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Abstract—Drawing ideas from Riemannian geometry, we de-
velop a distributed optimization dynamical system for determining
optimum input signal covariance matrices in MIMO multiple
access channels. In this type of problems, standard (Euclidean)
gradient ascent approaches fail because the problem’s semidef-
initeness constraints are generically violated along the gradient
flow; however, by endowing the space of positive-definite matrices
with a non-Euclidean geometry which becomes singular when the
eigenvalues of the users’ covariance matrices approach zero, we
are able to derive a matrix-valued Riemannian gradient ascent
scheme which converges to the system’s optimum transmit spec-
trum. More to the point, we show that by tuning the geometry of
the semidefinite cone, the algorithm’s convergence speed changes
significantly. As a result, for a specific choice of geometry (which
extends the well-known replicator dynamics of evolutionary game
theory to a matrix setting), our scheme converges within a few
iterations and users are able to track the optimum signal profile
even in the presence of rapidly changing channel conditions.

Index Terms—Distributed optimization; non-Euclidean gradi-
ent flows; Riemannian geometry; multiple access channel; MIMO.

I. Introduction

The massive deployment of multiple-input and multiple-
output (MIMO) technologies in modern wireless communi-
cation networks (ranging from 3G LTE, 4G and HSPA+, to
802.11n WiFi and WiMAX) has thrown into sharp relief the
need for distributed optimization methods that allow the users
of MIMO-enabled system to attain its performance limits. In
this often unregulated (and usually unlicensed) context, the
radio spectrum is shared by all users, so the intended receiver
of a signal has to cope with unwarranted interference from a
large number of transmitters (a factor which severely limits the
capacity of the wireless system in question). On that account, a
useful and widespread approximation is to start with the mutual
information for Gaussian input and noise, and to optimize the
input signal distribution of each transmitter in the presence of
interference from all other users.

An important channel model of this kind is the MIMO
multiple access channel (MAC) where a single receiver (con-
ceivably representing a set of colocated receivers or even a set
of non-colocated receivers, interconnected over a high-speed
backbone network) is called to decode the simultaneous signals
of several transmitters. From a theoretical point of view, the ca-
pacity of this channel is well-known [1], and the corresponding
semidefinite optimization problem is usually solved by water-

filling techniques [2], suitably adapted to mult-user environ-
ments [3, 4]. Unfortunately however, iterative and/or sequential
water-filling techniques rely on users updating their covariance
matrices in a round-robin fashion, so they converge very slowly
when the number of users is large; on the other hand, the
convergence of faster, simultaneous water-filling methods [5]
depends on the channels satisfying certain “mild-interference”
conditions that fail to hold even in orthogonal channels (e.g.
in the parallel MAC setting which was considered in [6] as a
reduced version of the full MIMO problem).

In view of the above, instead of taking a water-filling ap-
proach, we draw ideas from Riemannian geometry in order to
derive a distributed Riemannian gradient optimization scheme
for the MIMO sum capacity problem.1 To that end, we endow
the problem’s state space (a subset of the positive-definite cone)
with a spectral geometry which greatly increases the “cost” of
ascending the system’s sum rate function when the eigenvalues
of the users’ transmit spectrum become small. In this way,
our Riemannian gradient ascent (RGA) scheme is structurally
constrained to remain within the problem’s state space, all the
while increasing the users’ sum rate and eventually achieving
the system’s sum capacity. More importantly, the speed of this
convergence can be controlled by tuning the geometry of the
semidefinite cone, thus allowing users to achieve the channel’s
sum capacity within a few iterations (even for large numbers
of users and/or antennas per user); as a matter of fact, even in
rapidly changing channel conditions (due to e.g. fading), the
users are able to track the optimum transmit spectrum in a small
fraction of the channel’s coherence time.

II. SystemModel
Consider a vector Gaussian multiple access channel where a

finite set of wireless users k ∈ K ≡ {1, . . . ,K}, each equipped
with mk antennas, transmit simultaneously to a wireless base
receiver with n antennas. As is well-known, this system may be
represented by the familiar baseband model:

y =
∑

k
Hkxk + z, (1)

where y ∈ Cn denotes the aggregate message reaching the
receiver, xk ∈ Cmk is the message transmitted by user k ∈ K,

1In fact, the resulting optimization methods apply to a much wider class of
concave semidefinite problems; we only focus here on the MIMO MAC case
for the sake of concreteness and simplicity.



Hk ∈ Cn×mk is the associated n × mk (complex) channel matrix,
and z ∈ Cn is the noise in the channel, including thermal, atmo-
spheric and other peripheral interference effects, and assumed
to be a (zero-mean) circularly symmetric complex Gaussian
random vector with non-singular covariance (taken equal to I
after a change of basis).

In this setting, the average transmit power of user k will be

Pk = E
[
‖xk‖

2] = tr(Qk), (2)

where the expectation is taken over the codebook of user k and
Qk denotes the corresponding signal covariance matrix

Qk = E
[
xkx†k

]
. (3)

Then, assuming successive interference cancellation (SIC) at
the receiver, the maximum information transmission rate for
a given profile Q = (Q1, . . . ,QK) of covariance matrices is
achieved for Gaussian codebooks [1] and is given by:

Φ(Q) = log det
(
I +

∑
k HkQkH†k

)
, (4)

Hence, assuming users can only transmit with finite power
tr(Qk) = Pk, we are naturally led to the constrained sum rate
maximization problem:

maximize Φ(Q),
subject to Qk ∈ Xk (k = 1, . . . ,K),

(SRP)

where the feasible set Xk of covariance matrices for user k is

Xk = {Qk ∈ Cn×mk : Qk < 0, tr(Qk) = Pk}. (5)

III. Riemannian Geometry and Semidefinite Optimization

A crucial challenge in solving (SRP) is that the positivity
constraints Qk < 0 are implicit, so standard (Lagrangian)
steepest ascent methods do not readily apply: by following the
(Euclidean) gradient of the sum rate function Φ, the system may
(and generically will) violate the positivity constraints Qk < 0.
To counter this, our main tool will be a variant steepest ascent
method where ascending the gradient of Φ becomes more and
more “costly” as users approach the boundary of the state space,
thus prohibiting the users’ state variables (the signal covariance
matrices Qk) from violating the constraints of (SRP). In more
precise language, we will endow the state space X with a non-
Euclidean Riemannian metric (scalar product) which blows up
at the boundary bd(X) of X; then, by ascending the gradient of
Φ with respect to this new metric, the blow-up at the boundary
will keep solution trajectories in X, all the while ascending the
sum rate function and eventually converging to a point which
attains the sum capacity of the system.

The fundamental notion of (complex) Riemannian geometry
is that of a metric [7], i.e. a smooth assignment of a Hermitian
inner product to the tangent bundle of the space under con-
sideration (in our MIMO framework, the space of Hermitian
matrices and the positive-semidefinite cone respectively). In
specifying such a “Riemannian metric” one then also prescribes
the angles between tangent vectors, and thus the direction of
steepest ascent of a function (i.e. its gradient); accordingly, our

strategy will be to construct a well-behaved gradient scheme by
endowing the semidefinite cone with a suitable metric.

In the case of the cone C of m×m positive-semidefinite matri-
ces, a spectral metric which has attracted significant interest in
the literature (see e.g. [8] and references thererin) is the pairing

JA,BKQ = tr
(
Q−1AQ−1B

)
, (6)

where A,B ∈ Hm are m × m Hermitian matrices, “tangent” to
C at Q.2 The gradient of a function Φ : C → R with respect to
J·, ·K is then defined as the matrix grad Φ with the property

Jgrad Φ,BKQ =
d
dt

∣∣∣∣∣
t=0

Φ(Q + tB) = tr (DΦ · B) ∀B ∈ Hm,
(7)

where DΦ ≡ ∂Φ
∂Q∗ is the matrix derivative of Φ w.r.t. Q. In

particular, noting that (7) holds for all B ∈ Hm, then the
definition (6) of J·, ·K readily gives:

grad Φ = Q · DΦ ·Q. (8)

To tie things back to the sum-rate maximization problem
(SRP), note first that some matrix calculus gives

∂Φ

∂Q∗k
≡ Vk = H†kW−1Hk, (9)

where W = I+
∑
`∈K H`Q`H†` is the aggregate signal-plus-noise

covariance matrix at the receiver end. As a result, the matrix
derivative DΦ of Φ will be the direct sum DΦ =

⊕K
k=1 Vk,

denoted more simply by V = (V1, . . . ,VK). However, since the
feasible region X of (SRP) is also subject to the trace constraints
tr(Qk) = Pk, we will also need to adjust (8) by projecting
the Riemannian gradient (7) on the subspace defined by the
equations tr(Qk) = Pk. To that end, we have:

Proposition 1. The gradient ascent dynamics for Φ with re-
spect to the Riemannian metric (6) on X are:

Q̇k = QkVkQk −
tr(VkQ2

k)

tr(Q2
k)

Q2
k k ∈ K. (10)

Moreover, the gradient flow (10) remains in X for all t ≥ 0.

Sketch of proof: For the first part of our claim, it suffices
to show that JQ̇k,BkK = tr(VkBk) for any Hermitian matrix
Bk ∈ Hmk with tr(Bk) = 0 (simply note that the tangent space
to Xk consists of all traceless Hermitian matrices); this is easily
verified by a direct calculation. For the second part of our claim,
we then need to show the tangency requirement tr(Q̇k) = 0 and
the positive-definiteness qualification Qk < 0 for all t ≥ 0;
the first condition is again easily checked whereas the second
follows from Proposition 2 below.

In view of Proposition 1, it will also be important to deter-
mine the evolution of the eigenvalues and eigenvectors of the
users’ signal covariance matrices. Along these lines, we have:

Proposition 2. Let Q(t) be an interior solution orbit of the ma-
trix dynamics (10), and let {qkα(t),ukα(t)}, α = 1, . . . ,mk, be an

2Recall here that C is an open set in Hm, so its tangent space is isomorphic
to Hm (much as the tangent space to an open set of Rm is Rm itself.



eigen-decomposition of Qk(t), k ∈ K. Then, if Vk
αβ ≡ u†kαVkukβ

denotes the components of Vk in this basis, we will have:

q̇kα = q2
kα

(
Vk
αα −

(∑mk
γ=1 q2

kγ

)−1 ∑mk
β=1 q2

kβV
k
ββ

)
, (11a)

u̇kα = −
∑
β,α

qkαqkβ

qkβ − qkα
Vk
βα ukβ. (11b)

Sketch of proof: By writing qkαδαβ = u†kαQukβ and differ-
entiating, we obtain q̇kαδαβ = (qkα − qkβ)u†kα · u̇kβ + qkαqkβVk

αβ −

tr(Q2
kVk)/ tr(Q2

k)q2
kαδαβ, so our claim follows by rearranging.

Remark. To complete the proof of Proposition 1, note that (11a)
implies that if an eigenvalue of Qk becomes zero, then it stops
evolving; thus, no eigenvalue of Qk can become negative and
Qk(t) stays in Xk for all time.

The previous discussion is obviously specific to the Rieman-
nian metric J·, ·K, so a natural question that emerges is whether
we could consider a spectral metric other than (6). Armed
with a fair amount of hindsight, we will thus also consider the
following spectral variant of the Shahshahani metric:

〈A,B〉Q = tr(Q−1/2AQ−1/2B). (12)

This metric is so named because it extends the well-known
Shahshahani metric [9] which has important applications in
evolutionary biology and game theory [10]. Indeed, in the spe-
cial case where A,B and Q can be simultaneously diagonalized
giving vectors x, y and q ∈ Rm, (12) gives 〈x, y〉 =

∑
β xβyβ/qβ,

viz. the Shahshahani metric on the positive orthant Rm
++. How-

ever, owing to the 1/2 exponents in (12), it is not immediately
obvious that 〈·, ·〉 is indeed a metric; this is the subject of the
following lemma:

Lemma 1. The spectral product (12) is a smooth Riemannian
metric on int(C); in particular, for all positive-definite Q ∈

int(C), and for all A,B ∈ TQC, the pairing (12) satisfies the
following properties:

i. Bilinearity: 〈A, aB1 + bB2〉Q = a〈A,B1〉Q + b〈A,B2〉Q for
all a, b ∈ R (and similarly for the first argument).

ii. Symmetry: 〈A,B〉Q = 〈B,A〉Q.
iii. Positivity: 〈A,A〉Q ≥ 0 with equality if and only if A = 0.
iv. Smoothness: the assignment Q 7→ 〈·, ·〉Q is smooth.

Proof: Bilinearity and smoothness follow trivially from the
definition of 〈·, ·〉; as for symmetry, we have:

〈A,B〉Q = tr(Q−1/2AQ−1/2B)

= tr(BQ−1/2AQ−1/2) = tr(Q−1/2BQ−1/2A) = 〈B,A〉Q. (13)

Finally, as far as positive-definiteness is concerned, let S =

Q−1/4AQ−1/4 and note that 〈A,A〉 = tr(SS†) ≥ 0, with equality
if and only if S = 0, i.e. if and only if A = 0.

Then, as before, the gradient of Φ with respect to 〈·, ·〉 will be

grad(Φ) = Q1/2VQ1/2. (14)

Hence, to obtain the gradient ascent dynamics for Φ on X, we
only need to project (14) on the problem’s trace constraints:

Proposition 3. The gradient ascent dynamics for Φ w.r.t. the
spectral Shahshahani metric (12) on X are:

Q̇k = Q1/2
k VkQ1/2

k − P−1
k tr(QkVk). (15)

The state space X of (SRP) remains invariant under the flow
(15); in fact, with notation as in Proposition 2, we have:

q̇kα = qkα

(
Vk
αα − P−1

k
∑mk
β=1 qkβVk

ββ

)
, (16a)

u̇kα = −
∑
β,α

√qkαqkβ

qkβ − qkα
Vk
βα ukβ. (16b)

Proof: Similar to the proofs of Propositions 1 and 2.
Remark 1. Importantly, the eigenvalue evolution equation (16)
is equivalent to the well-known replicator dynamics of evo-
lutionary game theory [10] which were used in [11] to solve
(SRP) in the special case where the Qk are all diagonal (the so-
called parallel MAC case). In this way, (12) can be seen as a
direct extension of the replicator dynamics to a matrix setting.
Remark 2. It is also important to note that the eigenvalue
evolution equation (16) also appears in the matrix exponential
learning approach of [12] which takes the coupled form:

Ẏk = Vk (17a)

Qk = Pk
exp(Yk)

tr(exp(Yk))
. (17b)

However, even though the eigenvalues of Q(t) follow the same
evolution law under (17) and (15), its eigenvectors follow a
completely different law, so (17) and (15) evolve differently
over time.

IV. Convergence Analysis

In view of the discussion of the previous section, we are now
ready to state our main result:

Theorem 1. The system’s sum rate function Φ is weakly in-
crasing along the matrix dynamics (10)/(15); moreover, every
interior trajectory of (10)/(15) converges to a solution of (SRP).

Sketch of proof: A simple differentiation of Φ along
(10) and (15) yields dΦ

dt =
∑

k tr
(
∂Φ
∂Q∗k

Q̇k

)
= tr(Q−r/2 grad Φ ·

Q−r/2 grad Φ) ≥ 0, (where we are taking r = 2 for (10)
and r = 1 for (15)). This expression shows that Φ is weakly
increasing along (15) and (10); furthermore, it can be shown
that the concave objective Φ is also a Morse-Bott function (i.e.
the kernel of its Hessian coincides with the tangent space of
its solution set), so convergence to a solution of (SRP) follows
from Proposition 3.9 in [13].

Theorem 1 does not differentiate between the Riemannian
metrics (6) and (12): gradient flow dynamics taken with respect
to either metric converge to a solution of (SRP) from any
interior initial power profile Qk � 0, tr(Qk) = Pk. Nonetheless,
the rate at which the gradient flow converges depends strongly
on the metric being utilized.

For lack of space, we will only study here the behavior of
these two dynamics in a simple linearized single-user diagonal
system with one channel consistently better than the other,
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Fig. 1. Convergence of the RGA algorithm and comparison to water-filling methods.

modeled by the differential matrix V = diag(c, 0).3 In this way,
letting Q = diag(x, 1 − x) denote the corresponding power
allocation matrix, the dynamics (10) and (15) respectively give

ẋ = cx(1 − x), (18a)

ẋ = c
x2(1 − x)2

x2 + (1 − x)2 . (18b)

Both these equations can then be solved explicitly, yielding:

x =
(
1 + K1e−ct

)−1
≈ 1 − e−ct (19a)

x = 1
2 −

1
K2 + ct

+

√
1
4 + 1

(K2+ct)2 ≈ 1 −
1
ct
, (19b)

where K1 and K2 are constants depending only on initial con-
ditions and ≈ denotes asymptotic equality as t → ∞. Thus,
even though both dynamics converge to 1 (the end-point of the
gradient flow), they do so at vastly different rates: the replicator-
like dynamics (15) converge at an exponential rate and reach
an ε-neighborhood of the optimum point in time which is
O(log(1/ε)), whereas the quadratic dynamics (10) only reach
an ε-neighborhood in time O(1/ε).

In view of the above, the semidefinite optimization algorithm
that we will consider is:

Algorithm 1 Riemannian gradient ascent (RGA)
Require: Metric exponent r ∈ {1, 2}, initial transmit directions

ukα ∈ Cmk and eigenvalues qkα > 0,
∑mk
α=1 qkα = Pk.

t ← 0;
repeat

t ← t + 1;
for all k ∈ K do

{ukα} ←

{
ukα − δ(t)

∑
β,α

qr/2
kα qr/2

kβ

qkβ−qkα
Vk
βα ukβ

}
;

{qkα} ←

{
qkα + δ(t)qr

kα

(
Vk
αα −

(∑
γ qr

kγ

)−1 ∑mk
β=1 qr

kβV
k
ββ

)}
;

end for
until required accuracy is reached or transmission ends.

3By linearizing (10) and (15) near a stationary point, one can show that this
simple example basically captures the general case as well.

Remark 1. Depending on the exponent r = 1, 2 of the Rieman-
nian metric (6) or (12), we will refer to the above algorithm
as RGA-1 or RGA-2 respectively. Obviously, RGA-1 refers to
the Shahshahani gradient flow (15) while RGA-2 corresponds
to the quadratic metric (6) and the associated dynamcis (10).

Remark 2. As in distributed water-filling algorithms [3–5], the
only information requirements of the RGA algorithm is the
channel matrix Hk at the transmitter end and the aggregate
signal-plus-noise matrix W = I +

∑
` H`Q`Q†` at the receiver

end (which can then be broadcast to users, e.g. over a dedicated
frequency band or by appending it to acknowledgment packets).
That said, it is important to note that the update steps of RGA
no longer contain a linear search for the water level, so its
computational overhead is considerably lighter than that of
water-filling algorithms.

Obviously, the RGA scheme above is just an Euler discretiza-
tion of the gradient dynamics (10)/(15) with time-dependent
steps δ(t) which will be assumed to satisfy the “`2 − `1”
summability conditions of deterministic approximation, i.e. that∑

t δ(t) = ∞ and
∑

t δ(t)2 < ∞ (the gold standard being
δ(t) = 1/t). Under this assumption, we have:

Proposition 4. For any step sequence δ(t) satisfying
∑

t δ(t) =

∞ and
∑

t δ(t)2 < ∞, the algorithm RGA converges to a solution
of the sum rate maximization problem (SRP).

The proof is a standard application of deterministic approxi-
mation techniques to Theorem 1 (see e.g. [14]), so we omit it.
Instead, it is more important to note here that a vanishing step
size increases the convergence time of the algorithm in terms of
actual iterations needed to converge to a given accuracy level.
In practice however, the step size δ(t) can be taken constant
without negatively impacting the quality of the algorithm’s
convergence, all the while increasing its convergence speed –
cf. Section V below.

V. Numerical Simulations

To assess the convergence speed of the RGA scheme, we
simulated in Fig. 1(a) a MIMO MAC system consisting of
K = 5, 10, 25, 50 and 100 users, with a random number of



transmit antennas (uniformly drawn between 2 and 10), a
receiver with 5 antennas, and randomly drawn (but static once
picked) channel matrices H. We then ran RGA-1 and RGA-2
with a constant step from the same (random) initial conditions
and we plotted over time the normalized efficiency ratio:

eff(t) =
Φ(t) − Φmin

Φmax − Φmin
, (20)

where Φmin and Φmax are the minimum and maximum values of
Φ over X respectively, and Φ(t) is the users’ sum rate at time t.

We observe that RGA-1 achieves capacity within only a few
iterations (even for large numbers of users and/or antennas
per transmitter), and even though RGA-2 eventually achieves
capacity as well, it does so at a much slower rate. From these
simulations, we also see that a constant step size does not
jeopardize the algorithm’s convergence. In fact, by taking larger
step sizes, the algorithm’s convergence is sped up considerably:
as we show in Fig. 1(b) where we compare the performance
of our algorithm to simultaneous water-filling, RGA-1 with a
larger step size achieves 99% of the channel’s sum capacity in
a single iteration.

Finally, to account for more realistic channel conditions,
we also plotted the performance of RGA-1 in the presence of
Rayleigh fading, following the well-known Jakes model [15].
Specifically, in Fig. 2, we consider a MIMO MAC system with
3 receive antennas, 3 users with 2 antennas each, transmitting
at ν = 2 GHz and with average velocities of v = 5 km/h.
We then ran RGA-1 with an update period of δ = 3 ms, and
we plotted the achieved sum rate Φ(t) at time t versus the
maximum attainable sum rate Φmax(t) given the channel ma-
trices H(t), and versus the “uniform” sum rate that users would
have attained by spreading their power uniformly among their
antennas. Despite the channels’ fluctuations over time, RGA-1
tracks the channel’s capacity remarkably well; moreover, the
sum rate difference between the learned transmit spectrum and
the uniform one can see that this tracking is not an artifact of
all achievable sum rates falling within a very narrow band of
the maximum one. In fact, by performing a correlation analysis
of the maximum sum rate curve and the achieved one (inlay),
we see that RGA-1 tracks the channel’s sum capacity with a
delay of about 6 ms, meaning that users achieve capacity within
roughly 5% of the system’s coherence time (108 ms for a fading
velocity of v = 5 km/h).

VI. Conclusions and Future Directions

In this paper, drawing tools and ideas from Riemannian
geometry, we introduced two dynamic distributed algorithms
for solving concave semidefinite maximization problems in the
context of multi-user MIMO networks. The use of geometric
concepts naturally enforces the positivity constraints of the
users’ signal covariance matrices and ensures that as these
matrices are dynamically updated, the network’s users will
achieve the system’s sum capacity. These methods can be
easily generalized to MIMO optimization problems with other
constraints (such as spectral mask constraints), and their rapid
convergence ensures their robustness even in the presence of
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Fig. 2. Using RGA-1 to track the channel’s sum capacity in the presence of
Rayleigh fading conditions.

fading or measurement errors. Finally, we see that the choice of
metric plays an important role in the algorithm’s convergence
speed, so optimizing the choice of geometry is a project of
significant practical impact.
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