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Abstract

In this paper, we examine the convergence rate of a wide range of regularized
methods for learning in games. To that end, we propose a unified algorithmic tem-
plate that we call “follow the generalized leader” (FTGL), and which includes as
special cases the canonical “follow the regularized leader” algorithm, its optimistic
variants, extra-gradient schemes, and many others. The proposed framework is
also sufficiently flexible to account for several different feedback models – from
full information to bandit feedback. In this general setting, we show that FTGL
algorithms converge locally to strict Nash equilibria at a rate which does not depend
on the level of uncertainty faced by the players, but only on the geometry of the
regularizer near the equilibrium. In particular, we show that algorithms based on
entropic regularization – like the exponential weights algorithm – enjoy a linear
convergence rate, while Euclidean projection methods converge to equilibrium in a
finite number of iterations, even with bandit feedback.

1 Introduction

In the presence of uncertainty, the players of a game may not have full knowledge of its structure, “or
the ability and inclination to go through any complex reasoning process to calculate an equilibrium.
But the participants are still supposed to adapt by accumulating empirical information on the relative
advantages of the various pure strategies at their disposal”. This aphorism – originally due to Nash
[34, p. 21] – constitutes the driving principle of game-theoretic learning, and highlights one of the
field’s most central questions: Does learning with empirical observations lead to a Nash equilibrium?
And, if so, at what rate?

These questions have been at the forefront of game-theoretic research ever since the early days
of the field, and they have recently received renewed attention via their connection to multi-agent
reinforcement learning [43], generative adversarial networks [18], auctions [44], and many other
applications where online decision-making plays a major role. Still, any attempt to provide a positive
answer to these questions must wrestle with a major roadblock: the well-known impossibility result
of Hart and Mas-Colell [19] shows that there are no uncoupled dynamics that converge to Nash
equilibrium in all games, thus shattering any hope of obtaining a universal convergence result.
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In view of the above, contemporary research on game-theoretic learning has focused on relaxing
the feedback requirements of the players’ learning processes, and understanding the stability – and
instability – properties of different kinds of equilibria under popular learning algorithms. One
property that stands out in this regard is the so-called “folk theorem” of evolutionary game theory
[20], which can be stated as follows: Under the replicator dynamics – the continuous-time limit of
the multiplicative / exponential weights (EW) algorithm [2, 29, 45] – a Nash equilibrium is stable
and attracting if and only if it is strict (i.e., if and only if each player has a unique best response).

The replicator dynamics are the most widely studied model for evolution in population games, so
the above equivalence essentially delineates what is and what isn’t achievable in an evolutionary
setting. In the context of online learning (our paper’s main focus), a similar equivalence was obtained
only recently [11, 15, 30], but it extends to the entire family of “follow the regularized leader”
(FTRL) dynamics [41, 42], in both continuous [11, 30] and discrete time [15]. In particular, [15]
studied the convergence of discrete-time FTRL models in the presence of uncertainty, and proved
a high-probability, stochastic version of this equivalence that holds for several different types of
feedback (full information, bandit, etc.). Thus, coupled with the prominence of FTRL in online and
game-theoretic learning, strict Nash equilibria emerge as the only stable limit points of regularized
learning under uncertainty.

Our contributions. One important limitation of the above results is that they are qualitative in
nature. Indeed, even though asymptotic stability guarantees that a learning process converges locally
to a strict equilibrium, it provides no information about the speed of this convergence. In particular,
especially for discrete-time models of regularized learning, asymptotic stability does not provide any
guidance on how to tune the algorithm’s hyperparameters (learning rate, mixing, etc.), and/or what to
expect in terms of the number of iterations required to reach a neighborhood of a Nash equilibrium.

Our paper aims to provide quantitative answers to these questions for a wide array of regularized
learning methods in the presence of uncertainty and limited information. To do so, we first introduce a
flexible algorithmic framework – dubbed “follow the generalized leader” (FTGL) – that incorporates
a broad spectrum of action choice mechanisms and feedback models. In more detail (and in analogy
to FTRL), the FTGL template maintains a cumulative estimate for the payoff of each action available
to the learner, and then selects a mixed strategy via a suitable “regularized” choice map. Specifically:

1. In terms of regularization, the FTGL template includes as special cases the standard logit choice
and Euclidean projection methods (as well as all other standard regularizers used in practice).

2. In terms of the information used to update the “aggregate score” of each pure strategy, FTGL
includes “vanilla” FTRL, its optimistic variants [10, 38–40], extra-gradient and mirror-prox
methods [24, 25, 35], with either full, oracle-based, or bandit feedback.

In this general context, our main result may be summarized as follows. First, we introduce a “rate
function” 𝜙 that depends only on the regularizer defining the learning process, and which captures
the sensitivity of the induced choice map to external stimuli: for example, 𝜙(𝑥) = exp(𝑥) for
entropic / logit choice models, whereas 𝜙(𝑥) = [𝑥]+ for methods run with Euclidean projections. We
then show that, with probability at least 1 − 𝛿, the algorithm’s local rate of convergence to a strict
equilibrium 𝑥∗ is of the form ∥𝑋𝑛 − 𝑥∗∥ ≤ 𝜙(𝑑 − 𝑐∑𝑛

𝑠=1 𝛾𝑠), where 𝛾𝑛 is the method’s learning rate
and 𝑐, 𝑑 are constants with 𝑐 > 0.

This result shows that the convergence speed of FTGL methods depends only on the choice of
regularizer and learning rate: for example, EW methods run with a constant step size converge to an
equilibrium at an exponential rate, whereas Euclidean regularization attains convergence in a finite
number of iterations. From a regret-theoretic point of view, this is somewhat surprising because
the regret guarantees of entropic FTRL (the EW algorithm) are far superior to those of FTRL with
Euclidean regularization [5, 41].

Equally surprising is the fact that the type of feedback employed does not affect the method’s rate of
convergence: ceteris paribus, an FTGL method attains the same rate of convergence to strict Nash
equilibria, whether run with full, partial, or bandit / payoff-based feedback. This comes into stark
contrast with the corresponding rates of regret minimization, which depend crucially on the type of
feedback received [6, 27]; in a certain, precise sense, this robustness in the face of uncertainty shows
that regret minimization and convergence to Nash equilibrium are fundamdentally different questions.
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Related work. The convergence speed of methods based on the FTRL template – “vanilla”,
optimistic, or otherwise – have been studied extensively in the context of monotone games and
variational inequalities; for a (highly incomplete) list of recent references, see [9, 10, 16, 17, 21,
23, 28, 31–33] and references therein. In this branch of the literature, there are two distinct threads:
results concerning the convergence of the “time-average” of the process [16, 24, 33, 35], and those
focusing on the algorithm’s “last-iterate” [9, 10, 17, 21, 23, 28]. In the latter case (which is the one
closest to our setting), the fastest achievable speed of convergence is exponential when the method is
run with a finetuned constant step-size, perfect payoff gradient observations, and the operator defining
the problem is strongly monotone and Lipschitz smooth. When run with stochastic gradients, the
corresponding min-max optimal rate is O(1/𝑇) under the same assumptions (zeroth-order rates are
usually much worse). The apparent gulf between the rates of convergence obtained for monotone
games and those obtained herein have to do with two crucial factors: first, we are studying finite games,
which are typically not monotone; second, we are examining the algorithm’s rate of convergence to
strict equilibria, which are corner points of the problem’s domain. This means that the geometry of
the problem around a strict equilibrium is fundamentally sharper than the geometry around a solution
of a generic monotone variational inequality, a fact which in turn explains the qualitatively different
nature of the rates we obtain.

In the context of finite games, there have been several works examining the speed of convergence to
the game’s set of coarse correlated equilibria (CCE) by leveraging the algorithm’s regret minimization
properties, cf. [3, 4, 12, 13, 36, 44] and references therein. However, in addition to examining the
algorithm’s empirical average – as opposed to the induced day-to-day sequence of play – these results
focus almost exclusively on CCE, which means that it is not possible to draw any conclusions about
convergence to the game’s Nash set – qualitatively or quantitatively. To the best of our knowledge,
the closest work to our own in the literature is the paper of Cohen et al. [8] who showed that the
EXP3 algorithm with explicit exploration converges at a sub-geometric rate in potential games; our
analysis allows for a wider range of learning rates, so we are able to obtain faster convergence rates
than Cohen et al. [8]. We are not aware of any other comparable results in the literature.

2 Preliminaries

Finite games. Throughout this work we consider 𝑁-players finite games in normal form. Formally,
each player, indexed by 𝑖 ∈ N = {1, . . . , 𝑁}, has a finite set of pure strategies 𝛼𝑖 ∈ A𝑖 = {1, . . . , 𝐴𝑖},
and a payoff function 𝑢𝑖 : A→ ℝ, where A B ∏

𝑖 A𝑖 is the space of all pure strategy profiles. For
concision, we will denote such a game as a tuple Γ = Γ(N ,A, 𝑢).
During play, players can also play mixed strategies, i.e., probability distributions 𝑥𝑖 ∈ X𝑖 B Δ(A𝑖)
over their pure strategies. In this case, we will write 𝑥𝑖𝛼𝑖

for the probability that player 𝑖 ∈ N selects
𝛼𝑖 ∈ A𝑖 under 𝑥𝑖 , 𝑥 = (𝑥1, . . . , 𝑥𝑁 ) for the players’ mixed strategy profile, and X B ∏

𝑖 X𝑖 for the
set thereof. Finally, when focusing on the mixed strategy of a particular player 𝑖 ∈ N , we will use the
shorthand (𝑥𝑖; 𝑥−𝑖) B (𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑁 ) – and, similarly, (𝛼𝑖;𝛼−𝑖) for pure strategies.

Now, the expected payoff of player 𝑖 in a mixed strategy profile 𝑥 ∈ X is given by

𝑢𝑖 (𝑥) ≡ 𝑢𝑖 (𝑥𝑖; 𝑥−𝑖) =
∑︁

𝛼1∈A1

· · ·
∑︁

𝛼𝑁 ∈A𝑁

𝑢𝑖 (𝛼1, . . . , 𝛼𝑁 ) · 𝑥1,𝛼1 · · · 𝑥𝑁,𝛼𝑁
(1)

where 𝑢𝑖 (𝛼1, . . . , 𝛼𝑁 ) is the payoff of player 𝑖 in the action profile 𝛼 = (𝛼1, . . . , 𝛼𝑁 ) ∈ A. For
posterity, we will also write 𝑣𝑖𝛼𝑖

(𝑥) = 𝑢𝑖 (𝛼𝑖; 𝑥−𝑖) for the payoff that player 𝑖 would have gotten by
playing 𝛼𝑖 ∈ A𝑖 against the mixed strategy profile 𝑥−𝑖 of all other players. In this way, the mixed
payoff vector of the 𝑖-th player can be seen as a vector field 𝑣𝑖 : X → Y𝑖 = ℝA𝑖 which can be written
in components as

𝑣𝑖 (𝑥) = (𝑣𝑖𝛼𝑖
(𝑥))𝛼𝑖 ∈A𝑖

. (2)

Again, we will write 𝑣(𝑥) = (𝑣1 (𝑥), . . . , 𝑣𝑁 (𝑥)) for the ensemble of payoff vectors of all players
and Y =

∏
𝑖 Y𝑖 for the space of payoff vectors respectively. Finally, in a slight abuse of notation,

we will identify 𝛼𝑖 with the mixed strategy that assigns all probability to 𝛼𝑖 , and we will write
𝑣𝑖 (𝛼) = (𝑢𝑖 (𝛼𝑖;𝛼−𝑖))𝛼𝑖 ∈A𝑖

. for the corresponding pure payoff vector.

Nash equilibrium. The most widely used solution concept in game theory is that of a Nash
equilibrium i.e., a (possibly) mixed strategy profile 𝑥∗ ∈ X that discourages unilateral deviations;
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formally, 𝑥∗ ∈ X is said to be a Nash equilibrium of Γ if

𝑢𝑖 (𝑥∗) ≥ 𝑢𝑖 (𝑥𝑖; 𝑥∗−𝑖) for all 𝑥𝑖 ∈ X𝑖 and all 𝑖 ∈ N . (NE)

The set of pure strategies supported at the equilibrium component 𝑥∗
𝑖
∈ X𝑖 of each player will

be denoted by supp(𝑥∗
𝑖
) = {𝛼𝑖 ∈ A𝑖 : 𝑥∗

𝑖𝛼𝑖
> 0}. In turn, the size of the support of 𝑥∗ leads to

the following dichotomy: 𝑥∗ is called pure if supp(𝑥∗
𝑖
) ≡ ∏

𝑖∈𝑁 supp(𝑥∗
𝑖
) is a singleton and mixed

otherwise.

Finally, we will also say that a Nash equilibrium 𝑥∗ is strict if (NE) holds as a strict inequality
whenever 𝑥𝑖 ≠ 𝑥∗

𝑖
; obviously, strict equilibria are also pure, but the converse need not hold. Strict

Nash equilibria play a key role in game theory because any unilateral deviation incurs a strict loss
to the deviating player; put differently, if 𝑥∗ is strict, every player has a unique best response. In
addition, they are the only equilibria that remain invariant under small generic perturbations of the
game [14]; these robustness properties of strict equilibria will play a key role in the sequel.

3 Regularized learning

Throughout our paper, we will focus on a wide family of learning schemes that unfold as follows:
At each stage 𝑛 = 1, 2, . . . , every player maintains a “score vector” 𝑌𝑖,𝑛 ∈ Y𝑖 whose components
indicate the player’s propensity to play a given pure strategy. More formally, this is captured by a
player-specific “regularized choice” map 𝑄𝑖 : Y𝑖 → X𝑖 which outputs the player’s mixed strategy
𝑋𝑖,𝑛 = 𝑄𝑖 (𝑌𝑖,𝑛) as a function of 𝑌𝑖,𝑛 (see below for a detailed definition). Then, after selecting their
actions and collecting their rewards, players also receive – or otherwise construct – an estimate 𝑉𝑖,𝑛
of their mixed payoff vectors, which is used to increment their score variables and continue playing.

Formally, this learning process, which we call “follow the generalized leader” (FTGL), can be
described via the round-by-round recursive rule

𝑋𝑖,𝑛 = 𝑄𝑖 (𝑌𝑖,𝑛)
𝑌𝑖,𝑛+1 = 𝑌𝑖,𝑛 + 𝛾𝑛𝑉𝑖,𝑛

(FTGL)

where 𝛾𝑛 > 0 is a “learning rate” parameter such that
∑

𝑛 𝛾𝑛 = ∞. The terminology FTGL alludes
to the widely known “follow the regularized leader” algorithm, which is, historically speaking, the
parent-scheme of FTGL. The link to regularization is provided by the method’s choice map, which
we detail below; the assumptions for the signal sequence 𝑉𝑖,𝑛 are provided right after.

3.1. The choice map. The guiding principle behind the definition of the players’ choice maps
𝑄𝑖 : Y𝑖 → X𝑖 , 𝑖 ∈ N , as follows: Because the players’ score variables 𝑌𝑖,𝑛 are assumed to represent
an estimate of each strategy’s cumulative payoff over time, 𝑄𝑖 is defined as a “regularized” version
of the best-response correspondence 𝑦𝑖 ↦→ arg max𝑥𝑖 ∈X𝑖

⟨𝑦𝑖 , 𝑥𝑖⟩.1 On that account, we will consider
regularized best responses of the general form

𝑄𝑖 (𝑦𝑖) = arg max
𝑥𝑖 ∈X𝑖

{⟨𝑦𝑖 , 𝑥𝑖⟩ − ℎ𝑖 (𝑥𝑖)} (3)

where ℎ𝑖 : X𝑖 → ℝ denotes the 𝑖-th player’s regularization function.

For concreteness, we will focus on a class of decomposable regularizers of the form ℎ𝑖 (𝑥𝑖) =∑
𝛼𝑖 ∈A𝑖

𝜃𝑖 (𝑥𝑖) where the so-called “kernel function” 𝜃𝑖 : [0, 1] → ℝ is assumed continuous on
[0, 1], twice differentiable on (0, 1], and strongly convex, i.e., inf (0,1] 𝜃 ′′𝑖 > 0. Of course, different
regularizers give rise to different instances of (FTGL); two of the most widely used and cited examples
are as follows:
Example 3.1 (Entropic regularization and multiplicative/exponential weights). Perhaps the most
common representative of regularization functions is given by the entropic kernel 𝜃 (𝑥) = 𝑥 log 𝑥
i.e., ℎ(𝑥𝑖) =

∑
𝛼𝑖 ∈A𝑖

𝑥𝑖𝛼𝑖
log 𝑥𝑖𝛼𝑖

. This choice of regularizer is well-known to provide the logit
choice map Λ𝑖 (𝑦𝑖) = (exp(𝑦𝑖𝛼𝑖

))𝛼𝑖 ∈A𝑖

/ ∑
𝛼𝑖 ∈A𝑖

exp(𝑦𝑖𝛼𝑖
). The resulting algorithm is known in the

literature as the multiplicative/exponential weights algorithm [1, 2, 29, 41, 45].
Example 3.2 (Euclidean projection). Another popular regularizer is the quadratic penalty ℎ(𝑥) =∑

𝑎 𝑥𝑎
2/2, which yields the payoff projection map Π(𝑦) = arg min𝑥∈Δ∥𝑦 − 𝑥∥2, cf. [26, 46].

1In this context, regularization can be seen as a means to reinforce exploration so as to avoid committing prematurely to a
given strategy.
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Remark 3.1. Examples 3.1 and 3.2 are archetypes of a fundamental dichotomy between regularization
functions: in the former case, we have 𝜃 ′(0) = −∞, so ℎ becomes steep at the boundary of the
player’s strategy space; in the later case, 𝜃 is differentiable at 0, so ℎ is non-steep. We will see that
this steep/non-steep dichotomy has a crucial impact on the method’s rate of convergence.

3.2. The feedback model. As we mentioned in the beginning of the section, the “payoff signal” 𝑉𝑛

contains information about the structure of the algorithm as well as the setting under consideration.
Thus to account for as broad a range of algorithms as possible, we will assume that the players’ signal
sequence is of the general form

𝑉𝑛 = 𝑣(𝑋𝑛) + 𝑍𝑛 (4)
for some abstract error process 𝑍𝑛 = (𝑍𝑖,𝑛)𝑖∈N . Tp be clear though, we should stress that we do not
assume that 𝑉𝑛 is directly correlated to – or obtained by – the chosen mixed strategy 𝑋𝑛; this will be
made clear in the range of models we present below.

To distinguish between random (zero-mean) and systematic (non-zero-mean) errors, we will further
decompose 𝑍𝑛 as 𝑍𝑛 = 𝑈𝑛 + 𝑏𝑛, where

𝑏𝑛 = 𝔼[𝑍𝑛 |F𝑛] and 𝔼[𝑈𝑛 |F𝑛] = 0 (5)

with F𝑛 denoting the history of 𝑋𝑛 up to stage 𝑛 (inclusive). Notice that, since the feedback signal
is generated only after the player chooses a strategy, 𝑉𝑛 is not F𝑛-measurable in general. On this
account, we will make the following blanket assumptions for the input signal sequence 𝑉𝑛:

1. Vanishing bias: 𝑏𝑛 converges uniformly to 0 as 𝑛→∞. (A1)

2. Bounded variance: 𝔼[∥𝑈𝑛∥𝑞∗ |F𝑛] ≤ 𝜎
𝑞
𝑛 for some 𝑞 > 2. (A2)

In the above 𝜎𝑛 is assumed to be a deterministic, stage-specific, and possibly increasing bound on
the variance of the noise component 𝑈𝑛; our precise assumptions for its growth (relative to 𝑏𝑛 or
otherwise) will be detailed later in this section.

Specific models. So far, the formulation of (FTGL) has been kept intentionally abstract and devoid
of any modeling assumptions for how the players’ payoff signals are generated or estimated. To
illustrate the width and breadth of (FTGL), we present of series of specific models below, including
the popular FTRL and optimistic FTRL methods:
Model 1 (FTRL with oracle-based feedback). Assume that each player chooses an action based on a
given mixed strategy, and once every player has chosen an action, an oracle reveals to each player
their corresponding pure payoff vector. Formally, at each round 𝑛 = 1, 2, . . . , each player chooses a
pure strategy 𝛼𝑖,𝑛 ∈ A𝑖 based on a mixed strategy 𝑋𝑖,𝑛 ∈ X𝑖 and subsequently observes the payoff
vector

𝑉𝑖,𝑛 = 𝑣𝑖 (𝛼𝑛) = (𝑢𝑖 (𝛼𝑖;𝛼−𝑖,𝑛))𝛼𝑖 ∈A𝑖
. (6)

Thus, in this case, (FTGL) boils down to the standard “follow the regularized leader” (FTRL)
algorithm of [41, 42]. As for our basic feedback assumptions, we readily see that 𝑏𝑖,𝑛 = 0 and
𝑈𝑖,𝑛 = 𝑣𝑖 (𝛼𝑛) − 𝑣𝑖 (𝑋𝑛); hence:

• (A1) is trivially satisfied since 𝑏𝑖,𝑛 = 0.
• (A2) is again satisfied because ∥𝑈𝑖,𝑛∥∗ = ∥𝑣𝑖 (𝛼𝑛) − 𝑣𝑖 (𝑋𝑛)∥∗ ≤ 2 max𝛼∈A∥𝑣𝑖 (𝛼)∥∗, so 𝑈𝑛 has

uniformly bounded moments for all 𝑞 ∈ [1,∞]. §

Model 2 (FTRL with bandit feedback). If the players only observe their realized rewards, they
have to construct a model for 𝑉𝑛 based on incomplete information. This is the standard setting for
multi-armed bandits [5, 6, 27], so it is often referred to as the “bandit feedback” model. In this case,
the players’ action selection process is as in Model 1 above, but the feedback signal sequence 𝑉𝑛 is
now reconstructed by means of the importance-weighted estimator

𝑉𝑖𝛼𝑖 ,𝑛 =
1{𝛼𝑖,𝑛 = 𝛼𝑖}

�̂�𝑖𝛼𝑖,𝑛

𝑢𝑖 (𝛼𝑛) (IWE)

where �̂�𝑖,𝑛 = (1 − 𝜀𝑛)𝑋𝑖,𝑛 + 𝜀𝑛/|A𝑖 | is the mixed strategy of the 𝑖-th player at stage 𝑛. Compared to
𝑋𝑖,𝑛 the player’s actual sampling strategy is now recalibrated by an explicit exploration parameter
𝜀𝑛 → 0 whose role is to stabilize the learning process. The idea behind this adjustment is that even if
a strategy has zero probability to be chosen under 𝑋𝑛, it will still be sampled with positive probability
thanks to the mixing factor 𝜀𝑛.
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Feedback FTRL OptFTRL EG / MP

Full information 𝑏𝑛 = 0
𝑀𝑛 = 0

∥𝑏𝑛 ∥∗ = O (𝛾𝑛)
𝑀𝑛 = 0

∥𝑏𝑛 ∥∗ = O (𝛾𝑛)
𝑀𝑛 = 0

Oracle-based 𝑏𝑛 = 0
𝑀𝑛 = O (1)

∥𝑏𝑛 ∥∗ = O (𝛾𝑛)
𝑀𝑛 = O (1)

∥𝑏𝑛 ∥∗ = O (𝛾𝑛)
𝑀𝑛 = O (1)

Bandit
(payoff-based)

∥𝑏𝑛 ∥∗ = O (𝜀𝑛)
𝑀𝑛 = Θ(1/𝜀𝑛)

∥𝑏𝑛 ∥∗ = O (𝜀𝑛)
𝑀𝑛 = Θ(1/𝜀𝑛)

∥𝑏𝑛 ∥∗ = O (𝜀𝑛)
𝑀𝑛 = Θ(1/𝜀𝑛)

Table 1: Recasting different online learning algorithms within the general template of (FTGL).

The importance-weighted estimator (IWE) estimator may be seen as a special case of the model
(4) with 𝑈𝑖,𝑛 = 𝑉𝑖,𝑛 − 𝑣𝑖 ( �̂�𝑛) and 𝑏𝑖,𝑛 = 𝑣𝑖 ( �̂�𝑛) − 𝑣𝑖 (𝑋𝑛). Both assumptions (A1),(A2) are again
satisfied; indeed:

• For (A1): A standard calculation performed in Appendix D reveals that ∥𝑏𝑖,𝑛∥∗ = 𝑂 (𝜀𝑛). Thus
our assumption is satisfied since 𝜀𝑛 → 0.

• For (A2): Again a standard calculation presented in Appendix D reveals that ∥𝑉𝑖,𝑛 − 𝑣𝑖 ( �̂�𝑛)∥∗ =
𝑂 (1/𝜀𝑛) and thus the noise has bounded moments, 𝜎𝑛 = Θ(1/𝜀𝑛) for all 𝑞 ∈ [1,∞].

Model 3 (OptFTRL with oracle-based feedback). Following Rakhlin and Sridharan [40], the so-called
“optimistic” variant of FTRL is given by the recursive formula:

𝑌𝑖,𝑛 = 𝑌𝑖,𝑛 + 𝛾𝑛𝑉𝑖,𝑛−1 �̃�𝑖,𝑛 = 𝑄𝑖 (𝑌𝑖,𝑛) 𝑌𝑖,𝑛+1 = 𝑌𝑖,𝑛 + 𝛾𝑛𝑉𝑖,𝑛 (OptFTRL)

In the above the payoff signal 𝑉𝑖,𝑛, which depends on the state �̃�𝑛, is generated as follows: at each
round 𝑛 = 1, 2, . . . , every player 𝑖 ∈ N picks an action 𝛼𝑖,𝑛 ∈ A𝑖 based on �̃�𝑖,𝑛 ∈ X𝑖 and observes
the pure payoff vector 𝑣𝑖 (𝛼𝑛) ≡ (𝑢𝑖 (𝛼𝑖;𝛼−𝑖,𝑛))𝛼𝑖 ∈A𝑖

. At first glance, it seems difficult to reconcile
the above update structure with that of (FTGL); however, it is indeed possible to integrate (OptFTRL)
within (FTGL) by considering the auxiliary states 𝑋𝑛 = 𝑄(𝑌𝑛) (which are never played and are only
used here for the analysis).

Indeed, each player’s input signal is a special case of (4) with payoff feedback 𝑉𝑖,𝑛 = 𝑣𝑖 (𝛼𝑛), zero-
mean noise 𝑈𝑖,𝑛 = 𝑣𝑖 (𝛼𝑛) − 𝑣𝑖 ( �̃�𝑛) and bias 𝑏𝑖,𝑛 = 𝑣𝑖 ( �̃�𝑛) − 𝑣𝑖 (𝑋𝑛) that satisfy both the assumptions
(A1),(A2). In more detail, we have:

• For (A1): ∥𝑏𝑖,𝑛∥∗ = ∥𝑣𝑖 ( �̃�𝑛) − 𝑣𝑖 (𝑋𝑛)∥∗ = 𝑂 (𝛾𝑛), which goes uniformly to 0 whenever 𝛾𝑛 → 0.
• For (A2): ∥𝑈𝑖,𝑛∥∗ = ∥𝑣𝑖 (𝛼𝑛) − 𝑣𝑖 ( �̃�𝑛)∥∗ ≤ 2 max𝛼∈A∥𝑣𝑖 (𝛼)∥∗ and thus the noise has bounded

moments for all 𝑞 ∈ [1,∞].
Remark 3.2. Based on the structure of the aforementioned algorithms, it is easy to check that we
capture a-fortiori the model of a full-information payoff signal; for a more complete account of the
different algorithms and feedback models see Table 1.

4 Analysis & Results

We are now in a position to state our main convergence results for (FTGL). We begin with a precise
statement and discussion in Section 4.1; subsequently, we present the main proof techniques in
Section 4.2.

4.1. Statement and discussion of our main results. Our analysis will focus exclusively on
strict Nash equilibria. As we discussed in the introduction, the reason for this is that only strict
Nash equilibria can be asymptotically stable under FTRL [11, 15], so they are the only reasonable
candidates to consider when examining the rate of convergence of a regularized learning algorithm.2

2As a sidenote, we should remark here that FTGL also contains the optimistic FTRL algorithm, which does converge to
mixed Nash equilibria in bilinear zero-sum games with perfect, deterministic feedback [16, 25, 32]. At first glance, this would
seem to contradict the results of [11, 15], but one needs to bear in mind that the convergence of (OptFTRL) to mixed equilibria
only occurs in settings with perfect information (i.e., 𝑉𝑛 = 𝑣 (𝑋𝑛) for all 𝑛 = 1, 2, . . . ). In the presence of uncertainty, this
convergence is destroyed [7, 22], so there is no contradiction with the results of [15]. Because we are primarily interested in
learning with limited information and/or under uncertainty, we will not treat this somewhat fragile case.
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To proceed, we will need one technical assumption linking the learning rate of (FTGL) and the
bias/variance parameters of the driving feedback sequence 𝑉𝑛. This is as follows:

The sequence 𝛿𝑛 B

∑𝑛
𝑘=1 𝛾

1+ 𝑞

2
𝑘

𝜎
𝑞

𝑘[∑𝑛
𝑘=1 𝛾𝑘

]1+𝛽𝑞/2 is summable for some 𝛽 < 1. (A3)

Assumption (A3) imposes a growth condition on the method’s learning rate relative to the bias and
variance parameters of the input signal sequence 𝑉𝑛, but it is otherwise a technical prerequisite for
the analysis to come. What is more important for our purposes is that the concrete models that we
discussed in the previous section satisfy it for a wide range of the player-chosen parameters 𝛾𝑛 (and
𝜀𝑛 in the case of bandit-based algorithms); to streamline our presentation, we postpone a more precise
discussion of this issue until after the statement of our main results.

The last element that we need to introduce concerns the players’ choice of regularizer: clearly, since
propensities are transformed to strategies via each player’s individual choice map 𝑄𝑖 : Y𝑖 → X𝑖 , it
stands to reason that the underlying regularization function ℎ plays a major role in the method’s
rate of convergence. Indeed, given an update of the form 𝑌𝑛+1 ← 𝑌𝑛 + 𝛾𝑛𝑉𝑛, the method’s strategy
variable will move forward as 𝑋𝑛+1 ← 𝑋𝑛 + 𝛾𝑛𝐽𝑄(𝑉)𝑉𝑛 +O(𝛾2

𝑛), where 𝐽𝑄 denotes the Jacobian
matrix of 𝑄. Thus, to leading order in 𝛾𝑛, the update 𝑋𝑛+1 ← 𝑋𝑛 is dominated by the first derivatives
of 𝑄.

By a relatively straightforward application of the Legendre identity from convex analysis (𝑄 = (𝜕ℎ)−1

in our context; see below for a precise statement), this rate of change is related to the inverse mapping
of the derivative each 𝜃𝑖 (the kernel of the underlying regularizer). Motivated by this observation, we
introduce below the algorithm’s so-called rate function:

𝜙𝑖 (𝑡) =
{
(𝜃 ′

𝑖
)−1 (𝑡) if 𝑡 > 𝜃 ′

𝑖
(0+),

0 otherwise.
(7)

The definition of the rate function 𝜙 captures the sensitivity of the choice map 𝑄 in a very precise
way: If the score difference corresponding to two pure strategies 𝛼, 𝛽 ∈ A𝑖 grows as 𝑦𝛽 − 𝑦𝛼 = 𝑡
for some 𝑡 > 0, then the probability of playing the strategy with the lesser score must be less than
the probabiity of playing the strategy with the higher score. The precise amount of this disparity of
course depends on the player’s choice function 𝑄 and 𝜙 acts as a “transfer” function in this regard.
Specifically, as we show in detail later, we have 𝑥𝛼 = 𝜙(−Θ(𝑡)), i.e., 𝜙 determines the rate at which
𝑥𝛼 vanishes. For different regularizers we present the corresponding rates in Table 2.

With all this in hand, our main result can be stated as follows:
Theorem 1. Let 𝑥∗ be a strict Nash equilibrium of Γ, and fix some confidence level 𝛿 > 0. If
Assumptions (A1)–(A3) hold, there exists an unbounded open set of initial conditions Winit ⊆ Y and
constants 𝑑𝑖 , 𝑐′𝑖 with 𝑐′

𝑖
> 0 such that, if 𝑌1 ∈ Winit, we have:

1. 𝑋𝑛 converges to 𝑥∗ with probability at least 1 − 𝛿.
2. Conditioned on the above, the rate of convergence for each player 𝑖 ∈ N is given by

∥𝑋𝑖,𝑛 − 𝑥∗𝑖 ∥1 ≤ 2
∑︁

𝛼𝑖 ∈A𝑖\supp(𝑥∗
𝑖
)
𝜙𝑖

(
𝑑𝑖 − 𝑐′𝑖

∑︁𝑛

𝑘=1
𝛾𝑘

)
. (8)

Armed with this general result, we readily obtain the following immediate consequences thereof:
Corollary 1. If the regularizer employed is non-steep (i.e., 𝜃𝑖 is differentiable at 0), 𝑋𝑛 converges to
𝑥∗ in a finite number of iterations.
Corollary 2. Suppose that FTRL is run with oracle-based feedback as per Model 1 and a learning
rate of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1]. Then the conclusion of Theorem 1 holds.
Corollary 3. Suppose that FTRL is run with bandit feedback as per Model 2, a learning rate of the
form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1] and a mixing parameter 𝜀𝑛 ∝ 1/𝑛𝑟 , 𝑟 ∈ (0, 1/2). Then the conclusion of
Theorem 1 holds.
Corollary 4. Suppose that Optimistic FTRL is run with oracle-based feedback as per Model 3 and a
learning rate of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ (0, 1]. Then the conclusion of Theorem 1 holds.

More generally, we show in the supplement that the conclusion of Theorem 1 holds for all algorithms
and feedback models presented in Table 1: in all cases therein, players can employ step-size policies
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ALGORITHM KERNEL 𝜃 (x) RATE 𝜙 (−y)

Multiplicative Weight Updates 𝑥 log 𝑥 exp(−𝑦)
Projection Gradient Descent 𝑥2/2 −𝑦

Inverse Updates − log 𝑥 −1/𝑦
q-Replicator𝑞>0 [𝑞 (1 − 𝑞) ]−1 (𝑥 − 𝑥𝑞) [𝑞−1 + (1 − 𝑞)𝑦 ]1/𝑞−1

Table 2: Regularizers & correspinding rates.

of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1], and a mixing parameter 𝜀𝑛 ∝ 1/𝑛𝑟 with 𝑟 ∈ (0, 1/2) for the bandit
models. The only case that does not follow as an immediate corollary of Theorem 1 is the case of
constant step-sizes for Optimistic FTRL and EG/MP; however, a slightly more refined argument (that
we present in the Appendix C) shows that constant step-sizes are also covered by the convergence
rate guarantee (8) of Theorem 1.

4.2. Sketch of proof and main techniques. At a high level, the main idea of the proof of Theorem 1
relies on a tandem application of martingale limit theory and convex analysis in order to exploit
the specific structure of (FTGL). While martingale limit theory emerges naturally to control the
components of the noise, a delicate analysis of the contribution of ℎ𝑖 in the solution of the convex
constrained optimization problem, that 𝑥 = 𝑄𝑖 (𝑦) induces, is necessary to derive the aforementioned
generic rates. Below we provide a sketch of the main steps in this analysis
Step 1. Our starting point is to explore the geometric properties that are induced by the existence of a
strict Nash equilibrium. Indeed, the fact that (NE) holds as a strict inequality for each pure strategy
against the equilibrium’s strategy, ensures convergence properties for strict Nash equilibria. More
precisely, an immediate implication of (NE) is that there exist neighborhood U of 𝑥∗ and constants
𝑐1, . . . , 𝑐𝑁 such that

𝑣𝑖𝛼∗
𝑖
(𝑥) − 𝑣𝑖𝛼𝑖

(𝑥) ≥ 𝑐𝑖 for all 𝑥 ∈ U and 𝛼𝑖 ≠ 𝛼∗𝑖 , 𝛼𝑖 ∈ A𝑖 , 𝑖 ∈ N (9)

In other words, in the neighborhood U the payoff of the equilibrium’s strategy strictly dominates
all other strategies’ payoffs for each player. However, since the linchpin of (FTGL) is the interplay
between X and Y , for the purpose of our analysis, we need to investigate the variational structure of
U in both spaces.
Informal Lemma 1. There exists a neighborhood U , constants 𝑐1, . . . , 𝑐𝑁 and 𝑀1, . . . , 𝑀𝑁 for
which (9) holds such that

∏
𝑖∈N 𝑄𝑖 (W𝑀𝑖

) ⊆ U , where W𝑀𝑖
are open sets of the form 3

W𝑀𝑖
= {𝑌𝑖 : 𝑌𝑖𝛼∗

𝑖
− 𝑌𝑖𝛼𝑖

> 𝑀𝑖 for all 𝛼𝑖 ≠ 𝛼∗𝑖 , 𝛼𝑖 ∈ A𝑖} for 𝑀𝑖 > 0, 𝑖 ∈ N (10)

Step 2. We now focus on one player 𝑖 ∈ N and drop the index 𝑖 altogether. First we prove that there
exists an open set of initializations Winit of (FTGL), for which with arbitrary high probability the
dual variable (𝑌𝑘)𝑘∈ℕ never exits W𝑀 and thus its image remains in the desired neighborhood U . We
start by writing the score differences between each pure strategy 𝛼 ∈ A and 𝛼∗ ∈ supp(𝑥∗)

𝑌𝛼,𝑛+1 − 𝑌𝛼∗ ,𝑛+1 = 𝑌𝛼,1 − 𝑌𝛼∗ ,1 +
𝑛∑︁

𝑘=1
𝛾𝑘 (drift𝑘 + noise𝑘 + bias𝑘) (11)

where drift𝑘 = 𝑣𝛼 (𝑋𝑘) − 𝑣𝛼∗ (𝑋𝑘), noise𝑘 = 𝑈𝛼,𝑘 −𝑈𝛼∗ ,𝑘 , bias𝑘 = 𝑏𝛼,𝑘 − 𝑏𝛼∗ ,𝑘 . We will prove by
induction our forward-invariant statement; let 𝑌𝑘 ∈ W𝑀 and thus 𝑋𝑘 ∈ U for all 𝑘 = 1, . . . , 𝑛 then

• By (9) we have
∑𝑛

𝑘=1 𝛾𝑘drift𝑘 ≤ −𝑐
∑𝑛

𝑘=1 𝛾𝑘 for all 𝑘 = 1, . . . , 𝑛.
• By the triangle inequality and (A1), the term

∑𝑛
𝑘=1 𝛾𝑘bias𝑘 is dominated by the term

∑𝑛
𝑘=1 𝛾𝑘drift𝑘

for all 𝑛 = 1, 2, . . ..
• Subsequently, by leveraging the machinery of martingale’s maximal inequalities and assumption

(A2), which we present in Appendix A and using learning rates that respect (A3), we prove that with
probability at least 1 − 𝛿, for any fixed confidence level 𝛿,

∑𝑛
𝑘=1 𝛾𝑘noise𝑘 , which is a martingale, is

also dominated by the term
∑𝑛

𝑘=1 𝛾𝑘drift𝑘 for all 𝑛 = 1, 2, . . .
• We now define the open set of initial conditions Winit, which is of the form described in (10), with

constant 𝑀init. By choosing4 𝑀init ≥ 𝑀 + ∑𝑛
𝑘=1 𝛾𝑘 (noise𝑘 + bias𝑘) − (𝑐 − 𝑐′)∑𝑛

𝑘=1 𝛾𝑘 , for any
𝑐′ < 𝑐 and any 𝑛 ≥ 1, since 𝑌1 ∈ Winit we have that 𝑌𝛼,𝑛+1 − 𝑌𝛼∗ ,𝑛+1 ≤ −𝑀 for all 𝑛 ≥ 1.

3It is worth mentioning that the images of these open sets belong to neighborhoods of 𝑥∗, which are nested as 𝑀𝑖 increases.
4such a 𝑀init exists since both the bias and the noise terms are dominated by the term −(𝑐 − 𝑐′) ∑𝑛

𝑘=1 𝛾𝑘 .
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Figure 1: For the Battle of the Sexes experiment, we initialize uniformly randomly our executions from
𝑌𝑖𝑛𝑖𝑡 ∈ [−1, 1] × [−1, 1] and examine the instantiations of Model 1-3 using constant-step size and exploration
rate 𝜀𝑛 ∝ 1/ 3√𝑛. For the Pigou’s game, our setup includes two alternative disjoint paths for 𝑁 = 1000 drivers.
The first path has linear latency ℓ1 (𝑥) = 𝑥/𝑁 while the second one has constant unit congestion, ℓ2 (𝑥) = 1,
where 𝑥 denotes the population of the drivers that uses the corresponding path.

By substituting the inequality for 𝑀init in (11) we get 𝑌𝛼,𝑛+1 − 𝑌𝛼∗ ,𝑛+1 ≤ −𝑀 − 𝑐′
∑𝑛

𝑘=1 𝛾𝑘 and
convergence occurs as an immediate consequence; Indeed 𝑋𝛼∗ ,𝑛 → 1, since whenever 𝑌𝛼 − 𝑌𝛼∗ →
−∞, it holds that each 𝛼 ∈ A \ supp(𝑥∗) becomes extinct i.e., 𝑋𝛼 → 0.
Step 3. We now proceed to the delineation of the rates of convergence. Using the KKT conditions
(Lemma B.1) combined with Eq. (11),Eq. (9) and the fact that 𝑌1 ∈ Winit we have

𝜃 ′(𝑋𝛼,𝑛+1) − 𝜃 ′(𝑋𝛼∗ ,𝑛+1) = 𝑌𝛼,𝑛+1 − 𝑌𝛼∗ ,𝑛+1 ≤ −𝑀init − 𝑐
𝑛∑︁

𝑘=1
𝛾𝑘 +

𝑛∑︁
𝑘=1

𝛾𝑘 (noise𝑘 + bias𝑘)

Recall that 𝜃 is strong convex, or equivalently 𝜃 ′ is strictly increasing; by rearranging and substituting
to the above inequality we get

𝜃 ′(𝑋𝛼,𝑛+1) ≤ 𝜃 ′(𝑋𝛼∗ ,𝑛+1) − 𝑀 − 𝑐′
𝑛∑︁

𝑘=1
𝛾𝑘 ≤ 𝑑 − 𝑐′

𝑛∑︁
𝑘=1

𝛾𝑘 (12)

where 𝑑 = −𝑀 + 𝜃 ′(1) and 𝛼 ∈ A, 𝛼 ≠ 𝛼∗. By aggregating over all 𝛼 ∈ A, 𝛼 ≠ 𝛼∗

∥𝑥∗ − 𝑋𝑛+1∥1 = 2(1 − 𝑋𝛼∗ ,𝑛+1) ≤ 2
∑︁

𝛼∈A≠𝛼∗
𝜙(𝑑 − 𝑐′

𝑛∑︁
𝑘=1

𝛾𝑘) (13)

which indicates the rate of convergence and completes our proof.

5 Numerical experiments

In this section we perform a series of numerical experiments to validate our theoretical findings.
Specifically we are interested in verifying both the correctness in the computation of the rates via 𝜙𝑖
for different regularizers and at the same time the fact that convergence speed is invariant to different
feedback models and algorithmic variants of (FTGL).

To do this, we start by examining variations of (FTGL) in the archetypal game of Battle of the Sexes,
a popular two-player benchmark of the coordination games, which however involves elements of
conflict as well. This game exhibits two strict Nash equilibria and one mixed equilibrium (for the
exact definition, see Appendix E). We then seek to experimentally study the performance of (FTGL)
while the number of the players scales up. To do this we use the atomic version of classical Pigou’s
congestion game [37], where 𝑁 units of traffic (e.g., rush-hour drivers) leave from 𝑂 (origin) to 𝐷
(destination) at the same time and each driver has the same dominant pure strategy/path for this trip.
Accordingly to Table 2 the decay rate for the entropic regularization is exponential while for the case
of euclidean is linear, which indeed yield linear and constant-time convergence as Fig. 16 illustrates.

We defer a detailed exposition of various configurations with different step-sizes, alternative dis-
cretization methods like MirrorProx and ExtraGradient and feedback models with the presence (or
not) of extra heavy-tailed/uniform/gaussian noise again to the paper’s supplement.
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A Martingale limit theory

Our analysis leverages tools from martingale limit theory. Below we present the two main theorems that
we utilize in the main body of our proofs.
• (Doob’s inequality), also known as Kolmogorov’s submartingale inequality gives a bound on the

probability that a stochastic process exceeds any given value over a given interval of time.
• (Burkholder’s inequality), also known the Burkholder-Davis-Gundy inequality is a remarkable result

relating the maximum of a local martingale with its quadratic variation.

Theorem A.1 (Doob’s inequality). Let 𝑆𝑛 be a martingale with respect to the filtration F𝑛, then for
each 𝜀 > 0 and 𝑞 ≥ 1,

ℙ( sup
1≤𝑘≤𝑛

|𝑆𝑘 | ≥ 𝜀) ≤ 𝔼 |𝑆𝑛 |𝑞
𝜀𝑞

(Doob’s inequality)

Theorem A.2 (Burkholder’s inequality). Let 𝑆𝑛 be a martingale with respect to the filtration F𝑛 and
𝑋𝑛 = 𝑆𝑛 − 𝑆𝑛−1. Then for all 1 < 𝑞 < ∞, there exists constant 𝐶𝑞 depending only on 𝑞 such that

𝔼 |𝑆𝑛 |𝑞 ≤ 𝐶𝑞 𝔼

����� 𝑛∑︁
𝑘=1

𝑋2
𝑘

�����𝑞/2 (Burkholder’s inequality)

Proofs for these two theorems can be found in [? ].

B A dichotomy between the regularizers

Our main result (Theorem 1) provides a mechanism to compute the convergence rate to a strict Nash
Equilibrium universally for all smooth convex regularizers ℎ𝑖 (𝑥) =

∑
𝛼𝑖 ∈A𝑖

𝜃𝑖 (𝑥𝛼𝑖
). An important

implication of our main theorem (Corollary 1) is that for the case of non-steep kernels (i.e., 𝜃𝑖 is
differentiable at 0), 𝑋𝑛 converges to 𝑥∗ in a finite number of iterations. Below we give some intuition
for the interested reader about the differences between the steep and non-steep case.

Steep vs non-steep. In this section we elaborate in detail the dichotomy among the different
regularizers mentioned in Sections 3.1 and 4. As we established in Section 3.1, different players may
apply different regularizers ℎ𝑖 in their choice maps 𝑄𝑖 (𝑦𝑖). Depending on the regularizer chosen, the
behavior of (FTGL) could vary significantly. To investigate more this diversity, we start by describing
formally the strategy-choice step 𝑥𝑖 = 𝑄𝑖 (𝑦𝑖) as a convex constrainted minimization problem.

𝑄𝑖 (𝑦𝑖) = − arg min
𝑥𝑖 ∈X𝑖

{ℎ𝑖 (𝑥𝑖) − ⟨𝑥𝑖 , 𝑦𝑖⟩} . (B.1)

Following also the folklore convention from convex analysis, we express ℎ as an extended-real valued
function ℎ : V → ℝ∪ {∞} with value∞ outside of the simplex X . Additionally, the subdifferential
of ℎ at 𝑥 ∈ V is defined as:

𝜕ℎ(𝑥) = {𝑦 ∈ V∗ : ℎ(𝑥 ′) ≥ ℎ(𝑥) + ⟨𝑦, 𝑥 ′ − 𝑥⟩ ∀𝑥 ′ ∈ V} (B.2)

If 𝜕ℎ(𝑥) is nonempty, then ℎ is called subdifferentiable at 𝑥 ∈ X . When 𝑥 ∈ ri(X ) then 𝜕ℎ(𝑥) is
always non-empty or more compactly ri(X ) ⊆ dom 𝜕ℎ ≡ {𝑥 ∈ X : 𝜕ℎ(𝑥) ≠ ∅} ⊆ dom ℎ ⊆ X .
Notice that when the gradient of ℎ exists, then its subgradient always contains it. Leveraging the
property that local and global minima coincides in the case of convex function, Fermat’s rule provides
a simple characterization of the minimizers of a function as the zeros of its subdifferential:
Fact (Fermat’s Rule). For a proper convex function 𝑓 , argmin 𝑓 ≡ zer𝜕 𝑓 = {𝑥 ∈ X | 0 ∈ 𝜕 𝑓 (𝑥)}

With these in mind, we present a typical separation between the different regularizers„ focusing on
the more simple case of decomposable ones ℎ(𝑥) = ∑

𝛼∈A 𝜃𝛼 (𝑥). On the one hand, steep regularizers
have differentiable kernels on (0, 1] and become infinitely steep as 𝑥 approaches the boundary or
𝜃 ′(0) = −∞. On the other hand, for the non-steep case the kernel is differentiable in all of [0, 1].
As a result of Fermat’s Rule, when a steep regularizer is employed the points of the boundary are
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Figure 2: Steep vs. non-steep regularizers (note in particular the singular behavior of the gradient at the boundary
in the case of steep regularizers).

infeasible not only as initial conditions but also as part of the sequence of play, while non-steep ones
allow completely the sequence of play to transfer between the different faces of the simplex. The
qualititative difference in behavior between these cases is illustrated in Fig. 2 (which shows the very
different behavior of the derivates of ℎ near the boundary of the state space).

Having discussed the connection between the choice map and the properties of the regularizer, the
following lemma quantifies the gulf between the steep and non-steep case and provides the relation
between mixed strategies and score vectors and the mirror map (3) that defines the dynamics (FTGL).
More precisely, we focus on the perspective of an arbitrary player, say 𝑖, and for ease of notation we
write 𝑄, 𝑥 and 𝑦 instead of 𝑄𝑖 , 𝑥𝑖 and 𝑦𝑖 respectively.

Lemma B.1. 𝑥 = 𝑄(𝑦) if and only if there exist 𝜇 ∈ ℝ and 𝜈𝛼 ∈ ℝ+ such that, for all 𝛼 ∈ A, we
have: a) 𝑦𝛼 = 𝜕ℎ

𝜕𝑥𝛼
+ 𝜇 − 𝜈𝛼; and b) 𝑥𝛼𝜈𝛼 = 0 In particular, if ℎ is steep, we have 𝜈𝛼 = 0 for all

𝛼 ∈ A.

Proof. Recall that

𝑄(𝑦) = arg max
𝑥∈K

{⟨𝑦 |𝑥⟩ − ℎ(𝑥)}

= arg max

{ ∑︁
𝛼∈A

𝑦𝛼𝑥𝛼 − ℎ(𝑥) :
∑︁
𝛼∈A

𝑥𝛼 = 1 and ∀𝛼 ∈ A : 𝑥𝛼 ≥ 0

}
The result follows by applying the Karash-Kuhn Tucker (KKT) conditions to this optimization
problem and noting that, since the constraints are affine, the KKT conditions are sufficient for
optimality. Our Langragian is

L(𝑥, 𝜇, 𝜈) = (
∑︁
𝛼∈A

𝑦𝛼𝑥𝛼 − ℎ(𝑥)) − 𝜇(
∑︁
𝛼∈A

𝑥𝛼 − 1) +
∑︁
𝛼∈A

𝜈𝛼𝑥𝛼

where the set of constraints (i) of the statement of the lemma are the stationarity constraints, which in
our case are ∇L(𝑥, 𝜇, 𝜈) = 0⇔ ∇(∑𝛼∈A 𝑦𝛼𝑥𝛼 − ℎ(𝑥)) = 𝜇∇(∑𝛼∈A 𝑥𝛼 −1) −∑

𝛼∈A 𝜈𝛼∇𝑥𝛼 , while
the set of constraints (ii) of the statement of the lemmas are the complementary slackness constraints.
Note that complementary slackness implies that whenever 𝜈𝛼 > 0 whenever 𝛼 ∉ supp(𝑥). Finally, if
ℎ is steep, we have |𝜕𝛼ℎ(𝑥) | → ∞ as 𝑥 → bd(X ), which implies that the KKT conditions admit a
solution with 𝜈𝛼 = 0. ■
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C Proof of Main Theorem

Our first lemma shows a property of strict Nash equilibria. More precisely, we prove the existence
of a neighborhood U in which each player’s payoff corresponding to the strategy of the equilibrium
outweighs the payoff of any other pure strategy.

Lemma C.1. Let 𝑥∗ = (𝛼∗1, . . . , 𝛼
∗
𝑁
) ∈ A be a strict Nash equilibrium. Then there exists a

neighborhood U of 𝑥∗ and constants 𝑐𝑖 such that for each player 𝑖 ∈ N :

𝑣𝑖𝛼∗
𝑖
(𝑥) − 𝑣𝑖𝛼𝑖

(𝑥) ≥ 𝑐𝑖 for all 𝑥 ∈ U and 𝛼𝑖 ≠ 𝛼∗𝑖 , 𝛼𝑖 ∈ A𝑖 . (C.1)

Proof. Our claim is a consequence of the definition of strict Nash equilibria. Specifically, from (NE)
for each player 𝑖 ∈ N we have that

𝑣𝑖𝛼∗
𝑖
(𝑥∗) > 𝑣𝑖𝛼𝑖

(𝑥∗) for all 𝛼𝑖 ∈ A𝑖 , 𝛼𝑖 ≠ 𝛼∗𝑖 (C.2)

By continuity there exists a neighborhood U ⊆ X and 𝑐𝑖 > 0 for each player 𝑖 ∈ N such that

𝑣𝑖𝛼∗
𝑖
(𝑥) − 𝑣𝑖𝛼𝑖

(𝑥) ≥ 𝑐𝑖 for all 𝑥 ∈ U (C.3)

■

𝑀𝑖 < 𝑌𝑖,𝛼∗
𝑖
−𝑌𝑖,𝛼𝑖

Y

𝑥∗ = (𝛼∗1 , . . . , 𝛼
∗
𝑁
)

U

X

The following lemma plays a central role in the proof of our
main theorem (Theorem 1). More precisely, Lemma C.2 pro-
vides a detailed analysis of the topology of a neighborhood U
where variational inequality (C.1) holds both in primal space
X and dual space Y . In order to achieve that we introduce
the notion of “(𝛼∗

𝑖
, 𝑀𝑖)-score-dominant” open set for a player

𝑖 ∈ N , which we denote W𝑖 (𝑀𝑖).

Definition (Score-Dominant Collection). Let 𝑥∗ = (𝛼∗1, . . . , 𝛼
∗
𝑁
) ∈ A be a strict Nash equilibrium of

a finite game Γ. Then a collection is said to be “(𝛼∗
𝑖
, 𝑀𝑖)𝑖∈N -score-dominant” if there exist positive

constants 𝑀𝑖 > 0 corresponding open sets W𝑖 (𝑀𝑖) of the form

W𝑖 (𝑀𝑖) = {𝑌𝑖 : 𝑌𝑖𝛼∗
𝑖
− 𝑌𝑖𝛼𝑖

> 𝑀𝑖 for all 𝛼𝑖 ≠ 𝛼∗𝑖 , 𝛼𝑖 ∈ A𝑖} for each player 𝑖 ∈ N (C.4)

Lemma C.2. Let 𝑥∗ = (𝛼∗1, . . . , 𝛼
∗
𝑁
) ∈ A be a strict Nash equilibrium. Then for every 𝜀 ∈ (0, 1),

there exist constants 𝑀𝑖, 𝜀 and the corresponding score-dominant open sets for each player 𝑖 ∈ N
such that:

∏
𝑖∈N 𝑄𝑖 (W𝑖 (𝑀𝑖, 𝜀)) ⊆ U𝜀 , where U𝜀 = {𝑥 ∈ X : 𝑥𝑖𝛼∗

𝑖
> 1 − 𝜀 for every player 𝑖 ∈ N }

Proof. For an arbitrary player 𝑖 ∈ N let W𝑖 (𝑀𝑖, 𝜀) be a score-dominant open set. We will show that
any 𝑀𝑖, 𝜀 > 𝜃 ′

𝑖
(1) − 𝜃 ′

𝑖
( 𝜀
|A𝑖 | ) > 0 satisfies the desideratum. Indeed, again by using Lemma B.1 for a

𝑌𝑖 ∈ W𝑖 (𝑀𝑖, 𝜀) with 𝑥𝑖 = 𝑄𝑖 (𝑌𝑖) we have that

𝑌𝑖𝛼∗
𝑖
− 𝑌𝑖𝛼𝑖

> 𝑀𝑖, 𝜀 (C.5)

𝜃 ′(𝑥𝑖𝛼∗
𝑖
) − 𝜃 ′𝑖 (𝑥𝑖𝛼𝑖

) − (𝜈𝛼∗
𝑖
− 𝜈𝛼𝑖

) > 𝑀𝑖, 𝜀 . (C.6)

with 𝜈𝛼𝑖
≥ 0 and 𝑥𝑖𝛼𝑖

= 0 whenever 𝑥𝑖𝛼𝑖
> 0. Notice that since 𝑀𝑖, 𝜀 > 0 and 𝜃 ′

𝑖
is strictly increasing,

it holds that 𝑥𝑖𝛼𝑖
< 𝑥𝑖𝛼∗

𝑖
. Indeed, assume by contradiction that 𝑥𝑖𝛼𝑖

≥ 𝑥𝑖𝛼∗
𝑖

for some 𝛼𝑖 , then we
examine two different cases:

(i) If 𝑥𝑖𝛼∗
𝑖
= 0, then 𝑥𝑖𝛼𝑖

≥ 𝑥𝑖𝛼∗
𝑖

for all 𝛼𝑖 ∈ A𝑖 with 𝑥𝑖𝛼𝑖
> 0 for at least one 𝛼𝑖 ∈ A𝑖 , 𝛼𝑖 ≠ 𝛼∗

𝑖
which is a contradiction to (C.6).

(ii) if 𝑥𝑖𝛼∗
𝑖
> 0, then (C.6) implies that 𝑀𝑖, 𝜀 ≤ 𝜃 ′(𝑥𝑖𝛼∗

𝑖
) − 𝜃 ′

𝑖
(𝑥𝑖𝛼𝑖
) < 0 which is again a contradic-

tion.

Therefore 𝜈𝛼∗
𝑖
= 0 and (C.6) can be rewritten for all 𝛼𝑖 ≠ 𝛼∗

𝑖
with 𝑥𝑖𝛼𝑖

> 0 as

𝜃 ′𝑖 (𝑥𝑖𝛼𝑖
) < −𝑀𝑖, 𝜀 + 𝜃 ′(𝑥𝑖𝛼∗

𝑖
) < −𝑀𝑖, 𝜀 + 𝜃 ′(1) < 𝜃 ′𝑖 ( 𝜀

|A𝑖 | ) (C.7)

where last inequality holds by the choice of 𝑀𝑖, 𝜀 > 𝜃 ′
𝑖
(1) − 𝜃 ′

𝑖
( 𝜀
|A𝑖 | ) > 0. Again, since 𝜃 ′ is strictly

increasing, this implies that for all 𝛼𝑖 ≠ 𝛼∗
𝑖

either 𝑥𝑖𝛼𝑖
= 0 or 0 < 𝑥𝑖𝛼𝑖

< 𝜀
|A𝑖 | . By union bound, this

implies that 𝑥𝑖𝛼∗
𝑖
> 1 − 𝜀 and equivalently that 𝑥 ∈ U𝜀 . ■
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Remark C.1. It is easy to check that as 𝑀 ′
𝑖

increases the score-dominant sets and their corresponding
images are nested. Indeed if 𝑀 ′ ≥ 𝑀𝜀 ⇒ W (𝑀) ⊆ W (𝑀 ′) ⇒ 𝑄(W (𝑀)) ⊆ 𝑄(W (𝑀 ′)), since
𝑌𝑖𝛼∗

𝑖
− 𝑌𝑖𝛼𝑖

> 𝑀 > 𝑀𝜀 for all 𝛼𝑖 ≠ 𝛼∗
𝑖
, 𝛼𝑖 ∈ A𝑖 .

Remark C.2. Notice that since the above analysis is for each strategy 𝛼𝑖 ∈ A𝑖 of player 𝑖, it implies
that not only the images 𝑄𝑖 (W𝑀𝑖

) are nested, but also that if 𝑥𝑖 = 𝑄𝑖 (𝑌𝑖), 𝑌𝑖 ∈ W𝑀𝑖
all 𝑥𝑖𝛼𝑖

→ 0 for
𝛼𝑖 ≠ 𝛼∗

𝑖
as 𝑀𝑖 →∞.

Theorem 1. Let 𝑥∗ be a strict Nash equilibrium of Γ, and fix some confidence level 𝛿 > 0. If
Assumptions (A1)–(A3) hold, there exists an unbounded open set of initial conditions Winit ⊆ Y and
constants 𝑑𝑖 , 𝑐′𝑖 with 𝑐′

𝑖
> 0 such that, if 𝑌1 ∈ Winit, we have:

1. 𝑋𝑛 converges to 𝑥∗ with probability at least 1 − 𝛿.
2. Conditioned on the above, the rate of convergence for each player 𝑖 ∈ N is given by

∥𝑋𝑖,𝑛 − 𝑥∗𝑖 ∥1 ≤ 2
∑︁

𝛼𝑖 ∈A𝑖\supp(𝑥∗
𝑖
)
𝜙𝑖

(
𝑑𝑖 − 𝑐′𝑖

∑︁𝑛

𝑘=1
𝛾𝑘

)
. (8)

Remark C.3. The probability guarantee is over only the potential randomness that the payoff oracle.
i.e., when players have access to a perfect payoff oracle; the results hold with probability 1.

Proof. Fix a confidence level 𝛿 and the parameters of the algorithm respecting (A1)–(A3). We will
prove that there exists a “score-dominant” open set of initial conditions Winit

Winit ≡ {𝑌 : 𝑀init < 𝑌𝛼∗ − 𝑌𝛼 for all 𝛼 ≠ 𝛼∗, 𝛼 ∈ A} ⊆ Y for some 𝑀init > 0
such that whenever 𝑌1 ∈ Winit then with probability at least 1 − 𝛿 the sequence of play generated by
(FTGL) converges to 𝑥∗ with rate given by the function 𝜙𝑖

𝜙𝑖 (𝑡) =
{
(𝜃 ′

𝑖
)−1 (𝑡) if 𝑡 > 𝜃 ′

𝑖
(0+),

0 otherwise.
(C.8)

which depends on the choice of the kernel 𝜃𝑖 of each player and the payoff matrix of the game.

For convenience of notation we focus on an arbitrary player in the proof, without loss of generality let
it be the 𝑖-th one, and we completely drop the index 𝑖. Since the equilibrium is strict by Lemmas C.1
and C.2 there exist a neighborhood Ustrict, 𝑐strict > 0 and 𝑀strict > 0 such that

𝑣𝛼∗ (𝑥) − 𝑣𝛼 (𝑥) ≥ 𝑐strict for all 𝛼 ≠ 𝛼∗, 𝛼 ∈ A and 𝑥 ∈ Ustrict (C.9)
𝑌 ∗𝛼 − 𝑌𝛼 > 𝑀strict for all 𝛼 ≠ 𝛼∗, 𝛼 ∈ A and 𝑥 = 𝑄(𝑌 ) ∈ Ustrict (C.10)

We start by proving the following claim:

Claim 1. Let W (𝑀) be a “score-dominant” open set for the strict Nash equilibrium 𝑥∗ . Then there
exists 𝑀init > 0 such that if 𝑌1 ∈ W (𝑀init) = Winit then with probability at least 1 − 𝛿 the sequence
of play (𝑌𝑛)𝑛∈ℕ stays in W (𝑀strict).

Proof of Claim. By definition of (FTGL) for the score differences we have

𝑌𝛼,𝑛+1 − 𝑌𝛼∗ ,𝑛+1 = 𝑌𝛼,1 − 𝑌𝛼∗ ,1 +
𝑛∑︁

𝑘=1
𝛾𝑘 (drift𝑘 + noise𝑘 + bias𝑘) (C.11)

where drift𝑘 = 𝑣𝛼 (𝑋𝑘) − 𝑣𝛼∗ (𝑋𝑘), noise𝑘 = 𝑈𝛼,𝑘 −𝑈𝛼∗ ,𝑘 , bias𝑘 = 𝑏𝛼,𝑘 − 𝑏𝛼∗ ,𝑘 . Notice that

• (Bias) By (A1):
∑𝑛

𝑘=1 𝛾𝑘bias𝑘 ≤ 2
∑𝑛

𝑘=1 𝛾𝑘 ∥𝑏𝑘 ∥∗ = 𝑜(∑𝑛
𝑘=1 𝛾𝑘) (C.12)

• (Payoff ) By Lemma C.1:
∑𝑛

𝑘=1 𝛾𝑘drift𝑘 ≤ −𝑐
∑𝑛

𝑘=1 𝛾𝑘 (C.13)

• (Zero-mean Noise) For the remaining term, 𝑅𝑛 =
∑𝑛

𝑘=1 𝛾𝑘noise𝑘 , firstly notice that it is trivially a
martingale. We will prove that with probability at least 1− 𝛿 this martingale is bounded above by
a term 𝜉𝑛 which is dominated by the term

∑𝑛
𝑘=1 𝛾𝑘 . Consider the event 𝐷𝑛, 𝜉𝑛 = {sup1≤𝑘≤𝑛 |𝑅𝑘 | ≥

𝜉𝑛}; we will show that the union of these events E =
⋃∞

𝑛=1 𝐷𝑛, 𝜉𝑛 occurs with probability at most
𝛿 when 𝜉𝑛 = 𝜉 (∑𝑛

𝑘=1 𝛾𝑘)𝑎 with 𝑎 < 1. Using Theorem A.1 and Theorem A.2 we have

ℙ(𝐷𝑛, 𝜉𝑛 ) ≤
𝔼[|𝑅𝑛 |𝑞]

𝜉𝑛
𝑞 ≤

𝑐𝑞 𝔼[(
∑𝑛

𝑘=1 𝛾
2
𝑘
∥𝑈𝑘 ∥2∗)𝑞/2]

𝜉
𝑞
𝑛

(C.14)
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Fact (Generalized Hölder’s Inequality). We will now consider a variation of the
Hölder’sinequality(

𝑛∑︁
𝑘=1

𝑎𝑘𝑏𝑘

)𝑟
≤

(
𝑛∑︁

𝑘=1
𝑎

𝜇𝑟

𝑟−1
𝑘

)𝑟−1 𝑛∑︁
𝑘=1

𝑎
(1−𝜇)𝑟
𝑘

𝑏𝑟𝑘 for all 𝑟 > 1, 𝜇 ∈ (0, 1) (GH)

Applying (GH) for 𝑎𝑘 = 𝛾2
𝑘
, 𝑏𝑘 = ∥𝑈𝑘 ∥2∗, 𝑟 = 𝑞/2 and 𝜇 = (𝑟 − 1)/2𝑟 = (𝑞 − 2)/2𝑞, we get

ℙ(𝐷𝑛, 𝜉𝑛 ) ≤
𝑐𝑞 (

∑𝑛
𝑘=1 𝛾𝑘)

𝑞−2
2

∑𝑛
𝑘=1 𝛾

1+𝑞/2
𝑘

𝔼[∥𝑈𝑘 ∥𝑞∗ ]
𝜉
𝑞
𝑛

(C.15)

≤
𝑐𝑞 (

∑𝑛
𝑘=1 𝛾𝑘)

𝑞−2
2

∑𝑛
𝑘=1 𝛾

1+𝑞/2
𝑘

𝔼[𝔼[∥𝑈𝑘 ∥𝑞∗ |F𝑘]]
𝜉
𝑞
𝑛

(C.16)

≤
𝑐𝑞 (

∑𝑛
𝑘=1 𝛾𝑘)

𝑞−2
2

∑𝑛
𝑘=1 𝛾

1+𝑞/2
𝑘

𝜎
𝑞

𝑘

𝜉
𝑞
𝑛

(C.17)

Recall that 𝜉𝑛 = 𝜉
(∑𝑛

𝑘=1 𝛾𝑘
)𝑎 with 𝑎 < 1 and let us denote 𝛿𝑛 =

𝑐𝑞

𝜉𝑞

∑𝑛
𝑘=1 𝛾

1+ 𝑞2
𝑘

𝜎
𝑞

𝑘

[∑𝑛
𝑘=1 𝛾𝑘]1+(2𝑎−1)𝑞/2 or

equivalently 𝛿𝑛 =
𝑐𝑞

𝜉𝑞

∑𝑛
𝑘=1 𝛾

1+ 𝑞2
𝑘

𝜎
𝑞

𝑘

[∑𝑛
𝑘=1 𝛾𝑘]1+𝛽𝑞/2

for some 𝛽 < 1. By assumption (A3), 𝛿𝑛 is summable and

by controlling the parameter 𝜉 we can ensure that
∞∑︁
𝑛=1

𝛿𝑛 = 𝛿 (C.18)

Applying union bound to all the events 𝐷𝑛, 𝜉𝑛 we have that with probability at least 1 − 𝛿 it is
𝑛∑︁

𝑘=1
𝛾𝑘noise𝑘 ≤ 𝜉𝑛 for all 𝑛 = 1, 2, . . . (C.19)

For the rest of the proof we condition to the event E𝑐. Let us define a constant 𝑀init, such that
𝑀init ≥ max{𝑀strict, 𝑀strict + sup𝑛≥1{

∑𝑛
𝑘=1 𝛾𝑘 (noise𝑘 + bias𝑘) − (𝑐 − 𝑐′)∑𝑛

𝑘=1 𝛾𝑘}, for any arbitray
choice of 0 < 𝑐′ < 𝑐strict

5 . Let us recall the definition of a “score-dominant” open set
W (𝑀) = {𝑌 : 𝑌 ∗𝛼 − 𝑌𝛼 > 𝑀 for all 𝛼 ≠ 𝛼∗, 𝛼 ∈ A}.

We will prove by strong induction that 𝑌𝑛 ∈ W (𝑀strict), for all 𝑛 ≥ 1.

• For the base of the induction, we have that 𝑌1 ∈ W (𝑀init) and by the choice of 𝑀strict, trivially we
get that 𝑌1 ∈ W (𝑀strict).

• For the inductive step, let us assume that 𝑌𝑘 ∈ W (𝑀strict) for all 𝑘 = 1, 2, . . . , 𝑛, we will show
below that 𝑌𝑛+1 ∈ W (𝑀strict).

Combining (C.12),(C.13),(C.19) for the terms
∑𝑛

𝑘=1 𝛾𝑘drift𝑘 ,
∑𝑛

𝑘=1 𝛾𝑘noise𝑘 ,
∑𝑛

𝑘=1 𝛾𝑘bias𝑘 the
claim’s assumption 𝑌1 ∈ W (𝑀strict) and the choice of 𝑀init, (C.11) can be bounded as

𝑌𝛼,𝑛+1 − 𝑌𝛼∗ ,𝑛+1 = 𝑌𝛼,1 − 𝑌𝛼∗ ,1 +
𝑛∑︁

𝑘=1
𝛾𝑘 (drift𝑘 + noise𝑘 + bias𝑘) (C.20)

𝑌𝛼,𝑛+1 − 𝑌𝛼∗ ,𝑛+1 ≤ 𝑌𝛼,1 − 𝑌𝛼∗ ,1 − 𝑐strict

𝑛∑︁
𝑘=1

𝛾𝑘 + 𝜉𝑛 + 2
𝑛∑︁

𝑘=1
𝛾𝑘 ∥𝑏𝑘 ∥∗ (C.21)

𝑌𝛼,𝑛+1 − 𝑌𝛼∗ ,𝑛+1 ≤ −𝑀init − (𝑐strict − 𝑐′)
𝑛∑︁

𝑘=1
𝛾𝑘 + 𝜉𝑛 + 2

𝑛∑︁
𝑘=1

𝛾𝑘 ∥𝑏𝑘 ∥∗ − 𝑐′
𝑛∑︁

𝑘=1
𝛾𝑘 (C.22)

𝑌𝛼,𝑛+1 − 𝑌𝛼∗ ,𝑛+1 ≤ −𝑀strict − 𝑐′
𝑛∑︁

𝑘=1
𝛾𝑘 ≤ −𝑀strict (C.23)

and thus 𝑌𝑛+1 ∈ W (𝑀strict). ■

5such a 𝑀init > 0 exists since both the bias and the noise terms are dominated by the term the terms 2
∑𝑛

𝑘=1 𝛾𝑘 ∥𝑏𝑘 ∥∗,𝜉𝑛
and consequently by −(𝑐 − 𝑐′) ∑𝑛

𝑘=1 𝛾𝑘 .
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The above claim immediately implies that 𝑋𝑛 ∈ U for all 𝑛 = 1, 2, . . .. We will now prove that the
sequence of play converges to 𝑥∗.

Proof of Convergence. Let’s assume that ad absordum that there exists at least one strategy 𝛼 ≠

𝛼∗, 𝛼 ∈ A such that lim sup𝑛→∞ 𝑋𝛼,𝑛 ≥ 𝜀 > 0. for all sufficiently large 𝑛. Recall also that for
𝑋 ∈ Ustrict, it holds that 𝑋𝛼∗ > 0 by construction in Lemma C.2.

Then by Lemma B.1 we have
𝑌𝛼 = 𝜃 ′(𝑋𝛼) + 𝜇 − 𝑣𝛼 (C.24)

where 𝜇 ∈ ℝ and 𝑣𝛼 ≥ 0 while 𝑣𝛼 = 0 whenever 𝑋𝛼 > 0. Leveraging that i) the sequence of play is
contained in U , ii) by descending to a subsequence if necessary 𝑋𝛼,𝑚𝑖

> 0 and iii) recall (C.23) for
the subsequence we have

𝑌𝛼,𝑚𝑖+1 − 𝑌𝛼∗ ,𝑚𝑖+1 = 𝜃 ′(𝑋𝛼,𝑚𝑖+1 ) − 𝜃 ′(𝑋𝛼∗ ,𝑚𝑖+1 ) ≤ −𝑀strict − 𝑐′
𝑚𝑖∑︁
𝑘=1

𝛾𝑘 (C.25)

However, the RHS of the above inequality goes to −∞ as 𝑚𝑖 → ∞, while the LHS of the above
inequality is bounded by the constant 𝜃 ′(𝜀) − 𝜃 ′(1) since 𝜃 ′ is strictly increasing, which is a contra-
diction6. ■

Proof of Rate. We now proceed to the delineation of the exact rates achieved. Consider the function

𝜙(𝑡) =
{
(𝜃 ′)−1 (𝑡) if 𝑡 > 𝜃 ′(0+),
0 otherwise.

(C.26)

where (𝜃 ′)−1 (𝑧) is the inverse function of the kernel 𝜃 ′7. Focusing on (C.25) we can derive that

𝜃 ′(𝑋𝛼,𝑛+1) ≤ −𝑀strict + 𝜃 ′(𝑋𝛼∗ ,𝑛+1) − 𝑐′
𝑛∑︁

𝑘=1
𝛾𝑘 (C.27)

≤ −𝑀strict + 𝜃 ′(1) − 𝑐′
𝑛∑︁

𝑘=1
𝛾𝑘 (C.28)

for all 𝛼 ∈ A𝑖 and 𝑛 = 1, 2, . . .. As a result

𝑋𝛼,𝑛+1 ≤ 𝜙(−𝑀strict + 𝜃 ′(1) − 𝑐′
𝑛∑︁

𝑘=1
𝛾𝑘) (C.29)

Aggregating over all strategies 𝛼 ∈ A, 𝛼 ≠ 𝛼∗ we have

∥𝑥∗ − 𝑋𝑛+1∥1 = 2(1 − 𝑋𝛼∗ ,𝑛+1) (C.30)

≤
∑︁

𝛼∈A≠𝛼∗
𝜙(−𝑀strict + 𝜃 ′(1) − 𝑐′

𝑛∑︁
𝑘=1

𝛾𝑘) (C.31)

≤
∑︁

𝛼∈A≠𝛼∗
𝜙(𝑑 − 𝑐′

𝑛∑︁
𝑘=1

𝛾𝑘) (C.32)

where 𝑑 = −𝑀strict + 𝜃 ′(1). ■

■

6The aforementioned by contradiction argument also provides a short proof of Remark C.2.
7 𝜃′ is strictly increasing and so does its inverse.
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Corollary 1. If the regularizer employed is non-steep (i.e., 𝜃𝑖 is differentiable at 0), 𝑋𝑛 converges to
𝑥∗ in a finite number of iterations.

Proof. Additionally, in the case of non-steep regularizers we can prove that convergence occurs
in finite time. More precisely, focusing on (C.28) and bearing in mind that 𝑋𝛼,𝑛+1 ≥ 0 for all
𝑛 = 1, 2, . . . we have

𝜃 ′(0) ≤ 𝜃 ′(𝑋𝛼,𝑛+1) ≤ −𝑀strict + 𝜃 ′(1) − 𝑐′
𝑛∑︁

𝑘=1
𝛾𝑘 (C.33)

At the same time for finite 𝑛 it holds
𝑛∑︁

𝑘=1
𝛾𝑘 ≥ (−𝑀strict + 𝜃 ′(1) − 𝜃 ′(0))/𝑐′ (C.34)

since 𝜃 ′(0) is finite for non-steep regularizers. Rearranging the above inequality we have

− 𝑀strict + 𝜃 ′(1) − 𝑐′
𝑛∑︁

𝑘=1
𝛾𝑘 ≤ 𝜃 ′(0) (C.35)

which inevitably implies that 𝑋𝛼,𝑛+1 = 0. ■

D Models

We start by presenting the well-known algorithms Follow the Regularized Leader (FTRL), Optimistic
Follow the Regularized Leader (OptFTRL) and Mirror Prox (MP), as special cases of our general
algorithmic framework.

𝑌𝑖,𝑛+1 = 𝑌𝑖,𝑛 + 𝛾𝑛𝑉𝑖,𝑛
𝑋𝑖,𝑛 = 𝑄𝑖 (𝑌𝑖,𝑛)

(FTRL)

𝑌𝑖,𝑛 = 𝑌𝑖,𝑛 + 𝛾𝑛𝑉𝑖,𝑛−1 �̃�𝑖,𝑛 = 𝑄𝑖 (𝑌𝑖,𝑛) 𝑌𝑖,𝑛+1 = 𝑌𝑖,𝑛 + 𝛾𝑛𝑉𝑖,𝑛 (OptFTRL)

Remark D.1. (OptFTRL) requires two initializations and then at each stage the previous payoff signal
is stored and is utilized to calculate the auxiliary cumulative payoff 𝑌𝑖,𝑛.

𝑌𝑖,𝑛+1/2 = 𝑌𝑖,𝑛 + 𝛾𝑛𝑉𝑖,𝑛 𝑌𝑖,𝑛+1 = 𝑌𝑖,𝑛 + 𝛾𝑛𝑉𝑖,𝑛+1/2
𝑋𝑖,𝑛+1/2 = 𝑄𝑖 (𝑌𝑖,𝑛+1/2) 𝑋𝑖,𝑛+1 = 𝑄𝑖 (𝑌𝑖,𝑛+1)

(MirrorProx)

Remark D.2. (MirrorProx) requires only one initialization, but at each stage the algorithm generates
two different states and correspondingly two payoff signals are needed.

For both the algorithms (OptFTRL),(MirrorProx) we can prove that for the cases of full information,
oracle based feedback and noisy payoff feedback, the implicit bias for modeling their intermediate steps
is ∥𝑏𝑖,𝑛∥∗ = O(𝛾𝑛). The bias is the same in all of the three cases and thus we only present the case of
full information.

Proof. Full information:

• (OptFTRL): 𝑉𝑖,𝑛 = 𝑣𝑖 (𝑋𝑛) + (𝑣𝑖 (𝑋𝑛) − 𝑣𝑖 (𝑋𝑛)). Thus

∥𝑏𝑖,𝑛∥∗ = ∥𝑣𝑖 ( �̃�𝑛) − 𝑣𝑖 (𝑋𝑛)∥∗ ≤ 𝐶∥ �̃�𝑛 − 𝑋𝑛∥ (D.1)

= 𝐶∥𝑄𝑖 (𝑌𝑛) −𝑄𝑖 (𝑌𝑛)∥ ≤ 𝐶 ′∥𝑌𝑛 − 𝑌𝑛∥∗ (D.2)
= O(𝛾𝑛) (D.3)
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• (MirrorProx): 𝑉𝑖,𝑛 = 𝑣𝑖 (𝑋𝑛) + (𝑣𝑖 (𝑋𝑛+1/2) − 𝑣𝑖 (𝑋𝑛)). The proof is similar to the above and
∥𝑏𝑖,𝑛∥∗ = O(𝛾𝑛).

■

Below, we explain how the proof of Theorem 1 can be oriented to the specific structure of both
(OptFTRL) and (MirrorProx), in order to achieve all the permitted step-sizes. We will not make an exact
proof but we will thoroughly describe how the proof of Theorem 1 should be altered for the case of full
information; the reader can follow similar steps for the case of oracle based feedback.

• Optimistic Follow the Regularized Leader
(OptFTRL) has an extra auxiliary cumulative payoff 𝑌𝑛. We will first prove that if the two
initializations of (OptFTRL) are appropriate then Theorem 1 holds without introducing any
bias term.
Step 1: Notice that for the score differences of the auxiliary cumulative payoffs we have

𝑌𝛼,𝑛+1 − 𝑌𝛼∗ ,𝑛+1 = 𝑌𝛼,𝑛 − 𝑌𝛼∗ ,𝑛 + 𝛾𝑛
(
𝑣𝛼 ( �̃�𝑛−1) − 𝑣𝛼∗ ( �̃�𝑛−1)

)
(D.4)

By substituting all the 𝑌𝑛 terms we have

𝑌𝛼,𝑛+1 −𝑌𝛼∗ ,𝑛+1 = 𝑌𝛼,1 −𝑌𝛼∗ ,1 +
𝑛−1∑︁
𝑘=1

𝛾𝑘
(
𝑣𝛼 ( �̃�𝑘) − 𝑣𝛼∗ ( �̃�𝑘)

)
+ 𝛾𝑛

(
𝑣𝛼 ( �̃�𝑛−1) − 𝑣𝛼∗ ( �̃�𝑛−1)

)
(D.5)

Step 2: Assume that 𝑌𝑘 ∈ W𝑀 as described in Theorem 1 and thus �̃�𝑘 ∈ U for all
𝑘 = 1, . . . , 𝑛. We will prove by induction that 𝑌𝑛+1 ∈ W𝑀 . Notice that since �̃�𝑘 ∈ U it
holds that

𝑣𝛼 ( �̃�𝑘) − 𝑣𝛼∗ ( �̃�𝑘) ≤ −𝑐 for all 𝑘 = 1, . . . , 𝑛 (D.6)
Step 3: From Eq. (D.5) we have

𝑌𝛼,𝑛+1 − 𝑌𝛼∗ ,𝑛+1 ≤ 𝑌𝛼,1 − 𝑌𝛼∗ ,1 − 𝑐
𝑛∑︁

𝑘=1
𝛾𝑘 (D.7)

By choosing 𝑀init > 𝑀 our claim follows. We stress here that we have implicitly assumed
that for the second initialization of (OptFTRL) it holds 𝑌1 ∈ W .
Step 4: The rest of the proof holds as the one in Theorem 1, as all of the states �̃�𝑛 remain in
the desired neighborhood U in which the variational inequality holds.

• Mirror Prox
This algorithm, as we have already mentioned, calculates two different cumulative payoffs
and primal states at each round.
Step 1:We will first prove by induction that that the cumulatve payoffs 𝑌𝑛+1/2 ∈ W𝑀 for all
𝑛 = 1, 2, . . .. Assume that 𝑌𝑘+1/2 ∈ W𝑀 and thus 𝑋𝑘+1/2 ∈ U for all 𝑘 = 1, . . . , 𝑛 then for
the score differences we have

𝑌𝛼,𝑛+1/2 − 𝑌𝛼∗ ,𝑛+1/2 = 𝑌𝛼,𝑛 − 𝑌𝛼∗ ,𝑛 + 𝛾𝑛 (𝑣𝛼 (𝑋𝑛) − 𝑣𝛼∗ (𝑋𝑛)) (D.8)

= 𝑌𝛼,1 − 𝑌𝛼∗ ,1 +
𝑛−1∑︁
𝑘=1

𝛾𝑘
(
𝑣𝛼 (𝑋𝑘−1/2) − 𝑣𝛼∗ (𝑋𝑘−1/2)

)
(D.9)

+ 𝛾𝑛 (𝑣𝛼 (𝑋𝑛) − 𝑣𝛼∗ (𝑋𝑛)) (D.10)

≤ 𝑌𝛼,1 − 𝑌𝛼∗ ,1 − 𝑐
𝑛−1∑︁
𝑘=1

𝛾𝑘 + 𝛾𝑛 max
𝛼∈A
∥𝑣(𝛼)∥∗ (D.11)

Step 2: Choose 𝑀init > 𝑀 + 𝛾𝑛 max𝛼∈A{∥𝑣(𝛼)∥∗} which is feasible for step-size of the
form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1] and our claim follows.
Step 3: Continue with the proof as presented in Theorem 1.

Below we prove some properties concerning the case of payoff oracle/bandit feedback.
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Proposition D.1. In the bandit case, let �̃�𝑛 be the state such that �̂�𝑖,𝑛 is the mixed strategy of the
𝑖𝑡ℎ player at round 𝑛 i.e., �̂�𝑖,𝑛 = (1 − 𝜀𝑛) �̃�𝑖,𝑛 + 𝜀𝑛/|A𝑖 |, based on which the pure strategy 𝛼𝑖,𝑛 is
selected. Then the following properties hold

1. 𝔼[𝑈𝑖,𝑛 |F𝑛] = 0.
2. ∥𝑈𝑖,𝑛∥∗ = O(1/𝜀𝑛).
3. ∥𝑏𝑖,𝑛∥∗ = O(𝜀𝑛).

Remark D.3. In the case of (MirrorProx) �̃�𝑖,𝑛 is the state 𝑋𝑖,𝑛−1/2.

Proof. The payoff signal which is estimated through the (IWE) can be rewritten as 𝑉𝑖,𝑛 = 𝑣𝑖 (𝑋𝑛) +
𝑈𝑖,𝑛 + 𝑏𝑖,𝑛, where 𝑈𝑖,𝑛 = 𝑉𝑖,𝑛 − 𝑣𝑖 ( �̂�𝑛) and 𝑏𝑖,𝑛 = 𝑣𝑖 ( �̂�𝑛) − 𝑣𝑖 (𝑋𝑛).

1. Let A𝑖 = {𝛼1, . . . , 𝛼 |A𝑖 |} be the pure strategies of player 𝑖 ∈ N ; then

𝔼[𝑉𝑖,𝑛] =
∑︁

𝛼−𝑖 ∈A−𝑖
(𝑢𝑖 (𝛼1;𝛼−𝑖), . . . , 𝑢𝑖 (𝛼 |A𝑖 |)) �̂�−𝑖,𝑛 = 𝑣𝑖 ( �̂�𝑛) (D.12)

where with �̂�−𝑖,𝑛 we symbolize the joint probability distribution for all players except for the 𝑖𝑡ℎ
player.

2. We move on to the second part of this proposition.

∥𝑈𝑖,𝑛∥∗ = ∥𝑉𝑖,𝑛 − 𝑣𝑖 ( �̂�𝑛)∥∗ (D.13)

≤ ∥𝑉𝑖,𝑛∥∗ + ∥𝑣𝑖 ( �̂�𝑛)∥∗ (D.14)
≤ max

𝛼∈A
|𝑢𝑖 (𝛼) | |A𝑖 |/𝜀𝑛 +max

𝛼∈A
|𝑢𝑖 (𝛼) | (D.15)

= O(1/𝜀𝑛) (D.16)

3. Finally for the norm of the bias term, let again A𝑖 = {𝛼1, . . . , 𝛼 |A𝑖 |} be the pure strategies of
player 𝑖 ∈ N ; then

∥𝑏𝑖,𝑛∥∗ = ∥𝑣𝑖 ( �̂�𝑛) − 𝑣𝑖 (𝑋𝑛)∥∗ (D.17)

= ∥(𝑢𝑖 (𝛼1; �̂�−𝑖,𝑛) − 𝑢𝑖 (𝛼1; 𝑋−𝑖,𝑛), . . . , 𝑢𝑖 (𝛼 |A𝑖 |; �̂�−𝑖;𝑛) − 𝑢𝑖 (𝛼 |A𝑖 |; 𝑋−𝑖;𝑛))∥∗ (D.18)

It is sufficient to examine one of the elements of the vector 𝑏𝑖,𝑛:

|𝑢𝑖 (𝛼1; �̂�−𝑖,𝑛) − 𝑢𝑖 (𝛼1; 𝑋−𝑖,𝑛) | (D.19)

= |
∑︁

𝛼2∈A2

· · ·
∑︁

𝛼𝑁 ∈A𝑁

( �̂�2𝛼2 ,𝑛 . . . �̂�𝑁𝛼𝑁 ,𝑛 − 𝑋2𝛼2 ,𝑛 . . . 𝑋𝑁𝛼𝑁 ,𝑛)𝑢𝑖 (𝛼1, . . . , 𝛼𝑁 ) | (D.20)

≤
∑︁

𝛼2∈A2

· · ·
∑︁

𝛼𝑁 ∈A𝑁

| �̂�2𝛼2 ,𝑛 . . . �̂�𝑁𝛼𝑁 ,𝑛 − 𝑋2𝛼2 ,𝑛 . . . 𝑋𝑁𝛼𝑁 ,𝑛 | |𝑢𝑖 (𝛼1, . . . , 𝛼𝑁 ) | (D.21)

= O(𝜀𝑛) (D.22)

■

In this section we provide different algorithms and feedback models which connect to our general
algorithm (FTGL) and model described in Section 3.2. We first present a useful proposition in order
to calculate the permitted parameters of the algorithm in order for assumption A3 to be satisfied.
Proposition D.2. 1. For all step sizes of the form 𝛾𝑛 = 𝛾/𝑛𝑝 , with 𝑝 < 1 and noise bounds 𝜎𝑛 = 𝜎𝑛𝑟

assumption A3 is satisfied if

2
𝑞
− 𝑝 + 2𝑟 < 𝛽(1 − 𝑝) for some 𝛽 < 1 (D.23)

Furthermore, it holds that
1/𝑞 + 𝑟 < 1/2 (D.24)

2. For all step-sizes of the form 𝛾𝑛 = 𝛾/𝑛 and 𝜎𝑛 = 𝜎𝑛𝑟 , assumption A3 holds as long as

1/𝑞 + 𝑟 < 1/2 (D.25)
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Proof. 1. Since 𝛾𝑛 = 𝛾/𝑛𝑝 and 𝜎𝑛 = 𝜎𝑛𝑟 , assumption A3 is restated as

𝛿𝑛 =

∑𝑛
𝑘=1 𝛾

1+𝑞/2
𝑘

𝜎
𝑞

𝑘

[∑𝑛
𝑘=1 𝛾𝑘]1+𝛽𝑞/2

(D.26)

= 𝐶𝑞 (
𝑛∑︁

𝑘=1
1/𝑘 𝑝)−1−𝛽𝑞/2

𝑛∑︁
𝑘=1

1/𝑘 𝑝 (1+ 𝑞

2 ) 𝑘𝑟𝑞 (D.27)

≤ 𝐶 ′𝑞𝑛
(1−𝑝) (−1− 𝛽𝑞

2 )𝑛1−𝑝 (1+ 𝑞

2 )+𝑟𝑞 (D.28)

≤ 𝐶 ′𝑞𝑛
−1− 𝛽𝑞

2 +𝑝+
𝑝𝛽𝑞

2 +1−𝑝−
𝑝𝑞

2 +𝑟𝑞 (D.29)

≤ 𝐶 ′𝑞𝑛
− 𝛽𝑞

2 +
𝑝𝛽𝑞

2 −
𝑝𝑞

2 +𝑟𝑞 (D.30)

Thus 𝛿𝑛 is summable if the exponent of 𝑛 is less than −1:

− 𝛽𝑞
2
+ 𝑝𝛽𝑞

2
− 𝑝𝑞

2
+ 𝑟𝑞 < −1 (D.31)

2
𝑞
− 𝑝 + 2𝑟 < 𝛽(1 − 𝑝) (D.32)

The second expression of the proposition can be derived if we only keep the variable 𝑎 in the RHS
of the above inequality

2
𝑞
− 𝑝 + 2𝑟 < 𝛽(1 − 𝑝) (D.33)

( 2
𝑞
− 𝑝 + 2𝑟)/(1 − 𝑝) < 𝛽 < 1 (D.34)

2
𝑞
− 𝑝 + 2𝑟 < 1 − 𝑝 (D.35)

1/𝑞 + 𝑟 < 1/2 (D.36)

2. Let 𝛾𝑛 = 𝛾/𝑛 and 𝜎𝑛 = 𝜎𝑛𝑟 , then for assumption A3 we have

𝛿𝑛 =

∑𝑛
𝑘=1 𝛾

1+𝑞/2
𝑘

𝜎
𝑞

𝑘

[∑𝑛
𝑘=1 𝛾𝑘]1+𝛽𝑞/2

(D.37)

= 𝐶𝑞

∑𝑛
𝑘=1

1
𝑘1+𝑞/2 𝑘

𝑟𝑞

[∑𝑛
𝑘=1

1
𝑘
]1+𝛽𝑞/2

(D.38)

≤ 𝐶 ′𝑞 (log(𝑛 + 1))−1−𝛽𝑞/2𝑛1−1−𝑞/2+𝑟𝑞 (D.39)

≤ 𝐶 ′𝑞 (log(𝑛 + 1))−1−𝛽𝑞/2𝑛−𝑞/2+𝑟𝑞 (D.40)

Since the sum
∑∞

𝑛=1 1/(log1+𝜀 (𝑛)𝑛1+𝜀′) is finite for all 𝜀, 𝜀′ > 0; assumption A3 is satisfied as
long as

− 𝑞/2 + 𝑟𝑞 < −1⇒ 1/𝑞 + 𝑟 < 1/2 (D.41)

■

Model D.1 ((FTRL) & Full information). In this case players have access to their full payoff vector
𝑣(𝑋𝑛) for each round 𝑛 = 1, 2, . . . and thus 𝑉𝑖,𝑛 = 𝑣𝑖 (𝑋𝑛) for all 𝑖 ∈ N . All of the assumptions
A1-A3 are satisfied; indeed

• (A1): Trivially satisfied since 𝑏𝑖,𝑛 = 0.
• (A2): Trivially satisfied since 𝑈𝑖,𝑛 = 0.
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1]. §

Model D.2 ((FTRL) & Noisy payoff feedback). In this setting at each round 𝑛 = 1, 2, . . . players
have access to a perturbed version of their full payoff vector 𝑣(𝑋𝑛) with a zero-mean noise 𝑈𝑛. Two
examples of such noises that we consider in the experimental section are a zero-mean guassian noise
and a uniform noise at [−1.1]. Both these noises satisfy (A2) with deterministic constant bounds for
all 𝑞 ∈ [1,∞]. Thus
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• (A1): Trivially satisfied since 𝑏𝑖,𝑛 = 0.
• (A2): Satisfied for all 𝑞 ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1]. §

Model D.3 ((FTRL) & Oracle-based feedback). Assume that each player chooses an action based on
a given mixed strategy, and once every player has chosen an action, an oracle reveals to each player
their corresponding pure payoff vector. Formally, at each round 𝑛 = 1, 2, . . . , each player chooses a
pure strategy 𝛼𝑖,𝑛 ∈ A𝑖 based on a mixed strategy 𝑋𝑖,𝑛 ∈ X𝑖 and subsequently observes the payoff
vector

𝑉𝑖,𝑛 = 𝑣𝑖 (𝛼𝑛) = (𝑢𝑖 (𝛼𝑖;𝛼−𝑖,𝑛))𝛼𝑖 ∈A𝑖
. (D.42)

Regarding our basic assumptions, we readily have 𝑏𝑖,𝑛 = 0 and 𝑈𝑖,𝑛 = 𝑣𝑖 (𝛼𝑛) − 𝑣𝑖 (𝑋𝑛); hence:

• (A1): Trivially satisfied since 𝑏𝑖,𝑛 = 0.
• (A2): Satisfied because ∥𝑈𝑖,𝑛∥∗ = ∥𝑣𝑖 (𝛼𝑛) − 𝑣𝑖 (𝑋𝑛)∥∗ ≤ 2 max𝛼∈A∥𝑣𝑖 (𝛼)∥∗, so 𝑈𝑛 has uniformly

bounded moments for all 𝑞 ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1]. §

Model D.4 ((FTRL) & Payoff-based feedback). If the players only observe their realized rewards,
they have to construct a model for 𝑉𝑛 based on incomplete information. This is the standard setting
for multi-armed bandits, so it is often referred to as the “bandit feedback” model. In this case, the
players’ action selection process is as in Model D.3 above, but the feedback signal sequence 𝑉𝑛 is
now reconstructed by means of the importance-weighted estimator

𝑉𝑖𝛼𝑖 ,𝑛 =
1{𝛼𝑖,𝑛 = 𝛼𝑖}

�̂�𝑖𝛼𝑖,𝑛

𝑢𝑖 (𝛼𝑛) (IWE)

where �̂�𝑖,𝑛 = (1 − 𝜀𝑛)𝑋𝑖,𝑛 + 𝜀𝑛/|A𝑖 | is the mixed strategy of the 𝑖-th player at stage 𝑛. Compared to
𝑋𝑖,𝑛 the player’s actual sampling strategy is now recalibrated by an explicit exploration parameter
𝜀𝑛 → 0 whose role is to stabilize the learning process. The idea behind this adjustment is that even if
a strategy has zero probability to be chosen under 𝑋𝑛, it will still be sampled with positive probability
thanks to the mixing factor 𝜀𝑛.

The IWE estimator may be seen as a special case of the model (4) with 𝑈𝑖,𝑛 = 𝑉𝑖,𝑛 − 𝑣𝑖 ( �̂�𝑛) and
𝑏𝑖,𝑛 = 𝑣𝑖 ( �̂�𝑛) − 𝑣𝑖 (𝑋𝑛). All of the assumptions (A1)-(A3) are again satisfied; indeed:

• (A1): From Proposition D.1 ∥𝑏𝑖,𝑛∥∗ = 𝑂 (𝜀𝑛). Thus our assumption is satisfied since 𝜀𝑛 → 0.
• (A2): Again from Proposition D.1 ∥𝑉𝑖,𝑛 − 𝑣𝑖 ( �̂�𝑛)∥∗ = 𝑂 (1/𝜀𝑛) and thus the noise has bounded

moments, 𝜎𝑛 = Θ(1/𝜀𝑛) for all 𝑞 ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1] and
𝜀𝑛 ∝ 1/𝑛𝑟 , 𝑟 ∈ (0, 1/2).

§

Model D.5 ((OptFTRL) & Full information). In this case the full payoff vector of each player is
𝑉𝑖,𝑛 = 𝑣𝑖 ( �̃�𝑛) for all 𝑖 ∈ N . As we proved above the state �̃�𝑛 can be treated separately and thus

• (A1): Trivially satisfied since 𝑏𝑖,𝑛 = 0.
• (A2): Trivially satisfied since 𝑈𝑖,𝑛 = 0.
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1]. §

Model D.6 ((OptFTRL) & Noisy payoff feedback). Again in this setting at each round 𝑛 = 1, 2, . . .
players have access to a perturbed version of their full payoff vector 𝑣( �̃�𝑛) with a zero-mean noise
𝑈𝑛. Two examples of such noises that we consider in the experimental section are a zero-mean
guassian noise and a uniform noise at [−1.1]. Both these noises satisfy (A2) with deterministic
constant bounds for all 𝑞 ∈ [1,∞]. Thus

• (A1): Trivially satisfied since 𝑏𝑖,𝑛 = 0.
• (A2): Satisfied for all 𝑞 ∈ [1,∞].
• (A3): From Proposition D.2 and our specific analysis for (OptFTRL) is satisfied for all the step-sizes

of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1]. §

Model D.7 ((OptFTRL) & Oracle-based feedback). In this case the payoff signal𝑉𝑖,𝑛, which depends
on the state �̃�𝑛, is generated as follows: at each round 𝑛 = 1, 2, . . . , every player 𝑖 ∈ N picks an action
𝛼𝑖,𝑛 ∈ A𝑖 based on �̃�𝑖,𝑛 ∈ X𝑖 and observes the pure payoff vector 𝑣𝑖 (𝛼𝑛) ≡ (𝑢𝑖 (𝛼𝑖;𝛼−𝑖,𝑛))𝛼𝑖 ∈A𝑖

.
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Each player’s input signal is a special case of (4) with payoff feedback 𝑉𝑖,𝑛 = 𝑣𝑖 (𝛼𝑛), zero-mean
noise 𝑈𝑖,𝑛 = 𝑣𝑖 (𝛼𝑛) − 𝑣𝑖 ( �̃�𝑛) and bias 𝑏𝑖,𝑛 = 0 that satisfy all of the assumptions A1 - A3. In more
detail, we have:

• (A1): trivially satisfied since 𝑏𝑖,𝑛 = 0.
• (A2): ∥𝑈𝑖,𝑛∥∗ = ∥𝑣𝑖 (𝛼𝑛) − 𝑣𝑖 ( �̃�𝑛)∥∗ ≤ 2 max𝛼∈A∥𝑣𝑖 (𝛼)∥∗ and thus the noise has bounded

moments for all 𝑞 ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1]. §
Model D.8 ((OptFTRL) & Payoff-based feedback). As we mentioned in Model D.4, in this case
players only observe their realized rewards; thus they have to construct a model for 𝑉𝑛 based on
incomplete information. The players’ action selection process is as in Model D.7 above, but the
feedback signal sequence 𝑉𝑛 is now reconstructed by means of the importance-weighted estimator

𝑉𝑖𝛼𝑖 ,𝑛 =
1{𝛼𝑖,𝑛 = 𝛼𝑖}

�̂�𝑖𝛼𝑖,𝑛

𝑢𝑖 (𝛼𝑛) (IWE)

where �̂�𝑖,𝑛 = (1 − 𝜀𝑛) �̃�𝑖,𝑛 + 𝜀𝑛/|A𝑖 | is the mixed strategy of the 𝑖-th player at stage 𝑛. Compared to
�̃�𝑖,𝑛 the player’s actual sampling strategy is now recalibrated by an explicit exploration parameter
𝜀𝑛 → 0.

This type of feedback may be seen as a special case of the model (4) with 𝑈𝑖,𝑛 = 𝑉𝑖,𝑛 − 𝑣𝑖 ( �̂�𝑛) and
𝑏𝑖,𝑛 = 𝑣𝑖 ( �̂�𝑛) − 𝑣𝑖 (𝑋𝑛). All of the assumptions (A1)-(A3) are again satisfied; indeed:

• (A1): From Proposition D.1 ∥𝑏𝑖,𝑛∥∗ = 𝑂 (𝜀𝑛). Thus our assumption is satisfied since 𝜀𝑛 → 0.
• (A2): Again from Proposition D.1 ∥𝑉𝑖,𝑛 − 𝑣𝑖 ( �̂�𝑛)∥∗ = 𝑂 (1/𝜀𝑛) and thus the noise has bounded

moments, 𝜎𝑛 = Θ(1/𝜀𝑛) for all 𝑞 ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1] and
𝜀𝑛 ∝ 1/𝑛𝑟 , 𝑟 ∈ (0, 1/2). §

Model D.9 ((MirrorProx) & Full information). In this case players have access to their full payoff
vector 𝑣(𝑋𝑛) for each round 𝑛 = 1, 2, . . .; for the algorithm (MirrorProx) we observe two payoff
vectors at each round and as stated in the specific analysis above, for each one of 𝑣𝑖 (𝑋𝑛+1/2) and
𝑣𝑖 (𝑋𝑛), we have

• Assumption A1: Trivially satisfied since 𝑏𝑖,𝑛 = 0.
• (A2): Trivially satisfied since 𝑈𝑖,𝑛 = 0.
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1]. §
Model D.10 ((MirrorProx) & Noisy payoff feedback). As before at each round 𝑛 = 1, 2, . . . players
have access to a perturbed version of their full payoff vector 𝑣(𝑋𝑛) with a zero-mean noise 𝑈𝑛. Two
examples of such noises that we consider in the experimental section are a zero-mean guassian noise
and a uniform noise at [−1.1]. Both these noises satisfy (A2) with deterministic constant bounds for
all 𝑞 ∈ [1,∞]. Thus

• (A1): Trivially satisfied since 𝑏𝑖,𝑛 = 0.
• (A2): Satisfied for all 𝑞 ∈ [1,∞].
• (A3): From Proposition D.2 and our specific analysis for (MirrorProx) is satisfied for all the

step-sizes of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1]. §

We simply mention here that in the exact same way all of the assumptions (A1)-(A3) are satisfied for
the second “intermediate” state of (MirrorProx).
Model D.11 ((MirrorProx) & Oracle-based feedback). In this case, at each round 𝑛 each player 𝑖 ∈ N
chooses two pure strategies 𝛼𝑖,𝑛 and 𝛼𝑖,𝑛+1/2 successively based on the mixed strategies 𝑋𝑖,𝑛, 𝑋𝑖,𝑛+1/2
equivalently. Thus, the first payoff signal is 𝑉𝑖,𝑛 = 𝑣𝑖 (𝛼𝑛) with 𝑏𝑖,𝑛 = 0 and 𝑈𝑖,𝑛 = 𝑣𝑖 (𝛼𝑛) − 𝑣𝑖 (𝑋𝑛).
Hence:

• (A1): Trivially satisfied since 𝑏𝑖,𝑛 = 0.
• (A2): Satisfied because ∥𝑈𝑖,𝑛∥∗ = ∥𝑣𝑖 (𝛼𝑛) − 𝑣𝑖 (𝑋𝑛)∥∗ ≤ 2 max𝛼∈A∥𝑣𝑖 (𝛼)∥∗, so 𝑈𝑛 has uniformly

bounded moments for all 𝑞 ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1], by

also taking into account our specific analysis for (MirrorProx) presented above. §

The second payoff signal is 𝑉𝑖,𝑛+1/2 = 𝑣𝑖 (𝛼𝑛+1/2) with 𝑏𝑖,𝑛+1/2 = 0 and 𝑈𝑖,𝑛+1/2 = 𝑣𝑖 (𝛼𝑛+1/2) −
𝑣𝑖 (𝑋𝑛+1/2)
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• (A1): Trivially satisfied since 𝑏𝑖,𝑛+1/2 = 0.
• (A2): Satisfied because ∥𝑈𝑖,𝑛+1/2∥∗ = ∥𝑣𝑖 (𝛼𝑛+1/2) − 𝑣𝑖 (𝑋𝑛+1/2)∥∗ ≤ 2 max𝛼∈A∥𝑣𝑖 (𝛼)∥∗, so 𝑈𝑛

has uniformly bounded moments for all 𝑞 ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1], by

also taking into account our specific analysis for (MirrorProx) presented above. §

Model D.12 ((MirrorProx) & Payoff-based feedback). In this case, as we have already mentioned,
players only observe their realized rewards and the feedback signal sequence 𝑉𝑛 is now reconstructed
by means of the importance-weighted estimator

𝑉𝑖𝛼𝑖 ,𝑛 =
1{𝛼𝑖,𝑛 = 𝛼𝑖}

�̂�𝑖𝛼𝑖,𝑛

𝑢𝑖 (𝛼𝑛) (IWE)

where �̂�𝑖,𝑛 = (1 − 𝜀𝑛)𝑋𝑖,𝑛+1/2 + 𝜀𝑛/|A𝑖 | is the mixed strategy of the 𝑖-th player at stage 𝑛, with
𝜀𝑛 → 0.

The IWE estimator may be seen as a special case of the model (4) with 𝑈𝑖,𝑛 = 𝑉𝑖,𝑛 − 𝑣𝑖 ( �̂�𝑛) and
𝑏𝑖,𝑛 = 𝑣𝑖 ( �̂�𝑛) − 𝑣𝑖 (𝑋𝑛). All of the assumptions (A1)-(A3) are again satisfied; indeed:

• (A1): From Proposition D.1 ∥𝑏𝑖,𝑛∥∗ = 𝑂 (𝜀𝑛). Thus our assumption is satisfied since 𝜀𝑛 → 0.
• (A2): Again from Proposition D.1 ∥𝑉𝑖,𝑛 − 𝑣𝑖 ( �̂�𝑛)∥∗ = 𝑂 (1/𝜀𝑛) and thus the noise has bounded

moments, 𝜎𝑛 = Θ(1/𝜀𝑛) for all 𝑞 ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form 𝛾𝑛 ∝ 1/𝑛𝑝 , 𝑝 ∈ [0, 1] and
𝜀𝑛 ∝ 1/𝑛𝑟 , 𝑟 ∈ (0, 1/2).

E Experiments

We start this section by explaining in detail the two main games that our experiments are conducted.

E.1. Games.

1. In the archetypal game of Battle of the Sexes, a couple argues over which music to listen over the
weekend. Both know that they want to spend the weekend together, but they cannot agree over
what to do. The partner (A) prefers to audit a Rock band concert, whereas the partner (B) prefers
a Pop music show. This is a classical example of a coordination game, analysed in game theory
for its applications in many fields, such as business management or military operations. For the
interested reader, check [? ]. Since the couple wants to spend time together, if they go separate
ways, they will receive no utility (set of payoffs will be 0, 0). If they go either to a Rock or a Pop
musical, both will receive some utility from the fact that they’re together, but one of them will
actually enjoy the activity. The description of this game in strategic form is therefore as follows:

Figure 3: Equilibrium Structure: This game has two strict Nash equilibria, one where both go to the Rock
concert, and another where both go to the Pop concert. There is also a mixed Nash equilibrium, where the
players go to their preferred event more often than the other. For the described payoffs, each player attends their
preferred event with probability 3/5.

2. In the selfish routing game of Pigou’s Congestion Network, we consider the simple network shown
in Fig. 4. Two disjoint edges/paths connect a source vertex 𝑂 to a destination vertex 𝐷. Each edge
is labeled with a cost function, which describes the cost (e.g., travel time) incurred by users of the
edge, as a function of the amount of traffic routed on the edge. In the atomic version of the game
the population of the drivers that uses a specific edge is an integer 𝑥 ∈ {0, · · · , 𝑁}. The upper edge
has the constant latency function ℓ1 (𝑥) = 1, and thus it represents a route that is relatively long but
immune to congestion. In the linear latency setting, the cost of the lower edge, which is governed
by the function ℓ2 (𝑥) = 𝑥/𝑁 , increases as the edge gets more congested. In particular, the lower
edge is cheaper than the upper edge if and only if less than 𝑁 drivers uses it.
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Figure 4: Pigou’s Network

E.2. Experimental setup and methodology. Below, we will present separately the three archety-
pal instantiations of (FTGL) that we discussed in Appendix D, namely (FTRL),(OptFTRL) and
(MirrorProx). All algorithms were run on a) a game of the Battle of the Sexes; and b) Pigou’s
linear version with 𝑁 = 1000 atomic drivers. For each algorithm and each model we will present
the performance of two well-studied regularizers: • entropic : 𝜃𝛼 (𝑥) = 𝑥𝛼 log 𝑥𝛼 • euclidean :
𝜃𝛼 (𝑥) = 𝑥2

𝛼/2.

We will group our models with the following way: The first collection of figures for each algorithmic
subsection will include the {oracle-based,payoff based/bandit} feedback model for the two aforemen-
tioned games for constant step-size and inverse-polynomial 𝛾𝑛 ∝ 1/𝑛1/2. The latter one will present
the {perfect,uniform-noise,gaussian-noise} feedback. Finally, the shaded areas around the curves
represent the error bars in the execution for different random initializations.
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Figure 5: FTRL: oracle-based, bandit; 𝛾𝑛 = 0.05
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Figure 6: FTRL: uniform, gaussian; 𝛾𝑛 = 0.05.
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Figure 7: FTRL oracle, bandit; 𝛾𝑛 ∝ 1/𝑛1/2
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Figure 8: FTRL: uniform, gaussian; 𝛾𝑛 ∝ 1/𝑛1/2
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Figure 9: OptFTRL: oracle-based, bandit; 𝛾𝑛 = 0.05
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Figure 10: OptFTRL: uniform, gaussian; 𝛾𝑛 = 0.05
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Figure 11: OptFTRL: oracle-based, bandit; 𝛾𝑛 ∝ 1/𝑛1/2
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Figure 12: OptFTRL: uniform, gaussian; 𝛾𝑛 ∝ 1/𝑛1/2
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Figure 13: MP: oracle-based, bandit;𝛾𝑛 = 0.05
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Figure 14: MP: uniform, gaussian; 𝛾𝑛 = 0.05
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Figure 15: mirror-prox (MP): oracle-based, bandit; 𝛾𝑛 ∝ 1/𝑛1/2
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Figure 16: MP: uniform, gaussian; 𝛾𝑛 ∝ 1/𝑛1/2
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