
Submitted to Operations Research
manuscript (Please, provide the manuscript number!)

Robust Power Management
via Learning and Game Design

Zhengyuan Zhou
Department of Electrical Engineering, Stanford University, Stanford, CA 94305, zyzhou@stanford.edu

Panayotis Mertikopoulos
Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, F-38000 Grenoble, France, panayotis.mertikopoulos@imag.fr

Aris L. Moustakas
Department of Physics, University of Athens and Institute of Accelerating Systems and Applications (IASA), Athens, Greece,

arislm@phys.uoa.gr

Nicholas Bambos, Peter Glynn
Department of Management Science and Engineering, Stanford University and Department of Electrical Engineering,

Stanford, CA 94305, bambos@stanford.edu, glynn@stanford.edu

We consider the target-rate power management problem for wireless networks and we propose two simple,

distributed power management schemes that regulate power in a provably robust manner by efficiently

leveraging past information. Both schemes are obtained via a combined approach of learning and “game

design” whereby power management is reformulated as a Nash equilibrium problem for a game with suitably

designed payoff functions, and the networks’ users employ a no-regret learning algorithm to maximize their

individual utility over time. To establish convergence, we focus on the well-known online learning algorithm

called online (lazy) gradient descent (OGD) in a general class of (weighted) monotone games. In this class of

games (which properly includes all concave potential games), we show that multi-agent OGD converges to

the unique Nash equilibrium, even when players only have imperfect/stochastic feedback at their disposal.

In the context of power management in static (deterministic) networks, we show that the designed games

are monotone when the network is feasible in the first place (i.e. when all users can concurrently attain their

target rates). Otherwise, in time-varying (stochastic) networks where channel quality fluctuates ergodically

over time, the designed games are monotone even when the network is only feasible on average (i.e. even

though users may be unable to meet their requirements with positive probability). As a result, the pro-

posed power management algorithms converge almost surely to the joint optimal transmission power when

the network is feasible on average. This comes in stark contrast to existing algorithms (like the seminal

Foschini–Miljanic algorithm and its variants) that may fail to converge altogether.

Key words : power management; online learning; Nash equilibrium; monotone games.

1



Zhou, Mertikopoulos, Moustakas, Bambos and Glynn: Robust Power Management via Learning and Game Design
2 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

1. Introduction

Viewed abstractly, power management (or power control) is a collection of techniques that allows

the users of a wireless network to achieve their performance requirements (e.g. in terms of through-

put) while minimizing the power consumed by their equipment. Thus, given the key part played

by transmitted power in increasing battery life and network capacity, power control has been a

core aspect of network design ever since the early development stages of wireless networks.

In this general context, distributed power management has proven to be the predominant power

management paradigm, and with good reason: centralized coordination is extremely difficult to

achieve in large-scale wireless networks, a single point of failure in a centralized allocator could

have devastating network-wide effects, the communication overhead alone becomes unmanageable

in cellular networks, and the list goes on (Rappaport 2001, Goldsmith 2005). Consequently, con-

siderable effort has been devoted to designing distributed power management algorithms that are

provably capable of attaining various performance guarantees required by the network’s users while

leaving a sufficiently small footprint at the device level.

The problem of distributed power management becomes even more important and challenging

in the exciting era Internet of Things (IoT) (Bradley et al. 2013), which paints the compelling

vision (in part already under way) of embedding uniquely identifiable wireless devices in the world

around us and connecting these devices/sensors to the existing Internet infrastructure to form an

intelligent and coherently functional entity – as in “smart cities” (Deakin 2013), patient monitor-

ing (Byrne and Lim 2007) and digital health (Au-Yeung et al. 2010). Thus, as the exponentially

growing number of wireless communicating “things” has been pushing the entire wireless ecosys-

tem from the low-traffic, low-interference regime to the high-traffic, high-interference limit, the

power management question grows ever more urgent: how can the power of battery-driven (and
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hence energy-constrained) devices be regulated in a distributed, real-time manner so as to achieve

the quality-of-service guarantees using minimum power in the presence of the inherent stochastic

fluctuations of the underlying wireless network?

The current gold standard for power management is the seminal method of Foschini and Mil-

janic (1993), which, owing to its elegance, simplicity and strong convergence properties, is still

widely deployed (in one variant or another). The original Foschini–Miljanic (FM) algorithm was

expanded upon in a series of subsequent works (Mitra 1994, Yates 1996, Ulukus and Yates 1998)

that considered different variants of the problem (e.g. working with maximum power constraints,

allowing devices to asynchronously update their power, etc.). Thereafter, various other objectives

related to power management have been considered in wireless networks (as well as in the closely

related wireline networks), resulting in more sophisticated models and more complex algorithms

addressing issues related to throughput (El Gamal et al. 2006a,b, Seferoglu et al. 2008, Reddy

et al. 2008), fairness (Eryilmaz et al. 2006), delays (Eryilmaz et al. 2008, Altman et al. 2010),

backlog (Bambos et al. 2000, Gitzenis and Bambos 2002, Reddy et al. 2012, Gopalan et al. 2015)

and weighted-sum-of-rates (Candogan et al. 2010, Weeraddana et al. 2012).1

Importantly, most of the existing (distributed) power management/control schemes tend to rely

implicitly only on the previous power iterate when selecting the power for the current iteration

(especially when pertaining to the target-rate power management problem that we consider here).

In some respects, there is good reason to do so: the resulting power control algorithm is simple to

use and implement; it does not need to use up memory to keep track of the entire radiated power

history (a scarce resource in small wireless devices); and, as a pleasant by-product, the algorithm

becomes much easier to analyze theoretically.

Notwithstanding, a crucial and well-known downside to this approach is that such algorithms

tend to be unstable because a single power iterate is the sole power selection criterion. In particular,

despite the various convergence and optimality guarantees observed when the underlying wireless

network is static/slowly-varying (see e.g. Chiang et al. 2008, Tan 2015, and references therein), this
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instability is acutely manifested in time-varying, stochastic networks, especially when the number

of mobile devices is large and/or power control is occasionally infeasible due to device mobility

(a case that is much less studied and understood; cf. Section 2.3 for a detailed discussion). As we

discuss in the rest of this paper, this instability is in some sense the root cause for the lack of both

convergence and optimality results when the network is stochastic and time-varying. Under this

light, the explicit use of all past iterates holds great promise for the overall stability of a power

management policy, as the influence of the last iterate cannot have a dominating effect over the

algorithm’s previous iterates (provided they are utilized in an intelligent, memory-efficient way).

Our aim in this paper is to provide a distributed power control algorithm satisfying the above

desiderata. This task faces two key challenges from a practical perspective: First, such an algorithm

cannot take for granted that each transmitter has access to the power characteristics of all other

transmitters, as such information is typically unavailable in practical scenarios. This dictates that

any given transmitter can only make explicit use of link-specific information such as its signal-to-

interference plus noise ratio (SINR) and/or the total interference and noise at the receiver (i.e.

information that can be sensed by each individual link in the network). Second (and perhaps more

stringently), a transmitter should not be required to store all past information (including past

power, SINR and/or interference measurements) in an explicit fashion. If met, this requirement is

highly desirable for memory-constrained wireless transmitter where such bookkeeping is in general

infeasible – in words, past information must be exploited in an implicit, parsimonious manner.

1.1. Our Contributions and Related Work

Our main contributions are highlighted below in the context of related work on the topic:

1. A Learning and Game Design Approach to Power Management. To tackle the

power management question (in both deterministic and stochastic networks) we map the orig-

inal problem to that of finding the unique Nash equilibrium of a suitably designed continuous

game (i.e. a game with continuous action spaces) and then apply a well-known no-regret learn-

ing algorithm. To streamline the presentation of the results, we start by formally describing
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in Section 3 the two simple and efficient power control algorithms based on dual averaging

(Variants A and B), both of which only require very little operational overhead while leverag-

ing past information in an efficient way. In particular, the information on past power iterates

is represented in the most parsimonious form possible: it takes only a constant amount of

memory independent of the number of time steps involved. In fact, the amount of memory

required is the same as that of the algorithms using only the last power iterates (e.g. FM),

even though the latter do not make explicit use of past power information.

Furthermore, by mapping the proposed power management algorithms to a game-theoretic

learning problem (our second contribution; see below and Section 4), we are able to examine

in depth the properties of the two variant dual averaging algorithms and establish theoretical

guarantees in both deterministic (static) and stochastic (time-varying) environments. More

precisely, in the case of static channels, we show that feasibility of a network directly implies

convergence of dual averaging to the joint optimum transmission power vector (Theorem 6).2

Furthermore (and perhaps most surprisingly), in the stochastic case (where the fluctuating

network is sometimes feasible and sometimes not), we show that convergence to a deterministic

power vector is still guaranteed with probability 1 as long as the network is feasible in the

mean – i.e. even if the network is infeasible with positive probability (Theorem 7).

This last property is particularly appealing because it incorporates elements of both stability

and optimality (and hence robustness): the former because the proposed algorithms converge

almost surely to a fixed constant power vector (despite the persistent, random fluctuations

in the network); the latter because the algorithm’s end state is an optimal solution of the

network’s power management problem with respect to the network’s mean value. This comes

in sharp contrast to the FM algorithm which, when the channel is feasible on average, may

fail to converge altogether – or, at best, only converges in distribution to a power profile that

is not optimal in any way (Zhou et al. 2016).

Importantly, establishing the algorithms’ convergence takes us through a distinct (albeit

related) line of research, namely utility-based models of power management in wireless net-

works (Famolari et al. 1999, Alpcan et al. 2002, 2006, Fan et al. 2006, Menache and Ozdaglar
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2010, Han et al. 2014). This flourishing literature has taken the view that each device is a

self-interested entity with its individual objective depending on how much power it uses as

well as how much power all the other devices use (via the interference that they create). In

this literature, the cost function of each device (as a function of, say, signal-to-interference

ratio) is modeled explicitly and pertains to the utility of each user of that device: in other

words, the resulting game is a priori assumed to model the underlying reality. In contrast, the

“game design” approach that we take in this paper leads to a virtual game that only enters the

problem as a theoretical tool to aid the design of robust power management algorithms (which

are implemented at the device level and are not subject to game-theoretic rationality postu-

lates). Nevertheless, the resulting games do admit a natural interpretation as they effectively

measure the distance betweeen the users’ achieved throughput and their target rates.

The idea of “game design” has been explored before and our approach here is inspired by

the remarkable works of Candogan et al. (2010) and Li and Marden (2013). In more detail,

Candogan et al. (2010) designed a near-potential game for the maximum weighted-sum-of-

rates problem and used best-response dynamics to derive a power control algorithm. Li and

Marden (2013) designed a potential game and used a particular method (called gradient-play)

to derive a distributed optimization algorithm for the network consensus problem. In addition

to considering a different problem altogether (power minimization subject to rate constraints),

our work here differs from the above in several key aspects: First, our game-theoretic analysis

is not limited to potential (or near-potential) games, but it instead applies to all (weighted)

monotone games (cf. Section 4). Second, by focusing on online gradient descent (see below),

our results can also be framed in the context of no-regret learning in games. Finally, to tackle

the stochastic regime, we consider a more general framework with imperfect feedback which is

only accurate up to a bounded-variance error (again, see below). The above elements cannot

be treated with the techniques of Candogan et al. (2010) and/or Li and Marden (2013), leading

us to introduce a new set of tools from stochastic approximation, martingale limit theory and

variational analysis.
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2. Online Gradient Descent and No-Regret Learning in Games. To establish the con-

vergence properties of the proposed power management algorithms, we consider a much more

general framework for no-regret learning in games with continuous action sets and individually

concave (but otherwise unknown) payoff functions. Working at this level of generality achieves

two distinct goals: First, by abstracting away the problem’s functional details, it shows that

distributed power control can be interpreted in a natural way as a multi-agent regret mini-

mization problem (more on this below). Second, it allows us to provide a general convergence

result for no-regret learning in concave games with imperfect first-order, gradient feedback.

As such, our theoretical investigation here falls within the broader inquiry of game-theoretic

learning, an area that stands at the intersection of learning and game theory and that seeks

to answer the following question: what is the evolution of play when every player adopts a no-

regret learning algorithm? In particular, if all players of a repeated game employ an updating

rule that leads to no regret, do their actions converge to a Nash equilibrium of the one-shot

game?

The first (and, to this date, the most widely studied) algorithm for no-regret learning in

online decision processes with convex action spaces is the online gradient descent (OGD)

method pioneered by Zinkevich (2003).3 Up to a multiplicative constant related to the prob-

lem’s dimensionality, the O(
√
T ) regret minimization rate of OGD is well-known to be min-

max optimal (Shalev-Shwartz et al. 2012), so OGD has seen extensive use in online decision

problems. With this in mind, our first key observation is that the proposed power control

algorithms can be seen as OGD schemes for a specific utility function capturing each user’s

power control objective (the “game design” component described above).

The importance of this observation is clear: a no-regret learning algorithm provides a player

with sharp worst-case guarantees, so it is natural to expect that every player will adopt such

an algorithm in selecting their actions in the decision process. On that account, a flourishing

line of research tackling this problem has emerged in the past decade or so. However, most
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of this literature has focused on the convergence of the time-averaged sequence of play x̄t =∑t

k=1 γkx
k/
∑t

k=1 γ
k (where γt is the step-size and xt is the joint action at time t) as opposed

to the actual sequence of actions employed by the players. For instance, in the context of

finite games, it is well-known that if each player employs a no-regret learning algorithm, the

time-averaged sequence of play converges to the game’s Hannan set, also known as the set

of coarse correlated equilibria (Cesa-Bianchi and Lugosi 2006). Refining this result, if each

player plays employs a no-internal-regret learning algorithm (a stronger regret notion), the

time-averaged sequence of play converges to the game’s set of correlated equilibria, a strict

refinement of Hannan-consistent strategies (Cesa-Bianchi and Lugosi 2006). On the other

hand, convergence to Nash equilibrium is, in the words of Cesa-Bianchi and Lugosi (2006)

“considerably more difficult”, because Nash equilibrium is significantly finer than its correlated

variants:4 in general, these convergence results do not extend to Nash equilibria.

To account for this, a growing corpus of literature has been devoted to studying the problem

of equilibrium convergence under no-regret learning, typically focusing on special classes of

games (such as convex potential games, zero-sum games, routing games, etc.). Here again,

most efforts have focused on the convergence of the time-averaged sequence of play because

of its connection to the players’ regret (Krichene et al. 2015, Balandat et al. 2016, Lam et al.

2016). Nevertheless, the convergence of the actual sequence of play is also crucial to investigate

for several reasons: First, from a practical standpoint, since the players’ payoffs are determined

by the sequence of chosen actions and not some fictitious variant thereof, convergence to Nash

equilibrium should also be stated in terms of the actual sequence of play. Second, from a

theoretical standpoint, convergence of the latter implies convergence of the former, so it is a

stronger result.

Our focal point in this paper is the class of λ-monotone games, i.e. games that satisfy Rosen’s

diagonal strict concavity condition (Rosen 1965a). Mathematically, this condition implies that

the profile of the players’ individual payoff gradients is a monotone operator in the sense
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of variational analysis (possibly up to a player-specific weight coefficient); as an immediate

corollary, if a game is monotone, it admits a unique Nash equilibrium. Importantly, going

back to the problem of power control, the key tie-in observation is that our game-theoretic

reformulation leads to a monotone game whenever power control is feasible on average (Lemma

3). Thus, by establishing the convergence of OGD in monotone games, we readily recover the

convergence of our proposed power control policies when power control is feasible in the first

place.

Motivated by the random, time-varying nature of channel feasibility in realistic wireless

environments, we frame all of the above in a bona fide stochastic setting where exact gradient

information is not available, either because the players’ payoffs are themselves stochastic in

nature, or because the players’ feedback is contaminated by noise, observation errors, and/or

other exogenous stochastic effects. To model all this, we consider a noisy feedback model where

players only have access to a first-order oracle providing unbiased, bounded-variance estimates

of their payoff gradients at each step. Apart from this, players are assumed to operate in a

“black box” setting, without any knowledge of the game’s structure or their payoff functions

(or even that they are playing a game).

In this general framework, our main results are as follows: For a general class of continuous

games called λ-monotone games (first studied by Rosen 1965b), OGD converges to the unique

Nash equilibrium in the perfect gradient case (Theorem 4). Further, for λ-monotone games,

even when only a noisy and unbiased gradient is available, OGD converges to the unique Nash

equilibrium almost surely (Theorem 5).

2. Model, Background, Motivation

We describe below the target-rate power management problem on wireless networks (Weeraddana

et al. 2012, Tan 2014). After introducing the problem in Section 2.1, we discuss in Section 2.2

the well-known Foschini-Miljanic (FM) power control algorithm (Foschini and Miljanic 1993). This

discussion will provide an account of some of the drawbacks of the FM algorithm, both quantitative

and qualitative, and will serve as the motivation of the paper (cf. Section 2.3).
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2.1. Setup

Consider a wireless network of N communication links, each link consisting of a transmitter and

an intended receiver. Assume further that the i-th transmitter transmits with power pi and let p=

(p1, . . . , pN) ∈RN
+ denote the joint power profile of all users (transmitters) in the network. In this

context, the most commonly used measure of link service quality is the signal-to-interference-and-

noise ratio (SINR). Intuitively, link i’s SINR depends not only on how much power its transmitter

is employing, but also on how much power all the other transmitters are concurrently employing.

Specifically, link i’s SINR, which we denote by ri(p), is given by the following ratio:

ri(p) =
Giipi∑

j 6=iGijpj + ηi
, (1)

where ηi is the thermal noise associated with the receiver of link i and Gij ≥ 0 is the power

gain between transmitter j and receiver i, representing the interference caused to receiver i by

transmitter j per unit transmission power used. We further assume throughout the paper that

Gii > 0 for otherwise transmission for link i is meaningless. We collect all the power gains Gij into

the gain matrix G and all the thermal noises into the noise vector η. Note that the power gain

matrix G depends on the underlying network topology of the wireless links. Each link has a target

SINR threshold r∗i > 0: the minimum acceptable service quality threshold for that link.

The target-rate power management problem (Weeraddana et al. 2012, Tan 2014) then lies in

finding a power assignment p, such that the following quality-of-service constraints hold:

ri(p)≥ r∗i ,∀i. (2)

In order to find a joint transmission power p that satisfies the quality-of-service constraints in

Equation (2), such a p must exist in the first place: the notion of wireless network channel feasibility,

formalized in the next definition, characterizes such scenarios.

Definition 1. The channel given by (G, η) is feasible with respect to a target SINR vector r∗ =

(r∗1, . . . , r
∗
N) if there exists a p satisfying Equation (2). The channel is otherwise said to be infeasible.
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In their original paper, Foschini and Miljanic (1993) presented a simple necessary and sufficient

condition for deciding when a channel is feasible. To state it, we first need a convenient and

equivalent characterization of a wireless network channel:

Definition 2. A wireless network channel (or channel for short) specified by (G, η) can be alter-

natively represented by the pair (W,γ) consisiting of the following components:

1. The re-weighted gain matrix W , where for i, j ∈ {1,2, . . . ,N}:

Wij :=


0, i= j

r∗i
Gij
Gii
, i 6= j.

(3)

2. The re-weighted noise vector γ, where

γi = r∗i
ηi
Gii

, i∈ {1,2, . . . ,N}. (4)

Theorem 1. A channel is feasible with respect to r∗ if and only if the largest5 eigenvalue λmax(W )

of the re-weighted gain matrix W satisfies λmax(W )< 1.

When the channel is feasible, there is a special joint transmission power p∗ that satisfies the

quality-of-service constraints in Equation 2:

Fact 1. Given a feasible channel (G, η), we have λmax(W ) < 1, which implies that (I −W )−1

exists and is component-wise strictly positive. This further implies that the joint transmission

power p∗ = (I −W )−1γ satisfies the quality-of-service constraints given in Equation (2) and it

is component-wise strictly positive. Finally, p∗ is the unique vector that satisfies the following

property: if p is any vector satisfying Equation (2), then p∗ ≤ p (component-wise).

In other words, p∗ is the “smallest” joint transmission power that satisfies the quality-of-service

constraints. To highlight the importance of this quantity and to recognize the fact that the results

in this paper will mostly pertain to p∗, we have the following definition:

Definition 3. In a feasible channel (G, η) (or equivalently (W,γ)), p∗ defined in Fact 1 is called

the optimal joint transmission power vector.
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2.2. Foschini-Miljanic Power Control Algorithm

We now present the well-known Foschini-Miljanic (FM) power control algorithm, which finds the

optimal joint transmission power if one exists (i.e. in a feasible channel). Following the standard

convention in wireless communications literature (Han et al. 2011), the transmission power pi for

transmitter i is assumed to lie in a compact interval Pi = [0, pmax
i ]. Therefore, p is constrained to

lie in the feasible support set P ,
∏N

i=1Pi =
∏N

i=1[0, p
max
i ]. We shall adopt this convention for the

rest of the paper. The FM algorithm is then formally given in Algorithm 1 below:

Algorithm 1 FM Algorithm: Bounded Power Support

1: Each link i chooses an initial power p0i ∈ [0, pmax
i ].

2: for t= 0,1,2, . . . do

3: for i= 1, . . . ,N do

4: pt+1
i = min(pti

r∗i
ri(p

t)
, pmax
i )

5: end for

6: end for

In the classical power control setting, the channel (G, η) is assumed to be deterministic and time-

invariant, i.e. (G, η) remains the same from iteration to iteration. By a monotonicity argument,

Foschini and Miljanic (1993) provide the following characterization:

Theorem 2. Let the channel (G, η) be deterministic and time-invariant.

• If the channel is feasible with respect to r∗ and if the power support includes the optimal power

vector (i.e. p∗ ∈ P), then the joint power iterate pt in Algorithm 1 converges to the optimal

joint transmission power p∗, irrespective of the initial point p0.

• If the channel is infeasible with respect to r∗ or if the power support does not include the

optimal power vector (i.e. p∗ /∈ P), then the joint power iterate in Algorithm 1 converges to

pmax, irrespective of the initial point p0.
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2.3. Motivation of the Paper

Although the FM algorithm enjoys good convergence properties in a deterministic and time-

invariant channel (as given in Theorem 2 above), it quickly loses its appeal in cases where the

channel is stochastic and time-varying (i.e. when (Gt, ηt)∞t=0 are stochastic processes): this can

occur when the transmitters and receivers in the wireless network are moving while communicating

with each other, thereby causing the channel gain matrix (and potentially the thermal noises) to

fluctuate from iteration to iteration. This is because FM, in only using the last power iterate pt

to determine the next power iterate pt+1, has certain inherent instability, which is particularly

manifested when the underlying channel is stochastic and time-varying.

When the channel environment is stochastic and time-varying, we use W t and γt to denote the

random re-weighted gain matrix and the random re-weighted noise at iteration t, respectively. We

will use P t to denote the random power vector at iteration t generated by some power control algo-

rithm. More concisely, denoting ΠP(y) = arg minx∈P ‖x−y‖ and denoting the projection operator

ΠP(·) for P, the FM update can be written as

P t+1 = ΠP(W tP t + γt). (5)

In a stochastic and time-varying channel, the power iterates generated by FM will be random

variables and may fail to converge altogether. Even when FM does converge, it will at best, under

uncertain conditions of the channel, converge to a stationary distribution (Zhou et al. (2016)), as

opposed to a deterministic power vector, which is more desirable. This reveals two main drawbacks

of FM. First, as mentioned previously, convergence to a limiting stationary distribution is not the

most desired case. Consequently, when operating in a stochastic and time-varying channel, FM

is not very stable. As alluded to before, the fact that FM uses only the last power iterate is the

reason that such stochastic stability type of results is the best one can hope for on FM. Second,

even when FM converges to a stationary distribution, it is not clear what performance guarantees

are achieved by that limiting power distribution. Specifically, the stationary distribution that FM

converges to is not optimal in any sense.
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The above two drawbacks lead to the problem of designing a distributed power control algorithm

that has both stability and performance guarantees. More specifically, in light of the root cause of

the instability of FM, it is natural to ask whether it is possible to incorporate all the past power

iterates to synthesize a distributed power control scheme so as to stabilize the power iterate more

quickly, such that the resulting power iterate converges (almost surely) to a fixed vector even in

the presence of a stochastic and time-varying channel? If so, would this vector be optimal in some

(average) sense? As we shall see in the next section, both questions have affirmative answers.

3. Power Control via Dual Averaging

In this section, we present two new and closely-related distributed power control algorithms that

utilize all the power iterates in the past to achieve better stability and optimality guarantees. The

design of such a distributed algorithm (that uses past information) faces at least two challenges.

First, such an algorithm cannot assume that each transmitter has access to the power used by

all the other transmitters, as such communications is infeasible in practice. This dictates that a

transmitter can only use the aggregate information, such SINR and/or total interference and noise

(i.e. information that can be sensed by each individual link) as opposed to the exact individual

powers. Second, more stringently, one should not expect a transmitter to store all the past infor-

mation that is available to it, which could include its own past transmission powers, past SINRs

etc. This additional constraint, if met, can be highly desirable in practice because for a memory-

constrained wireless transmitter, such bookkeeping is in general infeasible. This second constraint

further implies that an economic representation that incorporates all such information is needed.

Here we propose the dual averaging power control algorithm that satisfies those two constraints.

The dual averaging algorithm has two variants, which we call Variant A and Variant B. For each

variant, the past information is represented and stored in the most economic form possible: it takes

only constant amount of memory independent of time steps. For ease of exposition, and to highlight

the specific modeling assumptions, we break the discussion into two cases: one where the channel

is deterministic and time-invariant, the other where the channel is stochastic and time-varying.

However, each variant of the dual averaging stays the same (except for the slight difference on the

notation) across different environments.
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3.1. Deterministic and Time-Invariant Channel

Here we present the dual-averaging algorithms for the case where the channel (G, η) is deterministic

and time-invariant. Algorithm 2 provides a formal description of variant A of dual averaging.

Algorithm 2 Dual Averaging Variant A: Deterministic and Time-Invariant Channel

1: Each link i chooses an initial y0i ∈R.

2: for t= 0,1,2, . . . do

3: for each link i do

4: pti = ΠPi(y
t
i)

5: yt+1
i = yti − 1

t+1
(Giip

t
i− r∗i (

∑
j 6=iGijp

t
j + ηi))

6: end for

7: end for

Remark 1. Several remarks are in order. First, note that yti ’s serve to fulfill the role of keeping

a compact representation that aggregates all the past information at any given time t, thereby

eliminating the need to keep track of the past pt’s. Second, as we shall see and make precise in

Section 5, each yti is the weighted average of the gradients of a certain cost function. Consequently,

yt (the vector of all individual yti ’s) resides in the dual space of the space P of possible transmission

power; hence the name “dual averaging”. In fact, Line 4 shows that the projection transforms a

point in this dual space to a point in the action space (i.e. P). In particular, while P is a bounded

set, the dual space that yt is the whole RN . Finally, note that to perform the update in Line 5

does not require transmitter i to know the transmission powers used by others: it need only know

the interference and noise as a whole as well the SINR.

We now give the description of Variant B in Algorithm 2: the only difference lies in updating the

discounted gradient yti . All the points in Remark 1 apply to this variant except the last one: note

that in Variant B, only the SINR
∑
j 6=iGijp

t
j+ηi

Giip
t
i

is needed, because from this SINR and pti, the ratio
∑
j 6=iGijp

t
j+ηi

Gii
can be recovered. Consequently, the requirement to implement Variant B is even less



Zhou, Mertikopoulos, Moustakas, Bambos and Glynn: Robust Power Management via Learning and Game Design
16 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

stringent than that of Variant A. However, as we shall see in later (Theorem 7), Variant B needs

slightly stronger assumption on the channel gains for convergence and optimality.

Algorithm 3 Dual Averaging Variant B: Deterministic and Time-Invariant Channel

1: Each link i chooses an initial y0i ∈R.

2: for t= 0,1,2, . . . do

3: for each link i do

4: pti = ΠPi(y
t
i)

5: yt+1
i = yti − 1

t+1
(pti− r∗i

∑
j 6=iGijp

t
j+ηi

Gii
)

6: end for

7: end for

3.2. Stochastic and Time-Varying Channel

Next we present the two variants of the dual averaging algorithm for the stochastic and time-

varying channel case. Before stating the algorithm, we shall first present the model of the stochastic

and time-varying channel within which the algorithm will operate. We adopt the same stochastic

model of a wireless network channel as in Zhou et al. (2016):

Assumption 1. (Gt, ηt) is drawn iid from an arbitrary (discrete or continuous, bounded or

unbounded) support on RN×N
+ ×RN

+ , satisfying the following assumptions:

1. Finite mean: ∀i, j,∀t,E[Gt
ij]<∞,E[ηti ]<∞.

2. Finite variance: ∀i, j,∀t,Var[Gt
ij]<∞,Var[ηti ]<∞.

Note that under this model, (Gt
ij, η

t
k) can be arbitrarily correlated with (Gt

i′j′ , η
t
k′) and Gt can

be correlated with ηt. Algorithm 4 gives the description of Variant A in the stochastic and time-

varying channel case. Here we use the upper case for gradient and power to highlight the fact that

all the quantities are now random variables.

Continuing with the same notation, we next give the description of Variant B as follows.
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Algorithm 4 Dual Averaging Variant A: Stochastic and Time-Varying Channel

1: Each link i chooses an initial Y 0
i ∈R.

2: for t= 0,1,2, . . . do

3: for each link i do

4: P t
i = ΠPi(Y

t
i )

5: Y t+1
i = Y t

i − 1
t
(Gt

iiP
t
i − r∗i (

∑
j 6=iG

t
ijP

t
j + ηti))

6: end for

7: end for

Algorithm 5 Dual Averaging Variant B: Stochastic and Time-Varying Channel

1: Each link i chooses an initial Y 0
i ∈R.

2: for t= 0,1,2, . . . do

3: for each link i do

4: P t
i = ΠPi(Y

t
i )

5: Y t+1
i = Y t

i − 1
t
(P t

i − r∗i
∑
j 6=iG

t
ijP

t
j+η

t
i

Gtii
)

6: end for

7: end for

4. Online Gradient Descent Learning in Continuous Games

In this section, we present the framework of online gradient descent (OGD) learning on continuous

games that both serves as the foundation for the game-design approach of power control and

enables us to subsequently establish (in Section 5 and Section 6) the theoretical guarantees of

dual averaging power control algorithms in both the constant and time-invariant channel and the

stochastic and time-varying channel. For both simplicity and direct applicability to the power

control application, the presentation here will be on the simplest setting needed: the action set

of each player is assumed to lie in R. However, all the results in this section generalize in a

straightforward manner to the settings where each player’s underlying action set is some finite

dimensional real vector space. Wherever possible, we shall use the notation that matches the power
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control setting to make explicit the connection between OGD learning on concave games and power

control as well as to ease the subsequent transition from the former to the latter.

4.1. λ-Monotone Games

We start with the definition of a λ-Monotone game, which will set the stage for both the theoretical

study in this section and the practical design and application for the subsequent sections.

Definition 4. A continuous game G is a tuple G = (N ,X =
∏N

i=1Xi,{ui}Ni=1), where N is the set

of N players {1,2, . . . ,N}, X is the joint action space with Xi being the action space for player i

and ui :X →R is the utility function for player i, such that the following assumptions hold:

1. Each Xi is a compact and convex subset of R.

2. Each ui is continuous in x and continuously differentiable in xi and ∂ui(x)

∂xi
is continuous in x.

Throughout the paper, x−i denotes the joint action of all players but player i. Consequently, the

joint action x will frequently be written as (xi,x−i). Further, we denote v(x) to be the column

vector of partial derivatives of the utility functions: v(x) = (v1(x), . . . , vN(x)), where vi(x), ∂ui(x)

∂xi
.

Note that per the definition of a continuous game (Definition 4), the gradient v(x) always exists

and is a continuous function on the joint action space X .

Definition 5. A continuous game G = (N ,X =
∏N

i=1Xi,{ui}Ni=1) is called λ-monotone for some

λ∈RN
++ if the following holds (with equality if and only if x= y):

N∑
i=1

λi(vi(x)− vi(y))(xi− yi)≤ 0,∀x,y ∈X . (6)

Condition given in Equation (6) is essentially the diagonal stricty concavity condition first intro-

duced in Rosen (1965b). Note that this condition necessarily implies that all utility functions ui

are concave. In the special case that λ = 1, we simply say the game is monotone. We use the

terminology monotone because when λ= 1, this condition is equivalent to that v(x) is a monotone

operator, a key concept in variational analysis Rockafellar and Wets (2009). Next, we recall the

definition of a Nash equilibrium, a key quantity that will concern us for the rest of the paper.
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Definition 6. Given a continuous game G = (N ,X =
∏N

i=1Xi,{ui}Ni=1), x
∗ ∈ X is called a Nash

equilibrium if for each i∈N , ui(x
∗
i ,x
∗
−i)≥ ui(xi,x∗−i),∀xi ∈Xi.

The celebrated result established in Rosen (1965b) is that there is always a unique Nash equi-

librium for every λ-monotone game:

Theorem 3. (Rosen) A λ-monotone game G = (N ,X =
∏N

i=1Xi,{ui}Ni=1) admits a unique Nash

equilibrium x∗.

Rosen (1965b) also gives a convenient sufficient condition ensuring that a continuous game is

λ-monotone, a condition that is used later to establish that the designed games are λ-monotone.

Lemma 1. Given a continuous game G = (N ,X =
∏N

i=1Xi,{ui}Ni=1), where each ui is twice contin-

uously differentiable. For each x∈X , define the λ-weighted Hessian matrix Hλ(x) as follows:

Hλ
ij(x) =

1

2
λi
∂vi(x)

∂xj
+

1

2
λj
∂vj(x)

∂xi
. (7)

If Hλ(x) is negative-definite for every x∈X , then G is λ-monotone.

4.2. Online Gradient Descent: Perfect and Imperfect Information

When players play a repeated game with each stage game being a fixed continuous game, it is an

interesting question as to what learning dynamics the players would adopt. A well-known class of

learning dynamics that enjoys the no-regret property (see Zinkevich 2003 and Shalev-Shwartz et al.

2012 for a precise formulation and proof) when the utility function is concave is online gradient

descent6 (OGD), as presented below:

Several comments are in order here. First, yti can be seen as an auxiliary (dual) variable that

accumulates gradient steps discounted by the step-size sequence {αt}∞t=1; the chosen actions are

then given by the (lazy) projection of yti onto Xi. As for the step-size sequence αt, Algorithm 7 can

be run with any positive, non-increasing sequence that satisfies the widely used non-summable-

but-square-summable (“`2− `1”) condition below:



Zhou, Mertikopoulos, Moustakas, Bambos and Glynn: Robust Power Management via Learning and Game Design
20 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Algorithm 6 Online Gradient Descent under Perfect Information

1: Each player i chooses an initial y0i .

2: for t= 0,1,2, . . . do

3: for i= 1, . . . ,N do

4: xti = arg minxi∈Xi ‖y
t
i −xi‖

5: yt+1
i = yti +αtvi(x

t)

6: end for

7: end for

Definition 7. A positive and non-increasing sequence {αt}∞t=0 is called slowly vanishing if∑∞
t=0α

t =∞ and
∑∞

t=0(α
t)2 <∞.

We can further generalize OGD to allow for imperfect information, where an exact gradient is not

available. Algorithm 7 gives a formal description of this generalized version. The main difference

between Algorithm 7 and Algorithm 6 lies in Step 5, where only a noisy gradient is available. In

addition, the iterates are capitalized to make explicit the fact that due to the noisy gradient used in

Step 5, they are now random variables. Specifically, we have used the capital letters Xt
i and Y t

i in

Algorithm 7 because these iterates are now random variables as a result of the noisy gradients ṽi.

Of course, in order for convergence to be guaranteed, ṽi(X
t) cannot be just any noisy perturbation

of the gradient. Here we make a rather standard assumption on the noisy gradient:

Algorithm 7 Online Gradient Descent under Imperfect Information

1: Each player i chooses an initial Y 0
i .

2: for t= 0,1,2, . . . do

3: for i= 1, . . . ,N do

4: Xt
i = arg minXi∈Xi ‖Y

t
i −Xi‖

5: Y t+1
i = Y t

i +αtṽi(X
t)

6: end for

7: end for
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Assumption 2. Let F t be the canonical filtration induced by the (random) iterates up to time t:

X0,X1, . . . ,Xt. We assume:

1. The noisy gradients are conditionally unbiased:

∀i∈N ,∀t= 0,1, . . . ,E[ṽi(X
t) | F t] = vi(X

t),a.s.. (8)

2. The noisy gradients are bounded in mean square:

∀i∈N ,∀t= 0,1, . . . ,E[‖ṽi(Xt)‖2 | F t]≤ V,a.s., (9)

for some constant V > 0, where ‖ · ‖ is some finite dimensional norm (note that all finite

dimensional norms are equivalently up to a multiplicative constant).

Remark 2. An equivalent and useful characterization of Assumption 2 is that the noisy gradient

can be decomposed as ṽi(X
t) = vi(X

t) + ξt+1
i , where the noise ξt = (ξti)

N
i=1 satisfies:

1. ∀t= 0,1, . . . ,E[ξt+1 | F t] = 0 (a.s.).

2. ∀t= 0,1, . . . ,E[‖ξt+1)‖2 | F t]≤Ξ (a.s.).

4.3. λ-Fenchel Coupling

We now introduce an important notion, λ-Fenchel coupling, that will serve as an energy function

and will play a indispensable role in establishing the convergence of the OGD dynamics. For ease

of exposition, we will directly define λ-Fenchel coupling in the current continuous game context

(where each Xi is a subset of R), although it shall be instantly clear that one can easily extend it

to more general contexts where each Xi is a finite dimensional real vector space.

We begin with some basic definitions and notation:

Definition 8. Let G = (N ,X =
∏N

i=1Xi,{ui}Ni=1) be a continuous game and, for each player i, let

hi(xi) =
1

2
‖xi‖2 (10)

denote the Euclidean squared norm on Xi. Then:
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1. The convex conjugate h∗i :R→R of hi is defined as:

h∗i (yi) = max
xi∈Xi

{〈yi, xi〉−hi(xi)} for all yi ∈R. (11)

2. The choice function Ci :R→Xi for player i is defined as the (lazy) projection map

Ci(yi) = arg min
xi∈Xi

‖xi− yi‖= arg max
xi∈Xi

{〈yi, xi〉−hi(xi)} for all yi ∈R. (12)

3. The λ-Fenchel coupling F λ :X ×RN →R is defined as:

F λ(x,y) =
N∑
i=1

λi(hi(xi) +h∗i (yi)−〈yi, xi〉),∀x∈X ,∀y ∈RN . (13)

Remark 3. Two things worth noting is that although the domain of hi is Xi ⊂R, the domain of

its conjugate h∗i is R. Further, since hi is proper, lower semi-continuous and convex, it follows that

(h∗i )
∗ = hi (Theorem 11.1 in Rockafellar and Wets (2009)), a result to be used later. Second, The

choice function Ci projects yi from the gradient space to xi in the decision space, and corresponds

to Line 4 in both Algorithm 6 and Algorithm 7.

The two key properties of λ-Fenchel coupling that will be useful later are:

Lemma 2. For all i∈ {1, . . . ,N}, and all x∈X , ỹ,y ∈RN , we have:

1. F λ(x,y)≥ 1
2

∑N

i=1 λi‖Ci(yi)−xi‖2i ≥
1
2
(mini λi)

∑N

i=1 ‖Ci(yi)−xi‖2i .

2. F λ(x, ỹ)≤ F λ(x,y) +
∑N

i=1 λi(ỹi− yi)(Ci(yi)−xi) + 1
2
(maxi λi)

∑N

i=1(‖ỹi− yi‖i)2.

Remark 4. Collecting each individual choice map into a vector, we obtain the aggregate choice

map C :RN →X , with C(y) = (C1(y1), . . . ,CN(yN)). Since each space Xi is normed, we can define

the induced aggregate norm ‖ · ‖ on the joint space X as ‖x‖=
∑N

i=1 ‖xi‖i. Henceforth, it shall be

clear that the convergence in the joint space (e.g. C(yt)→ x, yt→ y) will be defined under the

respective aggregate norm.

4.4. Convergence of Online Gradient Descent with Perfect Information

In this subsection, we tackle the problem of convergence of OGD when the perfect gradient infor-

mation is available (i.e. vi(x
t) is known exactly in Step 5 of Algorithm 6). Our main result here is

that when a given continuous game is λ-monotone, then OGD given in Algorithm 6 converges to

the unique Nash equilibrium.
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Theorem 4. Let G = (N ,X =
∏N

i=1Xi,{ui}Ni=1) be a λ-monotone game with the unique Nash equi-

librium x∗. If the step-size sequence αt of Algorithm 6 is slowly vanishing, the OGD sequence of

play xt converges to x∗ for any initial condition y0.

Since this theorem is a special case7 of Theorem 5, we will defer its proof to that of Theorem 5.

4.5. Almost Sure Convergence of Online Gradient Descent under Imperfect Information

In this subsection, we tackle the even harder problem of convergence of OGD under imperfect

information, i.e. when an exact gradient is not known but, instead, only a noisy gradient ṽi(x
t) is

available in Step 5 of Algorithm 7). Our main result here is that, when a given continuous game is

λ-monotone, OGD given in Algorithm 7 converges to the unique Nash equilibrium almost surely.

4.5.1. Mathematical Preliminaries We begin by collecting in one place the minimal set of

definitions and results that will be used later to prove the almost-sure convergence result. The first

two came from Benäım (1999).

Definition 9. A semiflow φ on a metric space (M,d) is a continuous map φ :R+×M →M :

(t, x)→ φt(x),

such that the semi-group properties hold: φ0 = identity, φt+s = φt ◦φs for all (t, s)∈R+×R+.

Remark 5. A standard way to induce a semiflow is via an ordinary differential equation (ODE).

Specifically, as mentioned in Benäım (1999), if F : Rm→Rm is a continuous function and if the

following ODE has a unique solution trajectory for each initial point x̃∈Rm:

dx

dt
= F (x),

x(0) = x̃,

then φt(x̃) defined by the solution trajectory x(t)∈Rm as follows is a semiflow: φt(x̃), x(t) with

x(0) = x̃. We say φ defined in this way is the semiflow induced by the corresponding ODE.



Zhou, Mertikopoulos, Moustakas, Bambos and Glynn: Robust Power Management via Learning and Game Design
24 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Definition 10. Let φ be a semiflow on the metric space (M,d). A continuous function s :R+→M

is an asymptotic pseudotrajectory for φ if for every T > 0, the following holds:

lim
t→∞

sup
0≤h≤T

d(s(t+h), φh(s(t))) = 0. (14)

Remark 6. Per its definition, when s is an asymptotic pseudotrajectory for φ, s and φ are very

close for sufficiently large t. Specifically, for each fixed T > 0, one can find a large enough t0, such

that ∀t > t0, the curve s(t+h) approximates the trajectory φh(s(t)) on the interval h∈ [0, T ] with

any pre-specified degree of accuracy. A more thorough discussion on asymptotic pseudotrajectory

can be found in BenaÏm and Hirsch (1996).

4.5.2. Convergence Analysis We now turn to the main convergence result.

Theorem 5. Let G = (N ,X =
∏N

i=1Xi,{ui}Ni=1) be λ-monotone with the unique Nash equilibrium

x∗. If the following conditions are satisfied:

1. Assumption 2 holds.

2. Each vi(x) is Lipschitz continuous in x on X .

3. The step size sequence {αt}∞t=0 in Algorithm 6 is slowly vanishing.

then the OGD sequence of play Xt converges to x∗ almost surely, for any initial condition Y0.

Remark 7. For clarity, we break the proof into several steps.

1. Let B(x∗, ε), {x ∈ X | ‖x− x∗‖< ε} be the open ball centered around x∗ with radius ε. We

show that any open ball around x∗ is recurrent. Mathematically, for any ε > 0 and any initial

point y0, the iterate Xt visit B(x∗, ε) infinitely often almost surely. Further, fix any δ > 0 and

consider the set B̃(x∗, δ), {C(y) | F λ(x∗,y)< δ}. Although F λ(x∗,y) is not a metric, B̃(x∗, δ)

contains an open ball within it. Mathematically, the claim is that for any δ > 0, ∃ε(δ)> 0 such

that: B(x∗, ε)⊂ B̃(x∗, δ). Putting the above two pieces together, it follows that for any δ > 0,

Xt must almost surely visit B̃(x∗, δ) infinitely often, irrespective of the initial point.

2. Next we consider the ordinary differential equation (ODE) approximation of OGD as follows:

ẏ = v(x),

x=C(y).
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Note that this can be written as ẏ = v(C(y)), which we can then verify that it admits a

unique solution trajectory for any given initial condition. Consequently, per Remark 5, this

solution induces a semiflow8, which we denote φt(y): it is the state at time t given it starts at

y initially. Note that we have used y as the initial point (as opposed to y0) to indicate that

the semiflow representing the solution trajectory should be viewed as a function of the initial

point y.

3. We now relate the iterates generated by OGD to the above ODE’s solution. First, we con-

nect linearly the OGD iterates Y 0, Y 1, Y 2, . . . , Y k, . . . at times 0, α0, α0 +α1, . . . ,
∑k−1

i=0 α
i, . . .

respectively to form a continuous, piecewise affine curve. Namely:

Y (t) = Y k + (t−
k−1∑
i=0

αi)
Y k+1−Y k

αk
, for t∈ [

k−1∑
i=0

αi,
k∑
i=0

αi), k= 0,1, . . . ,

where we adopt the usual convention that
∑−1

i=0α
i = 0. We then show that Y (t) (a random

trajectory) is almost surely an asymptotic pseudotrajectory of the semi-flow φ induced by

the above ODE, under the metric induced by the dual norm ‖ · ‖∗ defined in Remark 4.

Mathematically, we establish that

∀T > 0, lim
t→∞

sup
0≤h≤T

‖Y (t+h), φh(Y (t))‖∗ = 0,a.s..

4. Having characterized the relation between the OGD trajectory (affine interpolation of the

discrete OGD iterates) and the ODE trajectory (the semi-flow), we now turn to studying

the latter (the semiflow given by the ODE trajectory). A desirable property of φt(y) is that

the distance F λ(x∗, φt(y)) between the primal variable x∗ and the dual variable φt(y)) (as

measured by the Lyapunov function λ-Fenchel coupling) can never increase as a function of t.

We refer to this as the monotonicity property of λ-Fenchel coupling under the ODE trajectory,

to be contrasted to the discrete-time dynamics, where such monotonicity is absent (even when

perfect information on the gradient is available). More formally, we show that ∀y,∀0≤ s≤ t,

F λ(x∗, φs(y))≥ F λ(x∗, φt(y)). (15)
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5. Continuing on the previous point, not only the distance F λ(x∗, φt(y)) can never increase as t

increases, but also, provided that φt(y) is not too close to x∗ (under the λ-Fenchel coupling

divergence measure), F λ(x∗, φt(y)) will decrease no slower than linearly. This suggests that

either φt(y) is already close to x∗ (and hence x(t) =C(φt(y)) is close to x∗), or their distance

will be decreased by a meaningful amount in (at least) the ensuing short time-frame. We

formalize this discussion into the following mathematical claim: ∀ε > 0,∀y,∃s > 0, such that:

F λ(x∗, φs(y))≤max{ ε
2
,F λ(x∗,y)− ε

2
}. (16)

6. Now consider an arbitrary fixed horizon T . If at time t, F λ(x∗, φ0(Y (t))) is small, then by the

monotonicity property in Claim 4, F λ(x∗, φh(Y (t))) will remain small on the entire interval

h∈ [0, T ]. Since Y (t) is an asymptotic pseudotrajectory of φ (Claim 3), Y (t+h) and φh(Y (t))

should be very close for h∈ [0, T ], at least for t large enough. This means that F λ(x∗, Y (t+h))

should also be small on the entire interval h∈ [0, T ], if λ-Fenchel coupling has a regular enough

structure. It turns out that this is indeed the case. This can be made precise as follows:

∀ε,T > 0,∃τ(ε,T )> 0 such that ∀t≥ τ,∀h∈ [0, T ]:

F λ(x∗, Y (t+h))<F λ(x∗, φh(Y (t))) +
ε

2
, a.s.. (17)

7. Finally, we are ready to put the above pieces together. Claim 6 gives us a way to control the

amount by which the two λ-Fenchel coupling functions differ on the interval [0, T ]. Claim 4 and

Claim 5 together allow us to extend such control over successive intervals [T,2T ), [2T,3T ), . . . ,

thereby establishing that, at least for t large enough, if F λ(x∗, Y (t)) is small, then F λ(x∗, Y (t+

h)) will remains small ∀h > 0. As it turns out, this means that after long enough time, if Xt

ever visits B̃(x∗, ε), it will (almost surely) be forever trapped inside the neighborhood twice

that size (i.e. B̃(x∗,2ε)). Since Claim 1 ensures that Xt visits B̃(x∗, ε) infinitively often (almost

surely), the hypothesis is guaranteed to be true. Consequently, this leads to the following

formal claim: ∀ε > 0,∃τ0 (a positive integer), such that:

F λ(x∗, Y (τ0 +h))< ε,∀h∈ [0,∞), a.s.. (18)
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To conclude, Equation (18) in Claim 7 implies that F λ(x∗, Y t)→ 0, a.s. as t→∞, where the

OGD iterates Y t are values at integer time points of the affine trajectory Y (τ). Per Statement

1 in Lemma 2, this leads to that ‖C(Y t) − x∗‖ → 0, a.s. as t→∞, thereby establishing that

Xt =C(Y t)→ x∗, a.s. as t→ 0.

5. Theoretical Guarantees of Dual Averaging Power Control: Deterministic
and Time-Invariant Channels

In this section, we establish the theoretical guarantees of the two variants of the dual averaging

power control algorithm in the deterministic and time-invariant channel case. Our approach lies

in designing two λ-monotone games such that each variant of the dual averaging algorithm can

be interpreted as a special instance of the OGD learning dynamics for the corresponding game.

We emphasize that it is not the case that the transmitters are playing a repeated game where

their utilities are prescribed by the designed function. Instead, this is merely used as an analytical

framework to study the proposed algorithms. In fact, this is the analytical framework we use to

design and derive the dual averaging power control algorithms in the first place.

5.1. Designed λ-Monotone Games

Under the notation introduced in Section 2, we consider the following two games G1,G2 as given

below, where the set N of players is the set of links in the power control contexts:

1. G1 = (N ,P,{ui}Ni=1), where

ui(p) =− 1

2Gii

(Giipi− r∗i (
∑
j 6=i

Gijpj + ηi))
2. (19)

2. G2 = (N ,P,{ũi}Ni=1), where

ũi(p) =− 1

2G2
ii

(Giipi− r∗i (
∑
j 6=i

Gijpj + ηi))
2. (20)

We first point out an interesting feature shared by both of these games when the channel is

feasible: per Fact 1, a (necessarily unique) optimal joint transmission power p∗ exists. Since the

optimal joint transmission power matches the quality-of-service constraints exactly, every player’s
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utility will be 0 if they transmit according to p∗. This implies that p∗ must be a Nash equilibrium,

since 0 is the highest utility that can be possibly achieved for any given player (link). In fact, at p∗,

not only will any player fail to obtain better utility by unilaterally deviating from p∗, the players

cannot achieve better utility through collusion of any type. Furthermore, p∗ is the unique Nash

equilibrium, because if p were any other Nash equilibrium, then necessarily one player’s utility is

below 0. For this player, he will have the incentive to transmit at a higher power compared to the

current prescribed transmission power so as to achieve better utility.

The preceding discussion essentially establishes that when the channel is feasible, both of these

games admit a unique Nash equilibrium p∗, which is the optimal joint transmission power. However,

it still remains a question as to whether they are λ-monotone. The following lemma presents a

rather intriguing result: the feasibility of the channel not only guarantees the existence of a unique

Nash equilibrium, but also, more importantly, implies that both games are λ-monotone.

Lemma 3. Fix λ= ( 1
G11

, 1
G22

, . . . , 1
GNN

). Assume that the channel (G, η) is feasible and thereby let

p∗ be the optimal joint transmission power as defined in Definition 3, where p∗ is assumed to lie

in P. The the following statements hold:

1. The designed game G1 = (N ,P,{ui}Ni=1) is a λ-monotone game with the unique Nash equilib-

rium p∗.

2. The designed game G2 = (N ,P,{ũi}Ni=1) is a monotone game with the unique Nash equilibrium

p∗.

Proof: We first establish the first statement. For each i:

vi(p) =
∂ui(p)

∂pi
=−(Giipi− r∗i (

∑
j 6=i

Gijpj + ηi)), (21)

which can be easily seen as affine in pi and hence concave, with all the smoothness assumptions

satisfied. For each i, j:

∂vi(p)

∂pi
=−Gii,

∂vi(p)

∂pj
= r∗iGij.

Computing the λ-weighted Hessian matrix of the designed game, we obtain:
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Hλ
ij(p) =

1

2Gii

∂vi(p)

∂pj
+

1

2Gjj

∂vj(p)

∂pi
.

If i= j, then

Hλ
ii(p) = 2× 1

2Gii

∂vi(p)

∂pi
=−1.

If i 6= j, then

Hλ
ij(p) =

1

2Gii

r∗iGij +
1

2Gjj

r∗jGji =
1

2
(r∗i

Gij

Gii

+ r∗j
Gji

Gjj

).

Let W be the re-weighted gain matrix as defined in Equation 3 and I ∈RN×N be the identity

matrix. From the previous calculations, it follows that

Hλ =
1

2
(W − I) +

1

2
(W T − I).

Since the channel (G, η) is feasible, per Theorem 1, λmax(W ) < 1. Consequently, (W − I) is

negative definite (although not necessarily symmetric, i.e. may have complex eigenvalues): ∀p∈RN ,

p(W − I)p= pWp−‖p‖2 ≤ (λmax(W )− 1)‖p‖2 < 0.

Similarly, (W T −I) is negative definite, thereby implying Hij(p) is negative definite. Since Hij(p)

is negative definite for every p (since it is independent of p), Lemma 1 establishes that the game

is λ-monotone.

Since p∗ results the maximum utility for every player: ui(p
∗) = 0, p∗ must be a Nash equilibrium

and hence the unique Nash equilibrium.

Statement 2 follows by a similar argument by noting that in this case,

vi(p) =
∂ũi(p)

∂pi
=−(pi− r∗i

∑
j 6=iGijpj + ηi

Gii

). (22)

Computing the β-weighted Hessian for β = (1,1, . . . ,1) yields:

Hβ =
1

2
(W − I) +

1

2
(W T − I),

thereby establishing the conclusion. �
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5.2. Convergence of Dual Averaging in the Power Control Problem

With the above two designed games, we can now connect the dual averaging power control algo-

rithms to the OGD learning dynamics, as made precise by the following lemma.

Lemma 4. Variant A of dual averaging (Algorithm 2) and Variant B of dual averaging (Algo-

rithm 3) are OGD (Algorithm 6) for the designed games (N ,P,{ui}Ni=1) and (N ,P,{ũi}Ni=1) respec-

tively, where

1. hi(pi) = 1
2
p2i .

2. αt = 1
t+1

.

Proof: First, note that it is a standard result in convex analysis that hi(pi) = 1
2
p2i is 1-strongly

convex with respect to the Euclidean 2-norm and that the corresponding choice map Ci(yi) is sim-

ply the closest-point projection: Ci(yi) = arg maxpi∈Pi{piyi−
1
2
p2i }= ΠPi(yi). The lemma therefore

follows by noting that ∂ui(p)

∂pi
=−(Giipi− r∗i (

∑
j 6=iGijpj + ηi)) and ∂ũi(p)

∂pi
=−(pi− r∗i

∑
j 6=iGijpj+ηi

Gii
).

�

Combining all the pieces together, we therefore have the following convergence and optimality

guarantees for dual averaging power control:

Theorem 6. Let the channel (G, η) be feasible with the optimal joint transmission power p∗ ∈P.

1. pt→ p∗ as t→∞, where pt is given in Algorithm 2.

2. pt→ p∗ as t→∞, where pt is given in Algorithm 3.

Proof: Per Lemma 4, Algorithm 2 is OGD for the game (N ,P,{ui}Ni=1) and Algorithm 3 is OGD

for the game (N ,P,{ũi}Ni=1), where αt = 1
t+1

and hi(pi) = 1
2
p2i . Note that the sequence { 1

t+1
}∞t=0 is

clearly slowly vanishing. The two results follow immediately from Theorem 4. �

6. Theoretical Guarantees of Dual Averaging Power Control: Stochastic and
Time-Varying Channels

In this section, we establish the theoretical guarantees of the two variants of the dual averaging

power control algorithm in the stochastic and time-varying channel case. Our approach again lies

in designing two λ-monotone games, which build on the ones presented in the previous section.
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6.1. Designed Concave Games

Note that in a stochastic and time-varying channel, (G, η) (or (W,γ)) is random. We consider the

following two games G1,G2 as given below, where the set N of players is again the set of wireless

links in the power control contexts:

1. G1 = (N ,P,{ui}Ni=1), ui(p) =E[− 1
2Gii

(Giipi− r∗i (
∑

j 6=iGijpj + ηi))
2].

2. G2 = (N ,P,{ũi}Ni=1), ũi(p) =E[− 1
2G2

ii
(Giipi− r∗i (

∑
j 6=iGijpj + ηi))

2].

Under the above two designed games, it is straightforward to verify that

∂ui(p)

∂pi
=−E[(Giipi− r∗i (

∑
j 6=i

Gijpj + ηi))] =−(E[Gii]pi− r∗i (
∑
j 6=i

E[Gij]pj +E[ηi])), (23)

∂ũi(p)

∂pi
=−E[(pi−r∗i

∑
j 6=iGijpj + ηi

Gii

)] =−(pi−r∗i
∑
j 6=i

(E[
Gij

Gii

]pj+E[
ηi
Gii

])) =−(pi−
∑
j 6=i

(E[Wij]pj+E[γi])).

(24)

Before, we move on to establish the theoretical guarantees for dual averaging in the stochastic

and time-varying channel case, we need a notion that characterizes the channel feasibility in this

case. Since the channel is fluctuating, it would be too strong to require that each channel realization

on any given time step is feasible. Instead, here we only impose the mild requirement that a channel

is mean feasible: the channel can be feasible sometimes and infeasible some other times as long as

it is feasible on average. The next definition formalizes it:

Definition 11. A channel (G, η) (or equivalently (W,γ)) is:

1. Type-I mean-feasible if (E[G],E[η]) is feasible, where expectation is taken component-wise.

2. Type-II mean-feasible if (E[W ],E[γ]) is feasible, where expectation is taken component-wise.

The two types of mean-feasible channels are closely related: although in general neither implies

the other, in the important special case that Gij’s are independent of Gii, Type-I mean-feasible is

weaker than Type-II mean-feasible, as formalized by the following lemma:

Lemma 5. If for each i ∈ {1,2, . . . ,N}, Gij and Gii are pairwise independent for each j 6= i, then

a channel that is Type-II mean-feasible is Type-I mean-feasible.
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Proof: Let a channel (G, η) be Type-II mean-feasible. Defined the matrix W̃ to be:

W̃ij :=


0, i= j

r∗i
E[Gij ]

E[Gii]
, i 6= j.

(25)

We have:

E[
Gij

Gii

] =E[Gij]E[
1

Gii

]≥ E[Gij]

E[Gii]
, (26)

where the equality follows from independence and the inequality follows from Jensen’s inequality

and the fact that f(x) = 1
x

is convex when x is positive. This immediately implies:

E[W ]≥ W̃ ,

where inequality holds component-wise. Since each entry in both matrices is non-negative, we have:

λmax(E[W ]) = max
u∈RN :‖u‖2=1

uE[W ]u= max
u∈RN+ :‖u‖2=1

uE[W ]u,

λmax(W̃ ) = max
u∈RN+ :‖u‖2=1

uW̃u= max
u∈RN+ :‖u‖2=1

uW̃u.

Further, for each u∈RN
+ , Equation (26) implies uE[W ]u≥ uW̃u, which then leads to

λmax(E[W ]) = max
u∈RN+ :‖u‖2=1

uE[W ]u≥ max
u∈RN+ :‖u‖2=1

uW̃u= λmax(W̃ ).

By Theorem 1, λmax(W̃ )< 1 and hence the channel must be Type-I mean-feasible. �

6.2. Almost Sure Convergence of Dual Averaging Power Control: Stability and Optimality

We are now ready for the main result for the stochastic and time-varying channel case. We obtain

this result by casting the dual averaging power control algorithms in the OGD learning framework.

Theorem 7. Given a stochastic and time-varying channel (G, η) (or equivalently (W,γ)) according

to Assumption 1.

1. If the channel is Type-I mean feasible, with p∗ ∈P being the optimal joint transmission power

for (E[G],E[η]), then Pt→ p∗ almost surely, as t→∞, where Pt is given in Algorithm 4.
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2. If the channel is Type-II mean feasible, with p∗ ∈P being the optimal joint transmission power

for (E[W ],E[γ]) and for each i, there exists some g
i
> 0 such that Gii ≥ gi a.s., then Pt→ p∗

almost surely, as t→∞, where Pt is given in Algorithm 5.

Remark 8. Two things to note here. First, the almost sure convergence to a constant joint trans-

mission power in the presence of persistent stochastic channel fluctuations is a manifestation of the

stability of dual averaging. The intuition behind this stability is that as past powers are incorpo-

rated into the current power via a weighted sum, the random environments have less and and less

impact on the current power iterate because the step-sizes are decreasing. Second, Gii ≥ gi a.s. is

a rather mild assumption as it means that power gain between each transmitter and its intended

receiver is lower bounded by some positive constant.

Proof: For the first claim, per Assumption 1, we can write Gt
ij = E[Gij] + G̃t

ij, η
t
i = E[Gij] +

η̃ti , where G̃t
ij and η̃ti are both sequences of iid, zero-mean and finite-variance random variables.

Consequently, the gradient update (Line 5) in Algorithm 4 can be equivalently written as:

Y t+1
i = Y t

i −
1

t

{
(E[Gii] + G̃t

ii)P
t
i − r∗i (

∑
j 6=i

(E[Gij] + G̃t
ij)P

t
j +E[ηi] + η̃ti)

}
(27)

= Y t
i −

1

t

{
E[Gii]P

t
i − r∗i (

∑
j 6=i

E[Gij]P
t
j ) +E[ηi] + {G̃t

iiP
t
i − r∗i

∑
j 6=i

G̃t
ijP

t
j + η̃ti}

}
. (28)

Denoting ξt+1
i = G̃t

iiP
t
i − r∗i

∑
j 6=i G̃

t
ijP

t
j + η̃ti , it follows that E[ξt+1

i | P 0, . . . , P t] = 0,a.s. and

Var[ξt+1
i | P 0, . . . , P t] < ∞,a.s.. Since P is bounded, there exists a constant B > 0 such that

Var[ξt+1
i | P 0, . . . , P t]≤B,a.s.,∀t. Consequently, the martingale noise ξt satisfies Assumption 2 per

Remark 2. This implies that Algorithm 4 is a special case of Algorithm 7. Further, since the channel

is Type-I mean feasible, Lemma 3 implies that G1 is ( 1
E[G11]

, . . . , 1
E[GNN ]

)-monotone with p∗ being

the unique Nash equilibrium. It therefore suffices to verify the conditions given in Theorem 5 are

satisfied. Condition 1 is just verified above as ξt satisfies Assumption 2. Condition 2 holds vi(p)

is still linear under expectation. Condition 3 was already verified in the proof to Theorem 6. The

result therefore follows.
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For the second claim, using the same line of reasoning, it follows that Algorithm 5 is a special

case of Algorithm 7. The only thing to note here is that the bounded second moments assumption

holds because Gii ≥ gi a.s..

�

7. Conclusion

We close with two remarks. First, from a technical standpoint, our result for the almost sure conver-

gence of online gradient descent (OGD) to Nash equilibrium in λ-monotone games was established

via a multi-step argument that can be best described in two parts as follows. The first part is to

establish the algorithm’s recurrence: the game’s (necessarily unique) Nash equilibrium is an accu-

mulation point of the sequence of play generated by OGD. The second part is to use a mean-field

approximation to push this recurrence result one step further and show that the algorithm does

not admit any other accumulation points. Specifically, we do this by a) converting the stochas-

tic discrete process into a deterministic continuous process; b) establishing the convergence of the

resulting continuous trajectories; and, finally, c) using a stochastic approximation argument to map

this “mean field” convergence back to the discrete process. Even though this general program dif-

fers on a case-by-case basis (our case is particularly involved due to the non-invertibility Euclidean

projections), the underlying philosophy above has been successfully used in other important appli-

cations in operations research, the most notable of which is in queueing networks (see Gamarnik

(2010) for a landmark survey).

Second, even though our focus in this paper was on power minimization subject to rate con-

straints, the general “mean field” framework above can be applied to a broad spectrum of other

power management (and/or more general game-theoretic) problems. We intend to explore these

directions in future work.

Endnotes

1. The literature on power control is too broad to review here; for a comprehensive survey, we

refer the reader to Chiang et al. (2008).
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2. Feasibility means here that there exists a power allocation vector under which every user’s

throughput requirements are satisfied.

3. In our case, the algorithm should be ascending the payoff to be maximized, but we use the

more standard “descent” terminology to be consistent with the literature.

4. Specifically, a Nash equilibrium profile is a correlated equilibrium, which in turn is in the

Hannan set; in general, all these inclusions are proper.

5. As noted in Tan (2014), the re-weighted gain matrix W is a non-negative (and without loss of

generality, irreducible) matrix; thus by Perron-Frobenius theorem, there is a unique positive real

eigenvalue ρ∗ that has the largest magnitude.

6. To be precise, the version of OGD considered here is called lazy OGD. There is also a variant

called eager OGD. Shalev-Shwartz et al. 2012 provides a nice tutorial on the (minor) differences.

Note that the no-regret property holds for both variants; further, they have the same regret bound.

7. Strictly speaking, Theorem 5 has an additional assumption that v be Lipschitz continuous. It

turns out that even when this assumption is violated, the result here (i.e. perfect gradient case) still

holds, although it requires a different argument (i.e. a non-ODE approach). Due to space limitation

and due to that in the application considered here v is indeed Lipschitz, we omit in the current

draft this argument.

8. A crucial point to note is that since C is not invertible, there may not exist a unique solution

for x(t).
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Appendix. Auxiliary Results and Missing Proofs

A. Martingale Convergence Theorems

We present two martingale convergence theorems that shall be useful later. These are adapted

statements that come from Hall and Heyde (1980), which contains detailed proofs. The first one is

a law of large number theorem for Martingales.

Theorem 8. Let St =
∑t

k=0X
k be a Martingale adapted to the filtration St. Let {ut}∞t=0 be

a nondecreasing sequence of positive numbers with limt→∞ u
t = ∞. If ∃p ∈ [1,2] such that∑∞

t=0
E[|Xt+1|p|St]

(ut)p
<∞, a.s. , then

lim
t→∞

St

ut
= 0, a.s.,

The second one is Doob’s Martingale convergence theorem.

Theorem 9. Let St be a submartingale adapted to the filtration St, where t = 0,1,2, . . . . If St

is l1-bounded: supt≥0E[|St|] <∞, then St converges almost surely to a random variable S with

E[|S|]<∞.

B. Proof of Lemma 2

For the first statement, note that by a well-known result in convex analysis (see Rockafellar (2015))

when x∗i =Ci(yi), it holds that yi is a subgradient of hi at the point x∗i : hi(xi)≥ hi(x∗i )+yi(xi−x∗i ).

This then implies that, for any β ∈ (0,1]:

λi(hi(x
∗
i ) + yi(β(xi−x∗i )))≤ λihi(x∗i +β(xi−x∗i )) = λihi((1−β)x∗i +βxi)≤ (29)

λi{(1−β)hi(x
∗
i ) +βhi(xi)−

1

2
β(1−β)‖xi−x∗i ‖2i }, (30)

where the last inequality follows from the fact that hi is 1-strongly convex.

Connecting the first and the last term of the above inequality chain, we have:

λiyiβ(xi−x∗i )≤ λi(−β)hi(x
∗
i ) +λiβhi(xi)−

1

2
λiβ(1−β)‖xi−x∗i ‖2i .

Dividing both sides by β (since β > 0) and rearranging, we obtain:

1

2
λi(1−β)‖xi−x∗i ‖2i ≤ λihi(xi)−λihi(x∗i )−λiyi(xi−x∗i ).

Taking the limit that β approaches 0 (from above) results: λihi(xi)− λihi(x∗i )− λiyi(xi − x∗i ) ≥
1
2
λi‖xi−x∗i ‖2i . Summing over all i’s, we then obtain:

N∑
i=1

{λihi(xi)−λihi(x∗i )−λiyi(xi−x∗i )} ≥
N∑
i=1

1

2
λi‖xi−x∗i ‖2i .
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The conclusion then follows by noting that:

F λ(x,y) =
N∑
i=1

λi(hi(xi)−xiyi +h∗i (yi)) =
N∑
i=1

λi(hi(xi)−xiyi +x∗i yi−hi(x∗i )) (31)

≥
N∑
i=1

1

2
λi‖xi−x∗i ‖2i ≥

1

2
(min

i
λi)

N∑
i=1

‖Ci(yi)−xi‖2i , (32)

where the last inequality follows by noting that x∗i =Ci(yi).

For the second statement, we start by citing here a useful result in Rockafellar and Wets (2009)

(Theorem 12.60): For a proper, lower semi-continuous and convex function f :Rn→ R̄ and a value

σ > 0, f∗ is σ-strongly convex (with respect to norm ‖ · ‖∗) if and only if f is differentiable and

satisfies:

f(x̃)≤ f(x)+<∇f(x), x̃−x)>+
1

2σ
‖x̃−x‖2,∀x, x̃,

where R̄ = [−∞,∞]. Note that in the original statement, only the Euclidean norm ‖ · ‖2 is used

(Definition 12.58 in Rockafellar and Wets (2009) defined strong convexity implicitly in terms of

the Euclidean norm), in which case ‖ · ‖∗2 = ‖ · ‖2. However, as stated here, the same result holds

true for any pair of norms (‖ · ‖,‖ · ‖∗) by a straightforward adaptation of their proof.

Next, we note that in our case, each hi is 1-strongly convex with respect to norm ‖ · ‖i and per

Remark 3, (h∗i )
∗ = hi. Further, it can be easily checked that h∗i is proper, lower semi-continuous and

convex (since it is a point-wise maximum of affine functions per its definition), it therefore follows

that the 1-strong convexity of (h∗i )
∗ (with respect to ‖ · ‖∗∗i = ‖ · ‖i) implies that h∗i is differentiable

and satisfies:

h∗i (ỹi)≤ h∗i (yi) + (h∗i )
′(yi)(ỹi− yi) +

1

2
(‖ỹi− yi‖∗i )2,∀yi, ỹi (33)

= h∗i (yi) +Ci(yi)(ỹi− yi) +
1

2
(‖ỹi− yi‖∗i )2,∀yi, ỹi (34)

where the equality follows because (h∗i )
′(yi) =Ci(yi).

Therefore, it then follows that upon substituting the preceding inequality for each h∗i (ỹi) into

F λ(x, ỹ) =
∑N

i=1 λi(hi(xi)−xiỹi +h∗i (ỹi)), we have:

F λ(x, ỹ)≤
N∑
i=1

λi(hi(xi)−xiỹi) +
N∑
i=1

λi{h∗i (yi) +Ci(yi)(ỹi− yi) +
λi
2

(‖ỹi− yi‖∗i )2} (35)

=
N∑
i=1

λi{hi(xi) +h∗i (yi)−xiyi +xi(yi− ỹi) +Ci(yi)(ỹi− yi))}+
N∑
i=1

λi
2

(‖ỹi− yi‖∗i )2 (36)

= F λ(x,y) +
N∑
i=1

λi(ỹi− yi)(Ci(yi)−xi) +
N∑
i=1

λi
2

(‖ỹi− yi‖∗i )2 (37)

≤ F λ(x,y) +
N∑
i=1

λi(ỹi− yi)(Ci(yi)−xi) +
1

2
(max

i
λi)

N∑
i=1

(‖ỹi− yi‖∗i )2. (38)

�
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C. Proof of Theorem 5

We prove in turn each of the 7 claims laid out in Remark 7.

1. Let Y t = (Y t
1 , . . . , Y

t
N),Xt = (Xt

1, . . . ,X
t
N) be the iterates generated in Algorithm 7. Fix an

arbitrary ε > 0. Assume for contradiction purposes that Xt only visits B(x∗, ε) a finite number

of times and hence let t0− 1 be the last time Xt is in B(x∗, ε). Set βt = 1
2
(αt)2 maxi λi.

Using the representation ṽ(Xt) = v(Xt) + ξt+1 given in Remark 2, we have that ∀t≥ t0:

F λ(x∗, Y t+1) = F λ(x∗, Y t +αtṽ(Xt)) = F λ(x∗, Y t +αt(v(Xt) + ξt+1)) (39)

≤ F λ(x∗, Y t) +
N∑
i=1

λi(α
t(vi(X

t) + ξt+1
i )(Ci(Y

t
i )−x∗i ) +βt(‖ṽ(Xt)‖∗)2 (40)

= F λ(x∗, Y t) +αt
N∑
i=1

λivi(X
t)(Xt

i −x∗i ) +αt
N∑
i=1

λiξ
t+1
i (Xt

i −x∗i ) +βt(‖ṽ(Xt)‖∗)2

(41)

≤ F λ(x∗, Y t) +αtbmax(ε) +αt
N∑
i=1

λiξ
t+1
i (Xt

i −x∗i ) +βt(‖ṽ(Xt)‖∗)2 (42)

≤ F λ(x∗, Y t0) + (
t∑

k=t0

αk)bmax(ε) +
N∑
i=1

(λi

t∑
k=t0

αkξk+1
i (Xk

i −x∗i )) +
t∑

k=t0

βk(‖ṽ(Xk)‖∗)2

(43)

= F λ(x∗, Y t0) + (
t∑

k=t0

αk)

{
bmax(ε) +

N∑
i=1

(λi

t∑
k=t0

αk∑t

k=t0 α
k
ξk+1
i (Xk

i −x∗i ))

}
+

t∑
k=t0

βk(‖ṽ(Xk)‖∗)2,

(44)

where the last inequality follows from telescoping from k= t0 to k= t.

Next, note that ∀i = 1, . . . ,N ,
∑t

k=t0 α
kξk+1
i (Xk

i − x∗i ) is a Martingale adapted to F t+1

because

E[αkξt+1
i (Xt

i −x∗i )|F t] = αk(Xt
i −x∗i )E[ξt+1

i |F t] = 0.

Furthermore, setting p= 2 and ut =
∑t

k=t0 α
k (the first t0 terms of ut can be set arbitrarily

and are not essential), it is clear that ut is increasing and limt→∞ u
t =∞ by assumption. It

then follows that
∞∑
t=0

E[|αtξt+1
i |p | F t]

(ut)p
≤
∞∑
t=0

(αt)2Ξ

(ut)p
≤Ξ

∞∑
t=0

(αt)2

(
∑t

k=t0 α
k)2

<∞, a.s.,

where the last inequality follows from the fact that αt is square-summable. Consequently, by

Theorem 8,
t∑

k=t0

αk∑t

k=t0 α
k
ξk+1
i (Xk

i −x∗i )→ 0, a.s., t→∞

thereby leading to

N∑
i=1

(λi

t∑
k=t0

αk∑t

k=t0 α
k
ξk+1
i (Xk

i −x∗i ))→ 0, a.s., t→∞.
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Since
∑∞

k=t0 α
k =−∞, we therefore have

(
t∑

k=t0

αk)

{
bmax(ε) +

N∑
i=1

(λi

t∑
k=t0

αk∑t

k=t0 α
k
ξk+1
i (Xk

i −x∗i ))

}
→−∞, a.s., t→∞.

Finally, note that since ‖·‖∗ is a norm, St =
∑t

k=t0 β
k(‖ṽ(Xk)‖∗)2 is a submartingale adapted

to F t+1. We check that St is l1-bounded:

E[St] =
t∑

k=t0

βkE[(‖ṽ(Xk)‖∗)2]≤
t∑

k=t0

βkV < V
∞∑
k=t0

βk <∞,∀t.

Consequently, by Theorem 9, it follows that St→ S, a.s., t→∞, with S finite almost surely.

This then leads to

(
t∑

k=t0

αk)

{
bmax(ε) +

N∑
i=1

(λi

t∑
k=t0

αk∑t

k=t0 α
k
ξk+1
i (Xk

i −x∗i ))

}
+

t∑
k=t0

βk(‖ṽ(Xk)‖∗)2→−∞, a.s., t→∞.

This further implies that F λ(x∗, Y t)→−∞, a.s., t→∞, which contradicts the first state-

ment in Lemma 2.

For the second part, assume for contradiction purposes no B(x∗, ε) is contained in B̃(x∗, δ),

which means that for any δ > 0,∃yl, such that ‖Q(yl) − x∗‖ = δ but F λ(x∗,yl) ≥ ε. This

produces a sequence {yl}∞l=0 such that C(yl)→ x∗ but F λ(x∗,yl)≥ ε,∀l. However, this is a con-

tradiction, because Ci(hi) = ΠPi(yi) and hence h∗i (yi) = ΠPi(yi)yi−
1
2
(ΠPi(yi))

2. Consequently,

if C(yt)→ p for some p∈P, then ΠP(yt) =C(yt)→ p, leading to:

F λ(p,yt) =
N∑
i=1

λi(hi(pi)− piyi +h∗i (yi)) =
N∑
i=1

λi(
1

2
p2i − piyi + ΠPi(yi)yi−

1

2
(ΠPi(yi))

2) (45)

=
1

2

N∑
i=1

λi(p
2
i − (ΠPi(yi))

2) +
1

2

N∑
i=1

λiyi(ΠPi(yi)− pi)→ 0, (46)

Consequently, the claim follows.

2. Since each hi(·) is 1-strongly convex, h(·) = (h1(·), . . . , hN(·)) is 1-strongly convex. By a stan-

dard result in convex analysis Rockafellar (2015), C(·) is 1-Lipschitz continuous. Since v is

lipschitz continuous by assumption, v(Q(·)) is Lipschitz continuous. Consequently, standard

results in differential equations (Coddington and Levinson (1955)) imply that a unique solu-

tion exists for the ODE.

3. Benäım (1999) gives sufficient conditions that ensure a random trajectory to be an asymptotic

pseudotrajectory of a semiflow almost surely. We shall state one set of sufficient conditions

directly in the current context as follows.

If for some q≥ 2, the following list of conditions are satisfied:

(a) suptE[(‖ξt+1‖∗)q]<∞.
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(b)
∑∞

n=0(α
t)1+

q
2 <∞.

(c) supt ‖xt‖<∞.

Then the affinely interpolated process Y (t) is an asymptotic pseudotrajectory of the semi-flow

φ induced by the ODE almost surely:

∀T > 0, lim
t→∞

sup
0≤h≤T

‖Y (t+h), φh(Y (t))‖∗ = 0,a.s..

Choose q= 2, the above conditions can be easily verified: (a) holds by Assumption 2; (b) holds

since αt is square summable; (c) holds since the decision space X is compact. Therefore the

claim follows.

4. By a well-known result in variational analysis (Rockafellar and Wets (2009)), each hi(·) is

differentiable and
dh∗i (yi)

dyi
=Ci(yi). (47)

Note further that since φt(y) is the solution to the ODE (under the initial condition y), we

have dφt(y)

dt
= v(x(t)). Written out component-wise, we have

d(φt(y))i
dt

= vi(x(t)). (48)

We can thus compute the derivative of λ-Fenchel coupling as follows:

F λ(x∗, φt(y))

dt
=

∑N

i=1 λi {hi(x∗i )− (φt(y))ix
∗
i +h∗i ((φt(y))i)}

dt
(49)

=
N∑
i=1

λi

{
−d(φt(y))i

dt
x∗i +Ci(yi)

d(φt(y))i
dt

}
(50)

=
N∑
i=1

λi {−vi(x(t))x∗i + vi(x(t))Ci(yi)} (51)

=
N∑
i=1

λivi(x(t))(xi(t)−x∗i )≤ 0, (52)

where the second equality follows from Equation (47), the third equality follows from Equa-

tion (48), and the last inequality follows from x∗ is λ-variationally stable. The monotonicity

property therefore follows.

5. For any given ε > 0, pick an ε̂ > 0 such that B(x∗, ε̂)⊂ B̃(x∗, ε
2
). By Equation (52), we have

F λ(x∗, φt(y))

dt
=

N∑
i=1

λivi(x(t))(xi(t)−x∗i )< 0,∀x(t) 6= x∗.

Since X −B(x∗, ε̂) is a compact set and each vi(·) is a continuous function, we have

N∑
i=1

λivi(x(t))(xi(t)−x∗i )≤−aε̃,∀x(t)∈X −B(x∗, ε̂), (53)
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for some positive constant aε̃.

Starting at y, by time s, there are two possibilities. The first possibility is that x(s) ∈

B̃(x∗, ε
2
). In this case, by definition,

F λ(x∗, φs(y))<
ε

2
. (54)

The second possibility is that x(s) /∈ B̃(x∗, ε
2
). This implies that x(t) /∈ B(x∗, ε̂),∀t ∈ [0, s],

because otherwise, since B(x∗, ε̂) ⊂ B̃(x∗, ε
2
), it must be that x(s0) ∈ B̃(x∗, ε

2
) for some

s0 ∈ [0, s]. This then implies that, by the monotonicity property established in Claim 4,

F λ(x∗, φs(y))≤ F λ(x∗, φs0(y)), thereby leading to x(s)∈ B̃(x∗, ε
2
), a contradiction.

Since x(t) /∈ B̃(x∗, ε
2
),∀t ∈ [0, s], we have x(t) /∈ B(x∗, ε̃),∀t ∈ [0, s], leading to that Equa-

tion 53 holds for t∈ [0, s]. Therefore, taking s= ε
2aε̃

, we obtain:

F λ(x∗, φs(y))≤ F λ(x∗,y)− aε̃s= F λ(x∗,y)− ε

2
. (55)

Equation (54) and Equation (55) together establish that:

F λ(x∗, φs(y))≤max{ ε
2
,F λ(x∗,y)− ε

2
}.

6. Let R= supx∈X ‖x‖, which is finite since X is compact. By the definition of dual norm and

denote λmax = maxi λi, we have

N∑
i=1

λi
{

(Yi(t+h)−φih(Y (t+h))
}

(Ci(φ
i
h(Y (t+h)))−x∗i )≤ (56)

N∑
i=1

λi‖(Yi(t+h)−φih(Y (t+h))‖∗i ‖(Ci(φih(Y (t+h)))−x∗i )‖ ≤ λmaxR‖Y (t+h)−φh(t+h)‖∗,

(57)

where φih(Y (t+h)) is the i-th component of φh(Y (t+h)).

Fix some T > 0 and define Kλ = maxi λi and δ=

√
(λmaxR)2+2εKλ−KλR

4Kλ
. Per Claim 3, we have

∀T > 0, lim
t→∞

sup
0≤h≤T

‖Y (t+h), φh(Y (t))‖∗ = 0,a.s..

Consequently, choose τ(δ,T ) such that ‖Y (t+h), φh(Y (t))‖∗ < δ,∀t≥ τ . Expanding λ-Fenchel

coupling, we obtain that ∀t≥ τ and ∀h∈ [0, T ]:

F λ(x∗, Y (t+h)) = F λ(x∗, φh(Y (t)) +Y (t+h)−φh(Y (t)))≤ F λ(x∗, φh(Y (t))) (58)

+
N∑
i=1

λi
{

(Yi(t+h)−φih(Y (t))
}

(Ci(φ
i
h(Y (t)))−x∗i ) +Kλ(‖Y (t+h)−φh(Y (t))‖∗)2 (59)

≤ F λ(x∗, φh(Y (t))) +λmaxR‖Y (t+h)−φh(t)‖∗+Kλ(‖Y (t+h)−φh(Y (t))‖∗)2 (60)

≤ F λ(x∗, φh(Y (t))) +λmaxRδ+Kλδ
2 (61)
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≤ F λ(x∗, φh(Y (t))) +λmaxR

√
(λmaxR)2 + 2εKλ−λmaxR

4Kλ

+Kλ(

√
(λmaxR)2 + 2εKλ−λmaxR

4Kλ

)2

(62)

<F λ(x∗, φh(Y (t))) +λmaxR

√
(λmaxR)2 + 2εKλ−λmaxR

2Kλ

+Kλ(
(
√

(λmaxR)2 + 2εKλ−λmaxR)2

4K2
λ

(63)

= F λ(x∗, φh(Y (t))) +
ε

2
, (64)

where the first inequality follows from Equation (57) and the last equality follows from straight-

forward algebraic verification. The claim is therefore established.

7. We start by fixing an arbitrary ε > 0. Per Claim 5, there exists an s > 0 (depending on ε) such

that Equation (16) holds. Set the horizon T = s. Per Claim 6, there exists a τ (depending on

both ε and T ) such that Equation (17) holds ∀t ≥ τ . Now, per Claim 1, Xt visits B̃(x∗, δ)

infinitely often9. Therefore, pick an integer τ0 ≥ τ such that Xτ0 ∈ B̃(x∗, ε
2
). With this choice

of τ0, we know that by definition of B̃,

F λ(x∗, Y (τ0))<
ε

2
. (65)

Our goal is to establish that F λ(x∗, Y (τ0 +h))< ε,∀h∈ [0,∞). To that end, partition the time

[0,∞) into disjoint time intervals [0, T ), [T,2T ), . . . , [nT, (n+ 1)T ), . . . .

Per Claim 4, the monotonicity property given in Equation (15) implies that:

F λ(x∗, φh(Y (τ0)))≤ F λ(x∗, φ0(Y (τ0))) = F λ(x∗, Y (τ0))<
ε

2
,∀h≥ 0, (66)

where the equality follows from the semi-group property of a semiflow.

Per Equation (17), for h∈ [0, T ), we then have:

F λ(x∗, Y (τ0 +h))<F λ(x∗, φh(Y (τ0))) +
ε

2
<
ε

2
+
ε

2
= ε, (67)

where the last inequality follows from Equation (66).

Now assume inductively that Equation (67) holds for every h∈ [nT, (n+ 1)T ), where n is a

non-negative integer. We then have ∀h∈ [nT, (n+ 1)T ):

F λ(x∗, Y (τ0+T+h))<F λ(x∗, φT (Y (τ0+h)))+
ε

2
≤max{ ε

2
,F λ(x∗, Y (τ0+h))− ε

2
}+ ε

2
≤ ε

2
+
ε

2
= ε,

(68)

where the first inequality follows from Equation (17), the second inequality follows from Equa-

tion (16), and the third inequality follows from the induction hypothesis F λ(x∗, Y (τ0 +h))< ε.

Consequently, Equation (67) holds for every h ∈ [(n+ 1)T, (n+ 2)T ), thereby completing the

induction and establishing that:

F λ(x∗, Y (τ0 +h))< ε,∀h∈ [0,∞).

�


