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Abstract—In conventional cognitive radio networks (CCRNs),
channels that are in use by opportunistic secondary users (SUs)
can be recaptured by the network’s licensed primary users (PUs)
at will, thus interrupting the connectivity of the former. To com-
pensate for this, we propose here a semi-cogntive radio network
(SCRN) paradigm where PUs are constrained to first use all free
channels in the network before being allowed to capture channels
that are currently in use by SUs. By imposing a monetary (or
other) penalty to the network’s secondary spectrum owners when
opportunistic channel use becomes excessive, this additional con-
straint only induces a slight drop in the PUs’ performance while
offering significant benefits to the network’s SUs. In this paper, we
provide a game-theoretic analysis of such systems and we derive
both centralized and decentralized adaptive algorithms that allow
the system control process to converge to a stable equilibrium
state. Our numerical results show that, with the same channel
efficiency, SCRNs provide increased profits to the primary net-
work and significantly reduced interruption rates to the secondary
network.

Keywords. Semi-cognitive radio networks, dynamic spectrum
sharing, convex optimization, game theory.

I. Introduction
Current design specifications for 5th generation (5G) wire-

less systems target a massive increase in network capacity,
fiber-like connection speeds (well into the Gb/s range), and
an immersive overall user experience with ultra low latency
and response times. So, to balance the projected spectrum
crunch with the needs of next-generation wireless networks,
the ICT industry has turned to more flexible wireless network
paradigms such as that of cognitive radio (CR) [1]. At its
most basic form, CR networks introduce a two-level hierarchy
between wireless users induced by spectrum licensing: primary
owners (POs) have purchased spectrum rights which are made
partially available to secondary owners (SOs), but with no
quality of service (QoS) guarantees to the latter. Thus, by
opening up the unused part of the spectrum to opportunistic user
access, overall spectrum utilization is greatly increased [2].
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There is an extensive corpus of literature on dynamic spec-
trum sharing focusing on improving the performance of cog-
nitive radio networks. In [3], [4], the authors considered an
auction-based spectrum sharing mechanism to maximize the
profit for primary owner in a network with multiple primary
(PU) and secondary (SU) users. In [5], [6], dynamic spectrum
sharing was analyzed within a general game-theoretic frame-
work for dynamic spectrum leasing (DSL) and by carefully
identifying requirements for the coexistence of primary and
secondary systems. Economic interactions between secondary
users and primary operators in conventional cognitive radio
network (CCRN) scenarios are studied in detail in [7]–[9].
Therein, users are charged a fixed price per unit of the band-
width being used, and face spectrum access costs. In [10]–[13]
channel allocation in cognitive radio networks is considered as
a resource allocation problem under the assumption that the
allocation of transmission rate and transmission power for sec-
ondary users is restricted. In [14], [15], the authors investigate
cognitive spectrum sharing scheme for LTE-Advanced and 5G
systems respectively, while [16] studies the long- vs. short-term
market effects between a single PO and multiple unlicensed
SUs in spectrum trading. In [17], the authors develop a price-
based spectrum access control with service provisions to delay-
sensitive SUs with different PO pricing strategies. In [18]–[20],
the issues of joint pricing and spectrum allocation in CCRNs are
addressed. A quantitative description of SU spectrum demand
is formulated and a novel joint spectrum pricing and spectrum
allocation scheme based on cooperative game theory is pro-
posed to achieve the maximization of joint utility of all PUs.
[21] investigates spectrum sensing imperfections, one of the
most important challenges in CCRNs. Spectrum sensing errors
by a secondary user cause false alarm and missed-detection
events, which can potentially degrade the quality-of-service
experienced by primary users. In [22], the authors design an
algorithm for simultaneous transmissions of POs and SOs via
efficient power control so as to improve the performance of
cognitive radio networks. SOs try to minimize their effect on
primary users’ channels by minimizing the sum of interference.
As it was shown in [23], efficient spectrum handoff techniques
can help the interrupted secondary user vacate the occupied
licensed channel and find a suitable target channel to resume its
unfinished data transmission. These methods are not applicable
for dynamic networks because SOs need more reliable access
to channels.

Thus, despite their very promising features, CCRNs suffer
a major drawback in that they allow POs to capture/recapture
channels blindly, regardless of whether the channels are being
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temporarily used by SUs or not [1], [2]. POs may interrupt
the SUs’ transmissions even though there might be still free
channels available, a factor which can significantly degrade the
network’s overall performance. In addition, SOs must consume
resources for sensing the channels in order to access the net-
work, while POs capture/recapture those channels immediately;
as a result, rational SOs would not be inclined to participate in
this dynamic spectrum sharing mechanism. Consequently, these
mechanisms must be further improved in order to motivate
SOs to participate in CR schemes and make the application of
cognitive networks feasible.

Our point of departure is the observation that the network’s
SUs would benefit from a significantly enhanced network expe-
rience if the POs made the costless – but beneficial – effort of
avoiding collision with ongoing SU transmissions whenever it
is possible to employ other, unused channels. With this in mind,
we propose here a modification of the cognitive radio paradigm
where, by avoiding the use of occupied channels when possible,
the network’s POs significantly improve the SUs’ quality of
service and overall network performance. In this setting, POs
and SOs define their working spaces through a novel long-
term/short-term contract-based strategy scheme. Specifically,
POs make long-term and short-term contracts with the PUs
and the SOs respectively, and every PO periodically revises
the short-term contracts with new terms in order to be able to
respect the long-term contract.

More specifically, we propose a semi-cognitive radio net-
work (SCRN) paradigm where a portion of the channels is
reserved for the real-time traffic needs of the network’s POs.
The rest of the channels are divided into a pool that is shared by
both SOs and POs, and a pool which is used exclusively by POs;
the relative size of these pools then evolves over time based on
the dynamics of the primary network. This system is analyzed
by means of a game-theoretic model where the network’s SOs
and POs seek to maximize their individual utilities. These
utilities are defined so as to capture the trade-off between the
financial benefits of leasing a part of the spectrum against the
costs involved in this lease. To reach an equilibrium, we then
propose a distributed learning algorithm that allows the system
to converge to a stable state. We also provide a centralized
solution addressing the PUs’ constraints (as determined by
their connectivity demands), which we then implement using
a global optimization approach. Finally, we combine the two
algorithms into a hybrid method that concurrently addresses
both issues.

The paper is organized as follows: Section II introduces our
system model and preliminary definitions concerning SCRNs.
Short-term contract negotiation is explained in detail in Sec-
tion III including a distributed learning algorithm. Section
IV describes long-term contract profit maximization problems
including three centralized profit maximization schemes for
the network’s POs while Section V investigates the spectrum
utilization in SCRN and CCRN. Section VI presents numeri-
cal results by comparing different approaches to the solution.
Conclusions are summarized in Section VII.

TABLE I
Table of notation

Symbol Meaning
P set of primary operators (POs)
S set of secondary operators (SOs)
α number of POs
β number of SOs

BPU
i number of channels for high priority

and real time primary users (PUs)
Bi number of channels in the pool of the i-th PO
Ci number of channels shared between POs and SOs
bi j number of channels demanded by the j-th SO

from the i-th PO
∆ long-term contract (LTC) length
εi j channel efficiency between the i-th PO and the j-th SO
ϑ channel substitutability parameter
pi price per unit of bandwidth set by the i-th PO
τ̄ average access delay
di probability of empty channel detection by the ith PO
η maximum budget of SOs
Zk number of primary users in the kth PO
A PU/SU arrival rate

II. SystemModel

A. Cognitive Spectrum Sharing Through Contracts

We consider networks where the spectrum is owned by a
primary owner (PO) who makes long-term contracts (LTCs)
with each primary user (PU) and short-term contracts (STCs)
with each secondary owner (SO). In a LTC, the PO assigns
its channels to PUs on demand while reserving the right to
lease (opportunistically) any unused part of the spectrum to
SOs under a STC. If the PUs’ QoS degrades due to spectrum
sharing with SOs, POs can charge SOs (based on the terms of
the negotiated STC) so as to reimburse the network’s PUs. The
conditions with respect to PUs do not change in time so the
contract is valid throughout a long horizon.

On the other hand, the PO must negotiate constantly with
SOs in order to make the best possible STC, which defines
the rules of spectrum sharing for a specific period. Within a
STC, freedom and dominance of PUs may change according to
PO traffic conditions, which have an impact on the corruption
probability of the assigned channels to SOs. For this reason, the
contract should be revised more often in order to provide more
reliable spectrum access for SOs.

To illustrate this concept, Fig. 1 shows the logical structure of
the proposed model. In the figure, Bi denotes the total number
of channels in the pool of the i-th PO and BPU

i the number
of channels that are reserved for the network’s high priority
PUs (assumed constant over time for simplicity). The remaining
channels of the i-th PO are assumed to be in a common pool of
size Ci = Bi − BPU

i , and they can be shared by PUs and SOs
(whenever there is a vacancy in the spectrum). To account for
this, we let bi j denote the number of channels demanded from
the i-th PO by the j-th SO and we write bi =

∑
j bi j for the total

demand from the i-th PO by all SOs in the system.
In our semi-cognitive radio context, the freedom of the PUs

is constrained by requiring them to first use the set of unshared
sub-channels of size Ci − bi. Only if the unshared pool is
occupied, are PUs allowed to behave as in the conventional
cognitive radio case and take the channel back from the SOs
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Fig. 1. Channel Allocation Mechanism of POi.

that employ them. Thus, in a typical STC, PO and SOs agree
on the number of shared channels bi (not specific frequencies)
and the remaining Ci − bi channels are considered as unshared.
The spectrum sharing ratio is defined as bi/Ci.

In view of the above, the POs of a semi-cognitive radio
network (SCRN) must balance their individual benefits and
responsibilities under a LTC in order to develop a STC properly.
Thus, the spectrum sharing process of SCRN consists of two
different phases: negotiation and contract. In the negotiation
phase (Phase 1), POs and SOs make a STC according to their
traffic conditions and QoS requirements. In the contract phase
(Phase 2), the PO controls the access of PUs based on the terms
of the negotiated STC. Based on the negotiated LTC, POs have
to reimburse the PUs due to the longer network access delay
[24] and possible channel quality degradation. During one LTC,
POs can periodically make several STCs which depend on the
network dynamics e.g. PU arrival rates A = (A1, A2, .., Aα),
where α is the number of POs.

Formally, we consider a network consisting of a set P of
POs that can lease out bandwidth (in the form of wireless
channels) to a set S of SOs that demand channels from the
POs. Fig. 2 presents an extension of Fig. 1 to multiple-primary
and multiple-secondary operators (MP-MSO) spectrum sharing
systems.1

From their end, SOs make individual bandwidth demands
from the POs. Of course, if the demand bi is high, the bandwidth
available to PUs – and, hence, their QoS – will be decreased
accordingly. In particular, the degradation of QoS is due to

1For simplicity, we assume here that bandwidth can be parceled out in a
continuous fashion; the discrete case is analyzed in Section IV.
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Fig. 2. multiple-primary and multiple-secondary operators (MP-MSO) sharing
system (Z is the number of PUs).

two reasons: 1) since only the number of rented channels bi is
specified, not the specific frequencies (slots), for a new arriving
PU the PO has to search for the channel which is not temporally
used by SOs leading to increased PU network access delay. 2)
the good channels might be occupied by secondary users (SUs)
so that the incoming PU has to use a channel of lower quality.

III. Short-Term Contract Negotiation

A. Game-theoretic formulation

In a semi-cognitive framework, we assume that SOs and
POs negotiate the price of channels in order to maximize their
throughput and revenue respectively. To model this, we will
consider a utility-based formulation which, in the case of SOs,
takes the form [25]:

U j(p; b) =

α∑
i=1

εi jbi j −

α∑
i=1

pibi j −
1
2

α∑
i=1

b2
i j + ϑ

α∑
l,i

bi jbl j, (1a)

where p = (pi)i∈P is the POs’ price vector (more on this
below), the matrix b = (bi j)i∈P, j∈S represents the demand of
channels by the j-th SO from the i-th PO, ϑ ∈ [0, 1] is the
channel substitutability parameter introduced in [18], [19], and
εi j denotes the channel efficiency of SUs depending on channel
corruption rates.2 This utility model has been widely used in the
literature (see e.g. [18], [19] and references therein), and it can
be interpreted as follows:
• First, each summand εi jbi j in (1a) represents the utility

derived by obtaining the demanded channels from PO i.
Since spectrum efficiency is the SOs’ primary concern,
the bandwidth obtained is weighed by the corresponding
channel efficiency coefficient εi j which determines the
channels’ quality.

• Second, the term
∑α

i=1 pibi j is the total price paid for
obtaining said channels; as such, it is subtracted from the
derived utility.

• Finally, the quadratic term 1
2
∑α

i=1 b2
i j − ϑ

∑
l,i bi jbl j is a

widely used surrogate term which reflects indirect, non-
linear (second-order) saturation effects that arise as an

2In Appendix A, we calculate channel corruption probabilities for SCRN and
CCRN systems
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SO acquires more bandwidth and increases transmission
rates. In particular, the channel substitutability parameter
ϑ represents the degree of flexibility in switching between
different parts of the spectrum (leased by different POs);
for a detailed discussion, see [18], [19].

On the PO side, a penalty function determines how much
a PU must be compensated for its performance degradation.
Thus, the POs’ utility function will be given by:

Ui(p; b) = RPU
i + RS U

i (bi, p) − ξPU
i (bi), (1b)

where RPU
i represents the revenue from PUs of POi, the term

Ri
S U ≡ pi min{bi,Ci} is the revenue obtained by assigning

bandwidth to SOs at the price of pi per unit of bandwidth and
the penalty ξi

PU is a nonnegative cost function that represents
the average reimbursement to the PUs due to performance
degradation when bi units of bandwidth have been allocated to
SOs. The first term in (1b) is not related to dynamic spectrum
sharing, but the second and the third terms reflect precisely that.

At this point, we are making no specific assumptions for the
dependence of the cost function ξi on the amount of bandwidth
bi =

∑
j∈S bi j leased to SOs. In realistic scenarios, this cost

function may have a complicated dependence on the number
of channels leased to SOs so, for a detailed analysis, we refer
the reader to Section IV. Instead, what is important here is to
note that the POs’ utility function depends linearly on the price
that the POs charge to SOs per unit of bandwidth, and in a
– potentially – more complicated way on the SOs’ individual
bandwidth demands bi j.

With all this in mind, the above system can be modeled
as a non-cooperative game where POs aim at maximizing
their net profit by adjusting the price that they charge to SOs
in their short-term contracts, while SOs seek to maximize
their individual utility by properly adapting their bandwidth
demands. Formally, this can be formulated as a normal form
game, defined as follows:

1) The set of players P∪S is comprised by the system’s POs
and SOs.

2) The players’ action sets are defined as follows:
2a) The action set of the i-th PO is Xi = [0, pmax],

representing the channels’ price range.
2b) The action set of the j-th SO is X j = [0, bmax]α,

representing the possible channel demand vectors of the
j-th SO from the network’s POs.

3) The utility functions of the POs and the SOs are given
respectively by (1a) and (1b).

In this multi-agent context, the most widely used solution
concept is that of Nash equilibrium (NE), a notion which
describes action profiles where no player has an incentive to
deviate from equilibrium point [26], [27]. Formally, we say that
a profile (p∗, b∗) is a Nash equilibrium if

Ui(p∗; b∗) = max
pi∈Xi

Ui(pi, p∗−i; b∗),

U j(p∗; b∗) = max
b j∈X j

U j(p∗; b j, b∗− j),
(NE)

for all i ∈ P and all j ∈ S respectively.
Our first result is that Nash equilbria always exist in the above

framework:

Proposition 1. The defined non-cooperative game always ad-
mits a Nash equilibrium.

Proof: See Appendix B.
Proposition 1 guarantees the existence of Nash equilibrium

solutions but, of course, there could be multiple such solutions.
Since equilibrium multiplicity reduces the system’s predictabil-
ity (due to the fact that there would be several stable system
states with a priori different performance characteristics), it
would be desirable to be able to tell under what conditions
the system admits a unique equilibrium solution. To that end,
following [28], [29], let

vi(p; b) = ∂pi Ui(p; b) i ∈ P, (2a)
v j(p; b) = ∇b j U j(p; b) j ∈ S, (2b)

denote the players’ individual payoff gradients with respect to
their individual action variables.3 Then, Rosen [28] showed
that the game admits a unique Nash equilibrium provided the
following diagonal strict concavity (DSC) condition holds:∑

i∈P

λi

〈
vi(p′; b′) − vi(p; b) | p′i − pi

〉
+

∑
j∈S

λ j

〈
v j(p′; b′) − v j(p; b) | b′j − b j

〉
≤ 0

(DSC)

for some λ � 0, for all pi ∈ Xi, b j ∈ X j, and equality holding if
and only if (p; b) = (p′; b′).

Specifically, under (DSC), we have:

Proposition 2. Assume that (DSC) holds for some λ � 0. Then,
the game admits a unique Nash equilibrium.

Proof: By the proof of Proposition 1, it follows that each
player’s payoff function is individually concave. Our claim then
follows from Theorem 2 in [28].

To verify whether (DSC) holds, we present below a simple
second-order condition based on the Hessian matrix of the
game, defined here as the block matrix H = (Hk`)k,`∈P∪S with
blocks:

Hk`(p; b) =

∂p`vk(p; b) if ` ∈ P,
∇b`v`(p; b) if ` ∈ S.

(3)

More succinctly, if we let xk = pk when k ∈ P and xk = bk

when k ∈ S (a notational shorthand which we also follow in
Appendix B), each block of H can be written as

Hk`(x) =
∂2Uk

∂x`∂xk
for all k, ` ∈ P ∪ S. (4)

In other words, each constituent block Hk` of H is simply the
Hessian matrix of the utility function Uk of player k ∈ P ∪ S,
thus justifying the name “Hessian matrix” for H.

As we show in Appendix B, the SCRN game under study is
concave in the sense that each player’s set of actions is convex
and compact, and their utility functions are concave in each
player’s individual action variables (for a precise statement, see
the proof of Proposition 1). Thanks to this observation, Theo-
rem 6 in [?] provides the following straightforward sufficient
condition for (DSC):

3Recall here that pi is a scalar while b j is a vector variable.
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Proposition 3. With notation as above, suppose that the sym-
metrized Hessian matrix H(x) + H(x)> of the game is negative-
definite for all x. Then, (DSC) holds with λ = 1 and the game
admits a unique NE.

Proof. Simply note that the symmetrized Hessian matrix of
the game as defined above coincides with the G-matrix in the
statement of Theorem 6 in [?] with r = 1. �

Given the parameters of a real-life SCRN model, the sym-
metrized matrix [H(x) + H(x)]> is easy to calculate. As such,
Proposition 3 provides a straightforward verification criterion
which is similar to the standard second-order derivative test
used to establish convexity in ordinary calculus. This result can
be further extended to arbitrary λ by asking that the so-called
λ-weighted Hessian matrix H(x; λ) with blocks Hk`(x; `) =

λkHk`(x) be negative-definite for some λ � 0. In practice
however, the simple criterion outlined in Proposition 3 is easier
to verify, so we do not treat the more general case here.

B. Distributed Learning and Convergence to Equilibrium

Of course, even if the game admits a unique Nash equilib-
rium it is not clear how players can converge to it. To that end,
we propose below a distributed price-and-demand adjustment
scheme based on the following exponentiated gradient ascent
(EGA) scheme:

yi(n + 1) = yi(n) + γnvi

(
p(n); b(n)

)
,

y j(n + 1) = y j(n) + γnv j

(
p(n); b(n)

)
,

pi(n + 1) = pmax
eyi(n+1)

1 + eyi(n+1) ,

b j(n + 1) = bmax
ey j(n+1)

1 + ey j(n+1)

(EGA)

where γn is a variable (nonincreasing) step size parameter, and
we are using vectorization to extend the definition of a scalar
function of a scalar argument to a vector function of a vector
argument.

Intuitively, the variables y in (EGA) represents a step along
each player’s direction of individually steepest payoff ascent,
captured here by the individual payoff gradients v of (2). How-
ever, because such a step could end up violating the feasibility
constraints of the players’ action spaces as identified in the
definition of the game, this variable is subsequently exponen-
tiated and normalized so that the resulting action profile remain
feasible [30]–[32].

With all this in mind, we can now state our main result:

Theorem 1. The stationary points of the price-and-demand
adjustment scheme (EGA) coincide with the game’s interior
Nash equilbria. Moreover, if (DSC) also holds, the iterates
of (EGA) converge to the game’s (necessarily) unique Nash
equilibrium, provided that the step-size sequence γn is chosen
such that

∑∞
n=1 γ

2
n <

∑∞
n=1 γn = ∞.

Proof: See Appendix B.
This theorem shows that the stability condition (DSC) can

be guaranteed by the Hessian criterion of Proposition 3. Fur-
thermore, the STC negotiation converges to equilibrium which
can then be affected by the long-term profit maximization of

the POs. In this way, Theorem 1 provides the operational basis
for short-term contract optimization between SOs and POs. The
region of validity of the stability condition (DSC) and the inter-
play of this phase with the POs’ long-term profit maximization
is examined in more detail in the following sections.

IV. Long-Term Contracts and ProfitMaximization

In the previous section, we focused on a game-theoretic for-
mulation of the problem where the network’s primary owners
react to the secondary owners’ demands by adjusting the price
in the negotiated short-term contract so as to maximize their
revenue. In Section III we are making no specific assumptions
for the form of the penalty function ξPU

i (bi) that reflects the
amount of reimbursement to PUs due to degradation of their
performance. In this section several forms of this function are
elaborated representing different applications. We focus on the
optimization of the POs long-term contracts, based on the PUs
demands and characteristic parameters included in the penalty
function ξPU

i (bi).

A. SO Best Response Function

We develop first a SCRN case study with α primary spectrum
owners and β secondary owners, where i ∈ P opportunistically
shares its own channel pool of size Bi at price pi per channel.
In (1a), the j-th SO tries to maximize his individual utility by
choosing the optimum demand from different primary opera-
tors. By differentiating the utility function (1a) and solving for
its critical point, optimum demand ("best response") of the j-th
SO from the i-th PO is given by

b∗i j(p) =
(εi j − pi)(ϑ(α − 2) + 1) − ϑ

∑α
l,i(εl, j − pl)

(1 − ϑ)(ϑ(α − 1) + 1)
. (5)

In the above, (εi j − pi)(ϑ(α − 2) + 1) depends on pi and the
channel efficiency parameter εi j of the current primary network
while the term ϑ

∑α
l,i(εl, j − pl) accounts for all other POs in

the network. The channel efficiency parameter depends on the
channel corruption rate which is a function of user arrival rates
in both PO and SO networks. SOs have to adjust their demands
according to the current corruption rates of POs’ network.
To this end, every SO can incorporate corruption rates in its
optimum demand function as

b̄i j(p) =
(ε̄i j − pi)(ϑ(α − 2) + 1) − ϑ

∑α
l,i(ε̄l j − pl)

(1 − ϑ)(ϑ(α − 1) + 1)
. (6)

where ε̄i j = (1 − ψi
(−))εi j and ψi

(−) is the channel corruption
probability of the i-th PO either in CCRN or SCRN models
given by (A1) and (A2), respectively (See Appendix A for
details). For simplicity, we assume that service rate is the same
for all SOs, so we can replace ψi j

(−) with ψi
(−). In the dynamic

demand function, the average achievable data rate of every
channel is ε̄i j = (1−ψi

(−))εi j. In a congested network POs would
lose their SUs due to higher corruption rates.

Note that only the number of shared channels bi is specified
by STC not specific frequencies so that each PO must determine
which one out of Ci − bi channels are still free. The i-th PO can
share some portion of the available channels Ci (see Fig. 1) with
SOs who are willing to rent the channels. In this case, a PO
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broadcasts to SOs the number of available channels, channel
corruption probabilities, and their prices. If a SO wants to rent
some channels, it finds its optimum demand value considering
to the price and channel corruption probabilities. Then, it sends
its demand to the PO. After receiving the message, the PO
recalculates price and sends it to the SO again.

In what follows, we address the PU performance degradation
problem by studying different applications in the SCRN model.
In general, we can first solve the profit maximization problems
for only one time slot, then we can extend it over the period of ∆

time slots due to the independence of PUs and SUs arrival rates
in different time slots (ν). In the sequel, we use ν to represent the
length of one time slot, and the specific number of consecutive
time slots ∆ (in Fig. 1, ∆ = 8ν) represents the long-term cycle
defining the length of LTCs.

B. Profit Maximization with Delay-Sensitive PUs in IoT (Inter-
net of Things) Networks

In this section, we further elaborate the models discussed so
far to account for delay-sensitive applications that cannot toler-
ate an extra delay caused by the spectrum sharing mechanism
in SCRNs. This case study is interesting for IoT applications
requiring low latency solutions : specifically, if a PO has a
LTC with delay-sensitive primary users, it cannot share a lot
of channels because it has to pay back a significant penalty to
its delay-sensitive primary users.

We reformulate ξPU
i (bi) in (1b) in order to define the profit

function of the i-th PO with delay-sensitive PUs as

Ui(p; b) = ι1Zi + pibi − ι2Ziτ̄
ι3
i ∀i ∈ P, (7)

where ι1 is a constant benefit from serving a single primary user
and ι2 is a penalty value to be paid to each PU for not having
immediate access to the channel but having to search for it (ι3
is a positive constant). In the above, Zi is the number of primary
users and τ̄ = {τ̄1, .., τ̄α} is the vector of average channel access
delays of primary users for the whole system. Overall, the first
term in (7) represents the revenue from primary users through
LTCs (RPU

i ), the second term is the revenue from secondary
users (RS U

j ) and the last term is the penalty depending on the
average access delay. Note that the second and third terms
reflect the dynamic spectrum sharing mechanism between POs
and SOs defined by STCs. Therefore, the critical issue in the
profit optimization problem is to find the optimum price vector
compensating the penalty values.

By approximating τ̄ι3k with Ci/(−bi(2di − 1) + Cidi) (For de-
tails refer to [33]), we reformulate the objective function (7) to

Ui(p; b) = ι1Zi + pibi −
Ciι2Zi

−bi(2di − 1) + Cidi
∀i ∈ P, (8)

where parameter di is probability of correct detection of empty
channel [34]. The profit function (8) is still a non-convex
function due to the second term pibi.

With this in mind, the profit optimization of each PO i with
delay-sensitive PUs takes the general form:

Problem 1-1.
max

pi
Ui(p; b) s. t.

a)bi ∈ {0, 1, ..,Ci}

b)pi ≥ 0

c)
∑
i∈P

bi j pi ≤ η j,∀ j ∈ S

(9)

where bi =
∑

j∈S bi j represents the number of shared channels
of the i-th PO with all SOs. In the above, bi j, bi and b are
functions of p and η j represents the maximum budget of the
j-th SO given as

∑
i∈P bi j pi ≤ η j. This combinatorial problem is

complicated to solve even for a small network. We incorporate
(9) into sum-utility optimization and simplify the problem by
relaxing the combinatorial variable bi to a continuous real value
to obtain

Problem 1-2.
max

p

∑
i∈P

Ui(p; b) s. t.

a) 0 ≤
(εi j − pi)(ϑ(α − 2) + 1) − ϑ

∑α
l,i(εl, j − p(i)

l )
(1 − ϑ)(ϑ(α − 1) + 1)

≤ Ci,

b) pi ≥ 0,

c)
∑
i∈P

pi(εi j − pi)(ϑ(α − 2) + 1) − piϑ
∑α

l,i(εl, j − p(i)
l )

(1 − ϑ)(ϑ(α − 1) + 1)
≤ η j,∀ j ∈ S,

d) p(l)
i = pi,∀i ∈ P,

(10)
where p(l)

i is a local copy of price value of PO i by PO l. In
(10), the coupled constraint d), p(l)

i = pi,∀i ∈ P implies that all
local copies must be equal with the real ones.

In general, the price optimization problem is non-convex
and we have to use some simplification techniques (e.g. first
order approximation approach) to convert the non-convex bud-
get constraint (−p2

i is concave) to convex form. We linearize
the non-convex term −p2

i using the first order approximation
method [35].

An approach to solve Problem 1-2 is to use a dual de-
composition method. This approach splits the problem with
coupling constraints p(l)

i = pi,∀i ∈ P into several independent
subproblems. Then, we form the Lagrangian as

L =
∑
i∈P

Ui −
∑
i∈P

∑
l∈P,i,l

ζil(pi − p(l)
i ) (11)

where ζα×α is the Lagrange multiplier associated with the
coupled constraint (ζil is the Lagrange multiplier for the price
consistency between POs i and l). We denote with ζi the
list of Lagrange multipliers of PO i. Thus, the independent
subproblems that can be solved in distributed way by every PO
will be given by

Problem 1-3.
max

pi
Ui −

∑
l∈P,i,l

ζil(pi − p(l)
i )

s. t.

a) 0 ≤
(εi j − pi)(ϑ(α − 2) + 1) − ϑ

∑α
l,i(εl, j − p(i)

l )
(1 − ϑ)(ϑ(α − 1) + 1)

≤ Ci,

b) pi ≥ 0,

c)
∑
i∈P

(piεi j − f (pi))(ϑ(α − 2) + 1) − piϑ
∑α

l,i(εl, j − p(i)
l )

(1 − ϑ)(ϑ(α − 1) + 1)
≤ η j,∀ j ∈ S,

(12)
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where f (pi) = −p2
i (n) − 2pi(n)(pi − pi(n)) is the first order

approximation of −p2
i and n is the iteration index.

The dual function of the main problem can be formulated as

g(ζ) =
∑
i∈P

gi(ζi) (13)

where gi(ζi) is the optimum value of (11) for a given ζi. The
master problem for the dual decomposition approach will thus
be to minimize g(ζ) with respect to ζ. This master problem can
be iteratively and independently solved by subgradient method
with the following updates

ζ(n + 1) = ζ(n) + sn

(∑
i∈P

∑
l∈P,i,l

ζil(pi − p(l)
i )

)
(14)

where sn is a positive step-size. In the above, pi(n) is solution
of the i-th subproblem in the n-th iteration (see Algorithm 1 for
a pseudocode implementation).

Algorithm 1 Distributed Long-Term Contract Profit Maximiza-
tion with Delay-Sensitive PUs

1: Initialize ζ(n) with some values and set n=0.
2: At each iteration n
3: 1) Every PO solves (14) to update ζ(n).
4: 2)Each PO solves (10) independently to find pi(n) and broadcast

it to other POs.
As an alternative approach to solve the Problem 1-1 in (9), we

find Nash equilibrium point by best response strategy of POs.
Every PO i unilaterally maximizes its own profit by finding
optimum price pi(n) for a given price list p−i(n), where n is the
iteration index. Every PO sequentially solves the optimization
problem defined as Problem 1-4.

Problem 1-4 ≡ Problem 1-2

with
∑
i∈P

Ui(p; b)→ Ui(p; b). (15)

to update its optimum price pi(n) for the current setting in the
iteration n. These optimizations and price updating processes
continue until all POs converge to the NE point such that no
player can improve its profit unilaterally.

C. Load Balancing via Dynamic Demand Function in SCRN
The dynamic spectrum sharing model helps SUs select the

most reliable channel with minimum probability of collision
with PUs. SOs with dynamic demand function - as in (6) -
must decide about how to distribute the secondary arrival calls
between different sub-bands of POs. In this context, the channel
corruption predominantly affects the performance of both POs
and SOs.

The objective of load balancing aims here to force SOs to
request more channels from the lower-overloaded PO networks.
In general, by including the channel corruption probability in
the demand function, the new form of dynamic load balancing
optimization problem (DLBOP) is proposed as

Problem 2.
Problem 2 ≡ Problem 1-1

with bi, j → b̄i, j.
(16)

In this setting, SOs avoid requesting spectrum from the
highly congested primary networks due to higher channel cor-
ruption rate. The only difference between this problem and
Problem 1 is that here we replace bi j with b̄i j given by (6).

D. Profit Maximization under Channel Quality Degradation

In the SCRN model, better channels could be allocated to
SUs instead to PUs. To model this phenomenon, it is assumed
that high quality channels are uniformly distributed in Ci.
Therefore, if bi is the number of assigned channels to SOs by
the i-th PO, the probability of assigning better channels to SOs
is bi/Ci. POs should find out the optimum value of bi leading to
the maximum profit including the penalty due to lower quality
channel assignment to PUs. Therefore, the new format of the
objective function is

Ūi = ι1Zi + θi pibi − ςi
Zibi

Ci
, i ∈ P (17)

where θi and ςi are constants. Although POs benefit from
assigning channels to SOs they must also pay higher reimburse-
ment prices to the network’s PUs due to possible performance
degradation of PUs. In view of all this, we replace bi with the
optimum demand function (5) to obtain

Problem 3.
max

pi
Ūi

s. t.

a) 0 ≤
(εi j − pi)(ϑ(α − 2) + 1) − ϑ

∑α
l,i(εl, j − p(i)

l )
(1 − ϑ)(ϑ(α − 1) + 1)

≤ Ci,

b) pi ≥ 0,

c)
∑
i∈P

pi(εi j − pi)(ϑ(α − 2) + 1) − piϑ
∑α

l,i(εl, j − p(i)
l )

(1 − ϑ)(ϑ(α − 1) + 1)
≤ η j,∀ j ∈ S,

d) p(l)
i = pi,∀i ∈ P.

(18)
The same approach (e.g. first order approximation and dual
decomposition) as in the previous sections can be used to solve
the problem defined by (18).

V. Spectrum Utilization
In general, the concept of cognitive networks is introduced

in advanced communications in order to improve spectrum uti-
lization. In this section, we study simplified SCRN and CCRN
models with a single PO and multiple SOs in order to quantify
gains in spectrum utilization obtained by deploying SCRNs
rather than CCRNs. We model this scenario as a discrete-time
Markov chain with states (e, f ) referring to the state with e
active PUs and f active SUs. In the first step, we find different
state transition probabilities for CCRN and SCRN models as
given in TableII.

TABLE II
State transition probabilities.

Transition CCRN/SCRN
(e, f )→ (e + 1, f ) ( Ci−(e+ f )

Ci−e )Ai

(e, f )→ (e, f + 1)
∑β

j
A jbi j∑α

l bl, j

(e, f )→ (e − 1, f ) eµi

(e, f )→ (e, f − 1) f
∑β

j=1 µ j
S U

(e, f )→ (e + 1, f − 1) See discussion below f
∑β

j=1 µ j

The state transition probabilities for SCRN are the same as
for CCRN except for the transition (e, f ) → (e + 1, f − 1),
in which a SU is replaced by the arriving PU. In the CCRN
model, PUs of the i-th PO force out SUs with probability
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( f /(Ci − e))Ai. Let parameters Ai and A j represent the arrival
rate of PUs and SUs of POi and S O j, respectively. Furthermore,
µi and µ j represent PU and SU service rates in system respec-
tively. In SCRN, these PUs do not interrupt SUs unless there
is no free channel while some SUs have occupied channels. In
general, the decision is made when one primary user call arrives
and PO wants to select a channel for transmission. At this point,
POs in the SCRN model check the mentioned conditions before
assigning the channels. In TableII,

∑β
j A jbi j/

∑α
l bl, j represents

a simple load balancing scheme run by the j-th SO trying to
distribute the arriving secondary calls according to the amount
of its optimum demands (5) and (6) from different POs.

In general, SCRN provides benefits for primary owners by
improving their spectrum utilization if they accept to be slightly
tolerant to the presence of SUs. This is based on the fact that
when POs let SOs transmit data in a more reliable way they are
more willing to use the network. The spectrum utilization for
POs is given now by

H =

∑α
i=1

(
h℘i + hPO

i +
∑β

j=1 hS O
i, j

)
∑α

i=1 Bi
, (19)

where α and β are the number of POs and SOs, respectively and
h℘i and hPO

i represent the number of channels used by POi in the
reserved and unshared channels, respectively. The parameter
hS O

i, j represents the number of the shared channels of POi used
by S O j. In (19), the term

∑α
i=1

∑β
j=1 hS O

i, j /
∑α

i=1 Bi represents the
extra spectrum utilization of the SCRN system. When there is
no more available channels for the new arrival calls, the call is
blocked. Thus, the blocking probability can be calculated by

PrS U
block =

∑
e+ f =C

φ(e, f )
β∑

j=1

A j
bi j∑α

i=1 bi j
,

PrPU
block =

∑
e=C

φ(e, f )Ai.

(20)

where φ(e, f ) is the probability that there is e PUs and f SUs
in the system and 0 ≤ bi j/

∑α
i=1 bi j ≤ 1 is a coefficient used for

distributing arriving SUs to different POs. In both SCRN and
CCRN systems, PU is not dropped by SUs due to the perfect
channel sensing assumption. The interrupt probability of SU is

PrS U,CCRN
interrupt =

∑
e+ f≤C

φ(e, f )
f Ai

(Ci − e)
,

PrS U,S CRN
interrupt =

∑
(e+ f =C)∨( f>bi)

φ(e, f )
f Ai

(Ci − e)
.

(21)

Note that in SCRN POs only interrupt SU’s ongoing trans-
missions in a few states which provides more reliable transmis-
sion for SUs. This brings more reliability and encouragement
for SOs to increase their demands.

VI. Numerical Results

In this section, we present numerical results in order to
validate the theoretical analysis of the previous sections and
provide some further insights into the operation of SCRNs.
In addition, we study the efficiency of a hybrid optimization
algorithm (HOA) combining optimization methods presented
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Fig. 3. Sum-Utility (10) vs Unilateral (15) optimization under Long-Term
Contracts (d1 = 0.8, d2 = 1, υ=0.5, ε2 = 10) in SCRN.

in Section IV, referred to as convex optimization algorithms
(COA), and methods presented in Section III, referred to as dis-
tributed learning algorithms (DLA). Here, each PO occasion-
ally runs CO algorithm while DLA is used to track continuously
the changes in the network over time. The former provides a
good initialization state so that the latter may converge faster
and more reliably.

A. Optimization Problems of Long-Term Contracts

In the sequel we quantify the benefits for SCRNs. To show
the results of LTC optimization, we assume that there are two
different POs and one SO. In the considered scenarios, the
channel efficiency of the first player (PO1) is between 6 and
14 Mbps while the second player (PO2) has a fixed channel
efficiency equal to 10 Mbps. Players deploy a SCRN model
unless mentioned otherwise.

1) Profit Optimization : We first analyze the impact of
channel efficiency and channel state detection probability on
the performance of SCRN operators. The results are obtained
by solving (10). Fig. 3 presents the profit of the SCRN system
versus the channel efficiency ε1 of PO1. As expected, the
performance of PO1 is better as ε1 increases. Since ε2 is kept
fixed (ε2 = 10) the performance of PO2 decreases as ε1 becomes
more dominant with respect to ε2. The figure also demonstrates
the importance of correct channel detection d1 and d2 on the
system performance, where PO2 has more accurate channel
state detection. For this reason, PO1 should have higher channel
quality to have the same profit as PO2. As expected, sum-
utility optimization defined by (10) always outperform the Nash
Equilibrium option obtained by unilateral optimization of the
POs’ individual utilities as defined by (15). For the unilateral
maximization scheme, both players achieve the same profit 10
with ε1 = 12 and ε2 = 10. This means Player 1 (PO1) with
lower channel detection probability d1 = 0.8 needs 20% higher
channel efficiency to get the same profit as Player 2 (PO1).
It can be even worse for the sum-utility optimization scheme
(10), where Player 1 needs 25% higher channel efficiency to
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get the same profit as Player 2. Taken together, these results
suggest that there is a strong relation between channel detection
probability and operator profit.

2) Dynamic Load Balancing: Here we show that using
SCRN as the spectrum sharing model rather than CCRN, opera-
tors can benefit in terms of revenue and system performance. In
this analysis, we consider the impact of the channel corruption
probability on the performance of POs and SOs, assuming that
the SOs distribute the incoming SUs adaptively based on the
current condition of the POs’ networks. We assume that PO1
(Player 1) and PO2 (Player 2) deploy CCRN and SCRN spec-
trum sharing models respectively. Player 2 is a SCRN operator
that provides more reliable access for SUs using a dynamic
demand function (6). Fig. 4 demonstrates that the SCRN-player
outperforms the CCRN-player. CCRN-Player would achieve
similar profits as SCRN operator if it could have much higher
channel quality about 14Mbps.

3) Profit Optimization under Low Quality Channel Alloca-
tion: In this section, we evaluate the performance of SCRN
scheme where the operators have a contract with their PUs to
assign better channels to them. So, capturing a channel by SO
under SCRN agreement can violate the items of the contract
with PUs. To fix this issue, SCRN operators promise to the PUs
to compensate their performance degradations due to assigning
low-quality channel to them. In the context of optimizing the
allocation of low-quality channels in Problem 3 formulated by
(18), POs optimize their prices to compensate the penalty that
they have to pay back due to allocating the stronger channel to
SUs instead to PUs. Fig. 5 shows the results for the low qual-
ity channel allocation optimization. Again, as expected, sum-
utility optimization outperforms the Nash equilibrium solution
of unilateral optimization.

B. Optimization Problems of Short-Term Contracts via Dis-
tributed Learning

In this section, we apply the game-theoretic analysis of Sec-
tion III to show the efficiency of the proposed SCRN model for
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profit and utility maximization. Figs. 6 shows the performance
of the EGA model for semi-cognitive network for different
numbers of SOs and POs. In the figure, we can see that the
utility per SO at the equilibrium points of the network decreases
as the number of SO (competitors) increases. As can be seen
from the figure, the average utility of SOs can be improved at
least by a factor of 7 if the number of POs α is increased from
5 to 15. In particular for α = 15, the average utility of SOs is
decreased by 18% if the number of SOs β is increased from 5
to 40.

In Fig. 7, we analyze a typical SCRN network model (eq.
EGA) with 5 POs and 10 SOs as a function of different number
of iterations in order to study the impact of parameter γ on profit
functions. As can be seen from the figure, the DLA algorithm
with learning rate γ > 0.4 does not converge even during 20
iterations while with learning rate γ ≤ 0.4 needs at most 10
iterations to converge. Furthermore, for the given set of the
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network parameters, the minimum number of iterations for the
DLA algorithm is 5 in order to generate precise results. These
results indicate that the proposed DLA can quickly be adapted
to network dynamics.

C. Hybrid Optimization Algorithm (HOA)

Here, we use the distributed learning algorithm (DLA) for
tracking the changes of the optimum solution of Problem 1 in
(9) (for other problems procedure is the same) when making
multiple STCs (see Fig.8). HOA combines both distributed
learning algorithm (DLA) and convex optimization (CO) in
such a way that CO is launched occasionally for the initial-
ization of DLA. In DLA, it is simpler (faster) to constantly
calculate the optimum points in order to track the changes in the
solutions. DLA is able to efficiently find a suboptimal solution
in a reasonable time (See Fig. 7) while CO can find better
solutions in a longer time. Therefore, combining DLA and CO
results into the HOA, which benefits from the advantages of
both algorithms. Fig. 9 shows the efficiency of the distributed
learning game in tracking the optimum points. Note that the
optimum points are provided by solving the convex optimiza-
tion Problem 1. Once an optimum is calculated for a LTC, it
is used in the distributed learning algorithm (EGA) as initial
state to track the evolution of this solution over time for STCs.
Comparing the results for pure CO and HOA in Fig. 9, it can
be seen that HOA is effectively able to track the optimal points
of CO with high accuracy. In Fig. 10, new STCs are negotiated
at each epoch. As we see, HOA is considerably faster while
providing the same performance as Convexified scheme solving
repeatedly Problem 1. For HOA scheme in Fig. 10, the average
running time is reduced by factor 1-4, where HOA alternatively
uses CO scheme to calibrate the DLA algorithm.

D. Utilization Rate Analysis

In this section, we study the spectrum utilization rate of a
scenario with a PO and multiple SOs. The SCRN spectrum
sharing scheme aims to improve the system utilization while

STC STC STC STC 

LTC 
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LTC 

CO: Convexified Optimization CO: Convexified Optimization 

time 

EGA EGA EGA EGA EGA EGA 
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Fig. 8. Hybrid Optimization Algorithm (HOA).
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requirements of both PUs and SOs are met properly. The system
performance is evaluated under different SOs and POs arrival
rates. Fig. 11 presents the spectrum utilization rate for different
b that is the number of shared channels by the PO (we drop the
index i because we consider a single PO scenario). As shown in
the figure, the higher b results in a notable improvement in the
utilization rate of the order of 20% and higher. In SCRN, the
increase of arrival rate of primary user leads to the increase in
the number of collisions with secondary user (interruption rate).
Therefore, the spectrum utilization rate due to the higher block
and interruption rates would be decreased. In Fig. 12, the impact
of SO arrival rate is investigated on interruption rate of SUs.
Significant improvements in SCRN are also noticeable. As can
be seen from the figure, SCRN model reduces interruption rate
by factor 4-16 if the SO arrival rate is increased from 1 to 10. In
particular, for b = 5 the interruption rate is less than 3%. Notice
that SCRN with b = 0 is exactly the same model as CCRN.
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VII. Conclusion

In this paper, we propose a novel cognitive radio paradigm
referred to as semi-cognitive radio networks (SCRNs), where
POs are not absolutely dominant users of the spectrum. Here,
SOs can actively negotiate the channel prices and quality,
thus having a sufficient incentive to participate in the dynamic
spectrum sharing mechanism. To support this concept, a novel
channel management policy is proposed to support different
network applications with different requirements.

The dynamic spectrum sharing between SOs and POs is
controlled according to a short-term contract in order to capture
the dynamics of the networks. This is achieved by considering
the channel corruption rate as a parameter that drives spectrum
supply-and-demand process. To analyse the impact of the POs’
strategies on the SCRN model, we use both individual and sum
utility optimizations of POs.

To achieve equilibrium in this general setting, we also pro-
vide a distributed learning algorithm based on exponentiated
gradient ascent (EGA). Three different SCRN case studies
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Fig. 12. Interruption rate (given by equation (21)) of SO vs SO packet arrival
rate(Packet/sec).

(pricing, load balancing and quality degradation problems) are
investigated to analyze the efficiency of SCRN in different
network applications. We also analyze the system utilization by
a Markov chain model to study the behavior of SCRN in more
detail.

Our results demonstrate a significant performance improve-
ment for SCRN operators (both primary and secondary) in the
dynamic spectrum sharing process. In general our numerical
results show that with the same channel efficiency SCRN pro-
vides higher profit for POs, improved system utilization and
significantly reduced interruption probability in SO network.
As an illustration, for a specific set of the network parameters
and the same channel efficiency, SCRN provides at least five
times higher profit for PO, the network utilization improves
from 80% to close to 100% and depending on SO packet arrival
rates the interruption rate is reduced by factor 2-10 in SO’s
network. In addition, we also propose for SCRN-based POs a
hybrid spectrum management mechanism which combines both
convexified optimization and learning algorithms to manage
simultaneously LTCs and STCs.

Finally as an observation with respect to the applicability of
the results to the standardized TV white space spectrum utiliza-
tion in cognitive networks one should be aware of the following.
In the case of the TV white space spectrum the dynamics of the
PU arrivals is much lower and predictable so that the conflict
situations might be avoided by simple scheduling. That means
that the spectrum segments where TV program is scheduled at a
given time will be omitted in short term contracts from leasing
to SO in the period of the program duration. Our models are still
valid although in such applications the probability of corruption
will be zero. The delays in accessing the network by PU will
be eliminated by scheduling since the dedicated spectrum will
be waiting for the start of the program. In future work, we
intend to focus on extending SCRN to heterogeneous wireless
networks, where SUs and PUs have different requirements. We
will also consider SCRN model in higher frequency bands e.g.
mmWave communications.
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Appendix A
PU Return Probability in SCRNs

Once a PU recaptures a channel employed by a SU, the
ongoing transmission of the SU might be interrupted even if
there are still empty channels available. In this context, from
the point of view of the network’s SOs, the main parameter in
the spectrum trading process is the PUs’ return probability, i.e.
the corruption probability of an ongoing SU transmission by a
new PU in a given channel of the i-th PO. In CCRNs, this return
probability can be calculated as

ψi
(CC) =

Ci∑
z=1

z
Ci

ρz
i exp(−ρi)

z!
, (A1)

where ρz
i exp(−ρi)

z! is the probability of z PU arrivals which follows
a Poisson distribution with mean ρi = Ai

PO/µS O. Parameter
Ai

PO represents the arrival rate of primary users and µS O is the
service rate of secondary users.

On the other hand, in the semi-cognitve regime (where PUs
only recapture a channel if there are no unused channels to
take), the corresponding channel corruption probability will be
given by

ψi
(S C) =

bi∑
z=1

z
bi

ρCi−bi+z
i exp(−ρi)
(Ci − bi + z)!

, (A2)

where bi represents the number of the demanded channels by
SOs. If z additional channels are required and all unshared sub-
channels are occupied by PUs, then the SO transmissions would
be corrupted with probability z/bi. In the SCRN model, bi/Ci is
an important parameter representing the tolerance level of the
i-th PO.

Appendix B
Game-Theoretic Analysis

To simplify notation, in what follows, we write K = P ∪ S

to denote the set of all players of the game (i.e. both POs and
SOs), indexed by k ∈ K . In the same spirit, we write xk = pk

for k ∈ P and xk = bk for k ∈ S; we maintain the indices i
and j (and pi and b j respectively) only where there is danger of
confusion.

Proof of Proposition 1. Note first that the players’ action sets
are convex and compact; as a result, by the general theory of
[27], [28], it suffices to show that each player’s payoff function
Uk is individually concave in xk.

For k ∈ P, Uk is linear – and hence concave – in xk because
the profit function Uk in (1b) of the k-th PO is itself linear in
the PO’s individual price variable xk. On the other hand, for
k ∈ S, the situation is more complicated: the first and second
terms of (1a) are both concave in b j by our assumption for εi j

and linearity, respectively. For the third term of (1a), let f (x) =
1
2
∑

i=1 x2
i + ϑ

∑
`,i xix` so it suffices to show that f is convex in

x. To that end, a straightforward differentiation gives

∂2 f
∂xi∂x`

= δi` + ϑ(1 − δ`), (B1)

so Hess( f ) = I + (1−ϑ)E where E is a constant matrix of ones.
This implies that Hess( f ) is a circulant matrix with eigenvalues
of the form

λa = 1 + ϑ
(
ωa + · · · + ωn−1

a

)
, (B2)

where n is the dimension of x and ωa = exp(2πa/n), a =

0, . . . , n − 1, are the n-th roots of unity [36]. A simple manipu-
lation then gives λ0 = 1 + (n − 1)ϑ for a = 0 and

λa = 1−ϑ+ϑ
(
1 +ωa + · · ·+ωn−1

a

)
= 1−ϑ+ϑ

ωn
a − 1

ωa − 1
= 1−ϑ, (B3)

for all a = 1, . . . , n − 1. Since 0 ≤ ϑ ≤ 1, we conclude that
Hess( f ) ≥ 0, i.e. f is convex in x. In turn, this implies that
Uk is concave in (1a) (as the sum of concave functions) so the
existence of Nash equilbria follows from the general theory of
[27], [28]. �

We now proceed with the proof of our main convergence
result:

Proof. Proof of Theorem 1 For the first assertion of the theo-
rem, simply note that x∗ ∈ X◦ is a Nash equilibrium if and only
if vk(x∗) = 0 for all k ∈ K (a consequence of the fact that the
players’ payoff functions are individually concave). Since this
is true if and only if yk(n + 1) = yk(n) for all k ∈ K , it follows
that x∗ ∈ X◦ is a stationary point of (EGA) if and only if it is a
Nash equilibrium of G.

For our second assertion, we will use a proof technique de-
veloped in [37], [38] based on the so-called “Fenchel coupling”
between primal and dual variables (x and y respectively). To
introduce this notion, first let

hk(xk) =


xk log xk + (Ck − xk) log(Ck − xk)

if k ∈ P,∑
i∈P

(
xik log xik + (bmax − xik) log(bmax − xik) )

if k ∈ S,

(B4)

and
h∗k(xk) = max

{
〈yk |xk〉 − hk(xk) : xk ∈ Xk

}
, (B5)

denote the convex conjugate of hk.4 The (λ-weighted) Fenchel
coupling between x ∈ X and y ∈ IRP × IRP×S is then defined as

F(x, y) =
∑
k∈K

λk

[
hk(xk) + h∗k(yk) − 〈yk |xk〉

]
, (B6)

with λ chosen as in (DSC). By Fenchel’s inequality, we then get
F(x, y) ≥ 0 with equality if and only if xk = Qk(yk) where

Qk(yk) = arg max
{
〈yk |xk〉 − hk(xk) : xk ∈ Xk

}
. (B7)

By standard convex analysis arguments, it is easy to show
that the solution of the maximization problem (B5) is

h∗k(yk) =

{
Ck log(1 + eyk ) if k ∈ P,
bmax

∑
i∈P log(1 + eyik ) if k ∈ S.

(B8)

Moreover, by the Legendre inversion formula [39], we will have

Qk(yk) = ∇yk h∗k(yk) (B9)

and hence:
Qk(yk) = Ak

eyk

1 + eyk
, (B10)

with vectorized notation as in the update step of the recursion
(EGA).

With these preliminaries at hand, assume that (DSC) holds,
let x∗ denote the game’s unique Nash equilibrium, and set Dn =

F(x∗, y(n)).
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Dn+1 = F
(
x∗, y(n) + γnv(x(n))

)
=

∑
k∈K

λk

[
hk(x∗k) + h∗k(yk(n) + γnvk(x(n))) −

〈
yk(n) + γnvk(x(n)|x∗k)

〉 ]
≤

∑
k∈K

λk

[
hk(x∗k) + h∗k(yk(n)) −

〈
yk(n)|x∗k

〉 ]
+ γn

∑
k∈K

λk

〈
vk(x(n))|xk(n) − x∗k

〉
+

M
2
γn||x(n) − x∗||2

= Dn + γn

∑
k∈K

λk

〈
vk(x(n))|xk(n) − x∗k

〉
+

M
2
γn||x(n) − x∗||2,

(B11)

By a Taylor expansion, we then get (B11) where, in the third
line, we used the fact that ∇h∗k(yk(n)) = Qk(yk(n)) = xk(n) and
the fact that the norm of the Hessian of

∑
k λkh∗k is bounded from

above by some positive constant M > 0. We now claim that
there exists a subsequence x(n j) such that x(n j) → x∗. Indeed,
if this were not the case, we would have

∑
k∈K λk〈vk(x(n))|x∗k〉 ≤

−a for some a > 0 and for all n by (DSC). Hence, telescoping
(B11) would yield

Dn+1 ≤ D0 − a
n∑

j=1

γ j +
K
2

n∑
j=1

γ2
j ||x( j) − x∗||2, (B12)

and, ultimately, limn→∞ Dn+1 = −∞ because
∑∞

n=1 γn = ∞while∑∞
n=1 γ

2
n < ∞ and supn ||x(n) − x∗||2 < ∞ (recall that X is com-

pact). This contradicts the fact that Dn = F(x∗, y(n)) ≥ 0 so we
conclude that x(n) visits any neighborhood of x∗ infinitely many
times. Now, fix some ε > 0 and let Vε = {x ∈ X : ||x − x∗|| < ε}
be an ε-neighborhood of x∗ in X. Then, reasoning as above,
if Rε denotes the shell-like region Vε \ Vε/2, there exists some
a ≡ a(ε) > 0 such that

∑
k∈K λk〈vk(x)|x − x∗〉 ≤ −a for all

x ∈ Rε. Also, let L = maxx∈X ||v(x)|| and assume that n is
sufficiently large so that γn < min{a/(ML2),

√
ε/(ML2)}.

Since x(n) visits Vε infinitely many times, we may assume
without loss of generality that x(n) ∈ Vε for some sufficiently
large n that satisfies the step-size condition above. Then, by
(B11), we will have:

Dn+1 ≤ Dn + γn

∑
k∈K

λk

〈
vk(x(n))|γk(n) − x∗k

〉
+

1
2
γ2

n ML2. (B13)

Thus, if x(n) ∈ Rε, we will have Dn+1 ≤ Dn − aγn + 1
2γ

2
n ML2 <

Dn+1 −
1
2 aγn < Dn, so x(n + 1) ∈ Vε. On the other hand, if

x(n) ∈ Vε/2, we will have Dn+1 ≤ Dn + 1
2γ

2
n ML2 < Dn + ε/2 so,

again, x(n + 1) ∈ Vε.
By induction, the above shows that for any ε > 0, there

exists some n0 ≡ n0(ε) such that x(n) ∈ Vε for all n ≥ n0,
i.e. limn→∞ x(n) = x∗, as claimed. �
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