
(Huber, 1964). Today robust statistics form a rich research field, see e.g., (Maronna et al.,
2006), the major contribution of which being the elaboration back in the seventies of various
classes of robust estimators of mean and variance and of robust regression estimators. These
robust estimators owe their appellations to the fact that they are optimal in their being weakly
affected by many or arbitrarily ill-behaved outliers among the dataset. Robust statistics have
even come up with metrics to gauge the robustness of various estimators, among which the
influence function (measuring the degree of negative impact of the introduction of few outliers)
and the breaking point (measuring the proportion of outliers that an estimator can tolerate
before becoming arbitrarily biased) are the most important representatives. The research in
robust statistics, which thrived in the seventies and eighties, however slowly lost momentum in
the subsequent decades. A probable explanation relates to the fact that the tools developed
in this field inherently take mathematically intractable forms. As a telling example, which we
shall study throughout these notes, consider the estimation of population covariance matrices
from observed samples. While the known sample covariance matrix is a mathematically simple
and thus practical estimate for the population covariance matrix, it is highly not robust against
outliers or heavy-tailed distributions; its natural robust counterpart is extremely more powerful
in its resilience to outliers, but it suffers from its being only defined as the solution of a fixed-
point equation and thus lacks mathematical tractability. Robust statistics have come up with
important results on the performance of the estimators themselves, however only in the regime
where the number of observed data is extremely large. Also, when used as a plug-in estimator for
other purposes than merely estimating population covariance matrices, the resulting estimator
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statistics quickly become unmanageable.

This report studies the behavior of robust estimators of scatter in the regime where the
number of observations n and the population size N are both large. As shall be seen, our main
finding is to realize that, for various classes of data distributions of practical interest, these
estimators – which we recall have an intrinsic intractable structure – asymptotically behave
similar to simple and well-understood classes of random matrices, in particular separable sample
covariance matrices. This result alone has major consequences for robust statistics that we
believe may allow for a resurgence of its lost interest by the statistics and signal processing
communities. Indeed, for one, through the approximation by well-known random matrices, the
result turns the intractable robust estimators into asymptotically tractable entities. This result,
although of a purely theoretical nature, in turn allows for the development of new detection and
estimation schemes derived from now classical random matrix-based algorithms but featuring
the robust estimator of scatter instead of the sample covariance matrix as central ingredient.
These schemes shall then benefit from the robustness properties carried along by the robust
estimator of scatter.

2.2 Sample covariance matrices, robust estimators of scatter,
and the random matrix regime

Let us now turn the previous motivational discussion into rigorous mathematical terms.

2.2.1 The downsides of sample covariance matrices.

Letting x1, . . . , xn ∈ CN be n independent realizations of a random variable x with say zero mean
and covariance matrix CN , it is well-established that the sample covariance matrix 1

n

∑n
i=1 xix

∗
i

is a consistent estimator for CN in the sense that, as n → ∞, 1
n

∑n
i=1 xix

∗
i

a.s.−→ CN . Aside
from this fundamental consistency aspect, the major reasons for the almost exclusive use of
sample covariance matrices as an estimator for population covariance matrices in the literature
are twofold: (i) from a practical outlook, it takes an extremely simple form which allows for easy
theoretical analysis and (ii) on a more philosophical viewpoint, it corresponds to the maximum-
likelihood estimator for Gaussian x. However, sample covariance matrices come along with at
least two main drawbacks. For one, the sample covariance matrix estimate is quite sensible to
the introduction of arbitrarily strong outliers. Precisely, the introduction of a single outlying
observation of say arbitrarily large norm induces an arbitrarily large bias on the estimation of
CN . Thus, not only may the sample covariance matrix be affected by a single bad observation,
but it can become arbitrarily remote from the expected CN to be estimated. Second, in practical
settings where N and n are similar in size, it is a weak estimator for CN which entails that, when
used as a plug-in estimator, functionals of CN are in general no longer consistently estimated
by the same functional of 1

n

∑n
i=1 xix

∗
i .

These two problems have been tackled with success by independent fields of research: robust
statistics which aims in particular at producing alternative estimators for CN which are resilient
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to a possibly large number of arbitrarily strong outliers and random matrix theory which con-
siders among other questions that of consistently estimating functionals of CN when both N
and n grow large. As we shall see, the objects of interest produced by robust statistics however
do not fall into the realm of classical entities studied in random matrix theory, which thus until
recently left open the questions of analyzing the performance of robust estimators as N and n
are both large on the one hand and therefore of developing improved algorithms that would be
both resilient to outliers and large system sizes on the other. The purpose of this document
is to report the recent advances that we performed to reconcile both fields and to derive the
aforementioned theoretical analyses and improved algorithms.

2.2.2 The advent of robust statistics.

To start, let us precisely introduce the objects of interest throughout the work, that is robust
estimators of scatter.

Huber was historically the first one to provide a definite formulation of a robust estimator.
In his landmark article (Huber, 1964), Huber assumes the observation of n independent variables
x1, . . . , xn ∈ C with identical probability measure (1−ε)µ+εµ′, where µ is a known and expected
distribution fitting the model, µ′ some polluting unknown distribution, and ε > 0 small. He
then determines, both for the mean (or location parameter) and for the variance (or scale),
the estimator among the class of M-estimators1 which meets the smallest possible asymptotic
variance (as n → ∞) in the worst possible choice for µ′ (this is thus formulated as a min-max
problem). Huber shows that such M-estimators are unique for both location and scale and
provides an explicit characterization of these.

Those results easily extend to multivariate data x1, . . . , xn ∈ CN to the estimation of location
and scatter (or covariance) matrix. In the case of the M-estimation of scatter for zero mean
observations, the estimator, call it ĈN ∈ CN×N , is one solution of the fixed point equation
(provided n > N and that all subsets of N − 1 vectors are linearly independent)

ĈN =
1

n

n∑
i=1

uH

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i (2.1)

where uH : R+ → R+ is the continuous function

uH(s) = min

{
α,
β

s

}
and α, β > 0 are parameters depending on ε and µ, the exact values of which are of little
relevance for our present considerations. The focus of our work shall indeed not be on the
technical details of how such a result is obtained but rather on how ĈN behaves when both N
and n are of similar dimensions (and rather large). Note from the expression (2.1) that ĈN
appears as a form of weighted sample covariance matrix with weights being either α for small

1Recall that an M-estimator ẑ for i.i.d. observations z1, . . . , zn of a random variable z is such that, for some
cost function ρ : R+ → R+, ẑ is a minimizer of

∑n
i=1 ρ(zi − ẑ). The M-estimation of the location parameter of

x1, . . . , xn is that for zi = xi, while the M-estimator of scale is that for zi = log(|xi|2).
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x∗i Ĉ
−1
N xi or smaller (possibly arbitrarily small) positive values for larger x∗i Ĉ

−1
N xi. Outliers are

then considered here as vectors xi’s for which the quadratic form takes large values, which hand-
wavingly might be seen as vectors xi whose alignment to the leading eigenspaces formed by all
the xj ’s is weak.

As robust statistics and M-estimation are inherently connected, a parallel track of robust
estimation theory consists in letting x1, . . . , xn be i.i.d. vectors taken from a quite impulsive but
known distribution, the scatter matrix estimate then being the maximum-likelihood estimator
for this distribution. In this case, outliers are seen as those few samples extracted from the
impulsive vector distribution that show extreme behavior. Maronna realized in (Maronna, 1976)
that, for x1 taken from the class of elliptical distributions, the maximum-likelihood estimate for
the scatter matrix takes a specific form which belongs to a generic class of estimators, that we
shall from now on refer to as the Maronna class. The estimators from this class are defined as
solutions ĈN of the equation

ĈN =
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i (2.2)

where u : R+ → R+ is a continuous non-increasing function such that φ(x) = xu(x) is non-
decreasing with limx→∞ φ(x) = φ∞ > 1. Under some technical conditions, Maronna shows that,
for each N,n with N < n, a solution of (2.2) always exists. Besides, if φ is increasing (and not
only non-decreasing), ĈN is the unique solution of (2.2), allowing then for a proper definition
of ĈN . This result is generalized in (Kent and Tyler, 1991) where the aforementioned technical
conditions are relaxed to the mere requirement of linear independence of every family of N − 1
vectors among the xi’s.

Note that, setting aside the requirement for φ to be increasing, the function uH previously
defined would belong to the Maronna class. As such, Maronna’s class of estimators of scatter
encompasses both maximum-likelihood estimators of scatter for elliptical observations and, up
to a slight smoothening of Huber’s function uH, Huber’s robust estimator for outliers. The
u functions specified above in particular all behave similar to uH in their attenuating those
observations xi meeting large values for 1

N x
∗
i Ĉ
−1
N xi. The family of estimators ĈN defined by

(2.2) is as such quite an interesting object, to which we shall dedicate an important part of the
report.

Following on Maronna’s work, Tyler took a third approach to robust M-estimation in (Tyler,
1987) by assuming that, if impulsiveness is only a matter of vector norm, rather than entire
distribution, as in the case where xi =

√
τiyi for i.i.d. yi of unit norm and random heavy-tailed

τi > 0, then a so-called scale-free robust estimator of scatter is adequately defined for all N < n,
as the unique solution with given trace, of the equation

ĈN =
1

n

n∑
i=1

1
1
N x
∗
i Ĉ
−1
N xi

xix
∗
i . (2.3)

Note the importance here of constraining the trace of ĈN as it is easily seen that, if ĈN is a
solution to (2.3), then so are every αĈN for α > 0 (and it is then clear that CN is only estimated
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up to a constant). A second remark of importance is that Tyler’s estimator behaves again similar
to Maronna’s estimators but for the fundamental difference that x 7→ 1/x is not defined at x = 0
as opposed to Maronna’s u function. This slight change has fundamental consequences which,
as shall be seen, makes the analysis of Maronna’s estimator much more amenable to our proof
approaches than Tyler’s.

The aforementioned ĈN estimators have the downside of not being defined for N ≥ n which
is a situation of practical interest in the case of large dimensional observations or scarce data. In
a similar way that the so-called linear shrinkage estimator (1− ρ) 1

n

∑n
i=1 xix

∗
i + ρIN , ρ ∈ [0, 1],

was developed in (Ledoit and Wolf, 2004) to compensate for the poor sample covariance matrix
performance in these scenarios (a discussion on this poor performance is provided later in this
section), two teams developed in parallel two hybrid robust-shrinkage estimators in (Pascal et al.,
2013; Chen et al., 2011), respectively defined as the unique solutions ĈN (ρ) and ČN (ρ) of

ĈN (ρ) = (1− ρ)
1

n

n∑
i=1

1
1
N x
∗
i Ĉ
−1
N (ρ)xi

xix
∗
i + ρIN (2.4)

for ρ ∈ (max{0, 1− n/N}, 1] and

ČN (ρ) =
B̌N (ρ)

1
N tr B̌N (ρ)

(2.5)

B̌N (ρ) = (1− ρ)
1

n

n∑
i=1

1
1
N x
∗
i Č
−1
N (ρ)xi

xix
∗
i + ρIN

for ρ ∈ (0, 1]. By different means, the authors show that the defining implicit equations have
unique solutions for all N,n and all x1, . . . , xn. The difference between both estimators lies
foremost in the different normalizations, as 1

N tr ČN (ρ) = 1 while 1
N tr Ĉ−1

N (ρ) = 1. However, it
is not clear, even to the authors (to whom we asked), what practical advantage each estimator
has over the other. We however concur with the authors on the potential performance gains in
applications induced by the free parameter ρ (if properly set) and by the inherent robustness of
the estimator.

Note that zero is excluded from the definition space of ρ for both estimators. The case ρ = 0
corresponds indeed to the aforementioned Tyler’s estimator for which uniqueness no longer
holds. Technically speaking, ĈN (ρ) and ČN (ρ) will be much simpler to analyze than Maronna’s
M-estimator. This is precisely due to ρ > 0 which ensures the boundedness in spectral norm of
the inverses of the two estimators.

For most of the articles mentioned so far, the authors systematically provided asymptotic
properties of the ĈN (or ĈN (ρ), ČN (ρ)) estimators as n → ∞, while N is kept constant.
The results are that, for well-behaved distributions for x1, ĈN (or any other estimator) is a
consistent estimator of the covariance or scatter matrix and fluctuation results such as central
limit theorems at rate 1/

√
n are established. These results are of key importance to understand

in particular the important gains in variance of the estimators against the sample covariance
matrix estimator. These gains can in fact be usually made arbitrarily large by selecting a specific
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distribution for the xi which induces particularly slow convergence of the sample covariance
matrix while being properly harnessed by the robust estimator counterpart. As this is not much
informative, the performance in terms of the variance of the robust estimator on purely Gaussian
data is often considered instead. The latter allows for an assessment of the loss of performance
naturally induced by shifting for a robust – thus not maximum-likelihood for Gaussian inputs
– estimate. A classically obtained result is that robust estimators of scatter perform as sample
covariance matrices would on a smaller amount of data; thus robustness comes at the cost of a
requirement for more data.

2.2.3 The large N, n regime.

The results above are however of little relevance when it comes to studying large dimensional
systems for which both N and n are large, or in more practical terms when the system dimension
is large but one cannot afford too many observations of it. In this setting, random matrix
theory has established for long (Marc̆enko and Pastur, 1967) that the sample covariance matrix
is already no longer a consistent estimator of the population covariance matrix, in the sense
that ‖ 1

n

∑n
i=1 xix

∗
i − CN‖ does not converge to zero as N,n → ∞ with N/n → c ∈ (0,∞) for

all distributions of xi of practical relevance. It is thus quite unexpected that ‖ĈN −CN‖ would
converge to zero for the various robust estimators described above. It indeed does not.

This being said, in many practical situations, estimating CN is not the eventual objective.
Often in signal processing one is rather concerned with functionals of various statistics of the
system under study, and in particular in functionals of CN . Under the classical large n as-
sumption, the sample covariance matrix thus merely serves the purpose of a plug-in estimator
for this functional. That is, calling f this functional, one exploits convergences of the type
f( 1

n

∑n
i=1 xix

∗
i ) → f(CN ). Due to inconsistency in the random matrix regime, i.e., as both N

and n grow large, for most cases of interest such convergence results unfortunately no longer
hold in this regime. Recent random matrix works (following mostly from the pioneering works
from Girko (Girko, 1987)) have tackled the question of providing such estimates, consistent in
the regime N,n → ∞ with N/n → c ∈ (0,∞), as in e.g., (Mestre, 2008b) where consistent
estimates of linear functionals of the eigenvalues of CN are provided. The approach carried
out to obtain such estimators consists in a thorough understanding of the limiting spectrum of
1
n

∑n
i=1 xix

∗
i as provided early by (Silverstein and Bai, 1995; Silverstein and Choi, 1995), from

which a relation expressing the sought for functional f(CN ) in terms of a functional of this
limiting spectrum is retrieved. Approximating the latter by the finite (but large) dimensional
spectrum of 1

n

∑n
i=1 xix

∗
i provides the estimator. It is important to raise a philosophical com-

ment at this point. The method we just presented is based on exploiting the sample covariance
matrix, which is no longer a consistent estimator for CN in the large N,n regime, as a means to
retrieve information about CN . Although this might seem natural, one could have also consid-
ered other pre-filtering of the data x1, . . . , xn to obtain the same information. The reason why
the sample covariance matrix is used is obviously out of simplicity and surely few researchers
ever thought of considering any other starting point. However, note that, in addition to leading
to simple technicalities, one may expect that the several innate properties of the sample covari-
ance matrix, i.e., its being maximum-likelihood for Gaussian xi and its being consistent with
CN for n large alone, should play a role in the performances of the eventual f(CN ) estimator.
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In particular, we might expect better performance for Gaussian inputs than non-Gaussian ones,
which often turns out to be the case (as confirmed by various central limit theorems that exhibit
a variance that is minimal under Gaussian inputs, see e.g., (Hachem et al., 2008b)).

When it comes to extending the above sample covariance matrix-based studies to random
vectors x1, . . . , xn following more impulsive distributions (such as elliptical distributions) or con-
taining a certain amount of outliers, many problems are observed. For one, the spectrum of the
sample covariance matrix may be of asymptotically wide, if not unbounded, support (in the
elliptical case) or may maintain a bounded limiting support but contain isolated eigenvalues
purely due to outliers. In both cases, these properties have a negative impact on the resulting
estimators of f(CN ), the performance of which are often optimized when the spectra of the
sample covariance matrices have a short support and do not exhibit spurious eigenvalues. In
extended information-plus-noise models (in which xi stands for noise observed at time instant
i), the largest eigenvalues carry much information and are better found as far away as possible
from the remaining eigenvalues. The fact that a pure-noise (only xi) setting may exhibit arbi-
trarily large eigenvalues or spurious “signal-like” (and thus deceiving) eigenvalues leads to many
problems that are in general not easily dealt with. Following our philosophical line of thought,
it is sensible that these concerns might be tamed down if one would use robust estimators of
scatter in place of sample covariance matrices. This seems all the more compelling that in the
case of elliptical vector observations, Maronna’s estimator of scatter is a maximum-likelihood
estimator for CN , which makes its use much more natural than the use of sample covariance
matrices in the first place. As we shall see, our intuition will turn out to be correct in that the
estimators developed in this report will show unexpectedly powerful properties of outlier control
and of adaption to elliptical data.

2.2.4 Harnessing robust M-estimators in the large N, n regime.

As we recalled earlier, deriving estimators of functionals of CN in the large N,n regime based
on the sample covariance matrix as the first building block requires a deep understanding of
the limiting spectrum of the latter, from which a connection between some other functional
of the sample covariance matrix and the sought for functional of CN can be drawn to obtain
the estimator. Trading the sample covariance matrix for a robust estimator of scale, call it
generically ĈN , in this scheme thus demands a prior understanding of the large N,n behavior of
ĈN . This task turns out to be quite challenging as ĈN , unlike sample covariance matrices and
similar objects of interest in random matrix theory, has a quite involved dependence structure
of its entries. In effect, we do not know of any past contributions (be it in mathematics or in
applied science) prior to 2012 when we started this study that tackled any such random matrix
model. Most results of random matrix theory indeed rely on some clear independence, or simple
dependence, structure of the matrix entries; here, even for independent xi with independent
entries, the entries of ĈN are related in a non-trivial manner. Lifting this difficulty constituted
the main challenge of the work. What we shall precisely demonstrate is that, for xi i.i.d. elliptical
and ĈN the Maronna estimator of scatter, ‖ĈN − ŜN‖

a.s.−→ 0 in spectral norm, where ŜN is a
much more classical random matrix with clear entry dependence. This result is proved in full
length in Section 4.1.
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The strength of the spectral norm convergence induces immediately the possibility to study
the spectrum of ĈN through that of ŜN . Of particular importance is the fact that not only do
ĈN and ŜN share the same limiting spectrum, but they also share the (approximately) same
individual eigenvalues for all finite but large N,n. This point has fundamental consequences in
statistical inference procedures discussed below. Technically speaking, the matrix ŜN precisely
belongs to the class of random matrices with a separable covariance. Similar to mere sample
covariance matrices, the limiting spectrum of ŜN is well characterized, although only recently
was its study fully completed in (Couillet and Hachem, 2014). Since these elements are key to
a detailed study of ĈN in the random matrix regime, Chapter 3 recalls these elements and shall
constitute a good opportunity for introducing the various analytical tools needed in the rest of
the report.

Having performed the challenging task of harnessing ĈN for large N,n, the statistical infer-
ence of functionals f(CN ) based on ĈN then merely consists in applying the classical random
matrix tools developed to this aim, albeit for the slightly more complex ŜN matrix model. The
convergence ‖ĈN − ŜN‖

a.s.−→ 0 indeed allows for an asymptotically licit substitution of ĈN by
ŜN in the expression of most estimates of f(CN ). This part of the study does not bring any par-
ticular difficulty. As a practical example, having generalized the convergence ‖ĈN − ŜN‖

a.s.−→ 0
to an information-plus-noise model of xi with elliptical noise and small rank information, we
obtained consistent estimates, based on ĈN , for two types of functionals of the information part
of the signal having important applications in array processing. Precisely, we adapt the classical
array processing MUSIC algorithm to evaluate source powers and angles of arrival contained in
the deterministic parameters of the model (which is not exactly CN to be fully correct). Details
are provided in Section 4.2.

Following the same approach carried out for ĈN of the Maronna class, we then similarly
study the large dimensional behavior of the robust shrinkage matrices ĈN (ρ) and ČN (ρ). Al-
though the final results for both matrices shall take a slightly different form than for ĈN of
the Maronna class, the derivations to reach these are essentially the same and, apart from a
technical complication for ČN (ρ), do not present any particular difficulty. The interest of pre-
senting these results in the report mostly lies on practical grounds. Many classical statistical
inference applications (in fields as various as statistical biology or finance) where N > n are
indeed already known to gain from Ledoit–Wolf shrinkage of the sample covariance matrix. As
these applications also often involve outlying or impulsive data, the estimators ĈN (ρ) and ČN (ρ)
are expected to further cope with this aspect. A second useful property of ĈN (ρ) and ČN (ρ)
lies in their analytical simplicity which shall ease the more elaborate considerations, such as
central limit theorems, discussed later on. The theoretical considerations are reported in Sec-
tion 5.1, while applications, here to portfolio optimization in financial statistics, are the object
of Section 5.2.

2.2.5 Large N, n performance of robust consistent estimators.

As is classical not only in random matrix theory but in large dimensional statistics at large,
beyond consistency, one is often interested in the second order statistics of the studied estimators.
These, usually inaccessible for all finite N,n, are often obtained through central limit theorems.
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In random matrix theory, many statistics of practical interest lead to central limit theorems,
either with fluctuations of order O(1/n) for linear eigenvalue functionals or of order O(1/

√
n)

for quadratic forms. As of today, multiple methods exist to achieve central limit theorems for
random matrix estimators based on a sample covariance matrix, as for instance martingale (Bai
and Silverstein, 2004) or characteristic function (Pastur and Ŝerbina, 2011) approaches. The
fluctuations of functionals of the matrix ŜN , the earlier mentioned random equivalent for ĈN ,
are in particular amenable to calculus via these methods. But, while ŜN was seen to be an
adequate plug-in estimator for ĈN allowing for the study of “first order” functionals of ĈN
(among which the aforementioned estimators of f(CN )), it cannot be straightforwardly said
that the second order statistics of functionals of ĈN are asymptotically the same as those of the
same functionals with ŜN in place of ĈN . If one were able to prove the stronger convergence

nα‖ĈN − ŜN‖
D−→ 0 for some α > 0, then one could ensure that most classical functionals of ĈN

fluctuating at rate O(1/nβ) for any β < α have the same fluctuations as for ŜN . Unfortunately,
the latter convergence does not seem to hold for any α ≥ 1/2 (which is the minimum requested
for fluctuations of quadratic forms). This means that finer results are required to ensure that a
straightforward substitution of ĈN by ŜN in the fluctuations study is authorized.

Since generic fluctuation results are difficult to obtain (even for classical sample covariance
matrix based random matrix results), we shall concentrate here on a specific form of functionals
of ĈN , that is functionals of the bilinear (or quadratic) form a∗ĈkNb for k ∈ Z and ‖a‖ = ‖b‖ = 1.
For simplicity and practical interest, our focus will precisely be on bilinear forms for the shrinkage
robust estimator ĈN (ρ) defined in (2.4) rather than for Maronna’s estimator. For these bilinear
forms, when x1, . . . , xn are i.i.d. elliptical, it is possible to prove that a∗ĈkN (ρ)b − a∗ŜkN (ρ)b =

oP (nε−1) for all ε > 0. This and the fact that a∗ŜkN (ρ)b fluctuates in n−
1
2 ensures that so does

a∗ĈkN (ρ)b with the same limiting distribution. Proving the convergence a∗ĈkN (ρ)b−a∗ŜkN (ρ)b =

oP (nε−1) is a difficult task which we handle in much the same way that we prove ‖ĈN (ρ) −
ŜN (ρ)‖ a.s.−→ 0, however with some important improvement necessary to gain in convergence
speed. The technical details are explored in Section 6.1, while an application to false alarm
minimizing source detection under impulsive noise is carried out in Section 6.2.

2.2.6 The impact of outliers.

It was recalled multiple times, although loosely commented, that all large N,n results discussed
so far suppose x1, . . . , xn to be i.i.d. elliptically distributed. The reason for such a systematic
modelling is twofold: (i) elliptical vectors are easy to study, and (ii) in much the same way
that Gaussian variables appropriately model background noise phenomena, elliptical vectors
constitute an adequate extension to many impulsive noise scenarios of practical interest. How-
ever, they at least do not properly model what Huber initially considered outlying data, that
is unknown vectors not necessarily attached to any natural distribution. Outliers may be as
various as missing data, data arising from a short-time modification of the system model, or
deterministic unknown vectors altogether that arise from a priori unexpected sources. For these
scenarios, Huber’s estimator, which we haven’t considered in itself so far (but only as an example
of the Maronna class), is expected to bring advantageous properties. In our last study, proposed
in Chapter 7, we undertake this analysis and understand clearly why Huber’s estimator is so
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fundamentally precious and more efficient in particular than Tyler’s estimator in taming down
the effect of unknown outliers. For this study, instead of considering the xi’s i.i.d., we assume
that a large quantity of them are simply Gaussian with covariance CN (for simplicity) and that
the remaining quantity is deterministic but unknown. The limiting behavior of the matrix ĈN ,
which again can be assimilated to that of a tractable matrix ŜN (different this time), sheds light
on the role played by the interaction between CN and the deterministic outliers in the weighs
affected by uH to each vector. This analysis further allows for an assessment of the robustness
performance of the estimators of the Maronna class which we evaluate by means of various
spectrum comparison metrics of ĈN for the outlier-free versus non outlier-free data.

2.3 A word on notations

Robust M-estimates. Throughout the notes, we shall denote ĈN robust matrices of the
Maronna class, defined in (2.2). Despite closeness in notation, these will be distinct from ĈN (ρ)
and ČN (ρ), reserved for robust shrinkage estimators. The Tyler estimator will not be discussed
much and shall, in a slight abuse of notation, be referred to as ĈN (0); indeed, although ĈN (ρ)
as defined in (2.4) only for ρ > 0, letting ρ = 0 in (2.4) provides the expression (2.3) of Tyler’s
estimator. Finally, it should be mentioned that in some of the proofs, for notational simplicity,
the indexes N and arguments ρ in parentheses might be dropped. From the context, these will
never create any possible confusion with other notations.

Vector notations. Although from chapter to chapter our basic system settings will change
with in particular variations in the vector dimensions and statistical representations, we will
enforce the following vector convention. The notation wi will mostly stand for vectors with
either i.i.d. entries zero mean and unit variance entries or uniformly distributed on the sphere of
radius the square root of the dimension of wi. From a random matrix viewpoint, at least as far
as first order convergence is concerned, these two hypotheses are essentially one and the same.
We shall then denote zi a vector of the type Awi for A a properly size deterministic matrix, so
that zi has zero mean and covariance AA∗. Then we shall denote xi the observation vector which
often will be of the type xi =

√
τ iAwi with τi > 0 some real number modelling impulsiveness;

alternatively, xi might follow an extended form of this basic setting, in particular in Section 4.2
where xi will be of the form xi = Asi +

√
τ iwi with Asi standing for the signal part of xi and√

τ iwi for its noise part, or in Section 7 where xi will be modelled as xi = Awi for some i’s and
xi = ai for deterministic vectors ai for other i’s.

Other notations. As for other notations of importance in this report, we shall take the fol-
lowing conventions. We denote λ1(X) ≤ . . . ≤ λN (X) the ordered eigenvalues of any Hermitian
(or symmetric) matrix X. The superscript (·)∗ designates transpose conjugate (if complex) for
vectors or matrices. The norm ‖ · ‖ is the spectral norm for matrices and the Euclidean norm
for vectors. The cardinality of a finite discrete set Ω is denoted by |Ω|. Almost sure conver-
gence is written

a.s.−→. We use the set notations R+ = {x ∈ R, x > 0}, A∗ = {x ∈ A, x 6= 0},
C+ = {z ∈ C,=[z] > 0}, and similarly for R−, C−, R∗+, etc. The Hermitian (or symmetric)
matrix order relations are denoted A � B for A−B nonnegative definite and A � B for A−B
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positive definite. The Dirac measure at point x ∈ R is denoted by δx. Real and imaginary parts
of z ∈ C are denoted respectively by <[z] and =[z].
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Chapter 3

The limiting spectrum of separable
sample covariance matrices

As mentioned in the introduction, the most important results of this report consist in showing
that various robust estimators of scatter, call them generically ĈN , defined as the solutions of
(2.2), (2.4), (2.5), etc. and constructed from i.i.d. elliptical vectors x1, . . . , xn can be asymp-
totically well approximated by matrices which we shall denote ŜN . These matrices ŜN will be
shown to belong to a well-known class of random matrices of the separable covariance type.
As such, many properties of ŜN naturally transfer to ĈN , starting with its limiting eigenvalue
distribution, when properly defined. While the study of the defining equations for the limiting
spectrum of matrices of the type ŜN dates back to the early nineties, no thorough study of the
analytical properties of this spectrum has ever been carried out. This first chapter intends to
fill the gap by showing, in a similar fashion as in (Silverstein and Choi, 1995), that the limit-
ing spectrum is continuous away from zero, analytical whenever the density is positive, and its
support can be fully characterized.

This chapter will also offer the opportunity to recall the basic analytical tools at the root of
many random matrix results and essential to a good understanding of this report.

3.1 Introduction and problem statement

We consider the N × n random matrix X = C
1
2
NWT

1
2 where W is an N × n real or complex

random matrix having independent and identically distributed elements with mean zero and
unit variance, the N×N matrix CN is determinisitic, Hermitian and nonnegative, and the n×n
matrix T is also deterministic, Hermitian and nonnegative. We assume that N,n→∞ such that
N/n = cN → c > 0. We also assume that the spectral measures νn of CN and ν̃n of T converge
respectively towards the probability measures ν and ν̃ as N →∞ and n→∞, respectively. We
assume that ν 6= δ0 and ν̃ 6= δ0, where we recall that δx is the Dirac measure at x.

Many contributions showed that the spectral measure of ŜN = 1
nXX

∗ converges to a de-
terministic probability measure µ and provided a characterization of this limit measure under
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various assumptions (Girko, 1990; Shlyakhtenko, 1996; Boutet de Monvel et al., 1996; Hachem
et al., 2006), the weakest being found in (Zhang, 2006). We show here that µ has a density away
from zero, this density being analytical wherever positive, and it behaves as

√
|x− a| near an

edge a of its support for a large class of measures ν, ν̃. We also provide a complete characteriza-
tion of this support along with a thorough analysis of the master equations relating µ to ν and
ν̃.1 To that end, we follow the general ideas already provided in the classical paper of Marc̆enko
and Pastur (Marc̆enko and Pastur, 1967) and further developed in (Silverstein and Choi, 1995)
and (Dozier and Silverstein, 2007).

In (Silverstein and Choi, 1995), Silverstein and Choi performed this study for the sample
covariance matrix model where T = In. The outline of the present section closely follows that
of (Silverstein and Choi, 1995) although at multiple occasions our proofs will depart from those
of (Silverstein and Choi, 1995), allowing for a more self-contained analysis. In particular, while
Silverstein and Choi benefited from the existence of an explicit expression for the inverse of the
Stieltjes transform of µ when T = In, this property no longer holds in the present more general
setting which requires more fundamental analytical tools.

We recall in passing that, for T = In, if maxi dist(λi(CN ), supp(ν)) → 0 and some mild
additional conditions are satisfied, it was further shown in (Bai and Silverstein, 1998) that, with
probability one, no closed interval outside the support of µ contains an eigenvalue of ŜN for all
large n. In (Bai and Silverstein, 1999), a finer result on the so called exact separation of the
eigenvalues of ŜN between the connected components of the support of µ is shown. Note that
the requirement maxi dist(λi(CN ), supp(ν))→ 0 is quite fundamental in practice (although not
necessary in the mathematical sense) since, if not fulfilled, eigenvalues of ŜN would be allowed
to wander away from the support of µ. This remark will drive the behavior of the eigenvalues
of ĈN in Chapter 4 with major consequences for the applications presented in Section 4.2.

Recently, it has been discovered that the characterization in (Silverstein and Choi, 1995)
of the support of µ and the results on the master equations relating µ to ν, beside their own
interest, lead in conjunction with the results of (Bai and Silverstein, 1998, 1999) to the design of
consistent statistical estimators of some linear functionals of the eigenvalues of CN or projectors
on the eigenspaces of this matrix. Such estimators were developed in particular by Mestre in
(Mestre, 2008a,b), the initial idea dating back to the work of Girko (see e.g., (Girko, 2001)).

Turning to the separable covariance matrix ensemble of interest here, the absence of eigenval-
ues outside the support of µ (under similar fundamental conditions as discussed above) has been
established by Paul and Silverstein in (Paul and Silverstein, 2009) without characterizing this
support. The results of the present chapter therefore complement those of (Paul and Silverstein,
2009). More importantly, similar to the case T = In, these results are a necessary first step to
devise statistical estimation algorithms of e.g., linear functionals of the eigenvalues of one of the
matrices CN or T . Finally, it has been noticed that there is an intimate connection between
the square root behavior of the density of the limit distribution of the (scaled-centered) extreme

1Note that the requirement of spectral measures convergence for both CN and T may seem relatively stringent
and one would often prefer letting νn and ν̃n wander as N,n grows. In this case, deterministic equivalents of the
eigenvalue distribution of 1

n
XX∗ instead of a limit will be considered, which depend on νn and ν̃n instead of ν

and ν̃. However, as far as spectrum properties are concerned, these deterministic equivalents will essentially have
the same properties as the limiting measures. It is as such not necessary to introduce this complication in the
present study.
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eigenvalues found at the edges of the support and the Tracy–Widom fluctuations of the eigen-
values near those edges (see in particular (El Karoui, 2007) dealing with the sample covariance
matrix case). It can be conjectured that this behavior still holds in the separable covariance
case considered here. In this respect, Theorem 3.3.3 introduced below may help guessing the
exact form of the Tracy–Widom law at the edges of the support of µ.

We now recall the results describing the asymptotic behavior of the spectral measure of ŜN .
We also introduce the basic analytical tools that will be of constant use in this report.

3.1.1 The master equations

We recall that the Stieltjes transform of a probability measure π on R is the function

f(z) =

∫
1

t− z
π(dt)

defined on C+. The function f(z) (i) is holomorphic on C+, (ii) satisfies f(z) ∈ C+ for any
z ∈ C+, and (iii) limy→∞ |yf(ıy)| = 1. In addition, if π is supported by R+, then (iv) zf(z) ∈ C+

for any z ∈ C+. Conversely, any function f(z) satisfying (i)–(iv) is the Stieltjes transform of the
probability measure π supported by R+ defined by

π([a, b]) =
1

π
lim
y→0

∫ b

a
=[f(x+ ıy)]dx

at all continuity points a < b (Krein and Nudelman, 1997). Finally, observe that the Stieltjes
transform of π can be trivially extended from C+ to C \ supp(π) where supp(π) is the support
of π.

In this chapter, a slight generalization of this result will be needed (Krein and Nudelman,
1997, Appendix A). Precisely, we shall use the fact that the following three statements are
equivalent:

• The function f(z) satisfies properties (i), (ii), and (iv);

• The function f(z) admits the representation

f(z) = a+

∫ ∞
0

1

t− z
π(dt)

where a ≥ 0 and π is a Radon positive measure on R+ such that 0 <
∫∞

0 (1+t)−1π(dt) <∞;

• The function f(z) satisfies the properties (i)–(ii) and is analytical and nonnegative on the
negative real axis (−∞, 0).

We now recall the characterization of the limitation spectrum of ŜN as it stands so far. Let
us denote µn = 1

N

∑N
i=1 δλi(ŜN ) the spectral measure of ŜN = 1

nXX
∗. The spectral measure µ̃n

of 1
nX
∗X is then µ̃n = (N/n)µn + (1−N/n)δ0. These measures satisfy the following.
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Theorem 3.1.1 ((Zhang, 2006), see also (Hachem et al., 2006) for similar notations). For any
z ∈ C+, the system of equations

δ = c

∫
t

−z(1 + δ̃t)
ν(dt) (3.1)

δ̃ =

∫
t

−z(1 + δt)
ν̃(dt) (3.2)

admits a unique solution (δ, δ̃) ∈ C2
+. Let δ(z) and δ̃(z) be these solutions. The function

m(z) =

∫
1

−z(1 + δ̃(z)t)
ν(dt), z ∈ C+ (3.3)

is the Stieltjes transform of a probability measure µ supported by R+. The function

m̃(z) =

∫
1

−z(1 + δ(z)u)
ν̃(du), z ∈ C+

is the Stieltjes transform of the probability measure µ̃ = cµ+ (1− c)δ0. Moreover, as N,n→∞
with N/n→ c ∈ (0,∞), ∫

ϕ(λ)µn(dλ)
a.s.−→

∫
ϕ(λ)µ(dλ)∫

ϕ(λ)µ̃n(dλ)
a.s.−→

∫
ϕ(λ)µ̃(dλ)

for any continuous and bounded real function ϕ.

As a side note, observe as a simple corollary of Theorem 3.1.1 that

• for CN = IN , m(z) = δ(z)/c is defined as the unique solution in C+ of

m(z) =

(
−z +

∫
t

1 + cm(z)t
ν̃(dt)

)−1

(3.4)

• for T = In, δ(z) is the unique solution in C+ of

δ(z) = c

∫
1

−z + t
1+δ(z)

ν(dt). (3.5)

These two relations will be extensively used in the proofs of the main results of the following
chapters (with possibly some slight changes in notations from chapter to chapter).

Returning to the general setting, we first collect some simple facts and identities that will
be often used in this chapter:
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• Define

F (δ̃, z) =

∫
t

−z + ct
∫

u
1+uδ̃

ν(du)
ν̃(dt) − δ̃, (δ̃, z) ∈ C2

+. (3.6)

Plugging (3.1) into (3.2), we obtain that δ̃(z) can also be defined as the unique solution
of F (δ̃, z) = 0, which will sometimes be more convenient to than than the dual equation
(3.1)–(3.2).

• The functions m(z) and m̃(z) satisfy

m(z) =

∫
1 + δ̃(z)t− δ̃(z)t
−z(1 + δ̃(z)t)

ν(dt) = −z−1 − c−1δ(z)δ̃(z)

m̃(z) = −z−1 − δ(z)δ̃(z). (3.7)

• For any z1, z2 ∈ C+, define

γ(z1, z2) = c

∫
t2

z1z2(1 + δ̃(z1)t)(1 + δ̃(z2)t)
ν(dt)

γ̃(z1, z2) =

∫
t2

z1z2(1 + δ(z1)t)(1 + δ(z2)t)
ν̃(dt) (3.8)

(since |(1+δ̃(z1)t)(1+δ̃(z2)t)| ≥ =δ̃(z1)=δ̃(z2)t2 and |(1+δ(z1)t)(1+δ(z2)t)| ≥ =δ(z1)=δ(z2)t2,
the integrability is guaranteed). By definition of δ̃(z), we have

δ̃(z1)− δ̃(z2) =

∫
(z1 − z2)t+ (z1δ(z1)− z2δ(z2))t2

z1z2(1 + δ(z1)t)(1 + δ(z2)t)
ν̃(dt)

and by developing the expression of z1δ(z1)− z2δ(z2) using (3.1), we obtain

(1− z1z2γ(z1, z2)γ̃(z1, z2))δ̃(z1)− δ̃(z2))

= (z1 − z2)

∫
t

z1z2(1 + δ(z1)t)(1 + δ(z2)t)
ν̃(dt). (3.9)

A similar derivation performed over z1 = z and z2 = z∗ for z ∈ C+ shows that

(1− |z|2γ(z, z∗)γ̃(z, z∗))=δ̃(z) = =z
∫

t

|z|2|1 + δ(z)t)|2
ν̃(dt). (3.10)

On C+, =δ̃(z) > 0. Moreover, the integral at the right hand side is strictly positive. Hence

∀ z ∈ C+, 1− |z|2γ(z, z∗)γ̃(z, z∗) > 0.

This inequality will be of central importance in the sequel.

The two measures introduced by the following proposition share many properties with µ as
will be seen below, despite their not being probability measures. They will play an essential role
in what follows.
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Proposition 3.1.1. The functions δ(z) and δ̃(z) admit the representations

δ(z) =

∫ ∞
0

1

t− z
ρ(dt)

δ̃(z) =

∫ ∞
0

1

t− z
ρ̃(dt), z ∈ C+

where ρ and ρ̃ are two Radon positive measures on R+ such that

0 <

∫ ∞
0

1

1 + t
ρ(dt) <∞

0 <

∫ ∞
0

1

1 + t
ρ̃(dt) <∞.

Proof. One can observe that the function F (δ̃, z) defined in (3.6) is holomorphic on C2
+. Fixing

z0 ∈ C+, a short derivation shows that∣∣∣∂F
∂δ̃

(δ̃, z0)
∣∣∣ = |1− z2

0γ(z0, z0)γ̃(z0, z0)|

≥ 1− |z2
0γ(z0, z0)γ̃(z0, z0)| ≥ 1− |z0|2γ(z0, z

∗
0)γ̃(z0, z

∗
0) > 0

by (3.10). The holomorphic implicit function theorem (Fritzsche and Grauert, 2002, Ch. 1, Th. 7.6)
shows then that δ̃(z) is holomorphic in a neighborhood of z0. Since z0 is chosen arbitrarily in
C+, we get that δ̃(z) is holomorphic in C+. Recall that =δ̃(z) > 0 on C+. Since we furthermore
have

=(zδ̃(z)) = =δ(z)
∫

t2

|1 + δ(z)t|2
ν̃(dt) > 0

on C+, we get the representation

δ̃(z) = ã+

∫
1

t− z
ρ̃(dt)

where ã ≥ 0 and where ρ̃ satisfies the properties given in the statement. Let us show that ã = 0.
Observe that δ̃(x) ↓ ã when x is a real negative number converging to −∞. By a continuation
argument, F (δ̃(x), x) = 0 for any negative value of x. As x → −∞, we get by the monotone
convergence theorem

I(δ̃) =

∫
u

1 + uδ̃
ν(du) ↑ I(ã) =

∫
u

1 + uã
ν(du) ∈ (0,∞].

When x < 0 is far enough from zero, I(δ̃) ≥ C where C > 0 is a constant, and the dominated
convergence theorem shows that

δ̃(x) =

∫
t

−x+ ctI(δ̃(x))
ν(dt) −−−−→

x→−∞
0.

A similar argument can be applied to δ(z).
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3.2 Some elementary properties of µ

In the asymptotic regime where N is fixed and n→∞, the matrix ŜN−( 1
n trT )CN will converge

to zero when the assumptions of the law of large numbers are satisfied. In the large N,n setting,
the following result is therefore expected.

Proposition 3.2.1. Assume that Mν =
∫
tν(dt) and Mν̃ =

∫
tν̃(dt) are both finite. Then

µ(dt)→ ν(M−1
ν̃ dt)

a.s. as c → 0 where the convergence is understood as the weak convergence of probability mea-
sures.

Proof. For any u ≥ 0 and any z ∈ C+, |z(1 + δ̃(z)u)| ≥ =(z(1 + δ̃(z)u)) ≥ =(z), hence |δ(z)| ≤
cMν/=(z), which implies that δ(z)→ 0 as c→ 0. Similarly, |z(1 + δ(z)t)| ≥ =(z) for any t ≥ 0
and any z ∈ C+, hence δ̃(z) → −Mν̃/z by dominated convergence. Invoking the dominated
convergence theorem again, we get

m(z) −−→
c→0

∫
1

Mν̃t− z
ν(dt) =

∫
1

t− z
ν(M−1

ν̃ dt)

which shows the result.

We now characterize µ({0}). Intuitively, rank(X) ' min[N(1 − ν({0})), n(1− ν̃({0}))] and
µ({0}) ' 1− rank(X)/N for large n. The following result is therefore also expected.

Proposition 3.2.2. µ({0}) = 1−min[1− ν({0}), c−1(1− ν̃({0}))].

Proof. From the general expression of the Stieltjes transform of a probability measure, it is
easily seen using the dominated convergence theorem that µ({0}) = limy↓0(−ıym(ıy)). More-
over, since |y(t − ıy)−1| ≤ (t2 + 1)−1/2 when |y| ≤ 1, the dominated convergence theorem and
Proposition 3.1.1 show that ρ̃({0}) = limy↓0(−ıyδ̃(ıy)).

Let us write ν = ν({0})δ0 + ν ′ and ν̃ = ν̃({0})δ0 + ν̃ ′, and let us assume that 1− ν({0}) <
c−1(1 − ν̃({0})), or equivalently, that ν ′(R+) < c−1ν̃ ′(R+). In this case, we will show that
ρ̃({0}) > 0. That being true, we get

µ({0}) = lim
y↓0

(−ıym(ıy)) = ν({0}) + lim
y↓0

∫
1

1 + δ̃(ıy)t
ν ′(dt) = ν({0})

(since <(δ̃(ıy)) > 0, see below, the integrand above is bounded in absolute value by 1, and
furthermore, it converges to 0 for any t > 0 due to the fact that ρ̃({0}) > 0).

We assume that ρ̃({0}) = 0 and raise a contradiction. The equation F (δ̃, ıy) = 0 for y > 0
can be rewritten as ∫

t

−ıyδ̃(ıy) + ct
∫ uδ̃(ıy)

1+uδ̃(ıy)
ν ′(du)

ν̃ ′(dt) = 1.
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We have

<(δ̃(ıy)) = <
∫

1

t− ıy
ρ̃(dt) =

∫
t

t2 + y2
ρ̃(dt) > 0

and limy→0<(δ̃(ıy)) ∈ (0,∞] by the monotone convergence theorem. Let

I(y) =

∫
uδ̃(ıy)

1 + uδ̃(ıy)
ν ′(du).

Writing δ̃ = δ̃(ıy), we have

<(I(y)) =

∫
u(<δ̃)(1 + u<δ̃) + (u=δ̃)2

(1 + u<δ̃)2 + (u=δ̃)2
ν ′(du)

whose lim inf is positive as y ↓ 0. Furthermore, we have for y > 0

<(−ıyδ̃(ıy)) = <
∫
−ıy
t− ıy

ρ̃(dt) =

∫
y2

t2 + y2
ρ̃(dt) > 0

hence lim infy↓0 |− ıyδ̃(ıy) + ctI(y)| ≥ ct lim infy↓0<I(y). Consequently, we have by the assump-
tion ρ̃({0}) = 0 and the dominated convergence theorem again∫

t

−ıyδ̃(ıy) + ctI(y)
ν̃ ′(dt)− ν̃ ′(R+)

cI(y)
−−→
y↓0

0.

This shows that limy↓0 I(y) = c−1ν̃ ′(R+). But since <(δ̃(ıy)) > 0, |uδ̃(ıy)(1 + uδ̃(ıy))−1| ≤ 1 for
u ≥ 0 hence |I(y)| ≤ ν ′(R+). Therefore, c−1ν̃ ′(R+) ≤ ν ′(R+) which contradicts the assumption.

If ν ′(R+) > c−1ν̃ ′(R+), we replace µ, m(z) and δ̃(z) with µ̃, m̃(z) and δ(z) respectively in
the previous argument.

To deal with the case ν ′(R+) = c−1ν̃ ′(R+), we use the fact that µ is continuous with respect
to ν̃ in the weak convergence topology (see (Zhang, 2006, Chap. 4)). By approximating ν̃ by a
sequence ν̃k = ν̃k({0}) + ν̃ ′k such that ν ′(R+) < c−1ν̃ ′k, we are led back to the first part of the
proof. The result is obtained by continuity.

3.3 Density and support

3.3.1 Existence of a continuous density

This paragraph is devoted to establishing the following result.

Theorem 3.3.1. For all x ∈ R∗ = R \ {0}, the nontangential limit limz∈C+→xm(z) exists.
Denoting m(x) this limit, the function =m(x) is continuous on R∗, and µ has a continuous
derivative f(x) = π−1=m(x) on R∗. Similarly, the nontangential limits limz∈C+→x δ(z) and

limz∈C+→x δ̃(z) exist. Denoting respectively =δ(x) and =δ̃(x) these limits, the functions =δ(x)

and =δ̃(x) are both continuous on R∗, and both ρ and ρ̃ have continuous derivatives on R+.
Finally supp(ρ) ∩ R∗ = supp(ρ̃) ∩ R∗ = supp(µ) ∩ R∗.
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Since µ̃ = cµ+ (1− c)δ0, it is obvious that we can replace m with m̃ in the statement of the
theorem.

As soon as the existence of the three limits as z ∈ C+ → x are established, we know from
the Stieltjes inversion formula that the densities exist (see (Silverstein and Choi, 1995)[Th. 2.1]).
By a simple passage to the limit argument ((Silverstein and Choi, 1995, Th. 2.2)), we also know
that these densities are continuous.

To prove the theorem, we first prove that limz∈C+→x δ(z) and limz∈C+→x δ̃(z) both exist for
all x ∈ R∗ (Lemmas 3.1 to 3.3). This shows that both ρ and ρ̃ have densities on R∗. Lemma 3.4
shows then that limz∈C+→xm(z) exists, and furthermore, that the intersections of the supports
of µ, ρ and ρ̃ with R∗ coincide.

Lemma 3.1. |δ(z)| and |δ̃(z)| are bounded on any bounded region of C+ lying at a positive
distance from the imaginary axis.

Proof. We first observe that for any z ∈ C+,

|δ(z)| ≤ c
(∫ t2

|z|2|1 + δ̃(z)t|2
ν(dt)

) 1
2

=
√
cγ(z, z∗)

1
2

|δ̃(z)| ≤ γ̃(z, z∗)
1
2

and we recall that 0 < |z|2γ(z, z∗)γ̃(z, z∗) < 1. Using (3.7), we therefore get that supz∈R |m̃(z)| <
∞ where R is the region alluded to in the statement of the lemma.

We now assume that supz∈R |δ̃(z)| =∞ and raise a contradiction, the case where supz∈R |δ(z)|
being treated similarly. By assumption, there exists a sequence z0, z1, . . . ∈ R such that |δ̃(zk)| →
∞. By the inequalities above, we get that γ̃(zk, z

∗
k) → ∞, hence γ(zk, z

∗
k) → 0 and therefore

δ(zk)→ 0. In parallel, we have

z0m̃(z0)− zkm̃(zk) =

∫ ( −1

1 + δ(z0)t
+

1

1 + δ(zk)t

)
ν̃(dt)

= (δ(z0)− δ(zk))
∫

t

(1 + δ(z0)t)(1 + δ(zk)t)
ν̃(dt).

Using (3.9), we obtain

(1− z0zkγ(z0, zk)γ̃(z0, zk))(δ̃(z0)− δ̃(zk))

= (z−1
k − z

−1
0 )

z0m̃(z0)− zkm̃(zk)

δ(z0)− δ(zk)
.

By what precedes, supk |(z−1
k − z−1

0 )(z0m̃(z0) − zkm̃(zk))| < ∞. Moreover, lim infk |δ(z0) −
δ(zk)| > 0 since =δ(z0) > 0. By Cauchy–Schwarz, |γ(z0, zk)| ≤ γ(z0, z

∗
0)

1
2γ(zk, z

∗
k)

1
2 and

|γ̃(z0, zk)| ≤ γ̃(z0, z
∗
0)

1
2 γ̃(zk, z

∗
k)

1
2 . Therefore,

inf
k
|1− z0zkγ(z0, zk)γ̃(z0, zk)| ≥ 1− sup

k
|z0zkγ(z0, zk)γ̃(z0, zk)|

≥ 1− (|z0|2γ(z0, z
∗
0)γ̃(z0, z

∗
0))

1
2 sup

k
(|zk|2γ(zk, z

∗
k)γ̃(zk, z

∗
k))

1
2

> 0
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which shows that supk |δ̃(zk)| <∞.

Lemma 3.2. For ` = 1, 2, the integrals∫
t`

|1 + δ̃(z)t|2
ν(dt) and

∫
t`

|1 + δ(z)t|2
ν̃(dt)

are bounded on any bounded region R of C+ lying at a positive distance from the imaginary axis.

Proof. We observe that for ` = 2, the integrals given in the statement of the lemma are equal
to c−1|z|2γ(z, z∗) and to |z|2γ̃(z, z∗) respectively. We know that supz∈R |z|4γ(z, z∗)γ̃(z, z∗) ≤
supz∈R |z|2 <∞. Assume that γ̃(zn, z

∗
n)→∞ along some sequence zn ∈ R. Then γ(zn, z

∗
n)→ 0,

which implies that the integrand of |zn|2γ(zn, z
∗
n) converges to zero ν-almost everywhere. This

implies in turn that |δ̃(zn)| → ∞ which contradicts Lemma 3.1. The result is proven for ` = 2.

We now consider the case ` = 1, focusing on the first integral that we write as
∫∞

0 tI(t)−1ν(dt).

Since
∫∞

0 tI(t)−1ν(dt) ≤
∫ 1

0 tI(t)−1ν(dt)+
∫∞

1 t2I(t)−1ν(dt), we only need to bound the first term
at the right hand side. Denoting by 1A the indicator function on the set A, we have∫ 1

0

t

I(t)
ν(dt) =

∫ 1

0

t

I(t)
1[0,|2<δ̃|−1](t)ν(dt) +

∫ 1

0

t

I(t)
1(|2<δ̃|−1,∞)(t)ν(dt)

≤ 4

∫ 1

0
tν(dt) + |2<δ̃|

∫ ∞
0

t2

I(t)
ν(dt)

which is bounded.

Lemma 3.3. For any x ∈ R∗, limz∈C+→x δ(z) and limz∈C+→x δ̃(z) exist.

Proof. If both ν and ν̃ are Dirac probability measures, one can see that δ(z) and δ̃(z) are the
Stieltjes transforms of Marc̆enko–Pastur distributions and the result is straightforward. We shall
assume without generality loss that ν is not a Dirac measure.

We showed that δ and δ̃ are bounded on any bounded region of C+ lying away from the
imaginary axis. Let zn ∈ C+ be a sequence converging to an x ∈ R∗, and along which δ̃(zn)
converges to some δ̃ and δ(zn) converges to some δ. Since |zn|2γ(zn, z

∗
n)γ̃(zn, z

∗
n) < 1, taking the

limit we get that x2Γ(x, δ̃)Γ̃(x, δ) ≤ 1 where

Γ(x, δ̃) = c

∫
t2

x2|1 + δ̃t|2
ν(dt)

Γ̃(x, δ) =

∫
t2

x2|1 + δt|2
ν̃(dt).

Take two sequences zn and zn in C+ which converge to the same x ∈ R∗, and such that δ̃(zn)
and δ̃(zn) converge towards δ̃ and δ̃ respectively, and δ(zn) and δ(zn) converge towards δ and δ
respectively.

We shall show that δ̃ = δ̃. Writing

(1− znznγ(zn, zn)γ̃(zn, zn))(δ̃(zn)− δ̃(zn)) = (zn − zn)

∫
t

znzn(1 + δ(zn)t)(1 + δ(zn)t)
ν̃(dt)
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the sequence of integrals at the right hand side is bounded by Cauchy–Schwarz and by Lemma 3.2.
Moving to the limit, we obtain (1− x2ΓΓ̃)(δ̃ − δ̃) = 0 where

Γ = c

∫
t2

x2(1 + δ̃t)(1 + δ̃t)
ν(dt)

Γ̃ =

∫
t2

x2(1 + δt)(1 + δt)
ν̃(dt).

Assume that δ̃ 6= δ̃. Since ν is different from a Dirac measure, we have |Γ| < Γ(x, δ̃)
1
2 Γ(x, δ̃)

1
2

by Cauchy–Schwarz. By Cauchy–Schwarz again, we also have |Γ̃| ≤ Γ̃(x, δ)
1
2 Γ̃(x, δ)

1
2 . Conse-

quently,

|1− x2ΓΓ̃| ≥ 1− x2|ΓΓ̃|

> 1−
√
x2Γ(x, δ̃)Γ(x, δ̃)

√
x2Γ̃(x, δ)Γ̃(x, δ)

≥ 0.

This contradicts (1− x2ΓΓ̃)(δ̃ − δ̃) = 0. Hence δ̃ = δ̃. We prove similarly that δ = δ.

Lemma 3.4. For any x ∈ R∗, limz∈C+→xm(z) exists. Let m(x) = limz∈C+→xm(z), δ(x) =

limz∈C+→x δ(z) and δ̃(x) = limz∈C+→x δ̃(z). Then

=δ(x) > 0⇔ =δ̃(x) > 0⇔ =m(x) > 0.

Proof. The fact that limz∈C+→xm(z) exists can be immediately deduced from the first identity

in (3.7) and the previous lemma. Let us show that =δ(x) > 0⇔ =δ̃(x) > 0. We have

=δ̃(z) =
1

|z|2

∫
=zt+ =(zδ(z))t2

|1 + δ(z)t|2
ν̃(dt)

Assume that limz∈C+→x=δ(z) = =δ(x) > 0. By Fatou’s lemma, we get

lim inf
z∈C+→x

=δ̃(z) ≥ 1

x2

∫
x=δ(x)t2

(1 + <δ(x)t)2 + t2(=δ(x))2
ν̃(dt) > 0.

Using this same argument with the roles of δ and δ̃ interchanged, we get that =δ(x) > 0 ⇔
=δ̃(x) > 0. Using (3.3) and Fatou’s lemma again, we also obtain that =δ̃(x) > 0 ⇒ =m(x) >
0. Conversely, =m(x) = −c−1=(δ(x)δ̃(x)) = −c−1(<δ(x)=δ̃(x) + =δ(x)<δ̃(x)). Therefore,
=m(x) > 0⇒ (=δ(x) > 0 or =δ̃(x) > 0)⇔ =δ̃(x) > 0.

3.3.2 Determination of supp(µ)

In the remainder of the chapter, we characterize supp(µ) ∩ R∗ = supp(ρ̃) ∩ R∗, focusing on the
measure ρ̃. In the following, we let

D =

{
{0} ∪ {δ ∈ R∗ : −δ−1 6∈ supp(ν̃)} if supp(ν̃) is compact,
{δ ∈ R∗ : −δ−1 6∈ supp(ν̃)} otherwise,
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and

D̃ =

{
{0} ∪ {δ̃ ∈ R∗ : −δ̃−1 6∈ supp(ν)} if supp(ν) is compact,

{δ̃ ∈ R∗ : −δ̃−1 6∈ supp(ν)} otherwise.

Note that D and D̃ are both open sets.

Proposition 3.3.1. If x ∈ R∗ does not belong to supp(µ), then δ(x) ∈ D, δ̃(x) ∈ D̃, and
1− x2γ(x,x)γ̃(x,x) > 0.

Proof. Since supp(µ) ∩ R∗ = supp(ρ) ∩ R∗ = supp(ρ̃) ∩ R∗ and since the Stieltjes transform of
a positive measure is real and increasing on the real axis outside the support of this measure,
δ(x) ∈ R, δ̃(x) ∈ R, and δ̃′(x) > 0. Extending (3.9) to a neighborhood of x, we get

δ̃′(x) =
1

1− x2γ(x,x)γ̃(x,x)

∫
t

x2(1 + δ(x)t)2
ν̃(dt)

hence 1 − x2γ(x,x)γ̃(x,x) > 0. We now show that δ(x) ∈ D. Assume δ(x) 6= 0. Denoting
by mν̃ the Stieltjes transform of ν̃, (3.2) can be rewritten as mν̃(−δ(z)−1) = δ(z) + zδ2(z)δ̃(z).
Making z converge from C+ to a point x lying in a small neighborhood of x in R, the right
hand side of this equation converges to a real number, and −δ(z)−1 converges from C+ to a
point in a neighborhood of −δ(x)−1 in R. Since mν̃ is real on this neighborhood, the load of
this neighborhood by ν̃ is zero, which implies that δ(x) ∈ D. Assume now that δ(x) = 0. Then
there exists x0 6∈ supp(ρ) such that x0 < x and δ(x) increases from δ(x0) to zero on [x0,x].
The argument above shows that ν̃([−δ−1(x0),−δ−1(x)]) = 0 for any x ∈ [x0,x). Making x ↑ x,
we obtain that ν̃([−δ−1(x0),∞)) = 0, in other words, ν̃ is compactly supported. It results that

δ(x) ∈ D. The same argument shows that δ̃(x) ∈ D̃.

Proposition 3.3.2. Given δ̃ ∈ D̃, assume there exists x ∈ R∗ for which

δ = c

∫
t

−x(1 + δ̃t)
ν(dt) ∈ D,

δ̃ =

∫
t

−x(1 + δt)
ν̃(dt), (3.11)

and

1− x2γ(x, δ̃)γ̃(x, δ) > 0 (3.12)

where

γ(x, δ̃) = c

∫
t2

x2(1 + δ̃t)2
ν(dt)

γ̃(x, δ) =

∫
t2

x2(1 + δt)2
ν̃(dt).

Then x 6∈ supp(µ).
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Proof. Let (δ̃,x) be a solution of Equations (3.11) such that δ̃ ∈ D̃, δ ∈ D, and (3.12) is satisfied.
Define on a small enough open neighborhood of (δ̃,x) in R2 the function

F (δ̃, x) =

∫
t

−x+ ct

∫
u

1 + uδ̃
ν(du)

ν̃(dt)− δ̃. (3.13)

Clearly, F (δ̃,x) = 0, and a short calculus reveals that

∂F

∂δ̃
(δ̃,x) = −1 + x2γ(x, δ̃)γ̃(x, δ) < 0

(in this calculus, integration and differentiation can be exchanged since δ̃ ∈ D̃ and δ ∈ D). By
the implicit function theorem, there is a real function δ̃(x) defined on a real neighborhood V
of x such that δ̃(x) = δ̃ and every couple (x, δ̃(x)) for x ∈ V satisfies the assumptions of the
statement of the proposition. To establish the proposition, it will be enough to show that for
any x ∈ V , δ̃(x) = limz∈C+→x δ̃(z).

Fix x ∈ V . For z ∈ C+, let

A(z) =

∫
t

xz(1 + δ(z)t)(1 + δ(x)t)
ν̃(dt).

By the Cauchy–Schwarz inequality, Lemma 3.2 and the fact that δ ∈ D, |A(z)| remains bounded
as z → x. Let (δ(x), δ̃(x)) be the limit of (δ(z), δ̃(z)) as z ∈ C+ → x. Repeating the derivations
made in the proof of Lemma 3.3, using the fact that |A(z)| is bounded, and letting z → x, we
obtain that (1− x2ΓΓ̃)(δ̃(x)− δ̃(x)) = 0 where

Γ = c

∫
t2

x2(1 + δ̃(x)t)(1 + δ̃(x)t)
ν(dt)

Γ̃ =

∫
t2

x2(1 + δ(x)t)(1 + δ(x)t)
ν̃(dt)

and δ(x) = −cx−1
∫
t(1+ δ̃(x)t)−1ν(dt). As in the proof of Lemma 3.3, we show that 1−x2ΓΓ̃ >

0, resulting in δ̃(x) = δ̃(x).

Proposition 3.3.1 shows that for any x ∈ supp(µ)c ∩ R∗, there exists a couple (δ, δ̃) that
satisfies the assumptions of Proposition 3.3.2. The reverse is shown by Proposition 3.3.2.

These observations suggest a practical procedure for determining the support of µ. We let δ̃
run through D̃. For every one of these δ̃, we compute

ψ(δ̃) = c

∫
t

1 + δ̃t
ν(dt)

then we find numerically the solutions of the equation in x

δ̃ =

∫
t

−x+ ψ(δ̃)t
ν̃(dt)
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for which −x−1ψ(δ̃) ∈ D. Among these solutions, we retain those points x for which

1− c
∫

t2

(1 + δ̃t)2
ν(dt)

∫
t2

(x− ψ(δ̃)t)2
ν̃(dt) > 0.

What is left after making δ̃ run through D̃ is supp(µ)∩R∗. Figure 3.1 gives an idea of the result.

−2 −1 0 1 2
−200

0

200

400

δ̃

x
I,

Ĩ
(δ̃

)

Figure 3.1: x
I,Ĩ

(δ̃) for each component pairs I of D and Ĩ of D̃. In thick line, positions for which

1 − x2γ(x, δ̃)γ̃(x, δ) > 0. On the vertical axis, in black dashes, empirical eigenvalue positions
for N = 1000. Setting: c = 10, ν = 1/2(δ1 + δ2), ν̃ = 1/2(δ1 + δ10).

The two following propositions will help us bring out some of the properties of the graph of
x versus δ̃. In their statements, we assume that the triples (δ̃1, δ1,x1) and (δ̃2, δ2,x2) satisfy
both the statement of Proposition 3.3.2.

Lemma 3.5. δ̃1 6= δ̃2 ⇒ x1 6= x2 and δ1 6= δ2 ⇒ x1 6= x2.

Proof. We know that δ̃i = limz∈C+→xi δ̃(z) for i = 1, 2. Assume that δ̃1 6= δ̃2. Then having
x1 = x2 would violate this convergence.

Lemma 3.6. If δ̃1 < δ̃2, if x1x2 > 0, and if [δ1 ∧ δ2, δ1 ∨ δ2] ⊂ D, then x1 < x2.
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Proof. We use the identity(
1− x1x2γ(x1,x2)γ̃(x1,x2)

)
(δ̃1 − δ̃2)

= (x1 − x2)

∫
t

x1x2(1 + δ1t)(1 + δ2t)
ν̃(dt)

(see (3.9)). By the Cauchy–Schwarz inequality, 1− x1x2γ(x1,x2)γ̃(x1,x2) > 0.

Let us show that the integral I at the right hand side of the equation above is positive.
Assume that for some t ∈ supp(ν̃), the numbers 1 + δ1t and 1 + δ2t do not have the same
sign. Then there exists δ ∈ (δ1 ∧ δ2, δ1 ∨ δ2) such that 1 + δt = 0. But this contradicts
[δ1∧δ2, δ1∨δ2] ⊂ D. Hence I > 0, which shows that x1−x2 and δ̃1− δ̃2 have the same sign.

In order to better understand the incidence of these propositions, let us describe more for-
mally the procedure for determining the support of Proposiation 3.3.2. Equations (3.11) can be
rewritten as −xδδ̃ = g(δ̃) = g̃(δ) where

g(δ̃) = c

∫
δ̃t

1 + δ̃t
ν(dt) and g̃(δ) =

∫
δt

1 + δt
ν̃(dt)

are both increasing on any interval of D̃ and D respectively. Let I and Ĩ be two connected
components of D and D̃ respectively2. Assume that g̃(I)∩ g(Ĩ) 6= ∅. Since g̃ is increasing, it has

a local inverse g̃−1

I,Ĩ
on g(Ĩ). Let δ = g̃−1

I,Ĩ
◦ g(δ̃) and consider the function

x
I,Ĩ

(δ̃) = −g(δ̃)

δδ̃
= − g(δ̃)

δ̃ × g̃−1

I,Ĩ
◦ g(δ̃)

, (3.14)

with domain the open set dom(x
I,Ĩ

) = {δ̃ ∈ Ĩ : ∃δ ∈ I such that g̃(δ) = g(δ̃) and δ 6= 0}.
Computing x

I,Ĩ
(δ̃) on all connected components I and Ĩ and dropping the values of x for which

1− x2γ(x, δ̃)γ̃(x, δ) > 0, we are of course left with supp(µ) ∩ R∗.

Thanks to Lemmas 3.5–3.6, the functions x
I,Ĩ

have the following properties:

1. For any x0 ∈ R∗, at most one function x
I,Ĩ

satisfies x
I,Ĩ

(δ̃) = x0 and x′
I,Ĩ

(δ̃) > 0 by Lemma

3.5. Note that more than one function x
I,Ĩ

can be possibly increasing at a given δ̃ ∈ D̃, as
the figure shows.

2. We show below that there is exactly one couple (I, Ĩ) for which x
I,Ĩ

has negative values

and is increasing from −∞ to zero where it is negative. Moreover, for any couple (I, Ĩ)

and for any [δ̃1, δ̃2] ∈ Ĩ such that x
I,Ĩ

(δ̃i) > 0 and x′
I,Ĩ

(δ̃i) > 0, i = 1, 2, the function x
I,Ĩ

(δ̃)

never decreases between δ̃1 and δ̃2 by Lemma 3.6.

In summary, if a branch of a x
I,Ĩ

(δ̃) is increasing at two points δ̃1 and δ̃2, then it never
decreases between these two points.

2To give an example, assume that supp(ν)∩R∗ = [a1, b1]∪[a2, b2]∪· · ·∪[aK , bK ] where 0 < a1 ≤ b1 < a2 ≤ b2 <
· · · < aK ≤ bK <∞. Then the connected components of D̃ are (−∞,−a−1

1 ), (−b−1
1 ,−a−1

2 ), . . . , (−b−1
K−1,−a

−1
K−1),

and (−b−1
K ,∞).
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3. Let b = sup(supp(ν)) ∈ (0,∞] and b̃ = sup(supp(ν̃)) ∈ (0,∞], and let us study the

behavior of x
I,Ĩ

when Ĩ = (−b−1,∞) and I = (−b̃−1,∞). Assume b = b̃ = ∞. By the

fact that the functions δ(x) and δ̃(x) are both positive and increasing on (−∞, 0) and
by Lemma 3.5, the branch x

I,Ĩ
(δ̃) is increasing where it is negative, it is the only branch

having this property, and x
I,Ĩ

(δ̃)→ −∞ as δ̃ ↓ 0.

Assume now that b =∞ and b̃ <∞. Here it is easy to notice that g((−b̃−1, 0))∩g̃((0,∞)) =
∅ which implies that we can replace I with (0,∞). As in the former case, the graph of x

I,Ĩ
consists in one branch that has the same properties as regards the negative values of x.
The same conclusion holds when b <∞ and b̃ =∞.

Finally, assume that b, b̃ < ∞. Here g(δ̃)/δ̃ ≈ C and δ ≈ C ′δ̃ near zero, where C,C ′ > 0.
Consequently, the graph of x

I,Ĩ
(δ̃) consists in two branches, one on (−b−1, 0) and one

on (0,∞). The first branch converges to infinity as δ̃ ↑ 0, showing that µ is compactly
supported, and the second branch behaves below zero as its analogues above. These two
branches appear Figure 3.1.

4. Assume that a = inf(supp(ν)∩R∗) > 0 and let Ĩ = (−∞,−a−1). Then g(δ̃) increases from
c as δ̃ increases from −∞. If δ < 0, then x

I,Ĩ
(δ̃) < 0 since g(δ̃)/δ̃ < 0, and the conclusions

of Item (3) show that the branches x
I,Ĩ

need not be considered for determining supp(µ)

when I ⊂ (−∞, 0). It remains to study x
I,Ĩ

for I = (−b̃−1,∞). On (0,∞), the function

g̃(δ) increases from 0 to 1, hence g̃((0,∞)) ∩ g(Ĩ) 6= ∅ if and only if c < 1. In that case,
it can be checked that x

I,Ĩ
(δ̃) increases from 0 as δ̃ increases from −∞. In conclusion, if

a > 0 and c < 1, then inf(supp(µ) ∩R∗) > 0, and the location of this infimum is provided
by the branch x

I,Ĩ
.

Similarly, if ã = inf(supp(ν̃) ∩ R∗) > 0, I = (−∞,−ã−1) and Ĩ ⊂ (−∞, 0), then the
branches x

I,Ĩ
need not be considered. If in addition c > 1, then inf(supp(µ) ∩ R∗) > 0,

and the location of this infimum is provided by the branch x
I,Ĩ

for I = (−∞,−ã−1) and

Ĩ = (−b−1,∞).

We terminate this paragraph with the following two results.

Proposition 3.3.3. Assume that supp(ν)∩R∗ and supp(ν̃)∩R∗ consist in K and K̃ connected
components respectively. Then supp(µ) ∩ R∗ consists in at most KK̃ connected components.

Proof. When ν is compactly supported, supp(ν − ν({0})δ0) = [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [aK , bK ]
where 0 < a1 ≤ b1 < a2 ≤ b2 < · · · < aK ≤ bK < ∞ or 0 = a1 < b1 < a2 ≤ b2 < · · · <
aK ≤ bK < ∞. In the first case, the connected components of D̃ are Ĩ0 = (−∞,−a−1

1 ),

Ĩ1 = (−b−1
1 ,−a−1

2 ), . . . , ĨK = (−b−1
K ,∞). In the second case, these connected components

are Ĩ1, . . . , ĨK . If ν is not compactly supported, aK < bK = ∞ and the expressions of the
connected components of D̃ are unchanged. With similar notations, the connected components
of D are I0, . . . , IK̃ or I1, . . . , IK̃ according to whether inf(supp(ν̃) ∩ R∗) is positive or not. Let
s = inf(supp(µ)∩R∗) and S = sup(supp(µ)). Following the observations we just made, we notice
that the only possible x

Ik,Ĩk̃
(δ̃) ∈ (s, S) such that x′

Ik,Ĩk̃
(δ̃) > 0 are those for which 1 ≤ k ≤ K,
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1 ≤ k̃ ≤ K̃, and (k, k̃) 6= (K, K̃). Therefore, the number of intervals of supp(µ)c∩ (s, S) is upper
bounded by KK̃ − 1, hence the result.

Proposition 3.3.4. supp(µ) is compact if and only if supp(ν) and supp(ν̃) are compact.

Proof. The “if” part has been shown by Item (3) above. Assume supp(µ) is compact. The
fact that supp(ρ) ∩ R∗ = supp(ρ̃) ∩ R∗ = supp(µ) ∩ R∗ and the equation mν̃(−δ(z)−1) =
δ(z) + zδ2(z)δ̃(z) show that mν̃(z) can be analytically extended to (A,∞) for A large enough,
hence the compactness of supp(ν̃). A similar conclusion holds for supp(ν).

3.3.3 Properties of the density of µ on R∗

Theorem 3.3.2. The density f(x) specified in the statement of Theorem 3.3.1 is analytic for
every x 6= 0 for which f(x) > 0.

Proof. As in the proof of Lemma 3.3, we assume that ν is not a Dirac measure. Let x0 6= 0 be
such that f(x0) > 0. We start by showing that δ̃(z) can be analytically extended from C+ to a
neighborhood of x0 in C. Write

γ(x0, x0) = lim
z∈C+→x0

γ(z, z), γ̃(x0, x0) = lim
z∈C+→x0

γ̃(z, z),

Γ(x0, x0) = lim
z∈C+→x0

γ(z, z∗), Γ̃(x0, x0) = lim
z∈C+→x0

γ̃(z, z∗).

Making z ∈ C+ converge to x0 in (3.10) and recalling that the integral at the right hand side
of this equation remains bounded and that =δ̃(x0) > 0, we get that x2

0Γ(x0, x0)Γ̃(x0, x0) =
1. Any integrable random variable X satisfies |EX| ≤ E|X|, the equality being achieved if
and only if X = θ|X| almost everywhere, where θ is a modulus one constant. Consequently,
|γ(x0, x0)| < Γ(x0, x0) since ν is not a Dirac measure, and |γ̃(x0, x0)| ≤ Γ̃(x0, x0). Therefore,
|x2

0γ(x0, x0)γ̃(x0, x0)| < 1. Now, since =δ̃(x0) > 0, it is easy to see by inspecting Equation
(3.6) that the function F (δ̃, z) which is holomorphic on C2

+ can be analytically extended to a

neighborhood of (δ̃(x0), x0) in C+ × C∗ where C∗ = C− {0}. Observing that

∂F

∂δ̃
(δ̃(x0), x0) = −1 + x2

0γ(x0, x0)γ̃(x0, x0) 6= 0

and invoking the holomorphic implicit function theorem, we get that there exists a neighborhood
V ⊂ C∗ of x0, a neighborhood V ′ ⊂ C+ of δ̃(x0) and a holomorphic function δ̃ : V → V ′ such
that

{(z, δ̃) ∈ V × V ′ : F (δ̃, z) = 0} = {(z, δ̃(z)) : z ∈ V }.

Since δ̃(z) and δ̃(z) coincide on V ∩C+, the function δ̃(z) is an analytic extension of δ̃(z) on V .

This result shows in conjunction with (3.3) that m(z) can be extended analytically to V .
Therefore, writing m(z) =

∑
`≥0 a`(z − x0)` we get that f(x) = π−1

∑
`≥0=a` (x − x0)` near

x0.
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We now study the behavior of the density f(x) near a boundary point a > 0 of supp(µ). The
observations made above show that when a is a left end point (resp. a right end point) of supp(µ),
it is a local supremum (resp. a local infimum) of one of the functions x

I,Ĩ
. Parallelling the

assumptions made in (Marc̆enko and Pastur, 1967), (Silverstein and Choi, 1995), and (Dozier and
Silverstein, 2007), we restrict ourselves to the case where a = x

I,Ĩ
(δ̃a) for some δ̃a ∈ dom(x

I,Ĩ
).

In that case, x
I,Ĩ

is of course analytical around δ̃a and x′
I,Ĩ

(δ̃a) = 0. Note that this assumption

might not be satisfied for some choices of the measures ν and ν̃. Assuming a > 0 is a left end
point of supp(µ), it is for instance possible that the function x

I,Ĩ
(δ̃) increases to a as δ̃ ↑ δ̃a with

−δ̃−1
a ∈ ∂ν. We however note that our assumption is valid when the measures ν and ν̃ are both

discrete.

Theorem 3.3.3. Let I and Ĩ be two connected components of D and D̃ respectively, and assume
that x

I,Ĩ
reaches a maximum at a point δ̃a ∈ dom(x

I,Ĩ
). Then x′′

I,Ĩ
(δ̃a) < 0. Furthermore, for

ε > 0 small enough, f(x) = H(
√
x− a) on (a, a + ε) where H(x) is a real analytical function

near zero, H(0) = 0, and

H ′(0) =
1

πa

√√√√ −2

x′′
I,Ĩ

(δ̃a)

∫
t

(1 + δ̃at)2
ν(dt).

Assume now that x
I,Ĩ

reaches a minimum at a point δ̃a ∈ dom(x
I,Ĩ

). Then x′′
I,Ĩ

(δ̃a) > 0.

Furthermore, for ε > 0 small enough, f(x) = H(
√
a− x) on (a − ε, a) where H(x) is a real

analytical function near zero, H(0) = 0, and

H ′(0) =
1

πa

√√√√ 2

x′′
I,Ĩ

(δ̃a)

∫
t

(1 + δ̃at)2
ν(dt).

To prove the theorem, we start with the following lemma which is proven in Section 3.4.

Lemma 3.7. Assume that either ν or ν̃ is not a Dirac measure. Let (δ̃a, a) with a 6= 0 satisfy

F (δ̃a, a) = 0,
∂F

∂δ̃
(δ̃a, a) = 0

where the function F (δ̃,x) is defined by (3.13). Then

∂2F

∂δ̃2
(δ̃a, a) = 0 ⇒ ∂3F

∂δ̃3
(δ̃a, a) 6= 0.

Proof of Theorem 3.3.3. We follow the argument of (Marc̆enko and Pastur, 1967). We first

assume that x
I,Ĩ

reaches a maximum at δ̃a ∈ Ĩ and prove that x′′
I,Ĩ

(δ̃a) < 0. Observe that x
I,Ĩ

(δ̃)

satisfies F (δ̃,x
I,Ĩ

(δ̃)) = 0, and that ∂F /∂x =
∫
t(x(1 + δt))−2ν̃(dt) > 0. By the chain rule for

differentiation,

0 =
∂F

∂δ̃
+
∂F

∂x
x′
I,Ĩ

(δ̃)

0 =
∂2F

∂δ̃2
+

(
∂2F

∂x2
+ 2

∂2F

∂δ̃∂x

)
x′
I,Ĩ

(δ̃) +
∂F

∂x
x′′
I,Ĩ

(δ̃).
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If we assume that x′′
I,Ĩ

(δ̃a) = 0, then (∂2F /∂δ̃2)(δ̃a, a) = 0 and it is furthermore easy to check

that

x(3)(δ̃a) = −∂
3F /∂δ̃3

∂F /∂x
(δ̃a, a).

By Lemma 3.7, x(3)(δ̃a) 6= 0, but this contradicts the fact that the first non zero derivative of a
function at a local extremum is of even order. Hence x′′

I,Ĩ
(δ̃a) < 0.

Equation (3.14) shows that x
I,Ĩ

can be analytically extended to a function z
I,Ĩ

in a neigh-

borhood of δ̃a in the complex plane. Since x′
I,Ĩ

(δ̃a) = 0 and x′′
I,Ĩ

(δ̃a) < 0, we can write

z
I,Ĩ

(δ̃)−a = ϕ(δ̃)2 in this neighborhood where ϕ is an analytical function satisfying ϕ(δ̃a) = 0 and

(ϕ′(δ̃a))2 = x′′
I,Ĩ

(δ̃a)/2. We choose ϕ such that ϕ′(δ̃a) = −ı(−x′′
I,Ĩ

(δ̃a)/2)
1
2 . If we choose x > a

such that x−a is small enough, then z
I,Ĩ

(δ̃(x))−a = ϕ(δ̃(x))2, and moreover z
I,Ĩ

(δ̃(x)) = x. Con-

sidering the local inverse Φ of ϕ in a neighborhood of δ̃a, we get that δ̃(x) = Φ(
√
x− a) where the

analytic function Φ satisfies Φ(0) = δ̃a and Φ′(0) = 1/ϕ′(δ̃a) = ı(−2/x′′
I,Ĩ

(δ̃a))
1
2 (thus the choice

of ϕ′(δ̃a) ensures that =δ̃(x) > 0). Using the equation =m(x) = −x−1
∫
=((1 + δ̃(x)t)−1)ν(dt),

we get the result. The case where x
I,Ĩ

reaches a minimum at δ̃a is treated similarly.

3.4 Proof of Lemma 3.7

First recall that

∂F

∂δ̃
(δ̃,x) = x2γ(x, δ̃)γ̃(x, δ)− 1 (3.15)

so that a2γaγ̃a = 1, with γa = γ(a, δ̃a), γ̃a = γ̃(a, δa), and

δa = c

∫
t

−a(1 + δ̃at)
ν(dt).

Differentiating (3.15), the equation (∂2F /∂δ̃2)(δ̃a, a) = 0 reads

γ̃ac

∫
t3

(1 + δ̃at)3
ν(dt) + aγ2

a

∫
t3

(1 + δat)3
ν̃(dt) = 0 (3.16)

where we used

∂

∂δ̃

(
c

∫
t

−x(1 + δ̃t)
ν(dt)

)
(δ̃a, a) = aγa.

Assume now that (∂3F /∂δ̃3)(δ̃a, a) = 0. A second differentiation of (3.15) leads then to

0 = 2
γa
a
c

∫
t3

(1 + δat)3
ν̃(dt)

∫
t3

(1 + δ̃at)3
ν(dt)

+ γ̃ac

∫
t4

(1 + δ̃at)4
ν(dt) + a2γ3

a

∫
t4

(1 + δat)4
ν̃(dt).
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Using a2γaγ̃a = 1, replace now γa/a by 1/(a3γ̃a) in the leftmost term and a2γ3
a by γ2

a/γ̃a in the
rightmost term. Multiplying the result by γ̃a leads to

0 = 2
c

a3

∫
t3

(1 + δat)3
ν̃(dt)

∫
t3

(1 + δ̃at)3
ν(dt)

+ γ̃2
ac

∫
t4

(1 + δ̃at)4
ν(dt) + γ2

a

∫
t4

(1 + δat)4
ν̃(dt). (3.17)

We now use (3.16) and a2γaγ̃a = 1 to write the two equations:

2
c

a3

∫
t3

(1 + δ̃at)3
ν(dt) = − 2

a2

γ2
a

γ̃a

∫
t3

(1 + δat)3
ν̃(dt)

2
c

a3

∫
t3

(1 + δat)3
ν̃(dt) = −2c2

a2

γ̃2
a

γa

∫
t3

(1 + δ̃at)3
ν(dt).

Replacing the corresponding terms in the leftmost term of (3.17) leads to the two equations

2

a2

γ2
a

γ̃a

(∫
t3

(1 + δat)3
ν̃(dt)

)2

− γ̃2
ac

∫
t4

(1 + δ̃at)4
ν(dt)− γ2

a

∫
t4

(1 + δat)4
ν̃(dt) = 0

2

a2

γ̃2
a

γa

(
c

∫
t3

(1 + δ̃at)3
ν(dt)

)2

− γ̃2
ac

∫
t4

(1 + δ̃at)4
ν(dt)− γ2

a

∫
t4

(1 + δat)4
ν̃(dt) = 0.

Multiplying each equation by γaγ̃a and averaging then gives:

0 =
1

a2
γ3
a

(∫
t3

(1 + δat)3
ν̃(dt)

)2

+
1

a2
γ̃3
a

(
c

∫
t3

(1 + δ̃at)3
ν(dt)

)2

− γ̃3
aγac

∫
t4

(1 + δ̃at)4
ν(dt)− γ3

aγ̃a

∫
t4

(1 + δat)4
ν̃(dt). (3.18)

Remark now, by expanding the definition of γ̃a that

1

a2
γ3
a

(∫
t3

(1 + δat)3
ν̃(dt)

)2

− γ3
aγ̃a

∫
t4

(1 + δat)4
ν̃(dt)

=
γ3
a

a2

[(∫
t3

(1 + δat)3
ν̃(dt)

)2

−
∫

t2

(1 + δat)2
ν̃(dt)

∫
t4

(1 + δat)4
ν̃(dt)

]
≤ 0

with the inequality arising from Cauchy–Schwarz. The case of equality holds only if ν̃ is a Dirac
measure. Similarly,

1

a2
γ̃3
a

(
c

∫
t3

(1 + δ̃at)3
ν(dt)

)2

− γ̃3
aγac

∫
t4

(1 + δ̃at)4
ν(dt)

=
γ̃3
a

a2

(c∫ t3

(1 + δ̃at)3
ν(dt)

)2

−

(
c

∫
t2

(1 + δ̃at)2
ν(dt)

)(
c

∫
t4

(1 + δ̃at)4
ν(dt)

)
≤ 0
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with equality only if ν is a Dirac measure. Therefore, to ensure (3.18), both ν and ν̃ must be
Dirac measures, which goes against the hypothesis.
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Chapter 4

Robust estimates of scatter for
elliptical data

In the first section of this chapter, we explore the random matrix asymptotics of Maronna’s
robust estimator of scatter introduced succinctly in Chapter 2 as the unique solution of (2.2),
which we will apply to improve array processing subspace methods in the second section. The
assumed model for the observations x1, . . . , xn ∈ CN from now on until Chapter 6 is that of
i.i.d. data following a slightly generalized version of the elliptical distribution.

It is to be noted that the technical approach to achieve our main result, Theorem 4.1.2, for
Maronna’s estimator can and will be extended to robust shrinkage estimators in Chapter 5 but
cannot be adapted to Tyler’s estimator ĈN (0) defined as the (unique up to a scale) solution to
(2.3). Since the publication of our first articles, the problem has been solved using a different
technique in (Zhang et al., 2014). Their approach is based on defining ĈN (0) as the argument
of the minimum of a potential function whose derivative at the minimum is exactly (2.3). Using
concentration inequalities for random matrices, they show that this minimum has a decreasingly
low probability of falling away from some random equivalent ŜN (0). Our own approach in the
present section rather relies on exploiting the properties of Maronna’s functions u and φ to
contain ĈN between two asymptotically tight bounds (in the Hermitian ordering sense) related
to ŜN that are amenable to random matrix analysis.

4.1 Theory

In this section, we provide the most fundamental theoretical results of this report, with technical
details and some basic lemmas moved to the Appendix A.

Before discussing our main results, we first introduce the notations and assumptions taken
in this chapter, some of which being valid for most of the report. We let x1, . . . , xn ∈ CN be
n random vectors defined by xi =

√
τiANwi, where τ1, . . . , τn ∈ R+ and w1, . . . , wn ∈ CN̄ are

random and AN ∈ CN×N̄ is deterministic. We denote cN , N/n and c̄N , N̄/N and shall
consider the following growth regime.
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Assumption 4.1. For each N , cN < 1, c̄N ≥ 1 and

c− < lim inf
n

cN ≤ lim sup
n

cN < c+

where 0 < c− < c+ < 1.

The robust estimator under consideration in this section is Maronna’s M-estimator ĈN de-
fined, when it exists, as a (possibly unique) solution to the equation in Z ∈ CN×N

Z =
1

n

n∑
i=1

u

(
1

N
x∗iZ

−1xi

)
xix
∗
i (4.1)

where u satisfies the following properties:

(i) u : [0,∞)→ (0,∞) is nonnegative continuous and non-increasing

(ii) φ : x 7→ xu(x) is increasing and bounded with limx→∞ φ(x) , φ∞ > 1

(iii) φ∞ < c−1
+ .

Note that (ii) is stronger than Maronna’s original assumption (Maronna, 1976, Condition (C)
p. 53) as φ cannot be constant on any open interval. The assumption (iii) is also not classical in
robust estimation but obviously compliant with the large n assumption made in classical works
(for which c+ = 0). The importance of both assumptions will appear clearly in the proof of the
main results.

The statistical hypotheses on x1, . . . , xn are detailed below.

Assumption 4.2. The vectors xi =
√
τiANwi, i ∈ {1, . . . , n}, satisfy the following hypotheses:

1. the (random) empirical measure ν̃n = 1
n

∑n
i=1 δτi satisfies

∫
τ ν̃n(dτ)

a.s.−→ 1

2. there exist ε < 1− φ−1
∞ < 1− c+ and m > 0 such that, for all large n a.s. ν̃n([0,m)) < ε

3. defining CN , ANA
∗
N , CN � 0 and lim supN ‖CN‖ <∞

4. w1, . . . , wn ∈ CN̄ are independent unitarily invariant complex (or orthogonally invariant
real) zero-mean vectors with, for each i, ‖wi‖2 = N̄ , and are independent of τ1, . . . , τn.

Item 1 is merely a normalization condition which, along with Item 3, ensures the proper
scaling and asymptotic boundedness of the model parameters. Note in particular that Item 1
ensures a.s. tightness of {ν̃n}∞n=1, i.e., for each ε > 0, there exists M > 0 such that, with
probability one, ν̃n([M,∞)) < ε for all n. Item 2 mainly ensures that no heavy mass of τi
concentrates close to zero; this will ensure that ĈN does not have too many eigenvalues close to
zero and thus has a stable asymptotic behavior.

Note that Item 4 could be equivalently stated as wi =
√
N̄ w̃i
‖w̃i‖ with w̃i ∈ CN̄ standard

complex Gaussian (or standard real Gaussian). This remark will be used throughout the proofs
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of the main results which rely in part on random matrix identities for matrices with independent
entries.

All these conditions are met in particular if the τi are independent and identically distributed
(i.i.d.) with common unit mean distribution ν̃ (in which case

∫
xν̃n(dx)

a.s.−→ 1 by the strong law
of large numbers) such that ν̃({0}) = 0. If in addition N = N̄ , then x1, . . . , xn are i.i.d. zero-
mean complex (or real) elliptically distributed with full rank (Ollila et al., 2012, Theorem 3).
In particular, if 2Nτ1 is chi-squared distributed with 2N degrees of freedom, x1 is complex
zero mean Gaussian. If 1/τ1 is chi-squared distributed with arbitrary degrees of freedom, x1 is
instead zero mean complex Student distributed (see (Ollila et al., 2012) for further discussions
and recent results on elliptical distributions).

For simplicity of exposition, most of the following, and in particular the proofs of the main
results, will assume the case of complex xi; the results remain however valid in the case of real
random variables.

We shall now take a last technical assumption, which we believe is necessary to our main
result.

Assumption 4.3. For each a > b > 0, a.s.

lim sup
t→∞

lim supn ν̃n((t,∞))

φ(at)− φ(bt)
= 0.

Assumption 4.3 controls the relative speed of the tail of ν̃n versus the flattening speed of
φ(x) as x→∞. Practical examples satisfying Assumption 4.3 are:

• There exists M > 0 such that, for all n, max1≤i≤n τi < M a.s. In this case, ν̃n((t,∞)) = 0
a.s. for t > M while φ(at)− φ(bt) 6= 0 since φ is increasing.

• For u(t) = (1 + α)/(α + t) for some α > 0, it is easily seen that it is sufficient that
lim supn ν̃n((t,∞)) = o(1/t) a.s. for Assumption 4.3 to hold. In particular, if the τi are
i.i.d. with distribution ν̃, lim supn ν̃n((t,∞)) = ν̃((t,∞)) a.s. (for all t continuity points of
ν̃) and, by Markov inequality, it suffices that

∫
x1+εν̃(dx) <∞ for some ε > 0.

The main contribution of this section is twofold: we first present a result on existence and
uniqueness of ĈN as a solution to (4.1) (Theorem 4.1.1) and then study the limiting spectral
behavior of ĈN as N,n → ∞ (Theorem 4.1.2). With respect to existence and uniqueness,
we recall that for N̄ = N (Maronna, 1976, Theorem 1) ensures the existence and uniqueness
of a solution to (4.1) under the statistical hypothesis that each N -subset of x1, . . . , xn spans
CN and that φ∞ > n/(n − N). While the first condition is met with probability one for
continuous distributions of xi, the second condition is restrictive under Assumption 4.1 as it
imposes φ∞ > 1/(1− c−) which brings a loss in robustness for c− close to one.1 Our first result
is a probabilistic alternative to (Maronna, 1976, Theorem 1) which states that for all large n,

1As commented in (Maronna, 1976), small values of φ∞ induce increased robustness to the expense of accuracy.
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a.s.,2 (4.1) has a unique solution. This result uses the probability conditions on x1, . . . , xn and
also uses φ∞ < c−1

+ which, as opposed to (Maronna, 1976, Theorem 1), enforces more robust
estimators. The uniqueness part of the result also imposes that φ be strictly increasing, while
(Maronna, 1976, Theorem 1) allows φ(x) = φ∞ for all large x.3

As for the large dimensional behavior of ĈN , in the fixed N large n regime and for i.i.d. τi,
it is of the form ĈN

a.s.−→ VN where VN is the unique solution to VN = E[u( 1
N x
∗
1V
−1
N x1)x1x

∗
1]

(Maronna, 1976, Theorem 5). When the xi are i.i.d. elliptically distributed and u is such that ĈN
is the maximum-likelihood estimator for CN , then VN = CN , leading to a consistent estimator
for CN . In the random matrix regime of interest here, we show that ĈN does not converge in any
classical sense to a deterministic matrix but satisfies ‖Ĉn − ŜN‖

a.s.−→ 0 in spectral norm, where
ŜN follows a random matrix model of the separable covariance type studied in the previous
chapter. As such, the spectral behavior of ĈN is easily analyzed from that of ŜN for N,n large.

In the next subsection, we introduce some new notations that simplify the analysis of ĈN
and provide an insight on the derivation of our main result, Theorem 4.1.2.

4.1.1 Preliminaries

First note from the expression of ĈN as a (hypothetical) solution to (4.1) that we can assume

CN = IN by studying C
− 1

2
N ĈNC

− 1
2

N in place of ĈN . Therefore, here and in all major proofs in the
section, without generality restriction, we place ourselves under the assumption CN = ANA

∗
N =

IN .

Our objective is to prove that ĈN is a well behaved solution of (4.1) (for all large n, a.s.) and
to study the spectral properties of ĈN as N,n grow large. However, the structure of dependence
between the rank-one matrices u( 1

N x
∗
i Ĉ
−1
N xi)xix

∗
i , i = 1, . . . , n, makes the large dimensional

analysis of ĈN via standard random matrix methods impossible (see e.g., (Pastur and Ŝerbina,
2011; Bai and Silverstein, 2009; Anderson et al., 2010)) as these methods fundamentally rely on
the independence (or simple dependence) of the structuring rank-one matrices. We propose here
to show that, in the large N,n regime, ĈN behaves similar to a matrix ŜN whose structure is
more standard and easily analyzed through classical random matrix results. For this we first need
to rewrite the fundamental equation (4.1) in order to exhibit a sufficiently “weak” dependence
structure in the expression of ĈN . This rewriting is performed in Section 4.1.1.1 below. This
being done, we then prove that some weakly dependent terms can be well approximated by
independent ones in the large N,n regime. Since the final result does not take an insightful
form, we provide below in Section 4.1.1.2 a hint on how to obtain it intuitively.

2As is common in random matrix theory, the probability space under consideration is that engendered by the
growing sequences {x1, . . . , xn}∞n=1, with N,n satisfying Assumption 4.1, so that an event En holds true “for all
large n, a.s.” whenever, with probability one, there exists n0 for which En is true for all n ≥ n0, this n0 possibly
depending on the sequence.

3We should point out here that a more general proof than Maronna’s and to which we were unaware at
the time of publication of this work was provided in (Kent and Tyler, 1991) which somewhat encompasses our
present result; nonetheless our proof is quite instrumental to the understanding of the structure of ĈN in the
large dimensional regime and therefore has interest in its own.
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4.1.1.1 Rewriting (4.1)

We need to introduce some new notations that will simplify the coming considerations. Write
xi =

√
τiANwi ,

√
τizi and recall that CN = IN for the moment (in particular, ‖zi‖ is of order√

N for most zi). If ĈN is well-defined, we denote Ĉ(i) , ĈN − 1
nu( 1

N x
∗
i Ĉ
−1
N xi)xix

∗
i .

Remark that Ĉ(i) depends on xi only through the terms u( 1
N x
∗
j Ĉ
−1
N xj), j 6= i, in which the

term ĈN is built on xi. But since xi is only one among a growing number n of xj vectors,
this dependence structure looks intuitively “weak”. This informal weak dependence between xi
and Ĉ(i), along with classical random matrix theory considerations, suggests that the quadratic

forms 1
N z
∗
i Ĉ
−1
(i) zi, i = 1, . . . , n, are all well approximated by 1

N tr Ĉ−1
N (more precisely, this would

roughly be a consequence of Lemma A.3 and Lemma A.2 in the Appendix if zi and Ĉ(i) were
truly independent).

With this in mind, let us rewrite ĈN as a function of 1
N z
∗
i Ĉ
−1
(i) zi instead of 1

N x
∗
i Ĉ
−1
N xi,

i = 1, . . . , n. For this, let Z ∈ CN×N be positive definite such that for each i, Z(i) , Z −
1
nu(τi

1
N z
∗
i Z
−1zi)τiziz

∗
i is positive definite. Using the identity (A + τzz∗)−1z = A−1z/(1 +

τz∗A−1z) for invertible A, vector z, and positive scalar τ , observe that

1

N
z∗i Z

−1zi =

1
N z
∗
i Z
−1
(i) zi

1 + τiu
(
τi

1
N z
∗
i Z
−1zi

)
1
nz
∗
i Z
−1
(i) zi

.

Hence,

1

N
z∗i Z

−1
(i) zi

(
1− cNτiu

(
τi

1

N
z∗i Z

−1zi

)
1

N
z∗i Z

−1zi

)
=

1

N
z∗i Z

−1zi

which, by the definition of φ, is

1

N
z∗i Z

−1
(i) zi

(
1− cNφ

(
τi

1

N
z∗i Z

−1zi

))
=

1

N
z∗i Z

−1zi.

Using Assumption 4.1 and φ∞ < c−1
+ , taking n large enough to have φ(x) ≤ φ∞ < 1/cN , this

can be rewritten

1

N
z∗i Z

−1
(i) zi =

1
N z
∗
i Z
−1zi

1− cNφ
(
τi

1
N z
∗
i Z
−1zi

) . (4.2)

Now, since φ is increasing, g : [0,∞)→ [0,∞), x 7→ x/(1−cNφ(x)) is increasing, nonnegative,
and maps [0,∞) onto [0,∞). Thus, g is invertible with inverse denoted g−1. In particular, from
(4.2),

τi
1

N
z∗i Z

−1zi = g−1

(
τi

1

N
z∗i Z

−1
(i) zi

)
.

Call now v : [0,∞) → [0,∞), x 7→ u ◦ g−1. Since g is increasing and nonnegative and u is
non-increasing, v is non-increasing and positive. Moreover, ψ : x 7→ xv(x) satisfies:

ψ(x) = xu(g−1(x)) = g(g−1(x))u(g−1(x)) =
φ(g−1(x))

1− cNφ(g−1(x))
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which is increasing, nonnegative, and has limit ψN∞ , φ∞/(1− cNφ∞) as x→∞. Hence, v and
ψ keep the same properties as u and φ, respectively.

With these notations, to prove the existence and uniqueness of a solution to (4.1), it is
equivalent to prove that the equation in Z

Z =
1

n

n∑
i=1

τiv

(
τi

1

N
z∗i Z

−1
(i) zi

)
ziz
∗
i

has a unique positive definite solution. But for this, it is sufficient to prove the uniqueness of
d1, . . . , dn ≥ 0 satisfying the n equations:

dj =
1

N
z∗j

 1

n

∑
i 6=j

τiv (τidi) ziz
∗
i

−1

zj , 1 ≤ j ≤ n. (4.3)

Indeed, if these di are uniquely defined, then so is the matrix

ĈN =
1

n

n∑
i=1

τiv (τidi) ziz
∗
i (4.4)

with di = 1
N z
∗
i Ĉ
−1
(i) zi, Ĉ(i) = ĈN − 1

nu( 1
N x
∗
i Ĉ
−1
N xi)xix

∗
i (the existence follows from taking the

di solution to (4.3) and write ĈN as in (4.4), while uniqueness follows from the fact that (4.4)
cannot be written with a different set of di from the uniqueness of the solution to (4.3)).

This is the approach that is pursued to prove Theorem 4.1.1, based on the results from
(Yates, 1995). Equation (4.4), which is equivalent to (4.1) (with ĈN in place of Z), will be
preferably used in the remainder of the section.

4.1.1.2 Hint on the main result

Assume here that the di above are indeed unique for all large n so that ĈN is well defined. We
provide some intuition on the main result.

From the discussion in Section 4.1.1.1, we may expect the terms di to be all close to 1
N tr Ĉ−1

N

for N,n large enough. We may also expect 1
N tr Ĉ−1

N to have a deterministic equivalent γN , i.e.,

there should exist a deterministic sequence {γN}∞N=1 such that | 1
N tr Ĉ−1

N − γN |
a.s.−→ 0. Let us

say that all this is true. Since 1
N tr Ĉ−1

N is the Stieltjes transform 1
N tr(ĈN − zIN )−1 of the

empirical spectral distribution of ĈN at point z = 0, and since ĈN is expected to be close to
1
n

∑
i τiv(τiγN )ziz

∗
i with now v(τiγN ) independent of z1, . . . , zn, from (3.4) in the previous chapter

(extended to z = 0), we would expect that one such γN be given by (recall that CN = IN )

γN =

(
1

n

n∑
i=1

τiv(τiγN )

1 + cNτiv(τiγN )γN

)−1
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if this fixed-point equation makes sense at all. This can be equivalently written as

1 =
1

n

n∑
i=1

ψ(τiγN )

1 + cNψ(τiγN )
. (4.5)

We in fact prove in Section 4.1.2 that such a positive γN is well defined, unique, and satisfies
max1≤i≤n |di− γN |

a.s.−→ 0 (under correct assumptions). Proving this result is the main technical
difficulty of the proof.

This convergence, along with (4.4), will then ensure that for all large n, a.s.∥∥∥ĈN − ŜN∥∥∥ a.s.−→ 0

where

ŜN =
1

n

n∑
i=1

v (τiγN ) τiziz
∗
i

with γN the unique positive solution to (4.5). It will then be immediate under Assumption 4.2–3
to see that the result holds true also for CN 6= IN .

The major interest of this convergence in spectral norm is that ŜN is a known and easily
manipulable object, as opposed to ĈN . The result therefore conveys a lot of information about
ĈN among which the fact that its largest and smallest eigenvalues are almost surely bounded
and bounded away from zero for all large n (which is not in general the case of 1

n

∑n
i=1 xix

∗
i for

τi with unbounded support).

4.1.2 Main results

We now make the statements of Section 4.1.1.2 rigorous. The first result ensures the existence
and uniqueness of a solution ĈN to (4.1) for n large enough.

Theorem 4.1.1 (Existence and Uniqueness). Let Assumptions 4.1 and 4.2 hold, with lim supN ‖CN‖
non necessarily bounded. Then, for all large n a.s., (4.1) has a unique solution ĈN given by

ĈN = lim
t→∞
t∈N

Z(t)

where Z(0) � 0 is arbitrary and, for t ∈ N,

Z(t+1) =
1

n

n∑
i=1

u

(
1

N
x∗i
(
Z(t)

)−1
xi

)
xix
∗
i .

Having defined ĈN , our main result provides a random matrix equivalent to ĈN , much easier
to study than ĈN itself.
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Theorem 4.1.2 (Asymptotic Behavior). Let Assumptions 4.1–4.3 hold, and let ĈN be given by
Theorem 4.1.1 when uniquely defined as the solution of (4.1) or chosen arbitrarily if not. Then∥∥∥ĈN − ŜN∥∥∥ a.s.−→ 0

where

ŜN ,
1

n

n∑
i=1

v(τiγN )xix
∗
i

and γN is the unique positive solution of the equation in γ

1 =
1

n

n∑
i=1

ψ(τiγ)

1 + cNψ(τiγ)

with the functions v : x 7→ (u ◦ g−1)(x), ψ : x 7→ xv(x), and g : R+ → R+, x 7→ x/(1− cNφ(x)).

The fact that ĈN is well approximated by ŜN , which follows the separable covariance random
matrix model studied in the previous chapter, has important consequences. From a purely
mathematical standpoint, this provides a full characterization of the spectral behavior of ĈN for
large N,n (see in particular Corollary 4.1 below). For application purposes, this first enables the
performance analysis in the large N,n horizon of standard signal processing methods already
relying on ĈN (these methods were so far analyzed solely in the fixed N large n regime).
A second, more important, consequence for signal processing application is the possibility to
fully exploit the structure of ĈN for large N,n to improve existing robust schemes (see next
Section 4.2 for an example in array processing). Note importantly here that ŜN is a matrix
of the separable covariance class studied in the previous chapter, the spectrum of which we
therefore can completely characterize. However, ŜN is not a directly observable matrix since γN
and the τi’s are not directly readable from the xi’s so that ŜN has a purely analytical purpose
and cannot be used as a substitute for ĈN in practice.

As a consequence of Theorem 4.1.2 and of the results of Chapter 3, we now have the following
corollary.

Corollary 4.1 (Spectrum). Let Assumptions 4.1–4.3 hold. Then

1

n

n∑
i=1

δλi(ĈN ) − µN
a.s.−→ 0 (4.6)

where the convergence is in the weak probability measure sense, with µN a probability measure
with continuous density and Stieltjes transform mN (z) given, for z ∈ C+, by

mN (z) = −1

z

1

N

N∑
i=1

1

1 + δ̃N (z)λi(CN )
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where δ̃N (z) is the unique solution in C+ of the equations in δ̃

δ̃ = −1

z

1

n

n∑
i=1

ψ(τiγN )

γN + ψ(τiγN )δ

δ = −1

z

1

n

N∑
i=1

λi(CN )

1 + λi(CN )δ̃

and where γN is defined in Theorem 4.1.2. Besides, the support SN of µN is uniformly bounded.
If CN = IN , mN (z) is the unique solution in C+ of the equation in m

m =

(
−z + γ−1

N

1

n

n∑
i=1

ψ(τiγN )

1 + cγ−1
N ψ(τiγN )m

)−1

.

Also, for each N0 ∈ N and each closed set A ⊂ R with A ∩
(⋃

N≥N0
SN

)
= ∅,∣∣∣∣{λi(ĈN )

}N
i=1
∩A

∣∣∣∣ a.s.−→ 0 (4.7)

so that, in particular,

lim sup
N

‖ĈN‖ <∞. (4.8)

Proof. Equation (4.6) is obtained from the results of (Zhang, 2006) and Chapter 3, with δ̃N (z)
and mN (z) the deterministic equivalents extension of δ̃(z) and m(z) defined in (3.2) and (3.3),
i.e., the fundamental equations attached to (νn, ν̃n) instead of (ν, ν̃), where νn = 1

N

∑
i δλi(CN ).

The characterization of µN follows immediately from the results of Chapter 3. The uniform
boundedness of the support is a consequence of the boundedness of ψ and γN , Lemma 4.1
in Section 4.1.3. Finally, the results (4.7) and (4.8) are an application of (Paul and Silver-
stein, 2009) along with lim supN ‖ŜN‖ ≤ v(0) lim supN ‖CN‖ lim supN ‖ 1

n

∑n
i=1 xix

∗
i ‖ < ∞ by

Assumption 4.2–3 and (Bai and Silverstein, 1998).

A consequence of Theorem 4.1.2 and Corollary 4.1 in the i.i.d. elliptical case is as follows.

Corollary 4.2 (Elliptical case). Let Assumptions 4.1–4.3 hold and in addition, let τi be i.i.d.
with law ν̃ and let cN → c. Then∥∥∥∥∥ĈN − 1

n

n∑
i=1

v(τiγ
∞)xix

∗
i

∥∥∥∥∥ a.s.−→ 0

where γ∞ is the unique positive solution to the equation in γ

1 =

∫
ψc(tγ)

1 + cψc(tγ)
ν̃(dt)
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with ψc = limcN→c ψ. Moreover, if 1
n

∑n
i=1 δλi(CN ) → ν weakly, then

1

n

n∑
i=1

δλi(ĈN )

a.s.−→ µ

weakly with µ a probability measure with continuous density of bounded support S, the Stieltjes
transform m(z) of which is given for z ∈ C+ by

m(z) = −1

z

∫
1

1 + δ̃(z)t
ν(dt)

where δ̃(z) is the unique solution in C+ of the equations in δ̃

δ̃ = −1

z

∫
ψc(tγ

∞)

γ∞ + ψc(tγ∞)δ
ν̃(dt)

δ = − c
z

∫
t

1 + tδ̃
ν(dt).

Finally, for every closed set A ⊂ R with A ∩ S = ∅,∣∣∣∣{λi(ĈN )
}N
i=1
∩A

∣∣∣∣ a.s.−→ 0.

Proof. We use the fact that γN
a.s.−→ γ∞ (γN defined in Theorem 4.1.2) which is a consequence

of ψ/(1 + cNψ) being monotonous and γN uniformly bounded, Lemma 4.1. The rest unfolds
from classical random matrix results presented in part in Chapter 3.
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Density of µN

Figure 4.1: Histogram of the eigenvalues of ĈN for n = 2500, N = 500, CN =
diag(I125, 3I125, 10I250), τ1 with Γ(.5, 2)-distribution.
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Figure 4.2: Histogram of the eigenvalues of ŜN for n = 2500, N = 500, CN =
diag(I125, 3I125, 10I250), τ1 with Γ(.5, 2)-distribution.
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Figure 4.3: Histogram of the eigenvalues of 1
n

∑n
i=1 xix

∗
i for n = 2500, N = 500, CN =

diag(I125, 3I125, 10I250), τ1 with Γ(.5, 2)-distribution.

Figures 4.1 and 4.2 depict the empirical histogram of the eigenvalues of ĈN and ŜN , for
N = 500 and n = 2500 with u(t) = (1 + α)/(t + α), α = 0.1, CN = diag(I125, 3I125, 10I250),
and τ1, . . . , τn i.i.d. with Γ(.5, 2) distribution. In thick line is also depicted the density of µN in
Corollary 4.1 which shows an accurate match to the empirical spectrum as predicted by (4.6).
As a comparison, Figure 4.3 shows the empirical histogram of the eigenvalues of the sample
covariance matrix 1

n

∑n
i=1 xix

∗
i under the same parametrization against the deterministic equiv-

alent density for this model in thick line (Zhang, 2006). This graph presents a large eigenvalue
spectrum support, seemingly unboundedly growing with N , which is indeed expected according
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to Proposition 3.3.4 in the previous chapter as τ1 has unbounded support; this is to be compared
against the provably uniformly bounded spectrum of ĈN (owing again to Proposition 3.3.4 and
the uniform boundedness of v(x) and ‖CN‖). Also note the gain of separability in the spectrum
of ĈN which exhibits clearly three compacts subsets of eigenvalues, reminiscent of the three
masses in the eigenvalue distribution of CN , while 1

n

∑n
i=1 xix

∗
i exhibits a single compact set of

eigenvalues.

Both remarks have major consequences for detection and estimation purposes in signal pro-
cessing applications of robust estimation, where relevant system information is often carried in
the largest eigenvalues, ideally found sufficiently far from the “noise” eigenvalues. As such, from
a practical standpoint, it is expected that robust estimators would allow for an improved separa-
tion between information and noise in impulsive data settings. This behavior will be confirmed
by the application carried out in Section 4.2.

In the next section, we present the proofs of Theorem 4.1.1 and Theorem 4.1.2.

4.1.3 Proof of the main results

For the sake of definition, we take all variables to be complex here although the arguments are
also valid for real random variables.

4.1.3.1 Proof of Theorem 4.1.1

As mentioned in Section 4.1.1, we can assume without generality restriction that CN = IN .
Indeed, if ĈN is the unique solution to (4.1) assuming CN = IN , then, for any other choice of

CN � 0, C
1
2
N ĈNC

1
2
N is the unique solution to the corresponding model in (4.1). Hence, we only

need to prove the result for CN = IN .

Consider a growing sequence {x1, . . . , xn}∞n=1 according to Assumptions 4.1 and 4.2. Since
|{τi = 0}| = nν̃n({0}) < n(1 − c+) for all large n a.s. (Assumption 4.2–2), n − |{τi = 0}| >
c+n > N + 1 which, along with z1, . . . , zn being normalized Gaussian vectors, ensures that
{x1, . . . , xj−1, xj+1, . . . , xn} spans CN for all j for all large n a.s. As long as n is large enough,
we can therefore almost surely define h = (h1, . . . , hn) with hj : Rn+ → R+ given by

hj(q1, . . . , qn) =
1

N
z∗j

 1

n

∑
i 6=j

τiv (τiqi) ziz
∗
i

−1

zj .

As shown in Section 4.1.1.1, in order to show that ĈN is uniquely defined, it suffices to show
that there exists a unique q1, . . . , qn such that for each j, qj = hj(q1, . . . , qn). For this, we show
first that h satisfies the following properties with probability one:

(a) Nonnegativity: For each q1, . . . , qn ≥ 0 and each i, hi(q1, . . . , qn) > 0

(b) Monotonicity: For each q1 ≥ q′1, . . . , qn ≥ q′n and each i, hi(q1, . . . , qn) ≥ hi(q′1, . . . , q′n)
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(c) Scalability: For each α > 1 and each i, αhi(q1, . . . , qn) > hi(αq1, . . . , αqn).

Item (a) is obvious since the matrix inverse is well defined for all n large and zi 6= 0 almost surely.
Item (b) follows from the fact that, for two Hermitian matrices A � B � 0, B−1 � A−1 � 0
((Horn and Johnson, 1985, Corollary 7.7.4)), and from v being non-increasing, entailing hi to
be a non-decreasing function of each qj . As for Item (c), it follows also from the previous
matrix inverse relation and from ψ being increasing, entailing in particular that, for α > 1,
ψ(αqi) > ψ(qi) if qi 6= 0 so that v(αqi) > v(qi)/α for qi ≥ 0.

According to Yates (Yates, 1995, Theorem 2), h is then a standard interference function
and, if there exists q1, . . . , qn such that for each i, qi > hi(q1, . . . , qn) (feasibility condition),
then there is a unique {q1, . . . , qn} satisfying qi = hi(q1, . . . , qn) for each i, which is given

by qi = limt→∞ q
(t)
i with q

(0)
i ≥ 0 arbitrary and, for t ≥ 0, q

(t+1)
i = hi(q

(t)
1 , . . . , q

(t)
n ) (which

would then conclude the proof). To obtain the feasibility condition, note that the function

q 7→ 1
N z
∗
j

(
1
n

∑
i 6=j ψ(τiq)ziz

∗
i

)−1
zj decreases with limit 1−cNφ∞

φ∞
1
N z
∗
j

(
1
n

∑
i 6=j,τi 6=0 ziz

∗
i

)−1
zj as

q → ∞. As {τi}ni=1 and {zi}ni=1 are independent and lim supnN/|{τi 6= 0}| = lim sup cN/(1 −
ν̃n({0})) < 1 a.s. (Assumption 4.2 and Assumption 4.1), for all large n a.s., we fall within the
hypotheses of Lemma A.4 in the Appendix and we can then write,4

max
1≤j≤n

∣∣∣∣∣∣(1− ν̃n({0})) 1

N
z∗j

 1

n

∑
τi 6=0

ziz
∗
i

−1

zj − 1

∣∣∣∣∣∣ a.s.−→ 0.

Assume first that τj 6= 0. Then, using the relation

1

N
z∗j

 1

n

∑
τi 6=0,i 6=j

ziz
∗
i

−1

zj =

1
N z
∗
j

(
1
n

∑
τi 6=0 ziz

∗
i

)−1
zj

1− cN 1
N z
∗
j

(
1
n

∑
τi 6=0 ziz

∗
i

)−1
zj

and the fact that for all large n a.s. 1− ν̃n({0}) > c+, we have

max
j,τj 6=0

∣∣∣∣∣∣ 1

N
z∗j

 1

n

∑
τi 6=0,i 6=j

ziz
∗
i

−1

zj −
1

1− ν̃n({0})− cN

∣∣∣∣∣∣ a.s.−→ 0.

Therefore, using the fact that ν̃N ({0}) < 1 − φ−1
∞ for all n large a.s. (Assumption 4.2–2), we

have that for all j with τj 6= 0

1− cNφ∞
φ∞

1

N
z∗j

 1

n

∑
τi 6=0,i 6=j

ziz
∗
i

−1

zj < 1. (4.9)

4To be more exact, since |{τi 6= 0}| is random with probability space T producing the τi’s, Lemma A.4 applies
only on a subset of probability one of T. It then suffices to apply Tonelli’s theorem (Billingsley, 1995) to ensure
that Lemma A.4 can be extended and still holds with probability one on the product space producing the (τi, zi).
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If instead τj = 0, then

max
j,τj=0

∣∣∣∣∣∣ 1

N
z∗j

 1

n

∑
τi 6=0

ziz
∗
i

−1

zj −
1

1− ν̃n({0})

∣∣∣∣∣∣ a.s.−→ 0.

and we find also the inequality (4.9) for all large n a.s. and for all j with τj = 0, using once
more ν̃N ({0}) < 1− φ−1

∞ . As such, (4.9) is valid for all j ∈ {1, . . . , n}.

We can then choose n large enough so that (4.9) holds for all j, after which, taking q
sufficiently large,

1

N
z∗j

 1

n

∑
i 6=j

ψ(τiq)ziz
∗
i

−1

zj < 1

which is equivalent to

1

N
z∗j

 1

n

∑
i 6=j

v(τiq)τiziz
∗
i

−1

zj < q

for all j, i.e., hj(q, . . . , q) < q. This ensures feasibility for all large n a.s. and concludes the
proof.

4.1.3.2 Proof of Theorem 4.1.2

Similar to the proof of Theorem 4.1.1, we can restrict ourselves to the assumption that CN =
IN . The generalization to CN satisfying Assumption 4.2-3) will follow straightforwardly. We
therefore take CN = IN in what follows.

We start the proof by introducing the following fundamental lemmas (note that these lemmas
in fact hold true irrespective of CN � 0).

Lemma 4.1. Let Assumption 4.1 hold and let h : [0,∞)→ [0,∞) be given by

h(γ) =

(
1

n

n∑
i=1

τiv(τiγ)

1 + cNτiv(τiγ)γ

)−1

=

 γ
(

1
n

∑n
i=1

ψ(τiγ)
1+cNψ(τiγ)

)−1
, γ > 0

1
v(0)

(
1
n

∑n
i=1 τi

)−1
, γ = 0.

Then, for all large n a.s., there exists a unique γN > 0 satisfying γN = h(γN ), given by

γN = lim
t→∞

γ
(t)
N

with γ
(0)
N ≥ 0 arbitrary and, for t ≥ 0, γ

(t+1)
N = h(γ

(t)
N ). Moreover, with probability one,

γ− < lim inf
N

γN ≤ lim sup
N

γN < γ+

for some γ−, γ+ > 0 finite.
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Proof. As in the proof of Theorem 4.1.1, we show that h (scalar-valued this time) is a standard
interference function. We show easily positivity, monotonicity and scalability of h. Indeed, for
γ ≥ 0, h(γ) > 0. For γ ≥ γ′ ≥ 0,

h(γ)− h(γ′)
h(γ)h(γ′)

=
1

n

n∑
i=1

τi (v(τiγ
′)− v(τiγ)) + (γ − γ′)cNτ2

i v(τiγ)v(τiγ
′)

(1 + cNτiv(τiγ)γ)(1 + cNτiv(τiγ′)γ′)
≥ 0

which follows from v being nonnegative decreasing. Finally, for α > 1, αh(0) > h(0) and for
γ 6= 0,

h(αγ) = αγ

(
1

n

n∑
i=1

ψ(τiαγ)

1 + cNψ(τiαγ)

)−1

< αγ

(
1

n

n∑
i=1

ψ(τiγ)

1 + cNψ(τiγ)

)−1

= αh(γ)

which follows from γ 7→ ψ(τiγ)(1 + cNψ(τiγ))−1 being increasing as long as τi 6= 0. It remains
to prove the existence of a γ such that γ > h(γ), inducing by (Yates, 1995, Theorem 2) the

uniqueness of the fixed-point γN given by γN = limt→∞ γ
(t)
N as stated in the theorem. For this, we

use again the fact that γ 7→ ψ(τiγ)(1 + cNψ(τiγ))−1 is increasing and that (Assumption 4.2–2),
for all large n a.s.

lim
γ→∞

1

n

n∑
i=1

ψ(τiγ)

1 + cNψ(τiγ)
=

(1− ν̃n({0}))ψN∞
1 + cNψN∞

= (1− ν̃n({0}))φ∞ > 1.

Therefore, there exists γ0 (a priori dependent on the set {τ1, . . . , τn}) such that, for all γ > γ0,
h(γ) < γ.

To prove uniform boundedness of γN , let ε > 0 and m > 0 be such that (1− ε)φ∞ > 1 and
ν̃n((m,∞)) > 1 − ε for all n large a.s. (always possible from Assumption 4.2–2). Then, for all
n large a.s.

1

n

n∑
i=1

ψ(τiγ)

1 + cNψ(τiγ)
> (1− ε) ψ(mγ)

1 + cNψ(mγ)
→ (1− ε)φ∞ > 1

as γ → ∞. Similar to γ0 above, we can therefore choose γ+ large enough, now independent
of n large, such that, a.s. γ ≥ γ+ ⇒ γ > h(γ), implying γN < γ+ for these n large since
γN = h(γN ). Also, h(0) > 1/(2v(0)) for all large n a.s. since 1

n

∑n
i=1 τi

a.s.−→ 1 by Assumption 4.2.
Hence, by the continuous growth of h, we can take γ− = 1/(2v(0)) > 0 which is such that
γ ≤ γ− ⇒ h(γ) ≥ h(0) > γ for all large n a.s. This implies γN > γ− for all large n a.s., which
concludes the proof.

Remark 4.1. For further use, note that Lemma 4.1 can be refined as follows. Let (η,Mη) be
couples indexed by η with 0 < η < 1 and Mη > 0 such that ν̃n((Mη,∞)) < η for all large n a.s.
(possible by tightness of ν̃n). Then, for sufficiently small η, the equation in γ

γ =

 1

n

∑
τi≤Mη

τiv(τiγ)

1 + cNτiv(τiγ)γ

−1
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has a unique solution γηN for all large n a.s. and there exists γ−, γ+ > 0 such that, for all η < η0

small, γ− < γηN < γ+ for all large n a.s.

Proof. The uniqueness is clear as long as (1 − η0)(1 − lim supn ν̃n({0}))φ∞ > 1 since then,

exploiting the fact that limn
|{τi≤Mη}|

n > 1− η0 a.s.,

lim
γ→∞

1

n

∑
τi≤Mη

ψ(τiγ)

1 + cNψ(τiγ)
=
|{τi ≤Mη}|

n
(1− ν̃n({0}))φ∞ > 1

for all n large a.s. and the proof follows from the proof of Lemma 4.1. For uniform bound-
edness, taking Mη0 < Mη large enough (or equivalently η0 > η small enough) such that

lim infn
|{m<τi≤Mη}|

n > lim infn
|{m<τi≤Mη0}|

n > 1 − ε a.s. in the proof of Lemma 4.1 leads to
the same upper bound result for all small η < η0. As for the lower bound, we still have
h(0) > 1/(2v(0)) for all large n a.s. independently of η so the result is maintained.

Lemma 4.2. Let Assumption 4.1 hold and define γN as in Lemma 4.1. Then, as n→∞,

max
1≤j≤n

∣∣∣∣∣∣ 1

N
z∗j

 1

n

∑
i 6=j

τiv(τiγN )ziz
∗
i

−1

zj − γN

∣∣∣∣∣∣ a.s.−→ 0.

Proof. We first introduce some notations to simplify readability. First, we will write zj =√
N̄AN w̃j/‖w̃j‖ ,

√
N̄ z̃j/‖w̃j‖ with w̃j zero-mean IN̄ -covariance Gaussian, hence w̃j is zero-

mean IN -covariance Gaussian. With this notation, in what follows, we denoteA = 1
n

∑n
i=1 τiv(τiγN )ziz

∗
i ,

A(j) = A− 1
nτjv(τjγN )zjz

∗
j , Ã = 1

n

∑n
i=1 τiv(τiγN )z̃iz̃

∗
i and Ã(j) = Ã− 1

nτjv(τjγN )z̃j z̃
∗
j .

We first show that there exists η > 0 such that, for all large n a.s.

min
1≤j≤n

λ1

(
A(j)

)
> η (4.10)

(recall that λ1 stands for the smallest eigenvalue). For this, take 0 < ε < 1 − c+ and m > 0
be such that ν̃n((m,∞)) > 1 − ε for all n large a.s. (Assumption 4.2–2). Using the fact that
xv(x) = ψ(x) is non-decreasing and that any subtraction of a nonnegative definite matrix cannot
increase the smallest eigenvalue, we have

min
1≤j≤n

λ1

(
A(j)

)
≥ min

1≤j≤n
λ1

 1

n

∑
i 6=j,τi≥m

ψ(τiγN )

γN
ziz
∗
i


≥ ψ(mγN )

γN
min

1≤j≤n
λ1

 1

n

∑
i 6=j,τi≥m

ziz
∗
i

 . (4.11)

Since ν̃n((m,∞)) > 1− ε for all n large a.s.,

0 < c− < lim inf
n

N

|{τi ≥ m}|
≤ lim sup

n

N

|{τi ≥ m}|
<

c+

1− ε
< 1.
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From Lemma A.4 in the Appendix (see footnote in the proof of Theorem 4.1.1 for details), we
can then write

min
1≤j≤n

λ1

(
A(j)

)
≥ ψ(mγN )

γN
ν̃n((m,∞)) min

1≤j≤n
λ1

 1

|{τi ≥ m}|
∑

i 6=j,τi≥m
ziz
∗
i


>
ψ(mγN )

γN
(1− ε)η′

for some η′ > 0 which, along with the almost sure boundedness of γN (Lemma 4.1) proves (4.10).

Now that (4.10) is acquired, let Ew̃j denote the expectation with respect to w̃j (i.e., condi-

tionally on the sigma-field engendered by the w̃i, i 6= j, and the τi) and κj , 1{λ1(A(j))>η} with

η as defined in (4.10). From (Bai and Silverstein, 2009, Lemma B.26) (which applies here since

z̃j and κ
1/p
j A−1

(j) are independent), for p > 2,

Ew̃j

[
κj

∣∣∣∣ 1

N
z̃∗jA

−1
(j) z̃j −

1

N
trA−1

(j)

∣∣∣∣p] ≤ κjKp

N
p
2

[(
ζ4

N
trA−2

(j)

) p
2

+
ζ2p

N
p
2

trA−p(j)

]

for ζ` any upper bound on E[|z̃ij |`] and Kp a constant dependent only on p. From the definition
of κj , we have κj‖A−1

(j)‖ < η−1, so that, using 1
N trB ≤ ‖B‖ for nonnegative definite B ∈ CN×N ,

Ew̃j

[
κj

∣∣∣∣ 1

N
z̃∗jA

−1
(j) z̃j −

1

N
trA−1

(j)

∣∣∣∣p] ≤ Kp

ηpN
p
2

(
ζ
p
2
4 +

ζ2p

N
p
2
−1

)
.

This bound being irrespective of all zi and τi, i 6= j, we can take the expectation with respect
to all wi, i 6= j, and all τi to obtain

E

[
κj

∣∣∣∣ 1

N
z̃∗jA

−1
(j) z̃j −

1

N
trA−1

(j)

∣∣∣∣p] = O

(
1

N
p
2

)
.

Taking p > 4 and applying the union bound, Markov inequality, and Borel Cantelli lemma
finally shows that

max
1≤j≤n

κj

∣∣∣∣ 1

N
z̃∗jA

−1
(j) z̃j −

1

N
trA−1

(j)

∣∣∣∣ a.s.−→ 0. (4.12)

With the same arguments on κj and with the same p as above, now remark that

Ew̃j

[
κj

∣∣∣∣ 1

N
z∗jA

−1
(j)zj −

1

N
z̃∗jA

−1
(j) z̃j

∣∣∣∣p] = Ew̃j

[
κj

∣∣∣∣ 1

N
z∗jA

−1
(j)zj

(
1− ‖w̃j‖

2

N̄

)∣∣∣∣p]
≤ 1

ηp
Ew̃j

[∣∣∣∣1− ‖w̃j‖2N̄

∣∣∣∣p] = O

(
1

Np/2

)
since N̄ ≥ N , again by (Bai and Silverstein, 2009, Lemma B.26). Therefore, by the union bound,
Markov inequality, and Borel Cantelli lemma,

max
1≤j≤n

κj

∣∣∣∣ 1

N
z∗jA

−1
(j)zj −

1

N
z̃∗jA

−1
(j) z̃j

∣∣∣∣ a.s.−→ 0. (4.13)
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Combining (4.12) and (4.13) along with the fact that min1≤j≤n κj
a.s.−→ 1 (from (4.10)) finally

gives

max
1≤j≤n

∣∣∣∣ 1

N
z∗jA

−1
(j)zj −

1

N
trA−1

(j)

∣∣∣∣ a.s.−→ 0.

By (4.10), A(j) = (A(j) − η
2IN ) + η

2IN with lim infn λ1(A(j) − η
2IN ) > 0 a.s., so we are in the

conditions of Lemma A.2 and we have

max
1≤j≤n

∣∣∣∣ 1

N
trA−1

(j) −
1

N
trA−1

∣∣∣∣ a.s.−→ 0.

It remains to find a deterministic equivalent for 1
N trA−1. Similar to above, note first that,

for all large n a.s.∣∣∣∣ 1

N
trA−1 − 1

N
tr Ã−1

∣∣∣∣ ≤ 1

η2

ψ∞
γN

max
1≤j≤n

∣∣∣∣1− N̄−1‖w̃j‖2

N̄−1‖w̃j‖2

∣∣∣∣
∥∥∥∥∥ 1

n

n∑
i=1

z̃j z̃
∗
j

∥∥∥∥∥
where we used the definition and boundedness of ψ and standard matrix inversion formulas.
From (Bai and Silverstein, 1998), the right hand side converges almost surely to zero, so that
it is equivalent to consider zi or z̃i. Now, the trace 1

N tr Ã−1 is exactly the Stieltjes transform

m̂N (z) of the matrix Ã evaluated at point z = 0. Since λ1(Ã) ≥ λ1(Ã(1)) > η for all large n a.s.

and since τiv(τiγN ) = ψ(τiγN )γ−1
N is uniformly bounded across i and n (from the boundedness

of ψ and Lemma 4.1), from standard random matrix results (e.g., (Couillet et al., 2011a) which
extends (3.4) to deterministic equivalents instead of limits)5, we have

m̂N (0)−mN (0)
a.s.−→ 0

where mN (0) is the unique nonnegative solution to the equation in m (as long as at least one τi
is non-zero)

m =

(
1

n

n∑
i=1

τiv(τiγN )

1 + cNτiv(τiγN )m

)−1

.

Now, by definition, γN coincides with such a solution. By uniqueness of mN (0), one must then
have mN (0) = γN so that, gathering all results together,

max
1≤j≤n

∣∣∣∣ 1

N
z∗jA

−1
(j)zj − γN

∣∣∣∣ a.s.−→ 0

which completes the proof.

5 More precisely, (Couillet et al., 2011a) shows that m̂N (z) − mN (z)
a.s.−→ 0 for all points z with =[z] > 0.

Using λ1(Ã) > η for all large n a.s., the proof can be generalized to all z ∈ C with positive distance to [η,∞)
by turning the bounds in 1/|=[z]| into 1/d(z, [η,∞)) with d denoting the Hausdorff distance, so for z = 0. The
existence of mN (0) is in particular already obtained in the generalization of the existence result of (Couillet et al.,
2011a, Appendix A-C), this time for z = 0. The proof of uniqueness of mN (0) can then be checked by standard
interference function arguments, where feasibility follows in particular from the right-hand behaving as cNm < m
from Assumption 4.1.
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Remark 4.2. Similar to Remark 4.1, note that Lemma 4.2 can be further extended to

max
1≤j≤n

∣∣∣∣∣∣ 1

N
z∗j

 1

n

∑
τi≤Mη ,i 6=j

τiv(τiγ
η
N )ziz

∗
i

−1

zj − γηN

∣∣∣∣∣∣ a.s.−→ 0

for some η small enough, with Mη and γηN defined in Remark 4.1.

Proof. One shows boundedness of λ1( 1
n

∑
τi≤Mη ,i 6=j τiv(τiγ

η
N )ziz

∗
i ) simply by taking η for which

ν̃n((m,Mη)) > 1− ε for all large n a.s. in the proof of Lemma 4.2. Then it suffices to adapt all
derivations by substituting τi by zero if τi > Mη. The result follows straightforwardly.

The two lemmas above are standard random matrix results on x1, . . . , xn, independent of
the structure of ĈN . The next lemma introduces a first result on the matrix ĈN which will
be fundamental in what follows. Recall that we denoted di = 1

N z
∗
i Ĉ
−1
(i) zi, with Ĉ(i) = ĈN −

1
nv(τidi)τiziz

∗
i .

Lemma 4.3 (Boundedness of the di). There exist d+ > d− > 0 such that, for all large n a.s.,

d− < lim inf
n

min
1≤i≤n

di ≤ lim sup
n

max
1≤i≤n

di < d+.

Proof. Let us denote dmax = max1≤i≤n di and dmin = min1≤i≤n di. Take j ∈ {1, . . . , n} arbitrary
and, for 0 < ε < 1− φ−1

∞ < 1− c+, take m > 0 such that for all large n a.s. ν̃n([m,∞)) > 1− ε
(Assumption 4.2–2). Then, using the fact that v is non-increasing while ψ is non-decreasing,

Ĉ(j) �
1

n

∑
i 6=j
τi≥m

τiv(τidi)ziz
∗
i =

1

n

∑
i 6=j
τi≥m

ψ(τidi)

di
ziz
∗
i �

1

n

∑
i 6=j
τi≥m

ψ(mdi)

di
ziz
∗
i

=
1

n

∑
i 6=j
τi≥m

mv(mdi)ziz
∗
i � mv(mdmax)

1

n

∑
i 6=j
τi≥m

ziz
∗
i . (4.14)

The right-hand side matrix is invertible for n large since |{τi ≥ m}| > nc+ > N for all large n a.s.
Therefore, choosing j to be such that dmax = 1

N z
∗
j Ĉ
−1
(j) zj , and using A � B � 0 ⇒ B−1 � A−1

for Hermitian A,B matrices,

dmax ≤
1

mv(mdmax)

1

N
z∗j

 1

n

∑
τi≥m,i 6=j

ziz
∗
i

−1

zj .

This implies

ψ(mdmax) ≤ 1

N
z∗j

 1

n

∑
τi≥m,i 6=j

ziz
∗
i

−1

zj
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which can be rewritten, from the definition of ψ,

φ(g−1(mdmax)) ≤
1
N z
∗
j

(
1
n

∑
τi≥m,i 6=j ziz

∗
i

)−1
zj

1 + cN
1
N z
∗
j

(
1
n

∑
τi≥m,i 6=j ziz

∗
i

)−1
zj

. (4.15)

From Lemma A.4 in the Appendix and the fact that ν̃n([m,∞) = n−1|{τi ≥ m}| > 1− ε for
all large n a.s., we then have for all large n a.s.

1

N
z∗j

 1

n

∑
i 6=j
τi≥m

ziz
∗
i


−1

zj =
1

ν̃n([m,∞))

1

N
z∗j

 1

|{τi ≥ m}|
∑
i 6=j
τi≥m

ziz
∗
i


−1

zj

<
1

1− ε
1

1− cN
1−ε

=
1

1− cN − ε
.

Now, since t 7→ t/(1 + cN t) is increasing, for all large n a.s.

1
N z
∗
j

(
1
n

∑
i 6=j
τi≥m

ziz
∗
i

)−1

zj

1 + cN
1
N z
∗
j

(
1
n

∑
i 6=j
τi≥m

ziz∗i

)−1

zj

<
1

1− cN − ε
1

1 + cN
1

1−cN−ε
=

1

1− ε
.

As ε < 1− φ−1
∞ , (1− ε)−1 < φ∞ so that, from the inequality above, we can apply φ−1 on both

sides of (4.15) to obtain, for all large n a.s.

g−1(mdmax) ≤ φ−1

(
1

1− ε

)
hence

dmax ≤
1

m
g

(
φ−1

(
1

1− ε

))
from which dmax is uniformly bounded for all large n a.s. by say d+.

To proceed to dmin, note similarly that we can write

Ĉ(j) �
1

n

∑
i 6=j
τi≤M

Mv(Mdmin)ziz
∗
i +

1

n

∑
i 6=j
τi>M

τiv(τidi)ziz
∗
i

� 1

n

∑
i 6=j
τi≤M

Mv(Mdmin)ziz
∗
i + v(0)

1

n

∑
i 6=j
τi>M

τiziz
∗
i

for any M > 0. Selecting j meeting the minimum for dj , we then have

dmin ≥
1

Mv(Mdmin)

1

N
z∗j

 1

n

∑
i 6=j
τi≤M

ziz
∗
i +

v(0)

Mv(Mdmin)

1

n

∑
i 6=j
τi>M

τiziz
∗
i


−1

zj
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which, for all large n a.s., satisfies

dmin ≥
1

Mv(Mdmin)

1

N
z∗j

 1

n

∑
i 6=j
τi≤M

ziz
∗
i +

v(0)

Mv(Md+)

1

n

∑
i 6=j
τi>M

τiziz
∗
i


−1

zj

or equivalently

ψ(Mdmin) ≥ 1

N
z∗j

 1

n

∑
i 6=j
τi≤M

ziz
∗
i +

v(0)

Mv(Md+)

1

n

∑
i 6=j
τi>M

τiziz
∗
i


−1

zj .

With the same arguments as in the proof of Lemma 4.2, note that, taking M large enough

lim inf
n

inf
j
λ1

 1

n

∑
i 6=j,τi≤M

ziz
∗
i

 > 0

almost surely (from Lemma A.4 and since lim infn ν̃n((M,∞)) → 1 a.s. as M → ∞). We can
then apply Lemma A.3 to obtain, along with Lemma A.2, Markov inequality, and Borel-Cantelli
lemma arguments,

max
1≤j≤n

∣∣∣∣∣∣∣∣
1

N
z∗j

 1

n

∑
i 6=j
τi≤M

ziz
∗
i + EM


−1

zj −
1

N
tr

 1

n

∑
τi≤M

ziz
∗
i + EM

−1
∣∣∣∣∣∣∣∣

a.s.−→ 0 (4.16)

where we defined EM = v(0)
Mv(Md+)

1
n

∑
τi>M

τiziz
∗
i . Now, EM is of maximum rank |{τi > M}|.

Taking M large enough to ensure ν̃n((M,∞)) = |{τi > M}|/n < c−ε′ for some ε′ > 0 arbitrary,
we then have from |{τi > M}| applications of Lemma A.2∣∣∣∣∣∣ 1

N
tr

 1

n

∑
τi≤M

ziz
∗
i + EM

−1

− 1

N
tr

 1

n

∑
τi≤M

ziz
∗
i

−1∣∣∣∣∣∣ ≤ ε′.
This and (4.16) give for all large n a.s.

ψ(Mdmin) ≥ 1

N
z∗j

 1

n

∑
i 6=j
τi≤M

ziz
∗
i


−1

zj + 2ε′

for all large n almost surely. From there, it suffices to proceed similar to the boundedness proof
for dmax starting from (4.15) with inequality signs reverted and accounting for ε′ arbitrarily
small. This shows finally that dmin is uniformly bounded away from zero and this completes the
proof.
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Equipped with Lemmas 4.1, 4.2, and 4.3, we are now in position to develop the core of
the proof. For readability, we divide the proof in two parts. In the first part, we will assume
that τ1, . . . , τn have a uniformly bounded support. This will greatly simplify the calculus and
will allow for a better understanding of the main arguments; in particular, the technical As-
sumption 4.3 will be irrelevant in this part. Then in a second part, we relax the boundedness
assumption and fully exploit Assumption 4.3 in a more technical proof.

Bounded τi. First assume τ1, . . . , τn ≤M a.s. for some M > 0. Define

ei ,
v(τidi)

v(τiγN )
> 0 (4.17)

with γN the value given by Lemma 4.1 and with di still defined as di = 1
N z
∗
i Ĉ
−1
(i) zi. Up to

labeling change, we reorder the ei’s as e1 ≤ . . . ≤ en. Our goal is to show that e1
a.s.−→ 1 and

en
a.s.−→ 1 (hence max1≤i≤n |ei − 1| a.s.−→ 0), which we will prove by a contradiction argument.

For any j = 1, . . . , n, we have

ej =
v
(
τj

1
N z
∗
j Ĉ
−1
(j) zj

)
v(τjγN )

=

v

(
τj

1
N z
∗
j

(
1
n

∑
i 6=j τiv(τidi)ziz

∗
i

)−1
zj

)
v(τjγN )

=

v

(
τj

1
N z
∗
j

(
1
n

∑
i 6=j τiv(τiγN )eiziz

∗
i

)−1
zj

)
v(τjγN )

(4.18)

≤
v

(
τj

1
N z
∗
j

(
1
n

∑
i 6=j τiv(τiγN )enziz

∗
i

)−1
zj

)
v(τjγN )

=

v

(
τj
en

1
N z
∗
j

(
1
n

∑
i 6=j τiv(τiγN )ziz

∗
i

)−1
zj

)
v(τjγN )

(4.19)

where the inequality arises from v being non-increasing and from (Horn and Johnson, 1985,
Corollary 7.7.4). Similarly, for each j,

ej ≥
v

(
τj
e1

1
N z
∗
j

(
1
n

∑
i 6=j τiv(τiγN )ziz

∗
i

)−1
zj

)
v(τjγN )

. (4.20)

From Lemma 4.2, let now 0 < εn < γN , εn ↓ 0, be such that, for all large n a.s. and for all
j ≤ n,

γN − εn <
1

N
z∗j

 1

n

∑
i 6=j

τiv(τiγN )ziz
∗
i

−1

zj < γN + εn.
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In particular, since v is non-increasing, taking j = n in (4.19) and applying the left-hand
inequality,

en <
v
(
e−1
n τn(γN − εn)

)
v(τnγN )

or equivalently

env(τnγN )

v
(
e−1
n τn(γN − εn)

) < 1. (4.21)

By the definition of ψ, this can be further rewritten

(
1− εnγN−1

) ψ(τnγN )

ψ
(
e−1
n τnγN (1− εnγ−1

N )
) < 1. (4.22)

Assume now that, for some ` > 0, en > 1 + ` infinitely often and let us restrict the sequence
en to those indexes for which en > 1 + `.

We distinguish two scenarios. First, assume that lim infn τn = 0. Then, by the definition
(4.17) and since both dn and γN are uniformly bounded (Lemma 4.1 and Lemma 4.3), on some
subsequence {nj} satisfying limj τnj = 0, enj

a.s.−→ 1, in contradiction with en > 1 + `.

We must then have lim infn τn > τ− for some τ− > 0 along with τn ≤M a.s. for some M > 0
(bounded τi assumption). Then, since γN is bounded and bounded away from zero for all large
n a.s., so is τnγN . Considering and restricting ourselves to a further subsequence over which
τnγN → x > 0 and cN → c, we then have, with ψc(x) = limcN→c ψ(x) (recall that ψ depends on
cN through g),

lim
n

(
1− εnγN−1

) ψ(τnγN )

ψ
(
e−1
n τnγN (1− εnγ−1

N )
) ≥ ψc(x)

ψc((1 + `)−1x)
> 1 (4.23)

which contradicts (4.22). Gathering the results and reconsidering the initial sequence en (i.e.,
not a subsequence) we then have, for each ` > 0, en ≤ 1 + ` for all large n a.s.

Symmetrically, we obtain that, for some εn ↓ 0 and for all large n a.s.

e1v(τ1γN )

v
(
e−1

1 τ1(γN + εn)
) > 1.

From this, we conclude similar to above that, for each ` > 0 small, e1 ≥ 1− `, for all large n a.s.
so that, finally

max
1≤i≤n

|ei − 1| a.s.−→ 0

or, by uniform boundedness of the τi and γN ,

max
1≤i≤n

|v(τidi)− v(τiγN )| a.s.−→ 0.
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Hence, letting ` > 0 and recalling that τiv(τiγN ) = ψ(τiγN )/γN , for all large n a.s.

(1− `) 1

n

n∑
i=1

ψ(τiγN )

γN
ziz
∗
i �

1

n

n∑
i=1

v(τidi)τiziz
∗
i � (1 + `)

1

n

n∑
i=1

ψ(τiγN )

γN
ziz
∗
i . (4.24)

Therefore, since γN > γ− and
∥∥ 1
n

∑n
i=1 ziz

∗
i

∥∥ < (1+
√
c+)2 for all large n a.s. (Bai and Silverstein,

1998), ∥∥∥ĈN − ŜN∥∥∥ ≤ `(1 +
√
c+)2ψ∞

γ−

where ŜN = γ−1
N

1
n

∑n
i=1 ψ(τiγN )ziz

∗
i . Since ` is arbitrary, the difference tends to zero a.s. as

n→∞, which concludes the proof for τi < M a.s. and for CN = IN .

If CN 6= IN is positive definite, remark simply that neither di nor γN are affected in their
values, so that the effect of CN first appears in (4.24) with zi having CN 6= IN as a covari-
ance matrix. But then, in this case, since ‖ 1

n

∑n
i=1 ziz

∗
i ‖ < (1 +

√
c+)2 lim supN ‖CN‖ < ∞

(Assumption 4.2), the last arguments still hold true and the result is also proved for these CN .

Note the importance of the assumption on φ being increasing and not simply non-decreasing
(as in (Maronna, 1976)) to ensure that (4.23) is a strict inequality. If this were to be replaced by
“≥ 1”, no contradiction with (4.22) could be evoked. There does not seem to be any easy way
to work this limitation around. Similar reasons explain why Tyler robust estimator discussed
in Section 2 cannot be analyzed in the same way as Maronna estimator. All the same, when
τ1, . . . , τn have unbounded support with growing n, the left-hand side of (4.23) may equal one
provided lim supn τn = ∞, which is not excluded. For this reason, a specific treatment is
necessary where the set of {τi}ni=1 is split into a large bounded set of τi and a small set of large
τi. This is the approach followed in the second part of the proof below.

Unbounded τi. We now relax the boundedness assumption on the support of the distribution
of τ1 and use Assumption 4.3 instead.

Since {ν̃n}∞n=1 is tight, we can exhibit pairs (η,Mη) with η ↓ 0 as Mη ↑ ∞ such that, for all
large n a.s. ν̃n((Mη,∞)) < η. Let us fix such a pair (η,Mη) with η small and restrict ourselves
to a subsequence where ν̃n((Mη,∞)) < η for all n. Denote Cη = {i, τi ≤ Mη} with cardinality
|Cη|/n = 1− ν̃n((Mη,∞)).

We follow the same steps as in the previous proof but differentiating between indices in Cη
and indices in Ccη. Also we denote

eηi ,
v(τidi)

v(τiγ
η
N )

where γηN is the unique positive solution to the equation in γ

1 =
1

n

∑
i∈Cη

ψ(τiγ)

1 + cNψ(τiγ)
.
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Recall first from Remark 4.1 that the conclusions of Lemma 4.1 are still valid and importantly
in what follows, that γ− < γηN < γ+ for some γ−, γ+ > 0, for all large N irrespective of η < η0

for some η0 small. This uniform control of γηN with respect to η plays a key role here. For
the moment, we do not make explicit the sufficiently small value of η0 that is needed in the
following; all what will matter if that we can always choose η arbitrarily small from here.

Let j ∈ Cη and denote ψ∞ any upper bound on ψN∞ for all N . Then, similar to (4.18), with
eη

1̄
= mini∈Cη{e

η
i } and eηn̄ = maxi∈Cη{e

η
i },

eηj =

v

τj 1
N z
∗
j

(
1
n

∑
i∈Cη
i 6=j

τiv(τiγ
η
N )eηi ziz

∗
i + 1

n

∑
i∈Ccη τiv(τidi)ziz

∗
i

)−1

zj


v(τjγ

η
N )

≤

v

τj 1
N z
∗
j

(
1
n

∑
i∈Cη
i 6=j

τiv(τiγ
η
N )eηn̄ziz

∗
i + 1

n
ψ∞
d−

∑
i∈Ccη ziz

∗
i

)−1

zj


v(τjγ

η
N )

=

v

 τj
eηn̄

1
N z
∗
j

(
1
n

∑
i∈Cη
i 6=j

τiv(τiγ
η
N )ziz

∗
i + 1

n
ψ∞
eηn̄d−

∑
i∈Ccη ziz

∗
i

)−1

zj


v(τjγ

η
N )

where the first inequality uses di > d− for all large n a.s (Lemma 4.3). Since eηn̄ = v(τn̄dn̄)
v(τn̄γ

η
N )

=

ψ(τn̄dn̄)
ψ(τn̄γ

η
N )

γηN
dn̄

, with the bounds derived previously (Remark 4.1 and Lemma 4.3), eηn̄ is almost

surely bounded and bounded away from zero for all large n a.s., irrespective of η small enough
(if lim infn τn̄ = 0, the first equality ensures lim infn e

η
n̄ > 0 while if lim supn τn̄ =∞, the second

equality ensures lim supn e
η
n̄ <∞). Thus, in particular, eηn̄ > e− for some e− > 0 for all large n

a.s. From this observation, for all large n a.s.

eηj ≤

v

 τj
eηn̄

1
N z
∗
j

(
1
n

∑
i∈Cη
i 6=j

τiv(τiγ
η
N )ziz

∗
i + 1

n
ψ∞
d−e−

∑
i∈Ccη ziz

∗
i

)−1

zj


v(τjγ

η
N )

=

v

 τj
eηn̄

 1
N z
∗
j

(
1
n

∑
i∈Cη
i 6=j

τiv(τiγ
η
N )ziz

∗
i

)−1

zj + ζj,n


v(τjγ

η
N )

(4.25)

where we defined

ζj,n ,
1

N
z∗j
(
Aη,(j) +Bη

)−1
zj −

1

N
z∗jA

−1
η,(j)zj

with

Aη,(j) ,
1

n

∑
i∈Cη
i 6=j

τiv(τiγ
η
N )ziz

∗
i , Bη ,

1

n

ψ∞
d−e−

∑
i∈Ccη

ziz
∗
i .
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Note that A−1
η,(j) is well defined as Aη,(j) is invertible for all large n a.s. provided η is small

enough. Similar to the proof of Lemma 4.3, note first that, for some κ > 0 and for all j ∈ Cη,
λ1(Aη,(j)) > κ > 0 for all large n a.s. Indeed, with the same derivation as (4.14), for any m > 0
satisfying ν̃n([m,Mη]) > c+ for all n a.s. (this may require Mη large enough), λ1(Aη,(j)) ≥
mv(mγ+)λ1( 1

n

∑
τi∈[m,Mη ],i 6=j ziz

∗
i ) away from zero for all large n a.s., independently of η small

enough (Lemma A.4). Then, since Bη is of maximum rank |Ccη| = ν̃n((Mη,∞)), the successive
applications of Lemma A.3 and Lemma A.2 (see the similar steps in the proof of Lemma 4.3)
lead to

max
j∈Cη
|ζnj | ≤ Kν̃n((Mη,∞)) (4.26)

for some K > 0 constant, independent of η.

Now that ζj,n is controlled for all j ∈ Cη, we can proceed similar to the proof in the bounded
τi case. First, for any fixed η > 0 small enough, Remark 4.2 ensures that there exists a sequence
εηn ↓ 0, such that a.s.

max
j∈Cη

∣∣∣∣∣∣ 1

N
z∗j

 1

n

∑
i∈Cη ,i 6=j

τiv(τiγ
η
N )ziz

∗
i

−1

zj − γηN

∣∣∣∣∣∣ ≤ εηn. (4.27)

Combining (4.25), (4.26), and (4.28), we then have for all large n a.s. and for all j ∈ Cη

eηj ≤
v
(
τj
eηn̄

(
γηN − ε

η
n −Kν̃n((Mη,∞))

))
v(τjγ

η
N )

(4.28)

which, for j = n̄, is

eηn̄ ≤
v
(
τn̄
eηn̄

(
γηN − ε

η
n −Kν̃n((Mη,∞))

))
v(τn̄γ

η
N )

.

Using the definition of ψ, this reads equivalently(
1− εηn +Kν̃n((Mη,∞))

γηN

)
ψ(τn̄γ

η
N )

ψ
(

(eηn̄)−1τn̄γ
η
N

(
1− εηn+Kν̃n((Mη ,∞))

γηN

)) < 1

which implies, from the growth of ψ,(
1− εηn +Kν̃n((Mη,∞))

γηN

)
ψ(τn̄γ

η
N )

ψ
(
(eηn̄)−1τn̄γ

η
N

) < 1.

Adding
εηn+Kν̃n((Mη ,∞))

γηN
− 1 on both sides, this further reads

(
1− εηn +Kν̃n((Mη,∞))

γηN

)
ψ(τn̄γ

η
N )− ψ

(
(eηn̄)−1τn̄γ

η
N

)
ψ
(
(eηn̄)−1τn̄γ

η
N

) <
εηn +Kν̃n((Mη,∞))

γηN
.
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or equivalently, if η is taken small enough (recalling that γηN > γ− uniformly on η small),

ψ(τn̄γ
η
N )− ψ

(
(eηn̄)−1τn̄γ

η
N

)
εηn +Kν̃n((Mη,∞))

<
ψ
(
(eηn̄)−1τn̄γ

η
N

)
γηN

(
1− εηn+Kν̃n((Mη ,∞))

γηN

) < 2ψ∞
γ−

(4.29)

where the right-most bound holds for all large n a.s. provided η is chosen small enough.

Assume lim supn e
η
n̄ > 1 + ` for some ` > 0. Then one must have lim infn τn̄ > τ− for (4.28)

to remain valid, with τ− > 0 independent of η small since γ− < γηN < γ+ for all n large a.s., both
bounds being independent of η. Since τn̄γ

η
N belongs to [τ−γ−,Mηγ+] for all large N a.s., taking

the limit of (4.29) over some converging subsequence over which τn̄γ
η
N → xη ∈ [τ−γ−,Mηγ+],

cN → c, and ν̃n((Mη,∞)) converges, ensures that

ψc(x
η)− ψc

(
1

1+`x
η
)

limn ν̃n((Mη,∞))
≤ K ′ (4.30)

for K ′ > 0 independent of η, with ψc = limcN→c ψ.

We now operate on η. If lim supη→0 x
η < ∞, the left-hand side in (4.30) diverges to ∞

as η → 0 so that, starting with an η sufficiently small and taking the limit over n on the
subsequence under consideration raises a contradiction. If instead lim supη→0 x

η = ∞, then,
since xη ≤Mηγ+,

ψc(x
η)− ψc

(
1

1+`x
η
)

limn ν̃n((Mη,∞))
≥
ψc(x

η)− ψc
(

1
1+`x

η
)

limn ν̃n(( x
η

γ+
,∞))

.

Call yη = g−1(xη). Recalling that ψc(t) = φ(g−1(t))(1− cφ(g−1(t)))−1, we get

ψc(x
η)− ψc

(
1

1 + `
xη
)

=
φ(yη)− φ

(
g−1

[
1

1+`g(yη)
])

(1− cφ(yη))(1− cφ(g−1[ 1
1+`g(yη)]))

.

Now, letting κ > 0 small, for all large t, g(t) < t(1 − cφ∞)−1(1 + κ) and similarly g−1(t) <
t(1− cφ∞)(1 + κ). Hence, letting κ small enough, for all large yη, we have, say,

φ

(
g−1

[
1

1 + `
g(yη)

])
< φ

(
1

1 + 1
2`
yη

)
.

Moreover, using 0 < 1− cφ(t) < 1, we have (1− cφ(t))−1 > 1. Using these results now gives, for
all large yη,

ψc(x
η)− ψc

(
1

1+`x
η
)

limn ν̃n(( x
η

γ+
,∞))

>
φ(yη)− φ

(
1

1+ 1
2
`
yη
)

limn ν̃n(( yη

γ+(1−cφ(yη)) ,∞))

>
φ(yη)− φ

(
1

1+ 1
2
`
yη
)

limn ν̃n(( y
η

γ+
,∞))

.
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Since yη →∞ as xη →∞, from Assumption 4.3, the right-hand side must go to ∞ as xη →∞,
or equivalently as η → 0. Therefore, taking η sufficiently small from the beginning and then
bringing n large on the subsequence under study leads to a contradiction. Consequently, we
must have lim supn e

η
n̄ ≤ 1 + ` a.s. A similar reasoning shows that lim infn e

η
1̄
≥ 1 − ` a.s., for

any given ` > 0. We conclude that

max
j∈Cη

∣∣∣eηj − 1
∣∣∣ a.s.−→ 0.

We now have to deal with eηj for j ∈ Ccη. For such a j,

dj =
1

N
z∗j

 1

n

∑
i∈Cη

τiv(τiγ
η
N )eηi ziz

∗
i +

1

n

∑
i∈Ccη ,i 6=j

ψ(τidi)

di
ziz
∗
i

−1

zj .

But then, from the same reasoning as with the ζj,n above (using in particular the uniform

boundedness of di) and from maxi∈Cη |e
η
i − 1| a.s.−→ 0, we have

max
j∈Ccη

∣∣∣∣∣∣dj − 1

N
z∗j

 1

n

∑
i∈Cη

τiv(τiγ
η
N )ziz

∗
i

−1

zj

∣∣∣∣∣∣ < Kν̃n((Mη,∞)) < Kη

for some K > 0 independent of η, which further implies from Remark 4.2 that for all large n
a.s. and for all j ∈ Ccη,

γηN −Kη ≤ dj ≤ γ
η
N +Kη.

Using the definition eηj =
ψ(τjdj)

ψ(τjγ
η
N )

γηN
dj

, the uniform bounds on γηn, and the continuous growth of

ψ shows finally that, a.s.

lim sup
n

max
j∈Ccη

{∣∣∣eηj − 1
∣∣∣} ≤ η′

for some η′ > 0 with η′ → 0 as η → 0.

Gathering the results for j ∈ Cη and j ∈ Ccη, we therefore conclude that, for each ` > 0, there
exists η > 0 small enough such that a.s.

1− ` < lim inf
n

min
1≤i≤n

eηi ≤ lim sup
n

max
1≤i≤n

eηi < 1 + `.

For such η small, we then have, by definition of eηi and from τiv(τiγ
η
N ) = ψ(τiγ

η
N )/γηN ,

(1− `) 1

n

n∑
i=1

ψ(τiγ
η
N )

γηN
ziz
∗
i �

1

n

n∑
i=1

v(τidi)τiziz
∗
i � (1 + `)

1

n

n∑
i=1

ψ(τiγ
η
N )

γηN
ziz
∗
i . (4.31)
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It now remains to show that, for each ε > 0, there exists η > 0 for which |γηN − γN | < ε for
all n large a.s. For this, observe that, by definition of γN and γηN ,

1 =
1

n

∑
i∈Cη

ψ(τiγ
η
N )

1 + cNψ(τiγ
η
N )

=
1

n

n∑
i=1

ψ(τiγN )

1 + cNψ(τiγN )

so that, since ψ/(1 + cNψ) is increasing, we obtain γN ≤ γηN and

1

n

∑
i∈Ccη

ψ(τiγN )

1 + cNψ(τiγN )
=

1

n

∑
i∈Cη

ψ(τiγ
η
N )− ψ(τiγN )

(1 + cNψ(τiγN ))(1 + cNψ(τiγ
η
N ))
≥ 0.

Take an interval [m,M ], M < Mη (chosen once for all, independently of Mη large), with
ν̃n([m,M ]) > κ > 0 for all large n a.s. (possible from Assumption 4.2–2). Then we can
further write

1

n

∑
i∈Ccη

ψ(τiγN )

1 + cNψ(τiγN )
≥ 1

(1 + c+ψ∞)2

1

n

∑
τi∈[m,M ]

(
ψ(τiγ

η
N )− ψ(τiγN )

)
≥ κ

2(1 + c+ψ∞)2
min

x∈[m,M ]

(
ψ(xγηN )− ψ(xγN )

)
with the second inequality valid for all large n a.s. Now, for sufficiently small η, the left-hand
side can be made arbitrarily small. Since γN and γηN are uniformly bounded and bounded away
from zero (irrespective of η small), if |γηN −γN | were uniformly away from zero for all η small, so
would be the right-hand side, which is in contradiction with our previous statement. Therefore,
for each ε > 0, one can choose η so that |γN − γηN | < ε for all n large a.s.

Now, by uniform continuity of ψ on bounded intervals along with the fact that ψ(x) ↑ ψ∞,
from (4.31), taking η small enough, for all large n a.s.

(1− `)2 1

n

n∑
i=1

ψ (τiγN )

γN
ziz
∗
i � ĈN � (1 + `)2 1

n

n∑
i=1

ψ (τiγN )

γN
ziz
∗
i (4.32)

which therefore implies, with the same arguments as in the case τi bounded, that ‖ĈN−ŜN‖
a.s.−→

0, when CN = IN . The arguments of the case τi bounded still hold for CN 6= IN satisfying
Assumption 4.2-3). This completes the proof.

4.2 Application: Robust G-MUSIC

With the results of Section 4.1, we fulfilled the first step in providing improved robust estimators
for functionals f(CN ) of population covariance matrices in the large N,n regime. As discussed
in Chapter 2, our hope is now that ŜN , the random equivalent for ĈN , may be used in a
plug-and-play manner to provide such estimates of f(CN ).

This chapter provides two classes of estimators, for eigenvalues and eigenvectors, in a specific
array processing context. For the sake of coherence in modelling though, the system model will
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be extended from that of Section 4.1 in such a way that the estimators will not be exactly of the
form f(CN ). In technical terms, we shall consider a spiked information-plus-noise random matrix
generalization of the model for the xi’s and we shall retrieve information from the deterministic
information part; we may have instead considered a multiplicative spiked model extension of
the xi’s, which would have precisely led to retrieving information of the form f(CN ) although
the modelling (of random sources) would have been less general in practice.

Before delving into the technical part of the section, let us provide some reminders on
spiked models and more importantly on what one should expect from spiked model extensions
of sample covariance matrix versus robust covariance matrix in the presence of impulsive data.
Since robust or non-robust covariance matrices following or not following a spiked model will
need be discussed, we shall take some different notations in this section than in Section 4.1 for the
sake of readability. To start with, the robust covariance matrix for zero mean elliptical signals
as studied in Section 4.1, will now be denoted Ĉ◦N , while the same robust covariance matrix for

non-zero mean elliptical signals (of interest here) will be denoted ĈN and is the object of central
interest. All the same we shall denote Ŝ◦N the random equivalent for Ĉ◦N and shall see that ĈN
has similarly a random equivalent that will be denoted ŜN .

To help understanding, in the first lines of the next section, hinging on the fact that Ŝ◦N and

ŜN are merely random matrices of the separate covariance model and its spiked extension, we
shall reuse these two notations in this wider sense.

4.2.1 Introduction

Spiked models are small rank perturbations of classical simple random matrix models (such as
models having i.i.d. entries). The initial study of such models (Baik and Silverstein, 2006) for
matrices of the type ŜN = 1

n(IN + A)WW ∗(IN + A∗), where W ∈ CN×n has independent and
identically distributed (i.i.d.) zero mean, unit variance, and finite fourth moment entries and
A has fixed rank L, has shown that, as N,n → ∞ with N/n → c ∈ (0,∞), ŜN may exhibit
up to L isolated eigenvalues strictly away from the bounded support of the limiting empirical
distribution µ of Ŝ◦N = 1

nWW ∗, while the other eigenvalues of ŜN get densely compacted in
the support of µ. This result has triggered multiple works on various low rank perturbation
models for Gram, Wigner, or general square random matrices (Benaych-Georges and Rao, 2011;
Paul, 2007; Benaych-Georges et al., 2010) with similar conclusions. Of particular interest to
us here is the information-plus-noise model ŜN = 1

n(W +A)(W +A)∗ introduced in (Benaych-
Georges and Rao, 2011) which is closer to our present model. Other generalizations explored the

direction of turning W into the more general WT
1
2 model for T = diag(τ1, . . . , τn) � 0, such that

1
n

∑n
i=1 δτi → ν̃ weakly, where ν̃ has bounded support supp(ν̃) and maxi{dist(τi, supp(ν̃))} → 0

(Chapon et al., 2014). In this scenario again, thanks to the fundamental assumption that no
τi can escape supp(ν̃) asymptotically, only finitely many eigenvalues of ŜN can be found away
from the support of the limiting spectral distribution of 1

nWTW ∗, and these eigenvalues are
intimately linked to A.

The major interest of the spiked models in practice is twofold. First, if the (non observable)
perturbation matrix A constitutes the relevant information to the system observer, then the
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observable isolated eigenvalues and associated eigenvectors of ŜN contain information about
A. These isolated eigenvalues and eigenvectors are therefore important objects to characterize.
Moreover, since ŜN has the same limiting spectrum as that of simple random matrix models,
this characterization is usually quite easy and leads to tractable expressions and computationally
efficient algorithms. This led to notable contributions to statistical inference and in particular to
detection and estimation techniques for signal processing (Mestre, 2008b; Nadler, 2010; Hachem
et al., 2013; Couillet and Hachem, 2013).

However, from the discussion of the first paragraph, these works have a few severe practical
limitations in that: (i) the support of the limiting spectral distribution of ŜN must be bounded
for isolated eigenvalues to be detectable and exploitable and (ii) no eigenvalue of Ŝ◦N (the un-
perturbed model) can be isolated, to avoid risking a confusion between isolated eigenvalues of
ŜN arising from A and isolated eigenvalues of ŜN intrinsically linked to Ŝ◦N . This therefore rules
out the possibility to straightforwardly extend these techniques in practice to impulsive noise
models WT

1
2 where T = diag(τ1, . . . , τn) with either τi i.i.d. arising from a distribution with

unbounded support or τi = 1 for all but a few indices i. In the former case, the support of the
limiting spectrum of Ŝ◦N is unbounded from Proposition 3.3.4 in Chapter 3, therefore precluding

information detection, while in the latter spurious eigenvalues in the spectrum of ŜN may arise
that are also found in Ŝ◦N and therefore constitute false information (note that this case can be
seen as one where low rank perturbations are present both in the population and in the sample
directions which cannot be discriminated). Such impulsive models are nonetheless fundamental
in many applications ranging from statistical finance to radar array processing, where impulsive
samples are classically met.

As already discussed, the natural way to handle impulsive data is by means of robust esti-
mators. In particular, from the results of Section 4.1, it importantly appears that the limiting
spectrum distribution of Ĉ◦N always has bounded support, irrespective of the impulsiveness of

the samples. In particular, it is clear that, asymptotically, isolated eigenvalues of Ĉ◦N (arising
from isolated τi) can be found away from the support but that none of the eigenvalues can
exceed a fixed finite value dictated by the boundedness of the function ψ.

In the present section, we extend the model of the data xi’s by adding to it a deterministic
part, intervening in the end as a finite rank perturbation A to the robust estimator of scale
Ĉ◦N , the resulting matrix being denoted ĈN . As opposed to non-robust models, it shall appear

(quite surprisingly on the onset) that ĈN now allows for finitely many isolated eigenvalues to
appear beyond the aforementioned fixed finite value (referred from now on to as the detection
threshold), these eigenvalues being related to A. This holds even if 1

n

∑n
i=1 δτi has unbounded

support in the large n regime. As such, any isolated eigenvalue of ĈN found below the detection
threshold may carry information about A or may merely be an outlier due to an isolated τi (as
in the non-robust context) but any eigenvalue found beyond the detection threshold necessarily
carries information about A. This has important consequences in practice as now low rank
perturbations in the sample direction are appropriately harnessed by the robust estimator while
the (more relevant) low rank perturbations in the population direction can be properly estimated.
We shall introduce an application of these results to array processing by providing two novel
estimators for the power and steering direction of signal sources captured by a large sensor array
under impulsive noise.
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The contribution of this section thus lies on both theoretical and practical grounds. We
first introduce in Theorem 4.2.1 the generalization of Theorem 4.1.2 to the perturbed model ĈN
which we precisely define in Section 4.2.2. The main results are then contained in Section 4.2.3.
In this section, Theorem 4.2.2 provides the localization of the eigenvalues of ĈN in the large
system regime along with associated population eigenvalue and eigenvector estimators when the
limiting distribution for 1

n

∑n
i=1 δτi is known. This result is then extended in Theorem 4.2.3

thanks to a two-step estimator where the τi are directly estimated. A practical application
of these novel methods to the context of steering angle estimation for array processing is then
provided, leading to an improved algorithm referred to as robust G-MUSIC. Simulation results in
this context are then displayed that confirm the improved performance of using robust schemes
versus traditional sample covariance matrix-based techniques.

4.2.2 Model and Motivation

Let n ∈ N. For i ∈ {1, . . . , n}, we consider the following statistical model

xi =
L∑
l=1

√
plalsli +

√
τiwi (4.33)

with xi ∈ CN satisfying the following hypotheses.

Assumption 4.4. The vectors x1, . . . , xn ∈ CN satisfy the following conditions:

1. τ1, . . . , τn ∈ (0,∞) are random scalars such that ν̃n , 1
n

∑n
i=1 δτi → ν̃ weakly, almost

surely, where
∫
tν̃(dt) = 1;

2. w1, . . . , wn ∈ CN are random independent unitarily invariant
√
N -norm vectors, indepen-

dent of τ1, . . . , τn;

3. L ∈ N, p1 ≥ . . . ≥ pL ≥ 0 are deterministic and independent of N

4. a1, . . . , aL ∈ CN are deterministic or random and such that

A∗A a.s.−→ diag(p1, . . . , pL)

as N →∞, with A , [
√
p1a1, . . . ,

√
pLaL] ∈ CN×L

5. s1,1, . . . , sLn ∈ C are independent with zero mean, unit variance, and uniformly bounded
moments of all orders.

For further use, we shall define

Ai ,
[√
p1a1 . . .

√
pLaL

√
τiIN

]
∈ CN×(N+L).

In particular, AiA
∗
i = AA∗ + τiIN .
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Remark 4.3 (Application contexts). The system (4.33) can be adapted to multiple scenarios
in which the sli model scalar signals or data originated from L sources of respective powers
p1, . . . , pL carried by the vectors a1, . . . , aL, while the

√
τiwi model additive impulsive noise.

Two examples are:

• wireless communication channels in which signals sli originating from L transmitters are
captured by an N -antenna receiver. The vectors al are here random independent chan-
nels for which it is natural to assume that a∗l al′ → δl−l′ (e.g., for independent al ∼
CN(0, IN/N));

• array processing in which L sources emit signals sli captured by an antenna array through
steering vectors al = a(θl) for a given a(θ) function and angles of arrival θ1, . . . , θL ∈
[0, 2π). In the case of uniform linear arrays with inter-antenna distance d, [a(θ)]j =

N−
1
2 exp(2πıdj sin(θ)).

The noise impulsiveness is translated by the τi coefficients. The vectors
√
τiwi are for instance

i.i.d. elliptic random vectors if the τi are i.i.d. with absolutely continuous measure ˜̃νn having a
limit ˜̃ν (in which case, we easily verify that ν̃n → ν̃ = ˜̃ν a.s. This particularizes to additive
white Gaussian noise if 2Nτi is chi-square with 2N degrees of freedom (in this case, ν̃ = δ1).
Of interest in this section is however the scenarios where ν̃ has unbounded support, e.g., when
the τi are either random i.i.d. and heavy-tailed or contain a few arbitrarily large outliers, which
both correspond to impulsive noise scenarios.

Remark 4.4 (Technical comments). From a purely technical perspective, it is easily seen from
the proofs of our main results in Section 4.2.4 that some of the items of Assumption 4.4 could
have been relaxed. In particular, Item (4) could have been relaxed into “all accumulation points
of A∗A are similar to diag(q1, . . . , qL) for given q1 ≥ . . . ≥ qL” as in e.g., (Chapon et al.,
2014). Also, similar to Section 4.1, the convergence of ν̃n in Item (1) could be relaxed to the
cost of introducing a tightness condition on the sequence {ν̃n}∞n=1 and to loose the convergence
of measure in the discussion following Theorem 4.2.1. For readability and since Assumption 4.4
gathers most of the scenarios of interest, we restrict ourselves to those (already quite general)
hypotheses.

We now define the robust estimate of scatter ĈN . We start by denoting u : [0,∞)→ (0,∞)
any function satisfying the following hypotheses.

Assumption 4.5. The function u is characterized by

1. u is continuous, nonnegative, and non-increasing from [0,∞) onto (0, u(0)] ⊂ (0,∞);

2. for x ≥ 0, φ(x) , xu(x) is increasing and bounded with

φ∞ , lim
x→∞

φ(x) > 1

3. there exists m > 0 such that ν̃([0,m)) < 1− φ−1
∞ ;
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4. for all a > b > 0,

lim sup
t→∞

ν̃((t,∞))

φ(at)− φ(bt)
= 0.

These assumptions are the same as in Section 4.1 which are therefore not altered by the
updated model (4.33).

The function u being given, we now define ĈN , when it exists, as the unique solution to the
fixed-point matrix-valued equation in Z:

Z =
1

n

n∑
i=1

u

(
1

N
x∗iZ

−1xi

)
xix
∗
i .

For i ∈ {1, . . . , N}, we shall denote λ̂i , λi(ĈN ) and ûi ∈ CN the i-th largest eigenvalue of ĈN
and its associated eigenvector.

We shall assume the following system growth regime, which we take simpler than in the
previous section as complications on this point are not necessary.

Assumption 4.6. The integer N = N(n) is such that cn , N/n satisfies

lim
n→∞

cn = c ∈ (0, φ−1
∞ ).

Meanwhile, L remains constant independently of N,n.

As in Section 4.1, under Assumptions 4.4–4.6, ĈN is easily shown to be almost surely well
defined for all large n a.s. Also, we recall that ĈN can be written (at least for all large n) in the
technically more convenient form

ĈN =
1

n

n∑
i=1

v

(
1

N
x∗i Ĉ

−1
(i) xi

)
xix
∗
i

where v : x 7→ u ◦ g−1, g : x 7→ x/(1− cnφ(x)), and Ĉ(i) = ĈN − 1
nu
(

1
N x
∗
i Ĉ
−1
N xi

)
xix
∗
i . Similar

to Section 4.1, we shall further denote ψ(x) = xv(x). Recall that v is non-increasing while ψ is
increasing with limit ψ∞ = φ∞/(1− cnφ∞).

With these definitions in place, we are now in position to present our main results.

4.2.3 Main Results

The first objective of the section is to study the spectrum of ĈN and in particular its largest
eigenvalues λ̂1 ≥ . . . ≥ λ̂L and associated eigenvectors û1, . . . , ûL, in the large N,n regime.
This study will in turn allow us to retrieve information on p1, . . . , pL and a1, . . . , aL. As an
application, a novel improved angle estimator for array processing will then be provided.
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4.2.3.1 Localisation and estimation

Our first result is an extension of Theorem 4.1.2.

Theorem 4.2.1 (Asymptotic model equivalence). Let Assumptions 4.4, 4.5, and 4.6 hold. Then

‖ĈN − ŜN‖
a.s.−→ 0

where

ŜN ,
1

n

n∑
i=1

vc(τiγ)Aiw̄iw̄
∗
iA
∗
i

with γ the unique solution to

1 =

∫
ψc(tγ)

1 + cψc(tγ)
ν̃(dt)

vc and ψc the limits of v and ψ as cn → c,6 and w̄i = [s1i, . . . , sLi, wiri/
√
N ]T, with ri ≥ 0 such

that 2Nr2
i is a chi-square random variable with 2N degrees of freedom, independent of wi.

7

Remark 4.5 (From robust estimator to sample covariance matrix). Note that, if the function
vc in the expression of ŜN were replaced by the constant 1 (and ri/

√
N set to one), ŜN would be

the classical sample covariance matrix of x1, . . . , xn. Although it is here highly non rigorous to
let vc tend to 1 uniformly in Theorem 4.2.1, this remark somewhat reveals the classical robust
estimation intuition according to which the larger φ∞ (as a consequence of u and vc being close
to 1) the less robust ĈN .

As a corollary of Theorem 4.2.1, we have

max
1≤i≤N

∣∣∣λ̂i − λi(ŜN )
∣∣∣ a.s.−→ 0 (4.34)

(which unfolds from applying (Horn and Johnson, 1985, Theorem 4.3.7)) and therefore all eigen-
values of ĈN can be accurately controlled through the eigenvalues of ŜN .

Let us assume for a moment that p1 = . . . = pL = 0. Then, from Theorem 4.2.1, Assump-
tion 4.4, and the results of Chapter 3 (in fact from the earlier results of (Silverstein and Choi,
1995)), µn , 1

N

∑N
i=1 δλ̂i → µ weakly, a.s., where µ has a density on R with bounded support

supp(µ) ⊂ R+. Denote

S−µ , inf(supp(µ))

S+
µ , sup(supp(µ))

S+ ,
φ∞(1 +

√
c)2

γ(1− cφ∞)
.

6Note that this notation diverges slightly from that of Theorem 4.1.2, where v and not vc was considered. This
makes little practical difference but for the simplicity of vc not depending on n.

7Note that wiri/
√
N as defined above is a standard Gaussian vector and therefore w̄i has independent entries

of zero mean and unit variance. In fact, the result can be equivalently formulated with w̄i replaced by ¯̄wi ,
[s1i, . . . , sLi, wi]

T, but the former vector, having independent entries, is of more interest statistically.
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Since τivc(τiγ) = γ−1ψc(τiγ) < γ−1ψc,∞ with ψc,∞ = φ∞/(1− cφ∞), we have

ŜN �
φ∞

γ(1− cφ∞)

1

n

n∑
i=1

w̃iw̃
∗
i

with w̃i = wiri/
√
N , so that, according to (Marc̆enko and Pastur, 1967; Bai and Silverstein,

1998) and (4.34), for each ε > 0, λ̂1 < S+ + ε for all large n a.s. Of course, S+ ≥ S+
µ . If

in addition max1≤i≤n{dist(τi, supp(ν̃))} a.s.−→ 0, then from (Bai and Silverstein, 1998), we even

have λ̂1
a.s.−→ S+

µ ; but this constraint is of little practical interest so that in general one may have

S+
µ < λ̂1 < S+ infinitely often.

Coming back to generic values for p1, . . . , pL, the idea of the results below is that, for suffi-
ciently large p1, . . . , pL, the eigenvalues λ̂1, . . . , λ̂L may exceed S+ + ε and contain information
to estimate p1, . . . , pL as well as bilinear forms involving a1, . . . , aL. The exact location of the
eigenvalues and the value of these estimates shall be expressed as a function of the fundamental
object δ(x), defined for x ∈ R∗ \ [S−µ , S

+
µ ] as the unique real solution to

δ(x) = c

(
−x+

∫
tvc(tγ)

1 + δ(x)tvc(tγ)
ν̃(dt)

)−1

.

The function δ(x) is the restriction to R∗ \ [S−µ , S
+
µ ] of the Stieltjes transform of cµ+ (1− c)δ0

and is, as such, increasing on (S+,∞) ⊂ (S+
µ ,∞); see Chapter 3 and Section 4.2.4 for details.

Therefore, the following definition of p−, which will be referred to as the detectability threshold,
is licit

p− , lim
x↓S+

−c
(∫

δ(x)vc(tγ)

1 + δ(x)tvc(tγ)
ν̃(dt)

)−1

.

We shall further denote L , {j, pj > p−}.

We are now in position to provide our main results.

Theorem 4.2.2 (Robust estimation under known ν̃). Let Assumptions 4.4, 4.5, and 4.6 hold.
Denote uk the eigenvector associated with the k-th largest eigenvalue of AA∗ (in case of multiplic-
ity, take any vector in the eigenspace with u1, . . . , uL orthogonal) and û1, . . . , ûN the eigenvectors
of ĈN respectively associated with the eigenvalues λ̂1 ≥ . . . ≥ λ̂N . Then, we have the following
three results.

0. Extreme eigenvalues. For each j ∈ L,

λ̂j
a.s.−→ Λj > S+

while lim supn λ̂|L|+1 ≤ S+ a.s., where Λj is the unique positive solution to

−c
(
δ(Λj)

∫
vc(τγ)

1 + δ(Λj)τvc(τγ)
ν̃(dτ)

)−1

= pj .

114
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1. Power estimation. For each j ∈ L,

−c

(
δ(λ̂j)

∫
vc(τγ)

1 + δ(λ̂j)τvc(τγ)
ν̃(dτ)

)−1
a.s.−→ pj .

2. Bilinear form estimation. For each a, b ∈ CN with ‖a‖ = ‖b‖ = 1, and j ∈ L∑
k,pk=pj

a∗uku
∗
kb−

∑
k,pk=pj

wka
∗ûkû

∗
kb

a.s.−→ 0

where

wk =

∫
vc(tγ)(

1 + δ(λ̂k)tvc(tγ)
)2 ν̃(dt)

∫
vc(tγ)

1 + δ(λ̂k)tvc(tγ)
ν̃(dt)

1− 1

c

∫
δ(λ̂k)

2t2vc(tγ)2(
1 + δ(λ̂k)tvc(tγ)

)2 ν̃(dt)


.

Item 0. in Theorem 4.2.2 provides a necessary and sufficient condition, i.e., pj > p−, for
the existence of outlying eigenvalues in the spectrum of ĈN . In turn, this provides a means
to estimate each pj , j ∈ L, along with bilinear forms involving aj , from λ̂j and ûj . It is
important here to note that, although the right-edge of the spectrum of µ is S+

µ , due to the
little control on τi in practice (in particular some of the τi may freely be arbitrarily large),
isolated eigenvalues may be found infinitely often beyond S+

µ which do not carry information.
This is why the (possibly pessimistic) choice of S+ as an eigenvalue discrimination threshold
was made. The major potency of the robust estimator ĈN is indeed to be able to maintain
these non informative eigenvalues below the known value S+. As such, eigenvalues found above
S+ must contain information about A (at least with high probability) and this information
can be retrieved, while isolated eigenvalues found below S+ may arise from spurious values of
τi, therefore containing no relevant information, or may contain relevant information but that
cannot be trusted.

Figure 4.4 and Figure 4.5 provide the histogram and limiting spectral distribution of ĈN and
1
nXX

∗, X = [x1, . . . , xn], respectively, for u(x) = (1 + α)/(α+ x), α = 0.2, N = 200, n = 1000,
τi i.i.d. equal in distribution to t2(β − 2)β−1 with t a Student-t random scalar of parameter
β = 100, and L = 2 with p1 = p2 = 1, a1 = a(θ1), a2 = a(θ2), θ1 = 10◦, θ2 = 12◦, a(θ) being
defined in Remark 4.3 (as well as in Assumption 4.7 below). These curves confirm that, while
the limiting spectral measure of 1

nXX
∗ is unbounded, that of ĈN is bounded. The numerically

evaluated values of S+
µ and S+ are reported in Figure 4.4. They reveal a rather close proximity

between both values. In terms of empirical eigenvalues, note the particularly large gap between
the isolated eigenvalues of ĈN and the N − 2 smallest ones, which may seem at first somewhat
surprising for p1 = p2 = 1 since this setting induces a ratio 1 between the power carried by
information versus noise (indeed, A∗A ' I2 while E[τiwiw

∗
i ] = IN ); this in fact results from the

function u which, in attenuating the rare samples of large amplitudes, significantly reduces the
noise power but only weakly affects the information part which has roughly constant amplitude
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Figure 4.4: Histogram of the eigenvalues of ĈN against the limiting spectral measure, for u(x) =
(1 + α)/(α+ x) with α = 0.2, L = 2, p1 = p2 = 1, N = 200, n = 1000, Student-t impulsions.
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Figure 4.5: Histogram of the eigenvalues of 1
nXX

∗ against the limiting spectral measure, L = 2,
p1 = p2 = 1, N = 200, n = 1000, Sudent-t impulsions.

across the samples. Also observe from Figure 4.5 that, as predicted, the largest two eigenvalues
of 1

nXX
∗ do not isolate from the majority of the eigenvalues.

Items 1. and 2. in Theorem 4.2.2 then provide a means to estimate p1, . . . , p|L| and bi-
linear forms involving the eigenvectors of AA∗. In particular, if pk has multiplicity one in
diag(p1, . . . , pL), the summations in Item 2. are irrelevant and we obtain an estimator for
a∗uku∗kb. These however explicitly rely on ν̃ which, for practical purposes, might be of lim-
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ited interest if the τi are statistically unknown. It turns out, from a careful understanding of γ,
that

γ − γ̂n
a.s.−→ 0

where

γ̂n ,
1

n

n∑
i=1

1

N
x∗i Ĉ

−1
(i) xi (4.35)

and Ĉ(i) = ĈN − 1
nu( 1

N x
∗
i Ĉ
−1
N xi)xix

∗
i . Also, for any M > 0,

max
1≤j≤n
τj≤M

|τj − τ̂j |
a.s.−→ 0, max

1≤j≤n
τj>M

∣∣∣1− τ−1
j τ̂j

∣∣∣ a.s.−→ 0

where

τ̂i ,
1

γ̂n

1

N
x∗i Ĉ

−1
(i) xi. (4.36)

Details of these results are provided in Section 4.2.4. Letting ε > 0 small, for x ∈ (S+ + ε,∞)
and for all large n a.s., we then denote δ̂(x) the unique negative solution to8

δ̂(x) = cn

(
−x+

1

n

n∑
i=1

τ̂ivc(τ̂iγ̂n)

1 + δ̂(x)τ̂ivc(τ̂iγ̂n)

)−1

. (4.37)

From this, we then deduce the following alternative set of power and bilinear form estimators.

Theorem 4.2.3 (Robust estimation for unknown ν̃). With the same notations as in Theo-
rem 4.2.2, and with γ̂n, τ̂i, and δ̂ defined in (4.35)–(4.37), we have the following results.

1. Purely empirical power estimation. For each j ∈ L,

−

(
δ̂(λ̂j)

1

N

n∑
i=1

v(τ̂iγ̂n)

1 + δ̂(λ̂j)τ̂iv(τ̂iγ̂n)

)−1
a.s.−→ pj .

2. Purely empirical bilinear form estimation. For each a, b ∈ CN with ‖a‖ = ‖b‖ = 1, and each
j ∈ L, ∑

k,pk=pj

a∗uku
∗
kb−

∑
k,pk=pj

ŵka
∗ûkû

∗
kb

a.s.−→ 0

where

ŵk =

1

n

n∑
i=1

v(τ̂iγ̂n)(
1 + δ̂(λ̂k)τ̂iv(τ̂iγ̂n)

)2

1

n

n∑
i=1

v(τ̂iγ̂n)

1 + δ̂(λ̂k)τ̂iv(τ̂iγ̂n)

1− 1

N

n∑
i=1

δ̂(λ̂k)
2τ̂2
i v(τ̂iγ̂n)2(

1 + δ̂(λ̂k)τ̂iv(τ̂iγ̂n)
)2


.

8Remark here that, since τ̂i, similar to τi, may be found away from supp(ν̃), δ̂(x) may not be defined everywhere
in (S+

µ , S
+) but is defined beyond S+ + ε for n large a.s.
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Theorem 4.2.3 provides a means to estimate powers and bilinear forms without any statistical
knowledge on the τi, which are individually estimated. It is interesting to note that, since ν̃ is
only a limiting distribution, for practical systems, there is a priori no advantage in using the
knowledge of ν̃ or not. In particular, if n is not too large in practice or if ν̃ has heavy tails,
it is highly probable that ν̃n be quite distinct from ν̃, leading the estimators in Theorem 4.2.1
to be likely less accurate than the estimators in Theorem 4.2.2. Conversely, if N is not too
large, τ̂i may be a weak estimate for τi so that, if ν̃ has much lighter tails, the estimators of
Theorem 4.2.1 may have a better advantage. Theoretical performance comparison between both
schemes would require to exhibit central limit theorems for these quantities, which we discuss
in Chapter 6, however for another application.

4.2.3.2 Application to angle estimation

An important application of Theorem 4.2.1 and Theorem 4.2.2 is found in the context of array
processing, briefly evoked in the second item of Remark 4.3, in which ai = a(θi) for some
θi ∈ [0, 2π). For theoretical convenience, we use the classical linear array representation for ai
as follows.

Assumption 4.7. For i ∈ {1, . . . , L}, ai = a(θi) with θ1, . . . , θL distinct and, for d > 0 and
θ ∈ [0, 2π),

a(θ) = N−
1
2 [exp(2πıdj sin(θ))]N−1

j=0 .

The objective in this specific model is to estimate θ1, . . . , θL from the observations x1, . . . , xn.
In the regime n � N with non-impulsive noise, this is efficiently performed by the traditional
multiple signal classification (MUSIC) algorithm from (Schmidt, 1986). Using the fact that the
vectors a(θi), i ∈ {1, . . . , L}, are orthogonal to the subspace spanned by the eigenvectors with
eigenvalue 1 of E[x1x

∗
1] = AA∗ + IN , the algorithm consists in retrieving the deepest minima of

the nonnegative localization function η̂ defined for θ ∈ [0, 2π) by

η̂(θ) = a(θ)∗Π 1
n
XX∗a(θ)

where Π 1
n
XX∗ is a projection matrix on the subspace associated with the N −L smallest eigen-

values of 1
nXX

∗. Indeed, as 1
nXX

∗ is an almost surely consistent estimate for E[x1x
∗
1] in the

large n regime, η̂(θ)
a.s.−→ η(θ) where

η(θ) = a(θ)∗ΠE[x1x∗1]a(θ)

with here ΠE[x1x∗1] a projection matrix on the subspace associated with the eigenvalue 1 in

E[x1x
∗
1]; as such, η̂(θ)

a.s.−→ 0 for θ ∈ {θ1, . . . , θL} and to a positive quantity otherwise. In
(Mestre, 2008a), Mestre proved that this algorithm is however inconsistent in the regime of
Assumption 4.6. This led to (Mestre, 2008b) in which an improved estimator (the G-MUSIC
estimator) for θ1, . . . , θL was designed, however for a more involved model than the spiked model
(i.e., L is assumed commensurable with N). In (Hachem et al., 2013), a spiked model hypothesis
was then assumed (i.e., with L small compared to N,n) which unfolded into a more practical and
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more theoretically tractable spiked G-MUSIC estimator. Similar to MUSIC, the latter consists
in determining the deepest minima of an alternative localization function η̂G(θ), which we shall
define in a moment.

Although improved with respect to MUSIC, both algorithms still rely on exploiting the
largest isolated eigenvalues of 1

nXX
∗ and the asymptotic boundedness of the noise spectrum.

From the discussions in Section 4.2.1 and after Theorem 4.2.2, under the generic Assumption 4.4
with τi allowed to grow unbounded, these methods are now unreliable and in fact inefficient.
From Item 2. in both Theorem 4.2.2 and Theorem 4.2.3, it is now possible to provide a consistent
estimation method based on two novel localization functions η̂RG and η̂emp

RG . The resulting
algorithms are from now on referred to as robust G-MUSIC and empirical robust G-MUSIC,
respectively.

Corollary 4.3 (Robust G-MUSIC). Let Assumptions 4.4–4.7 hold. Let 0 < κ < mini,j |θi − θj |
and denote Rκi = [θi − κ/2, θi + κ/2]. Also define η̂RG(θ) and η̂emp

RG (θ) as

η̂RG(θ) = 1−
|L|∑
k=1

wka(θ)∗ûkûka(θ)

η̂emp
RG (θ) = 1−

|L|∑
k=1

ŵka(θ)∗ûkûka(θ)

where we used the notations from Theorems 4.2.2 and 4.2.3. Then, for each j ∈ L,

θ̂j
a.s.−→ θj

θ̂emp
j

a.s.−→ θj

where

θ̂j , argminθ∈Rκj {η̂RG(θ)}

θ̂emp
j , argminθ∈Rκj

{
η̂emp

RG (θ)
}
.

With the same reasoning as in Remark 4.5, it is now easy to check that, letting the vc or
v functions be replaced by the constant 1 in the expressions of wk and ŵk, respectively, we
fall back on G-MUSIC schemes devised in e.g., (Hachem et al., 2013). In what follows, we
then define η̂G(θ) and η̂emp

G (θ) similarly to η̂RG(θ) and η̂emp
RG (θ) but with the functions vc and v

replaced by the constant 1 and with the couples (λ̂k, ûk) replaced by the k-th largest eigenvalue
and associated eigenvectors of 1

nXX
∗. For a further comparison of the various methods, we also

denote by η̂R(θ) the robust counterpart to η̂(θ) defined by η̂R(θ) = a(θ)∗ΠĈN
a(θ) with ΠĈN

a

projection matrix on the subspace associated with the N − L smallest eigenvalues of ĈN .

Simulation curves are provided below which compare the performance of the various improved
MUSIC techniques. Since the methods based on the extraction of δ(λ̂i) may be void when this
value does not exist, we blindly proceed by solving the fixed-point equation defining δ(λ̂i) thanks
to the standard fixed-point algorithm until convergence or until a maximum number of iterations
is reached. This effect is in fact marginal as it is theoretically highly probable that eigenvalues be
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found beyond S+
µ for each finite N,n. We also assume L = {1, . . . , L} even if this does not hold,

which in practice one cannot anticipate. Voluntarily disrupting from the theoretical claims of
Theorems 4.2.1–4.2.3 will allow for an observation of problems arising when the assumptions are
not fully satisfied. In all simulation figures, we consider u(x) = (1 + α)(α+ x)−1 with α = 0.2,
N = 20, n = 100, L = 2, θ1 = 10◦, θ2 = 12◦. The noise impulsions are of two types: (i) single
outlier impulsion for which τi = 1, i ∈ {1, . . . , n − 1} and τn = 100, or (ii) Student impulsions
for which τi = t2(β − 2)β−1 with t a Student-t random variable with parameter β = 100 (the
normalization ensures E[τ1] = 1).
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Figure 4.6: Random realization of the localization functions for the various MUSIC estimators,
with N = 20, n = 100, two sources at 10◦ and 12◦, Student-t impulsions with parameter β = 100,
u(x) = (1 + α)/(α+ x) with α = 0.2. Powers p1 = p2 = 100.5 = 5 dB.

Figure 4.6 provides a single realization (but representative of the multiple realizations we
simulated) of the various localization functions η̂X and η̂emp

X for θ in the vicinity of θ1, θ2, X
being void, R, or RG. The scenario considered is that of a Student-t noise and p1 = p2 = 1.
The figure confirms the advantage of the methods based on ĈN over 1

nXX
∗ which unfolds from

the proper extreme eigenvalue isolation observed under the same setting in Figure 4.4 against
Figure 4.5. Due to N/n being non trivial, while the robust G-MUSIC methods accurately
discriminate both angles at their precise locations and with appropriate localization function
amplitude, the robust MUSIC approach discriminates the two angles at erroneous locations
and erroneous localization function amplitude. Benefiting from the random matrix advantage,
G-MUSIC in turn behaves better in amplitude than MUSIC but cannot discriminate angles.
Observe also here that both empirical and non-empirical robust G-MUSIC approaches behave
extremely similar (both curves are visually superimposed), suggesting that with β = 100 the
samples from the Student-t distribution represent sufficiently well the actual distribution of
τ1v(τ1γ). This no longer holds for G-MUSIC versus empirical G-MUSIC, in which case the
approximation of ν̃n by the distribution ν̃ of τ1 is not appropriate.

Figure 4.7 and Figure 4.8 provide the mean square error performance for the first angle
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estimation E[|θ̂1 − θ1|2] as a function of the source powers p1 = p2; the estimates are based
for each estimator on retrieving the local minima of η̂X . For fair comparison, the two deepest
minima of the localization functions are extracted and θ̂1 is declared to be the estimated angle
closest to θ1 (in particular, if a unique minimum is found close to any θi, θ̂1 is attached to this
minimum). Figure 4.7 assumes the Student-t impulsion scenario of Figure 4.6, while Figure 4.8
is concerned with the outlier impulsion model previously described. Both figures further confirm
the advantage brought by the robust G-MUSIC scheme with asymptotic equivalence between
empirical or non-empirical in the large source power regime. We observe in particular the
outstanding advantage of (robust or not) G-MUSIC methods which perform well at high source
power, while standard methods saturate. Interestingly, from Figure 4.7, the G-MUSIC schemes
perform well in the high source power regime, which corresponds to scenarios in which the noise
impulsion amplitudes are often small enough compared to source power to be assumed bounded
and G-MUSIC is then consistent. Nonetheless, G-MUSIC never closes the gap with robust
G-MUSIC which is likely explained by the much larger spacing between noise and information
eigenvalues in the spectrum of ĈN . The situation is different in Figure 4.8 where G-MUSIC
almost meets the performance of robust G-MUSIC at very high power, while performing poorly
below 20 dB. This is explained by the presence of a single additional eigenvalue of amplitude
around 100 (i.e., 20 dB) in the spectrum of 1

nXX
∗ which corrupts the G-MUSIC algorithm as

long as this amplitude is larger than these of the two informative eigenvalues due to the steering
vectors (about p1).
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Figure 4.7: Means square error performance of the estimation of θ1 = 10◦, with N = 20, n = 100,
two sources at 10◦ and 12◦, Student-t impulsions with parameter β = 10, u(x) = (1+α)/(α+x)
with α = 0.2, p1 = p2.
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Figure 4.8: Means square error performance of the estimation of θ1 = 10◦, with N = 20, n = 100,
two sources at 10◦ and 12◦, sample outlier scenario τi = 1, i < n, τn = 100, u(x) = (1+α)/(α+x)
with α = 0.2, p1 = p2.

4.2.4 Proof of the main results

4.2.4.1 Notations

Throughout the proof, we shall use the following shortcut notations:

T = diag({τi}ni=1) ∈ Cn×n

V = diag({vc(τiγ}ni=1) ∈ Cn×n

S = [{sij}1≤i≤L,1≤j≤n] ∈ CL×n

W = [w1, . . . , wn] ∈ CN×n

W̃ = [w̃1, . . . , w̃n] ∈ CN×n

with w̃i = wiri/
√
N as in the statement of Theorem 4.2.1. We shall expand A as the singular

value decomposition A = UΩŪ∗ with U ∈ CN×L isometric, Ω = diag(σ1, . . . , σL), σ1 ≥ . . . ≥
λL ≥ 0, and Ū ∈ CL×L unitary.

We also define

Ŝ◦N =
1

n

n∑
i=1

τivc(τiγ)w̃iw̃
∗
i =

1

n
W̃TV W̃ ∗

which corresponds to ŜN with p1 = . . . = pL = 0, i.e., with no perturbation, and

Q◦z = (Ŝ◦N − zIN )−1 =

(
1

n
W̃TV W̃ ∗ − zIN

)−1
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the resolvent of Ŝ◦N .

For couples (η,Mη), η < 1, such that ν̃((0,Mη)) > 0 and ν̃((Mη,∞)) < η, it will be necessary
to define Tη the matrix T in which all values of τi greater or equal to Mη are replaced by zeros,
and similarly for Vη. Denote also γη the unique solution to

1 =

∫
τ<Mη

ψc(τγ
η)ν̃(dτ)

1 + cψc(τγη)
. (4.38)

and ŜN,η the resulting ŜN matrix with all τi greater than Mη discarded and γ replaced by γη.

Finally, we further define T(j) = diag({τi}i 6=j) and similarly for V(j), S(j), W̃(j), Ŝ(j) = ŜN,(j)
the matrices with column or component j discarded, as well as T(j),η the matrix Tη with row-

and-column j discarded, and similarly V(j),η, S(j),η, W̃(j),η, Ŝ(j),η the corresponding matrices
with column or component j discarded.

4.2.4.2 Overall proof strategy

The existence and uniqueness of ĈN as defined in the statement of Theorem 4.2.1 can be proved
along the same lines as in Section 4.1 and will not be discussed here. One of the key elements
of the proof of convergence in Theorem 4.2.1 is to ensure that there exists ε > 0 such that, for
all large n a.s., all eigenvalues of {Ŝ(j), 1 ≤ j ≤ n} (and also of {Ŝ(j),η, 1 ≤ j ≤ n} for given η
small) are greater than ε. This is an important condition to ensure that the quadratic forms
1
N w̃
∗
j Ŝ
−1
(j) w̃j , which play a central role in the proof, are jointly controllable. In Section 4.1, where

the convergence ‖ĈN − ŜN‖
a.s.−→ 0 is obtained for p1 = . . . = pL = 0, this unfolded readily

from the fact that the matrices 1
nW̃(j)W̃

∗
(j) have their smallest eigenvalue uniformly away from

zero. Here, due to the existence of a small rank matrix A, this approach no longer holds as
Ŝ(j) may a priori exhibit finitely many isolated eigenvalues getting close to zero as n→∞. We

shall show that this is not possible. Precisely, we shall prove that the large n spectrum of ŜN is
similar to that of Ŝ◦N but possibly for finitely many isolated eigenvalues, none of which can be

asymptotically found close to zero. We shall however characterize those eigenvalues of ŜN found
beyond the right-edge of the limiting spectrum of Ŝ◦N . Once this result is obtained, to complete
the proof of Theorem 4.2.1, it will then suffice to check that most spectral statistics involved in
the proof of Theorem 4.1.2 are not affected by the presence of the additional small rank matrix
AS in the model. Since most results need be proved jointly for the matrix sets {Ŝ(j), 1 ≤ j ≤ n}
(or {Ŝ(j),η, 1 ≤ j ≤ n}), high order moment bounds will be required to then apply union bound
along with Markov inequality techniques. To avoid repeating all the arguments of the proof of
Theorem 4.1.2, we only discuss in what follows the main new technical elements that differ from
Theorem 4.1.2.

When Theorem 4.2.1 is obtained, the proofs of Theorems 4.2.2 and 4.2.3 unfolds from classical
techniques for spiked random matrix models, using the approximation ŜN for ĈN . The model ŜN
considered here is closely related to the scenario of (Chapon et al., 2014), but for the random non-
Gaussian structure of the matrix S; also, (Chapon et al., 2014) imposes maxi dist(τi, supp(ν̃))→
0 which we do not enforce here. Because of these important differences, in order to keep track
of the specificities of the model, a complete proof will be proposed below.
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4.2.4.3 Localization of the eigenvalues of ŜN and Ŝ(i)

We first study the localization of the eigenvalues of ŜN and {Ŝ(j),η, 1 ≤ j ≤ n}. The strategy

being the same, we concentrate mostly on the study of ŜN and then briefly generalize the
approach to {Ŝ(j),η, 1 ≤ j ≤ n}. Our approach is based on the original derivation in (Benaych-
Georges and Rao, 2011; Benaych-Georges and Nadakuditi, 2012).

By isolating the small rank perturbation terms, we first develop ŜN as

ŜN =
1

n

n∑
i=1

vc(τiγ)Aiw̄iw̄
∗
iA
∗
i (4.39)

= Ŝ◦N +
1

n
ASV S∗A∗ +

1

n
AST

1
2V W̃ ∗ +

1

n
W̃T

1
2V S∗A∗. (4.40)

Let λ ∈ R\[ε, S++ε] for some ε > 0 small be an eigenvalue of ŜN . Note that such a λ may not
exist. However, from (Bai and Silverstein, 1998) and since in particular lim supn ‖AA∗‖ <∞ and

lim supn ‖T
1
2V ‖ <∞, the spectral norm of each matrix above is asymptotically bounded almost

surely and thus lim supn λ <∞ a.s. Also, from Section 4.1 and from the discussion prior to the
statement of Theorem 4.2.1, for all large n a.s., λ is not an eigenvalue of Ŝ◦N (for ε chosen small

enough). Thus, by definition, λ is a solution of det(ŜN − λIN ) = 0 while ‖(Ŝ◦N − λIN )−1‖ < M
for some M > 0 independent of n but increasing as ε → 0. As such, from the development
above, for all large n a.s.,

0 = det
(
Ŝ◦N − λIN + Γ

)
= det (Q◦λ)−1 det

(
IN + (Q◦λ)

1
2 Γ(Q◦λ)

1
2

)
where Γ = 1

nASV S
∗A∗ + 1

nAST
1
2V W̃ ∗ + 1

nW̃T
1
2V S∗A∗ can be further written

Γ =
[
UΩ

1
2

1
nW̃T

1
2V S∗ŪΩ

1
2

] [
Ω

1
2 Ū∗ 1

nSV S
∗ŪΩ

1
2 IL

IL 0

][
Ω

1
2U∗

Ω
1
2

1
n Ū
∗ST

1
2V W̃

]
. (4.41)

Exploiting the small rank of S and A, and the formula det(I +AB) = det(I +BA) for properly
sized A,B matrices, this induces

0 = det (I2L + ΓL(λ))

where

ΓL(λ) ,

[
Ω

1
2 Ū∗ 1

nSV S
∗ŪΩ

1
2 IL

IL 0

][
Ω

1
2U∗

Ω
1
2

1
n Ū
∗ST

1
2V W̃

]
Q◦λ
[
UΩ

1
2

1
nW̃T

1
2V S∗ŪΩ

1
2

]
.

We now need the following central lemmas.

Lemma 4.4. Let ε > 0 and Aε be the event ε < λN (Ŝ◦N ) < λ1(Ŝ◦N ) < S+ +ε. Let also a, b ∈ CN
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be two vectors of unit norm. Then, for every z ∈ C ⊂ C \ [ε, S+ + ε] with C compact,

E

[∣∣∣∣ 1nS∗V S − 1

n
trV

∣∣∣∣p] ≤ KN− p2
E

[
1Aε

∣∣∣∣ 1nST 1
2V

1

n
W̃ ∗Q◦zW̃V T

1
2S∗ −

[
1

n
trV + z

1

n
trV Q̃◦z

]∣∣∣∣p] ≤ KN− p2
E

[
1Aε

∣∣∣∣a∗Q◦zb− a∗b 1

N
trQ◦z

∣∣∣∣p] ≤ KN− p2
E

[
1Aε

∥∥∥∥ 1

n
a∗Q◦zW̃T

1
2V S∗

∥∥∥∥p] ≤ KN− p2
where Q̃◦z = ( 1

nT
1
2V

1
2 W̃ ∗W̃V

1
2T

1
2 − zIN )−1 and K > 0 does not depend on z.

Proof. The first convergence is a mere application of (Bai and Silverstein, 2009, Lemma B.26).
Similarly, noticing that

1

n
ST

1
2V

1

n
W̃ ∗Q◦zW̃V T

1
2S∗ =

1

n
SV

1
2

[
T

1
2V

1
2

1

n
W̃ ∗W̃V

1
2T

1
2 Q̃◦z

]
V

1
2S∗

=
1

n
SV S∗ + z

1

n
SQ̃◦zV

1
2S∗

the second result follows again by (Bai and Silverstein, 2009, Lemma B.26) and the fact that
lim supn ‖Q̃◦z‖ < 1/dist(C, [ε, S+ +ε]). Using the fact that W̃ is Gaussian, the third result follows
from the same proof as in (Hachem et al., 2013, Lemma 3) using additionally [V T ]ii < ψ∞.
Similarly, conditioning first on S, which is independent of W̃ , we obtain by the same proof as
in (Hachem et al., 2013, Lemma 4) that

EW̃

[
1Aε

∣∣∣∣ 1na∗Q◦zW̃T
1
2V si

∣∣∣∣p] ≤ K‖n− 1
2 si‖pN−

p
2

where we denoted S∗ = [s1, . . . , sL] (the proof follows from exploiting the left-unitary invariance
of W̃ and applying the integration by parts and Poincaré–Nash inequality method for unitary
Haar matrices described in (Pastur and Ŝerbina, 2011, Chapter 8)). Now, E[‖n−

1
2 si‖p] = O(1)

by Hölder’s inequality, and we obtain the last inequality.

Lemma 4.5. For z ∈ C \ [S−µ , S
+
µ ], let δ(z) be the unique solution to the equation

δ(z) = c

(
−z +

∫
tvc(tγ)

1 + δ(z)tvc(tγ)
dν̃(t)

)−1

where we recall that γ is the unique positive solution to

1 =

∫
ψc(tγ)

1 + cψc(tγ)
dν̃(t).

125



CHAPTER 4. ROBUST ESTIMATES OF SCATTER FOR ELLIPTICAL DATA

Let now z ∈ C, with C a compact set of C \ [ε, S+
µ + ε] for some ε > 0 small enough. Then,

denoting Ψ◦z = (In + δ(z)V T )−1,

sup
z∈C

∣∣∣∣ 1

N
trQ◦z −

δ(z)

c

∣∣∣∣ a.s.−→ 0

sup
z∈C

∣∣∣∣ 1n trV + z
1

n
trV Q̃◦z − δ(z)

1

n
trV 2TΨ◦z

∣∣∣∣ a.s.−→ 0.

Proof. The almost sure convergences to zero of the terms inside the norms (i.e., for each z ∈ C)
are classical, see e.g., (Silverstein and Bai, 1995). Considering a countable sequence z1, z2, . . .
of such z ∈ C having an accumulation point, by the union bound, there exists a probability one
set on which the convergence is valid for each point of the sequence. Now, as in Section 4.1,
for all large n a.s., Q◦z and Q̃◦z are analytic on C. Since δ(z) is also analytic on C, by Vitali’s
convergence theorem (Titchmarsh, 1939), the convergences are uniform on C.

Similar again to Section 4.1, for ε > 0 small enough, the set Aε introduced in Lemma 4.4 satis-
fies 1Aε

a.s.−→ 1. As such, using the Markov inequality and the Borel Cantelli lemma, Lemma 4.4
for p > 2 ensures that all quantities in absolute values in the statement of Lemma 4.4 con-
verge to zero almost surely as n → ∞. Since the quantities involved are analytic on compact
C ⊂ C \ [ε, S+ + ε], considering a countable sequence of z ∈ C having a limit point, it is clear
by Vitali’s convergence theorem (Titchmarsh, 1939) that these convergences are uniform on C.
Applying successively Lemma 4.4 for p > 2 and Lemma 4.5, we then obtain, for C ⊂ C\[ε, S++ε],

sup
z∈C

{∥∥∥∥ΓL(z)−
[
Ω 1
n trV IL
IL 0

] [
Ω δ(z)

c 0
0 Ωδ(z) 1

n trV 2TΨ◦z

]∥∥∥∥} a.s.−→ 0

or equivalently

sup
z∈C

{∥∥∥∥∥ΓL(z)−

[
Ω2 δ(z)

c
1
n trV Ωδ(z) 1

n trV 2TΨ◦z
Ω δ(z)

c 0

]∥∥∥∥∥
}

a.s.−→ 0. (4.42)

We may then particularize this result to z = λ which, for ε sufficiently small, remains bounded
away from [ε, S+ + ε] as n grows (but of course depends on n) to obtain∥∥∥∥∥ΓL(λ)−

[
Ω2 δ(λ)

c
1
n trV Ωδ(λ) 1

n trV 2TΨ◦λ
Ω δ(λ)

c 0

]∥∥∥∥∥ a.s.−→ 0. (4.43)

For λ̄ ∈ R \ [ε, S+ + ε], let us now study the equation

det

(
I2L +

[
Ω2 δ(λ̄)

c
1
n trV Ωδ(λ̄) 1

n trV 2TΨ◦
λ̄

Ω δ(λ̄)
c 0

])
= 0. (4.44)

After development of the determinant, this equation is equivalent to

σ2
`

δ(λ̄)

c

(
1

n
trV − δ(λ̄)

1

n
trV 2TΨ◦λ̄

)
+ 1 = 0
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for some ` ∈ {1, . . . , L}, or equivalently, using V − δ(λ̄)V 2TΨ◦
λ̄

= VΨ◦
λ̄

σ2
` δ(λ̄)

1

N

n∑
i=1

vc(τiγ)

1 + τivc(τiγ)δ(λ̄)
+ 1 = 0.

In the limit n→∞, using A∗A a.s.−→ diag(p1, . . . , pL) and 1
n

∑n
i=1 δτi → ν̃ a.s., any accumulation

point Λ̄ ∈ (R \ (ε, S+ + ε)) ∪ {∞} of λ̄ must satisfy

1 + p`
1

c

∫
δ(Λ̄)vc(τγ)

1 + δ(Λ̄)τvc(τγ)
ν̃(dt) = 0. (4.45)

This unfolds from dominated convergence, using δ((S+,∞)) ⊂ (−(τ+v(τ+γ))−1, 0) with τ+ ∈
(0,∞] the right-edge of the support of ν̃; in particular, if supp(ν̃) is unbounded, δ((S+,∞)) ⊂
(−γ/ψ∞, 0) (see Chapter 3 or (Silverstein and Choi, 1995) for details). Let us then consider the
equation in the variable Λ ∈ (S+,∞)

−
(

1

c

∫
δ(Λ)vc(τγ)

1 + δ(Λ)τvc(τγ)
ν̃(dτ)

)−1

= p`. (4.46)

We know from Section 4.1 that, since ν̃([0,m)) < 1 − φ−1
∞ for some m > 0 (by Assump-

tion 4.5), S−µ > 0. Also, as the Stieltjes transform of a measure with support included in
[S−µ , S

+
µ ] ⊂ [S−µ , S

+], δ is increasing on both [0, S−µ ) and (S+,∞). Moreover, δ([0, S−µ )) ⊂ (0,∞)
and δ((S+,∞)) ⊂ (−(τ+v(τ+γ))−1, 0). Therefore, the left-hand side of (4.46) is negative for
Λ ∈ [0, S−µ ) and the equation has no solution in this set. It is now easily seen that the left-
hand side of (4.46) is increasing with Λ with limits infinity as Λ → ∞ and p− > 0 as Λ ↓ S+.
Therefore, if p− < p`, the above equation has a unique solution Λ` ∈ (S+,∞), distinct for each
distinct p`. Hence, λ̄→ Λ̄ = Λ`.

By the argument principal, for all n large a.s., the number of eigenvalues of ŜN , i.e., the
number of zeros of det(I2L + ΓL(λ)), in any open set V ⊂ R \ [ε, S+ + ε] is

1

2πı

∮
I

[det(I2L + ΓL(z))]′

det(I2L + ΓL(z))
dz

with I a contour enclosing V. By the uniform convergence of (4.42) on V, the analyticity of the
quantities involved, and the fact that the involved determinant is a polynomial of order at most
2L of its entries, this value asymptotically corresponds to the number of solutions to (4.44) in
V counted with multiplicity, which in the limit are the Λk ∈ V. Particularizing V to (−1, 2ε) for
ε > 0 small enough and then to any small open ball around Λ` for each ` such that p` > p−, we
then conclude that ŜN has asymptotically no eigenvalue in [0, ε] but that λ`(ŜN )

a.s.−→ Λ` for all
` ∈ L, which is the expected result.

The precise localization of the eigenvalues of ŜN will be fundamental for the proof of Theo-
rems 4.2.2 and 4.2.3. To prove Theorem 4.2.1 though, we need to generalize part of this result to
the matrices Ŝ(j) and Ŝ(j),η defined at the beginning of the section. Precisely, we need to show

that there exists ε > 0 such that min1≤j≤N{λN (Ŝ(j))} > ε for all large n a.s., and similarly for

Ŝ(j),η.
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Take j ∈ {1, . . . , n}. Replacing ŜN by Ŝ(j) in the proof above leads to the same conclusions.
Indeed, by a rank-one perturbation argument (Silverstein and Bai, 1995, Lemma 2.6), for each
ε > 0, for all large n a.s.

1

n
tr Q̃◦z −

1

n
tr

(
1

n
W̃(j)T(j)V(j)W̃(j) − zIN

)−1

≤ 1

n

1

dist(z, [ε, S+ + ε])

and therefore, up to replacing all matrices X by X(j) in their statements, Lemmas 4.4 and 4.5

hold identically (with δ(z) unchanged). Exploiting 1
n−1

∑
i 6=j δτi → ν̃ a.s., the remainder of

the proof unfolds all the same and we have in particular that for all large n a.s. Ŝ(j) has no
eigenvalue below some ε > 0.

We now prove that this result can be made uniform across j. Denote ΓL,(j)(z) the matrix
ΓL(z) with all matrices X replaced by X(j). Also rename Lemmas 4.4 and 4.5 respectively
Lemma 4.4-(j) and Lemma 4.5-(j), and rename Aε by Aε,(j) in the statement of Lemma 4.4-(j).
Then, taking p > 4 in Lemma 4.4-(j), by the union bound and the Markov inequality, for e > 0,

P

(
max

1≤j≤n
1Aε,(j)

∥∥∥∥∥ΓL,(j)(z)−

[
Ω2 δ(z)

c
1
n trV Ωδ(z) 1

n trV 2TΨ◦z
Ω δ(z)

c 0

]∥∥∥∥∥ > e

)

≤ 1

ep

n∑
j=1

E

[
1Aε,(j)

∥∥∥∥∥ΓL,(j)(z)−

[
Ω2 δ(z)

c
1
n trV Ωδ(z) 1

n trV 2TΨ◦z
Ω δ(z)

c 0

]∥∥∥∥∥
p]

= O(N1− p
2 )

which is summable. By the Borel Cantelli lemma, the event in the probability parentheses then
converges a.s. to zero. Finally, from Lemma A.4, there exists ε > 0 such that 1∩nj=1Aε,(j)

a.s.−→ 1.

We then conclude that, for each z ∈ C ⊂ C \ [ε, S+
µ + ε] for some ε > 0,

sup
1≤j≤n

∥∥∥∥∥ΓL,(j)(z)−

[
Ω2 δ(z)

c
1
n trV Ωδ(z) 1

n trV 2TΨ◦z
Ω δ(z)

c 0

]∥∥∥∥∥ a.s.−→ 0

Let now V ⊂ C\[ε, S+
µ +ε] be a bounded open set containing [0, ε/2] and I be its smooth boundary.

Taking the determinant of each matrix inside the norm and using again the analyticity of the
functions involved, we now get that the quantity

1

2πı

∮
I

[det(I2L + ΓL,(j)(z))]
′

det(I2L + ΓL,(j)(z))
dz

converges almost surely uniformly across j ∈ {1, . . . , n} to the number of eigenvalues of any of
the Ŝ(j) within [0, ε/2]. But by the previous proof, this must be zero. Hence, for all large n a.s.,

none of the ŜN,(j) has eigenvalues smaller than ε/2, which is what we wanted.

Let now (η,Mη) be such that ν̃((0,Mη)) > 0 and ν̃((Mη,∞)) < η. We have now 1
n

∑n
i=1 1τi≤Mηδτi

a.s.−→
ν̃η , cην̃ + (1 − cη)δ0 with cη = limn n

−1|{τi ≤ Mη}| = 1 − η (which almost surely exists by
the law of large numbers), so that ν̃η([0,m)) < η + (1− η)(1− φ−1

∞ ) for some m > 0 (Assump-
tion 4.5). Taking η small enough so that ν̃η([0,m)) < 1−φ−1

∞ , we are still under the assumptions
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of Theorem 4.1.2 and therefore we again have that for all large n a.s. none of the matrices Ŝ(j),η

has eigenvalues below a certain positive value εη > 0.

These elements are sufficient to now turn to the proof of the main theorems.

4.2.4.4 Proof of Theorem 4.2.1

When p1 = . . . = pL = 0, Theorem 4.2.1 unfolds directly from Theorem 4.1.2. Indeed, in this
scenario, the latter result states∥∥∥∥∥ĈN − 1

n

n∑
i=1

v(τiγN )wiw
∗
i

∥∥∥∥∥ a.s.−→ 0 (4.47)

with γN the unique positive solution to

1 =
1

n

n∑
i=1

ψ(τiγN )

1 + cnψ(τiγN )
.

Using 1
n

∑n
i=1 δτi

a.s.−→ ν̃, cn → c, along with the boundedness of ψ, we have that any accumulation
point γ ∈ [0,∞] of γN as n→∞ must satisfy

1 =

∫
ψc(τγ)ν̃(dτ)

1 + cψc(τγ)

the solution of which is easily shown to be unique in (0,∞) as the right-hand side term is
increasing in γ with limits zero as γ → 0 and ψ∞ > 1 as γ → ∞ (unless ν̃ = δ0 which is
excluded). Using the continuity and boundedness of v, it then comes maxi |v(τiγN )−vc(τiγ)| a.s.−→
0. Now, wiw

∗
i = (wiw

∗
i r

2
i /N)/(r2

i /N) where in the numerator wiri/
√
N is Gaussian and where

the denominator satisfies maxi |r2
i /N − 1| a.s.−→ 0 (using classical probability bounds on the chi-

square distribution). With these results, along with (Bai and Silverstein, 1998) which ensures
that 1

nN

∑
iwiw

∗
i r

2
i has bounded spectral norm for all large n a.s., Theorem 4.1.2 implies∥∥∥∥∥ĈN − 1

nN

n∑
i=1

vc(τiγ)wiw
∗
i r

2
i

∥∥∥∥∥ a.s.−→ 0

which is the desired result for p1 = . . . = pL = 0.

The generalization to generic p1, . . . , pL follows from a careful control of the elements of proof
of Theorem 4.1.2. We see that Lemma 4.1 and Remark 4.1 are not affected by p1, . . . , pL as these
results only depend on τ1, . . . , τn. The fundamental Lemma 4.2 (and its extension Remark 4.2)
as well as Lemma 4.3 however need be updated.

We shall not go into the details of every generalization which is painstaking and in fact similar
for each lemma. Instead, we detail the generalization of the important remark Remark 4.2 and
merely give elements for the other results. Remark 4.2 is now updated as follows.
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Lemma 4.6. Let (η,Mη) be couples indexed by η ∈ (0, 1) such that ν̃((0,Mη)) > 0 and
ν̃((Mη,∞)) < η and define γη as the unique solution to (4.38). Also let M > 0 be arbitrary.
Then, for all η small enough,

max
1≤j≤n
τj≤M

∣∣∣∣∣∣ 1

N
x∗j

 1

n

∑
τi≤Mη ,i 6=j

v (τiγ
η)xix

∗
i

−1

xj − τjγη
∣∣∣∣∣∣ a.s.−→ 0

max
1≤j≤n
τj>M

∣∣∣∣∣∣ 1

τj

1

N
x∗j

 1

n

∑
τi≤Mη ,i 6=j

v (τiγ
η)xix

∗
i

−1

xj − γη
∣∣∣∣∣∣ a.s.−→ 0. (4.48)

Proof. Note that, replacing the terms xi by τiwi in (4.48) gives exactly Remark 4.2. To ensure
that the result holds, we then only need verify that the terms involving AS become negligible.

For η sufficiently small, define

Š(j),η =
1

n

∑
τi≤Mη ,i 6=j

v (τiγ
η)xix

∗
i =

1

n
(AS(j) +W(j))V(j),η(AS(j) +W(j))

∗.

Using the fact that max1≤i≤n{|ri/
√
N − 1|} a.s.−→ 0 and that all matrices in the equality above

have bounded norm almost surely by (Bai and Silverstein, 1998), we then have sup1≤j≤n ‖Š(j),η−
Ŝ(j),η‖

a.s.−→ 0. From the results in the previous section, we then conclude that there exists ε > 0

such that the eigenvalues of Š(j),η for all j are all greater than ε for all large n almost surely.
Now, recalling that S = [s1, . . . , sn],

1

N
x∗j Š

−1
(j),ηxj =

1

N
s∗jA

∗Š−1
(j),ηAsj + 2<

[
√
τj

1

N
s∗jA

∗Š−1
(j),ηwj

]
+ τj

1

N
w∗j Š

−1
(j),ηwj .

By the trace lemma (Bai and Silverstein, 2009, Lemma B.26), denoting A the probability set
over which the eigenvalues of Š(j),η for all j are greater than ε, for each p > 2,

E

[
1A

∣∣∣∣ 1

N
w̃∗j Š

−1
(j),ηw̃j −

1

N
tr Š−1

(j),η

∣∣∣∣p] ≤ KN− p2
where K only depends on ε (which is obtained by first conditioning on W̃(j) then averaging over
it). Taking p > 3 and using the union bound on n events, the Markov inequality and the Borel
Cantelli lemma, along with 1A

a.s.−→ 1 and maxj{|r2
j/N − 1|} a.s.−→ 0, leads to

max
1≤j≤n

∣∣∣∣ 1

N
w∗j Š

−1
(j),ηwj −

1

N
tr Š−1

(j),η

∣∣∣∣ a.s.−→ 0.

Using the same result and the fact that 1
N trA∗Š−1

(j),ηA ≤ Kε−1/N for all large n a.s., we also
have

max
1≤j≤n

∣∣∣∣ 1

N
s∗jA

∗Š−1
(j),ηAsj

∣∣∣∣ a.s.−→ 0.
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Using both results and | 1
N s
∗
jA
∗Š−1

(j),ηwj |
2 ≤ 1

N s
∗
jA
∗Š−1

(j),ηAsj
1
Nw
∗
j Š
−1
(j),ηwj (Cauchy–Schwarz in-

equality), we finally get

max
1≤j≤n

∣∣∣∣ 1

N
s∗jA

∗Š−1
(j),ηwj

∣∣∣∣ a.s.−→ 0.

All this then ensures that

max
1≤j≤n,τj≤M

∣∣∣∣ 1

N
x∗j Š

−1
(j),ηxj − τj

1

N
tr Š−1

(j),η

∣∣∣∣ a.s.−→ 0

max
1≤j≤n,τj>M

∣∣∣∣ 1

τj

1

N
x∗j Š

−1
(j),ηxj −

1

N
tr Š−1

(j),η

∣∣∣∣ a.s.−→ 0.

Since A has rank at most L, Š(j),η is an at most rank-2L + 1 perturbation of 1
nWTηVηW

∗,
i.e., the matrix obtained for p1 = . . . = pL = 0, by an additive symmetric matrix. A (2L + 1)-
fold application of the rank-one perturbation lemma (Silverstein and Bai, 1995, Lemma 2.6)
along with the facts that ‖W − W̃‖ a.s.−→ 0 and that all eigenvalues of the matrices involved are
uniformly away from zero almost surely then ensures that

max
1≤j≤n

∣∣∣∣∣ 1

N
tr Š−1

(j),η −
1

N
tr

(
1

n
WTηVηW

∗
)−1

∣∣∣∣∣ a.s.−→ 0.

But now, recalling Remark 4.2, 1
N tr

(
1
nWTηVηW

∗)−1 a.s.−→ γη. Putting these results together
finally leads to the requested result

max
1≤j≤n,τj≤M

∣∣∣∣ 1

N
x∗j Š

−1
(j),ηxj − τjγ

η

∣∣∣∣ a.s.−→ 0

max
1≤j≤n,τj>M

∣∣∣∣ 1

τj

1

N
x∗j Š

−1
(j),ηxj − γ

η

∣∣∣∣ a.s.−→ 0.

Note that the proof only exploits the boundedness away from zero of the various matrices
involved and not their bounded spectral norm. Therefore, with the same derivations, we also
generalize Lemma 4.2 as follows.

Lemma 4.7. For every M > 0, we have

max
1≤j≤n
τj≤M

∣∣∣∣∣∣ 1

N
x∗j

 1

n

∑
i 6=j

v (τiγ
η)xix

∗
i

−1

xj − τjγ

∣∣∣∣∣∣ a.s.−→ 0

max
1≤j≤n
τj>M

∣∣∣∣∣∣ 1

τj

1

N
x∗j

 1

n

∑
i 6=j

v (τiγ
η)xix

∗
i

−1

xj − γ

∣∣∣∣∣∣ a.s.−→ 0.
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Define now di = 1
τi

1
N x
∗
i Ĉ
−1
(i) xi with Ĉ(i) = ĈN − 1

nu( 1
N x
∗
i Ĉ
−1
N xi)xix

∗
i , from which in passing

we can write

ĈN =
1

n

n∑
i=1

v(τidi)xix
∗
i =

1

n

n∑
i=1

v(τidi)Ai ¯̄wi ¯̄w∗iA
∗
i (4.49)

with ¯̄wi = [s1i, . . . , sLi, wi]
T. Then Lemma 4.3 remains valid and reads

Lemma 4.8. There exists d+ > d− > 0 such that, for all large n a.s.

d− < lim inf
n

min
1≤i≤n

di ≤ lim sup
n

max
1≤i≤n

di < d+.

Proof. Taking m > 0 small enough and denoting dmax = maxj dj , Equation (4.14) becomes here

Ĉ(j) � mv(mdmax)
1

n

∑
i 6=j
τi≥m

1

τi
(Asis

∗
iA
∗ + 2

√
τi< [w∗iAsi] + τiwiw

∗
i )

so that, taking j such that dj = dmax,

dmax ≤
1

mv(mdmax)

1

τj

1

N
x∗j

 1

n

∑
i 6=j
τi≥m

Asis
∗
iA
∗ + 2

√
τi< [w∗iAsi] + τiwiw

∗
i

τi


−1

xj .

If lim infn τj > 0 (with j always defined to be such that dj = dmax), with the same arguments
as in the proof of Lemma 4.6 (here the boundedness from above of the τi is irrelevant) and
recalling Lemma A.4, the right-hand side term can be bounded by (mvc(mdmax)(1−c))−1(1+ε)
for arbitrarily small ε > 0 by taking m small enough and n large enough. From there the proof
of Lemma 4.3 for the boundedness of dmax remains valid. If instead lim infn τj = 0, we restrict
ourselves to a subsequence over which τj → 0. Multiplying both sides of the equation above by
τj , we get by a similar result as Lemma 4.6 that τjdmax can be bounded by τj(mvc(mdmax)(1−
c))−1(1+ε) for arbitrarily small ε > 0 (again taking m small and n large), and the result unfolds
again.

To obtain the lower bound, in the proof of Lemma 4.3, denoting dmin = minj dj , one needs
now write

Ĉ(j) �Mv(Mdmin)
1

n

∑
i 6=j

m≤τi≤M

1

τi
(Asis

∗
iA
∗ + 2

√
τi< [w∗iAsi] + τiwiw

∗
i )

+ v(0)
1

n

∑
i 6=j

τi∈R\[m,M ]

(Asis
∗
iA
∗ + 2

√
τi< [w∗iAsi] + τiwiw

∗
i ) .

The controls established for the upper bound on dmax can be similarly used here for dmin and
the proof of Lemma 4.3 for dmin unfolds then similarly.
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Equipped with these lemmas, the proof of Theorem 4.2.1 unfolds similar to the proof of
Theorem 4.1.2 but for a particular care to be taken for terms involving τ−1

j xj which need to
be controlled if lim infn τj = 0. This is easily performed as previously by either using approx-
imations of dj or of τjdj depending on whether lim infn τj > 0 or lim infn τj = 0, respectively.
Assumption 4.5 is precisely used here. In particular, by the end of the proof, we obtain similar
to Section 4.1 the important convergence

max
1≤j≤n,τj<M

|τjdj − τjγ|
a.s.−→ 0

max
1≤j≤n,τj≥M

|dj − γ|
a.s.−→ 0 (4.50)

from which, expanding both ŜN and ĈN as in (4.40) (noting the similarity between (4.39) and
(4.49)) and exploiting the almost sure asymptotic boundedness in norm of the various matrices
then involved, we obtain ‖ĈN − ŜN‖

a.s.−→ 0 as desired.

4.2.4.5 Eigenvalues of ĈN and power estimation

From Theorem 4.2.1, ‖ĈN − ŜN‖
a.s.−→ 0 so that in particular max1≤i≤n |λi(ĈN )−λi(ŜN )| a.s.−→ 0.

This means that it suffices to study the individual eigenvalues of ŜN in order to study the
individual eigenvalues of ĈN . In particular, from the results of Section 4.2.4.3, we have that, for
any small ε > 0, ĈN has asymptotically no eigenvalue in [0, ε] almost surely, that λ̂|L|+i < S+ +ε

for all large n a.s. for each i ∈ {1, . . . , N − |L|} and that λ̂i
a.s.−→ Λi > S+ for each i ∈ L,

where Λi is as in the statement of Theorem 4.2.2, Item 0. Along with the continuity of δ and
δ((S+,∞)) ⊂ (−(τ+vc(τ+γ)), 0), we then get Theorem 4.2.2, Item 1.

4.2.4.6 Localization function estimation

Let a, b ∈ CN be two vectors of unit norm. Then, from the first part of Theorem 4.2.2 and from
Cauchy’s integral formula, for any k ∈ L and for all large N a.s.,

∑
1≤i≤L
pi=p`

a∗ûiû∗i b = − 1

2πı

∮
I`

a∗
(
ĈN − zIN

)−1
bdz (4.51)

for I` defined as above as a positively oriented contour around a sufficiently small neighborhood
of Λ`, where Λ` is the unique positive solution of the equation in Λ (4.46) when pk = p`. Using
‖ĈN − ŜN‖

a.s.−→ 0 along with the uniform boundedness of ‖(ŜN − zIN )−1‖ and ‖(ĈN − zIN )−1‖
on I` (for all n large), we then have

∑
1≤i≤L
pi=p`

a∗ûiû∗i b+
1

2πı

∮
I`

a∗
(
ŜN − zIN

)−1
bdz

a.s.−→ 0

so that it suffices to determine the second left-hand side expression.
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Let us develop the term a∗(ŜN − zIN )−1b. Proceeding similar to Section 4.2.4.3, we find

a∗
(
ŜN − zIN

)−1
b = a∗

(
Ŝ◦N − zIN + Γ

)−1
b

with Γ defined in (4.41). Using Woodbury’s identity (A + BCB∗)−1 = A−1 − A−1B(C−1 +
B∗A−1B)−1B∗A−1 for invertible A,B, this becomes, with the same notations as in the previous
paragraph,

a∗
(
ŜN − zIN

)−1
b = a∗Q◦zb− a∗Q◦zG

(
H−1 +G∗Q◦zG

)−1
G∗Q◦zb (4.52)

where

G =
[
UΩ

1
2

1
nW̃T

1
2V S∗ŪΩ

1
2

]
H =

[
Ω

1
2 Ū∗ 1

nW̃V W̃ ∗ŪΩ
1
2 IL

IL 0

]
.

The matrix H is clearly invertible and we then find, using Lemma 4.4 and Lemma 4.5 that,
uniformly on z in a small neighborhood of Λ`,∥∥∥∥H−1 −

[
0 IL
IL −Ω 1

n trV

]∥∥∥∥ a.s.−→ 0

so that, again by Lemma 4.4 and Lemma 4.5,∥∥∥∥H−1 +G∗Q◦zG−
[
Ω δ(z)

c IL
IL −Ω 1

n trVΨ◦z

]∥∥∥∥ a.s.−→ 0. (4.53)

To ensure that H−1 + G∗Q◦zG is invertible for z ∈ I`, let us study the determinant of the
rightmost matrix. We have easily

det

([
Ω δ(z)

c IL
IL −Ω 1

n trVΨ◦z

])
= det

(
−Ω2 δ(z)

c

1

n
trVΨ◦z − IL

)
.

From the discussion around (4.46), the right-hand side term cancels exactly once in a neigh-
borhood of z = Λk for each k ∈ L. Now, for z ∈ C \ R, it is easily seen that it has non-zero
imaginary part. Therefore, since the convergence (4.53) is uniform on a small neighborhood of
Λ`, for all large n a.s., the determinant of H−1 +G∗Q◦zG is uniformly away from zero on I` (up
to taking n larger). We can then freely take inverses in (4.53) and have, uniformly on I`,∥∥∥∥∥(H−1 +G∗Q◦zG)−1 −

[
Ω δ(z)

c IL
IL −Ω 1

n trVΨ◦z

]−1
∥∥∥∥∥ a.s.−→ 0.

To compute the inverse of the rightmost matrix, it is convenient to write[
Ω δ(z)

c IL
IL Ω 1

n trVΨ◦z

]
= P

{[
σk

δ(z)
c 1

1 −σk 1
n trVΨ◦z

]}L
k=1

P ∗
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where {Ak}Lk=1 is a block-diagonal matrix with diagonal blocks A1, . . . , AL in this order, and
where P ∈ C2L×2L is the symmetric permutation matrix with [P ]ij = δj−(L+i/2) for even i ≤ L
and [P ]ij = δj−(i+1)/2 for odd i ≤ L. With this notation, we have

[
Ω δ(z)

c IL
IL Ω 1

n trVΨ◦z

]−1

= P

{
−1

δ(z)
c σ2

k
1
n trVΨ◦z + 1

[
−σk 1

n trVΨ◦z −1

−1 σk
δ(z)
c

]}L
k=1

P ∗.

Denoting U = [u1, . . . , uL] ∈ CN×L and Ū = [ū1, . . . , ūL] ∈ CL×L, we have

GP =
[√

σ1u1
√
σ1

1
nW̃T

1
2V S∗ū1 · · · √σLuL

√
σL

1
nW̃T

1
2V S∗ūL

]
.

From this remark, using again Lemma 4.4 and Lemma 4.5, we finally have

sup
z∈I`

∣∣∣∣∣a∗Q◦zG(H−1 +G∗Q◦zG)−1G∗Q◦zb−
L∑
k=1

a∗uku
∗
kb

δ(z)2

c2
σ2
k

1
n trVΨ◦z

δ(z)
c σ2

k
1
n trVΨ◦z + 1

∣∣∣∣∣ a.s.−→ 0.

Putting things together, using the results above which we recall are uniform on I`, and also
using the fact that Q◦z has no pole in I`, we finally have

∑
1≤i≤L
pi=p`

a∗ûiû∗i b−
L∑
k=1

1

2πı

∮
I`

a∗uku
∗
kb

δ(z)2

c2
σ2
k

1
n trVΨ◦z

δ(z)
c σ2

k
1
n trVΨ◦z + 1

dz
a.s.−→ 0

which, after taking the limits on the fraction in the integrand, gives

∑
1≤i≤L
pi=p`

a∗ûiû∗i b−
L∑
k=1

1

2πı

∮
I`

a∗uku
∗
kb

δ(z)2

c2
pk
∫ v(τγ)ν̃(dτ)

1+τv(τγ)δ(z)

δ(z)
c pk

∫ v(τγ)ν̃(dτ)
1+τv(τγ)δ(z) + 1

dz
a.s.−→ 0

For z ∈ (S+,∞), we already saw that δ(z) is negative while
∫ v(τγ)ν̃(dτ)

1+τv(τγ)δ(z) is positive. For

z non real, both quantities are non real, and therefore do no have poles in I`. The only pole
is then obtained for δ(z)

c pk
∫ v(τγ)ν̃(dτ)

1+τv(τγ)δ(z) + 1 = 0, that is for z = Λ` as defined in the previous
section. Using l’Hospital rule, the residue of the right complex integral is then evaluated to be

Res(Λ`) = lim
z→Λ`

(z − Λ`)a
∗Π`b

δ(z)

c

∫ p`v(tγ)
1+tv(tγ)δ(z) ν̃(dt)∫ p`v(tγ)

1+tv(tγ)δ(z) ν̃(dt) + c
δ(z)

= lim
z→Λ`

a∗Π`b

δ(z)
c

∫ v(tγ)p`
1+tv(tγ)δ(z) ν̃(dt) + (z − Λ`)

d
dz

(
δ(z)
c

∫ p`v(tγ)
1+tv(tγ)δ(z) ν̃(dt)

)
−c δ

′(z)
δ(z)2 −

∫ tv(tγ)2p`δ′(z)
(1+tv(tγ)δ(z))2 ν̃(dt)

= a∗Π`b

(
c
δ′(Λ`)
δ(Λ`)2

+ p`δ
′(Λ`)

∫
τvc(τγ)2ν̃(dτ)

(1 + τvc(τγ)δ(Λ`))2

)−1

(4.54)
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where Π` ,
∑

i,pi=p`
uiu
∗
i and the last equality uses δ(Λ`)

c p`
∫ v(τγ)ν̃(dτ)

1+τv(τγ)δ(Λ`)
= −1. Recall now

that

δ(Λ`) = c

(
−Λ` +

∫
τvc(τγ)

1 + δ(Λ`)τvc(τγ)
ν̃(dτ)

)−1

from which

δ′(Λ`) =
δ(Λ`)

2

c

(
1− δ(Λ`)

2

c

∫
τ2vc(τγ)2

(1 + δ(Λ`)τvc(τγ))2
ν̃(dτ)

)−1

> 0.

From the expression of p` in the previous paragraph and these values, we then further find

Res(Λ`) = a∗Π`b

1−

∫ δ(Λ`)τvc(τγ)2ν̃(dτ)
(1+δ(Λ`)τvc(τγ))2∫ vc(τγ)ν̃(dτ)

1+δ(Λ`)τvc(τγ)

−1(
1− δ(Λ`)

2

c

∫
t2vc(τγ)2ν̃(dτ)

(1 + δ(Λ`)τvc(τγ))2

)

= a∗Π`b

∫ vc(τγ)ν̃(dτ)
1+δ(Λ`)τvc(τγ)

(
1− δ(Λ`)

2

c

∫ t2vc(τγ)2ν̃(dτ)
(1+δ(Λ`)τvc(τγ))2

)
∫ vc(τγ)ν̃(dτ)

(1+δ(Λ`)τvc(τγ))2

.

Inverting the relation

∑
1≤i≤L
pi=p`

a∗ûiû∗i b− a∗Π`b

∫ vc(τγ)ν̃(dτ)
1+δ(Λ`)τvc(τγ)

(
1− δ(Λ`)

2

c

∫ t2vc(τγ)2ν̃(dτ)
(1+δ(Λ`)τvc(τγ))2

)
∫ vc(τγ)ν̃(dτ)

(1+δ(Λ`)τvc(τγ))2

a.s.−→ 0

and using λ̂`
a.s.−→ Λ` for all ` ∈ L then completes the proof.

4.2.4.7 Empirical estimators

To prove Theorem 4.2.3, one needs to ensure that the empirical estimators introduced in the
statement of the theorem are consistent with the estimators introduced in Theorem 4.2.2.

Note first that γ − γ̂n
a.s.−→ 0 is a consequence of (4.50). Indeed, letting M > 0, from (4.50),

1

n

∑
τj<M

τjdj − γ
1

n

∑
τj<M

τj
a.s.−→ 0.

Still from (4.50), we also have, a.s.

1

n

∑
τj≥M

τjdj − γ
1

n

∑
τj≥M

τj = o

 1

n

∑
τj≥M

τj

 .

But 1
n

∑
τj≥M τj

a.s.−→
∫

(M,∞) tν̃(dt) ≤ 1 (say M is a continuity point of ν̃). Also, 1
n

∑
j τj

a.s.−→ 1.

Putting the results together then gives γ − γ̂n
a.s.−→ 0. From this, we now get, again with (4.50),

max
1≤j≤n,τj≤M

∣∣∣∣τjdjγ̂n
− τj

∣∣∣∣ a.s.−→ 0

max
1≤j≤n,τj>M

∣∣∣∣ djγ̂n − 1

∣∣∣∣ a.s.−→ 0
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which is maxτj≤M |τj − τ̂j |
a.s.−→ 0 and maxτj>M |τ

−1
j τ̂j − 1| a.s.−→ 0, as desired.

We now need to prove that δ̂(x)− δ(x)
a.s.−→ 0 uniformly on any bounded set of (S+ + ε,∞).

For this, recall first that both δ̂ and δ are Stieltjes transforms of distributions with support
contained in [0, S+] and, as such, are analytic in (S+ + ε,∞) and uniformly bounded in any
compact of (S+ + ε,∞). Taking the difference and denoting ˆ̃νn = 1

n

∑n
i=1 δτ̂i , we have

δ̂(x)− δ(x)

=

(
1− c

cn

)
δ̂(x) +

δ̂(x)δ(x)

cn

(∫
tvc(tγ)ν̃(dt)

1 + δ(x)tvc(tγ)
−
∫

tvc(tγ̂n )̂̃νn(dt)

1 + δ̂(x)tvc(tγ̂n)

)

=

(
1− c

cn

)
δ̂(x) +

δ̂(x)δ(x)

cn

(
(δ̂(x)− δ(x))

∫
t2vc(tγ)vc(tγ̂n)ν̃(dt)

(1 + δ(x)tvc(tγ))(1 + δ̂(x)tvc(tγ̂n))

+

∫
t(vc(tγ)− vc(tγ̂n))ν̃(dt)

(1 + δ(x)tvc(tγ))(1 + δ̂(x)tvc(tγ̂n))
+

∫
tvc(tγ̂n)(̂̃νn(dt)− ν̃(dt))

1 + δ̂(x)tvc(tγ̂n)

)
.

From uniform boundedness of tvc(tγ̂n) and tvc(tγ), and ˆ̃νn((t,M))
a.s.−→ ν̃((t,M)) weakly and

γ̂n
a.s.−→ γ, it is easily seen that the last two integrals on the right-hand side can be made

arbitrarily small (e.g., by isolating τi ≤M and τi > M and lettingM large enough in the previous
convergence). Also, the first integral on the right hand side is clearly bounded. Gathering the
terms δ̂(x) − δ(x) on the left-hand side and taking x large enough so to ensure δ̂(x)δ(x) is
uniformly smaller than one (recall that their limit is zero as x → ∞), we finally get that
δ̂(x) − δ(x) can be made arbitrarily small. This is valid for any given large x and therefore on
some sequence {x(i)} of (S+ + ε,∞) having an accumulation point, δ̂(x(i))δ(x(i))

a.s.−→ 0. Since
δ̂(x)−δ(x) is complex analytic in (S+ +ε,∞), by Vitali’s convergence theorem, we therefore get
that the convergence is uniform over any bounded set of (S+ + ε,∞), which is what we wanted.

Since, for i ∈ L and for some ε,M > 0, λ̂i ∈ [S+ + ε,M ] for all large n a.s., we therefore
have that δ̂(λ̂i)−δ(λi)

a.s.−→ 0 for each i ∈ L. Using all these convergence results, we then obtain,
with the same line of arguments the asymptotic consistence between the estimates in Item 1.
and Item 2. of both Theorems 4.2.2 and 4.2.3. This concludes the proof of Theorem 4.2.3.

4.2.4.8 Proof of Corollary 4.3

We are here in the same setting as (Hachem et al., 2013, Theorem 3), only for our improved
model. The proof is the same as in (Hachem et al., 2013) and relies on showing the uniform
convergence of η̂RG(θ)− η(θ) across θ, from which the result unfolds. In our setting, the point-
wise convergence easily follows from Items 3. in both Theorem 4.2.2 and Theorem 4.2.3. Uniform
convergence then hinges on a regular discretization of the set [0, 2π) into N2 subsets and on (i)
a Lipschitz control of the differences η̂RG(θ) − η̂RG(θ′) for |θ − θ′| = O(N−2) and (ii) a joint
convergence of η̂RG(θ) − η(θ) over the N2 + 1 edges of the subsets. Point (i) uses the defining
properties of a(θ) from Assumption 4.7 similar to (Hachem et al., 2013), while Point (ii) is
obtained thanks to a classical union bound on N2 events, the validity of which follows from
considering sufficiently high order moment bounds on the vanishing random quantities involved
in η̂RG(θ) − η(θ). In our setting, the latter moment bounds are obtained by selecting p large
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enough in Lemma 4.4 of Section 4.2.4 (in a similar fashion as is performed for the technical proof
that minj λN (Ŝ(j)) > ε for all large n a.s. in Section 4.2.4). It is easily seen that, this being
ensured, the proof of Corollary 4.3 unfolds similar to that of (Hachem et al., 2013, Theorem 3),
which as a consequence we do not further detail.
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Chapter 5

Robust shrinkage estimates of
scatter

The previous chapter laid down the theoretical mechanism for studying the large dimensional
behavior of robust estimators of the Maronna type. As mentioned in the first paragraph of
Chapter 4, the approach cannot be used for Tyler’s estimator and this all has to do with the
fact that the constant function x 7→ 1/x used as a weighing function does not meet the property
of Maronna’s u function that xu(x) is increasing. However, the approach carried out in Chapter 4
can be used, almost immediately, to handle robust shrinkage estimates defined in (2.4) and (2.5).
The results are similar in spirit, that is for both cases one can exhibit a random approximating
matrix with simple structure that is asymptotically equivalent to the robust model.

The interest of the chapter is therefore not so much in the theoretical tools developed for
the proofs of the main results. Rather, the interest of this section is rooted in practical grounds,
as the robust shrinkage estimators have multiple advantages over pure robust or pure shrinkage
estimators which find many application interests. This being said, the theoretical proofs in
themselves, at least as far as ĈN (ρ) is concerned, are interesting in their being much simpler
and clearer than the proofs exposed in Section 4.1. The reader not having reached an overall
understanding of these proofs should be more at ease with the present chapter.

5.1 Theory

We study here the two hybrid robust shrinkage covariance matrix estimates ĈN (ρ) (hereafter
referred to as the Abramovich–Pascal estimate) and ČN (ρ) (hereafter referred to as the Chen
estimate) proposed in parallel in (Abramovich and Spencer, 2007; Pascal et al., 2013)1 and in
(Chen et al., 2011), respectively. Both matrices, whose definition is introduced in Section 5.1.1
below, are empirically built upon Tyler’s M-estimate (Tyler, 1987) originally designed to cope
with elliptical samples whose distribution is unknown to the experimenter and upon the Ledoit–

1To the author’s knowledge, the first instance of the estimator dates back to (Abramovich and Spencer, 2007)
although the non-obvious proof of ĈN (ρ) being well-defined is only found later in (Pascal et al., 2013).
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Wolf shrinkage estimator (Ledoit and Wolf, 2004). This allows for an improved degree of freedom
for approximating the population covariance matrix and importantly allows for N > n, which
Maronna’s and Tyler’s estimators do not. In (Pascal et al., 2013) and (Chen et al., 2011), ĈN (ρ)
and ČN (ρ) were proved to be well-defined as the unique solutions to their defining fixed-point
matrices. However, little is known of their performance as estimators of CN in the regime
N ' n of interest here. Some progress in this direction was made in (Chen et al., 2011) but this
work does not manage to solve the optimal shrinkage problem consisting of finding ρ such that
E[tr((ČN (ρ)− CN )2)] is minimized and resorts to solving an approximate problem instead.

The present section studies the matrices ĈN (ρ) and ČN (ρ) in the regime where N,n → ∞
with N/n→ c ∈ (0,∞), and under the assumption of the absence of outliers. The main results
in this section are as follows:

• as in the previous chapter, we show that, under the aforementioned setting, both ĈN (ρ)
and ČN (ρ) asymptotically behave similar to well-known random matrix models and prove
in particular that both have a well-identified limiting spectral distribution;

• we prove that, up to a change in the variable ρ, the matrices ČN (ρ) and ĈN (ρ)/( 1
N tr ĈN (ρ))

are essentially the same for N,n large, implying that both achieve the same optimal shrink-
age performance;

• we determine the optimal shrinkage parameters ρ̂? and ρ̌? that minimize the almost sure
limits limN

1
N tr[(ĈN (ρ)/( 1

N tr ĈN (ρ))−CN )]2 and limN
1
N tr[(ČN (ρ)−CN )]2, respectively,

both limits being the same. We then propose consistent estimates ρ̂N and ρ̌N for ρ̂? and
ρ̌? which achieve the same limiting performance. We finally show by simulations that a
significant gain is obtained using ρ̂? (or ρ̂N ) and ρ̌? (or ρ̌N ) compared to the solution ρ̌O
of the approximate problem developed in (Chen et al., 2011).

In practice, these results allow for a proper use of ĈN (ρ) and ČN (ρ) in anticipation of the
absence of outliers. In the presence of outliers, it is then expected that both Abramovich–
Pascal and Chen estimates will exhibit robustness properties that their asymptotic random
matrix equivalents will not. Note in particular that, although ĈN (ρ) and ČN (ρ) are shown to
be asymptotically equivalent in the absence of outliers, it is not clear at this point whether one
of the two estimates will show better performance in the presence of outliers. The study of this
scenario has not been precisely carried out but some hints will be provided in Chapter 7.

We start with our main results.

5.1.1 Main results

We start by introducing the main assumptions of the data model under study, which do not
defer much from these of Section 4.1, but for the fact that now the eigenvalues of CN but no
longer the τi will play a central role. The n sample vectors x1, . . . , xn ∈ CN (or RN ) have the
following characteristics.

Assumption 5.1 (Growth rate). Denoting cN = N/n, cN → c ∈ (0,∞) as N →∞.
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Assumption 5.2 (Population model). The vectors x1, . . . , xn ∈ CN (or RN ) are independent
with

a. xi =
√
τ iANyi, where yi ∈ CN̄ (or RN̄ ), N̄ ≥ N , is a random zero mean unitarily (or

orthogonally) invariant vector with norm ‖yi‖2 = N̄ , AN ∈ CN×N̄ is deterministic, and
τ1, . . . , τn is a collection of positive scalars. We shall denote zi = ANyi.

b. CN , ANA
∗
N is nonnegative definite, with trace 1

N trCN = 1 and spectral norm satisfying
lim supN ‖CN‖ <∞.

c. νN , 1
N

∑N
i=1 δλi(CN ) satisfies νN → ν weakly with ν 6= δ0 almost everywhere.

Since all considerations to come are equally valid over C or R, we will consider by default
that x1, . . . , xn ∈ CN . As the analysis will show, the positive scalars τi have no impact on the
robust covariance estimates; with this definition, the distribution of the vectors xi contains in
particular the class of elliptical distributions. Note that the assumption that yi is zero mean
unitarily invariant with norm N̄ is equivalent to saying that yi =

√
N̄ ỹi
‖ỹi‖ with ỹi ∈ CN̄ standard

Gaussian. This, along with AN ∈ CN×N̄ and lim supN ‖CN‖ < ∞, implies in particular that
‖xi‖2 is of order N . The assumption that ν 6= δ0 almost everywhere avoids the degenerate
scenario where an overwhelming majority of the eigenvalues of CN tend to zero, whose practical
interest is quite limited. Finally note that the constraint 1

N trCN = 1 is inconsequential and in
fact defines uniquely both terms in the product τiCN .

The following two theorems introduce the robust shrinkage estimators ĈN (ρ) and ČN (ρ),
and constitute the main technical results of this section that can be paralleled to Theorem 4.1.2
in the previous chapter.

Theorem 5.1.1 (Abramovich–Pascal Estimate). Let Assumptions 5.1 and 5.2 hold. For ε ∈
(0,min{1, c−1}), define R̂ε = [ε + max{0, 1 − c−1}, 1]. For each ρ ∈ (max{0, 1 − c−1

N }, 1], let

ĈN (ρ) be the unique solution to

ĈN (ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
N x
∗
i ĈN (ρ)−1xi

+ ρIN .

Then, as N →∞,

sup
ρ∈R̂ε

∥∥∥ĈN (ρ)− ŜN (ρ)
∥∥∥ a.s.−→ 0

where

ŜN (ρ) =
1

γ̂(ρ)

1− ρ
1− (1− ρ)c

1

n

n∑
i=1

ziz
∗
i + ρIN

and γ̂(ρ) is the unique positive solution to the equation in γ̂

1 =

∫
t

γ̂ρ+ (1− ρ)t
ν(dt).

Moreover, the function ρ 7→ γ̂(ρ) thus defined is continuous on (0, 1].
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Proof. The proof is deferred to Section 5.1.3.1.

Theorem 5.1.2 (Chen Estimate). Let Assumptions 5.1 and 5.2 hold. For ε ∈ (0, 1), define
Řε = [ε, 1]. For each ρ ∈ (0, 1], let ČN (ρ) be the unique solution to

ČN (ρ) =
B̌N (ρ)

1
N tr B̌N (ρ)

where

B̌N (ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
N x
∗
i ČN (ρ)−1xi

+ ρIN .

Then, as N →∞,

sup
ρ∈Řε

∥∥ČN (ρ)− ŠN (ρ)
∥∥ a.s.−→ 0

where

ŠN (ρ) =
1− ρ

1− ρ+ Tρ

1

n

n∑
i=1

ziz
∗
i +

Tρ
1− ρ+ Tρ

IN

in which Tρ = ργ̌(ρ)F (γ̌(ρ); ρ) with, for all x > 0,

F (x; ρ) =
1

2
(ρ− c(1− ρ)) +

√
1

4
(ρ− c(1− ρ))2 + (1− ρ)

1

x

and γ̌(ρ) is the unique positive solution to the equation in γ̌

1 =

∫
t

γ̌ρ+ 1−ρ
(1−ρ)c+F (γ̌;ρ) t

ν(dt).

Moreover, the function ρ 7→ γ̌(ρ) thus defined is continuous on (0, 1].

Proof. The proof is deferred to Section 5.1.3.2.

Similar to Theorem 4.1.2, Theorem 5.1.1 and Theorem 5.1.2 show that, as N,n → ∞ with
N/n → c, the matrices ĈN (ρ) and ČN (ρ), defined as the non-trivial solution of fixed-point
equations, behave similar to matrices ŜN (ρ) and ŠN (ρ), respectively, which are here random
matrices of the sample covariance matrix type (not separable).

Technically speaking, the proof of both Theorem 5.1.1 and Theorem 5.1.2 unfold from the
same technique as in Chapter 4. However, while the proof of Theorem 5.1.1 comes with no
major additional difficulty compared to these works, due to the scale normalization imposed in
the definition of ČN (ρ), the proof of Theorem 5.1.2 requires a more elaborate approach than used
previously. Another difference to previous works lies here in that, unlike Maronna’s estimator
that only attenuates the effect of the scale parameters τi, the proposed Tyler-based estimators
discard this effect altogether. Also, the technical study of Maronna’s estimator can be made
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under the assumption that CN = IN (from a natural variable change) while here, because of the
regularization term ρIN , CN does intervene in an intricate manner in the results.

As a side remark, it is shown in (Pascal et al., 2013) that for each N,n fixed with n ≥ N +1,
ĈN (ρ)→ ĈN (0) as ρ→ 0 with ĈN (0) defined (almost surely) as one of the (uncountably many)
solutions to

ĈN (0) =
1

n

n∑
i=1

xix
∗
i

1
N x
∗
i ĈN (0)−1xi

. (5.1)

In the regime where N,n → ∞ and N/n → c, this result is difficult to generalize as it is
challenging to handle the limit ‖ĈN (ρN ) − ŜN (ρN )‖ for a sequence {ρN}∞N=1 with ρN → 0.
The requirement that ρN → ρ0 > 0 on any such sequence is indeed at the core of the proof
of Theorem 5.1.1 (see Equations (5.6) and (5.7) in Section 5.1.3.1 where ρ0 > 0 is necessary
to ensure e+ < 1). This explains why the set R̂ε in Theorem 5.1.1 excludes the region [0, ε).
Similar arguments hold for ČN (ρ). Although the behavior of any solution ĈN (0) to (5.1) in the
large N,n regime was recently discovered in (Zhang et al., 2014), this result remains difficult to
handle with our proof technique.

As an immediate consequence of Theorem 5.1.1 and Theorem 5.1.2 we have the following
result on the limiting eigenvalue distribution of the matrices are study.

Corollary 5.1 (Limiting spectral distribution). Under the settings of Theorem 5.1.1 and The-
orem 5.1.2,

1

N

N∑
i=1

δλi(ĈN (ρ))

a.s.−→ µ̂ρ, ρ ∈ R̂ε

1

N

N∑
i=1

δλi(ČN (ρ))
a.s.−→ µ̌ρ, ρ ∈ Řε

where the convergence arrow is understood as the weak convergence of probability measures, for
almost every sequence {x1, . . . , xn}∞n=1, and where

µ̂ρ = max{0, 1− c−1}δρ + µ̂
ρ

µ̌ρ = max{0, 1− c−1}δ Tρ
1−ρ+Tρ

+ µ̌
ρ

with µ̂
ρ

and µ̌
ρ

continuous finite measures with compact support in [ρ,∞) and [Tρ(1 − ρ +

Tρ)
−1,∞) respectively, real analytic wherever their density is positive. The measure µ̂ρ is the

only measure with Stieltjes transform mµ̂ρ(z) defined, for z ∈ C with =[z] > 0, as

mµ̂ρ(z) = γ̂
1− (1− ρ)c

1− ρ

∫
1

ẑ(ρ) + t
1+cδ̂(z)

ν(dt)

where ẑ(ρ) = (ρ− z)γ̂(ρ)1−(1−ρ)c
1−ρ and δ̂(z) is the unique solution with positive imaginary part of

the equation in δ̂

δ̂ =

∫
t

ẑ(ρ) + t
1+cδ̂

ν(dt).
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The measure µ̌ρ is the only measure with Stieltjes transform mµ̌ρ(z) defined, for =[z] > 0 as

mµ̌ρ(z) =
1− ρ+ Tρ

1− ρ

∫
1

ž(ρ) + t
1+cδ̌(z)

ν(dt)

with ž(ρ) = 1
1−ρTρ(1 − z) − z and δ̌(z) the unique solution with positive imaginary part of the

equation in δ̌

δ̌ =

∫
t

ž(ρ) + t
1+cδ̌

ν(dt).

Proof. This is an immediate application of the results of Chapter 3 or more simply of (Silverstein
and Bai, 1995; Silverstein and Choi, 1995) along with Theorems 5.1.1 and 5.1.2.
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Figure 5.1: Histogram of the eigenvalues of ĈN (Abramovich–Pascal type) for n = 2048, N =
256, CN = 1

3 diag(I128, 5I128), ρ = 0.2, versus limiting eigenvalue distribution.

From Corollary 5.1, µ̂ρ is continuous on (ρ,∞) so that µ̂ρ(dx) = p̂ρ(x)dx where, from the
inverse Stieltjes transform formula for all x ∈ (ρ,∞),

p̂ρ(x) = lim
ε→0

1

π
=
[
mµ̂ρ(x+ ıε)

]
.

Letting ε > 0 small and approximating p̂ρ(x) by 1
π=[mµ̂ρ(x + ıε)] allows one to depict p̂ρ

approximately. Similarly, µ̌ρ(dx) = p̌ρ(x)dx for all x ∈ (Tρ(1 − ρ + Tρ)
−1,∞) which can be

obtained equivalently. This is performed in Figure 5.1 and Figure 5.2 which depict the histogram
of the eigenvalues of ĈN (ρ) and ČN (ρ) for ρ = 0.2, N = 256, n = 2048, CN = diag(I128, 5I128),
versus their limiting distributions for c = 1/8. Figure 5.3 depicts ČN (ρ) for ρ = 0.8, N = 1024,
n = 512, CN = diag(I128, 5I128) versus its limiting distribution for c = 2. Note that, when
c = 1/8, the eigenvalues of ČN (ρ) concentrate in two bulks close to 1/3 and 5/3, as expected.
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Figure 5.2: Histogram of the eigenvalues of ČN (Chen type) for n = 2048, N = 256, CN =
1
3 diag(I128, 5I128), ρ = 0.2, versus limiting eigenvalue distribution.
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Figure 5.3: Histogram of the eigenvalues of ČN (Chen type) for n = 512, N = 1024, CN =
1
3 diag(I128, 5I128), ρ = 0.8, versus limiting eigenvalue distribution.

Due to the different trace normalization of ĈN (ρ), the same reasoning holds up to a multiplicative
constant. However, when c = 2, the eigenvalues of ČN (ρ) are quite remote from masses in 1/3
and 5/3, an observation known since (Marc̆enko and Pastur, 1967).

Another corollary of Theorem 5.1.1 and Theorem 5.1.2 is the joint convergence (over both
ρ and the eigenvalue index) of the individual eigenvalues of ĈN (ρ) to those of ŜN (ρ) and of the
individual eigenvalues of ČN (ρ) to those of ŠN (ρ), as well as the joint convergence over ρ of the
moments of the empirical spectral distributions of ĈN (ρ) and ČN (ρ). These joint convergence
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properties are fundamental in problems of optimization of the parameter ρ as discussed in
Section 5.1.2.

Corollary 5.2 (Joint convergence properties). Under the settings of Theorem 5.1.1 and Theo-
rem 5.1.2,

sup
ρ∈R̂ε

max
1≤i≤n

∣∣∣λi(ĈN (ρ))− λi(ŜN (ρ))
∣∣∣ a.s.−→ 0

sup
ρ∈Řε

max
1≤i≤n

∣∣λi(ČN (ρ))− λi(ŠN (ρ))
∣∣ a.s.−→ 0.

This result implies

lim sup
N

sup
ρ∈R̂ε
‖ĈN (ρ)‖ <∞

lim sup
N

sup
ρ∈Řε
‖ČN (ρ)‖ <∞.

almost surely. This, and the weak convergence of Corollary 5.1, in turn induce that, for each
` ∈ N,

sup
ρ∈R̂ε

∣∣∣∣ 1

N
tr
(
ĈN (ρ)`

)
−Mµ̂ρ,`

∣∣∣∣ a.s.−→ 0

sup
ρ∈Řε

∣∣∣∣ 1

N
tr
(
ČN (ρ)`

)
−Mµ̌ρ,`

∣∣∣∣ a.s.−→ 0

where we recall that Mµ,` =
∫
t`µ(dt) ∈ (0,∞] for any probability measure µ with support in R+;

in particular, Mµ̂ρ,1 = 1
γ̂(ρ)

1−ρ
1−(1−ρ)c + ρ and Mµ̌ρ,1 = 1.

Proof. The proof is provided in Section 5.1.3.3.

5.1.2 Optimal shrinkage

We now apply Theorems 5.1.1 and 5.1.2 to the problem of optimal linear shrinkage, originally
considered in (Ledoit and Wolf, 2004) for the simpler sample covariance matrix model. The
optimal linear shrinkage problem consists in choosing ρ to be such that a certain distance metric
between ĈN (ρ) (or ČN (ρ)) and CN is minimized, therefore allowing for a more appropriate
estimation of CN via ĈN (ρ) or ČN (ρ). The metric selected here is the squared Frobenius norm of
the difference between the (possibly scaled) robust estimators and CN , which has the advantage
of being a widespread matrix distance (e.g., as considered in (Ledoit and Wolf, 2004)) and a
metric amenable to mathematical analysis.2 In (Chen et al., 2011), the authors studied this
problem in the specific case of ČN (ρ) but did not find an expression for the optimal theoretical
ρ due to the involved structure of ČN (ρ) for all finite N,n and therefore resorted to solving an

2Alternative metrics (such as the geodesic distance on the cone of nonnegative definite matrices) can be similarly
considered. The appropriate choice of such a metric heavily depends on the ultimate problem to optimize.
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approximate problem, the solution of which is denoted here ρ̌O. Instead, we show that for large
N,n values the optimal ρ under study converges to a limiting value ρ̌? that takes an extremely
simple explicit expression and a similar result holds for ĈN (ρ) for which an equivalent optimal
ρ̂? is defined.

Our first result is a lemma of fundamental importance which demonstrates that, up to a
change in the variable ρ, ŜN (ρ)/Mµ̂ρ,1 and ŠN (ρ) (constructed from the samples x1, . . . , xn) are
completely equivalent to the original Ledoit–Wolf linear shrinkage model for the (non observable)
samples z1, . . . , zn.

Lemma 5.1 (Model Equivalence). For each ρ ∈ (0, 1], there exist unique ρ̂ ∈ (max{0, 1−c−1}, 1]
and ρ̌ ∈ (0, 1] such that

ŜN (ρ̂)

Mµ̂ρ̂,1
= ŠN (ρ̌) = (1− ρ)

1

n

n∑
i=1

ziz
∗
i + ρIN .

Besides, the maps (0, 1] → (max{0, 1 − c−1}, 1], ρ 7→ ρ̂ and (0, 1] → (0, 1], ρ 7→ ρ̌ thus defined
are continuously increasing and onto.

Proof. The proof is provided in Section 5.1.3.4.

Along with Theorem 5.1.1 and Theorem 5.1.2, Lemma 5.1 indicates that, up to a change
in the variable ρ, ĈN (ρ) and ČN (ρ) can be somewhat viewed as asymptotically equivalent (but
there is no saying whether they can be claimed equivalent for all finite N,n). As such, thanks to
Lemma 5.1, we now show that the optimal shrinkage parameters ρ for both ĈN (ρ)/( 1

N tr ĈN (ρ))
and ČN (ρ) lead to the same asymptotic performance, which corresponds to the asymptotically
optimal Ledoit–Wolf linear shrinkage performance but for the vectors z1, . . . , zn.

Proposition 5.1.1 (Optimal Shrinkage). For each ρ ∈ (0, 1], define3

D̂N (ρ) =
1

N
tr

( ĈN (ρ)
1
N tr ĈN (ρ)

− CN

)2


ĎN (ρ) =
1

N
tr
((
ČN (ρ)− CN

)2)
.

Also denote D? = c
Mν,2−1
c+Mν,2−1 , ρ? = c

c+Mν,2−1 , and ρ̂? ∈ (max{0, 1−c−1}, 1], ρ̌? ∈ (0, 1] the unique

solutions to

ρ̂?

1
γ̂(ρ̂?)

1−ρ̂?
1−(1−ρ̂?)c + ρ̂?

=
Tρ̌?

1− ρ̌? + Tρ̌?
= ρ?.

Then, letting ε < min(ρ̂? −max{0, 1− c−1}, ρ̌?), under the setting of Theorem 5.1.1 and Theo-
rem 5.1.2,

inf
ρ∈R̂ε

D̂N (ρ)
a.s.−→ D?, inf

ρ∈Řε
ĎN (ρ)

a.s.−→ D?

3Recall that, for A Hermitian, 1
N

tr(A2) = 1
N

tr(AA∗) = 1
N
‖A‖2F with ‖ · ‖F the Frobenius norm for matrices.
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and

D̂N (ρ̂?)
a.s.−→ D?, ĎN (ρ̌?)

a.s.−→ D?.

Moreover, letting ρ̂N and ρ̌N be random variables such that ρ̂N
a.s.−→ ρ̂? and ρ̌N

a.s.−→ ρ̌?,

D̂N (ρ̂N )
a.s.−→ D?, ĎN (ρ̌N )

a.s.−→ D?.

Proof. The proof is provided in Section 5.1.3.5.

The last part of Proposition 5.1.1 states that, if consistent estimates ρ̂N and ρ̌N of ρ̂? and
ρ̌? exist, then they have optimal shrinkage performance in the large N,n limit. Such estimates
may of course be defined in multiple ways. We present below a simple example based on ĈN (ρ)
and ČN (ρ).

Proposition 5.1.2 (Optimal Shrinkage Estimate). Under the setting of Proposition 5.1.1, let
ρ̂N ∈ (max{0, 1− c−1}, 1] and ρ̌N ∈ (0, 1] be solutions (not necessarily unique) to

ρ̂N
1
N tr ĈN (ρ̂N )

=
cN

1
N tr

[(
1
n

∑n
i=1

xix∗i
1
N
‖xi‖2

)2
]
− 1

ρ̌N
1
n

∑n
i=1

x∗i ČN (ρ̌N )−1xi
‖xi‖2

1− ρ̌N + ρ̌N
1
n

∑n
i=1

x∗i ČN (ρ̌N )−1xi
‖xi‖2

=
cN

1
N tr

[(
1
n

∑n
i=1

xix∗i
1
N
‖xi‖2

)2
]
− 1

defined arbitrarily when no such solutions exist. Then ρ̂N
a.s.−→ ρ̂? and ρ̌N

a.s.−→ ρ̌?, so that
D̂N (ρ̂N )

a.s.−→ D? and ĎN (ρ̌N )
a.s.−→ D?.

Proof. The proof is deferred to Section 5.1.3.6.

Figure 5.4 illustrates the performance in terms of the metric ĎN of the empirical shrink-
age coefficient ρ̌N introduced in Proposition 5.1.2 versus the optimal value infρ∈(0,1]{ĎN (ρ)},
averaged over 10 000 Monte Carlo simulations. We also present in this graph the almost sure
limiting value D? of both ĎN (ρ̌N ) and infρ∈Řε{ĎN (ρ)} for some sufficiently small ε, as well

as ĎN (ρ̌O) of ρ̌O defined in (Chen et al., 2011, Equation (12)) as the minimizing solution of
E[ 1

N tr(ČO(ρ)− CN )2] with ČO(ρ) the so-called “clairvoyant estimator”

ČO(ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
N x
∗
iC
−1
N xi

+ ρIN .

We consider in this graph N = 32 constant, n ∈ {2k, k = 1, . . . , 7}, and CN = [CN ]Ni,j=1 with

[CN ]ij = r|i−j|, r = 0.7, which is the same setting as considered in (Chen et al., 2011, Section 4).

It appears in Figure 5.4 that a significant improvement is brought by ρ̌N over ρ̌O, especially
for small n, which translates the poor quality of ČO(ρ) as an approximation of ČN (ρ) for large
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values of cN (obviously linked to 1
N x
∗
iC
−1
N xi being then a bad approximation for 1

N x
∗
i ČN (ρ)−1xi).

Another important remark is that, even for so small values of N,n, infρ∈(0,1] ĎN (ρ) is extremely
close to the limiting optimal, suggesting here that the limiting results of Proposition 5.1.1 are
already met for small practical values. The approximation ρ̌N of ρ̌?, translated here through
ĎN (ρ̌N ), also demonstrates good practical performance at small values of N,n.

We additionally mention that we produced similar curves for ĈN (ρ) in place of ČN (ρ) which
happened to show virtually the same performance as the equivalents curves for ČN (ρ). This
is of course expected (with exact match) for infρ∈(0,1] D̂N (ρ) which, up to the region [0, ε),

matches infρ∈(0,1] ĎN (ρ) for large enough N,n, and similarly for D̂N (ρ̂N ) since ρ̂N was designed
symmetrically to ρ̌N .

Associated to Figure 5.4 is Figure 5.5 which provides the shrinkage parameter values, op-
timal and approximated, for both the Abramovich–Pascal and Chen estimates, along with the
clairvoyant ρ̌O of (Chen et al., 2011). Recall that the (̂·) values must only be compared to
one another, and similarly for the (̌·) values (so in particular ρ̌O only compares against the (̌·)
values). It appears here that ρ̌O is a rather poor estimate for argminρ∈(0,1] ĎN (ρ) for a large
range of values of n. It tends in particular to systematically overestimate the weight to be put
on the sample covariance matrix.
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Figure 5.4: Performance of optimal shrinkage averaged over 10 000 Monte Carlo simulations,
for N = 32, various values of n, [CN ]ij = r|i−j| with r = 0.7; ρ̌N is given in Proposition 5.1.2;
ρ̌O is the clairvoyant estimator proposed in (Chen et al., 2011, Equation (12)); D? taken with
c = N/n.

5.1.3 Proofs

This section successively introduces the proofs of Theorem 5.1.1, Theorem 5.1.2, Corollary 5.2,
Lemma 5.1, Proposition 5.1.1, and Proposition 5.1.2. The methodology of proof of Theorem 5.1.1
closely follows that of Chapter 4. The proof of Theorem 5.1.2 also relies on the same ideas but
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Figure 5.5: Shrinkage parameter ρ averaged over 10 000 Monte Carlo simulations, for N = 32,
various values of n, [CN ]ij = r|i−j| with r = 0.7; ρ̂N and ρ̌N given in Proposition 5.1.2; ρ̌O is the
clairvoyant estimator proposed in (Chen et al., 2011, Equation (12)); ρ?, ρ̂?, and ρ̌? taken with
c = N/n; ρ̂◦ = argmin{ρ∈(max{0,1−c−1

N },1]}{D̂N (ρ)} and ρ̌◦ = argmin{ρ∈(0,1]}{ĎN (ρ)}.

is more technical due to the imposed normalization of ČN (ρ) to be of trace N . The proofs of the
corollary, lemma, and propositions then rely mostly on the important joint convergence over ρ
proved in Theorem 5.1.1 and Theorem 5.1.2, and on standard manipulations of random matrix
theory and fixed-point equation analysis.

5.1.3.1 Proof of Theorem 5.1.1

The proof of existence and uniqueness of ĈN (ρ) is given in (Pascal et al., 2013).

The existence and uniqueness of γ̂(ρ) is quite immediate as the right-hand side integral in
the definition of γ̂(ρ) is a decreasing function of γ̂ (since ρ > 0) with limits 1/(1 − ρ) > 1 as
γ̂ → 0 (since ν 6= δ0 almost everywhere) and zero as γ̂ →∞. We now prove the continuity of γ̂
on (0, 1]. Let ρ0, ρ ∈ (0, 1] and γ̂0 = γ̂(ρ0), γ̂ = γ̂(ρ). Then∫

t

γ̂ρ+ (1− ρ)t
ν(dt)−

∫
t

γ̂0ρ0 + (1− ρ0)t
ν(dt) = 0.

Setting the difference into a common integral and isolating the term γ̂0 − γ̂, this becomes, after
some calculus,

(γ̂0 − γ̂)ρ0 = −γ̂(ρ0 − ρ) + (ρ− ρ0)

∫
t2

(γ̂ρ+(1−ρ)t)(γ̂0ρ0+(1−ρ0)t)ν(dt)∫
t

(γ̂ρ+(1−ρ)t)(γ̂0ρ0+(1−ρ0)t)ν(dt)
.

Since the support of ν is bounded by lim supN ‖CN‖ <∞ and in particular γ̂(ρ) ≤ ρ−1 lim supN ‖CN‖
by definition of γ̂, the ratio of integrals above is uniformly bounded on ρ in a certain small neigh-
borhood of ρ0 > 0. Taking the limit ρ→ ρ0 then brings γ̂0− γ̂ → 0, which proves the continuity.
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From now on, for readability, we discard all unnecessary indices ρ when no confusion is
possible.

Note first that xi can be equivalently replaced by zi from the definition of ĈN (ρ) which is
independent of τ1, . . . , τn. Consider ρ ∈ R̂ε fixed and assume ĈN exists for allN on the realization
{z1, . . . , zn}∞n=1 (a probability one event). We start by rewriting ĈN in a more convenient form.

Denoting Ĉ(i) , ĈN − (1 − ρ) 1
n

ziz
∗
i

1
N
z∗i Ĉ

−1
N zi

and using (A + tvv∗)−1v = A−1v/(1 + tv∗A−1v) for

positive definite Hermitian A, vector v, and scalar t > 0, we have

1

N
z∗i Ĉ

−1
N zi =

1
N z
∗
i Ĉ
−1
(i) zi

1 + (1− ρ)c
1
N
z∗i Ĉ

−1
(i)
zi

1
N
z∗i Ĉ

−1
N zi

so that

1

N
z∗i Ĉ

−1
N zi = (1− (1− ρ)cN )

1

N
z∗i Ĉ

−1
(i) zi

and we can rewrite ĈN as

ĈN =
1− ρ

1− (1− ρ)cN

1

n

n∑
i=1

ziz
∗
i

1
N z
∗
i Ĉ
−1
(i) zi

+ ρIN .

We recall that the interest of this rewriting, detailed in Chapter 4, mostly lies in the intuition
that 1

N z
∗
i Ĉ
−1
(i) zi should be close to 1

N tr(Ĉ−1
N ) for all i, while 1

N z
∗
i Ĉ
−1
N zi is a priori more involved.

To proceed with the proof, for i ∈ {1, . . . , n}, denote d̂i(ρ) , 1
N z
∗
i Ĉ
−1
(i) zi and, up to relabeling,

assume d̂1(ρ) ≤ . . . ≤ d̂n(ρ). Then, using A � B ⇒ B−1 � A−1 for positive Hermitian matrices
A,B,

d̂n(ρ) =
1

N
z∗n

(
1− ρ

1− (1− ρ)cN

1

n

n−1∑
i=1

ziz
∗
i

d̂i(ρ)
+ ρIN

)−1

zn

≤ 1

N
z∗n

(
1− ρ

1− (1− ρ)cN

1

n

n−1∑
i=1

ziz
∗
i

d̂n(ρ)
+ ρIN

)−1

zn.

Since zn 6= 0, this implies

1 ≤ 1

N
z∗n

(
1− ρ

1− (1− ρ)cN

1

n

n−1∑
i=1

ziz
∗
i + d̂n(ρ)ρIN

)−1

zn. (5.2)

Similarly, with the same derivations, but with opposite inequalities

1 ≥ 1

N
z∗1

(
1− ρ

1− (1− ρ)cN

1

n

n∑
i=2

ziz
∗
i + d̂1(ρ)ρIN

)−1

z1.
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Our objective is to show that supρ∈R̂ε max1≤i≤n |d̂i(ρ) − γ̂(ρ)| a.s.−→ 0 where γ̂(ρ) is given in
the statement of the theorem. This is proved via a contradiction argument.

For this, assume that there exists a sequence {ρn}∞n=1 over which d̂n(ρn) > γ̂(ρn)+` infinitely
often, for some ` > 0 fixed. Since {ρn}∞n=1 is bounded, it has a limit point ρ0 ∈ R̂ε. Let us
restrict ourselves to such a subsequence on which ρn → ρ0 and d̂n(ρn) > γ̂(ρn) + `. On this
sequence, from (5.2)

1 ≤ 1

N
z∗n

(
1− ρn

1− (1− ρn)cN

1

n

n−1∑
i=1

ziz
∗
i + (γ̂(ρn) + `)ρnIN

)−1

zn , ên. (5.3)

Assume first ρ0 6= 1. From Chapter 3 and particularly (3.5) (up to a slight modification in
the δ(x) notation), we have

ên =
1− (1− ρn)cN

1− ρn
1

N
z∗n

(
1

n

n−1∑
i=1

ziz
∗
i + (γ̂(ρn) + `)ρn

1− (1− ρn)cN
1− ρn

IN

)−1

zn

a.s.−→ 1− (1− ρ0)c

1− ρ0
δ

(
−(γ̂(ρ0) + `)ρ0

1− (1− ρ0)c

1− ρ0

)
, e+ (5.4)

where, for x > 0, δ(x) is the unique positive solution to the equation

δ(x) =

∫
t

−x+ t
1+cδ(x)

ν(dt).

The convergence (5.4) follows from several classical ingredients. For this, we first use the fact
that, for each p ≥ 2, w > 0, and j ∈ {1, . . . , n},

E


∣∣∣∣∣∣ 1

N
z∗j

 1

n

∑
i 6=j

ziz
∗
i + wIN

−1

zj − δ(−w)

∣∣∣∣∣∣
p
 = O

(
N−p/2

)
(5.5)

which, taking p ≥ 4 along with Boole’s inequality, Markov inequality, and Borel–Cantelli lemma,
ensures that

max
1≤j≤n

∣∣∣∣∣∣ 1

N
z∗j

 1

n

∑
i 6=j

ziz
∗
i + wIN

−1

zj − δ(−w)

∣∣∣∣∣∣ a.s.−→ 0.

Using successively A−1 −B−1 = A−1(B −A)B−1 for invertible A,B matrices and the fact that
‖( 1
n

∑
i 6=j ziz

∗
i + wIN )−1‖ < w−1 and lim supn max1≤i≤n 1

N ‖zi‖
2 = Mν,1 = 1 < ∞ a.s., we then

152



5.1. THEORY

have, for any positive sequence wn → w > 0,

max
1≤j≤n

∣∣∣∣∣∣ 1

N
z∗j

 1

n

∑
i 6=j

ziz
∗
i + wnIN

−1

zj −
1

N
z∗j

 1

n

∑
i 6=j

ziz
∗
i + wIN

−1

zj

∣∣∣∣∣∣
= |wn − w| max

1≤j≤n

∣∣∣∣∣∣ 1

N
z∗j

 1

n

∑
i 6=j

ziz
∗
i + wnIN

−1 1

n

∑
i 6=j

ziz
∗
i + wIN

−1

zj

∣∣∣∣∣∣
≤ |wn − w|

1

wnw
max

1≤j≤n
1

N
‖zj‖2

a.s.−→ 0

from which the convergence (5.4) unfolds.

Developing the expression of e+ then leads to e+ being the unique positive solution of the
equation

e+ =

∫
t

(γ̂(ρ0) + `)ρ0 + t
1−(1−ρ0)c

1−ρ0
+ce+

ν(dt)

which we write equivalently

1 =

∫
t

(γ̂(ρ0) + `)ρ0e+ + te+
1−(1−ρ0)c

1−ρ0
+ce+

ν(dt). (5.6)

Note that the right-hand side term is a decreasing function f of e+. From the definition of γ̂(ρ0),
we can in parallel write

1 =

∫
t

γ̂(ρ0)ρ0 × 1 + t×1
1−(1−ρ0)c

1−ρ0
+c×1

ν(dt) (5.7)

where we purposely made the terms 1 explicit. Now, since both integrals above equal 1, since
` > 0, and since f is decreasing, we must have e+ < 1. But this is in contradiction with ên ≥ 1
and the convergence (5.4).

If instead, ρ0 = 1, then from the definition of ên in (5.3), and since 1
N ‖zn‖

2 a.s.−→ Mν,1 = 1

(from limn max1≤i≤n | 1
N ‖zi‖

2 −Mν,1|
a.s.−→ 0), lim supn ‖ 1

n

∑n
i=1 ziz

∗
i ‖ < ∞ a.s. (from Assump-

tion 5.2–b. and (Bai and Silverstein, 1998)), and γ̂(1) = Mν,1 = 1, we have

ên
a.s.−→ Mν,1

Mν,1 + `
=

1

1 + `
< 1

again contradicting ên ≥ 1.

Hence, for all large n, there is no sequence of ρn for which d̂n(ρn) > γ̂(ρn) + ` infinitely often
and therefore d̂n(ρ) ≤ γ̂(ρ) + ` for all large n a.s., uniformly on ρ ∈ R̂ε.
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The same reasoning holds for d̂1(ρ) which can be proved greater than γ̂(ρ) − ` for all large
n uniformly on ρ ∈ R̂ε. Consequently, since ` > 0 is arbitrary, from the ordering of the d̂i(ρ),
we have proved that supρ∈R̂ε max1≤i≤n |d̂i(ρ)− γ̂(ρ)| a.s.−→ 0.

From there, we then find that

sup
ρ∈R̂ε

∥∥∥ŜN (ρ)− ĈN (ρ)
∥∥∥ ≤ ∥∥∥∥∥ 1

n

n∑
i=1

ziz
∗
i

∥∥∥∥∥ sup
ρ∈R̂ε

max
1≤i≤n

1− ρ
1− (1− ρ)cN

∣∣∣∣∣ d̂i(ρ)− γ̂(ρ)

γ̂(ρ)d̂i(ρ)

∣∣∣∣∣
a.s.−→ 0

where we used the fact that lim supn
∥∥ 1
n

∑n
i=1 ziz

∗
i

∥∥ <∞ a.s. from Assumption 5.2–b. and (Bai
and Silverstein, 1998), and the fact that 0 < ε < c−1.

5.1.3.2 Proof of Theorem 5.1.2

The proof of existence and uniqueness is given in (Chen et al., 2011). The proof of Theorem 5.1.2
unfolds similarly as the proof of Theorem 5.1.1 but it slightly more involved due to the difficulty
brought by the normalization of ČN (ρ) by its trace. For this reason, we first introduce some
preliminary results needed in the main core of the proof. Note also that, similar to the proof of
Theorem 5.1.1, we may immediately consider zi in place of xi in the expression of ČN (ρ) from
the independence of ČN (ρ) with respect to τ1, . . . , τn.

From now on, for the sake of readability, we discard the unnecessary indices ρ.

Some preliminaries We start by some considerations on γ̌(ρ) and FN (x) defined as the
unique positive solution to the equation in FN

FN = (1− ρ)
1

x

1

FN
+ ρ− cN (1− ρ). (5.8)

Note first that, for x > 0, (5.8) can be written as a second order polynomial whose solutions
have opposite signs, the positive one being explicitly given by

FN (x) =
1

2
(ρ− cN (1− ρ)) +

√
1

4
(ρ− cN (1− ρ))2 + (1− ρ)

1

x
.

The function FN (x) is decreasing with limx→0 FN (x) = ∞ and limx→∞ FN (x) = max{ρ −
cN (1 − ρ), 0}. As N → ∞, cN → c, and FN (x) → F (x) = F (x; ρ) defined in the statement of
the theorem which therefore satisfies F (x) = (1− ρ) 1

x
1

F (x) + ρ− c(1− ρ) and is decreasing with

limx→0 F (x) =∞ and limx→∞ F (x) = max{ρ− c(1− ρ), 0}. This implies in particular that the
function

G : x 7→
∫

t

xρ+ 1−ρ
(1−ρ)c+F (x) t

ν(dt) (5.9)

is decreasing with limx→0G(x) =∞ and limx→∞G(x) = 0. Hence the existence and uniqueness
of γ̌(ρ) as defined in the theorem.
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Now consider the function HN : x 7→ xFN (x) for x > 0 and ρ < 1. Then, for x > 0,

H ′N (x) =
1

2

A(x) +B(x)√(
ρ−(1−ρ)cN

2

)2
x2 + (1− ρ)x

where

A(x) = 2

(
ρ− (1− ρ)cN

2

)√(
ρ− (1− ρ)cN

2

)2

x2 + (1− ρ)x

B(x) = 1− ρ+ 2

(
ρ− (1− ρ)cN

2

)2

x.

Although A(x) may be negative, it is easily verified that B(x)2 = A(x)2 + (1− ρ)2 for all x ≥ 0.
Therefore, if ρ < 1, for each w0 > 0, there exists ε > 0 such that

lim inf
N

sup
w0−ε<x<w0+ε

H ′N (x) > 0 (5.10)

a relation which will be useful in the core of the proof of Theorem 5.1.2.

To prove continuity of γ̌, the same arguments as in the proof of Theorem 5.1.1 hold. That
is, take ρ0, ρ ∈ (0, 1] and denote γ̌0 = γ̌(ρ0) and γ̌ = γ̌(ρ). Then, by definition of γ̌(ρ), using
F (x) = (1− ρ) 1

x
1

F (x) + ρ− c(1− ρ),∫
t

γ̌0ρ0 + (1−ρ0)γ̌0F (γ̌0)
1−ρ0+ρ0γ̌0F (γ̌0) t

ν(dt)−
∫

t

γ̌ρ+ (1−ρ)γ̌F (γ̌)
1−ρ+ργ̌F (γ̌) t

ν(dt) = 0.

Setting these to a common denominator gives, after some calculus,

[(γ̌0 − γ̌)ρ0 + γ̌(ρ0 − ρ)]

∫
t

D(t)
ν(dt)

=
(1− ρ)(1− ρ0)(γ̌F (γ̌)− γ̌0F (γ̌0)) + (ρ0 − ρ)γ̌γ̌0F (γ̌)F (γ̌0)

(1− ρ+ ργ̌F (γ̌))(1− ρ0 + ρ0γ̌0F (γ̌0))

∫
t2

D(t)
ν(dt) (5.11)

where

D(t) =

(
γ̌0ρ0 +

(1− ρ0)γ̌0F (γ̌0)

1− ρ0 + ρ0γ̌0F (γ̌0)
t

)(
γ̌ρ+

(1− ρ)γ̌F (γ̌)

1− ρ+ ργ̌F (γ̌)
t

)
> 0.

Note now that γ̌(ρ) ≤ ρ−1 lim supN ‖CN‖ and, on a small neighborhood of ρ0 ∈ (0, 1], γ̌ = γ̌(ρ)
is uniformly away from zero. Indeed, if this were not the case, on some subsequence ρk → ρ0

such that γ̌(ρk)→ 0, the definition of γ̌ would imply

1 =

∫
t

γ̌(ρk)ρk + 1−ρ
(1−ρk)c+F (γ̌(ρk))

ν(dt)→ 0
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which is a contradiction. This implies as a consequence that F (γ̌) is bounded on a neighborhood
of ρ0. All this implies that all terms proportional to ρ0 − ρ in (5.11) tend to zero as ρ→ ρ0, so
that, in the limit ρ→ ρ0,

(γ̌0 − γ̌)ρ0

∫
tν(dt)

D(t)
+

(1− ρ)(1− ρ0)(γ̌0F (γ̌0)− γ̌F (γ̌))

(1− ρ+ ργ̌F (γ̌))(1− ρ0 + ρ0γ̌0F (γ̌0))

∫
t2ν(dt)

D(t)
→ 0.

But, since x 7→ xF (x) is increasing, γ̌0F (γ̌0) − γ̌F (γ̌) is of the same sign as γ̌0 − γ̌. As D(t) is
uniformly bounded for ρ in a small neighborhood of ρ0, this induces γ̌0− γ̌ → 0, which concludes
the proof of continuity.

Main proof Let us now work on the matrix B̌N . From the definition of ČN ,

B̌N =
1− ρ

1
N tr B̌N

1

n

n∑
i=1

ziz
∗
i

1
N z
∗
i B̌
−1
N zi

+ ρIN .

Denoting B̌(i) = B̌N − 1−ρ
1
N

tr B̌N

1
n

ziz
∗
i

1
N
z∗i B̌

−1
N zi

and using again (A + txx∗)−1x = A−1x/(1 +

tx∗A−1x), we have this time

1

N
z∗i B̌

−1
N zi =

1
N z
∗
i B̌
−1
(i) zi

1 + (1− ρ)cN
1
N
z∗i B̌

−1
(i)
zi

1
N
z∗i B̌

−1
N zi

1
1
N

tr B̌N

so that

1

N
z∗i B̌

−1
N zi =

1

N
z∗i B̌

−1
(i) zi

(
1− cN (1− ρ)

1
1
N tr B̌N

)
. (5.12)

From the positivity of both quadratic forms above, this implies in particular that 1
N tr B̌N −

c(1− ρ) > 0.

Replacing the quadratic forms 1
N z
∗
i B̌
−1
N zi in the expression of B̌N , we can now rewrite B̌N

as

B̌N =
1− ρ

1
N tr B̌N − cN (1− ρ)

1

n

n∑
i=1

ziz
∗
i

1
N z
∗
i B̌
−1
(i) zi

+ ρIN . (5.13)

Denote now ďi , 1
N z
∗
i B̌
−1
(i) zi and assume, up to relabeling, that ď1 ≤ . . . ≤ ďn for all n.

Then, with the definition of B̌(i), we have

ďn =
1

N
z∗n

(
1− ρ

1
N tr B̌N − cN (1− ρ)

1

n

n−1∑
i=1

ziz
∗
i

ďi
+ ρIN

)−1

zn

≤ 1

N
z∗n

(
1− ρ

1
N tr B̌N − cN (1− ρ)

1

n

n−1∑
i=1

ziz
∗
i

ďn
+ ρIN

)−1

zn

=
1
N tr B̌N − cN (1− ρ)

1− ρ
1

N
z∗n

(
1

n

n−1∑
i=1

ziz
∗
i

ďn
+ ρ

1
N tr B̌N − cN (1− ρ)

1− ρ
IN

)−1

zn
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where the inequality follows from the initial quadratic form being increasing when seen as a
function of ďi for each i. This can be equivalently written

1 ≤
1
N tr B̌N − cN (1− ρ)

1− ρ
1

N
z∗n

(
1

n

n−1∑
i=1

ziz
∗
i + ďnρ

1
N tr B̌N − cN (1− ρ)

1− ρ
IN

)−1

zn. (5.14)

At this point, it is convenient to express (5.14) as a function of FN defined in (5.8). From
(5.13), note indeed that

1

N
tr B̌N =

1− ρ
1
N tr B̌N − cN (1− ρ)

1

n

n∑
i=1

1
N ‖zi‖

2

ďi
+ ρ

so that, since 1
N tr B̌N − cN (1− ρ) > 0,

1

N
tr B̌N − cN (1− ρ) = FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1
 . (5.15)

Since FN is decreasing, the term on the right-hand side is decreasing in ďi for each i. Hence

FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1
 ≥ FN

ďn [ 1

n

n∑
i=1

1

N
‖zi‖2

]−1
 .

This implies, returning to (5.14)

1 ≤ 1

1− ρ
FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1


× 1

N
z∗n

 1

n

n−1∑
i=1

ziz
∗
i + ďn

ρ

1− ρ
FN

ďn [ 1

n

n∑
i=1

1

N
‖zi‖2

]−1
 IN

−1

zn. (5.16)

With this, similar to the proof of Theorem 5.1.1, we will now show via a contradiction
argument that supρ∈Řε max1≤i≤n |ďi(ρ) − γ̌(ρ)| a.s.−→ 0. Let us then assume that, on a sequence

{ρn}∞n=1, ďn = ďn(ρn) > γ̌(ρn) + ` = γ̌ + ` infinitely often, for some ` > 0, and let us consider
a subsequence on which ρn → ρ0 ∈ Řε and ďn(ρn) > γ̌(ρn) + `. Then, from the fact that
HN (x) = xFN (x) is increasing for x > 0, we have

1 ≤ 1

1− ρ
FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1


× 1

N
z∗n

 1

n

n−1∑
i=1

ziz
∗
i +

(γ̌ + `)ρ

1− ρ
FN

(γ̌ + `)

[
1

n

n∑
i=1

1

N
‖zi‖2

]−1
 IN

−1

zn. (5.17)

157



CHAPTER 5. ROBUST SHRINKAGE ESTIMATES OF SCATTER

Assume first that ρ0 < 1. We will deal with each factor involving FN on the right-
hand side of (5.17). We start with the right-most factor. Using max1≤i≤n{ 1

N ‖zi‖
2} a.s.−→ 1

since 1
N trCN = 1 for each N , γ̌(ρn) → γ̌(ρ0) (by continuity of γ̌) and also the fact that

limN inf{γ̌(ρ0)−η<x<γ̌(ρ0)+η}H ′N (x) > 0 for some η > 0 small (from (5.10)), from (3.5), we ob-
tain, with probability one

lim
n

1

N
z∗n

 1

n

n−1∑
i=1

ziz
∗
i +

(γ̌ + `)ρn
1− ρn

FN

(γ̌ + `)

[
1

n

n∑
i=1

1

N
‖zi‖2

]−1
 IN

−1

zn

< lim
n

1

N
z∗n

 1

n

n−1∑
i=1

ziz
∗
i +

γ̌ρn
1− ρn

FN

γ̌ [ 1

n

n∑
i=1

1

N
‖zi‖2

]−1
 IN

−1

zn (5.18)

= δ

where δ is the unique positive solution to

δ =

∫
t

ρ0γ̌(ρ0)F (γ̌(ρ0))
1−ρ0

+ t
1+cδ

ν(dt).

Note here the fundamental importance of having H ′N uniformly positive in a neighborhood of
γ̌(ρ0) to ensure the inequality sign in (5.18) remains strict when passing to the limit over n. We

will now show that e , F (γ̌(ρ0))
1−ρ0

δ = 1. Indeed, from the above equation,

e =

∫
t

ρ0γ̌(ρ0) + (1−ρ0)t
F (γ̌(ρ0))+(1−ρ0)ce

ν(dt)

or equivalently

1 =

∫
t

eρ0γ̌(ρ0) + (1−ρ0)te
F (γ̌(ρ0))+(1−ρ0)ce

ν(dt). (5.19)

The right-hand side of (5.19) is a decreasing function of e with limits ∞ as e → 0 and 0 as
e → ∞. As an equation of e, (5.19) therefore has a unique positive solution which happens to
be 1 by definition of γ̌(ρ0) in the theorem statement. Therefore, e = 1.

Now consider the leading factor involving FN in (5.17). We will show that this factor is
uniformly bounded. For this, proceeding similarly as above with ď1 instead of ďn, note that
(5.16), with ρ = ρn, becomes (this is obtained by reverting all inequality signs in the preceding
derivations)

1 ≥ 1

1− ρn
FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1


× 1

N
z∗1

 1

n

n−1∑
i=1

ziz
∗
i + ď1

ρn
1− ρn

FN

ď1

[
1

n

n∑
i=1

1

N
‖zi‖2

]−1
 IN

−1

z1. (5.20)
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Assume 1
n

∑n
i=1

1
N
‖zi‖2
ďi

→∞ on some subsequence (of probability one) over which maxi
1
N ‖zi‖

2 →
1. In particular ď1 → 0. Then, from the limiting values taken by FN and HN , the quadratic
form in (5.20) has positive limit (even infinite if c > 1) while the first term on the right-hand side

tends to infinity. This contradicts (5.20) altogether and therefore lim supn
1
n

∑n
i=1

1
N
‖zi‖2
ďi

<∞.

Since in addition ďi ≤ ρ−1
n

1
N ‖zi‖

2 (using ‖(A + ρnIN )−1‖ ≤ ρ−1
n for nonnegative Hermitian

A) is uniformly bounded a.s. for all large n, it follows that 1
n

∑n
i=1

1
N
‖zi‖2
ďi

is uniformly bounded

and bounded away from zero. This implies that FN

([
1
n

∑n
i=1

1
N
‖zi‖2
ďi

]−1
)

is uniformly bounded,

as desired.

Getting back to (5.17) with ρ = ρn, we can therefore extract a further subsequence on which
the latter converges to F∞ and ď1 converges to ď∞1 (ď∞1 can be zero) and we then have along
this subsequence

1 <
F∞

1− ρ0
δ =

F∞

F (γ̌(ρ0))
(5.21)

with the equality arising from F (γ̌(ρ0))δ = 1− ρ0.

Since FN is increasing,

FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1
 ≤ FN

ďi [ 1

n

n∑
i=1

1

N
‖zi‖2

]−1


so that, taking the limit over n, F∞ ≤ F (ď∞1 ) (set equal to ∞ if ď∞1 = 0). This further implies

F (γ̌(ρ0)) < F (ď∞1 )

so that, if ď∞1 > 0, inverting the above inequality, gives ď∞1 < γ̌(ρ0). Obviously, if ď∞1 = 0, this
is still true. Therefore ď1(ρn) < γ̌(ρ0) − `′ infinitely often for some `′ > 0 along the considered
subsequence.

Conserving the same subsequence and reproducing the same steps for the sequence ď1(ρn)
instead of ďn(ρn) (from (5.20), use ď1(ρn) < γ̌(ρn) − `′ infinitely often and the growth of HN

similar to before), we obtain this time

1 >
F∞

F (γ̌(ρ0))

which contradicts (5.21).
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Assume now ρ0 = 1. Starting from (5.14) with ρ = ρn and the expression of FN , we have

1 ≤ lim sup
N

FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1


× 1

N
z∗n

(1− ρn)
1

n

n−1∑
i=1

ziz
∗
i + ďnρnFN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1
 IN

−1

zn

≤ lim sup
N

FN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1


× 1

N
z∗n

(1− ρn)
1

n

n−1∑
i=1

ziz
∗
i + (γ̌ + `)ρnFN

[ 1

n

n∑
i=1

1
N ‖zi‖

2

ďi

]−1
 IN

−1

zn

=
1

γ̌(ρ0) + `

since ρn → ρ0 = 1, since 1
n

∑n
i=1

1
N
‖zi‖2
ďi

is uniformly away from zero (as shown previously), and

since lim supn ‖ 1
n

∑n
i=1 ziz

∗
i ‖ <∞ (Bai and Silverstein, 1998). But then, the fact that γ̌(ρ0) = 1

by definition along with the above relation leads to 1 ≤ 1/(1 + `), again a contradiction.

Therefore, gathering the results, our very initial hypothesis that there exists a subsequence
of n and ρn over which ďn(ρn) > γ(ρn) + ` infinitely often is invalid and we conclude that,
instead, supρ∈Řε ďn(ρ)− γ̌(ρ) ≤ ` for all large n a.s.

The same procedure works similarly when starting over with ď1 and assuming with the same
contradiction argument that ď1(ρ′n) < γ̌(ρ′n) − ` infinitely often on some sequence ρ′n. Taking
a subsequence over which ρ′n → ρ′0, this will imply this time that ďn(ρ′0) > γ̌(ρ′0) + `′ for some
`′ > 0 for all large n a.s. which we now know is invalid.

Gathering the results, we finally obtain

sup
ρ∈Řε

max
1≤i≤n

|ďi(ρ)− γ̌(ρ)| a.s.−→ 0 (5.22)

as desired. This implies from (5.15) that

sup
ρ∈Řε

∣∣∣∣ 1

N
tr B̌N − c(1− ρ)− F (γ̌(ρ))

∣∣∣∣ a.s.−→ 0

with infρ∈Řε F (γ̌(ρ)) > 0 so that, from (5.13), Assumption 5.2–b., and (Bai and Silverstein,
1998),

sup
ρ∈Řε

∥∥∥∥∥B̌N −
[

1− ρ
F (γ̌(ρ))γ̌(ρ)

1

n

n∑
i=1

ziz
∗
i + ρIN

]∥∥∥∥∥ a.s.−→ 0.
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Dividing the expression inside the norm by 1
N tr B̌N and taking the limit finally gives

sup
ρ∈Řε

∥∥∥∥∥ČN −
[

1− ρ
ρF (γ̌)γ̌ + (1− ρ)

1

n

n∑
i=1

ziz
∗
i +

ργ̌F (γ̌)

ργ̌F (γ̌) + (1− ρ)
IN

]∥∥∥∥∥ a.s.−→ 0

with γ̌ = γ̌(ρ), which is the expected result.

5.1.3.3 Proof of Corollary 5.2

We only give the proof for ĈN (ρ). Similar arguments hold for ČN (ρ). The joint eigen-
value convergence is an application of (Horn and Johnson, 1985, Theorem 4.3.7) on the spec-
tral norm convergence of Theorems 5.1.1 and 5.1.2. The norm boundedness results from
supρ∈R̂ε |‖ĈN (ρ)‖ − ‖ŜN (ρ)‖| a.s.−→ 0 and from lim supN supρ∈R̂ε ‖ŜN (ρ)‖ < ∞ by an applica-

tion of (Bai and Silverstein, 1998). The joint convergence of moments over R̂ε follows first from
the convergence m̂N (z; ρ) −mµ̂ρ(z)

a.s.−→ 0 for each z with =[z] > 0 and for each ρ ∈ R̂ε where

mN (z; ρ) = 1
N tr((ŜN (ρ)−zIN )−1) (as a consequence of Corollary 5.1). Since this holds for each

such z, the almost sure convergence is also valid uniformly on a countable set of z with =[z] > 0
having a limit point away from the union U over ρ ∈ R̂ε of the limiting spectra of ŜN (ρ), U

being a bounded set since lim supN supρ∈R̂ε ‖ŜN (ρ)‖ <∞. But then, since

(1− ρ)mN (z; ρ)

γ̂(ρ)(1− (1− ρ)c)
=

1

N
tr

( 1

n

n∑
i=1

ziz
∗
i +

ρ− z
1− ρ

γ̂(ρ)(1− (1− ρ)c)IN

)−1


is analytic in ẑ(ρ) = ρ−z
1−ρ γ̂(ρ)(1 − (1 − ρ)c) and bounded on all bounded regions away from U,

by Vitali’s convergence theorem (Titchmarsh, 1939), the convergence m̂N (z; ρ) − mµ̂ρ(z)
a.s.−→

0 is uniform on such bounded sets of (z, ρ). Using the Cauchy integrals
∮
zkmN (z; ρ)dz =

1
N tr(ŜN (ρ)`) and

∮
zkmµ̂ρ(z)dz = Mµ̂ρ,k for each k ∈ N on a contour that circles around (but

sufficiently away from) U implies supρ∈R̂ε |
1
N tr(ŜN (ρ)`) −Mµ̂ρ,`|

a.s.−→ 0, from which the result
unfolds.

5.1.3.4 Proof of Lemma 5.1

We start with ŜN . Remark first that, for ρ ∈ (max{0, 1− c−1}, 1],

ŜN (ρ)

Mµ̂ρ,1
=

(
1− ρ

1
γ̂(ρ)

1−ρ
1−(1−ρ)c + ρ

)
1

n

n∑
i=1

ziz
∗
i +

ρ
1

γ̂(ρ)
1−ρ

1−(1−ρ)c + ρ
IN .

Denoting

f̂ : (max{0, 1− c−1}, 1]→ (0, 1]

ρ 7→ ρ
1

γ̂(ρ)
1−ρ

1−(1−ρ)c + ρ
=

1
1

ργ̂(ρ)
1−ρ

1−(1−ρ)c + 1

161



CHAPTER 5. ROBUST SHRINKAGE ESTIMATES OF SCATTER

we have ŜN (ρ)
Mµ̂ρ,1

= (1 − f̂(ρ)) 1
n

∑n
i=1 ziz

∗
i + f̂(ρ)IN and it therefore suffices to show that f̂ is

continuously increasing and onto. The continuity of f̂ unfolds immediately from the continuity
of γ̂. By the definition of γ̂, the function ρ 7→ ργ̂(ρ) is increasing and nonnegative (since
ν is distinct from δ0 almost everywhere) while ρ 7→ 1−ρ

1−(1−ρ)c is decreasing and nonnegative.

Therefore, f̂ is increasing and nonnegative. It remains to show that f̂ is onto. Clearly f̂(1) = 1
since γ̂(1) = Mν,1 = 1. To handle the lower limit, let us rewrite

f̂(ρ) =
ργ̂(ρ)(1− (1− ρ)c)

1− ρ+ ργ̂(ρ)(1− (1− ρ)c)

which we aim to show approaches zero as ρ ↓ max{0, 1 − c−1}. For this, assume ρkγ̂(ρk)(1 −
(1− ρk)c) → ` ∈ (0,∞] for a sequence ρk ↓ max{0, 1− c−1}. Then, from the defining equation
of γ̂(ρ) in Theorem 5.1.1,

1 =

∫
(1− (1− ρk)c)t

ρkγ̂(ρk)(1− (1− ρk)c) + (1− ρk)(1− (1− ρk)c)t
ν(dt)

≤ (1− (1− ρk)c) lim supN ‖CN‖
ρkγ̂(ρk)(1− (1− ρk)c) + (1− ρk)(1− (1− ρk)c) lim supN ‖CN‖

→ limk(1− (1− ρk)c) lim supN ‖CN‖
`+ limk(1− ρk)(1− (1− ρk)c) lim supN ‖CN‖

< 1

since the limit is either zero (when c ≥ 1) or (1−c) lim supN ‖CN‖/(`+(1−c) lim supN ‖CN‖) < 1
(when c < 1). But this is a contradiction. This implies that ργ̂(ρ)(1 − (1 − ρ)c) → 0 and
consequently f̂(ρ)→ 0 as ρ ↓ max{0, 1− c−1}, which completes the proof for Ŝ(ρ).

Similarly, for Š(ρ), define

f̌ : (0, 1]→ (0, 1]

ρ 7→ Tρ
1− ρ+ Tρ

where we recall that Tρ = ργ̌(ρ)F (γ̌(ρ); ρ) and which is such that ŠN (ρ) = (1−f̌(ρ)) 1
n

∑n
i=1 ziz

∗
i +

f̌(ρ)IN . We will show that f̌ is continuously increasing and onto. The continuity arises from the
continuity of γ̌. We first show that γ̌ is onto. For the upper limit, f̌(1) = 1. For the lower limit,
assume Tρk → ` ∈ (0,∞] over a sequence ρk → 0, so that in particular Tρkρ

−1
k →∞. Then, by

the definition of γ̌(ρ) and since F (x; ρ) = (1− ρ) 1
xF (x;ρ) + ρ− c(1− ρ),

1 =

∫
1

γ̌(ρk)ρkt−1 + Tρkρ
−1
k

1−ρk
1−ρk+Tρk

ν(dt)→ 0

by dominated convergence (recall that ν has bounded support), which is a contradiction. This
implies f̌(ρ)→ 0 as ρ→ 0. It remains to show that f̌ is increasing. For this, we will rewrite the
equation defining γ̌(ρ) as a function of f̌(ρ). Using again F (x; ρ) = (1− ρ) 1

xF (x;ρ) + ρ− c(1− ρ),
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we first have, for each t ≥ 0,

γ̌(ρ)ρ+
1− ρ

(1− ρ)c+ F (γ̌(ρ); ρ)
t = γ̌(ρ)ρ+

1− ρ
(1− ρ) 1

γ̌(ρ)F (γ̌(ρ);ρ) + ρ
t

= γ̌(ρ)ρ+
(1− ρ)γ̌(ρ)F (γ̌(ρ); ρ)

1− ρ+ ργ̌(ρ)F (γ̌(ρ); ρ)
t

=
ργ̌(ρ)F (γ̌(ρ); ρ)

F (γ̌(ρ); ρ)
+

1− ρ
ρ

f̌(ρ)t

=
1

F (γ̌(ρ); ρ)

(1− ρ)f̌(ρ)

1− f̌(ρ)
+

1− ρ
ρ

f̌(ρ)t

where in the last equality we used (1 − ρ)f̌(ρ) = (1 − f̌(ρ))ργ̌(ρ)F (γ̌(ρ); ρ). We now work on
F (γ̌(ρ); ρ). By its implicit definition,

1

F (γ̌(ρ); ρ)
=

1

(1− ρ) 1
γ̌(ρ)F (γ̌(ρ);ρ) + ρ− c(1− ρ)

=
ργ̌(ρ)F (γ̌(ρ); ρ)

ρ(1− ρ) + ρ2γ̌(ρ)F (γ̌(ρ); ρ)− c(1− ρ)ργ̌(ρ)F (γ̌(ρ); ρ)

=
(1− ρ)f̌(ρ)

1− f̌(ρ)

1

ρ(1− ρ) + ρ (1−ρ)f̌(ρ)

1−f̌(ρ)
− c(1− ρ) (1−ρ)f̌(ρ)

1−f̌(ρ)

=
f̌(ρ)

ρ− c(1− ρ)f̌(ρ)

where the last equation follows from standard algebraic simplification. Note here in particular
that, by positivity of F (x; ρ) for x > 0, ρ− c(1− ρ)f̌(ρ) > 0. Plugging the two results above in
the defining equation for γ̌(ρ), we obtain

1 =

∫
t

f̌(ρ)

ρ−c(1−ρ)f̌(ρ)

(1−ρ)f̌(ρ)

ρ(1−f̌(ρ))
+ 1−ρ

ρ f̌(ρ)t
ν(dt). (5.23)

Now assume that f̌(ρ) is decreasing on an open neighborhood of ρ0 ∈ (0, 1). Then ρ 7→ 1−ρ
ρ f̌(ρ)

and ρ 7→ (1−ρ)f̌(ρ)

ρ(1−f̌(ρ))
are also decreasing. This follows from the fact that, on this neighborhood,

ρ 7→ (1−ρ)/ρ = 1/ρ−1, ρ 7→ 1−ρ, and ρ 7→ f̌(ρ)/(1− f̌(ρ)) = −1+1/(1− f̌(ρ)) are all positive
decreasing functions of ρ. Finally,

f̌(ρ)

ρ− c(1− ρ) ˇf(ρ)
=

1
ρ

f̌(ρ)
+ c(ρ− 1)

which is also positive decreasing, since ρ 7→ ρ/f̌(ρ) and ρ 7→ c(ρ − 1) are both increasing and
of positive sum. But then, the right-hand side of (5.23) is increasing on a neighborhood of ρ0

while being constant equal to one, which is a contradiction. Therefore, our initial assumption
that f̌(ρ) is locally decreasing around ρ0 does not hold, and therefore f̌(ρ) is increasing there
and thus increasing on (0, 1]. This completes the proof.
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5.1.3.5 Proof of Proposition 5.1.1

We only prove the result for ĈN , the treatment for ČN being the same. First observe that,

denoting AN (ρ̂) = ĈN (ρ̂)
1
N

tr ĈN (ρ̂)
− ŜN (ρ̂)

Mµ̂ρ̂,1
,

sup
ρ̂∈R̂ε

∣∣∣∣∣∣D̂N (ρ̂)− 1

N
tr

( ŜN (ρ̂)

Mµ̂ρ̂,1
− CN

)2
∣∣∣∣∣∣

= sup
ρ̂∈R̂ε

∣∣∣∣∣ 1

N
tr

(
AN (ρ̂)

[
ĈN (ρ̂)

1
N tr ĈN (ρ̂)

+
ŜN (ρ̂)

Mµ̂ρ̂,1
− 2CN

])∣∣∣∣∣
≤ sup

ρ̂∈R̂ε

{
2

∣∣∣∣ 1

N
tr(AN (ρ̂)CN )

∣∣∣∣+

∣∣∣∣∣ 1

N
tr

(
AN (ρ̂)

[
ĈN (ρ̂)

1
N tr ĈN (ρ̂)

+
ŜN (ρ̂)

Mµ̂ρ̂,1

])∣∣∣∣∣
}

≤ sup
ρ̂∈R̂ε
‖AN (ρ̂)‖ sup

ρ̂∈R̂ε

(
3 +

1
N tr ŜN (ρ̂)

Mµ̂ρ̂,1

)

where we used | tr(AB)| ≤ trA‖B‖ for nonnegative definite A along with 1
N trCN = 1. Now,

sup
ρ̂∈R̂ε
‖AN (ρ̂)‖ ≤

supρ̂∈R̂εMµ̂ρ̂,1 supρ̂∈R̂ε ‖ĈN (ρ̂)− ŜN (ρ̂)‖

inf ρ̂∈R̂ε
1
N tr ĈN (ρ̂)Mµ̂ρ̂,1

+
supρ̂∈R̂ε ‖ŜN (ρ̂)‖ supρ̂∈R̂ε

∣∣∣ 1
N tr ĈN (ρ̂)−Mµ̂ρ̂,1

∣∣∣
inf ρ̂∈R̂εMµ̂ρ̂,1

1
N tr

(
ĈN (ρ̂)

) .

Since Mµ̂ρ̂,1 = 1
γ̂(ρ̂)

1−ρ̂
1−(1−ρ̂)c is uniformly bounded across ρ̂ ∈ R̂ε, this finally implies from Theo-

rem 5.1.1 and Corollary 5.2 that both right-hand side terms tend almost surely to zero in the
large N,n limit (in particular since the denominators are bounded away from zero), and finally

sup
ρ̂∈R̂ε

∣∣∣∣∣∣D̂N (ρ̂)− 1

N
tr

( ŜN (ρ̂)

Mµ̂ρ̂,1
− CN

)2
∣∣∣∣∣∣ a.s.−→ 0.

Moreover, from Lemma 5.1, for each ρ̂ ∈ (max{0, 1− c−1}, 1],

1

N
tr

( ŜN (ρ̂)

Mµ̂ρ̂,1
− CN

)2
 =

1

N
tr
[(
S̄N (ρ)− CN

)2]
with ρ = ρ̂( 1

γ̂(ρ̂)
1−ρ̂

1−(1−ρ̂)c + ρ̂)−1 ∈ (0, 1] and with S̄N = (1 − ρ) 1
n

∑n
i=1 ziz

∗
i + ρIN . Also, using

1
N tr

(
1
n

∑n
i=1 ziz

∗
i

) a.s.−→ Mν,1 = 1, 1
N tr

[(
1
n

∑n
i=1 ziz

∗
i

)2] a.s.−→ Mν,2 + c, and basic arithmetic

derivations

sup
ρ∈[0,1]

∣∣∣∣ 1

N
tr
[(
S̄N (ρ)− CN

)2]− D̄(ρ)

∣∣∣∣ a.s.−→ 0
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where

D̄(ρ) = (Mν,2 − 1)ρ2 + c(1− ρ)2.

Note importantly that, from the Cauchy–Schwarz inequality, 1 = M2
ν,1 ≤ Mν,2 and therefore

Mν,2 − 1 ≥ 0 with equality if and only if ν = δa for some a ≥ 0 almost everywhere. From the
above convergence, we then have, for any ε > 0 small

sup
ρ̂∈R̂ε

∣∣∣D̂N (ρ̂)− D̄(ρ)
∣∣∣ a.s.−→ 0. (5.24)

Now, call ρ? the minimizer of D̄(ρ) over [0, 1]. It is easily verified that ρ? ∈ (0, 1] is as defined
in the theorem. Also denote ρ̂? the unique value such that ρ? = ρ̂?( 1

γ̂(ρ̂?)
1−ρ̂?

1−(1−ρ̂?)c + ρ̂?)−1, which

is well defined according to Lemma 5.1. Call also ρ̂◦N the minimizer of D̂N (ρ̂) over R̂ε and

ρ◦N = ρ̂◦N ( 1
γ̂(ρ̂◦N )

1−ρ̂◦N
1−(1−ρ̂◦N )c + ρ̂◦N )−1. If ε is as given in the theorem statement, ρ̂? ∈ R̂ε and then

D̄(ρ?) ≤ D̄(ρ◦N )

D̂N (ρ̂◦N ) ≤ D̂N (ρ̂?)

D̂N (ρ̂?)− D̄(ρ?)
a.s.−→ 0

D̂N (ρ̂◦N )− D̄(ρ◦N )
a.s.−→ 0

the last two equations following from (5.24) (the joint convergence in (5.24) is fundamental since
ρ◦N and ρ̂◦N are not constant with N). These four relations together ensure that

D̂N (ρ̂◦N )− D̄(ρ?)
a.s.−→ 0

D̂N (ρ̂◦N )− D̂N (ρ̂?)
a.s.−→ 0.

These and the fact that D̄(ρ?) = D? as defined in the theorem statement conclude the proof of
the first part of the theorem.

For the second part, denoting ρN = ρ̂N ( 1
γ̂(ρ̂N )

1−ρ̂N
1−(1−ρ̂N )c + ρ̂N )−1, we have that D̄(ρN ) −

D̄(ρ?)
a.s.−→ 0 by continuity of D̄ since ρN

a.s.−→ ρ? and therefore, since D̂N (ρ̂N )− D̄(ρN )
a.s.−→ 0 by

(5.24), D̂N (ρ̂N )− D̄(ρ?)
a.s.−→ 0 which is the expected result.

5.1.3.6 Proof of Proposition 5.1.2

We first show the following identities

1

n
tr

( 1

n

n∑
i=1

xix
∗
i

1
N ‖xi‖2

)2
− cN a.s.−→Mν,2 (5.25)

sup
ρ∈Řε

∣∣∣∣∣Tρ − ρ 1

n

n∑
i=1

x∗i ČN (ρ)−1xi
‖xi‖2

∣∣∣∣∣ a.s.−→ 0. (5.26)
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Equation (5.25) unfolds from 1
n tr

[
( 1
n

∑n
i=1 ziz

∗
i )2
] a.s.−→ Mν,2 + cM2

ν,1 = Mν,2 + c and from

max1≤i≤n | 1
N ‖zi‖

2 − 1| a.s.−→ 0. As for Equation (5.26), it is a consequence of the elements of the
proof of Theorem 5.1.2. Indeed, from (5.12),

ρ
1

N
x∗i ČN (ρ)−1xi = ρ

1

N
x∗i B̌(i)(ρ)−1xi

(
1

N
tr B̌N (ρ)− cN (1− ρ)

)
where B̌(i)(ρ) = B̌N (ρ)− 1

n
1−ρ

1
N

tr B̌N

xix
∗
i

1
N
x∗i B̌N (ρ)−1xi

, which according to (5.15) further reads

ρ
1

N
x∗i ČN (ρ)−1xi = ρ

1

N
x∗i B̌(i)(ρ)−1xiFN

[ 1

n

n∑
i=1

‖xi‖2
1
N x
∗
i B̌(i)(ρ)−1xi

]−1

; ρ


with FN (x; ρ) the same function as F but with cN in place of c (recall that in (5.15), ďi =
1
N z
∗
i B̌(i)(ρ)−1zi). Since the τi normalization is irrelevant in the expression above, xi can be

replaced by zi. Using the convergence result (5.22) and the continuity and boundedness of
x 7→ xFN (x), we then have

sup
ρ∈Řε

max
1≤i≤n

∣∣∣∣ρ 1

N
z∗i ČN (ρ)−1zi − ργ̌(ρ)F (γ̌(ρ); ρ)

∣∣∣∣ a.s.−→ 0.

As a consequence,

sup
ρ∈Řε

∣∣∣∣∣ρ 1

n

n∑
i=1

1

N
z∗i ČN (ρ)−1zi − ργ̌(ρ)F (γ̌(ρ); ρ)

∣∣∣∣∣
≤ sup

ρ∈Řε
max

1≤i≤n

∣∣∣∣ρ 1

N
z∗i ČN (ρ)−1zi − ργ̌(ρ)F (γ̌(ρ); ρ)

∣∣∣∣
a.s.−→ 0.

This, and the fact that max1≤i≤n | 1
N ‖zi‖

2 − 1| a.s.−→ 0 gives the result.

It remains to prove that ρ̂N
a.s.−→ ρ̂? and ρ̌N

a.s.−→ ρ̌?. We only prove the first convergence, the
second one unfolding along the same lines. First observe from Corollary 5.2 that the defining
equation of ρ̂N implies

f̂(ρ̂N ) =
c

Mν,2 + c− 1
+ `n

for some sequence `n
a.s.−→ 0, with f̂ : x 7→ x( 1

γ̂(x)
1−x

1−(1−x)c +x))−1. Since f̂ is a one-to-one growing

map from (max{0, 1 − c−1}, 1] onto (0, 1] (Lemma 5.1) and c
Mν,2+c−1 ∈ (0, 1), such a ρ̂N exists

(not necessarily uniquely though) for all large N almost surely. Taking such a ρN , by definition
of ρ̂?, we further have

f̂(ρ̂N )− f̂(ρ̂?)
a.s.−→ 0

which, by the continuous growth of f̂ , ensures that ρ̂N
a.s.−→ ρ̂?. The convergence D̂N (ρ̂N )

a.s.−→ D?

is then an application of Proposition 5.1.1.
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5.2 Application to portfolio optimization

In terms of applications, Proposition 5.1.2 allows for the design of covariance matrix estimators,
with minimal Frobenius distance to the population covariance matrix for impulsive i.i.d. samples
but in the absence of outliers, and having robustness properties in the presence of outliers. This is
fundamental to those scientific fields where the covariance matrix is the object of central interest.
More generally though, Theorems 5.1.1 and 5.1.2 can be used to design optimal covariance
matrix estimators under other metrics than the Frobenius norm. This is in particular the case
in applications to finance where a possible target consists in the minimization of the risk induced
by portfolios built upon such covariance matrix estimates.

Precisely, this section aims at designing a covariance estimation technique to optimize large
portfolios based on impulsive market return observations and under the assumption that the
number of observed samples is of the same order as the number of assets in the portfolio. The
covariance estimation shall rely on Abramovich–Pascal’s estimator ĈN (ρ). Since the results
provided in this section mimic closely those of Section 5.1 for a portfolio-based metric instead
of the Frobenius norm minimization, we omit most of proofs here or only point out the minor
differences in the present setting if any.

We shall first characterize the out-of-sample performance of minimum variance portfolios
based on ĈN (ρ) by analyzing the convergence of the achieved realized risk as N,n → ∞, with
cN = N/n→ c ∈ (0,∞). We subsequently provide a consistent estimator of the realized portfolio
risk that is defined only in terms of the observed market returns. Minimizing this estimated
risk then brings a minimum risk covariance matrix estimate. Performance comparisons versus
previously proposed schemes on artificial and actual stock returns from the Hang Seng Index
(HSI) will show a competitive advantage of the new estimator.

5.2.1 System model and results

Consider the successive and independent returns x1, . . . , xn of N financial assets to be modelled
as

xi = µ+
√
τiC

1
2
Nwi (5.27)

where µ ∈ RN is the mean vector of the asset returns, τi > 0 is an impulsiveness scalar,
CN ∈ RN×N is a positive definite covariance matrix of the returns, and wi ∈ RN is a zero
mean unitarily invariant norm ‖wi‖2 = N random vector independent of τi. Moreover denote

zi = C
1
2
Nwi. This statistical modelling of impulsive financial stock returns goes in line with

previous works, as in e.g., (Ruppert, 2010). Although it is not practically tenable to assume
independent xi’s, this assumption leads to tractable design solutions and is a commonly used
assumption (Ledoit and Wolf, 2003).

Let now h ∈ RN denote the portfolio selection, i.e., the vector of asset holdings in units of cur-
rency normalized by the total outstanding wealth, such that h∗1N = 1 (with 1N = [1, . . . , 1]∗ ∈
RN ). Then the portfolio variance (or risk) over the investment period of interest is given by
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σ2(h) = h∗CNh. Accordingly, the global minimum variance portfolio (GMVP) selection problem
we ought to solve can be formulated as

min
h
σ2(h), such that h∗1N = 1. (5.28)

The solution to (5.28) is explicitly given by

hN =
C−1
N 1N

1∗NC
−1
N 1N

and the corresponding portfolio risk by

σ2(hN ) =
1

1∗NC
−1
N 1N

. (5.29)

Here, (5.29) represents the theoretical minimum portfolio risk bound achievable upon know-
ing the population covariance matrix CN exactly. In practice, CN being unknown, one resorts
to a plug-in estimator by substituting any valid estimator for CN in (5.29). We propose here to
consider such a plug-in estimator to be the Abramovich–Pascal estimator ĈN (ρ) for the centered
data x̃i = xi − 1

n

∑n
j=1 xj , i.e., ĈN (ρ) is defined, for each ρ ∈ (max{0, 1− c−1

N }, 1] as the unique

solution to4

ĈN (ρ) = (1− ρ)
1

n

n∑
i=1

x̃ix̃
∗
i

1
N x̃
∗
i Ĉ
−1
N (ρ)x̃i

+ ρIN . (5.30)

The corresponding estimated GMVP selection is thus

ĥN (ρ) =
Ĉ−1
N (ρ)1N

1∗N Ĉ
−1
N (ρ)1N

with realized portfolio risk

σ2(ĥN (ρ)) =
1∗N Ĉ

−1
N (ρ)CN Ĉ

−1
N (ρ)1N

(1TN Ĉ
−1
N (ρ)1N )2

. (5.31)

Our goal is to select ρ to be such that (5.31) reaches a minimum. This is not obvious as
the dependence over CN requires to first and foremost determine a consistent estimator for the
non-observable σ2(ĥN (ρ)) (it can be shown that substituting ĈN (ρ) for CN in this expression
yields a so-called in-sample risk which tends to underestimate the realized portfolio risk, leading
to overly-optimistic investment decisions, as shown in (Rubio et al., 2012)). To this end, we first
derive a deterministic equivalent for (5.31) from which the consistent estimator will be deduced.

Since the model for x̃i differs from that considered in Section 5.1, we first need some addi-
tional technical assumptions which we gather along with classical hypotheses below.

4Since the xi are linearly independent with probability one, ĈN (ρ) remains well defined.
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Assumption 5.3. 1. As N,n→∞, N/n = cN → c ∈ (0,∞);

2. The τi’s are i.i.d., and E[τ1], E[ 1
τ1

] <∞;5

3. Denoting λ1 ≤ . . . ≤ λN the ordered eigenvalues of CN , νN , 1
N

∑N
i=1 δλi satisfies νN → ν

weakly with ν 6= δ0 almost everywhere; moreover, lim supN λN <∞.

We will also write k(ρ) = 1−ρ
1−(1−ρ)c for short and define α as the unique positive solution to

α =
1

n
tr

[
CN

(
k(ρ)

(γ + αk(ρ))
CN + ρIN

)−1
]

with γ the unique positive solution to

1 =

∫
t

γρ+ (1− ρ)t
ν(dt).

We also define

β =
1

n
tr

[
C2
N

(
k(ρ)

(γ + αk(ρ))
CN + ρIN

)−2
]
.

The following theorem is our main technical result.

Theorem 5.2.1. Let Assumption 5.3 hold. For ε ∈ (0,min{1, c−1}), define R̂ε = [ε+max{0, 1−
c−1}, 1]. Then,

sup
ρ∈R̂ε

∣∣∣σ2(ĥN (ρ))− σ̄2(ĥN (ρ))
∣∣∣ a.s.−→ 0

where

σ̄2(ĥN (ρ)) ,
1

1− βk(ρ)2

(γ+αk(ρ))2

1∗N
(

k(ρ)
(γ+αk(ρ))CN + ρIN

)−1
CN

(
k(ρ)

(γ+αk(ρ))CN + ρIN

)−1
1N(

1∗N

(
k(ρ)

(γ+αk(ρ))CN + ρIN

)−1
1N

)2

Proof. The proof of Theorem 5.2.1 draws on the one hand from the asymptotic properties of
ĈN (ρ) for the centered variables x̃i and on the other hand from the work (Rubio et al., 2012)
where the same result is derive but for a sample covariance matrix based shrinkage model. The
main difficulty here lies precisely in the former aspect which brings some critical differences
versus Section 5.1. In particular, Theorem 5.1.1 is not expected to hold any longer for lack of
control of the x̃i terms. Nonetheless, the difference between bilinear forms or linear statistics
of ĈN (ρ) and ŜN (ρ) still remain, which are sufficient for the purpose of the present result. We
do not provide any further detail on this technical aspect. As for the latter aspect, it presents
little difficulty as it only requires to adapt (Rubio et al., 2012) to ŜN (ρ) instead of the plain
Ledoit–Wolf shrinkage estimator.

5Note that, unlike Section 5.1 where the τi’s had no incidence, they do play a role here due to the structure of
x̃i, which can be shown asymptotically negligible under these assumptions.
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Along the same lines as in (Rubio et al., 2012), the deterministic equivalent provided in
Theorem 5.2.1 will now be broken down into individual pieces which can be each estimated
consistently from the xi’s. This estimator will then further allow for an optimal tuning of the
shrinkage parameter ρ for GMVP performance. Let us then provide the various estimators
necessary to approximate consistently σ̄2(ĥN (ρ)).

Denoting κ =
∫
tν(dt), we start with the following estimators of γ/κ and α/κ, where we use

the subscript “sc” for “scaled”. The proof of these results follows easily from the elements of
Section 5.1 and is omitted.

Lemma 5.2. As N,n→∞ with cN → c ∈ (0,∞),

sup
ρ∈R̂ε
|γ̂sc − γ/κ|

a.s.−→ 0

sup
ρ∈R̂ε
|α̂sc − α/κ|

a.s.−→ 0,

where

k̂(ρ) =
1− ρ

1− (1− ρ)cN

γ̂sc =
1

1− (1− ρ)cN

1

|B|
∑
i∈B

x̃∗i Ĉ
−1
N (ρ)x̃i
‖x̃i‖2

α̂sc =
γ̂sc

1
N tr

[
IN − ρĈ−1

N (ρ)
]

k̂(ρ)
(
n
N −

1
N tr

[
IN − ρĈ−1

N (ρ)
])

and B , {t : ‖x̃t‖2 > ξ} with ξ > 0 sufficiently small.

From Lemma 5.2 and similar derivations as in (Rubio et al., 2012), we then obtain the
following estimator.

Theorem 5.2.2. As N,n→∞ with cN → c ∈ (0,∞),

sup
ρ∈R̂ε

∣∣∣∣σ̂2
sc(ĥN (ρ))− 1

κ
σ2(ĥN (ρ))

∣∣∣∣ a.s.−→ 0 (5.32)

where

σ̂2
sc(ĥN (ρ)) =

(γ̂sc + α̂sck̂(ρ))2

k̂(ρ)γ̂sc

1∗NĈ
−1
N (ρ)

(
ĈN (ρ)− ρIN

)
Ĉ−1
N (ρ)1N

(1∗N Ĉ
−1
N (ρ)1N )2

.

Note now that, since κ is independent of ρ, if ρ minimizes σ2(ĥN (ρ)) then it also minimizes
σ2(ĥN (ρ))/κ. Thus it follows, with the same arguments as in Section 4.1 that

|σ2(ĥN (ρ̂?))− σ2(ĥN (ρ?))| a.s.−→ 0
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where ρ̂? is the minimizer of σ̂2
sc(ĥN (ρ)) and ρ? that of σ2(ĥN (ρ)). The problem of obtaining the

best asset allocation, as measured by the minimum realized portfolio risk, thus asymptotically
reduces to minimizing σ̂2

sc(ĥN (ρ)) with regard to ρ, which may be performed by a numerical
search.

In summary, given n past return observations of N considered market assets, we propose the
following optimized portfolio

ĥ?N =
ĈN (ρ̂?)−11N

1∗N ĈN (ρ̂?)−11N
.

5.2.2 Simulation results

We provide here simulation results both for synthetic and real market data to compare the
performances of ĥ?N versus competing methods. The latter are composed of: (i) the original
Ledoit–Wolf estimator consisting in replacing CN by (1−ρ) 1

n

∑n
i=1 x̃ix̃

∗
i +ρIN in the expression

of hN with ρ taken to minimize the expected Frobenius norm error with CN , (ii) the Rubio
estimator taken from (Rubio et al., 2012) consisting in the same estimator but for ρ taken to
minimize the portfolio risk, and (iii) the estimator consisting in replacing CN by ĈN (ρ) in the
expression of hN with ρ minimizing the expected Frobenius norm of ĈN (ρ)−CN , which we refer
to as the Abramovich–Pascal estimate.

The synthetic data are i.i.d. multivariate Student-T , i.e., with τi = d/χ2
d in distribution with

d = 3, N = 200. We assume the population covariance matrix CN to be based on a one-factor
return structure, see e.g., (DeMiguel et al., 2009), CN = bb∗σ2 + Σ, where σ = 0.16, b ∈ RN
with uniform random entries in [0.5, 1.5], and Σ diagonal with uniform independent entries
supported in [0.1, 0.3]. The results are provided in Figure 5.6 which illustrates the performance
gain achieved by our proposed estimator.

For real world data, we consider the stocks conforming the HSI. Precisely, we use the
dividend-adjusted daily closing prices downloaded from the Yahoo Finance database to ob-
tain the continuously compounded (logarithmic) returns for the 45 constituents of the HSI over
L = 736 working days from January 3rd, 2011 to December 31st, 2013 (excluding the weekends
and public holidays). As conventionally done in the financial literature, the out-of-sample evalu-
ation is defined in terms of a rolling window method. At a particular day t, we use the previous
n days (i.e., t− n to t− 1) as the training window for covariance estimation and construct and
compare the performance of the portfolio selection ĥ?N against the aforementioned competing
approaches. We then evaluate the various portfolio returns achieved in the following 20 days.
Next the window is shifted 20 days forward and the portfolio returns for another 20 days are
computed. This procedure is repeated until exhausting the data. The realized risk is computed
conventionally as the annualized sample standard deviation of the corresponding GMVP re-
turns. In our tests, different training window lengths are considered. Figure 5.7 provides the
results. Again, it is observed that the proposed ĥ?N achieves the smallest realized risk, seemingly
uniformly so over all window sizes. As opposed to synthetic data though, observe that for long
windows, the performance degrades presumably due to a loss of stationarity in the long run.
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Figure 5.6: Average realized portfolio risk of different covariance estimators in the GMVP
framework using synthetic data.
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Figure 5.7: Realized portfolio risks achieved out-of-sample over 736 days of HSI real market data
(from Jan. 3rd, 2011 to Dec. 31st, 2013) by a GMVP implemented using different covariance
estimators.
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Chapter 6

Second-order statistics

We have seen that robust estimators of scatter ĈN , be they Maronna’s or robust shrinkage esti-
mators, can be straightforwardly substituted by tractable random matrices, that we generically
denote ŜN , to derive new consistent robust estimators of functionals of the population scatter
or covariance matrix. This enfolds from the sufficiently strong convergence in spectral norm
‖ĈN − ŜN‖

a.s.−→ 0 along with identities relating ŜN to the sought for functional.

Nonetheless, if the replacement of ĈN by ŜN helps in deriving consistent estimates, the
convergence ‖ĈN − ŜN‖

a.s.−→ 0 is in general not sufficient to assess the performance of the
estimator for large but finite N,n. Indeed, when second order results such as central limit
theorems need be established, say at rate N−

1
2 , to proceed similarly to the replacement of ĈN

by ŜN in the analysis, one would ideally demand that ‖ĈN−ŜN‖ = o(N−
1
2 ); but such a result, we

believe, unfortunately does not hold. This constitutes a severe limitation in the exploitation of
robust estimators as their performance as well as optimal fine-tuning often rely on second order
performance. Concretely, for the robust GMUSIC algorithm derived in Section 4.2, one may
naturally ask which choice of the u function is optimal to minimize the variance of (consistent)
power and angle estimates. This question remains unanswered to this point for lack of better
theoretical results.

The main purpose of this chapter is twofold. From a technical aspect, taking the robust
shrinkage estimator ĈN (ρ) studied in Chapter 5 as an example, we first show that, although
the convergence ‖ĈN (ρ)− ŜN (ρ)‖ a.s.−→ 0 (from Theorem 5.1.1) may not be extensible to a rate
O(N1−ε), one has the bilinear form convergence N1−εa∗(ĈkN (ρ)− ŜkN (ρ))b

a.s.−→ 0 for each ε > 0,

each a, b ∈ CN of unit norm, and each k ∈ Z. This result implies that, if
√
Na∗ŜkN (ρ)b satisfies

a central limit theorem, then so does
√
Na∗ĈkN (ρ)b with the same limiting variance. This result

is of fundamental importance to any statistical application based on such quadratic forms.
Our second contribution is to exploit this result for the specific problem of signal detection
in impulsive noise environments via the generalized likelihood-ratio test, particularly suited
for radar signals detection under elliptical noise (Conte et al., 1995; Pascal et al., 2013). In
this context, we determine the shrinkage parameter ρ which minimizes the probability of false
detections and provide an empirical consistent estimate for this parameter, thus improving
significantly over traditional sample covariance matrix-based estimators.
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6.1 CLT for quadratic forms

We start with the theoretical part of the work. We first recall the notations and assumptions
considered in this chapter.

Let N,n ∈ N, cN , N/n, and ρ ∈ (max{0, 1 − c−1
N }, 1]. Let also x1, . . . , xn ∈ CN be n

independent random vectors defined by the following assumptions.

Assumption 6.1 (Data vectors). For i ∈ {1, . . . , n}, xi =
√
τiANwi =

√
τizi, where

• wi ∈ CN is Gaussian with zero mean and covariance IN , independent across i;

• ANA∗N , CN ∈ CN×N is such that νN , 1
N

∑N
i=1 δλi(CN ) → ν weakly, lim supN ‖CN‖ <

∞, and 1
N trCN = 1;

• τi > 0 are random or deterministic scalars.

Under Assumption 6.1, letting τi = τ̃i/‖wi‖ for some τ̃i independent of wi, xi belongs to the
class of elliptically distributed random vectors. Note that the normalization 1

N trCN = 1 is not
a restricting constraint since the scalars τi may absorb any other normalization.

In this section, we shall consider the Abramovich–Pascal robust shrinkage estimator of scatter
ĈN (ρ), that we recall is defined as the unique solution to

ĈN (ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
N xiĈ

−1
N (ρ)xi

+ ρIN .

Remember from the previous chapter that, for any κ > 0 small, defining Rκ , [κ+ max{0, 1−
c−1}, 1], as N,n→∞ with cN = N/n→ c ∈ (0,∞),

sup
ρ∈Rκ

∥∥∥ĈN (ρ)− ŜN (ρ)
∥∥∥ a.s.−→ 0

where

ŜN (ρ) =
1

γN (ρ)

1− ρ
1− (1− ρ)cN

1

n

n∑
i=1

ziz
∗
i + ρIN

with γN (ρ) the unique solution to

1 =

∫
t

γN (ρ)ρ+ (1− ρ)t
νN (dt).

A careful analysis of the proof of Theorem 5.1.1 (which is performed in Section 6.1.1) reveals
that the above convergence can be refined as

sup
ρ∈Rκ

N
1
2
−ε
∥∥∥ĈN (ρ)− ŜN (ρ)

∥∥∥ a.s.−→ 0 (6.1)
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for each ε > 0. This suggests that (well-behaved) functionals of ĈN (ρ) fluctuating at a slower

speed than N−
1
2

+ε for some ε > 0 follow the same statistics as the same functionals with
ŜN (ρ) in place of ĈN (ρ). However, this result is quite weak as most limiting theorems (starting
with the classical central limit theorems for independent scalar variables) deal with fluctuations

of order N−
1
2 and sometimes in random matrix theory of order N−1. In our opinion, the

convergence speed (6.1) cannot be improved to a rate N−
1
2 . Nonetheless, thanks to an averaging

effect documented in Section 6.1.1, the fluctuation of special forms of functionals of ĈN (ρ) can
be proved to be much slower. Although among these functionals we could have considered
linear functionals of the eigenvalue distribution of ĈN (ρ), our present concern (driven by more
obvious applications) is rather on bilinear forms of the type a∗ĈkN (ρ)b for some a, b ∈ CN with
‖a‖ = ‖b‖ = 1, k ∈ Z.

Our main result is the following.

Theorem 6.1.1 (Fluctuation of bilinear forms). Let a, b ∈ CN with ‖a‖ = ‖b‖ = 1. Then, as
N,n→∞ with cN → c ∈ (0,∞), for any ε > 0 and every k ∈ Z,

sup
ρ∈Rκ

N1−ε
∣∣∣a∗ĈkN (ρ)b− a∗ŜkN (ρ)b

∣∣∣ a.s.−→ 0.

Some comments and remarks are in order. First, we recall that central limit theorems
involving bilinear forms of the type a∗ŜkN (ρ)b are classical objects in random matrix theory (see
e.g. (Kammoun et al., 2009; Mestre, 2008a) for k = −1), particularly common in signal processing
and wireless communications. These central limit theorems in general show fluctuations at
speed N−

1
2 . This indicates, taking ε < 1

2 in Theorem 6.1.1 and using the fact that almost

sure convergence implies weak convergence, that a∗ĈkN (ρ)b exhibits the same fluctuations as

a∗ŜkN (ρ)b, the latter being classical and tractable while the former is quite intricate at the onset,

due to the implicit nature of ĈN (ρ).

Of practical interest to many applications in signal processing is the case where k = −1. In
Section 6.2, we present a classical generalized maximum likelihood signal detection in impulsive
noise, for which we shall characterize the shrinkage parameter ρ that meets minimum false alarm
rates. Meanwhile, the next section provides the proof of Theorem 6.1.1.

6.1.1 Proof

In this section, we prove Theorem 6.1.1, which is in particular based on the important Lemma 6.2,
the proof of which is deferred to Section 6.1.1.2.

Before delving into the core of the proofs, let us introduce a few notations that shall be used
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throughout the section. Specifically, for each ρ ∈ (max{0, 1− c−1
N }, 1], we define

α(ρ) =
1− ρ

1− (1− ρ)cN

di(ρ) =
1

N
z∗i Ĉ

−1
(i) (ρ)zi =

1

N
z∗i

α(ρ)
1

n

∑
j 6=i

zjz
∗
j

dj(ρ)
+ ρIN

−1

zi

d̃i(ρ) =
1

N
z∗i Ŝ

−1
(i) (ρ)zi =

1

N
z∗i

α(ρ)
1

n

n∑
j 6=i

zjz
∗
j

γN (ρ)
+ ρIN

−1

zi

with Ĉ(i)(ρ) = ĈN (ρ) − (1 − ρ) 1
n

ziz
∗
i

1
N
z∗i Ĉ

−1
N (ρ)zi

. Recall from Section 5.1 that d1(ρ), . . . , dn(ρ) are

well defined as the unique solution of their n defining equations. We shall also discard the
parameter ρ for readability whenever not needed.

6.1.1.1 Main proof

As shall become clear, the proof unfolds similarly for each k ∈ Z \ {0} and we can therefore
restrict ourselves to a single value for k. As Theorem 6.2.1 in Section 6.2 relies on k = −1, for
consistency, we take k = −1 from now on. Thus, our objective is to prove that, for a, b ∈ CN
with ‖a‖ = ‖b‖ = 1, and for any ε > 0,

sup
ρ∈Rκ

N1−ε
∣∣∣a∗Ĉ−1

N (ρ)b− a∗Ŝ−1
N (ρ)b

∣∣∣ a.s.−→ 0.

For this, forgetting for some time the index ρ, first write

a∗Ĉ−1
N b− a∗Ŝ−1

N b = a∗Ĉ−1
N

(
α

n

n∑
i=1

[
1

γN
− 1

di

]
ziz
∗
i

)
Ŝ−1
N b (6.2)

=
α

n

n∑
i=1

a∗Ĉ−1
N zi

di − γN
γNdi

z∗i Ŝ
−1
N b. (6.3)

In Chapter 5, where we showed that ‖ĈN − ŜN‖
a.s.−→ 0 (that is the spectral norm of the inner

parenthesis in (6.2) vanishes), the core of the proof was to show that max1≤i≤n |di − γN |
a.s.−→ 0

which, along with the convergence of γN away from zero and the almost sure boundedness of
‖ 1
n

∑n
i=1 ziz

∗
i ‖ for all large N (from e.g. (Bai and Silverstein, 1998)), gives the result. A thorough

inspection of the proof in Theorem 5.1.1 reveals that max1≤i≤n |di−γN |
a.s.−→ 0 may be improved

into max1≤i≤nN
1
2
−ε|di−γN |

a.s.−→ 0 for any ε > 0 but that this speed cannot be further improved

beyond N
1
2 . The latter statement is rather intuitive since γN is essentially a sharp deterministic

approximation for 1
N tr Ĉ−1

N while di is a quadratic form on Ĉ−1
(i) ; classical random matrix results

involving fluctuations of such quadratic forms, see e.g. (Kammoun et al., 2009), indeed show

that these fluctuations are of order N−
1
2 . As a consequence, max1≤i≤nN1−ε|di − γN | and thus

N1−ε‖ĈN − ŜN‖ are not expected to vanish for small ε.
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This being said, when it comes to bilinear forms, for which we shall naturally haveN
1
2
−ε|a∗Ĉ−1

N b−
a∗Ŝ−1

N b| a.s.−→ 0, seeing the difference in absolute values as the n-term average (6.3), one may ex-
pect that the fluctuations of di−γN are sufficiently loosely dependent across i to further increase
the speed of convergence from N

1
2
−ε to N1−ε (which is the best one could expect from a law of

large numbers aspect if the di − γN were truly independent). It turns out that this intuition is
correct.

Nonetheless, to proceed with the proof, it shall be quite involved to work directly with (6.3)
which involves the rather intractable terms di (as the random solutions to an implicit equation).
As in Chapter 5, our approach will consist in first approximating di by a much more tractable
quantity. Letting γN be this approximation is however not good enough this time since γN − di
is a non-obvious quantity of amplitude O(N−

1
2 ) which, due to intractability, we shall not be

able to average across i into a O(N−1) quantity. Thus, we need a refined approximation of di
which we shall take to be d̃i defined above. Intuitively, since d̃i is also a quadratic form closely
related to di, we expect di− d̃i to be of order O(N−1), which we shall indeed observe. With this
approximation in place, di can be replaced by d̃i in (6.3), which now becomes a more tractable
random variable (as it involves no implicit equation) that fluctuates around γN at the expected
O(N−1) speed.

Let us then introduce the variable d̃i in (6.2) to obtain

a∗Ĉ−1
N b− a∗Ŝ−1

N b = a∗Ĉ−1
N

(
α

n

n∑
i=1

[
1

γN
− 1

d̃i

]
ziz
∗
i

)
Ŝ−1
N b

+ a∗Ĉ−1
N

(
α

n

n∑
i=1

[
1

d̃i
− 1

di

]
ziz
∗
i

)
Ŝ−1
N b

, ξ1 + ξ2.

We will now show that ξ1 = ξ1(ρ) and ξ2 = ξ2(ρ) vanish at the appropriate speed and uniformly
so on Rκ.

Let us first progress in the derivation of ξ1(ρ) from which we wish to discard the explicit
dependence on ĈN . We have

ξ1 = a∗Ĉ−1
N

(
α

n

n∑
i=1

[
1

γN
− 1

d̃i

]
ziz
∗
i

)
Ŝ−1
N b

= a∗Ŝ−1
N

(
α

n

n∑
i=1

[
1

γN
− 1

d̃i

]
ziz
∗
i

)
Ŝ−1
N b+ a∗(Ĉ−1

N − Ŝ
−1
N )

(
α

n

n∑
i=1

[
1

γN
− 1

d̃i

]
ziz
∗
i

)
Ŝ−1
N b

= a∗Ŝ−1
N

(
α

n

n∑
i=1

d̃i − γN
γ2
N

ziz
∗
i

)
Ŝ−1
N b− a∗Ŝ−1

N

(
α

n

n∑
i=1

(d̃i − γN )2

γ2
N d̃i

ziz
∗
i

)
Ŝ−1
N b

+ a∗(Ĉ−1
N − Ŝ

−1
N )

(
α

n

n∑
i=1

[
1

γN
− 1

d̃i

]
ziz
∗
i

)
Ŝ−1
N b

, ξ11 + ξ12 + ξ13.
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The terms ξ12 and ξ13 exhibit products of two terms that are expected to be of order O(N−
1
2 )

and which are thus easily handled. As for ξ11, it no longer depends on ĈN and is therefore a
standard random variable which, although involved, is technically tractable via standard random
matrix methods. In order to show that N1−ε max{|ξ12|, |ξ13|}

a.s.−→ 0 uniformly in ρ, we use the
following lemma.

Lemma 6.1. For any ε > 0,

max
1≤i≤n

sup
ρ∈Rκ

N
1
2
−ε|d̃i(ρ)− γN (ρ)| a.s.−→ 0

max
1≤i≤n

sup
ρ∈Rκ

N
1
2
−ε|di(ρ)− γN (ρ)| a.s.−→ 0.

Note that, while the first result is a standard, easily established, random matrix result, the
second result is the aforementioned refinement of the core result in the proof of Theorem 5.1.1.

Proof of Lemma 6.1. We start by proving the first identity. From (5.5) in Section 5.1 (taking
w = −γNρα−1), we have, for each p ≥ 2 and for each 1 ≤ k ≤ n,

E
[∣∣∣d̃k(ρ)− γN (ρ)

∣∣∣p] = O(N−
p
2 )

where the bound does not depend on ρ > max{0, 1− 1/c}+ κ. Let now max{0, 1− 1/c}+ κ =
ρ0 < . . . < ρ√n = 1 be a regular sampling of Rκ in

√
n intervals. We then have, from Markov

inequality and the union bound on n(
√
n+ 1) events

P

(
max

1≤k≤n,0≤i≤√n

∣∣∣N 1
2
−ε(d̃k(ρi)− γN (ρi))

∣∣∣) ≤ KN−pε+ 3
2

for someK > 0 only dependent on p. From the Borel Cantelli lemma, we then have maxk,i |N
1
2
−ε(d̃k(ρi)−

γN (ρi))|
a.s.−→ 0 as long as −pε + 3/2 < −1, which is obtained for p > 5/(2ε). Using |γN (ρ) −

γN (ρ′)| ≤ K|ρ − ρ′| for some constant K and each ρ, ρ′ ∈ Rκ (see the proof of Theorem 5.1.1)
and similarly max1≤k≤n |d̃k(ρ) − d̃k(ρ′)| ≤ K|ρ − ρ′| for all large n a.s. (obtained by explicitly
writing the difference and using the fact that ‖zk‖2/N is asymptotically bounded almost surely),
we get

max
1≤k≤n

sup
ρ∈Rκ

N
1
2
−ε|d̃k(ρ)− γN (ρ)| ≤ max

k,i
N

1
2
−ε|d̃k(ρi)− γN (ρi)|+KN−ε

a.s.−→ 0.

The second result relies on revisiting the proof of Theorem 5.1.1 incorporating the conver-
gence speed on d̃k−γN . For convenience and compatibility with similar derivations that appear
later in the proof, we slightly modify the original proof of Theorem 5.1.1 presented in Section 5.1.
We first define fi(ρ) = di(ρ)/γN (ρ) and relabel the di(ρ) in such a way that f1(ρ) ≤ . . . ≤ fn(ρ)
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(the ordering may then depend on ρ). Then, we have by definition of dn(ρ) = γN (ρ)fn(ρ)

γN (ρ)fn(ρ) =
1

N
z∗n

(
α(ρ)

1

n

∑
i<n

ziz
∗
i

γN (ρ)fi(ρ)
+ ρIN

)−1

zn

≤ 1

N
z∗n

(
α(ρ)

1

fn(ρ)

1

n

∑
i<n

ziz
∗
i

γN (ρ)
+ ρIN

)−1

zn

where we used fn(ρ) ≥ fi(ρ) for each i. The above is now equivalent to

γN (ρ) ≤ 1

N
z∗n

(
α(ρ)

1

n

∑
i<n

ziz
∗
i

γN (ρ)
+ fn(ρ)ρIN

)−1

zn.

We now make the assumption that there exists η > 0 and a sequence {ρ(n)} ∈ Rκ such that

fn(ρ(n)) > 1+Nη− 1
2 infinitely often, which is equivalent to saying dn(ρ(n)) > γN (ρ(n))(1+Nη− 1

2 )
infinitely often (i.o.). Then, from these assumptions and the above first convergence result

γN (ρ(n)) ≤ 1

N
z∗n

(
α(ρ(n))

1

n

∑
i<n

ziz
∗
i

γN (ρ(n))
+ ρ(n)(1 +Nη− 1

2 )IN

)−1

zn

= d̃n(ρ(n))−Nη− 1
2

1

N
z∗n

(
1

n

∑
i<n

α(ρ(n))ziz
∗
i

ρ(n)γN (ρ(n))
+ (1 +Nη− 1

2 )IN

)−1

×

(
1

n

∑
i<n

α(ρ(n))ziz
∗
i

γN (ρ(n))
+ ρ(n)IN

)−1

zn. (6.4)

Now, by the first result of the lemma, letting 0 < ε < η, we have∣∣∣d̃n(ρ(n))− γN (ρ(n))
∣∣∣ ≤ max

ρ∈Rκ

∣∣∣d̃n(ρ)− γN (ρ)
∣∣∣ ≤ N ε− 1

2

for all large n a.s., so that, for these large n, d̃n(ρ(n)) ≤ γN (ρ(n)) + N ε− 1
2 . Applying this

inequality to the first right-end side term of (6.4) and using the almost sure boundedness of the
rightmost right-end side term entails

0 ≤ N ε− 1
2 −KNη− 1

2

for some K > 0 for all large n a.s. But, N ε/2−1/2 − KNη/2−1/2 < 0 for all large N , which
contradicts the inequality. Thus, our initial assumption is wrong and therefore, for each η > 0,
we have for all large n a.s., dn(ρ) < γN (ρ) + Nη− 1

2 uniformly on ρ ∈ Rκ. The same calculus

can be performed for d1(ρ) by assuming that f1(ρ′(n)) < 1−Nη− 1
2 i.o. over some sequence ρ′(n);

by reverting all inequalities in the derivation above, we similarly conclude by contradiction that
d1(ρ) > γN (ρ) − Nη− 1

2 for all large n, uniformly so in Rκ. Together, both results finally lead,
for each ε > 0, to

max
1≤k≤n

sup
ρ∈Rκ

∣∣∣N 1
2
−ε (dk(ρ)− γN (ρ))

∣∣∣ a.s.−→ 0
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obtained by fixing ε, taking η such that 0 < η < ε, and using maxk supρ |dk(ρ)−γN (ρ)| < Nη− 1
2

for all large n a.s.

Thanks to Lemma 6.1, expressing Ĉ−1
N (ρ)− Ŝ−1

N (ρ) as a function of di(ρ)− γN (ρ) and using

the (almost sure) boundedness of the various terms involved, we finally get N1−εξ12
a.s.−→ 0 and

N1−εξ13
a.s.−→ 0 uniformly on ρ.

It then remains to handle the more delicate term ξ11, which can be further expressed as

ξ11 =
α

γ2
N

a∗Ŝ−1
N

(
1

n

n∑
i=1

(d̃i − γN )ziz
∗
i

)
Ŝ−1
N b

=
α

γ2
N

1

n

n∑
i=1

a∗Ŝ−1
N ziz

∗
i Ŝ
−1
N b

(
d̃i − γN

)
.

For that, we will resort to the following lemma, whose proof is postponed to Section 6.1.1.2.

Lemma 6.2. Let c and d be random or deterministic vectors, independent of z1, · · · , zn, such
that max

(
E[‖c‖k],E[‖d‖k]

)
≤ K for some K > 0 and all integer k. Then, for each integer p,

E

∣∣∣∣∣ 1n
n∑
i=1

c∗Ŝ−1
N ziz

∗
i Ŝ
−1
N d

(
1

N
z∗i Ŝ

−1
(i) zi − γN (ρ)

)∣∣∣∣∣
2p
 = O

(
N−2p

)

By the Markov inequality and the union bound, similar to the proof of Lemma 6.1, we get
from Lemma 6.2 (with a = c and d = b) that, for each η > 0 and for each integer p ≥ 1,

P

(
sup

ρ∈{ρ0<...<ρ√n}
N1−ε|ξ11| > η

)
≤ KN−pε+

1
2

with K only function of η and ρ0 < . . . < ρ√n a regular sampling of Rκ. Taking p > 3/(2ε), we
finally get from the Borel Cantelli lemma that

N1−εξ11
a.s.−→ 0

uniformly on {ρ0, . . . , ρ√n} and finally, using Lipschitz arguments as in the proof of Lemma 6.1,
uniformly on Rκ. Putting all results together, we finally have

sup
ρ∈Rκ

N1−ε|ξ1(ρ)| a.s.−→ 0

which concludes the first part of the proof.

We now continue with ξ2(ρ). In order to prove N1−εξ2(ρ)
a.s.−→ 0 uniformly on ρ ∈ Rκ, it is

sufficient (thanks to the boundedness of the various terms involved) to prove that

max
1≤i≤n

sup
ρ∈Rκ

∣∣∣N1−ε
(
d̃i(ρ)− di(ρ)

)∣∣∣ a.s.−→ 0.

To obtain this result, we first need the following fundamental proposition.
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Proposition 6.1.1. For any ε > 0,

max
1≤k≤n

sup
ρ∈Rκ

∣∣∣∣∣∣N1−ε

d̃k(ρ)− 1

N
z∗k

α(ρ)
1

n

∑
i 6=k

ziz
∗
i

d̃i(ρ)
+ ρIN

−1

zk

∣∣∣∣∣∣ a.s.−→ 0.

Proof. By expanding the definition of d̃k, first observe that

d̃k −
1

N
z∗k

α 1

n

∑
i 6=k

ziz
∗
i

d̃i
+ ρIN

−1

zk

= α
1

n

∑
i 6=k

1

N
z∗kŜ

−1
(k)ziz

∗
i

γN − d̃i
γN d̃i

α 1

n

∑
j 6=k

zjz
∗
j

d̃j
+ ρIN

−1

zk.

Similar to the derivation of ξ1, we now proceed to approximating d̃i in the central denominator
and each d̃j in the rightmost inverse matrix by the non-random γN . We obtain (from Lemma 6.1)

d̃k −
1

N
z∗k

α 1

n

∑
i 6=k

ziz
∗
i

d̃i
+ ρIN

−1

zk

=
α

γ2
N

1

n

∑
i 6=k

1

N
z∗kŜ

−1
(k)ziz

∗
i (γN − d̃i)Ŝ−1

(k)zk + o(N ε−1)

almost surely, for ε > 0 and uniformly so on ρ. The objective is then to show that the first
right-hand side term is o(N ε−1) almost surely and that this holds uniformly on k and ρ. This
is achieved by applying Lemma 6.2 with c = d = zk. Indeed, Lemma 6.2 ensures that, for each
integer p,1

E

∣∣∣∣∣∣ 1n
∑
i 6=k

1

N
z∗kS

−1
(k)(ρ)ziz

∗
i S
−1
(k)(ρ)zk

(
1

N
z∗i S

−1
(i,k)(ρ)zi − γN (ρ)

)∣∣∣∣∣∣
p = O(N−p)

From this lemma, applying Markov’s inequality, we have for each k,

P

N1−ε

∣∣∣∣∣∣ 1n
∑
i 6=k

1

N
z∗kŜ

−1
(k)ziz

∗
i Ŝ
−1
(k)zk

(
1

N
z∗i Ŝ

−1
(i,k)zi − γN

)∣∣∣∣∣∣ > η

 ≤ KN−pε
for some K > 0 only dependent on η > 0. Applying the union bound on the n(n+ 1) events for
k = 1, . . . , n and for ρ ∈ {ρ0, . . . , ρn}, regular n-discretization of Rκ, we then have

P

max
k,j

N1−ε

∣∣∣∣∣∣ 1n
∑
i 6=k

1

N
z∗kŜ

−1
(k)ziz

∗
i Ŝ
−1
(k)zk

(
1

N
z∗i Ŝ

−1
(i,k)zi − γN (ρj)

)∣∣∣∣∣∣ > η


≤ KN−pε+2.

1Note that Lemma 6.2 can strictly be applied here for n− 1 instead of n; but since 1/n− 1/(n− 1) = O(n−2),
this does not affect the result.
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Taking p > 3/ε, by the Borel Cantelli lemma the above convergence holds almost surely, we
finally get

max
k,j

∣∣∣∣∣∣N1−ε

d̃k(ρj)− 1

N
z∗k

α(ρj)
1

n

∑
i 6=k

ziz
∗
i

d̃i(ρj)
+ ρjIN

−1

zk

∣∣∣∣∣∣ a.s.−→ 0.

Using the ρ-Lipschitz property (which holds almost surely so for all large n a.s.) on both terms
in the above difference concludes the proof of the proposition.

The crux of the proof for the convergence of ξ2 starts now. In a similar manner as in the
proof of Lemma 6.1, we define f̃i(ρ) = di(ρ)/d̃i(ρ) and reorder the indexes in such a way that
f̃1(ρ) ≤ . . . ≤ f̃n(ρ) (this ordering depending on ρ). Then, by definition of dn(ρ) = f̃i(ρ)d̃i(ρ),

d̃n(ρ)f̃n(ρ) =
1

N
z∗n

(
α(ρ)

1

n

∑
i<n

ziz
∗
i

d̃i(ρ)f̃i(ρ)
+ ρIn

)−1

zn

≤ 1

N
z∗n

(
α(ρ)

1

f̃n(ρ)

1

n

∑
i<n

ziz
∗
i

d̃i(ρ)
+ ρIn

)−1

zn

where we used f̃n(ρ) ≥ f̃i(ρ) for each i. This inequality is equivalent to

d̃n(ρ) ≤ 1

N
z∗n

(
α(ρ)

1

n

∑
i<n

ziz
∗
i

d̃i(ρ)
+ f̃n(ρ)ρIn

)−1

zn.

Assume now that, over some sequence {ρ(n)} ∈ Rκ, f̃n(ρ(n)) > 1+Nη−1 infinitely often for some
η > 0 (or equivalently, dn(ρ(n)) > d̃n(ρ(n)) +Nη−1 i.o.). Then we would have

d̃n(ρ(n)) ≤ 1

N
z∗n

(
α(ρ(n))

1

n

∑
i<n

ziz
∗
i

d̃i(ρ(n))
+ ρ(n)(1 +Nη−1)IN

)−1

zn

= d̃n(ρ(n))−Nη−1 1

N
z∗n

(
1

n

∑
i<n

α(ρ(n))ziz
∗
i

ρ(n)d̃i(ρ(n))
+ (1 +Nη−1)IN

)−1

×

(
1

n

∑
i<n

α(ρ(n))ziz
∗
i

d̃i(ρ(n))
+ ρIN

)−1

zn.

But, by Proposition 6.1.1, letting 0 < ε < η, we have, for all large n a.s.,

1

N
z∗n

(
α(ρ(n))

1

n

∑
i<n

ziz
∗
i

d̃i(ρ(n))
+ ρ(n)In

)−1

zn ≤ d̃n(ρ(n)) +N ε−1

which, along with the uniform boundedness of the d̃i away from zero, leads to

d̃n(ρ(n)) ≤ d̃n(ρ(n)) +N ε−1 −KNη−1
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for some K > 0. But, as N ε−1 − KNη−1 < 0 for all large N , we obtain a contradiction.
Hence, for each η > 0, we have for all large n a.s., dn(ρ) < d̃n(ρ) +Nη−1 uniformly on ρ ∈ Rκ.
Proceeding similarly with d1(ρ), and exploiting lim supn supρ maxi |d̃i(ρ)| = O(1) a.s., we finally

have, for each 0 < ε < 1
2 , that

max
1≤k≤n

sup
ρ∈Rκ

∣∣∣N1−ε
(
dk(ρ)− d̃k(ρ)

)∣∣∣ a.s.−→ 0

(for this, take an η such that 0 < η < ε and use maxk supρ |dk(ρ)− d̃k(ρ)| < Nη−1 for all large
n a.s.).

Getting back to ξ2, we now have

N1−ε|ξ2(ρ)| = N1−ε
∣∣∣∣∣a∗Ĉ−1

N (ρ)

(
α(ρ)

n

n∑
i=1

di(ρ)− d̃i(ρ)

di(ρ)d̃i(ρ)
ziz
∗
i

)
Ŝ−1
N (ρ)b

∣∣∣∣∣ .
But, from the above result,

N1−ε
∥∥∥∥∥α(ρ)

n

n∑
i=1

di(ρ)− d̃i(ρ)

di(ρ)d̃i(ρ)
ziz
∗
i

∥∥∥∥∥ ≤ N1−ε max
1≤k≤n

∣∣∣∣∣dk(ρ)− d̃k(ρ)

dk(ρ)d̃k(ρ)

∣∣∣∣∣
∥∥∥∥∥α(ρ)

n

n∑
i=1

ziz
∗
i

∥∥∥∥∥
a.s.−→ 0

uniformly so on ρ ∈ Rκ which, along with the boundedness of ‖Ĉ−1
N ‖, ‖Ŝ

−1
N ‖, ‖a‖, and ‖b‖,

finally gives N1−εξ2
a.s.−→ 0 uniformly on ρ ∈ Rκ as desired.

We have then proved that for each ε > 0,

sup
ρ∈Rκ

∣∣∣N1−ε
(
a∗Ĉ−1

N (ρ)b− a∗Ŝ−1
N (ρ)b

)∣∣∣ a.s.−→ 0

which proves Theorem 6.1.1 for k = −1. The generalization to arbitrary k is rather immediate.
Writing recursively ĈkN − ŜkN = Ĉk−1

N (ĈN − ŜN )+(Ĉk−1
N − Ŝk−1

N )ŜN , for positive k or ĈkN − ŜkN =

ĈkN (ŜN − ĈN )Ŝ−1
N + (Ĉk−1

N − Ŝk−1
N )Ŝ−1

N , (6.2) becomes a finite sum of terms that can be treated
almost exactly as in the proof. This concludes the proof of Theorem 6.1.1.

6.1.1.2 Proof of Lemma 6.2

This section is devoted to the proof of the key Lemma 6.2. The proof relies on an appropriate
decomposition of the quantity under study as a sum of martingale differences. Before delving
into the core of the proofs, we introduce some notations along with some of the key-lemmas that
will be extensively used in this section.

In this section, Ej will denote the conditional expectation with respect to the σ− field Fj
generated by the vectors (z`, 1 ≤ ` ≤ j). By convention, E0 = E.
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Preliminaries. We start the proof by some preliminary results.

Lemma 6.3. Let z1, · · · , zn be as in Assumption 6.1. Let c ∈ CN×1 be independent of z1, · · · , zn
and such that E‖c‖k is bounded uniformly in N for all order k. Then, for any integer p, there
exists Kp such that

E
[∣∣∣z∗i Ŝ−1

N c
∣∣∣p] ≤ E

[∣∣∣z∗i Ŝ−1
(i) c
∣∣∣p] ≤ Kp.

Proof. The first inequality can be obtained from the following decomposition:

Ŝ−1
N zi =

Ŝ−1
(i) zi

1 + α(ρ)
γN (ρ)

1
nz
∗
i Ŝ
−1
(i) zi

while the second follows by noticing that E |z∗i c|
p ≤ E (c∗CNc)

p
2 .

Using the same kind of calculations, we can also control the order of magnitude of some
interesting quantities.

Lemma 6.4. The following statements hold true:

1. Denote by ∆i,j the quantity:

∆i,j =
1

n
z∗j Ŝ

−1
(i,j)zj −

1

n
trCN Ŝ

−1
(i,j).

Then, for any p ≥ 2.

E |∆i,j |p = O(n−
p
2 ).

2. Let i and j be two distinct integers from {1, · · · , n}. Then,

E
∣∣∣z∗i Ŝ−1

(i,j)zj

∣∣∣p = O(n
p
2 ).

3. Let zi ∈ CN×1 be as in Assumption 6.1 and A be a N ×N random matrix independent of
zi and having a bounded spectral norm. Then,

E |z∗iAzi|
p = O(np).

4. Let j ∈ {1, · · · , n} and i and k two distinct integers different from j. Then:

E
∣∣∣z∗i Ŝ−1

(i,j)Ŝ
−1
(j,k)zk

∣∣∣p = O(n
p
2 ).
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Proof. Item 1) and 3) are standard results that are a by-product of (Bai and Silverstein, 2009,
Lemma B.26), while Item 2) can be easily obtained from Lemma 6.3. As for item 4), it follows
by first decomposing Ŝ−1

(i,j) and Ŝ−1
(j,k) as:

Ŝ−1
(i,j) = Ŝ−1

(i,j,k) −
1

n

α(ρ)

γN (ρ)

Ŝ−1
(i,j,k)zkz

∗
kŜ
−1
(i,j,k)

1 + 1
n
α(ρ)
γN (ρ)z

∗
kŜ
−1
(i,j,k)zk

Ŝ−1
(j,k) = Ŝ−1

(i,j,k) −
1

n

α(ρ)

γN (ρ)

Ŝ−1
(i,j,k)ziz

∗
i Ŝ
−1
(i,j,k)

1 + 1
n
α(ρ)
γN (ρ)z

∗
i Ŝ
−1
(i,j,k)zi

The above relations serve to better control the dependencies of Ŝ−1
(i,j) and Ŝ−1

(j,k) on zk and zi.

Plugging the above decompositions on z∗i Ŝ
−1
(i,j)Ŝ

−1
(j,k)zk, we obtain

z∗i Ŝ
−1
(i,j)Ŝ

−1
(j,k)zk = z∗i Ŝ

−2
(i,j,k)zk −

1

n

α(ρ)

γN (ρ)

z∗i Ŝ
−1
(i,j,k)zkz

∗
kŜ
−2
(i,j,k)zk

1 + 1
n
α(ρ)
γN (ρ)z

∗
kŜ
−1
(i,j,k)zk

− 1

n

α(ρ)

γN (ρ)

z∗i Ŝ
−2
(i,j,k)ziz

∗
i Ŝ
−1
(i,j,k)zk

1 + 1
n
α(ρ)
γN (ρ)z

∗
i Ŝ
−1
(i,j,k)zi

+
1

n2

(
α(ρ)

γN (ρ)

)2 z∗i Ŝ
−1
(i,j,k)zkz

∗
kŜ
−2
(i,j,k)ziz

∗
i Ŝ
−1
(i,j,k)zk(

1 + 1
n
α(ρ)
γN (ρ)z

∗
kŜ
−1
(i,j,k)zk

)(
1 + 1

n
α(ρ)
γN (ρ)z

∗
i Ŝ
−1
(i,j,k)zi

) .
The control of these four terms follows from a direct application of item 2) and 3) along with
possibly the use of the generalized Hölder inequality in Lemma A.6.

Core of the proof. With these preliminaries results at hand, we are now in position to get into
the core of the proof. Let βN be given by

βN =
1

n

n∑
i=1

c∗Ŝ−1
N ziz

∗
i Ŝ
−1
N d

(
1

N
z∗i Ŝ

−1
(i) zi − γN (ρ)

)
.

Decompose βN as

βN =
1

n

n∑
i=1

c∗Ŝ−1
N ziz

∗
i Ŝ
−1
N d

(
1

N
z∗i Ŝ

−1
(i) zi −

1

N
trCN Ŝ

−1
(i)

)

+
1

n

n∑
i=1

c∗Ŝ−1
N ziz

∗
i Ŝ
−1
N d

(
1

N
trCN Ŝ

−1
(i) − γN (ρ)

)
, βN,1 + βN,2.
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The control of βN,2 follows from a direct application of Lemma A.5 and Lemma A.6, that is

E
[
|βN,2|2p

]
≤ n2p−1

n2p

n∑
i=1

E
∣∣∣c∗Ŝ−1

N zi

∣∣∣2p ∣∣∣z∗i Ŝ−1
N d

∣∣∣2p ∣∣∣∣ 1

N
trCN Ŝ

−1
(i) − γN (ρ)

∣∣∣∣2p

≤ n2p−1

n2p

n∑
i=1

(
E
∣∣∣c∗Ŝ−1

N zi

∣∣∣6p) 1
3
(

E
∣∣∣z∗i Ŝ−1

N d
∣∣∣6p) 1

3

(
E

∣∣∣∣ 1

N
trCN Ŝ

−1
(i) − γN (ρ)

∣∣∣∣6p
) 1

3

By standard results from random matrix theory (e.g. (Najim and Yao, 2013, Prop. 7.1)), we
know that

E

∣∣∣∣ 1

N
trCN Ŝ

−1
(i) − γN (ρ)

∣∣∣∣6p = O(n−6p)

Hence, by Lemma 6.3, we finally get:

E |βN,2|2p = O(n−2p).

While the control of βN,2 requires only the manipulation of conventional moment bounds due

to the rapid convergence of 1
N trCN Ŝ

−1
(i) − γN (ρ), the analysis of βN,1 is more intricate since

E

∣∣∣∣ 1

N
z∗i Ŝ

−1
(i) zi −

1

N
trCN Ŝ

−1
(i)

∣∣∣∣p = O(n−
p
2 )

a convergence rate which seems insufficient at the onset. The averaging occurring in βN,2 shall
play the role of improving this rate. To control βN,1, one needs to resort to advanced tools based
on Burkhölder inequalities. First, decompose βN,1 as

βN,1 =
o
βN,1 +E [βN,1] .

As in Lemma 6.4, define ∆i , 1
nz
∗
i Ŝ
−1
(i) zi −

1
n trCN Ŝ

−1
(i) . Using the relation

Ŝ−1
N zi =

Ŝ−1
(i) zi

1 + 1
n
α(ρ)
γN (ρ)z

∗
i Ŝ
−1
(i) zi

we get

E [βN,1] = E

 1

N

n∑
i=1

c∗Ŝ−1
(i) ziz

∗
i Ŝ
−1
(i) d(

1 + 1
n
α(ρ)
γN (ρ)z

∗
i Ŝ
−1
(i) zi

)2 ∆i


= E

 1

N

n∑
i=1

c∗Ŝ−1
(i) ziz

∗
i Ŝ
−1
(i) d(

1 + 1
n
α(ρ)
γN (ρ) trCN Ŝ

−1
(i)

)2 ∆i


− α(ρ)

γN (ρ)
E

 1

N

n∑
i=1

c∗Ŝ−1
(i) ziz

∗
i Ŝ
−1
(i) d∆2

i

(
2 +

(
α(ρ)
γN (ρ)

)(
1
nz
∗
i Ŝ
−1
(i) zi + 1

n trCN Ŝ
−1
(i)

))
(

1 + 1
n
α(ρ)
γN (ρ) trCN Ŝ

−1
(i)

)2 (
1 + α(ρ)

γN (ρ)
1
nz
∗
i Ŝ
−1
(i) zi

)2


, βN,1,1 + βN,1,2
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Since E [w∗Aw (w∗Bw − trB)] = E trAB when w is standard complex Gaussian vector and A,B
random matrices independent of w, we have

E [βN,1,1] =
1

Nn
E

tr
CN Ŝ

−1
(i) CN Ŝ

−1
(i) dc

∗Ŝ−1
(i)(

1 + α(ρ)
γN (ρ)

1
n trCN Ŝ

−1
(i)

)2

 = O(n−1).

As for βN,1,2, we have for some K > 0, again by Lemma 6.4

|βN,1,2| ≤
K

n

n∑
i=1

(
E
∣∣∣c∗Ŝ−1

(i) zi

∣∣∣4) 1
4
(

E
∣∣∣z∗i Ŝ−1

(i) d
∣∣∣4) 1

4 (
E |∆i|8

) 1
4

×

(
E

∣∣∣∣2 +
α(ρ)

γN (ρ)

(
1

n
z∗i Ŝ

−1
(i) zi +

1

n
trCN Ŝ

−1
(i)

)∣∣∣∣4
) 1

4

= O(
1

n
).

We therefore have

|E [βN,1]|2p = O(n−2p).

Let’s turn to the control of
o
βN,1. For that, we decompose

o
βN,1 as a sum of martingale differences

as

o
βN,1=

n∑
j=1

(Ej − Ej−1)βN,1

The control of E

[∣∣∣∣ oβN,1∣∣∣∣p] requires the convergence rate of two kinds of martingale differences:

• Sum of martingale differences with a quadratic form representation of the form

n∑
j=1

(Ej − Ej−1) z∗jAjzj .

For these terms, from Lemma A.8, it will be sufficient to show that maxj E‖Aj‖2pFro =
O(n−3p) in order to obtain the required convergence rate.

• Sum of martingale differences with more than one occurrence of zj and z∗j . In this case,
this sum is given by:

n∑
j=1

(Ej − Ej−1)
n∑

i=1,i 6=j
εi

where εj are small random quantities depending on z1, · · · , zn. According to Lemma A.7,
we have ∣∣∣∣∣∣

n∑
j=1

(Ej − Ej−1)

n∑
i=1,i 6=j

εi

∣∣∣∣∣∣
2p

= O(n−2p)
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provided that

E

∣∣∣∣∣∣
∑

i=1,i 6=j
εi

∣∣∣∣∣∣
2p

= O(n−3p).

The control of the above sum will rely on successively using Lemma A.5 to get

E

∣∣∣∣∣∣
∑

i=1,i 6=j
εi

∣∣∣∣∣∣
2p

≤ n2p−1
n∑
i=1

E |εi|2p

and controlling maxi E |εi|2p.

With this explanation at hand, we will now get into the core of the proofs. We first have

o
βN,1 =

n∑
j=1

(Ej − Ej−1)
1

N

n∑
i=1

c∗Ŝ−1
N ziz

∗
i d∆i

=

n∑
j=1

(Ej − Ej−1)c∗Ŝ−1
N zjz

∗
j d∆j

+
n∑
j=1

(Ej − Ej−1)
1

N

n∑
i=1,i 6=j

c∗Ŝ−1
N ziz

∗
i d∆i

,
n∑
j=1

Wj,1 +
n∑
j=1

Wj,2.

In order to prove that E
∣∣∣∑n

j=1Wj,1

∣∣∣ = O(n−2p), it is sufficient to show

E |Wj,1| = O(n−3p)

a statement which holds true since, by Lemma A.6

E |Wj,1|2p ≤
K

n2p
E
∣∣∣c∗Ŝ−1

N zj

∣∣∣2p ∣∣∣z∗j Ŝ−1
N d

∣∣∣2p ∆2p
j

≤ K

n2p

(
E
∣∣∣c∗Ŝ−1

N zj

∣∣∣6p) 1
3
(

E
∣∣∣z∗j Ŝ−1

N d
∣∣∣6p) 1

3 (
E∆6p

j

) 1
3

= O(n−3p).

We now consider the more involved term
∑n

j=1Wj,2. Using the relation

Ŝ−1
N = Ŝ−1

(j) −
α(ρ)

γN (ρ)

1

n

Ŝ−1
(j)zjz

∗
j Ŝ
−1
(j)

1 + α(ρ)
γN (ρ)

1
nz
∗
j Ŝ
−1
(j)zj
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to let the independent Ŝ−1
(j) and zj variables appear, we write

n∑
j=1

Wj,2 =
n∑
j=1

(Ej − Ej−1)
1

n

n∑
i=1,i 6=j

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d

(
1

N
z∗i Ŝ

−1
(i) zi −

1

N
trCN Ŝ

−1
(i)

)

−
n∑
j=1

(Ej − Ej−1)
α(ρ)

γN (ρ)

1

n2

n∑
i=1,i 6=j

c∗Ŝ−1
(j)zjz

∗
j Ŝ
−1
(j)ziz

∗
i Ŝ
−1
(j)d

1 + 1
n
α(ρ)
γN (ρ)z

∗
j Ŝ
−1
(j)zj

(
1

N
z∗i Ŝ

−1
(i) zi −

1

N
trCN Ŝ

−1
(i)

)

−
n∑
j=1

(Ej − Ej−1)
α(ρ)

γN (ρ)

1

n2

n∑
i=1,i 6=j

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)zjz

∗
j Ŝ
−1
(j)d

1 + 1
n
α(ρ)
γN (ρ)z

∗
j Ŝ
−1
(j)zj

(
1

N
z∗i Ŝ

−1
(i) zi −

1

N
trCN Ŝ

−1
(i)

)

+

n∑
j=1

(Ej − Ej−1)

(
α(ρ)

γN (ρ)

)2 1

n3

n∑
i=1,i 6=j

c∗Ŝ−1
(j)zjz

∗
j Ŝ
−1
(j)ziz

∗
i Ŝ
−1
(j)zjz

∗
j Ŝ
−1
(j)d(

1 + 1
n
α(ρ)
γN (ρ)z

∗
j Ŝ
−1
(j)zj

)2

(
1

N
z∗i Ŝ

−1
(i) zi −

1

N
trCN Ŝ

−1
(i)

)
, χ1 + χ2 + χ3 + χ4.

Next, we will sequentially control χi, i = 1, · · · , 4.

Control of χ1. Using the relation

Ŝ−1
(i) = Ŝ−1

(i,j) −
α(ρ)

γN (ρ)

1

n

Ŝ−1
(i,j)zjz

∗
j Ŝ
−1
(i,j)

1 + 1
n
α(ρ)
γN (ρ)z

∗
j Ŝ
−1
(i,j)zj

the quantity χ1 can be decomposed as

χ1 =

n∑
j=1

−(Ej − Ej−1)
α(ρ)

γN (ρ)

1

n2N

n∑
i=1,i 6=j

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d

∣∣∣z∗i Ŝ−1
(i,j)zj

∣∣∣2
1 + 1

n
α(ρ)
γN (ρ)z

∗
j Ŝ
−1
(i,j)zj

+
n∑
j=1

α(ρ)

γN (ρ)
(Ej − Ej−1)

1

n2N

n∑
i=1,i 6=j

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)dz

∗
j Ŝ
−1
(i,j)CN Ŝ

−1
(i,j)zj

1 + 1
n
α(ρ)
γN (ρ)z

∗
j Ŝ
−1
(i,j)zj

, χ1,1 + χ1,2.

where we used the fact that for rj random quantity independent of zj , (Ej −Ej−1)(rj) = 0. We
will begin by controlling χ1,1. To handle the quadratic forms in the denominator, we further
develop χ1,1 as

χ1,1 = −
n∑
j=1

(Ej − Ej−1)
α(ρ)

γN (ρ)

1

n2N

n∑
i=1,i 6=j

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d

∣∣∣z∗i Ŝ−1
(i,j)zj

∣∣∣2
1 + 1

n
α(ρ)
γN (ρ) trCN Ŝ

−1
(i,j)

+

n∑
j=1

(Ej − Ej−1)

(
α(ρ)

γN (ρ)

)2 1

n2N

n∑
i=1,i 6=j

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)

∣∣∣z∗i Ŝ−1
(i,j)zj

∣∣∣2 ∆i,j(
1 + 1

n
α(ρ)
γN (ρ) trCN Ŝ

−1
(i,j)

)(
1 + 1

n
α(ρ)
γN (ρ)z

∗
j Ŝ
−1
(i,j)zj

)
=

n∑
j=1

Xj,1 +
n∑
j=1

Xj,2.
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To control
∑n

j=1Xj,1, we resort to Lemma A.8. Indeed, Xj,1 can be written asXj,1 = − α(ρ)
γN (ρ)(Ej−

Ej−1)z∗jAjzj where Aj is given by

Aj =
1

n2N

n∑
i=1,i 6=j

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d

1 + 1
n
α(ρ)
γN (ρ) trCN Ŝ

−1
(i,j)

Ŝ−1
(i,j)ziz

∗
i Ŝ
−1
(i,j).

According to Lemma A.8, it is sufficient to prove that E ‖Aj‖2pFro = O(n−3p). Expanding

E ‖Aj‖2pFro, we indeed get

E ‖Aj‖2pFro ≤
K

n6p
E

∣∣∣∣∣∣∣
∑
i 6=j

∑
k 6=j

∣∣∣z∗kŜ−1
(j,k)Ŝ

−1
(i,j)zi

∣∣∣2 c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)dd

∗Ŝ−1
(j)zkz

∗
kŜ
−1
(j) c(

1 + α(ρ)
γN (ρ)

1
n trCN Ŝ

−1
(i,j)

)(
1 + 1

n
α(ρ)
γN (ρ) trCN Ŝ

−1
(j,k)

)
∣∣∣∣∣∣∣
p

≤ K

n6p
E

∣∣∣∣∣∣
∑
i 6=j

∣∣∣z∗i Ŝ−2
(i,j)zi

∣∣∣2 ∣∣∣c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d

∣∣∣2
∣∣∣∣∣∣
p

+
K

n6p
E

∣∣∣∣∣∣∣∣
∑
i 6=j

∑
k 6=j
k 6=i

∣∣∣z∗kŜ−1
(j,k)Ŝ

−1
(i,j)zi

∣∣∣2 c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)dd

∗Ŝ−1
(j)zkz

∗
kŜ
−1
(j) c(

1 + α(ρ)
γN (ρ)

1
n trCN Ŝ

−1
(i,j)

)(
1 + 1

n
α(ρ)
γN (ρ) trCN Ŝ

−1
(j,k)

)
∣∣∣∣∣∣∣∣
p

≤ Knp−1

n6p
E
∣∣∣z∗i Ŝ−2

(i,j)zi

∣∣∣2p ∣∣∣c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d

∣∣∣2p
+
Kn2(p−1)

n6p

∑
i 6=j

∑
k 6=j
k 6=i

E
∣∣∣z∗kŜ−1

(j,k)Ŝ
−1
(i,j)zi

∣∣∣2p ∣∣∣c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d

∣∣∣p ∣∣∣d∗Ŝ−1
(j,k)zkz

∗
kŜ
−1
(j,k)c

∣∣∣p

which is further bounded as

E ‖Aj‖2pFro ≤
Knp−1

n6p

∑
i 6=j

(
E
∣∣∣z∗i Ŝ−2

(i,j)zi

∣∣∣6p) 1
3
(∣∣∣c∗Ŝ−1

(j)zi

∣∣∣6p) 1
3
(∣∣∣z∗i Ŝ−1

(j)d
∣∣∣6p) 1

3

+
Kn2(p−1)

n6p

∑
i 6=j

∑
k 6=j
k 6=i

(
E
∣∣∣z∗kŜ−1

(j,k)Ŝ
−1
(i,j)zi

∣∣∣10p
) 1

5
(

E
∣∣∣c∗Ŝ−1

(i,j)zi

∣∣∣5p) 1
5

×
(

E
∣∣∣z∗i Ŝ−1

(j)d
∣∣∣5p) 1

5
(

E
∣∣∣d∗Ŝ−1

(j,k)zk

∣∣∣5p) 1
5
(

E
∣∣∣z∗kŜ−1

(j,k)c
∣∣∣5p) 1

5

= O(n−3p).

As for Xj,1, we can show that E |Xj,1|2p = O(n−3p). Indeed, we have

E |Xj,2|2p ≤
Kn2p−1

n6p

∑
i 6=j

(
E
∣∣∣c∗Ŝ−1

(j)zi

∣∣∣8p) 1
4
(

E
∣∣∣z∗i Ŝ−1

(j)d
∣∣∣8p) 1

4
(

E
∣∣∣z∗i Ŝ−1

(j)zj

∣∣∣16p
) 1

4 (
E |∆i,j |8p

) 1
4

= O(n−3p).
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The Burkhölder inequality shows that this rate of convergence of the moment of Xj,1 and Xj,2

is sufficient to finally ensure that E |χ1,1|2p = O(n−2p).

We study next χ1,2. First, decompose χ1,2 as

χ1,2 =
n∑
j=1

(Ej − Ej−1)
1

n2N

∑
i 6=j

α(ρ)

γN (ρ)

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)dz

∗
j Ŝ
−1
(i,j)CN Ŝ

−1
(i,j)zj

1 + 1
n
α(ρ)
γN (ρ) trCN Ŝ

−1
(i,j)

−
n∑
j=1

(Ej − Ej−1)
1

n2N

∑
i 6=j

α(ρ)

γN (ρ)

c∗Ŝ−1
(j)ziz

∗
i Ŝ
−1
(j)d∆i,jz

∗
j Ŝ
−1
(i,j)CN Ŝ

−1
(i,j)zj(

1 + α(ρ)
γN (ρ)

1
nz
∗
j Ŝ
−1
(i,j)zj

)(
1 + 1

n
α(ρ)
γN (ρ) trCN Ŝ

−1
(i,j)

)
,

n∑
j=1

Yj,1 +
n∑
j=1

Yj,2.

The quantities
∑n

j=1 Yj,1 and
∑n

j=1 Yj,2 are differences of martingales whose controls follow the
same procedure as above. While

∑n
j=1 Yj,1 can be controlled using Lemma A.8, the convergence

of
∑n

j=1 Yj,2 is faster due to the term ∆i,j . Details are thus omitted.

Control of χ2. The control of χ2 cannot be exactly dealt with using the same procedure. As
for χ1, one works out χ2 by substituting 1

nz
∗
j Ŝ
−1
(j)zj by its approximate 1

n trCN Ŝ
−1
(j) and using

the decomposition of Ŝ−1
(i) as a function of Ŝ−1

(i,j) to get

χ2 = − α(ρ)

γN (ρ)

n∑
j=1

(Ej − Ej−1)
1

n2

∑
i=1
i 6=j

c∗Ŝ−1
(j)zjz

∗
j Ŝ
−1
(j)ziz

∗
i Ŝ
−1
(j)d

(
1
N z
∗
i Ŝ
−1
(i,j)zi −

1
N trCN Ŝ

−1
(i,j)

)
1 + 1

n
α(ρ)
γN (ρ) trCN Ŝ

−1
(j)

+ ε

where we easily obtain that E[|ε|2p] = O(n−2p). We omit the details of this step, since the
calculations are the same as those used for the control of χ1. The control of the Frobenius
norm of the underlying matrices using the same techniques as above does not yield the required
convergence rate. We will thus pursue a different approach. Precisely, we write χ2 as

χ2 = − α(ρ)

γN (ρ)

n∑
j=1

(Ej − Ej−1)Tj + ε

with

Tj =
1

n2

c∗Ŝ−1
(j)zjz

∗
j Ŝ
−1
(j)ZjDjZ

∗
j Ŝ
−1
(j)d

1 + 1
n
α(ρ)
γN (ρ) tr Ŝ−1

(j)

where Zj = [z1, · · · , zj−1, zj+1, · · · , zn] and Dj is a diagonal matrix with diagonal elements:
[Dj ]i,i = n

N∆j,i. Hence, by Lemma A.7

E |Tj |2p ≤
1

n4p
E
∣∣∣c∗Ŝ−1

(j)zj

∣∣∣2p ∣∣∣z∗j Ŝ−1
(j)ZjDjZ

∗
j Ŝ
−1
(j)d

∣∣∣2p
≤ 1

n4p

(
E
∣∣∣c∗Ŝ−1

(j)zj

∣∣∣4p) 1
2
(

E
∣∣∣z∗j Ŝ−1

(j)ZjDjZ
∗
j d
∣∣∣4p) 1

2
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Since Dj is independent of zj , applying the inequality E
∣∣∣z∗ju∣∣∣p ≤ E (u∗CNu)

p
2 , we finally get

E |Tj |2p ≤
K

n4p

(
E
∣∣∣d∗Ŝ−1

(j)ZjDjZ
∗
j Ŝ
−1
(j)CN Ŝ

−1
(j)ZjDjZ

∗
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(j)d

∣∣∣2p) 1
2

=
K

n3p

E
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(j)ZjDj
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DjZ

∗
j Ŝ
−1
(j)d
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 1

2

(a)

≤ K

n3p

(
E
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∗
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−1
(j)d

∥∥∥4p
) 1

2

where (a) follows since

∥∥∥∥Z∗j Ŝ−1
(j)
CN Ŝ

−1
(j)
Zj

n

∥∥∥∥ is bounded. In order to prove that E[|Tj |2p] = O(n−3p),

it suffices to check that E[
∥∥∥DjZ

∗
j Ŝ
−1
(j)d

∥∥∥4p
] is uniformly bounded in N . Expanding this quantity,

we indeed get

E
∥∥∥DjZ

∗
j Ŝ
−1
(j)d

∥∥∥4p
= E

∣∣∣∣∣∣∣
n∑
i=1
i 6=j

(
1

N
z∗i Ŝ

−1
(i,j)zi −

1

N
trCN Ŝ

−1
(i,j)

)2 ∣∣∣z∗i Ŝ−1
(j)d

∣∣∣2
∣∣∣∣∣∣∣
2p

≤ n2p−1
n∑
i=1

E

(
1

N
z∗i Ŝ

−1
(i,j)zi −

1

N
trCN Ŝ

−1
(i,j)

)4p ∣∣∣z∗i Ŝ−1
(j)d

∣∣∣4p
≤ n2p−1

n∑
i=1

(
E

(
1

N
z∗i Ŝ

−1
(i,j)zi −

1

N
trCN Ŝ

−1
(i,j)

)8p
) 1

2 (
E
∣∣∣z∗i Ŝ−1

(j)d
∣∣∣8p) 1

2

= O(1).

The control of χ3 is similar to that of χ2, while that of χ4 follows immediately by using sequen-
tially Lemma A.5 along with the generalized Hölder inequality in Lemma A.6. This completes
the proof.

6.2 Application to FAR minimization

In this section, we consider the hypothesis testing scenario by which an N -sensor array receives
a vector y ∈ CN according to the following hypotheses

y =

{
x , H0

αp+ x , H1

in which α > 0 is some unknown scaling factor constant while p ∈ CN is deterministic and
known at the sensor array (which often corresponds to a steering vector arising from a specific
known angle), and x is an impulsive noise distributed as x1 according to Assumption 6.1. For
convenience, we shall take ‖p‖ = 1.
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6.2. APPLICATION TO FAR MINIMIZATION

Under H0 (the null hypothesis), a noisy observation from an impulsive source is observed
while under H1 both information and noise are collected at the array. The objective is to
decide on H1 versus H0 upon the observation y and prior pure-noise observations x1, . . . , xn dis-
tributed according to Assumption 6.1. When τ1, . . . , τn and CN are unknown, the corresponding
generalized likelihood ratio test, derived in (Conte et al., 1995), reads

TN (ρ)
H1

≷
H0

Γ

for some detection threshold Γ where

TN (ρ) ,
|y∗Ĉ−1

N (ρ)p|√
y∗Ĉ−1

N (ρ)y
√
p∗Ĉ−1

N (ρ)p
.

More precisely, (Conte et al., 1995) derived the detector TN (0) only valid when n ≥ N . The
relaxed detector TN (ρ) allows for a better conditioning of the estimator, in particular for n ' N .
In (Pascal et al., 2013), TN (ρ) is used explicitly in a space-time adaptive processing setting
but only simulation results were provided. Alternative metrics for similar array processing
problems involve the signal-to-noise ratio loss minimization rather than likelihood ratio tests;
in (Abramovich and Besson, 2012; Besson and Abramovich, 2013), the authors exploit the
estimators ĈN (ρ) but restrict themselves to the less tractable finite dimensional analysis.

Our objective is to characterize the false alarm performance of the detector. That is, provided
H0 is the actual scenario (i.e. y = x), we shall evaluate P (TN (ρ) > Γ). Since it shall appear
that, under H0, TN (ρ)

a.s.−→ 0 for every fixed Γ > 0 and every ρ, by dominated convergence
P (TN (ρ) > Γ) → 0 which does not say much about the actual test performance for large but
finite N,n. To avoid such empty statements, we shall then consider the non-trivial case where
Γ = N−

1
2γ for some fixed γ > 0. In this case our objective is to characterize the false alarm

probability

P

(
TN (ρ) >

γ√
N

)
.

Before providing this result, we need some further reminders from Chapter 5. First define

ŜN (ρ) , (1− ρ)
1

n

n∑
i=1

ziz
∗
i + ρIN .

Then, from Lemma 5.1, for each ρ ∈ (max{0, 1− c−1}, 1],

ŜN (ρ)

ρ+ 1
γN (ρ)

1−ρ
1−(1−ρ)c

= ŜN (ρ)

where

ρ ,
ρ

ρ+ 1
γN (ρ)

1−ρ
1−(1−ρ)c

.
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Moreover, the mapping ρ 7→ ρ is continuously increasing from (max{0, 1− c−1}, 1] onto (0, 1].

From classical random matrix considerations (see Chapter 3 or (Silverstein and Bai, 1995)),
letting Z = [z1, . . . , zn] ∈ CN×n, the empirical spectral distribution2 of (1−ρ) 1

nZ
∗Z almost surely

admits a weak limit µ. The Stieltjes transform m(z) ,
∫

(t− z)−1µ(dt) of µ at z ∈ C \ supp(µ)
is the unique complex solution with positive (resp. negative) imaginary part if =[z] > 0 (resp.
=[z] < 0) and unique real positive solution if =[z] = 0 and <[z] < 0 to

m(z) =

(
−z + c

∫
(1− ρ)t

1 + (1− ρ)tm(z)
ν(dt)

)−1

.

We denote m′(z) the derivative of m(z) with respect to z (recall that the Stieltjes transform
of a positively supported measure is analytic, hence continuously differentiable, away from the
support of the measure).

With these definitions in place and with the help of Theorem 6.1.1, we are now ready to
introduce the main result of this section.

Theorem 6.2.1 (Asymptotic detector performance). Under hypothesis H0, as N,n→∞ with
cN → c ∈ (0,∞),

sup
ρ∈Rκ

∣∣∣∣P (TN (ρ) >
γ√
N

)
− exp

(
− γ2

2σ2
N (ρ)

)∣∣∣∣→ 0

where ρ 7→ ρ is the aforementioned mapping and

σ2
N (ρ) ,

1

2

p∗CNQ2
N (ρ)p

p∗QN (ρ)p · 1
N trCNQN (ρ) ·

(
1− c(1− ρ)2m(−ρ)2 1

N trC2
NQ

2
N (ρ)

)
with QN (ρ) , (IN + (1− ρ)m(−ρ)CN )−1.

Otherwise stated,
√
NTN (ρ) is uniformly well approximated by a Rayleigh distributed ran-

dom variable RN (ρ) with parameter σN (ρ). Simulation results are provided in Figure 6.1 and
Figure 6.2 which corroborate the results of Theorem 6.2.1 for N = 20 and N = 100, respectively
(for a single value of ρ though). Comparatively, it is observed, as one would expect, that larger
values for N induce improved approximations in the tails of the approximating distribution.

The result of Theorem 6.2.1 provides an analytical characterization of the performance of
the GLRT for each ρ which suggests in particular the existence of values for ρ which minimize
the false alarm probability for given γ. Note in passing that, independently of γ, minimizing
the false alarm rate is asymptotically equivalent to minimizing σ2

N (ρ) over ρ. However, the
expression of σ2

N (ρ) depends on the covariance matrix CN which is unknown to the array and
therefore does not allow for an immediate online choice of an appropriate ρ. To tackle this
problem, the following proposition provides a consistent estimate for σ2

N (ρ) based on ĈN (ρ) and
p.

2That is the normalized counting measure of the eigenvalues.
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Figure 6.1: Histogram and distribution function of the
√
NTN (ρ) versus RN (ρ), N = 20, p =

N−
1
2 [1, . . . , 1]T, [CN ]ij = 0.7|i−j|, cN = 1/2, ρ = 0.2.
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Figure 6.2: Histogram and distribution function of the
√
NTN (ρ) versus RN (ρ), N = 100,

p = N−
1
2 [1, . . . , 1]T, [CN ]ij = 0.7|i−j|, cN = 1/2, ρ = 0.2.

Proposition 6.2.1 (Empirical performance estimation). For ρ ∈ (max{0, 1− c−1
N }, 1), define

σ̂2
N (ρ) ,

1

2

1− ρp
∗Ĉ−2

N (ρ)p

p∗Ĉ−1
N (ρ)p

(1− cN + cNρ) (1− ρ)
.

Also let σ̂2
N (1) , limρ↑1 σ̂2

N (ρ) <∞ a.s. Then we have

sup
ρ∈Rκ

∣∣σ2
N (ρ)− σ̂2

N (ρ)
∣∣ a.s.−→ 0.

Since both the estimation of σ2
N (ρ) in Proposition 6.2.1 and the convergence in Theorem 6.2.1

are uniform over ρ ∈ Rκ, we have the following result.

Corollary 6.1 (Empirical performance optimum). Let σ̂2
N (ρ) be defined as in Proposition 6.2.1

and define ρ̂∗N as any value satisfying

ρ̂∗N ∈ argminρ∈Rκ
{
σ̂2
N (ρ)

}
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(this set being in general a singleton). Then, for every γ > 0,

P
(√

NTN (ρ̂∗N ) > γ
)
− inf
ρ∈Rκ

{
P
(√

NTN (ρ) > γ
)}
→ 0.

This last result states that, for N,n sufficiently large, it is increasingly close-to-optimal to
use the detector TN (ρ̂∗N ) in order to reach minimal false alarm probability. A practical graphical
confirmation of this fact is provided in Figure 6.3 where, in the same scenario as in Figures 6.1–
6.2, the false alarm rates for various values of γ are depicted. In this figure, the black dots
correspond to the actual values taken by P (

√
NTN (ρ) > γ) empirically obtained out of 106

Monte Carlo simulations. The plain curves are the approximating values exp(−γ2/(2σN (ρ)2)).
Finally, the white dots with error bars correspond to the mean and standard deviations of
exp(−γ2/(2σ̂N (ρ)2)) for each ρ, respectively. It is first interesting to note that the estimates
σ̂N (ρ) are quite accurate, especially so for N large, with standard deviations sufficiently small to
provide good estimates, already for small N , of the false alarm minimizing ρ. However, similar
to Figures 6.1–6.2, we observe a particularly weak approximation in the (small) N = 20 setting
for large values of γ, corresponding to tail events, while for N = 100, these values are better
recovered. This behavior is obviously explained by the fact that γ = 3 is not small compared to√
N when N = 20.

Nonetheless, from an error rate viewpoint, it is observed that errors of order 10−2 are rather
well approximated for N = 100. In Figure 6.4, we consider this observation in depth by display-
ing P (TN (ρ̂∗N ) > Γ) and its approximation minρ exp(−NΓ2/(2σ2

N (ρ))) for N = 20 and N = 100,
for various values of Γ. This figures shows that even errors of order 10−4 are well approximated
for large N , while only errors of order 10−2 can be evaluated for small N .3
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Figure 6.3: False alarm rate P (
√
NTN (ρ) > γ), N = 20 (left), N = 100 (right), p =

N−
1
2 [1, . . . , 1]T, [CN ]ij = 0.7|i−j|, cN = 1/2.

3Note that a comparison against alternative algorithms that would use no shrinkage (i.e., by setting ρ = 0)
or that would not implement a robust estimate is not provided here, being of little relevance. Indeed, a proper
selection of cN to a large value or CN with condition number close to one would provide an arbitrarily large gain
of shrinkage-based methods, while an arbitrarily heavy-tailed choice of the τi distribution would provide a huge
performance gain for robust methods. It is therefore not possible to compare such methods on fair grounds.
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Figure 6.4: False alarm rate P (TN (ρ̂∗N ) > Γ) for N = 20 and N = 100, p = N−
1
2 [1, . . . , 1]T,

[CN ]ij = 0.7|i−j|, cN = 1/2.

6.2.1 Proofs

6.2.1.1 Fluctuations of the GLRT detector

This section is devoted to the proof of Theorem 6.2.1, which shall fundamentally rely on Theo-
rem 6.1.1. The proof will be established in two steps. First, we shall prove the convergence for
each ρ ∈ Rκ, which we then generalize to the uniform statement of the theorem.

Let us then fix ρ ∈ Rκ for the moment. In anticipation of the eventual replacement of ĈN (ρ)
by ŜN (ρ), we start by studying the fluctuations of the bilinear forms involved in TN (ρ) but

with ĈN (ρ) replaced by ŜN (ρ) (note that TN (ρ) remains constant when scaling ĈN (ρ) by any

constant, so that replacing ĈN (ρ) by ŜN (ρ) instead of by ŜN (ρ) · 1
N tr ŜN (ρ) as one would expect

comes with no effect).

Our first goal is to show that the vector
√
N(<[y∗Ŝ

−1
N (ρ)p],=[y∗Ŝ

−1
N (ρ)p]) is asymptotically

well approximated by a zero mean Gaussian vector with given covariance matrix. To this end,
let us denote A = [y p] ∈ CN×2 and QN = QN (ρ) = (IN + (1 − ρ)m(−ρ)CN )−1. Then, from
(Chapon et al., 2014, Lemma 5.3) (adapted to our current notations and normalizations), for
any Hermitian B ∈ C2×2 and for any u ∈ R,

E

[
exp

(
ı
√
Nu trBA∗

[
ŜN (ρ)−1 − 1

ρ
QN (ρ)

]
A

) ∣∣∣ y]
= exp

(
−1

2
u2∆2

N (B; y; p)

)
+O(N−

1
2 ) (6.5)

where we denote by E[·|y] the conditional expectation with respect to the random vector y and
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where

∆2
N (B; y; p) ,

cm(−ρ)2(1− ρ)2 tr
(
ABA∗CNQ2

N (ρ)
)2

ρ2
(
1− cm(−ρ)2(1− ρ)2 1

N trC2
NQ

2
N (ρ)

) .
Also, we have from classical central limit results on Gaussian random variables

E
[
exp

(
ı
√
Nu trB

[
A∗QN (ρ)A− ΓN

])]
= exp

(
−1

2
u2∆′2N (B; p)

)
+O(N−

1
2 )

where

ΓN ,
1

ρ

[
1
N trCNQN (ρ) 0

0 p∗QN (ρ)p

]
∆′2N (B; p) ,

B2
11

ρ2

1

N
trC2

NQ
2
N (ρ) +

2|B12|2

ρ2
p∗CNQ2

N (ρ)p.

Besides, the O(N−
1
2 ) terms in the right-hand side of (6.5) remains O(N−

1
2 ) under expectation

over y (for this, see the proof of (Chapon et al., 2014, Lemma 5.3)).

Altogether, we then have

E
[
exp

(
ı
√
Nu trB

[
A∗Ŝ

−1
N (ρ)A− ΓN

])]
= E

[
exp

(
−1

2
u2∆2

N (B; y; p)

)]
exp

(
−1

2
u2∆′2N (B; p)

)
+O(N−

1
2 ).

Note now that

A∗CNQ2
N (ρ)A−ΥN

a.s.−→ 0

where

ΥN ,

[
1
N trC2

NQ
2
N (ρ) 0

0 p∗CNQ2
N (ρ)p

]
so that, by dominated convergence, we obtain

E
[
exp

(
ı
√
Nu trB

[
A∗Ŝ

−1
N (ρ)A− ΓN

])]
= exp

(
−1

2
u2
[
∆2
N (B; p) + ∆′2N (B; p)

])
+ o(1)

where we defined

∆2
N (B; p) ,

cm(−ρ)2(1− ρ)2 tr (BΥN )2

ρ2
(
1− cm(−ρ)2(1− ρ)2 1

N trC2
NQ

2
N (ρ)

) .
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By a generalized Lévy’s continuity theorem argument (see e.g. (Hachem et al., 2008a, Propo-
sition 6)) and the Cramer-Wold device, we conclude that

√
N
(
y∗Ŝ

−1
N (ρ)y,<[y∗Ŝ

−1
N (ρ)p],=[y∗Ŝ

−1
N (ρ)p]

)
− ZN = oP (1)

where ZN is a Gaussian random vector with mean and covariance matrix prescribed by the

above approximation of
√
N trBA∗Ŝ

−1
N A for each Hermitian B. In particular, taking B1 ∈{[

0 1
2

1
2

0

]
,
[

0 ı
2

− ı
2

0

]}
to retrieve the asymptotic variances of

√
N<[y∗Ŝ

−1
N (ρ)p] and

√
N=[y∗Ŝ

−1
N (ρ)p],

respectively, gives

∆2
N (B1; p) =

1

2ρ2
p∗CNQ2

N (ρ)p
cm(−ρ)2(1− ρ)2 1

N trC2
NQ

2
N (ρ)

1− cm(−ρ)2(1− ρ)2 1
N trC2

NQ
2
N (ρ)

∆′2N (B1; p) =
1

2ρ2
p∗CNQ2

N (ρ)p

and thus
√
N(<[y∗Ŝ

−1
N (ρ)p],=[y∗Ŝ

−1
N (ρ)p]) is asymptotically equivalent to a Gaussian vector

with zero mean and covariance matrix

(∆2
N (B1; p) + ∆′2N (B1; p))I2 =

1

2ρ2

p∗CNQ2
N (ρ)p

1− cm(−ρ)2(1− ρ)2 1
N trC2

NQ
2
N (ρ)

I2.

We are now in position to apply Theorem 6.1.1. Reminding that Ŝ−1
N (ρ)(ρ+ 1

γN (ρ)
1−ρ

1−(1−ρ)c) =

Ŝ
−1
N (ρ), we have by Theorem 6.1.1 for k = −1

√
NA∗

[
Ĉ−1
N (ρ)−

ŜN (ρ)−1

ρ+ 1
γN (ρ)

1−ρ
1−(1−ρ)c

]
A

a.s.−→ 0.

Since almost sure convergence implies weak convergence,
√
NA∗Ĉ−1

N (ρ)A has the same asymp-

totic fluctuations as
√
NA∗Ŝ

−1
N (ρ)A/( 1

N tr ŜN (ρ)). Also, as TN (ρ) remains identical when scaling

Ĉ−1
N (ρ) by 1

N tr ŜN (ρ), only the fluctuations of
√
NA∗Ŝ

−1
N (ρ)A are of interest, which were pre-

viously derived. We then finally conclude by the delta method (or more directly by Slutsky’s
lemma) that √

N

y∗Ĉ−1
N (ρ)yp∗Ĉ−1

N (ρ)p

< [y∗Ĉ−1
N (ρ)p

]
=
[
y∗Ĉ−1

N (ρ)p
]− σN (ρ)Z ′ = oP (1)

for some Z ′ ∼ N(0, I2) and

σ2
N (ρ) ,

1

2

p∗CNQ2
N (ρ)p

p∗QN (ρ)p · 1
N trCNQN (ρ) ·

(
1− cm(−ρ)2(1− ρ)2 1

N trC2
NQ

2
N (ρ)

) .
It unfolds that, for γ > 0,

P

(
TN (ρ) >

γ√
N

)
− exp

(
− γ2

2σ2
N (ρ)

)
→ 0 (6.6)
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as desired.

The second step of the proof is to generalize (6.6) to uniform convergence across ρ ∈ Rκ.
To this end, somewhat similar to above, we shall transfer the distribution P (

√
NTN (ρ) > γ) to

P (
√
NTN (ρ) > γ) by exploiting the uniform convergence of Theorem 6.1.1, where we defined

TN (ρ) ,

∣∣∣y∗Ŝ−1
N (ρ)p

∣∣∣√
y∗Ŝ

−1
N (ρ)y

√
p∗Ŝ

−1
N (ρ)p

and exploit a ρ-Lipschitz property of
√
NTN (ρ) to reduce the uniform convergence over Rκ to

a uniform convergence over finitely many values of ρ.

The ρ-Lipschitz property we shall need is as follows: for each ε > 0

lim
δ→0

lim
N→∞

P

 sup
ρ,ρ′∈Rκ
|ρ−ρ′|<δ

√
N
∣∣TN (ρ)− TN (ρ′)

∣∣ > ε

 = 0. (6.7)

Let us prove this result. By Theorem 6.1.1, since almost sure convergence implies convergence
in distribution, we have

P

(
sup
ρ∈Rκ

√
N |TN (ρ)− TN (ρ)| > ε

)
→ 0.

Applying this result to (6.7) induces that it is sufficient to prove (6.7) for TN (ρ) in place of

TN (ρ). Let η > 0 small and A
η
N , {∃ρ ∈ Rκ, y

∗Ŝ
−1
N (ρ)yp∗Ŝ

−1
N (ρ)p < η}. Developing the

difference TN (ρ) − TN (ρ′) and isolating the denominator according to its belonging to A
η
N or

not, we may write

P

 sup
ρ,ρ′∈Rκ
|ρ−ρ′|<δ

√
N
∣∣TN (ρ)− TN (ρ′)

∣∣ > ε


≤ P

(
A
η
N

)
+ P

 sup
ρ,ρ′∈Rκ
|ρ−ρ′|<δ

√
NVN (ρ, ρ′) > εη


where

VN (ρ, ρ′) ,
∣∣∣y∗Ŝ−1

N (ρ)p
∣∣∣√y∗Ŝ−1

N (ρ′)y
√
p∗Ŝ

−1
N (ρ′)p

−
∣∣∣y∗Ŝ−1

N (ρ′)p
∣∣∣√y∗Ŝ−1

N (ρ)y

√
p∗Ŝ

−1
N (ρ)p.
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From classical random matrix results, P (Aη
N ) → 0 for a sufficiently small choice of η. To

prove that limδ lim supn P (sup|ρ−ρ′|<δ
√
NVN (ρ, ρ′) > εη) = 0, it is then sufficient to show that

lim
δ→0

lim sup
n

P

 sup
ρ,ρ′∈Rκ
|ρ−ρ′|<δ

√
N |y∗ŜN (ρ)−1p− y∗ŜN (ρ′)−1p| > ε′

 = 0 (6.8)

for any ε′ > 0 and similarly for y∗ŜN (ρ)−1y− y∗ŜN (ρ′)−1y and p∗ŜN (ρ)−1p− p∗ŜN (ρ′)−1p. Let
us prove (6.8), the other two results following essentially the same line of arguments. For this,
by (Kallenberg, 2002, Corollary 16.9) (see also (Billingsley, 1968, Theorem 12.3)), it is sufficient
to prove, say

sup
ρ,ρ′∈Rκ
ρ6=ρ′

sup
n

E

[√
N
∣∣∣y∗ŜN (ρ)−1p− y∗ŜN (ρ′)−1p

∣∣∣2]
|ρ− ρ′|2

<∞.

But then, remarking that
√
Ny∗ŜN (ρ)−1p− y∗ŜN (ρ′)−1p

= (ρ′ − ρ)
√
Ny∗ŜN (ρ)−1

(
IN −

1

n

n∑
i=1

ziz
∗
i

)
ŜN (ρ′)−1p

this reduces to showing that

sup
ρ,ρ′∈Rκ

sup
n

E

N ∣∣∣∣∣y∗ŜN (ρ)−1

(
IN −

1

n

n∑
i=1

ziz
∗
i

)
ŜN (ρ′)−1p

∣∣∣∣∣
2
 <∞.

Conditioning first on z1, . . . , zn, this further reduces to showing

sup
ρ,ρ′∈Rκ

sup
n

E

∥∥∥∥∥ŜN (ρ)−1

(
IN −

1

n

n∑
i=1

ziz
∗
i

)
ŜN (ρ′)−1p

∥∥∥∥∥
2
 <∞.

But this is yet another standard random matrix result, obtained e.g., by noticing that∥∥∥∥∥ŜN (ρ)−1

(
IN −

1

n

n∑
i=1

ziz
∗
i

)
ŜN (ρ′)−1p

∥∥∥∥∥
2

≤ 1

κ4

∥∥∥∥∥IN − 1

n

n∑
i=1

ziz
∗
i

∥∥∥∥∥
2

which remains of uniformly finite expectation (left norm is vector Euclidean norm, right norm
is matrix spectral norm). This completes the proof of (6.7).

Getting back to our original problem, let us now take ε > 0 arbitrary, ρ1 < . . . < ρK be a
regular sampling of Rκ, and δ = 1/K. Then by (6.6), K being fixed, for all n > n0(ε),

max
1≤k≤K

∣∣∣∣P (TN (ρi) >
γ√
N

)
− exp

(
− γ2

2σ2
N (ρi)

)∣∣∣∣ < ε. (6.9)
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Also, from (6.7), for small enough δ,

max
1≤k≤K

P

 sup
ρ∈Rκ
|ρ−ρk|<δ

√
N |TN (ρ)− TN (ρk)| > γζ


≤ P

 sup
ρ,ρ′∈Rκ
|ρ−ρ′|<δ

√
N |TN (ρ)− TN (ρ′)| > γζ


< ε

for all large n > n′0(ε, ζ) > n0(ε) where ζ > 0 is also taken arbitrarily small. Thus we have, for
each ρ ∈ Rκ and for n > n′0(ε, ζ)

P

(
TN (ρ) >

γ√
N

)
≤ P

(
TN (ρi) >

γ(1− ζ)√
N

)
+ P

(√
N |TN (ρ)− TN (ρi)| > γζ

)
≤ P

(
TN (ρi) >

γ(1− ζ)√
N

)
+ ε

for i ≤ K the unique index such that |ρ− ρi| < δ and where the inequality holds uniformly on
ρ ∈ Rκ. Similarly, reversing the roles of ρ and ρi,

P

(
TN (ρ) >

γ√
N

)
≥ P

(
TN (ρi) >

γ(1 + ζ)√
N

)
− ε.

As a consequence, by (6.9), for n > n′0(ε, ζ), uniformly on ρ ∈ Rκ,

P

(
TN (ρ) >

γ√
N

)
≤ exp

(
−γ

2(1− ζ)2

2σ2
N (ρi)

)
+ 2ε

P

(
TN (ρ) >

γ√
N

)
≥ exp

(
−γ

2(1 + ζ)2

2σ2
N (ρi)

)
− 2ε

which, by continuity of the exponential and of ρ 7→ σN (ρ),4 letting ζ and δ small enough (up to
growing n′0(ε, ζ)), leads to

sup
ρ∈Rκ

∣∣∣∣P (√NTN (ρ) > γ
)
− exp

(
− γ2

2σ2
N (ρ)

)∣∣∣∣ ≤ 3ε

for all n > n′0(ε, ζ), which completes the proof.

6.2.1.2 Around empirical estimates

This section is dedicated to the proof of Proposition 6.2.1 and Corollary 6.1.

4Note that it is unnecessary to ensure lim infN σN (ρ) > 0 as the exponential would tend to zero anyhow in
this scenario.
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We start by showing that σ̂2
N (1) is well defined. It is easy to observe that the ratio defining

σ̂2
N (ρ) converges to an undetermined form (zero over zero) as ρ ↑ 1. Applying l’Hospital’s

rule to the ratio, using the differentiation d
dρ Ŝ

−1
N (ρ) = −Ŝ−2

N (ρ)(IN − 1
n

∑
i ziz

∗
i ) and the limit

Ŝ
−1
N (ρ)→ IN as ρ ↑ 1, we end up with

σ̂2
N (ρ)→ 1

2

p∗
(

1
n

∑n
i=1 ziz

∗
i

)
p

1
N tr

(
1
n

∑n
i=1 ziz

∗
i

) .
Letting ε, κ > 0 small, since p∗ 1

n

∑
i ziz

∗
i p − p∗CNp

a.s.−→ 0, 1
N tr 1

n

∑
i ziz

∗
i

a.s.−→ 1 as n → ∞, we
immediately have, by continuity of both σ2

N (ρ) and σ̂2
N (ρ),

sup
ρ∈(1−κ,1]

∣∣σ̂2
N (ρ)− σ2

N (ρ)
∣∣ ≤ ε

for all large n almost surely. From now on, it then suffices to prove Proposition 6.2.1 on the
complementary set R′κ , [κ+min{0, 1−c−1}, 1−κ]. For this, we first recall the following results
borrowed from Chapter 5 with slightly updated notations. First, we have

sup
ρ∈Rκ

∥∥∥∥∥ ĈN (ρ)
1
N tr ĈN (ρ)

− ŜN (ρ)

∥∥∥∥∥ a.s.−→ 0.

Also, for z ∈ C \ R+, defining

Ŝ
N

(z) , (1− ρ)
1

n

n∑
i=1

ziz
∗
i − zIN

(so in particular Ŝ
N

(−ρ) = ŜN (ρ), for all ρ ∈ Rκ), we have, with C a compact set of C \R+ and
any integer k,

sup
z̄∈C

∣∣∣∣ dkdzk
{

1

N
tr Ŝ

−1

N
(z)− 1

N
tr
(
−z
[
IN + (1− ρ)mN (z)CN

])−1
}
z=z̄

∣∣∣∣ a.s.−→ 0

sup
z̄∈C

∣∣∣∣ dkdzk {p∗Ŝ−1

N
(z)p− p∗

(
−z
[
IN + (1− ρ)mN (z)CN

])−1
p
}
z=z̄

∣∣∣∣ a.s.−→ 0

where mN (z) is defined as the unique solution with positive (resp. negative) imaginary part if
=[z] > 0 (resp. =[z] < 0) or unique positive solution if z < 0 of

mN (z) =

(
−z + c

∫
(1− ρ)t

1 + (1− ρ)tmN (z)
νN (dt)

)−1

.

This expression of mN (z) can be rewritten in the more practical form

mN (z) = −1− c
z

+ c

∫
νN (dt)

−z − z(1− ρ)tmN (z)

= −1− c
z

+ c
1

N
tr
(
−z
[
IN + (1− ρ)mN (z)CN

])−1
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so that, from the above relations

sup
ρ∈R′κ

∣∣∣∣mN (−ρ)−
(

1− cN
ρ

+ cN
1

N
tr Ĉ−1

N (ρ) · 1

N
tr ĈN (ρ)

)∣∣∣∣ a.s.−→ 0

sup
ρ∈R′κ

∣∣∣∣∣
∫

tνN (dt)

1 + (1− ρ)mN (−ρ)t
−

1− ρ 1
N tr Ĉ−1

N (ρ) · 1
N tr ĈN (ρ)

(1− ρ)mN (−ρ)

∣∣∣∣∣ a.s.−→ 0.

Differentiating along z the first expression of mN (z), we also recall that

m′N (z) =
m2
N (z)

1− c
∫ mN (z)2(1−ρ2)t2νN (dt)

(1−(1−ρ)tmN (−ρ))2

.

Now, remark that

p∗Ŝ
N

(−ρ)−2p =
d

dz

[
p∗Ŝ

N
(z)−1p

]
z=−ρ

which (by analyticity) is uniformly well approximated by

d

dz

[
p∗
(
−z
[
IN + (1− ρ)mN (z)CN

])−1
p
]
z=−ρ

=
1

ρ2
p∗QN (ρ)p− 1

ρ
(1− ρ)m′N (−ρ)p∗CNQ2

N (ρ)p

=
1

ρ2
p∗QN (ρ)p− 1

ρ
(1− ρ)

m2
N (−ρ)p∗CNQ2

N (ρ)p

1− cmN (−ρ)2(1− ρ2) 1
N trQ2

N (ρ)
.

(recall that QN (ρ) =
(
IN + (1− ρ)mN (−ρ)CN

)−1
). We then conclude

sup
ρ∈R′κ

∣∣∣∣∣ p∗CNQ2
N (ρ)p

1− cmN (−ρ)2(1− ρ)2 1
N trQ2

N (ρ)

−
p∗Ĉ−1

N (ρ)p · 1
N tr ĈN (ρ)− ρp∗Ĉ−2

N (ρ)p ·
(

1
N tr ĈN (ρ)

)2

(1− ρ)mN (−ρ)2

∣∣∣∣∣∣∣ a.s.−→ 0.

Putting all results together and remarking that 1
N tr Ĉ−1

N (ρ) = 1 for all ρ and that 1
N tr ĈN (ρ)→

ρρ−1, we obtain the expected result.

It now remains to prove Corollary 6.1. This is easily performed thanks to Theorem 6.2.1
and Proposition 6.2.1. From these, we indeed have the three relations

P
(√

NTN (ρ̂∗N ) > γ
)
− exp

(
− γ2

2σ2
N (ρ̂∗N )

)
a.s.−→ 0

P
(√

NTN (ρ∗N ) > γ
)
− exp

(
− γ2

2σ2
N (ρ∗N )

)
→ 0

exp

(
− γ2

2σ2
N (ρ̂∗N )

)
− exp

(
− γ2

2σ∗2N

)
a.s.−→ 0
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where we denoted ρ∗N any element in the argmin over ρ of P (
√
NTN (ρ) > γ) and σ∗2N the mini-

mum of σN (ρ) (i.e. the minimizer for exp(− γ2

2σN (ρ))). Note that the first two relations rely funda-

mentally on the uniform convergence supρ∈Rκ |P
(√

NTN (ρ) > γ
)
−exp

(
−γ2/(2σ2

N (ρ))
)
| a.s.−→ 0.

By definition of ρ∗N and σ∗2N , we also have

exp

(
− γ2

2σ∗2N

)
≤ min

{
exp

(
− γ2

2σ2
N (ρ̂∗N )

)
, exp

(
− γ2

2σ2
N (ρ∗N )

)}
P
(√

NTN (ρ∗N ) > γ
)
≤ P

(√
NT (ρ̂∗N ) > γ

)
.

Putting things together then gives

P
(√

NT (ρ̂∗N ) > γ
)
− P

(√
NTN (ρ∗N ) > γ

)
a.s.−→ 0

which is the expected result.
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Chapter 7

Outlier rejection

In Chapters 4 to 6, our interest lay on the large dimensional analysis of robust M-estimators for
elliptically distributed inputs. As discussed in the introductory Chapter 2, this is mainly moti-
vated by two reasons. For one, elliptical distributions enclose a minimum degree of parametriza-
tion to adequately model various types of impulsive data behaviors. Secondly, among other
classes of such easily parametrizable distributions, elliptical vectors derive naturally from (nor-
malized) Gaussian vectors and are, as such, more amenable to probabilistic considerations.
However, the elliptical distribution fails to encompass many impulsiveness scenarios of impor-
tant practical use. This is mostly due to the data needing roughly to arise from a uniquely

defined linear combination (through the matrix often denoted A or C
1
2
N ) of independent Gaus-

sian entries times a one-dimensional impulsion-providing variable (often denoted τi), which are
too harsh constraints.

To meet the original intention of Huber to design M-estimators for their robustness to ar-
bitrarily outlying data vectors (model inconsistent data, missing data, noise bursts, etc.), one
should instead be capable of understanding the large dimensional behavior of ĈN (and ĈN (ρ),
ČN (ρ)) built upon a proportion of model-fitting vectors and a complementary proportion of
deterministic but unknown outliers. This is the objective of the present chapter. What we shall
precisely consider here is a scenario where Maronna’s M-estimators of scatter are constructed
from a given amount (in practice a majority) of i.i.d. zero-mean and covariance CN Gaussian
vectors and a complementary (usually small) amount of deterministic vectors a1, a1, . . .. We
will show, by a large random matrix approach similar to previous chapters, that the quadratic
form 1

N a
∗
iC
−1
N ai is at the core of the outlier rejection performance of ĈN . By a simple analysis

of the theoretical results, we shall understand in particular why the function uH(x) proposed
originally by Huber is (in some sense to be defined later) optimal among the class of Maronna’s
u(x) functions to ensure proper outlier rejection.

We start by introducing our assumptions and main results before providing some elements
of proof.
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7.1 Main results

Let εn ∈ {k/n | k = 0, . . . , n} and X ∈ CN×n be the concatenation matrix of the n successive
observations

X =
[
x1, . . . , x(1−εn)n, a1, . . . , aεnn

]
where x1, . . . , x(1−εn)n ∈ CN are random vectors with xi = C

1
2
Nwi, CN ∈ CN×N deterministic

positive definite and w1, . . . , w(1−εn)n i.i.d. random with i.i.d. zero mean and unit variance entries,

whereas a1, . . . , aεnn ∈ CN are deterministic and such that

0 < min
i

lim inf
n

‖ai‖√
N
≤ max

i
lim sup

n

‖ai‖√
N

<∞.

Under this model, the xi’s are model-fitting vectors while the ai’s represent unknown outliers.
Note that we consider a particular data ordering (model-fitting data first and outliers last) which
shall however be inconsequential in the remainder.

As usual, we further denote cN , N/n and shall make the following assumptions.

Assumption 7.1. For each N , CN � 0 and lim supN ‖CN‖ <∞.

Assumption 7.2. As N,n→∞, cN → c and εn → ε ∈ [0, 1) with 0 < c < 1− ε.

From Assumption 7.2, Maronna’s M-estimator ĈN for the column vectors of X is well-defined
as the almost surely unique solution to the equation in Z

Z =
1

n

(1−εn)n∑
i=1

u

(
1

N
x∗iZ

−1xi

)
xix
∗
i +

1

n

εnn∑
i=1

u

(
1

N
a∗iZ

−1ai

)
aia
∗
i (7.1)

where u is as usual defined on [0,∞), nonnegative, continuous and non-increasing, and such that
φ(x) = xu(x) is increasing and bounded with limx→∞ φ(x) , φ∞, and 1 < φ∞ < c−1.

As in the previous chapters, our main objective is to find a large N,n random matrix equiv-
alent for ĈN which is more tractable and prone to analysis. This is the object of the following
result, established in (Morales-Jimenez et al., 2015).

Theorem 7.1.1. Let Assumptions 7.1–7.2 hold and let ĈN be the almost sure unique solution
to (7.1). Then, as N,n→∞, ∥∥∥ĈN − ŜN∥∥∥ a.s.−→ 0

where

ŜN ,
1

n

(1−εn)n∑
i=1

v (γn)xix
∗
i +

1

n

εnn∑
i=1

v (αi,n) aia
∗
i
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with γn and α1,n, . . . , αεnn,n the unique positive solutions to the system of εnn + 1 equations
(i = 1, . . . , εnn)

γn =
1

N
trCN

(
(1− ε)vc(γn)

1 + cvc(γn)γn
CN +

1

n

εnn∑
i=1

v (αi,n) aia
∗
i

)−1

αi,n =
1

N
a∗i

 (1− ε)vc(γn)

1 + cvc(γn)γn
CN +

1

n

εnn∑
j 6=i

v (αj,n) aja
∗
j

−1

ai

and vc(x) = u
(
g−1(x)

)
, g(x) = x/(1− cφ(x)).

Remark that the approximation matrix ŜN consists of two terms: a normalized sample
covariance matrix and a weighted sum of the outlier outer products. These weights allow for
an automated balancing between model-fitting data and outliers. To get some insight on the
properties of ĈN induced by these weights, let us consider the single-outlier case where εn =
1/n → 0. We easily obtain by a rank-one perturbation argument that γn → γ, where γ
is the solution to γ = (1 + cvc(γ)γ)/vc(γ). It can be seen, using the definition of v, that
γ = φ−1(1)/(1 − c) and that, as a consequence, vc(γ) = 1/φ−1(1) (which corresponds to the
result obtained in Chapter 4 in the absence of outliers). As for α1,n, it satisfies

α1,n =

(
φ−1(1)

1− c
+ o(1)

)
1

N
a∗1C

−1
N a1.

As such, so long that lim infn
1
N a
∗
1C
−1
N a1 > 1, vc(α1,n) ≤ vc(γ) for all large n and thus the

impact of the outlier a1 will be all the more attenuated that 1
N a
∗
1C
−1
N a1 is large. However, if

lim supn
1
N a
∗
1C
−1
N a1 < 1, then vc(α1,n) ≥ vc(γ) for all large n and the impact of a1 may be

worsen. As such, we can readily make the following two important observations:

• to avoid enhancing the effect of outliers, vc(x) should be set to a constant for all x ≤ φ−1(1)
1−c ,

or equivalently u(x) should be constant for x ≤ φ−1(1). A particular example of such a
choice is u(x) = min{1, (1+t)/(t+x)} for some t > 0, which is (almost) the original Huber
function uH for the estimator (2.1), where t = 0.1

• if λ1(CN ) and λN (CN ) remain close to one, the norm of a1 dictates most of the relative
outlier impact. For CN departing from the identity, a good rejection to outliers is expected
if a1 is not aligned to the dominant eigenvectors of CN . On the opposite, if a1 is to be
aligned to the dominant eigenmodes of CN , the outlier rejection would be compromised.

Other considerations are easily made. In particular, if a1 = . . . = aεnn, it is easily seen that,
as εnn grows, the outlier-rejection gain brought by the possibly large quadratic form 1

N a
∗
1C
−1
N a1

is quickly overrun so that, if ε > 0 and lim supN
1
N a
∗
1C
−1
N a1 < ∞, the αi,n’s converge jointly

to zero and the outliers will no longer be rejected. This scenario is all the more problematic
that for ε not too small, vc(γn) may become much smaller than vc(αi,n), which would drive the
robust estimator to a starkly opposite behavior than expected.

1Recall that taking t = 0 does not ensure the uniqueness of the solution to (7.1).
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Specifying scenarios more involved than a1 = . . . = aεnn leads to more fixed point equations
and thus to a less tractable understanding. It is however sensible to assume that the outliers are
themselves random and likely to differ from one observation to the next. A natural assumption
that maintains a high level of simplicity is to take the outliers to be i.i.d. Gaussian distributed
with zero mean and covariance matrix DN different from CN . This gives the following corollary
to Theorem 7.1.1.

Corollary 7.1. Let Assumptions 7.1–7.2 hold and let a1, . . . , aεnn be random with ai = D
1
2
N w̃i,

where DN ∈ CN×N is Hermitian positive definite with lim supN ‖DN‖ < ∞ and ŵ1, . . . , ŵεnn
are independent with i.i.d. zero mean and unit variance entries. Then, as N,n→∞,∥∥∥ĈN − Ŝrnd

N

∥∥∥ a.s.−→ 0

where

Ŝrnd
N ,

1

n

(1−εn)n∑
i=1

v (γn)xix
∗
i +

1

n

εnn∑
i=1

v (αn) aia
∗
i

with γn and αn the unique positive solutions to

γn =
1

N
trCN

(
(1− ε)vc(γn)

1 + cvc(γn)γn
CN +

εvc(αn)

1 + cvc(αn)αn
DN

)−1

αn =
1

N
trDN

(
(1− ε)vc(γn)

1 + cvc(γn)γn
CN +

εvc(αn)

1 + cvc(αn)αn
DN

)−1

.

In this scenario, ĈN is equivalent to a weighted sum of two sample covariance matrices for
the model-fitting against the outlying data. Again, it is interesting to study the regime where
ε = 0. Under this assumption, we have γn = γ where vc(γ) = 1/φ−1(1) similar to above and αn
is now exactly defined as

αn =
φ−1(1)

1− c
1

N
trDNC

−1
N .

The factor of importance is then here the trace 1
N trDNC

−1
N which, if large, induces a decay in

the outlier importance, and vice-versa. Note again that, for DN and CN of similar trace, it is of
key importance that CN be as distinct from IN as possible for outlier rejection to be possible.
Note also that, when seen as functions of ε, γn(ε)→ γ and αn(ε)→ αn continuously with ε→ 0,
so that the predicted behavior for ε = 0 is a good approximation of the behavior for all small
ε > 0.

We now provide simulation results that shed some more light on the conclusions drawn from
Theorem 7.1.1 and Corollary 7.1.

Let us place ourselves first under the setting of Theorem 7.1.1. Taking N = 100, n = 500,
we assume [CN ]ij = .9|i−j| and let εnn = 2 with a1 = 1, the N -dimensional vector of all-ones,
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and a2 such that [a2]k = exp(πık) (a steering vector at 30◦). In this setting, 1
N a
∗
1C
−1
N a1 ' 0.06

while 1
N a
∗
2C
−1
N a2 ' 19. We compare the results obtained for u1(x) = (1 + t)/(t + x) against

u2(x) = min{1, (1 + t)/(t+ x)} for t = .1 and denote v1, v2 their corresponding vc functions.

Numerically, we obtain for the function u1 the weights

v1(γn) ' .992

v1(α1,n) ' 6.42

v1(α2,n) ' .006.

We thus observe an important attenuation of the second outlier, while the first outlier is strongly
enhanced. Comparatively, for the Huber-like function u2, we have

v2(γn) ' .984

v2(α1,n) = 1.00

v2(α2,n) ' .006.

Thus, here, Huber’s type estimator prevents, as it should (based on our earlier comment), the
outlier a1 to be enhanced. This however induces a slight loss in the closeness of v2(γn) to one,
which can only be a finite-n effect.

We now place ourselves under the hypotheses of Corollary 7.1 with, as above [CN ]ij = .9|i−j|,
N = 100, n = 500 (thus c = .2), while DN = IN . We also take u = u2 defined previously and
an outlier density of ε = 0.05, i.e., a 5% data pollution by outliers. We obtain theoretically in
this case

v2(γn) ' 1.00

v2(αn) ' .1219

which leads to a strong attenuation of the outliers, made particularly efficient by the ill-
conditioning of CN . Note that in the limit ε → 0, v2(γn) → 1 while v2(αn) → .1179. To
visually assess the outlier rejection efficacy of ĈN , we compare for this setting the eigenvalue
distribution of the sample covariance matrix 1

nXX
∗ and that of ĈN against the outlier-free SCM

1
n

∑(1−εn)n
i=1 xix

∗
i . From our earlier discussions, we wish ideally that the eigenvalue distributions

of the former two match as closely as possible that of the latter.

Remark 7.1. Before presenting the results, note that, since 1
N trCN = 1

N trDN = 1 for each
N , the often advertised “robust” technique, that consists in normalizing every column Xi of X
as X̄i = Xi/‖Xi‖ and from which the per-column normalized sample covariance matrix 1

nX̄X̄
∗

is built, has the same limiting eigenvalue distribution as 1
nXX

∗ so performs essentially the same
for all large N,n in the present comparison study.

To avoid imprecise Monte Carlo simulations, instead of providing a direct comparison of av-
eraged eigenvalue distributions, we compare here the associated theoretical deterministic equiva-
lent distributions (obtained from the Stieltjes transform of the deterministic equivalent measure
associated to the model Ŝrnd

N , using e.g., the results of (Couillet et al., 2011a)). This is depicted

in Figure 7.1, which shows a tight match between ĈN and the target distribution, while the sam-
ple covariance matrix is strongly affected in its shifting much weight towards the purely-outlier
distribution that would be the Marc̆enko–Pastur distribution (since DN = IN ).
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Figure 7.1: Limiting eigenvalue distributions. [CN ]ij = .9|i−j|, DN = IN , ε = .05.

7.2 Proof of the main results

The outline of the proof follows tightly from the proof of Theorem 4.1.2 in Chapter 4, however
for a model that is (i) simpler in assuming the model-fitting data to be Gaussian an not elliptical,
discarding the complication of the control of the τi’s parameters, and (ii) made slightly more
complex due to the deterministic addition of the vectors a1, . . . , aεnn. Our way to deal with
aspect (ii) is by controlling in parallel the quantities asymptotically approximated by γn and
those asymptotically approximated by αi,n.

Since some parts of the proof are quite redundant with Chapter 4 or even Chapter 5, we shall
mainly focus on the aspects that significantly differ from these and will leave some indisputable
results without a proof.

As in Chapter 4, we may assume without loss of generality that CN = IN . We therefore
take this assumption from now on. Using the definition v(x) = u(g−1(x)) where g(x) = x/(1−
cnφ(x)), similar to Chapter 4, let us write ĈN as

ĈN =
1

n

(1−εn)n∑
i=1

v (di)xix
∗
i +

1

n

εnn∑
i=1

v (bi) aia
∗
i

where di , 1
N x
∗
i Ĉ
−1
N xi and bi = 1

N a
∗
i Ĉ
−1
N ai. We now define

ei ,
v(di)

v(γn)

fi ,
v(bi)

v(αi,n)

with γn and αi,n as in the theorem statement (but for CN = IN ).
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The core of the proof is to show that

max
1≤i≤(1−εn)n

|ei − 1| a.s.−→ 0

max
1≤i≤εnn

|fi − 1| a.s.−→ 0.

Let us first relabel ei and fi such that e1 ≤ . . . ≤ e(1−εn)n and f1 ≤ . . . ≤ fεnn, and let us further
denote δn = max(e(1−εn)n, fεnn). Using classical inequalities as in Chapter 4, we have

ei =

v

(
1
N x
∗
i

(
1
n

∑(1−εn)n
j 6=i v (dj)xjx

∗
j + 1

n

∑εnn
j=1 v (bj) aja

∗
j

)−1
xi

)
v(γn)

=

v

(
1
N x
∗
i

(
1
n

∑(1−εn)n
j 6=i v (γn) ejxjx

∗
j + 1

n

∑εnn
j=1 v (αj,n) fjaja

∗
j

)−1
xi

)
v(γn)

≤
v

(
1

δnN
x∗i
(

1
n

∑(1−εn)n
j 6=i v (γn)xjx

∗
j + 1

n

∑εnn
j=1 v (αj,n) aja

∗
j

)−1
xi

)
v(γn)

.

We now exploit the following random matrix result, which we obtain similarly as Lemma 4.2 in
Chapter 4

max
1≤i≤(1−εn)n

∣∣∣∣∣∣ 1

N
x∗i

 1

n

(1−εn)n∑
j 6=i

v (γn)xjx
∗
j +

1

n

εnn∑
j=1

v (αj,n) aja
∗
j

−1

xi − γn

∣∣∣∣∣∣ a.s.−→ 0.

Then, taking ζ > 0 we have for all large n almost surely

e(1−εn)n ≤
v
(

1
δn

(γn − ζ)
)

v(γn)
. (7.2)

We proceed similarly to upper-bound fi as

fi ≤
v

(
1

δnN
a∗i
(

1
n

∑(1−εn)n
j=1 v (γn)xjx

∗
j + 1

n

∑εnn
j 6=i v (αj,n) aja

∗
j

)−1
ai

)
v(αi,n)

and we now use the random matrix identity

max
1≤i≤εnn

∣∣∣∣∣∣ 1

N
a∗i

 1

n

(1−εn)n∑
j=1

v (γn)xjx
∗
j +

1

n

εnn∑
j 6=i

v (αj,n) aja
∗
j

−1

ai − αi,n

∣∣∣∣∣∣ a.s.−→ 0.

Therefore, for the same ζ > 0 as above and for all large n almost surely,

fεnn ≤
v
(

1
δn

(αi,n − ζ)
)

v(αi,n)
. (7.3)
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We now need to consider study both cases where either e(1−εn)n ≥ fεn or e(1−εn)n < fεn.

Consider a subsequence over which e(1−εn)n ≥ fεn. On this subsequence, (7.2) becomes

e(1−εn)n ≤
v
(

1
e(1−εn)n

(γn − ζ)
)

v(γn)

or equivalently

1 ≤
Ψ
(

γn
e(1−ε)n

(
1− ζ

γn

))
Ψ(γn)

(
1− ζ

γn

) .

As usual, we want to prove that, given ` > 0, e(1−εn)n ≤ 1 + ` for all large n a.s. Let us assume
the opposite, i.e., e(1−εn)n > 1 + ` infinitely often, and let us restrict ourselves to a (further)
subsequence where this always holds. Then

1 ≤
Ψ
(
γn

1+`

(
1− ζ

γn

))
Ψ(γn)

(
1− ζ

γn

) ≤
Ψ
(
γn

1+`

)
Ψ(γn)

(
1− ζ

γn

) .
By definition, it is now easily proved that 0 < lim infn γn ≤ lim supn γn < ∞ (this exploits in
particular the important fact that c < 1− ε) so that, considering yet a further subsequence over
which γn → γ0, we obtain, taking the limits

Ψc(γ0)

(
1− ζ

γ0

)
≤ Ψc

(
γ0

1 + `

)
with Ψc(x) = xvc(x). This being valid for each ζ > 0, we raise a contradiction in the limit ζ → 0.
Therefore, either there exists no sequence over which e(1−εn)n ≥ fεnn or e(1−εn)n ≤ 1 + ` for
all large n a.s. Assuming the former, then over a subsequence we in fact have e(1−εn)n < fεnn.
Starting now from (7.3), we have over this subsequence

fεnn ≤
v
(

1
fεnn

(αεnn,n − ζ)
)

v(αεnn,n)

for all large n, or equivalently

1 ≤
Ψ
(
αεnn,n
fεnn

(
1− ζ

αεnn,n

))
Ψ(αεnn,n)

(
1− ζ

αεnn,n

) .
Again, with, say, the same ` > 0 as above, we wish to show that fεnn,n ≤ 1 + ` for all large
n. We instead assume the opposite, i.e., fεnn > 1 + ` infinitely often and restrict ourselves to a
further subsequence satisfying this identity for all n. Then, as above for e(1−εn)n, we have this
time

1 ≤
Ψ
(
αεnn,n

1+`

)
Ψ(αεnn,n)

(
1− ζ

αεnn,n

) .
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Using the fact that 0 < mini lim infn ‖ai‖ ≤ maxi lim supn ‖ai‖ < ∞, it is easily shown that
0 < lim infn αεnn,n ≤ lim supn αεnn,n <∞, so that we can take a further subsequence over which
αεnn,n → α0. In this limit, we have

Ψc(α0)

(
1− ζ

α0

)
≤ Ψc

(
α0

1 + `

)
which is contradictory for sufficiently small ζ. Thus, necessarily fεnn ≤ 1+` for all large n almost
surely, unless we have e(1−εnn) ≥ fεnn and then e(1−εnn) ≤ 1 + `. In any case, we necessarily
have

max
{
e(1−εnn), fεnn

}
≤ 1 + `

for all large n a.s., which we wanted to prove. All the same, by reverting the inequalities, we
prove the converse identity that, for all large n a.s.

min {e1, f1} ≥ 1 + `.

This establishes the main result, from which Theorem 7.1.1 unfolds easily.

The proof of Corollary 7.1 follows easily from applying standard random matrix identities
(a further deterministic equivalent) to the random model of Theorem 7.1.1. We do not detail
these classical steps.
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Chapter 8

Conclusion and Perspectives:
Random Matrix Theory for Big Data

8.1 Summary and open avenues to robust statistics analysis

Thanks to a systematic analysis of the behavior of robust estimators of scatter for large dimen-
sional datasets, we showed in this report that these estimators behave similar to mathemati-
cally tractable random matrix models. The theoretical study of these asymptotically equivalent
models for various input data statistics revealed a lot of practical information on the robust
M-estimators, the most fundamental of which can be shortly summarized as follows:

• (Chapter 4) When impulsiveness in the data is modelled through the random norm of an
elliptical distribution, sample covariance matrices tend to have a large eigenvalue spec-
trum spread, which robust estimators shrink down to a provably bounded spectrum; in
the particular case of spiked models, this induces the possibility to recover isolated eigen-
values that sample covariance matrices keep hidden in the spectrum, leading to improved
statistical inference techniques.

• (Chapter 5) To cope with the scenarios of few observations of large dimensional impulsive
data, the hybrid robust shrinkage estimators benefit both from the regularization of the ill-
conditioned sample covariance matrix and from the robustness of M-estimators of scatter;
the extra degree of freedom induced by the regularization parameter allows for further
improved statistical estimators applicable to various fields of research.

• (Chapter 6) Bilinear forms built upon robust M-estimators for elliptical data are so well
approximated by the same bilinear forms but built upon the asymptotic random matrix
approximations that they share the same second-order statistics (i.e., central limit results).
This makes it possible, on top of the first-order statistical methods described in the previous
two items, to design second-order improved estimators by a mere application of classical
random matrix methods.

• (Chapter 7) Finally, when modelling data impulsiveness through deterministic outliers,
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robust M-estimators manage to harness the impact of some specific outliers, while not be-
ing able to control others; unlike the previous items which suggested an overall advantage
of estimators close to Tyler’s (or simply per-data normalized sample covariance matri-
ces), against deterministic outliers the latter may be hazardous choices which are more
adequately replaced by estimators of the Huber type.

The results studied thus far however only target the subfield of robust statistics that is
concerned with robust estimators of scatter for centered data. Robust statistics however go
beyond these considerations. Still on order statistics estimation, robust estimation of location
(that is the estimation of the mean of median of random impulsive data) is sometimes a more
important concern than robust estimation of scatter. Joint robust estimation of location and
scatter may also be considered which however often lead to not always solvable implicit equations
(Maronna et al., 2006). A more complete analysis of robust M-estimators in the large dimensional
regime would therefore demand to take this location aspect into account. The closest result we
have on these aspects concerns the application of robust shrinkage estimates of scatter to financial
returns datasets for which an empirical mean was discarded from each datum (see Section 5.2);
the elliptical modelling of the data induces already here some complications, although no actual
location estimate was made.

But robust statistics are also concerned with improved regression from impulsive readings.
Recent considerations were made towards this direction, for instance in (El Karoui, 2013) where
the theoretical performance of robust regressors based on n independent readings of N dimen-
sional signals is studied in the large N,n regime. It is precisely shown that, although inconsistent
in this regime, the estimated (large dimensional) regression vector asymptotically departs from
the sought for vector by a computable (although not explicit) quantity. This allows for an anal-
ysis of the power of various regressors for various data models. The analysis of (El Karoui, 2013)
is however restricted to input data with i.i.d. entries, although results for general elliptical data
could be easily achieved in a similar manner. Surprisingly, no follow-up on this work was made
in spite of the major consequences such a result may bring to large dataset regression at large.
This is surely an area of important future exploration.

Recently, considerations of “robust” estimation have re-emerged under the umbrella of com-
pressive sensing. Underlying this robust terminology is the regression analysis of large dimen-
sional but sparse vectors. That is, unlike the works of (El Karoui, 2013) where the data ob-
servations are possibly impulsive and lead, due to the large N,n assumption, to inconsistent
regressors, in compressive sensing the regressor is assumed to be identically null on most of its
entries. This structure allows for a perfect reconstruction of the sought-for vector under some
conditions, which is stable against background noise, hence the robustness naming. Given that
the sparsity assumption cannot be fully met in most practical cases and that impulsiveness (or
the presence of outliers) in real-life datasets is more a rule than an exception, it would be impor-
tant to further investigate the connections between both fields and to bridge the gap between
robust statistics and the very different “robustness” considerations of compressive sensing.
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8.2 Beyond robust estimation: the Big Data paradigm

In recollection of the ten year-progress of random matrix theory applied to signal processing, it
appears that the rule-of-thumb has so far been to study sample covariance matrices to extract
from them the necessary information one seeks; this is obtained by the study of various sample
covariance matrix models in the random matrix regime (spiked models, separable covariance
models, etc.) and by means of smart complex analysis tools. Although this is quite reasonable
an approach, it may nonetheless seem quite arbitrary to use the sample covariance matrix in
the first place, as it is anyhow no longer a good estimator for the population covariance matrix.
The only reasonable explanation for its use has to do with its being a maximum likelihood
estimator for the population covariance matrix when observations are Gaussian and when no
further information about the population model is known.

In the present report, we observed (more than we actually proved) that robust estimators of
scatter are often more helpful than sample covariance matrices when the observed vector data
contain outliers or have heavy-tailed distributions, and are particularly suitable to elliptically
distributed data for which they are the maximum-likelihood estimators. An important outcome
of our study on robust estimation of scatter as a whole is that the latter may be used in place of
sample covariance matrices as the building block for powerful algorithms of statistical inference.

In fact, other studies have recently considered other types of random matrix models as a
starting point matrix for statistical inference, in particular when side information about the
system model is a priori known. This is the case of a recent work of ours (Vinogradova et al.,
2014) in which the performance of detection schemes under time-correlated noise is analyzed,
based on a Toeplitzified version of the sample covariance matrix rather than based on the sample
covariance matrix itself. Another line of work concerns the block-Hankel stacking of observation
vectors (Loubaton, 2014) of important use for the coherent detection of temporal data with
memory. These various objects, in general more challenging to study than the mere sample
covariance matrix, constitute in my opinion the future of random matrix research in signal
processing.

Generally speaking, mathematicians also have started to consider models that disrupt from
the traditional Wigner and i.i.d. random matrices, for which about everything is known by
now. Their focus is now steering towards other types of random matrix models, less “pure” in
their mathematical model simplicity but which, while remaining rather simple, have important
relations to engineering objects at large. This is the case for instance of the spectrum analysis of
random graphs which, from a random matrix perspective, is the random eigenvalue distribution
of the Laplacian or adjacency matrix of the graph under consideration. Various teams have
made some recent breakthroughs in this direction, as with (Bordenave and Lelarge, 2010b,a)
for the spectrum of sparse non-directed graphs, or (Bordenave et al., 2013) for the Laplacian
matrix of a random possibly sparse directed graph, or finally (El Karoui, 2010) for the spectrum
of random kernel matrices such as the adjacency matrix of Euclidean-weighted graphs.

This recent move from the mathematical side, especially on random graphs, along with the
increasing understanding of the strong potential behind other classes of random matrix models
for signal processing applications, brought us to considering a new direction of exploration:
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that of signal processing on large dimensional graphs and particularly the study of machine
learning algorithms in the large dimensional regime. Machine learning is indeed an area of
important focus today, especially since the advent of big data processing, which encompasses
many subspace methods (e.g., for classification or clustering) based on the so-called affinity
matrix of the observed data, also referred to as the kernel matrix where the implicit kernel is
the affinity function. Machine learning also deals with more heuristic approaches such as neural
networks which are on the verge today of being more clearly understood than ever before. Let
us detail these two specific examples some more.

8.2.1 Kernel random matrices

8.2.1.1 Theoretical aspects

Let x1, . . . , xn be n vectors of RN and f : RN ×RN → R such that f(x, y) = f(y, x). We define
the kernel matrix W with kernel function f as

W = [Wi,j ]1≤i,j≤n , with Wi,j = f(xi, xj).

As such, W is a symmetric matrix. Generalizing to complex valued vectors x1, . . . , xn and to
the constraint f(x, y) = f(y, x), we would get W to be Hermitian.

Classical examples of kernel functions f are f(x, y) = xTy or f(x, y) = g(‖x− y‖) for some
function g. In the latter example with g(t) = t2, the matrix W is precisely a Euclidean matrix.
This denomination follows from assuming that x1, . . . , xn are geographically located nodes of a
network in RN (for instance in the plane for N = 2), in which case W is the adjacency matrix of
the network whose entry (i, j) is directly related to the geometrical (Euclidean) distance between
nodes i and j in the graph.

Let us assume that the vectors x1, . . . , xn are random and sufficiently independent. Then,
for N fixed, taking n large leads W to be a random matrix of O(n) degrees of freedom, as
it is only defined through the n vectors xi. However, if N is also taken large enough to be
comparable to n and the entries of the vectors xi are sufficiently independent, then W becomes
a matrix constituted of O(nN) = O(n2) degrees of freedom, which is the classical setting of
large dimensional random matrix theory. In this case, it was shown in the simplest setting
of independent vectors xi with independent and identically distributed zero mean entries, and
for smooth enough functions f , that the matrix W has the peculiar asymptotic behavior to be
equivalent to a simple random matrix model or even to a deterministic matrix. It is in particular
proved in (El Karoui, 2010) that W is essentially a rank-one matrix in the large N,n regime
with leading eigenvector the all-one vector. The proof considered in (El Karoui, 2010) however
relies on rather involved combinatorial calculus and in the quite loose bound of the spectral
norm by the fourth-moment trace norm, which we believe can be simplified a lot in practical
settings. Also, it seems that the proper setting for which W does not degenerate into a rank-one
matrix consists in taking N = O(

√
n) rather than N = O(n), in which case more interesting

properties should appear. There is therefore room for much theoretical progress to be made on
purely mathematical grounds. Technical considerations set aside, the powerful convergence of
W to a matrix with isolated eigenvalues has important consequences in practice as it implies
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the possibility to read deterministic information on the system model straightforwardly from
the matrix W and not solely from functionals of its eigenvalue distribution. That is, if one
seeks statistical information concerning x1, . . . , xn defined as deterministic features (e.g., order
statistics) of their affinity relation, this can be obtained relatively easily from understanding the
deterministic structure in W .

Of particular interest in practice, and notably for machine learning, is the possibly to read
out data clustering from the leading eigenvectors of the affinity matrix W when x1, . . . , xn are
no longer i.i.d. but fall in k classes. We provide a short introduction to this problem below.

8.2.1.2 Spectral clustering

Clustering is probably one of the most typical examples of machine learning methods for arbi-
trary data collections. The principle of data clustering is to group a set of data x1, . . . , xn into k
similarity classes of indexes S1, . . . , Sk, disjoint but exhaustively covering the set S = {1, . . . , n},
with k a parameter sometimes determined beforehand while Si is unknown. We shall assume
here that the n data are N -dimensional vectors, i.e., x1, . . . , xn ∈ RN .

To this purpose, one needs to start by defining an affinity (or proximity) metric between
any pair of data, which shall measure how similar these data are. This choice is usually up to
the system setting under consideration. Since the proximity notion is a symmetric one (i.e., the
proximity between xi and xj should be the same as that between xj and xi, for any given pair
of vectors xi, xj), we shall assume it to be the symmetric function f defined earlier. A classical
choice is to take the Gaussian kernel

f(x, y) = exp

(
−‖x− y‖

2

2σ2

)
for some parameter σ > 0. Note that in this setting, two data vectors are extremely similar
if the similarity function affected to these vectors is close to one, and are extremely dissimilar
if the similarity function is close to zero. From there, we then define the kernel matrix W as
before.

Clustering the set x1, . . . , xn in k classes may now be defined as solving the following graph
cut problem

(MinCut) min
S1,...,Sk

S1∪...∪Sk=S
∀i 6=j, Si∩Sj=∅

k∑
i=1

∑
j∈Si,j̄∈Sci

f(xj , xj̄).

The objective in this minimization problem is to ensure that the components of each given
subset Si are maximally dissimilar to the components of the union of all other subsets Sī, ī 6= i.
This minimization problem however has some limitations in that it may lead to graph cuts in
which many sets are singletons, which is often an unsatisfactory outcome. To ensure, as is often
desired, that the sets Si are well balanced, i.e., have cardinalities of the same order of magnitude,
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the MinCut problem is often substituted by the following RatioCut alternative

(RatioCut) min
S1,...,Sk

S1∪...∪Sk=S
∀i 6=j, Si∩Sj=∅

k∑
i=1

∑
j∈Si,j̄∈Sci

f(xj , xj̄)

|Si|

with | · | the cardinality of the set. This problem, or similar generalizations to other metrics of
set sizes, is however much more difficult to solve than MinCut with standard algorithms. It can
in fact be proved to be a necessarily NP hard problem.

The spectral clustering approach provides a method, by means of a relaxation of the Rati-
oCut (or similar) problem, which is polynomially solvable, although not necessarily finding the
minimum of RatioCut. The approach consists in noting, after some simple algebraic considera-
tions, that RatioCut is equivalently written as

(RatioCut) min
M∈M, MTM=Ik

tr
(
MTLM

)
where M is the set of matrices M = [mij ]1≤i≤n,1≤j≤k with mij = |Sj |−

1
2δi∈Sj , and L is the

Laplacian matrix

L = [Lij ]1≤i,j≤n = [−W + diag(W · 1)]1≤i,j≤n =

[
−f(xi, xj) + δi,j

n∑
l=1

f(xi, xl)

]
1≤i,j≤n

.

With this notation, observe that RatioCut consists in finding a matrix M made of orthogonal
columns in the very specific class of isometric matrices M. The key of the spectral clustering
method is to realize that, if M were to be replaced by the larger set O of n ×N isometric ma-
trices, then RatioCut would consist in retrieving the eigenvectors corresponding to the smallest
eigenvalues of L.

The spectral clustering algorithms precisely consist in determining these k smallest eigen-
values, extract their corresponding eigenvectors and, up to some further manipulation to turn
the continuous entries into discrete ones, read off the eigenvectors the precise partition of the
set S = {1, . . . , n} into k disjoint subsets of low mutual similarity.

It is clear, from the details above, that spectral clustering methods are intimately linked
to the spectrum and eigenspaces of the Laplacian matrix L of the affinity matrix W . In order
to understand the performance of the algorithm in the context of big data processing, it is
therefore fundamental to quantify, from a proper statistical representation of the set x1, . . . , xn,
the spectral attributes of L in terms of eigenvalues and eigenvectors. We believe that in this
setting, the result from (El Karoui, 2010) generalizes to W being well approximated by a rank-k
matrix in the large dimensional limit, as long as N = O(n). If so, then optimal clustering
should naturally relate to how good the largest k eigenvalues of W isolate from each other (so
that their respective eigenvectors be sufficiently uncorrelated). The appropriate choice of the
kernel function f as a function of the data distributions, which so far is quite empirical in the
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literature, should be understandable from this simple setting. To further understand the impact
for lower dimensional datasets, the study of the regime N = O(

√
n) should then reveal a refined

model for W , which we believe could fall within the spiked model setting.

Aside spectral clustering, machine learning contains many other tools and techniques which
are mostly understood from hand-wavy considerations rather than profound theoretical con-
clusions. One of such methods is the extensively used technique of neural networks which has
recently known a new surge of interest with the introduction of recurrent echo-state networks.

8.2.2 Echo-state neural networks

Echo-state neural networks consist of artificial neural networks which, unlike traditional se-
quential neural networks, contain active inter-neuronal connections. This feature has multiple
advantages over sequential neural networks and in particular it importantly helps conveying
memory capacities to the network in a similar manner that memorization mechanisms presum-
ably work in biological neural networks. The idea here is that the information carried by input
stimuli to the network, instead of being forwarded sequentially towards an output sensor neuron,
may remain trapped within the network due to neuronal interconnections.

The simplest model of a (discrete time) echo-state neural network is described as a set of
N neurons connected together via a connectivity matrix W ∈ RN×N , a scalar input (stimulus)
source st ∈ R indexed by the time t, and a scalar output yt ∈ R also indexed by time t. In
particular, the (i, j)-entry W (i, j) of W models the excitation or inhibition effect of neuron i over
neuron j. The connection between the input source and the neural network is given by a vector
m ∈ RN with m(i) the connection between the source and neuron i. Similarly, the connection
between the neurons and the output is characterized by a vector w ∈ RN . The specificity of
echo-state neural networks is that W is composed of random entries which are fixed once and
for all, as opposed to classical neural networks where a training phase is dedicated to build W
based on input-output pilots. The training phase in echo-state neural networks will only set up
the output weight vector w based also on input-output pilot sequences.

To better understand the behavior of echo-state neural networks, we shall analyze the state
evolution of the neurons in a discrete time setting. Letting xt ∈ Rn be the state of the neural
network at time t, with xt(i) the value taken by neuron i at time t, the dynamical state evolution
of the echo-state neural network is generally described as

x0 = ms0 (8.1)

xt = S (Wxt−1 +mst−1) , t = 1, 2, . . . (8.2)

in which [Wxt−1+mst−1]i is the summation of the inter-neuronal actions and of the input source
action on neuron i, and S is a non-linear function applied entry-wise, generally a sigmoid func-
tion, which translates the fact that neurons have a minimal (negative) and maximal (positive)
activation and inhibition levels. Note that S may ensure in particular that the dynamical system
remains stable in the long run. Sometimes, it is also assumed that the neuronal connections may
be subject to external noise sources, not linked to the source of interest, leading Wxt−1 +mst−1
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to be changed into Wxt−1 + mst−1 + bt−1 for some noise vector bt−1 independent of xt−1 and
st−1.

8.2.2.1 Stability of the training phase

To run the neural network, a training phase is necessary by which the weights w(i) from neuron
i to the network output yt will be enforced. For this, couples (st, yt), for t = 1, . . . , n with n the
training period, are defined to be pilot sequences. Given these pilots, the vector w is taken as
follows

w = arg min
w̃

T∑
t=1

ρ
(
yt − w̃Txt

)
for some positive function ρ cancelling at zero. A classical choice is to take ρ(x) = x2, in which
case w is taken to be the least square estimate

w = (XXT)−1Xy (8.3)

where we defined X = [x1, . . . , xT ] ∈ RN×n (n > N) and y = [y1, . . . , yT ]T.

For mathematical tractability, the non-linearity of S may be problematic so that S is in
general taken to be the identity function in a first approximation. In this case, to ensure the
stability of the system, one makes the additional assumption that the spectral norm of W is
less or equal than one. In fact, again stimulated by biological networks, and simultaneously
by mathematical tractability (and by the expected blessings of dimensionality), it is generally
considered that W is the realization of a random matrix with O(N2) degrees of freedom. The
simplest scenario consists in particular in letting the entries of W be independent and identically
distribution with zero mean, variance α/N with α < 1 and finite fourth order moment. This
ensures, according to the full-circle law theorem (Tao and Vu, 2008) that, asymptotically, the
spectral radius of W is strictly less than one with overwhelming probability, leading to a stable
network.

As is classical in stability questions of dynamical networks, to characterize the dynamical
system xt, it is essential to understand certain metrics involving the matrix XXT. In partic-
ular, the smallest eigenvalue of XXT conditions the stability of w from the defining equation
(8.3). However, XXT is not a simple matrix to analyze since each column of X is a recursive
combination of the previous columns. Assuming some ergodicity properties in the training se-
quence (st)

n
t=1 and that n→∞, it naturally appears that the system stability boils then down

to characterizing the random matrix

M =

∞∑
i=1

W immT(WT)i.

This matrix, if well-defined, appears to be the sum of nonnegative rank-one matrices, however
with successive powers of W involved.

One objective may be to study the spectrum of the matrix M . Technically speaking, the
matrix M remains in the well-studied realm of Gram matrices formed out of the sum of rank-
one nonnegative matrices. However, classically, for Gram matrices studied in random matrix
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theory, the rank-one elements are usually independent or linearly dependent. Here, the strong
dependence between the entries of M creates an original difficulty. Simulation results in fact
suggest that M is quite singular in that it only contains a few large eigenvalues, while the other
eigenvalues are very small. Simulations also reveal that truncating the sum defining M to an
arbitrary large upper integer K provides an accurate approximation of M itself, irrespective of
the size N of M . This forcefully suggests the approximation of M by a rank-K matrix for K
large but finite. Identifying these eigenvalues and their associated eigenvectors in the large N
regime will allow for a proper understanding of the various performance metrics of the neural
network. Also, since the stability of the network behavior is mostly parametrized by the scaled
variance α of the entries of W , this performance analysis will allow for performance optimization
by a proper selection of the parameter α.

However, it appears that defining w as a least square solution induces a problem of over-
fitting, in the sense that w will be perfectly fit to the trained data, but may possibly not be
flexible enough to smoothly handle untrained data. One of the key features of neural networks
is precisely to have an implicit innovation capability to cope with unknown stimuli. To enhance
such features, an option is to introduce a noise vector bt in the neural transition dynamics. A
proper control of the noise variance then allows one to establish a trade-off between accuracy in
the training phase and innovation in the interpolation phase (i.e., when new data are fed in the
network).

Another approach, which turns out to be essential equivalent, is to relax the constraining
least-square minimization by enforcing an `1 or `2 constraint on w, that is, by setting w to now
be defined as

w = arg min
w̃

T∑
t=1

ρ
(
yt − w̃Txt

)
+ β‖w̃‖γ

for some β ≥ 0 and γ ∈ {1, 2}. By increasing β, this minimization effectively reduces the
degrees of freedom of w and therefore does not let w perfectly meet the constraint yt = wTxt,
therefore allowing for some degree of innovation. In this setting, it is fundamental to clearly
understand the effect of β on the trade-off between accuracy and innovation in the network.
This mathematically boils down to characterizing a slightly more involved version of the matrix
M defined above.

To properly optimize the neural network, one needs investigate the dual impact of the terms
α and β on the performance, both in terms of accuracy and innovation. This precise characteri-
zation shall then allow for improved solutions by appropriate choices of (α, β) to achieve optimal
trade-offs.

8.2.2.2 Stability of the network as a whole

An important question that comes prior to the stability and the accuracy of the training and
innovation phases is the stability of the dynamical system (8.1) itself. With S still considered
to be the identity function, the stability of the network is then related to the spectral radius of
W . In the simplest scenario where W has i.i.d. entries of zero mean and variance α/N , taking
α < 1 ensures the spectral radius of W to be less than one asymptotically. However, for each
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finite N , W may have spectral radius greater than one with low but positive probability. To
avoid this inappropriate situation, other normalizations may be performed such as replacing W
by W/‖W‖ ensuring then that the spectral radius of W is equal to one. This then naturally
leads to considerations of topological complexities of the dynamical network, such as studied
in (Wainrib and Touboul, 2013), where the topological complexity relates to the cardinality of
those eigenvalues of W of real part greater than one.

A more practical normalization is to assume that all row-sums of W equal zero. This nor-
malization ensures that each neuron is in an equilibrium state between exhitation and inhibition
from connected neurons. This is theoretically done by setting the diagonal elements Wii of W
to be Wii = −

∑
j 6=iWij , with the Wij in general independent. This therefore turns W into the

Laplacian matrix of the random graph whose adjacency matrix is the matrix W with diagonal
discarded. This model was recently studied in (Bordenave et al., 2013), where it is shown that,
as far as extreme eigenvalues are concerned, the spectrum of W thus defined is fundamentally
different from that of W without row normalization. This induces a strikingly different behavior
in terms of stability of the neural network, which it is fundamental to investigate.

More advanced, and in fact more biologically realistic, models of connectivity matrices W
are also fundamental to understand. For instance, in order to account for the locally higher
connectivity of close-by neurons in the network, we may induce a variance profile in the ma-
trix W , i.e., by making the individual variances of Wij depending on i, j. For instance, letting
E[|Wij |2] be proportional to |i − j| enforces a proximity constraint very classical in actual net-
works. Studying the limiting eigenvalue distribution of such non-Hermitian models therefore
has deep implications in the practical analysis of both artificial and biological neural networks.

8.3 General conclusion

Going back to where we started this report, present and future works of random matrix theory
provide promising avenues for the exploitation of the dimensionality blessings brought forward
by Donoho. In essence it appears that many techniques used in signal processing and beyond
(in fact in statistics at large) can benefit from exploiting the many degrees of freedom of the
raw data both in space and time, and that the extent of these techniques is largely not limited
to those based on the sample covariance matrix. This report brought this state-of-fact to light
by providing a rather complete study of a specific tool: robust M-estimators of scatter.

Precisely, similar to the works in the nineties on the limiting spectral behavior of sample
covariance matrices, we conducted the analysis of the limiting behavior of these robust estima-
tors. We then derived consistent estimates for the specific example of a spiked-model extension
of these estimators, which mimics the equivalent studies performed since the second half of the
2 000’s. We finally developed central limit theorems for specific functionals, which again finds a
strong connection with the works on this topic for sample covariance matrices in the late nineties.
All these works however came along with a set of new tools, dedicated to the M-estimators, and
which allowed us to fill the gap between robust statistics and the random matrix theory. This
was essentially as far as we had projected (by then, idealized) the work to bring us when we
started. In the meantime though, we discovered along the way that our random matrix analysis
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could attest of some powerful (maybe so far considered magical) features of these M-estimators.
It in particular appeared very clear that, while Tyler’s robust estimate shows in simulations
outstanding performances in elliptical data settings, making it often more favorable than any
of Maronna’s estimator, Tyler’s estimator suffers from some specific outliers. In this setting,
Huber’s estimator is much more adequate, and generally estimators of the Maronna class con-
vey appropriate trade-offs between the resilience of Tyler’s estimate to scale-free inputs and the
appropriateness of Huber’s estimator against all sorts of outliers.

Tomorrow’s research on applied random matrix theory should provide a large panel of tools
beyond sample covariance matrices and robust estimators, among which the aforementioned
Toeplitzified sample covariance matrices, block-Hankel matrices, kernel matrices, etc. When
those tools are in place, they will then allow for the analysis of conventional techniques built un-
der the large n alone assumption but exploited in more practical large N,n systems. In turn, this
analysis will provide new enhanced algorithms that shall enrich the existing panoply of sample
covariance matrix-based and now robust estimator-based methods. This overall methodology
will remain valid as long as the sought-for information is contained within the eigen-structure
of the involved matrix models. Other considerations than eigen-structure related, such as data
sparsity explored recently within the scope of compressive sensing – that, in passing, often re-
lies on random matrix considerations – are yet other methods which, alongside random matrix
theory, constitute beyond any doubt tomorrow’s toolbox of the big data paradigm.
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Appendix A

Basic properties and important
lemmas

We introduce in this appendix some classical random matrix results used throughout the report
but worth recalling, along with some new results of independent interest.

We start with classical well-known random matrix results.

Lemma A.1 (A matrix-inversion lemma). Let x ∈ CN , A ∈ CN×N , and t ∈ R. Then, whenever
the inverses exist

x∗ (A+ txx∗)−1 x = x∗A−1x(1 + tx∗A−1x)−1.

Lemma A.2 (Rank-one perturbation). (Silverstein and Bai, 1995, Lemma 2.6) Let v ∈ CN ,
A,B ∈ CN×N nonnegative definite, and x > 0. Then∣∣∣trB (A+ vv∗ + xIN )−1 − trB (A+ xIN )−1

∣∣∣ ≤ x−1‖B‖.

Lemma A.3 (Trace lemma). (Bai and Silverstein, 2009, Lemma B.26) Let A ∈ CN×N be
non-random and y = [y1, . . . , yN ]T ∈ CN be a vector of independent entries with E[yi] = 0,
E[|yi|2] = 1, and E[|yi|`] ≤ ζ` for all ` ≤ 2p, with p ≥ 2. Then,

E [|y∗Ay − trA|p] ≤ Cp
(

(ζ4 trAA∗)
p
2 + ζ2p tr(AA∗)

p
2

)
for Cp a constant depending on p only.

The subsequent lemma is a quite expected result unfolding from Lemma A.3 with a technical
difficulty due to the statistical unboundedness of the smallest eigenvalue of the resolvent matrix
involved.

Lemma A.4. Let z1, . . . , zn ∈ CN be independent unitarily invariant vectors with ‖zi‖2 = N .
Then, if 0 < lim infnN/n ≤ lim supnN/n < 1,

max
1≤j≤n

∣∣∣∣∣∣ 1

N
z∗j

(
1

n

n∑
i=1

ziz
∗
i

)−1

zj − 1

∣∣∣∣∣∣ a.s.−→ 0
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or equivalently

max
1≤j≤n

∣∣∣∣∣∣ 1

N
z∗j

 1

n

n∑
i 6=j

ziz
∗
i

−1

zj −
1

1− N
n

∣∣∣∣∣∣ a.s.−→ 0.

Moreover, there exists ε > 0 such that, for all large n a.s.

λ1

(
1

n

n∑
i=1

ziz
∗
i

)
≥ min

1≤j≤n

λ1

 1

n

∑
1≤i≤n
i 6=j

ziz
∗
i


 > ε.

Proof. For readability, we denote F = 1
n

∑n
i=1 ziz

∗
i , F(j) = F − 1

nzjz
∗
j , F̃ = 1

n

∑n
i=1 z̃iz̃

∗
i , and

F̃(j) = F̃ − 1
n z̃j z̃

∗
j , where we recall the relation zi =

√
N̄ z̃i/‖ỹi‖ for z̃i zero mean IN -covariance

Gaussian and ỹi zero mean IN̄ -covariance Gaussian (non-independent).

By (Bai and Yin, 1993), letting ε > 0 small enough, the probability of the event λ1(F̃(j)) < ε

is o(n−`) for each integer `. As such, by Markov inequality and the Borel Cantelli lemma,

λ1(F̃ ) ≥ min
1≤j≤n

λ1(F̃(j)) > ε. (A.1)

From Lemma A.3 and the same approach as followed in the proof of Theorem 4.1.2 consisting
in writing 1

N z̃
∗
j F̃
−1z̃j as the product κj

1
N z̃
∗
j F̃
−1z̃j times κ−1

j , with κj = 1{λ1(F̃(j))>ε}, we easily

obtain that

max
1≤j≤n

∣∣∣∣ 1

N
z̃∗j F̃

−1z̃j − 1

∣∣∣∣ a.s.−→ 0.

Now,

min
1≤j≤n

λ1(F(j)) ≥
min1≤j≤n λ1(F̃(j))

max1≤j≤n N̄−1‖ỹj‖2

Since max1≤j≤nN−1‖z̃j‖2
a.s.−→ 1 a.s. from standard probability results, we have that for all

large n a.s.

λ1 (F ) ≥ min
1≤j≤n

λ1(F(j)) > ε/2

which already gives the second part of the lemma. Using only the outer inequality of (A.1), we
now have, for all large n a.s.

max
1≤j≤n

∣∣∣∣ 1

N
z̃∗jF

−1z̃j −
1

N
z̃∗j F̃

−1z̃j

∣∣∣∣ = max
1≤j≤n

∣∣∣∣ 1

N
z̃∗jF

−1
(
F̃ − F

)
F̃−1z̃j

∣∣∣∣
≤ max

1≤j≤n

{
1

n

n∑
k=1

∣∣∣∣1− N̄

‖ỹk‖2

∣∣∣∣ ∣∣∣∣ 1

N
z̃∗j F̃

−1z̃k

∣∣∣∣2
}

≤ max
1≤k≤n

∣∣∣∣1− N̄

‖ỹk‖2

∣∣∣∣ 1

N

(
max

1≤k≤n
‖z̃k‖

)2 4

ε2

a.s.−→ 0.
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Finally, for all large n a.s.

max
1≤j≤n

∣∣∣∣ 1

N
z̃∗jF

−1z̃j −
1

N
z∗jF

−1zj

∣∣∣∣ = max
1≤j≤n

{∣∣∣∣ 1

N
z̃∗jF

−1z̃j

∣∣∣∣ ∣∣∣∣1− N̄

‖ỹk‖2

∣∣∣∣}
≤ 2

ε
max

1≤k≤n

∣∣∣∣1− N̄

‖ỹk‖2

∣∣∣∣ max
1≤j≤n

1

N
‖z̃j‖2

a.s.−→ 0.

The proof is concluded by putting these results together.

We now introduced some results on martingale’s theory for random matrices, which will
be required in Chapter 6. We shall denote Ej the conditional expectation with respect to the
understood σ−field Fj generated by the vectors, say {z`, 1 ≤ ` ≤ j}, with conventionally E0 = E.

Lemma A.5 (Jensen Inequality, (Boyd and Vandenberghe, 2004)). Let I be a discrete set of
elements of {1, . . . , n} with finite cardinality denoted by |I|. Let (θi)i∈I be a sequence of complex
scalars indexed by the set I. Then, for any p ≥ 1,∣∣∣∣∣∑

i∈I
θi

∣∣∣∣∣
p

≤ |I|p−1
n∑
i=1

|θi|p

Lemma A.6 (Generalized Hölder inequality,(Karoui, 2008)). Let X1, · · · , Xk be k complex ran-
dom variables with finite moments of order k. Then,∣∣∣∣∣E

[
k∏
i=1

Xi

]∣∣∣∣∣ ≤
k∏
i=1

(
E
[
|Xi|k

]) 1
k
.

It remains to introduce the Burkhölder inequalities on which the proof relies.

Lemma A.7 (Burkhölder inequality (Burkholder, 1973)). Let (Xk)
n
k=1 be a sequence of complex

martingale differences sequence. For every p ≥ 1, there exists Kp dependent only on p such that:

E

∣∣∣∣∣
n∑
k=1

Xk

∣∣∣∣∣
2p
 ≤ Kpn

p max
k

E
[
|Xk|2p

]
.

LettingXk = (Ek − Ek−1) z∗kAkzk whereAk is independent of zk and noting that E
[
|Xk|2p

]
≤

E
[
‖Ak‖2pFro

]
, with ‖A‖Fro ,

√
trAA∗, we get in particular.

Lemma A.8 (Burkhölder inequality for quadratic forms). Let z1, · · · , zn ∈ CN be n independent
random vectors with mean 0 and covariance CN . Let (Aj)

n
j=1 be a sequence of N ×N random

matrices where for all j, Aj is independent of zj. Define Xj as

Xj = (Ej − Ej−1) z∗jAjzj = z∗jEjAjzj − tr Ej−1CNAj .
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Then,

E

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣
2p ≤ Kp ‖CN‖2pFro n

p max
j

E
[
‖AjCN‖2pFro

]
.
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