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Abstract—In this paper, we analyze the problem of signal co-
variance optimization in Gaussian multiple-input, multiple-output
(MIMO) channels under imperfect (and possibly delayed) channel
state information. Starting from the continuous-time dynamics of
matrix exponential learning, we develop a distributed optimization
algorithm driven by a damping term which ensures the method’s
stability under stochastic perturbations and asynchronicities of
arbitrary magnitude. As opposed to traditional water-filling meth-
ods, the algorithm’s convergence properties (speed and accuracy)
can be controlled by tuning the users’ learning rate and/or the
damping parameter. Accordingly, the algorithm converges arbi-
trarily close to an optimum signal covariance profile within a few
iterations, even for large numbers of users and/or antennas per
user; furthermore, the quality of the solution obtained remains
robust in the presence of imperfect (or delayed) measurements and
asynchronous user updates.

Index Terms—Distributed optimization; imperfect CSI; matrix
exponential learning; multiple access channels; MIMO; stochastic
approximation.

I. Introduction

The seminal prediction that the use of multiple antennas can
lead to substantial performance gains in signal transmission and
reception [1, 2] has made multiple-input and multiple-output
(MIMO) technologies an integral component of most state-
of-the-art wireless communication protocols, ranging from 3G
LTE, 4G and HSPA+, to 802.11n WiFi and WiMax (to name but
a few). Nonetheless, seeing as the radio spectrum is shared by
all users, the intended receiver of a signal must still cope with
unwarranted interference from a large number of transmitters, a
factor which severely limits the capacity of the wireless system
in question. On that account, and given that the theoretical
performance limits of MIMO systems still elude us (even
in basic network models such as the interference channel),
a widespread approach is to use the mutual information for
Gaussian input and noise as a performance metric, and to
optimize (the covariance of) the input signal distribution of each
transmitter in the presence of interference from all other users.

In this paper, we focus on uplink MIMO systems consisting
of several non-cooperative (and mutually independent) Gaus-
sian transmitters who upload data to a common receiver. This
vector Gaussian multiple access channel (MAC) has attracted
significant interest in the literature [2, 3], traditionally relying
on water-filling (WF) techniques to achieve its capacity [3–
5]. Unfortunately however, the convergence speed of iterative

water-filling (IWF) methods decreases rapidly with the num-
ber of users (making such methods unsuitable for large net-
works), whereas the convergence of faster, simultaneous water-
filling (SWF) methods [6] is conditional on certain “mild-
interference” conditions which fail to hold even in simple 2-
user parallel multiple access channels (PMACs) [7, 8].

To overcome these limitations, the authors of [9] proposed a
so-called “matrix exponential learning” method whose conver-
gence speed scales well with the number of users in the system.
That said, just like water-filling, this method relies on perfect
channel state information (CSI), an assumption which breaks
down in rapidly evolving, unregulated networks. Consequently,
a major challenge arises when this information can only be
estimated in an imperfect manner, and/or when only delayed

(and, hence, potentially obsolete) measurements are available:
for instance, the analysis of [10] can be used to show that
stochastic perturbations could lead the system to a globally

suboptimal state with positive probability, even in the very
simple case of a single user. Moreover, in the absence of a
centralized scheduler, enforcing simultaneous user updates is
all but impossible, so it is not clear whether methods that
rely on synchronous decision-taking can be implemented in
decentralized environments.

To address these issues, we introduce a dissipative variant of
the matrix exponential learning method of [9] which penalizes
zero eigenvalues in the users’ signal covariance profile.1 In so
doing, the dynamics are stabilized (in the sense of stochas-
tic approximation [11, 12]) and the system converges to a
(nonsingular) signal covariance profile that is arbitrarily close
to an optimum one. The powerful stochastic approximation
techniques of [12] then allow us to show that the resulting
algorithm converges very fast even for large numbers of users
and/or antennas per user (in practice, within a few iterations),
and this convergence remains robust even in the presence of
arbitrarily large estimation errors and asynchronous updates.

II. SystemModel

Consider a vector Gaussian multiple access channel consist-
ing of a finite set of transmitters k 2 K ⌘ {1, . . . ,K}, each

1We should stress here that the resulting method can be extended to a wide
class of nonlinear semidefinite programming problems; we chose to focus here
on the MIMO MAC case for simplicity and concreteness.



equipped with m

k

antennas, and each transmitting simultane-
ously to a base receiver with m0 antennas. This system may
then be represented by the familiar baseband model

y =
X

K

k=1
H

k

x
k

+ z, (1)

where y 2 Cm0 denotes the aggregate signal reaching the
receiver, x

k

2 Cm

k is the message transmitted by user k 2 K,
H

k

2 Cm0⇥m

k is the associated m0 ⇥ m

k

(complex) channel
matrix, and z 2 Cm0 is the noise in the channel, including
thermal, atmospheric and other peripheral interference e↵ects,
and assumed to be a (zero-mean) circularly symmetric complex
Gaussian random vector with non-singular covariance (taken
equal to I after a change of basis).

In this setting, the average transmit power of user k will be
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where the expectation is taken over the codebook of user k and
Q
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denotes the corresponding signal covariance matrix:
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Hence, assuming successive interference cancellation (SIC) at
the receiver, the maximum information transmission rate will
be achieved for random Gaussian codes and will be given by
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where Q = diag(Q1, . . . ,Qk

) denotes the block-diagonal (di-
rect) sum of the individual matrices Q

k

[2]. In this way, we
obtain the sum rate maximization problem [4, 5]:
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of feasible signal covariance matrices of user k that satisfy the
power constraint tr(Q

k

) = P

k

.2
The sum rate problem (5) is traditionally solved by water-

filling (WF) methods – whether iterative (IWF) [4] or si-
multaneous (SWF) [6]. In these methods, it is assumed that
transmitters have perfect knolwedge of the channel matrices H

k

and the aggregate signal-plus-noise covariance matrix

W = I +
P
`H`Q`H†` , (6)

which can then be used to compute the user-specific matrices

W
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P
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Q
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As a result, the information requirements of IWF and SWF boil
down to perfect channel state information at the transmitter
(CSIT) and accurate measurements of the covariance matrix
W at the receiver (who can e.g. broadcast this information
via a dedicated radio channel). On the other hand, despite
this similarity, IWF and SWF behave quite di↵erently perfor-
mance-wise: the former converges always (but slowly for large
numbers of users), whereas the latter is faster but may fail to
converge – even in 2-user parallel MACs [7, 8].

2The power constraint tr(Q
k

) = P

k

is actually a special case of the more
general inequality constraint tr(Q

k

)  P

k

. However, in the absence of power
consumption considerations, every user will saturate this constraint in order to
achieve higher transmission rates; as such, we will not treat this case here.

III. Entropy Adjusted Exponential Learning
To overcome the limitations of WF methods (and under the

same information assumptions), the authors of [9] considered
instead the dynamics of matrix exponential learning:

Ẏ
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)
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where Y
k

is an auxiliary Hermitian “scoring” matrix and

V
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denotes the (conjugate) derivative of  w.r.t. Q
k

. By discretiz-
ing, we then obtain the learning scheme:

Y
k

(n) = Y
k

(n� 1)+ �
n

V
k

(n), Q
k

(n+ 1) = P

k

e

Y
k

(n)

tr[eY
k

(n)]
, (10)

where �
n

is a variable step size satsifying the technical require-
ments

P
n

�
n

= +1 and
P

n

�2
n

< +1 (e.g. �
n

= 1/n) [11].
Intuitively, (10) reinforces the spatial directions that peform

well by increasing the corresponding eigenvalues, so users con-
verge to a solution of (5) within a few iterations [9]. In practice
however, a major challenge occurs if the network’s users only
have acces to imperfect (and/or delayed) CSI; accordingly, our
aim in the rest of this paper will be to develop a fast solution
method for (5) that retains its convergence properties even in
the presence of stochastically perturbed observations and/or
asynchronicities (in either the updates or the observations).

A. Learning in the Presence of Noise

To account for as wide a range of measurement errors as
possible, we will assume that at each update epoch n = 1, 2, . . . ,
the system’s users can only measure a perturbed estimate

V̂
k

(n) = V
k

(n) + ⌅
k

(n) (11)

of V
k

(n), with ⌅
k

representing a random observational error
(not necessarily i.i.d.). Specifically, our only assumption for ⌅

k

will be that it is a bounded martingale di↵erence, i.e. k⌅
k

k  ⌃
for some ⌃ > 0 and E

⇥
⌅

k

(n) |⌅(n � 1), . . . ,⌅(1)
⇤
= 0.

Under these assumptions, one could hope to apply the
stochastic approximation techniques of [11, 12] to show that the
resulting stochastic version of (10) converges to an optimum
signal covariance profile. This, however, is not the case: in
PMAC systems (where H

k

and Q
k

are jointly diagonalizable),
the dynamics (8) boil down to the well-known replicator dy-

namics of evolutionary game theory [11], viz.
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where q

k↵ is the ↵-th diagonal eigenvalue of Q
k

and V

k↵ =
@ 
@q

k↵

is the ↵-th eigenvalue of V
k

[8]. As it turns out, the discrete
replicator dynamics with linear costs are known to converge
with positive probability to a global minimum of the objective
function in stochastic environments [10], so (10) might lead to
similarly unwarranted behavior.

From a mathematical viewpoint, the problem with (10) is that
the scoring matrices Y

k

may fail to remain bounded for all time,
so the tracking techniques of stochastic approximation do not
apply. Motivated by the analysis of [13] for finite games, we



will thus consider the following dissipative variant of matrix
exponential learning:
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where ⌧ > 0 is a damping parameter whose role is to keep the
matrix scores bounded for all time:

Lemma 1. The process Y
k

of (13) is bounded (a.s.).

The proof of this lemma3 relies on a recursive argument
that takes advantage of the fact that if an element of Y

k

gets
too big, the damping term �⌧Y

k

will decrease it on the next
iteration.4 With this in mind, the general theory of stochastic
approximation [11, 12] shows that the process defined by (13)
will be an asymptotic pseudo-trajectory (APT) of the so-called
mean dynamics:
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i.e. the discrete-time recursion (13) will be attracted to the
internally chain transitive (ICT) sets of the dynamics (14) [11].

Intuitively, this means that the discrete-time learning process
(13) will converge to the same points as the continuous-time
dynamics (14), if the latter converge. That said, the convergence
properties of (14) are not the same as those of (8), so it is
not clear if (14) (and, hence, (13)) will end up solving the rate
maximization problem (5). Nevertheless, we have:

Theorem 1. Any solution trajectory Q(t) of (14) converges to

a signal covariance profile which lies within "(⌧) of a solution

of (5); moreover, the approximation error "(⌧) becomes vanish-

ingly small as ⌧! 0.

Sketch of proof:

3 Consider the so-called “free energy”
function F(Q) =  (Q) � ⌧h(Q), where h(Q) = tr

⇥
Q log Q

⇤
de-

notes (the negative of) the von Neumann quantum entropy of Q.
Letting V⌧ = V � ⌧ log Q, a lengthy calculation along the lines
of [9] can be used to show that Ḟ =

R 1
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QV⌧
⇤2 � 0, i.e. F is Lyapunov for (14). Moreover, since

F is strictly concave and steep (the gradient of F approaches
infinity near the boundary bd(X) of X), it follows that (14) will
converge to the unique maximizer Q!⌧ of F over X; that this
maximizer lies within vanishing distance of a solution of (5) is
then a consequence of Berge’s maximum theorem [15].

By combining Lemma 1 with Theorem 1, we then obtain:

Theorem 2. The damped exponential learning process (13)
with imperfect measurements given by (11) converges to a

signal covariance profile which lies within "(⌧) of a solution

of the rate maximization problem (5). Furthermore, the ap-

proximation error "(⌧) vanishes as ⌧ ! 0, irrespective of the

magnitude of the measurement noise ⌅
k

.

Sketch of proof:

3 By Lemma 1 and our assumptions on the
noise, the iterates Y

k

(n) and the error processes ⌅
k

(n) will both

3Due to lack of space, the reader is referred to [14] for the full proofs.
4This is actually why the unadjusted process (10) may fail to converge.

be bounded (a.s.). Moreover, by Theorem 1, the dynamics (14)
admit a unique rest point (which obviously has measure zero
in the set X of feasible covariance profiles). The theorem then
follows from general stochastic approximation arguments and
an appeal to Sard’s theorem – see e.g. [11, Theorem 5.7].
Remark. Theorem 2 guarantees that the learning scheme (13)
converges arbitrarily close to a solution of the rate maximiza-
tion problem (5), irrespective of the noise level. Importantly,
the quality of the solution is not controlled by the quality of
the measurements, but by the damping parameter ⌧: as such,
even though imperfect CSI slows down the users’ convergence,
it will not otherwise impact the end-state of the algorithm – in
stark contrast to water-filling methods (cf. Section IV).

B. Asynchronous Updates and Delayed Information

Even though the learning scheme (13) with imperfect CSI
converges arbitrarily close to an optimum signal covariance
profile, it is not clear how it can be implemented in the absence
of a centralized scheduler that could synchronize the users’ up-
date schedule. We will thus consider here a fully decentralized
setting where each user updates his signal covariance matrix
based on an individual timer, and independently of other users.
In this case, the estimates for V

k

that are calculated at each
update might also su↵er from delays due to asynchronicity, so
Theorem 2 must be extended accordingly.

To account for all that, let n denote the n-th overall update
epoch, let K

n

✓ K denote the subset of users who update at this
epoch, and let d

k

(n) denote the number of steps elapsed between
the update and measurement processes for the k-th user. The
discretization (13) then becomes:
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and N

k

(n) denotes the number of updates that have been per-
formed by user k up to epoch n. As it turns out, this recursion is
an asynchronous stochastic approximation of (14) in the sense
of [12, Chap. 7], so, under some mild assumptions, it will
converge (a.s.) to the same limit as the synchronous version
(13). More precisely, we have:

Theorem 3. If the delay functions d

k

(n) are bounded (a.s.) and

the set of users K
n

that update at step n is a homogeneous

recurrent Markov chain (i.e. all users’ update rates are finite

and nonzero), then the conclusions of Theorem 2 continue to

hold for the asynchronous learning process (15) with �
n

= 1/n.

Sketch of proof:

3 Following [12, Thms. 2 and 3], the
recursion (15) may be seen as a stochastic approximation of
the rate-adjusted dynamics Ẏ

k

= ⌘
k

[V
k

� ⌧Y
k

], where ⌘
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lim
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(n)/n > 0 is the update rate of user k (recall that K
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is
ergodic). The adjusted free energy F =  �⌘�1⌧h is a Lyapunov
function for these dynamics, so the claim follows in the same
as way as that of Thm. 2.



IV. Numerical Results
In view of the above considerations, we obtain the following

distributed algorithm (shown from the point of view of a single
user):

Algorithm 1 Damped Exponential Learning (DXL).
Parameter: ⌧ > 0.

Initialize: n 0; Y 0.

Repeat
At each UpdateEvent

n n + 1;

calculate V̂ = H†W�1H based on latest observations;

update score matrix Y Y + 1
n

⇥
V̂ � ⌧Y⇤;

set Q P exp(Y)
�

tr
⇥
exp(Y)

⇤
;

until termination criterion is reached.

Remark 1. From an implementation point of view, DXL has the
following desirable properties:
(P1) It is distributed: users have the same information require-

ments as in distributed water-filling.
(P2) It is asynchronous: there is no need for a global update

timer to synchronize the network’s users.
(P3) It is stateless: users do not need to know the state of the

system (e.g. its topology).
Remark 2. The criteria that trigger an UpdateEvent could be
arbitrary; that said, if there is a global update timer making
an UpdateEvent occur simultaneously for all users, DXL boils
down to the synchronized recursion (13).

Thanks to the analysis of the previous section, the conver-
gence of DXL is guaranteed by Theorems 2 and 3; instead, in
this section, our aim will be to assess the algorithm’s perfor-
mance via numerical simulations. To that end, we conducted
extensive numerical simulations from which we illustrate here
a selection of the most representative scenarios.

In Fig. 1, we simulated an uplink MIMO system consisting
of a wireless receiver with 5 antennas and K = 10, 25,
50 or 100 transmitters, each with a random number m

k

of
transmit antennas between 2 and 6. Each user’s channel matrix
H

k

was drawn from a complex Gaussian distribution at the
outset of the transmission (but remained static once picked),
and we then ran the DXL algorithm with synchronous updates
(for benchmarking purposes) and a low damping parameter to
ensure convergence to the system’s capacity (⌧ = 10�3). The
performance of the algorithm was assessed via the e�ciency
ratio e↵(n) =

⇥
 (n) �  min

⇤�⇥
 max �  min

⇤
where  (n) denotes

the users’ sum rate at the n-th iteration of the algorithm and
 max (resp.  min) is the maximum (resp. minimum) value of  .
As can be seen in Fig. 1(a), even for large numbers of users,
DXL e↵ectively achieves the system’s sum capacity within one
or two iterations, a fact which represents a marked improvement
over water-filling methods (Fig. 1(b)): on the one hand, IWF
is significantly slower than DXL (it requires O(K) iterations
to achieve the same performance level as the first iteration of
DXL), whereas SWF fails to converge altogether.

The robustness of DXL is examined in Fig. 2 where we
simulated an uplink MIMO system consisting of K = 25
transmitters with imperfect CSI and noisy measurements at the
receiver. In particular, we plotted the e�ciency of DXL over
time for relative measurement error levels � = 10% (low) and
� = 100% (high), and we ran the IWF and SWF algorithms
with the same relative error levels for comparison. The per-
formance of water-filling methods remains acceptable at low
error levels (attaining 90–95% of the system’s sum capacity);
however, when the measurement noise gets higher, water-filling
o↵ers no perceptible advantage over the users’ initial choice of
covariance matrices. By contrast, DXL achieves the channel’s
capacity even when the error level is 100% – though, of course,
its convergence speed is negatively a↵ected.

Finally, to account for changing channel conditions, we also
plotted the performance of DXL for fading channels following
the well-known Jakes model [16]. More precisely, in Fig. 3,
we simulated a system with 3 receive antennas, K = 10 users
with 2 antennas each, transmitting at a frequency of f = 2 GHz
and with average velocities of v = 5 km/h (pedestrian move-
ment) corresponding to a channel coherence time of 108 ms.
We then ran DXL with an update period of � = 3 ms, and
we plotted the achieved sum rate  (t) versus the maximum
attainable sum rate  max(t) given the channel matrices H

k

(t)
at time t, and versus the sum rate that users could achieve
by spreading their power uniformly over their antennas. As a
result of its high convergence speed, DXL tracks the system’s
sum capacity remarkably well, despite the changing channel
conditions; moreover, the sum rate di↵erence between DXL and
the uniform profile shows that this tracking is not an artifact of
the system’s sum capacity falling within a narrow band of what
could be attained by spreading power uniformly over antennas.

V. Conclusions
In this paper, we introduced a damped exponential learning

(DXL) process for rate maximization which achieves the sum
capacity of uplink MIMO systems even under imperfect and
delayed CSI. The DXL method converges arbitrarily close to
the system’s optimum transmit profile, and its convergence
speed can be controlled by tuning the users’ learning rate; as
a result (and in contrast to traditional water-filling methods),
DXL converges within a few iterations, even for large numbers
of users and/or antennas per user, and even in the presence
of arbitrarily large estimation errors or update asynchronici-
ties. Importantly, DXL can be extended to a wide range of
semidefinite problems; we focused here on the MIMO MAC
for simplicity, but in the future, we aim to address more general
channel models (such as the interference channel).
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(a) Learning with an average relative error level of 10%.
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(b) Learning with an average relative error level of 100%.

Fig. 2. The robustness of DXL under imperfect CSI: in contrast to water-filling, DXL converges even in the presence of very large measurement errors.
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Fig. 3. The performance of DXL under changing channel conditions.
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