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Abstract—The dynamics of handover between two coexisting
wireless standards and the consequent exploitation of the offered
diversity by the use of multi-standard terminals has been dis-
cussed. The potential capacity benefits of mobile-initiated vertical
handovers are substantial. However, it is important to choose the
correct VHO criteria in order to achieve optimum load balancing
and equilibrium states (global and social). Two fast-handover
schemes are presented, which exhibit fast convergence to the
socially optimal states by allowing a subset of the necessary
VHOs among the AIs. In all cases the scheme with replicator
dynamics, had the best performance at the cost of an increased
vertical handover rate.

I. I

As a result of the massive deployment of coexisting wireless
networks, mobile users often have several choices of colocated
WLANs to connect to. This situation is exacerbated by the
deployment of large scale mobile third-generation systems
operated by major network operators, as well as other, smaller
unregulated networks. In fact, mobile user chips already exist
which support multiple standards and, additionally, there has
been a significant amount of work in creating flexible radio
devices that capable of connecting to any existing standard [1].
It is therefore reasonable to expect that in the near future users
will have the option to connect to different networks and to
switch dynamically between them on a real-time basis, based
on the offered throughput and/or price.

The dynamics of this process has several interesting aspects.
Firstly, due to the lack of a central controlling authority mobile
users become selfish and, even though users now have more
choices to connect to, they still need to compete for the
finite resources of nearby access points (APs). Moreover, the
repeated structure of the process makes users rely on past
information available to them, in order to learn to adapt to the
environment. To make things worse, since only local informa-
tion about the past states of the system may be available (e.g.
the average service throughput per user), it is not clear how
users may use this information in an effective manner.

It is clear from the above that this process can be modelled
in terms of a non-cooperative game. There have been two
different directions of similar past work on this problem. To
begin with, there has been a significant body of work on
applications of game theory to wireless networks [2]. For
example, uncoordinated random access channels have been
analysed by optimising their transmission probabilities [3],
or their power control [4]. Another application is in CDMA

systems, [5], [6], [6], [7]. More specifically, in the direction
of connecting to multiple wireless nodes, [8] considered the
possibility of connecting to several 802.11 APs using a single
WLAN card.

In this paper we analyze the dynamics of the vertical
handover between standards.1 We assume that users can switch
air interfaces in the time-scale of seconds and call this scheme
multi-mode operation (MMO), as opposed to single mode
operation (SMO) where users are not capable to handover.
We assume that parallel connections to both AIs are available,
allowing each user to switch between AIs at rates faster than
the typical session duration. However, we will assume the
handover rate to be small enough in order to allow the user
to feel the effect of the presence of other users connected to
that interface. We do this for 2 different types of allocation
of probability for each player (MMO-multi/single), as well as
SMO. In addition, we employ a game-theoretic perspective in
order to calculate the socially optimal states (Nash equilibria)
of the system. The situation turns out to be similar to the “price
of anarchy” setting of [9] since in these socially optimal states,
the aggregate throughput differs from the maximum attainable
level, which we show how to calculate explicitly.

A. System Model

Here we introduce the system model. We consider two
standards’ access-points coexisting in a given location. We
assume that a given set of users exists, which have the
capability to monitor both standards and are able to switch
when they find it advantageous to do so. We also assume
that there are MAC schedulers at every base, which over a
intermediate time-scale allow each user to use the channel and
transmit taking into account the number of users connected to
the given base and its own channel conditions. Specifically, we
assume the following throughput formula for user i connected
to base r.

Tir =
cir

Nr
(1)

where cir = F log2(1 + S NRir) is the throughput the user
connected to AP r would have if it was alone. This formula is
strictly valid in the round-robin scheduling case, however the

1The results presented here were obtained within the EU-IST-2006-27960
project URANUS, with aim to design universal transceiver structures, capable
of switching among different air interfaces and modes using a Generalized
Multicarrier Representation (GMCR) of signal waveforms.
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functional form of the user-perceived throughput on the instan-
taneous SNR and system load N is similar in other scheduling
systems (e.g. proportional fair). Also, the association of cir

with the instantaneous Shannon capacity is not always valid,
since the above model for the perceived user-throughput is
averaged over several time windows. In the latter case, cir

should correspond to the ergodic capacity. However, we will
not make this distinction here.

II. G- S

We will now describe the game with which the system
model of section I-A will be analysed. To that end, we begin
with N heterogeneous users that will be employing one of
B = 2 standards2. The heterogeneity of the users is manifested
by the coupling coefficient cir which describes the affinity that
user i bears towards standard r and is the same coefficient that
appears in equation (1). Since we will only be working with
two standards, we will simplify notation by referring to them
as “+” and “−” with their respective coefficients denoted by
c±i .

So, when the game is played, each player will choose a
standard by placing a bet σi = ±1 and will get a payoff ui

equal to the received throughput. To make this last statement
precise, let the n-tuple σ = {σi}Ni=1 describe the users’ bets and
consider the “aggregate” bet m(σ) = 1

N

∑N
i=1 σi. Then, if N± is

the number of users employing standard ±, we immediately
see that N± = N

2 (1 ± m), and equation (1) yields:

ui(σ) =
1
N

{
c+i (1 + σi)

1 + m
+

c−i (1 − σi)

1 − m

}
(2)

as an equivalent analytical expression for the payoff function.
Clearly, it is in every (selfish) user’s best interest to try and

maximize their payoff ui; this is described by the notion of
a Nash equilibrium, i.e. a bet which is such that no user can
be expected to win more by changing his bet if others stick
to theirs. More rigorously, a bet σ∗ = {σ∗i }Ni=1 is said to be a
(pure) Nash equilibrium for the game when for all users:

ui (σ∗) = max
si=±1
{ui(. . . , σi−1, si, σi+1, . . .)} . (3)

Such equilibria always exist in the mixed sense of [11],
whereby each user employs standard “±” with probability p±i
and one maximizes the expected payoff instead. To accomo-
date for this, we will iterate the game described above with
users keeping track of their bets’ performances and employing
the standard (strategy) that performs best for them. More
concretely, each player keeps a recursive score:

U±i (t + 1) = U±i (t) + u±i (t) (4)

where u±i (t) is the payoff of equation (2) that user i would have
received at time t if he had employed standard “±”. Then, each
user updates p±i according to the exponential logit model:

p±i (t) =
eγU

±
i (t)

eγU
+
i (t) + eγU

−
i (t)
=

1
1 + e∓γ∆Ui(t)

(5)

2The game-theoretic analysis can be easily adapted to accommodate for
more than 2 standards (see [10]).

where ∆Ui = U+i −U−i and γ is the parameter that controls the
users’ learning rate3.

Under this learning model, and taking the continuous time
limit, one easily derives the dynamics:

dp±i
dt
= γp±i

(
u±i (t) − 〈ui(t)〉) (6)

where the averaging 〈·〉 takes place over the strategies p±i of
user i; in this way, we have arrived at the standard replicator
equation whose stable points are Nash equilibria. Hence, by
adhering to the selfish scheme of employing the standard that
yields the greatest individual payoff with a probability that
depends on the disparity of the payoffs, the users eventually
converge to a steady state which is socially optimal (in the
sense of Nash).

This behaviour can be immediately observed in our numer-
ical simulations of section III; however, it is important to note
that social optimality does not necessarily imply a global gain
in performance. Indeed, if we consider the aggregate payoff
(aggregate received throughput) u =

∑N
i=1 ui as a measure of

global performance, it is trivial to see that (generic) Nash
equilibria lead to distinctly different values of the aggregate
throughput.

Therefore, in order to obtain a measure for the performance
of a socially optimal state, we need to derive the maximum
value4 of u =

∑
i ui. A priori, this sounds like an easy task,

but the time required for a brute-force approach increases
exponentially with the number of users since one has to run
through the vertices of the strategy-payoff cube {−1, 1}N . For
that reason, an alternate (and more analytic) approach becomes
necessary, especially in the large N setting.

To that end, starting from (2) it can be shown that

umax = max
|m|≤1

1
1 − m2


N∑

i=1

(hi + |gi − mhi|) − 2
N−∑

i=q(m)

|gi − mhi|

(7)

where hi = c+i + c−i and gi = c+i − c−i −
∑N

i=1(c+i − c−i )/N and
q(m) ∈ {1 . . .N} is the index beyond which5 gq(m) > mhq(m).
This last expression can be explicitly evaluated for any given
distribution of the coupling coefficients c±i and, when N is
large, we may easily descend to the continuous limit in order
to harvest its critical points. In this way, we obtain a concise
analytic expression for the maximum aggregate throughput for
any number of players, even when N is large enough to render
enumerative methods nonviable.

III. N E

To gain conrete insight about the system we simulated an
area with two base stations (one for each of the 2 available

3Already, note that this is a generalisation of the “best-response” scheme
that is recovered for γ → ∞.

4In reality, we should be maximizing the expected payoff E(u); however,
since it is a harmonic function on the mixed strategies p±i , it will attain its
maximum value on the boundary of its domain of definition. Hence, we only
need to look at pure strategies (i.e. we simply have to maximize u instead).

5We are here assuming (without loss of generality) that the users are indexed
so that gi − mhi is an increasing sequence.
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air interfaces (AIs)) and a number of scattered users. The ob-
jective was to determine a scheme which could lead the users
to choose the optimum (socially and globally) air interface at
the minimum time, avoiding unnecessary handovers and ping
pong effects. The criteria for optimality where related to the
individual and the aggregate throughputs measured over the
simulation time. We use (1 for the throughput per user and
allow the SNR of each user to fade independently (assumed
speed 30kmph, frequency 2GHz).

¿From the aforementioned expression it can be observed
that the throughput per user is sensitive to both the received
SNR and the number of users per AI (load), therefore users at
the edge of coverage or in a heavily loaded cell are bound
to experience much lower throughput levels. Each user is
assumed to download content from the base station consisting
of sub-blocks at specific time slots (infinite buffer lengths
were assumed for each user queue). The following cases were
simulated:

• Single Mode Operation. In that case each user was
assigned in the beginning of the simulation to an air
interface and was not allowed to perform a vertical
handover within the packet call duration.

• MMO-M. According to this scheme (involving multiple
criteria), at each instant the user would perform a vertical
handover if all the conditions below were met:

1) Condition C1 (action probability): The user would
make the VHO check with a specific probability
P(VHOcheck) = p. This ensures that the users are
given the option to hop often enough.

2) Condition C2 (instantaneous throughput): The in-
stantaneous throughput offered by the other AI
would be higher than the throughput offered by the
home AI by a factor: T0 ≥ α · Th. This ensures that
only users with significant potential gains hop.

3) Condition C3 (satisfaction criterion): The ratio of
time for which the user was served with higher
throughput than the throughput offered by the other
AI was lower than a threshold:

SAT =
Time for which Th > T0

Total Connection Time
≤ b (8)

• MMO-S. This scheme included a single criterion (match-
ing the aforementioned action game analysis), expressed
by (5) where the average throughputs offered by the AI1

and the AI2 to the user respectively for a specific time
window of duration tD.

The users were assumed to have perfect knowledge of the
parameters (load and downlink SNR) of both AIs at each
instant. The metrics that were used to measure the performance
of the three aforementioned cases were the following:

• Individual Perceived Throughput (mean-cumulative dis-
tribution function).

• Convergence Time to a (Nash) equilibrium state for the
load of each AI and the aggregate throughput.

• Vertical Handover Rate

The objective of the aforementioned algorithms was to regulate
the VHO actions of the users. In order to reach the Nash
equilibrium, it is necessary to allow the users to switch to
their preferred AI but not all at once, since in that case the AI
load will be oscillating between a maximum and a minimum
value (ping-pong effect). Fig. 1 shows the variation of the
load in one of the two air interfaces (for both AIs these
curves are symmetric). This variation illustrates the initial
ping-pong effect of the proposed VHO algorithms and, their
convergence speed to the steady state and their variability
(caused by some more infrequent VHOs) within the steady
state. It can be seen that compared to the SMO case (where
no VHOs are performed), in the MMO-M case some VHOs are
performed in the beginning and then a steady state is reached
in which all users most of the time refrain from hopping among
AIs (average handover rate 0.0022). In the case of MMO-M
more handovers are performed (average handover rate 0.054),
leading to a slight constant ripple in the load curves.
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Fig. 1. Load variation in one AI vs time. The total load is fixed to N =
20, Unless specified, for all simulations here the used parameter values for
conditions C1, C2 and C3 are p = 0.7, α = 1.5 and b = 0.8, respectively,
while the MMOS parameters have values γ = 5 · 10−5 and tD = 10ms .
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Fig. 2. Variation of the aggregate throughput vs Time

Figure 2 illustrates the variation of the aggregate throughput
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versus time. It can be seen that the SMO case exhibits the
lowest aggregate throughput, since the users are not allowed
to change their serving AI in order to improve their received
QoS and throughput. Both MMO schemes have much better
performance and converge quite fast to an equilibrium state,
with the MMO-S achieving the top performance due to the
increased freedom of the users to perform the required VHOs.
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Fig. 3. CDF of the user-perceived throughput. The mean throughput for
the three cases SMO, MMO-M and MMO-S is 0.52Mbps, 0.71Mbps and
0.74Mbps, respectively.
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Fig. 4. Comparing the aggregate payoff in the socially optimal steady state
to the minimum and maximum attainable values (0 and 1 respectively). We
also illustrate the effect of the learning rate Γ.

Figure 3 illustrates the CDF of the users during the sim-
ulations. It is evident that the throughput performance of the
SMO case is lower than the two MMO cases, that exhibit very
similar results. Again, MMO-S has slightly better throughput
results than the MMO-M case

Finally, in order to compare the performance of the system
at its socially optimal state (Nash equilibrium) to the global
maximum, we performed a simulation of the game described
in section II for N = 30 users following the logit model
of equation 6 (MMO-S scenario). The users’ SNRs and

payoffs are calculated as above6, and the maximum(minimum)
throughput that they may receive is calculated exactly by
running through the 2N vertices of the payoff cube. In Figure
4 , we plot the (time-averaged) aggregate payoff (through-
put) received by the users, normalised so that the maximum
throughput is at 1 (fully efficient system) and the minimum
throughput is at 0 (0% efficiency). We also use different
learning rates to exhibit how the state of convergence is
affected.

In Fig. 4 we observe that the game quickly converges to a
social optimum whence users have no incentive to deviate (this
is especially evident in the case of faster learning rates). As
expected, this state does not depend on the learning rate (which
only controls the speed of convergence) and, therefore, even
the hardest “best-response” schemes will yield good results.
More to the point, we see that the level of aggregate throughput
attained is very close to its absolute maximum; to be precise,
the game of Figure 4 converges to an efficiency level of 87.3%,
a metric that can be considered as a suitable adaptation of the
price of anarchy to our setting. It turns out that the potential
benefits of mobile-initiated vertical handovers are substantial
since one observes an increase of both the user-perceived as
well as the aggregate system capacity. The key instrument to
control these vertical handovers is to base them on replicator
dynamics which exhibit fast convergence.

IV. C

The dynamics of a multi-standard environment and the
the consequent exploitation of the offered diversity by the
use of multi-standard (such as URANUS) terminals has been
discussed. The potential benefits of mobile-initiated vertical
handovers are substantial for both coverage and capacity.
However, it is important to choose the correct VHO criteria
in order to achieve optimum load balancing and equilibrium
states (global and social). Both MMO schemes that were
presented exhibited fast convergence to the optimal states
by allowing a subset of the necessary VHOs among the
AIs. In all cases the scheme with the single VHO criterion
(MMO-S) that resembled the analyzed game, had the best
performance at the cost of an increased vertical handover
rate. We see that, eventhough users do not communicate with
one another and act upon a completely selfish agenda, they
quickly learn to perform with an unexpected efficiency. In
fact, their performance closely rivals the (exponentially hard to
calculate) optimal distribution which maximises the aggregate
throughput and which would be difficult to implement even
within the premises of a centrally controlled network. It will
be of interest in future studies to check the sensitivity of these
schemes when imperfect system information is provided and
the users will only be able to estimate the throughput offered
by the other AI. Additionally, it will be of interest to take into
account the cost of vertical handover (in terms of additional
delay or reduced throughput efficiency), to get a more concrete
view of the related VHO tradeoffs.

6For simplicity, we have not included fading in this case.
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