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ABSTRACT
We study the traffic routing problem in networks whose users try to
minimize their latencies by employing a distributed learning rule
inspired by the replicator dynamics of evolutionary game theory.
The stable states of these dynamics coincide with the network’s
(Wardrop) equilibrium points and we find that they form a convex
polytope whose dimension is determined by the network’s degener-
acy index (an important concept which measures the overlap of the
users’ paths). Still, despite this abundance of stable states, we find
that (almost) every solution trajectory converges to an equilibrium
point at an exponential rate.

On the other hand, a major challenge occurs when network la-
tencies fluctuate unpredictably due to random exogenous factors.
In that case, we show that the time-average of the traffic flows
of sufficiently patient users is still concentrated in a neighborhood
of evolutionarily stable equilibria and we estimate analytically the
corresponding stationary distribution and convergence times.

1. INTRODUCTION
The problem of managing the flow of traffic in large-scale net-

works (the Internet being a prime example) is as simple to state
as it is challenging to resolve: given the traffic rates generated by
the network’s users, one is asked to identify and realize the most
“satisfactory” distribution of traffic among the network’s routes.
However, since the time needed to traverse a link in the network
increases as the link becomes more congested, the users’ concur-
rent optimization efforts invariably lead to competitive interactions
whose complexity precludes even the most rudimentary attempts
at coordination. Thus, a traffic distribution is considered “satisfac-
tory” by a user when there is no unilateral move that could further
decrease the delays (or latencies) that he experiences.

In this way, a most natural way to approach this problem is by
means of game theory, an idea which has given renewed impetus
to the subject – see [1] for a panoramic survey. In particular, in
the seminal papers [2–5], it was identified that the relevant solution
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concept is described by Wardrop’s principle [6]: given the level of
congestion caused by other users, every user seeks to employ the
minimum-latency path available to him.

On the other hand, this raises the issue of whether traffic flows
which are at Wardrop equilibrium are also “socially optimal” in
the sense that they minimize the aggregate latency in the network.
The answer to this question is a negative one, but Roughgarden
and Tardos showed that even in paradoxical, Braess-type networks,
the price of anarchy (an equilibrium efficiency ratio that was intro-
duced in [3]) is actually bounded by the celebrated factor 4/3 [4, 5].
More importantly, it is also well known that the network’s opti-
mal state can be interpreted as a Wardrop equilibrium for a slightly
modified network [7, 8], so, in effect, equilibrium and optimality
can be seen as different sides of the same coin.

Still, the size of large-scale networks makes computing these
equilibria a task of formidable difficulty, clearly beyond the users’
individual deductive capabilities. Moreover, a user has no incentive
to actually play out his component of an equilibrial traffic alloca-
tion unless he is convinced that his opponents will also employ
theirs (an argument which gains additional momentum if there are
multiple equilibria). Finally, in real-world applications, the infor-
mation that users have at their disposal is not only local in nature,
but might also be inaccurate as well (a consequence of the stochas-
tic interference of nature with the network). Hence, our goal in this
paper is to take a less centralized approach and ask: is there a dis-
tributed learning scheme which leads users to an equilibrium and
which remains robust in the presence of uncertainties and noise?

Even though the static properties of Wardrop equilibria have been
studied quite extensively, this question has been left relatively un-
explored. In fact, it was only recently shown in [9–11] that a good
candidate for such a learning scheme would be the replicator dy-
namics of evolutionary game theory, a dynamical system which
was first introduced in [12] to model the evolution of (nonatomic)
populations that interact with one another by means of random
matchings in a Nash game. In our congestion setting, these popula-
tions correspond to the users’ traffic flows, so the convex optimiza-
tion formulation of [7] allows us to recast our problem in terms of
a (nonatomic) potential game [9]. As a result, the game’s Wardrop
equilibria emerge as the game’s only Lyapunov stable states in de-
terministic environments [9], and when there is a unique equilib-
rium, it was shown that interior trajectories converge to it [10, 11].

Rather surprisingly, the structure of the Wardrop set itself seems
to have been overlooked in the above considerations when it does
not consist of a single equilibrium. Specifically, a subtle mistake
that is present in [9] (and in the multi-commodity considerations
of [10] as well) is that if the network’s delay functions are strictly
increasing, then there exists a unique Wardrop equilibrium – see
e.g. [9, Corollary 5.6]. As a matter of fact, this is only true in



irreducible networks, i.e. networks whose paths are “independent”
of one another (in a sense made precise in Definition 1). In general,
the Wardrop set of a network is a convex polytope whose dimension
is determined by the network’s degeneracy index, a notion which
precisely quantifies this “linear dependence”.

Nonetheless, despite this added structure, we show that the ex-
pectations of [10] are vindicated even when then are multiple War-
drop equilibria: (almost) every replicator orbit converges to a War-
drop equilibrium (Theorem 7) and not merely to the Wardrop set.
More importantly, we find that the rate of this convergence is actu-
ally exponential, in the sense that users hit an ε-neighborhood of an
equilibrium in time of order O(log 1/ε) – a significant improvement
over the O(ε−3) polynomial bound that was predicted by [10].

That said, an assumption which is central (albeit implicit) in the
replicator dynamics is that users have perfectly accurate informa-
tion at their disposal. Unfortunately however, this assumption is not
very realistic in networks which exhibit wild delay fluctuations as
the result of interference by random exogenous factors (commonly
referred to as “nature”). In population biology, these disturbances
are modelled by introducing “aggregate shocks” to the replicator
dynamics [13] and, as one would expect, these shocks complicate
the situation by quite a bit. For instance, if the variance of the
shocks is mild enough, it was shown in [14] that dominated strate-
gies become extinct in the long run, and, under similar hypotheses,
even equilibrial play arises over time [15, 16]. On the other hand, if
one interprets the replicator dynamics as the derivative of an expo-
nential learning process and perturbs them accordingly, it was only
recently shown that similar rationality properties continue to hold,
regardless of the noise level [17, 18].

Nevertheless, all of these approaches have been focused on Nash-
type finite games with multilinear payoffs. This linear structure
simplifies things considerably but, unfortunately, congestion mod-
els rarely adhere to it; even more to the point, the way that stochas-
tic fluctuations propagate to the users’ choices in a network leads
to a new stochastic incarnation of the replicator dynamics where
the noise processes are no longer independent across users (differ-
ent paths might share a common subset of links over which dis-
turbances are strongly correlated). On that account, the effect of
stochastic fluctuations in congestion models is radically different
than in previous work on the stochastic replicator dynamics and,
as such, our aim in this paper will be to chart out and identify the
rationality properties that remain true in the presence of noise.

1.1 Outline
Our network model is presented in detail in Section 2 where we

develop the “static” aspect of our work: specifically, we introduce
the degeneracy index of a network in Section 2.1, and we exam-
ine its ties to Wardrop equilibria in Section 2.2. We then derive
the rationality properties of the deterministic replicator dynamics
in Section 3 and show that replicator solution orbits converge to
Wardrop equilibrium at an exponential rate which we are able to
estimate (Theorems 7 and 8).

Section 4 is devoted to the stochastic considerations which con-
stitute the core of our paper. We find that if the users are “patient
enough” (in the sense that their learning rates are sufficiently slow),
then the long-term time average of the stochastic replicator dynam-
ics in irreducible networks concentrates mass in the vicinity of an
evolutionarily stable Wardrop equilibrium (Theorem 10). This not
only provides a significant extension of the results of [15, 16] to
nonlinear multi-population environments, but it also highlights the
interplay between learning and uncertainty: no matter how loud the
noise becomes, players who take their time will always be able to
weed out the effect of stochastic fluctuations.

Notational Conventions
If S = {sα}nα=0 is a finite set, we will denote the vector space spanned
by S over R by RS ≡ Hom(S,R). The canonical basis {eα}nα=0 of RS

then consists of the indicator functions eα : S → R which take
the value eα(sα) = 1 on sα and vanish otherwise; hence, under
the identification sα %→ eα, we will use α to refer interchangeably
to either sα or eα. In the same vein, we will also identify the set
∆(S) of probability measures on S with the standard n-dimensional
simplex of RS : ∆(S) = {x ∈ RS :

∑
α xα = 1 and xα ≥ 0}.

Concerning players and their strategies, we will employ Latin
indices (i, j, . . . ) for players while reserving Greek ones (α, β . . . )
for their (pure) strategies; also, to differentiate between strategies,
we will use α, β, . . . for indices that start at 0 and µ, ν, . . . for those
that start at 1. Moreover, if the players’ action sets Ai are disjoint
(as is typically the case), we will identify their union

⋃
i Ai with

their disjoint union A ≡ ∐i Ai =
⋃

i
{
(α, i) : α ∈ Ai

}
. Thus, if

{eiα} is the natural basis of RAi and {eα} is the corresponding basis
of RA !

∏
i R

Ai , we will occasionally drop the index i altogether
and write x =

∑
α xαeα instead of x =

∑
i,α xiαeiα. Similarly, when it

is clear from the context that we are summing over the strategy set
Ai of player i, we will use the shorthand

∑i
α ≡
∑
α∈Ai .

2. PRELIMINARIES

2.1 Networks and Flows
Following the widely used flow model of [4, 5], we will model

our network on a finite directed graph G ≡ G(V,E) with node set
V and edge set E. Then, an ordered pair σ = (v,w) will be called
an origin-destination pair of G if w can be joined to v by a path
in G. Furthermore, if we assume that the origin v of σ outputs
traffic towards the destination node w at some rate ρ > 0, the pair
σ together with the rate ρ will be referred to as a user of G. In
this way, a network Q ≡ Q(N,A) in G will comprise a set of users
N (indexed by i = 1, . . .N), together with an associated collection
A ≡∐i Ai of sets of paths (or routes) Ai = {αi,0, αi,1 . . .} joining vi
to wi (where σi = (vi,wi) is the i-th origin-destination pair).

Two remarks of a book-keeping nature are now in order: first,
since we will only be interested in users who can choose how to
route their traffic, we will take |Ai| ≥ 2 for all i. Secondly, we will
be assuming that the origin-destination pairs of distinct users are
themselves distinct. Fortunately, neither assumption is crucial: if
there is only one route available to user i, the rate ρi can be consid-
ered as a constant load on the route; and if two users i, j ∈ N with
rates ρi, ρ j share the same origin-destination pair, we will replace
them by a single user with rate ρi + ρ j (see also Section 2.2).

So, if xiα ≡ xα denotes the amount of traffic that user i routes via
the path α ∈ Ai, the corresponding traffic flow may be represented
as xi =

∑i
α xiαeiα, where {eiα} is the standard basis of the vector

space Vi ≡ RAi . However, for such a flow to be admissible, we
must also have xiα ≥ 0 and

∑i
α xiα = ρi; hence, the set of admissible

flows for user i will be the simplex ∆i ≡ ρi∆(Ai) =
{
xi ∈ Vi : xiα ≥

0 and
∑i
α xiα = ρi

}
. Then, by collecting all these individuals flows

in a single profile, a flow in the network Q will simply be a point
x =
∑

i xi ∈ ∆ ≡
∏

i ∆i.
An alternative (and very useful!) description of a flow x ∈ ∆

can be obtained by looking at the traffic load that the flow induces
on the edges of the network, i.e. at the amount of traffic yr that
circulates in each edge r ∈ E of G. In particular, we set:

yr =
∑

i
yir =

∑
i

∑i

α(r
xiα (1)

where yir =
∑i
α(r xiα is the load induced on r ∈ E by the individual

flow xi ∈ ∆. In this manner, a very important question that arises is



the following: can one recover the flow distribution x ∈ ∆ from the
loads yr on the edges of the network?

To answer this, let {εr} be the standard basis of the space W ≡ RE

spanned by the edges E of G and consider the indicator map Pi :
Vi → W which maps a path α ∈ Ai to the sum of its constituent
edges: Pi(eiα) =

∑
r∈α εr; obviously, if we set Pi(eiα) =

∑
r Pi

rαεr,
we see that the entries of Pi will be Pi

rα = 1 if r ∈ α and 0 oth-
erwise. We can then aggregate this construction over all i ∈ N by
considering the product V ≡ RA !

∏
i Vi and the corresponding

indicator matrix P = P1 ⊕ · · · ⊕ PN whose entries take the value
Prα = 1 if the path α ∈ A employs the edge r and vanish otherwise.
By doing just that, (1) takes the simpler form yr =

∑
α Prαxα or,

even more succinctly, y = P(x). Therefore, the question of whether
a flow can be recovered from a load profile can be answered in the
positive if the indicator map P : V → W is injective.

Still, this is not the end of the matter because the individual flows
xi ∈ ∆i actually live in the affine subspaces pi + Zi where pi is the
(bary)center of ∆i and Zi ≡ Tpi∆i = {zi ∈ Vi :

∑i
α ziα = 0} is the

tangent space to ∆i at pi. As a result, what is actually of essence
here is the action of P on the subspaces Zi ≤ Vi, i.e. the restriction
Q ≡ P|Z : Z → W of P on the subspace Z ≡ Tp∆ !

∏
i Zi, where

p = (p1, . . . pN). In this way, any two flows x, x′ ∈ ∆ will have
z = x′ − x ∈ Z and the respective loads y, y′ ∈ W will satisfy:

y′ − y = P(x′) − P(x) = P(z) = Q(z), (2)

so that y′ = y iff x′ − x ∈ ker Q. Under this light, it becomes clear
that a flow x ∈ ∆ can be recovered from the corresponding load
profile y ∈ W if and only if Q is injective.

For this reason, the map Q : Z → W will be called the degener-
acy matrix of the network Q. In its turn, this leads to:

Definition 1. Let Q be a network in a graph G and let Q be its
degeneracy matrix. Then, the degeneracy index ind(Q) of Q is:

ind(Q) ≡ dim(ker Q). (3)

If ind(Q) = 0, the network Q will be called irreducible; otherwise,
Q will be called reducible.

The rationale behind this terminology should be clear: when a
network Q is reducible, some of its routes are “linearly dependent”
and the respective directions in ker Q are “degenerate” (in the sense
that they are not reflected on the edge loads). By comparison, the
degrees of freedom of irreducible networks are all active and any
statement concerning the network’s edges may be translated to one
concerning its routes.

2.2 Congestion Models and Equilibrium
The time spent by an infinitesimal traffic element on an edge

r ∈ E of the graph G will be a function φr(yr) of the traffic load
yr on the edge in question – for example, if the edge represents
an M/M/1 queue with capacity µr, then φr(yr) = 1/(µr − yr). In
tune with tradition, we will assume that these latency (or delay)
functions are strictly increasing, and, to keep things simple, that
they are C1 with φ′r(yr) > 0.

In this way, the time needed to traverse the route α ∈ Ai will be:

ωiα(x) =
∑

r∈α
φr(yr) =

∑
r

Pi
rαφr(yr), (4)

where, as before, yr =
∑
β Prβxβ. In summary, we then have:

Definition 2. A congestion model C ≡ C(Q, φ) in a graph G(V,E)
is a network Q(N,A) of G equipped with a family of increasing
latency functions φr, r ∈ E.

Definition 2 will constitute our network model in terms of con-
gestion and delay characteristics – see also the seminal papers [4, 5]
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(a) An irreducible network: ind(Q) = 0.
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(b) A reducible network: ind(Q) = 1.

Figure 1: The degeneracy index of a network.

for a more in-depth discussion on this flow model. On the other
hand, we see that our notion of a “user” more accurately portrays
a network’s routers and not its “real-life” users (humans, applica-
tions, etc.), so care must be taken in how to phrase the equilibrial
conditions for the network. Therefore, given that the routers’ self-
less task is to satisfy the nonatomic traffic elements circulating in
the network (the actual selfish entities that correspond to the re-
quests of the network’s actual users), the relevant equilibrium con-
cept is given by Wardrop’s principle [6]:

Definition 3. A flow profile q ∈ ∆ is at Wardrop equilibrium when,
for all users i ∈ N and for all routes α, β ∈ Ai with qiα > 0, we have:

ωiα(q) ≤ ωiβ(q), (5)

i.e. when every nonatomic traffic element employs the fastest path
available to it.

Condition (5) holds as an equality for all routes α, β ∈ Ai that are
employed in a Wardrop profile q. This gives ωi(q) = ωiα(q) for all
α ∈ supp(qi) and leads to the following alternative characterization
of Wardrop flows:

ωi(q) ≤ ωiβ(q) for all i ∈ N and for all β ∈ Ai. (5′)

Even more importantly, Wardrop equilibria can also be harvested
from the (global) minimum of the Rosenthal potential [19]:

Φ(y) =
∑

r
Φr(yr) =

∑
r

∫ yr

0
φr(w) dw. (6)

The reason for calling this function a potential is twofold: firstly,
it is the nonatomic generalization of the potential function intro-
duced in [20] to describe finite congestion games; secondly, the
latencies ωiα can be obtained from Φ by a simple differentiation.



To be sure, if we set F(x) = Φ(y) where y = P(x) is the load profile
which corresponds to the traffic distribution x ∈ ∆, we obtain:

∂F
∂xiα

=
∑

r

∂Φ

∂yr

∂yr

∂xiα
=
∑

r∈α
φr(yr) = ωiα(x), (7)

which connects to the continuous population setting of [9].
To describe the exact relation between Wardrop flows and the

minima of Φ, consider the (convex) set P(∆) of all load profiles y
that result from admissible flows x ∈ ∆. Since the latency func-
tions φr are increasing, Φ will be strictly convex over P(∆) and
it will thus have a unique (global) minimum y∗ ∈ P(∆). Amaz-
ingly enough, the Kuhn-Tucker conditions that characterize this
minimum coincide with the Wardrop condition (5) [4, 7–9], so the
Wardrop set of the congestion model C will be:

∆∗ = {x ∈ ∆ : P(x) = y∗} = P−1(y∗) ∩ ∆. (8)

This leads us to the following proposition, whose first part is well-
known, but whose second part seems to have been overlooked by
the existing literature, despite its simplicity:

Proposition 4. Let C ≡ C(Q, φ) be a congestion model with strictly
increasing latencies φr and let ∆∗ be its Wardrop set. Then:

1. Any two Wardrop flows exhibit equal loads and delays.

2. ∆∗ is a nonempty convex polytope with dim(∆∗) ≤ ind(Q);
moreover, if there exists an interior equilibrium q ∈ Int(∆),
then dim(∆∗) = ind(Q).

Since P−1(y∗) is an affine subspace of RA ≡ ∏i R
Ai and ∆ is a

product of simplices, there is not much to prove (simply observe
that if q is an interior Wardrop flow, then P−1(y∗) intersects the full-
dimensional interior of ∆). As we noted above, the only surprise
here is that this result seems to have been overlooked in most of
the literature concerning congestion models: for instance, in both
[9, Corollary 5.6] and [10, Propositions 2, 3], the authors presume
that Wardrop equilibria are unique in networks with increasing la-
tencies. However, if there are two distinct flows x, x′ leading to the
same load profile y (e.g. as in Fig. 1(b)), then the potential function
F(x) ≡ Φ(P(x)) is no longer strictly convex: in fact, it is constant
along every null direction of the degeneracy matrix Q ≡ P|T∆.

We thus see that a Wardrop equilibrium is unique iff a) the net-
work Q is irreducible, or b) P−1(y∗) only intersects ∆ at a vertex.
This last condition suggests that the vertices of ∆ play a special
role so, in analogy with Nash games, we define:

Definition 5. A Wardrop equilibrium q is strict if a) q is pure: q =∑
i ρiei,αi , αi ∈ Ai; and b) ωiαi (q) < ωiβ(q) for all paths β ∈ Ai \{αi}.
As a matter of fact, the existence of a strict Wardrop equilibrium

actually precludes the existence of any other equilibria:

Proposition 6. Let C be a congestion model. If q is a strict Wardrop
equilibrium of C, then C has no other equilibria.

Proof. Without loss of generality, let q =
∑

i ρiei,0 be a strict War-
drop equilibrium of C and suppose ad absurdum that q′ " q is
another Wardrop flow. If we set z = q′ − q ∈ ker Q, it follows
that the convex combinations q + θz will also be Wardrop for all
θ ∈ [0, 1]; moreover, for small enough θ > 0, q + θz employs
at least one path µ ∈ Ai \{0} that is not present in q (recall that
q is pure). As a result, we get ωiµ(q + θz) = ωi,0(q + θz) for all
sufficiently small θ > 0, and because the latency functions ωiα are
continuous, this yields ωi,0(q) = ωiµ(q). However, since q is a strict
Wardrop equilibrium which does not employ µ, we must also have
ωi,0(q) < ωiµ(q), a contradiction. !

Equilibria and Optimality
It is important to note here that, in terms of the average latencies

ωi(x) = ρ−1
i

∑i

α
xiαωiα(x), (9)

the optimal traffic distributions which minimize the aggregate delay
ω(x) =

∑
i ρiωi(x) coincide with the Wardrop equilibria of a suit-

ably modified game. This was first noted in [7]: just as Wardrop
equilibria occur at the minimum of the Rosenthal potential, so can
one obtain the minimum of the aggregate latency ω by looking at
the Wardrop equilibria of an associated congestion model. More
precisely, the only change that needs to be made is to consider the
“marginal” latency functions φ∗r (yr) = φr(yr) + yrφ′r(yr) – see also
[4, 5]. Therefore, to study these “socially optimal” flows, we sim-
ply have to redress our analysis to fit these “marginal latencies”
instead (see also Section 5 for more details).

3. DETERMINISTIC EVOLUTION
Unfortunately, locating the Wardrop equilibria of a network is

a relatively arduous process which entails a good deal of global
calculations (namely, the minimization of a nonlinear convex func-
tional with exponentially many variables over a convex polytope).
Since such calculations exceed the deductive capabilities of indi-
vidual users (especially if they do not have access to global infor-
mation), we will examine whether there are simple learning schemes
which allow users to reach an equilibrium in an efficient manner,
without having to rely on centralized computations.

3.1 The Replicator Dynamics
A most natural choice for such a learning scheme is the follow-

ing: the i-th user contrasts the delay ωiα(x) that he observes along
the path α ∈ Ai to his average delay ωi(x) = ρ−1

i
∑i
α xiαωiα(x),

and then increases or decreases the amount of traffic xiα routed via
α ∈ Ai proportionately to this difference. In continuous time, this
leads to the replicator equation:

dxiα

dt
= xiα (ωi(x) − ωiα(x)) . (10)

Alternatively, if players learn at different rates λi > 0 as a re-
sult of varied stimulus-response characteristics, we obtain the rate-
adjusted dynamics:

dxiα

dt
= λi xiα (ωi(x) − ωiα(x)) (11)

(naturally, the uniform case (10) is recovered when all players learn
at the “standard” rate λi = 1). Interestingly enough, these learning
rates can also be viewed as (player-specific) inverse temperatures:
in high temperatures (small λi), the differences between routes are
toned down and players evolve along the slow time-scales λit; at
the other end of the spectrum, if λi → ∞, equation (11) “freezes”
instead to a rigid (and myopic) best-reply process [18, 21].

At any rate, we see that this equation is in perfect harmony with
our “local information” mantra because users do not need to know
the delays along paths that they do not employ – the replicator vec-
tor field vanishes when xiα = 0. Thus, users that evolve according
to (10) are oblivious to their surroundings, even to the existence of
other users: they simply use (10) to respond to the stimuli ωiα(x) in
the hope of minimizing their delays.

3.2 Entropy and Rationality
As is well-known, Wardrop equilibria are rest points of (11): if q

is Wardrop, the characterization (5′) gives ωiα(q) = ωi(q) whenever
xiα > 0. However, the same holds for all flows q′ which exhibit



equal latencies along the paths in their support, and these flows are
not necessarily Wardrop (in the terminology of [9], this means that
the replicator dynamics are “complacent”). Consequently, the issue
at hand is whether or not the replicator dynamics manage to single
out Wardrop equilibria among other stationary states.

A key role in this question is played by the relative entropy (also
known as the Kullback-Leibler divergence):

Hq(x) ≡ dKL(q, x) =
∑

α∈supp(q)

qiα log
qiα

xiα
(12)

where the sum is over the support of q: supp(q) ≡ {α : qiα >
0}. The significance of the relative entropy function lies in that it
measures distance in probability space. Even more importantly, an
easy calculation shows that its time-derivative Ḣq(x) is just:

Ḣq(x) = −
∑

i,α
qiα (ωi(x) − ωiα(x)) ≡ −Lq(x), (13)

where we have set Lq(x) ≡ ∑i
α qiα(ωi(x) − ωiα(x)).

This last quantity will be very important to our analysis, so Lq(x)
will be called the evolutionary index of x w.r.t. q, on account of the
fact that q is evolutionarily stable (in the sense of [22]) if and only
if Lq(x) > 0 near q.1 The properties of Lq will be discussed at length
in Appendix A where, among others, we establish the crucial link
with the game’s potential F(x) = Φ(P(x)):

Lq(x) ≥ F(x) − F(q) ≥ 0. (14)

First off, this inequality reveals that q is weakly evolutionarily
stable and, in fact, strictly so if Q is irreducible (otherwise the net-
work’s degenerate directions are evolutionarily neutral).2 Secondly
(and more importantly from a dynamical standpoint), it shows that
the relative entropy is a (semi-definite) Lyapunov function for the
replicator dynamics (10). In view of this, it would be tempting to
infer that the replicator dynamics converge to Wardrop equilibrium,
but, unfortunately, counterexamples abound where a semi-definite
Lyapunov function is not enough to guarantee convergence to a
point by itself. Be that as it may, there is much more at work in
(10) than a single semi-definite Lyapunov function: there exists a
whole family of such functions, one for each Wardrop flow q ∈ ∆.
So, undettered by potential degeneracies, we show in appendix B
that the dynamics (10) really do converge to an equilibrium point:

Theorem 7. Every interior solution trajectory x(t) of the replicator
dynamics (11) converges to a Wardrop equilibrium; in particular, if
the network Q is irreducible, x(t) converges to the network’s (nec-
essarily) unique equilibrium point.

Remark. In continuous potential games, the replicator dynamics
(10) are “complacent” because their rest points include but do not
coincide with the network’s Wardrop set [9]. As a result, Sand-
holm’s work only ensures that Wardrop equilibria are Lyapunov
stable. To the best of our knowledge, the stronger asymptotic prop-
erties of Theorem 7 were first suggested in [10], but, in networks
with more than one user (the “multi-commodity” case), the authors
implicitly rely on the network’s irreducibility.3 If this is not the
1In multi-population settings such our own, there is no consensus
among game theorists on how to define evolutionary stability. Tay-
lor’s definition [22] is the middle (and most useful in terms of appli-
cations) road between the stronger definition of [23] and the weaker
one of [24].
2Evolutionary stability was also noted in [10] but the important
distinction between weak and strong stability was missed, again
because of potential degeneracies.
3Specifically, their claim that the proof of Proposition 2 in [10]
“covers the multi-commodity case” is false, because their asser-

case, Ḣq(x) is only positive semi-definite and their approach breaks
down because Wardrop equilibria are only neutrally stable – this is
also the problem with Corrolary 5.1 in [9].

3.3 Rate of Convergence
Of course, in order for the replicator dynamics to constitute a rel-

evant learning scheme from an applicational perspective, the con-
vergence to equilibrium must occur at a timely fashion. Theorem 7
is moot on this point, but as we prove in Appendix B, the conver-
gence is, in fact, remarkably fast:

Theorem 8. Let x(t) be an interior solution orbit of the replica-
tor dynamics (10), and let q = limt→∞ x(t) be its (well-defined by
Theorem 7) ω-limit. Then:

Hq(x(t)) ≤ h0e−ct, (15)

where h0 = Hq(x(0)) and c is a positive constant. In other words,
the replicator dynamics hit an ε-neighborhood of a Wardrop equi-
librium in time which is at most of order O(log(1/ε)).

In particular:

1. If q is strict, say q =
∑

i ρiei,0, and we set ∆ωi = min
µ"0
{ωiµ(q)−

ωi,0(q)}, then c = h−1
0 mini

{
ρi

(
1 − e−h0/ρi

)
∆ωi

}
.

2. If q ∈ Int(∆) and the network Q is irreducible, then c = 1
2

rζ2c
hc

,
where r is the minimum eigenvalue of the Hessian of F over
∆, hc ≥ h0 is a constant and ζ2

c = minx{‖x−q‖2 : Hq(x) = hc}.

Remark 1. Even though we estimate the asymptotic convergence
rate c for two special cases (strict equilibria and interior equilibria
of irreducible networks), it should be stressed that the exponential
bound (15) is valid for any congestion model with strictly increas-
ing latency functions, whether the network is irreducible or not.
The only difference in that case is that the expressions for c be-
come more complicated (see Appendix B for details), so we opted
to present only the two most representative cases.

Remark 2. It is important to note that the dependence of c on the
various parameters of the network also allows us to express the
speed of convergence in terms of whichever parameter we wish to
study. For example, in the strict equilibrium case, we see that the
convergence time is of order O(1/∆ω) in the payoff differences ∆ωi
or, in the interior case, of order O(1/r) in the minimum eigenvalue
r of the game’s Hessian (which reflects the network’s latencies).
In this way, (15) can be used to obtain a number of very useful
estimates on the equilibration time of the dynamics (10).

Remark 3. In comparing Theorem 8 with the O(1/ε3) bound of
[10], one should bear in mind that hitting an ε-neighborhood of
an equilibrium is not the same as hitting an ε-approximate equilib-
rium. Of course, the two notions are closely related, but the precise
relation between them depends on the character of the equilibrium
in question. At any rate, since payoffs are approximately linear near
strict equilibria while they grow quadratically near (isolated) inte-
rior equilibria, we see that the logarithmic bound of (15) represents
a significant improvement over the polynomial bounds of [10].

Finally, it should be mentioned here that the lower bound O(1/ε)
for the convergence time that can be found in [10] does not apply
in our case because it concerns constant latency functions (and ε-
dependent to boot).

tion that different flow profiles carry edges with different loads only
holds in irreducible networks.



4. THE ADVENT OF STOCHASTICITY
Going back to our original discussion on learning, we see that the

users’ evolution hinges on the feedback that they receive about their
choices, namely the delaysωiα(x) that they record. We have already
noted that this information is based on actual observations, but this
does not necessarily mean that it is also accurate as well. For in-
stance, the interference of nature with the game (manifesting e.g.
as packet drops which lead to retransmissions that perturb the load
on a link), or imperfect estimates of the packets’ round-trip times
might perturb this information considerably. Additionally, it is im-
portant to remember that the latency functions ωiα only represent
the users’ expected delays in queueing theory, so the delays that
users actually observe will fluctuate randomly around their average
latencies, and this could negatively affect the rationality properties
of our replicator learning scheme.

4.1 Stochastic Replicator Dynamics
Our goal here will be to determine the behavior of the replicator

dynamics under stochastic perturbations of the kind outlined above.
To that end, write the delay that users experience along the edge r ∈
E as φ̂r = φr + ηr where ηr denotes the perturbation process. Then,
the latency ω̂iα along α ∈ Ai will just be ω̂iα = ωiα + ηiα, where,
in obvious notation, ηiα =

∑
α Pi

rαηr. In this way, the replicator
dynamics (10) become:

dxiα

dt
= xiα (ω̂i − ω̂iα) = xiα (ωi − ωiα) + xiα(ηi − ηiα) (16)

where ω̂i = ρ−1
i
∑i
β xiβω̂iβ and ηi = ρ−1

i
∑i
β xiβηiβ.

The exact form of the perturbations ηr clearly depends on the
situation at hand, but since we are interested in stochastic fluctua-
tions around the average latencies ωiα, it is reasonable to take these
perturbations to be a driftless ergodic process which does not bias
users towards one direction or another. We will thus rewrite (16) as
a stochastic differential equation:

dXiα = Xiα [ωi(X) − ωiα(X)] dt+Xiα

[
dUiα − 1

ρi

∑i

β
Xiβ dUiβ

]
(17)

where dUiα is the total noise along the path α ∈ Ai:

dUiα =
∑

r∈α
σr dWr =

∑
r

Pi
rασr dWr (18)

and W(t) =
∑

r Wr(t)εr is a Wiener process inRE , the space spanned
by the edges E of the network. Similarly, if players learn at different
rates λi, we get:

dXiα = λiXiα [ωi(X) − ωiα(X)] + λiXiα

[
dUiα − ρ−1

i

∑i

β
Xiβ dUiβ

]

= λibiα(X)dt + λi

∑i

β
ci,αβ(X) dUiβ (19)

where b and c are the drift and diffusion coefficients of (17).

Remark 1. The rate-adjusted equation (19) will be our stochastic
version of the replicator dynamics and, as such, the noise coeffi-
cients σr warrant some discussion. Indeed, even though we have
written them in a form that suggests they are constant, they need
not be so: after all, the intensity of the noise on an edge might well
depend on the edge loads Yr =

∑
α PrαXα. On that account, we will

only assume that these coefficients are essentially bounded func-
tions of the loads y. Nonetheless, in an effort to reduce notational
clutter, we will not indicate this dependence explicitly; instead, we
simply remark here that our results continue to hold if we replace
σr with the worst-case scenario σr ↔ ess supy σr(y).

Remark 2. This last remark also highlights the generality of the
stochastic replicator equation (17). Indeed, if the noise coefficients

σiα depend on the state of the process X(t), it is not hard to see that
the the diffusion term of (17) represents the most general diffusion
term that respects the simplicial structure of the strategy space ∆.
In this sense, we lose little generality by restricting ourselves to
Wiener-type perturbation processes.4

It is also important to compare (19) to other stochastic incarna-
tions of the replicator dynamics, namely the “aggregate shocks”
version of [13–16] and the “exponential learning” approach of [17,
18]. In the case of the former, one perturbs the replicator equation
(10) by accounting for the (stochastic) interference of nature with
a species’ growth rate and obtains [13]:

dXiα = Xiα (uiα(X) − ui(X)) dt −
(
σ2

iαXiα −
∑i

β
σ2

iβXiβ

)
dt

+ Xiα

[
σiα dWiα −

∑i

β
σiβXiβ dWiβ

]
, (20)

where W =
∑

i,αWiαeiα is a Wiener process in
∏

i R
Ai .

By comparison, in the “exponential learning” case it is assumed
that the players of a Nash game employ a learning scheme akin to
logistic fictitious play [25]. However, if the information that players
have is imperfect, the errors propagate to their learning curves and
instead lead to the stochastic dynamics:

dXiα = Xiα [(uiα(X) − ui(X))] dt + Xiα

[
σiαdWiα −

∑i

β
σiβXiβdWiβ

]

+ 1
2 Xiα

[
σ2

iα(1 − 2Xiα) −
∑i

β
σ2

iβXiβ(1 − 2Xiβ)
]

dt. (21)

In light of the above, there are two notable traits of (19) that set
it apart from its other stochastic versions. First, the drift of (19)
coincides with the deterministic replicator dynamics (11) whereas
the drifts of (20) and (21) do not. Secondly, the martingales U that
appear in (19) are not uncorrelated components of some Wiener
process (as is the case for both (20) and (21)), but, depending on
whether the paths α, β ∈ A have edges in common or not, the pro-
cesses Uα,Uβ might be highly correlated or not at all.

To make this more precise, recall that the Wiener differentials
dWr are orthogonal: dWr · dWs = d[Wr,Ws] = δrs dt. In its turn,
this implies that the stochastic differentials dUα, dUβ satisfy:

dUα · dUβ =
(∑

r
Prασr dWr

)
·
(∑

s
Psβσs dWs

)
(22)

=
∑

r,s
PrαPsβσrσsδrs dt =

∑
r∈αβ
σ2

r dt = σ2
αβ dt,

where σ2
αβ =

∑
r PrαPrβσ2

r is the variance of the noise along the
intersection αβ ≡ α ∩ β of the paths α, β ∈ A. We thus see that the
processes Uα and Uβ are uncorrelated iff the paths α, β ∈ A have
no common edges. At the other extreme, we have:

(dUα)2 =
∑

r∈α
σ2

r dt = σ2
α dt (23)

where σ2
α ≡ σ2

αα =
∑

r Prασ2
r measures the intensity of the noise on

the route α ∈ A. These expressions will be key to our analysis and
we will make liberal use of them in the rest of our paper.

4.2 Stochastic Fluctuations and Rationality
Our goal in this section will be to explore the rationality prop-

erties of the stochastic replicator dynamics (19). Similarly to the

4Recall also that a Brownian motion with drift is the most general
Lévy process with no jumps, so the real limitation of the dynamics
(17) is that they cannot account for catastrophic events (such as a
discontinuous drop in the capacity of a link).



deterministic setting, our main tool will be the (rate-adjusted) rela-
tive entropy:

Hq(x; λ) =
∑

i

λ−1
i

i∑

α

qiα log (qiα/xiα) (24)

which we will study with the help of the generator L of the diffu-
sion (19). To that end, recall that the generator L of the Itô diffu-
sion:

dXα(t) = µα(X(t)) dt +
∑
β
σαβ(X(t)) dWβ(t), (25)

where W is a Wiener process, is just the differential operator:

L =
∑
α
µα(x)

∂

∂xα
+

1
2

∑
α,β

(
σ(x)σT (x)

)
αβ

∂2

∂xα∂xβ
(26)

(for a comprehensive account, consult the excellent book [26]). In
this manner, if f is sufficiently smooth (C2 suffices), L f captures
the drift of the process f (X(t)):

d f (X(t)) = L f (X(t)) dt +
∑
α,β

∂ f
∂xα

∣∣∣∣∣
X(t)
σαβ(X(t)) dWβ(t). (27)

Of course, in the case of the diffusion (19), the martingales U are
not the components of a Wiener process, so (27) cannot be applied
right off the shelf. However, a straightforward application of Itô’s
lemma (see appendix C for this section’s proofs) yields:

Lemma 9. Let L be the generator of (19). Then, for any q ∈ ∆:

LHq(x; λ) = −Lq(x) +
1
2

∑
i

λi

ρi

∑i

β,γ
σ2
βγ(xiβ − qiβ)(xiγ − qiγ)

+
1
2

∑
i

λi

ρi

∑i

β,γ
σ2
βγqiβ(ρiδβγ − qiγ), (28)

where, as before, Lq(x) =
∑

iα(xiα − qiα)ωiα(x).

Based on this lemma, we see that LHq (that is, the “average”
evolution of Hq(X(t))) is actually positive in a neighborhood of an
interior equilibrium q. As a result, unconditional convergence to
Wardrop equilibrium appears to be a “bridge too far” in stochastic
environments, especially when the equilibrium in question is not
pure – after all, mixed equilibria are not even traps (stationary states
with probability 1) of (19). So, instead of asking for almost-sure
convergence or the like, we will concentrate on a “stochasticized”
version of “convergence in the mean” by looking at the long-time
averages of the replicator dynamics (10).

Before embarking on this analysis, a little more groundwork is
required. First, we introduce for convenience the aggregates:

ρ =
∑

i
ρi, (29a)

σ2 =
∑

r
σ2

r , (29b)

λ =
∑

i

ρi

ρ
λi. (29c)

Secondly, it will be more practical to measure distances from q with
a variant of the L1 norm. Indeed, let S q ≡ {z ∈ Tq∆ : q+ z ∈ bd(∆)}
be the set of tangent vectors z ∈ Z which connect q ∈ Int(∆) to the
boundary bd(∆) of ∆. Since ∆ is convex, any x ∈ ∆ can be uniquely
expressed as x = q + θz for some z ∈ S q and some θ ∈ [0, 1], so we
define the projective distance Θq(x) of x from q to be:

Θq(x) = θ ⇔ x = q + θz for some z ∈ S q and 0 ≤ θ ≤ 1. (30)

Of course, Θq is not a bona fide distance function by itself, but it
closely resembles the L1 norm: the “projective balls” Bθ = {x :

Θq(x) ≤ θ} are rescaled copies of ∆ (S q is the “unit sphere” in this
picture). In a similar vein, we define the essence of q ∈ ∆ to be:

ess(q) = ρ−1 min
{‖P(z)‖ : z ∈ S q

}
, (31)

where ‖ ·‖ denotes the ordinary Euclidean norm and the factor of
ρ was included for scaling purposes. Comparably to ind(Q), ess(q)
measures degeneracy (or rather, the lack thereof): ess(q) = 0 only
if some direction z ∈ S q is null for P, i.e. only if Q is reducible.

We are finally in a position to state and prove:

Theorem 10. Let q ∈ Int(∆) be an interior equilibrium of an ir-
reducible congestion model C, and assume that the users’ learning
rates satisfy the condition:

λ <
4
5

mρκ2

σ2 ,where m = inf{φ′r(yr) :} and κ = ess(q). (32)

Then, for any interior initial condition X(0) = x ∈ Int(∆), the time
averages of X(t) are concentrated in a neighborhood of q; specifi-
cally, if Θq(·) denotes the projective distance (30) from q, then:

Ex

[
1
t

∫ t

0
Θ2

q(X(s)) ds
]
≤ θ2λ+O (1/t) , where θ2λ =

1
4

(
mρκ2

λσ2 − 1
)−1

.

Accordingly, the transition probabilities of X(t) converge in total
variation to an invariant probability measure π on ∆ which con-
centrates mass around q. In particular, if Bθ = {x ∈ ∆ : Θq(x) ≤ θ}
is a “projective ball” around q, we have:

π(Bθ) ≥ 1 − θ2λ/θ2. (33)

Since these last results constitute the stochastic rationality prop-
erties of the replicator dynamics, a few remarks are in order:
Remark 1 (Convergence Speed). Since the invariant measure which
corresponds to the stationary distribution of the stochastic replica-
tor dynamics is concentrated around a “projective ball” of radius θλ
around q, the best we can do in order to estimate the convergence
speed of the stochastic replicator dynamics is to calculate the aver-
age time it takes to hit a neighborhood of this ball. In Appendix C
we show that if Kε is an ε-neighborhood of this “projective ball”,
then the corresponding expected hitting time Ex[τε] is bounded by:

Ex[τε] ≤
Hq(x; λ)
ε

. (34)

To all intents and purposes, this is the analogue of the conver-
gence time estimate of Theorem 8: we see that the replicator trajec-
tories hit an ε-neighborhood of the projective ball where the long-
term average of the stochastic dynamics is concentrated in time
which is at most of order O(1/ε). In other words, the effects of
noise can be summarized as follows:

1. They “blur” the dynamics’ convergence: only the time-average
of the stochastic dynamics is concentrated in a projective ball
around an evolutionarily stable flow profile – see Figure 2.

2. The equilibration time scale of the dynamics jumps up to
O(1/ε) from O(log(1/ε)) in the deterministic setting.

Remark 2 (Degeneracy). The irreducibility assumption is actually
quite important: it appears both in the “slow-learning” condition
(32) (recall that ess(q) = 0 if q is an interior point of a reducible
network) and also in the proof of Theorem 10 (Appendix C). This
shows that the stochastic dynamics (19) are not oblivious to degen-
erate degrees of freedom, in stark contrast with the deterministic
case (Theorems 7 and 8).

Regardless, an analogue of Theorem 10 should still hold for re-
ducible networks if we replace q with the entire (affine) set ∆∗.
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Figure 2: Learning in the networks of Figure 1 with M/M/1 latency functions φr(yr) = (µr − yr)−1 and arbitrarily chosen capacities
µr. The shades of gray represent the stationary distribution of (19) (obtained by numerical simulations) and the flow lines (blue)
represent the solution trajectories of (11) – in (b) they are actually projections because there are three users.

More precisely, we conjecture that under a suitably modified learn-
ing condition, the transition probabilities of X(t) converge to an in-
variant distribution which concentrates mass around ∆∗ (Fig. 2(b)).
One way to prove this would be to find a suitable way to “quotient
out” ker Q but, since (19) is not invariant over the degenerate fibres
x + ker Q, x ∈ ∆, we have not yet been able to do so.

Remark 3 (Sharpness). We should also note here that the bounds
we obtained are not the sharpest possible ones. For example, the
learning condition (32) can be tightened (by quite a bit actually!)
and the assumption that φ′r > 0 can be dropped. In that case how-
ever, the corresponding expressions are significantly more compli-
cated, so we have opted to focus on the simpler estimates.

5. DISCUSSION
In this paper, we studied the evolution of traffic flows in net-

works whose users try to minimize their latencies by employing a
learning scheme based on the replicator dynamics of evolutionary
game theory. The stable states of these dynamics coincide with
the network’s Wardrop equilibria and we showed that these points
constitute an affine polytope whose dimension is determined by the
network’s degeneracy index, an important new notion which mea-
sures the linear dependence of the users’ paths.

When the information that they observe is perfect (determinis-
tic), we showed that the replicator dynamics converge to a Wardrop
equilibrium at an exponential rate: users get within ε of an equi-
librium in time of order O(log(1/ε)). However, if the network
latencies are subject to random perturbations, this convergence is
“blurred”: in networks with no degeneracy, it is the time average of
the replicator dynamics which is concentrated in a ball around the
network’s (evolutionarily stable) equilibrium point; furthermore,
the equilibration time scale of the dynamics is also affected by the
noise and jumps up to order O(1/ε).

These results also carry significant applicational potential from
an optimization point of view as well. Indeed, we have already
noted that the traffic flows which minimize the aggregate latency
function ω(x) =

∑
i ρiωi(x) in a network are precisely the Wardrop

equilibria of a modified congestion model which is defined over the

same network and whose delay functions are given by the “marginal
latencies” φ∗r (yr) = φr(yr) + yrφ′r(yr). Hence, if we set ω∗iα(x) =∑i
α Pi

rαφ
∗
r (yr) and use ω∗iα in place of ωiα in the replicator dynam-

ics (11) and (19), our analysis instead yields convergence to the
optimal traffic allocation in a network.

The only limiting factor in this optimization approach is that the
marginal costs φ∗r (yr) do not really constitute “local information”
that users can acquire simply by routing their traffic and recording
the delays that they experience. However, the missing components
yrφ′r(yr) can easily be measured by observers monitoring the edges
of the network and could be subsequently publicized to all users
that employ the edge r ∈ E. Consequently, if the adminstrators
of a network wish users to figure out the optimal traffic allocation
on their own, they simply have to go the (small) extra distance of
providing such monitors on the network’s links.

Important extensions of this work include the asymptotic con-
vergence properties of the stochastic replicator dynamics with re-
spect to strict equilibria; in fact, it can be shown that strict equilib-
ria are always stochastically stable, irrespective of the level of the
noise. However, of more immediate interest is the extension of our
stochastic results to reducible networks: as evidenced by Figure
2(b), it is plausible to expect our results to extend to the reducible
case as well, but due to the inherent complications of this analysis,
we prefer to leave it as a future project.

APPENDIX
A. THE EVOLUTIONARY INDEX

This appendix is devoted to the evolutionary index:

Lq(x) ≡
∑

i,α
(xiα − qiα)ωiα(x) =

∑
r
(yr − y∗r )φr(yr) ≡ Λ(y). (35)

The first important property of the evolutionary index is obtained
by a simple integration by parts:
∑

r

∫ yr

y∗r
φr(y) dy =

∑
r
(yr − y∗r )φr(yr) −

∑
r

∫ yr

y∗r
yφ′r(y) dy.

Since the latencies φr are increasing, this expression immediately



yields the estimate (14). In the special case q ∈ Int(∆) we can
actually refine this bound to a quadratic one:

Lemma 11. Let q ∈ Int(∆) be an interior Wardrop equilibrium and
let z ∈ Tq∆. Then, for all θ ≥ 0 such that q + θz ∈ ∆, we have:

Lq(q+ θz) ≥ 1
2 m‖P(z)‖2θ2, where m = inf{φ′r(yr) : r ∈ E, y ∈ P(∆)}.

Proof. Let f (θ) = F(q + θz). A simple differentiation then yields
f ′(0) =

∑
i
∑i
α ziαωiα(q) =

∑
i
∑i
α ziαωi(q) = 0, the second equality

following from the fact that q is an interior equilibrium, and the last
one being a consequence of z ∈ Tq∆ (so that

∑i
α ziα = 0). On the

other hand, we also have:

f ′′(θ) =
d2

dθ2
∑

r
Φr(y∗r + θwr) =

∑
r
w2

rφ
′
r(y
∗
r + θwr). (36)

Clearly, since the set P(∆) of load profiles y is compact and the
φ′r(yr) > 0, we will also have m = inf{φ′r(yr) : y ∈ P(∆), r ∈ E} > 0.
This gives f (θ) ≥ 1

2 mθ2, and a first order Taylor expansion with
Lagrange remainder easily completes the proof. !

B. DETERMINISTIC CONVERGENCE
In this appendix, our goal is to prove the deterministic conver-

gence results of Section 3. We begin with:

Proof of Theorem 7. Let ψ(x, t) be the evolution function of the dy-
namics (11) which describes the solution trajectory that starts at x
at time t = 0. Clearly, ψ satisfies the consistency condition:

ψ(x, t + s) = ψ(ψ(x, t), s) for all t, s ≥ 0 and for all x ∈ ∆. (37)

So, fix the initial condition x ∈ Int(∆) and let x(t) = ψ(x, t) be
the corresponding solution orbit. If q ∈ ∆∗ is Wardop, then we
have seen that the function Vq(t) ≡ Hq(ψ(x, t)) is decreasing and
will converge to some m ≥ 0 as t → ∞. It thus follows that x(t)
converges to the level set H−1

q (m).
Suppose now that there exists some increasing sequence of times

tn → ∞ such that xn ≡ x(tn) does not converge to ∆∗. By compact-
ness of ∆, we may then assume that xn = ψ(x, tn) converges to some
x∗ # ∆∗ (but necessarily in H−1

q (m)). Hence, for any t > 0:

Hq(ψ(x, tn + t)) =Hq(ψ(ψ(x, tn), t))→ Hq(ψ(x∗, t)) < Hq(x∗) = m,

where the (strict) inequality stems from the fact that Ḣq(x) < 0
outside ∆∗. On the other hand, Hq(ψ(x, tn + t)) = Vq(tn + t) → m, a
contradiction.

Since tn was arbitrary, this shows that x(t) converges to the set ∆∗.
So, let q′ be a limit point of x(t) with x(t′n)→ q′ for some sequence
of times t′n → ∞. Then, Vq′ (t′n) = Hq′ (x(t′n)) will converge to zero
and, with Vq′ decreasing, we will have limt→∞ Vq′ (t) = 0 as well.
Seeing as Hq′ only vanishes at q′, we conclude that x(t)→ q′. !

Proof of Theorem 8. The basic idea of the proof is to establish the
inequality Lq(x(t)) ≥ cHq(x(t)) for some c > 0; with Ḣq(x) =
−Lq(x), our claim will then follow from Grönwall’s lemma. Also,
we will only present the case where x(t) converges to an interior
equilibrium q ∈ Int(∆) – the strict case is analogous (but easier)
and thus omitted for space considerations.

We first show that Hq(x(t)) ≤ hc
ζ2c
‖x(t)−q‖2 for some constant hc ≥

h0 (to be determined), and for ζ2
c = minx{‖x − q‖2 : Hq(x) = hc}.

Though a bit tedious, it is not too hard to show that for any a > 1
and z ∈ S q (the “projective” unit sphere around q), the equation
Hq(q + θz) = a

2

(∑
k,α z2

kα/qkα

)
θ2 has a unique positive root θa ≡

θa(z) such that Hq(q + θz) ≤ ha(z)θ2/θa(z)2 iff θ ≤ θa(z) (where, in
obvious notation, ha(z) = Hq(q + θaz). So, if ha = maxz∈S q {ha(z)}

and hc = max{h0, ha}, the equation Hq(q + θz) = hc will also have
a unique positive root θc ≡ θc(z) so that Hq(q + θz) ≤ hcθ2/θ2c iff
θ ≤ θc.

Now, write x(t) in the projective form x(t) = q + θ(t)z(t); we
then claim that θ(t) ≤ θc(z(t)) for all t ≥ 0. Indeed, if θ(t) ever
exceeded θc(t), we would also have Hq(x(t)) > hc ≥ h0 = Hq(x(0)),
a contradiction since Ḣq ≤ 0. Thus, for all t ≥ 0, we will have:

Hq(x(t)) ≤ hc
θ2(t)
θ2c (z(t))

= hc
‖θ(t)z(t)‖2
‖θc(t)z(t)‖2 ≤

hc

ζ2
c
‖x(t) − q‖2. (38)

Now, let K = ker Q be the space of degenerate directions of the
network, and let K⊥ be its orthogonal complement in the tangent
space Z ≡ Tq∆. Then, if we decompose z ∈ Z as z = z∥ + z⊥, it can
be shown that:

F(q + θz) − F(q) ≥ 1
2 rθ2‖z‖2⊥ (39)

where r is the minimum of the (restricted) Rayleigh quotient Rx(z) =
〈z,Mxz〉

/‖z‖2 over x ∈ ∆ and Mx is the Hessian of F(x) restricted
over z ∈ K⊥. This shows that Lq(x(t)) ≥ 1

2 r‖x(t) − q‖2⊥, and, noting
that the replicator vector field is (a.s.) transversal to the equilibrial
set ∆∗, we will have:

Lq(x(t)) ≥ k
2

r2‖x(t) − q‖2 (40)

for some k ≤ 1 (which is equal to 1 if the network is irreducible).
The theorem then follows by combining (38) and (40). !

C. STOCHASTIC CONSIDERATIONS
This appendix is devoted to the calculations that are hidden under

the hood of Section 4. We begin with:

Proof of Lemma 9. Let Vq(t) = Hq(X(t); λ). We then have:

dVq =
∑

i,α

∂Hq

∂xiα
dXiα +

1
2

∑
i,α

∑
j,β

∂2Hq

∂xiα∂x jβ
(dXiα)·

(
dXjβ

)

= −
∑

i,α

1
λi

qiα

xiα
dXiα +

1
2

∑
i,α

1
λi

qiα

x2
iα

(dXiα)2 . (41)

However, with X(t) being as in (19), we readily obtain:

(dXiα)2 = λ2
i X2

iα

(
dUiα − ρ−1

i

∑i

β
Xiβ dUiβ

)2

= λ2
i X2

iα

[
σ2

iα −
2
ρi

∑i

β
σ2
αβXiβ +

1
ρ2

i

∑i

β,γ
σ2
βγXiβXiγ

]
dt. (42)

We may thus combine the two equations (41) and (42) into:

dVq = −
∑

i,α
qiα [ωi(X) − ωiα(X)] dt (43)

−
∑

i,α
qiα

[
dUiα − ρ−1

i

∑i

β
Xiβ dUiβ

]

+
1
2

∑
i,α
λiqiα

[
σ2

iα −
2
ρi

∑i

β
σ2
αβXiβ +

1
ρ2

i

∑i

β,γ
σ2
βγXiβXiγ

]
dt.

So, if we focus at a particular i ∈ N, the last term of (43) gives:
∑i

α
qiα

[
σ2

iα −
2
ρi

∑i

β
σ2
αβXiβ +

1
ρ2

i

∑i

β,γ
σ2
βγXiβXiγ

]

=
∑i

α
qiασ

2
iα −

1
ρi

∑i

β,γ
qiβqiγσ

2
βγ

+
1
ρi

[∑i

β,γ
qiβqiγσ

2
βγ − 2

∑i

β,γ
Xiβqiγσ

2
βγ +
∑i

β,γ
XiβXiγσ

2
βγ

]

=
1
ρi

[∑i

β,γ
qiβ(ρiδβγ − qiγ)σ2

βγ +
∑i

β,γ
σ2
βγ(Xiβ − qiβ)(Xiγ − qiγ)

]



and the lemma follows by substituting the last equation into (43)
and keeping only the resulting drift. !

Proof of Theorem 10. As we mentioned before, any x ∈ ∆ may
be (uniquely) written in the “projective” form x = q + θz, where
θ = Θq(x) ∈ [0, 1] is the projective distance of x from q, and z is a
point in the “projective sphere” S q = {z′ ∈ Tq∆ : q + z′ ∈ bd(∆)}.
In this manner, (28) becomes:

−LHq(x; λ) = Lq(q + θz) − 1
2

∑
i

λi

ρi
θ2
∑i

β,γ
σ2
βγziβziγ (44)

− 1
2

∑
i

λi

ρi

∑i

β,γ
σ2
βγqiβ(ρiδβγ − qiγ).

With regards to the first term of (44), Lemma 11 and the defini-
tion (31) of κ yield Lq(q + θz) ≥ 1

2 m‖P(z)‖2θ2 ≥ 1
2 mκ2ρ2θ2. More-

over, the second term of (44) is bounded above:

1
2

∑
i

λi

ρi
θ2
∑i

β,γ
σ2
βγziβziγ ≤

1
2
ρλσ2θ2. (45)

We are thus left to estimate the last term of (44). To that end:
∑i

β,γ
qiβ

(
ρiδβγ − qiγ

)
σ2
βγ =
∑

r
σ2

r yir(ρi − yir) ≤
1
4
ρ2

iσ
2, (46)

where yir is given by (1) and the last inequality stems from the
bound yir(ρi − yir) ≤ 1

4ρ
2
i . Combining all of the above, we then get:

− LHq(x; λ) ≥ 1
2 mκ2ρ2θ2 − 1

2ρλσ
2θ2 − 1

8ρλσ
2 ≡ g(θ). (47)

As a result, if λ < 4
5λ0 where λ0 =

mρκ2

σ2 , it is easy to see that the
RHS of (47) will be increasing for 0 ≤ θ ≤ 1. Moreover, it will
also be positive for θλ < θ ≤ 1, where θλ is the positive root of g
(that is, θλ = 1

2 (λ0/λ − 1)−1/2). So, pick some positive a < g(1) =
1
2ρσ

2
(
λ0 − 5

4λ
)

and consider the set Ka = {q+θz : z ∈ S q, g(θ) ≤ a}.
By construction, Ka is a compact neighborhood of q which does not
intersect bd(∆) and, by (47), we have LHq(x; λ) ≤ −a outside Ka.
Therefore, if τa ≡ inf{t : X(t) ∈ Ka}, Theorem 5.3 in [27] yields:

Ex[τa] ≤ Hq(x; λ)
a

< ∞ (48)

for every interior initial condition X(0) = x ∈ Int(∆) – this is also
the source of the estimate (34).

Inspired by a trick of [15], let us consider the transformed pro-
cess Y(t) = Ψ(X(t)) whereΨiµ(x) = log xiµ/xi,0, µ ∈ A∗i ≡ Ai \{αi,0}.
With ∂Ψiµ

∂xiµ
= 1/xiµ and ∂Ψiµ

∂xi,0
= −1/xi,0, Itô’s formula gives:

dYiµ = LΨiµ(X(t)) dt+ dUiµ− dUi,0 = LΨiµ(X(t)) dt+
∑

r Qi
rµσr dWr

where Qi
rµ = Pi

rµ−Pi
r,0 are the components of the degeneracy matrix

of Q in the basis ẽiµ = eiµ − ei,0 of Tq∆ – see also Section 2.1.
We now claim that the generator of Y is elliptic. Indeed, if we

drop the user index i for convenience and set Aµr = Qrµσr, µ ∈∐
i A
∗
i , it suffices to show that the matrix AAT is positive-definite.

Sure enough, for any tangent vector z =
∑
µ zµẽµ ∈ Tq∆, we get:

〈Az, Az〉 = ∑µ,ν
∑

r QrµQrνσ2
r zµzν =

∑
r σ

2
r w2

r , (49)

where w = Q(z). Since Q is irreducible, we will have w " 0, and in
view of (49) above, this proves our assertion.

We have thus shown that the process Y(t) hits a compact neigh-
borhood of Ψ(q) in finite time (on average), and also that the gener-
ator of Y is elliptic. From Lemma 3.4 in [28], it then follows that Y
is recurrent, and since Ψ is invertible in Int(∆), the same must hold
for X(t) as well. In a similar fashion, these criteria also ensure that
the transition probabilities of the diffusion X(t) converge in total

variation to an invariant probability measure π on ∆, thus proving
the first part of our theorem.

To obtain the time-average estimate of the theorem, note that
Dynkin’s formula [26, Theorem 7.4.1] applied to (47) yields:

Ex

[
Hq(X(t); λ)

]
= Hq(x; λ) + Ex

[∫ t
0 LHq(X(s); λ) ds

]

≤ Hq(x; λ) − 1
2ρσ

2(λ0 − λ) Ex

[∫ t
0 Θ

2
q(X(s)) ds

]
+ 1

8ρλσ
2t,

and with Ex[Hq(X(t); λ)] ≥ 0, we easily get:

Ex

[
1
t

∫ t

0
Θ2

q(X(s)) ds
]
≤ θ2λ+

C
t
, where C =

2
ρσ2

Hq(x; λ)
λ0 − λ

. (50)

We are thus left to establish the bound π(Bθ) ≥ 1 − θ2λ/θ2 which
shows that the mass of the invariant measure π is concentrated in
the “projective balls” Bθ. For that, we will use the ergodic property:

π(Bθ) = lim
t→∞

Ex

[
1
t

∫ t

0
χBθ (X(s)) ds

]
, (51)

where χBθ is the indicator function of Bθ. However, withΘ2
q(x)/θ2 ≥

1 outside Bθ by definition, it easily follows that:

Ex

[
1
t

∫ t

0
χBθ (X(s)) ds

]
≥ Ex

[
1
t

∫ t

0

(
1 − Θ2

q(X(s))
/
θ2
)

ds
]

(52)

and the bound (33) follows by letting t → ∞ in (50). !
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