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Power Optimization in Random Wireless Networks
Aris L. Moustakas, Panayotis Mertikopoulos and Nicholas Bambos

Abstract

Consider a wireless network of transmitter-receiver pairs where the transmitters adjust their powers to maintain
a target SINR level in the presence of interference. In this paper, we analyze the optimal power vector that achieves
this target in large, random networks obtained by “erasing” a finite fraction of nodes from a regular lattice of
transmitter-receiver pairs. We show that this problem is equivalent to the so-called Anderson model of electron
motion in dirty metals which has been used extensively in the analysis of diffusion in random environments. A
standard approximation to this model so-called coherent potential approximation (CPA) method which we apply to
evaluate the first and second order intra-sample statistics of the optimal power vector in one- and two-dimensional
systems. This approach is equivalent to traditional techniques from random matrix theory and free probability, but
while generally accurate (and in agreement with numerical simulations), it fails to fully describe the system: in
particular, results obtained in this way fail to predict when power control becomes infeasible. In this regard, we
find that the infinite system is always unstable beyond a certain value of the target SINR, but any finite system
only has a small probability of becoming unstable. This instability probability is proportional to the tails of the
eigenvalue distribution of the system which are calculated to exponential accuracy using methodologies developed
within the Anderson model and its ties with random walks in random media. Finally, using these techniques, we
also calculate the tails of the system’s power distribution under power control and the rate of convergence of the
Foschini–Miljanic power control algorithm in the presence of random erasures. Overall, in the paper we try to strike
a balance between intuitive arguments and formal proofs.

I. Introduction

THE importance of transmitted power has made power control an essential component of network design ever
since the early development stages of legacy wireless networks. Power control allows wireless links to achieve

their required throughputs, minimizing the power used in the process and, hence, the interference induced on other
links. This increases the spatial spectrum reuse, as a result, the network capacity, and prolongs the battery life of
mobile users. For example, the introduction of efficient power control algorithms (both closed- and open-loop),
was one of the main improvements that were brought about in third generation CDMA-based cellular networks.
Likewise, substantial effort has been made to optimize the performance of future and emerging network paradigms
(such as ad hoc networks) by analyzing connectivity and transport capacity under power control [1–4]. As a result,
several algorithms have been developed that provably allow receivers to meet signal-to-interference-and-noise ratio
(SINR) requirements of the form SINR ≥ γ (where the threshold value γ is determined by the requested rate
r = log2(1 + γ) of each link) while minimizing power subject to feasibility constraints [5, 6]. However, while the
benefits of such algorithms are easy to evaluate in small networks or networks with simple geometries (e.g. with
transmitters and receivers located on a grid), their behavior in large-scale random networks has not been quantified
analytically.

The conditions for the feasibility of power control have been discussed extensively under general assumptions
[3, 7] but without characterizing the properties of the optimal power vector in a quantitative way. In contrast, using
the Laplace transform method, the authors of [4, 8] calculated the effects of fading, pathloss and random erasures
on the interference to a random receiver in both regular and Poisson random networks; in addition, the authors also
analyzed therein the effects of power control by inverting the pathloss and/or the fading coefficient of the direct link
of a given transmitter-receiver pair. That said, interference from neighboring transmitters is modeled as an effective
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medium without any feedback: as a result, the impact that increasing power in a given link has on its neighbors
(that also control their power in order to meet a target SINR value) is ignored.

A similar approach is taken by the authors of [9] who introduce a scheme to compensate for the fading coefficient
of the direct link between transmitter and receiver (but, again, without addressing the effects on neighboring links).
Such effects were partially included in the context of percolating networks in [10]; there however, the network was
initially assumed to percolate with all users transmitting at maximum power, and then reducing their power while
maintaining connectivity. In this way, only the links that are already connected transmit at their optimal power
level, without any guarantees to others.

Interference is a serious problem in dense WiFi networks, and it is also expected to remain a major issue in the
recently proposed femto-cell paradigm when such cells are deployed at a massive scale [11]. Due to their close
proximity, neighboring femto-cells may create interference to one another, so when a transmitter increases its power
to compensate for interference, it may precipitate a cascade of power increases which needs to be kept in check. As
a result, power optimization is crucial in the above scenarios; nonetheless, little progress has been made in finding
analytic performance estimates for random, interference-limited networks under power control [12].

In this paper, we present an analytical framework to quantify the optimal power characteristics of large random
networks in the presence of interference by introducing a number of methods from statistical mechanics. We begin
with a pure, ordered network in the form of an equally spaced square lattice of N transmitters, each with a receiver
located at a fixed distance in its (Voronoi) neighborhood. Randomness is then introduced in the network by removing
(“erasing”) each transmitter-receiver pair with probability e, leading to a network of (roughly) N(1− e) transceiver
pairs that are placed randomly on the original lattice. This thinned network is a plausible model for a cellular
network with random transmitter locations; it is also a reasonable model for a wireless network with intermittent
activity where a fraction e of the transmitters are inactive at any given time.

To derive an expression for the average transmitted power in a random network of this type, we employ the
so-called coherent potential approximation (CPA) approach, an approximate self-consistent method which was first
introduced in the study of disordered metals [13, 14]. The expressions obtained in this way turn out to be identical
to those obtained using random matrix theory (RMT) [15–17] and they agree with numerical results when power
control is feasible. However, they fail to account for the fact that an infinite system is always infeasible while a
finite network only becomes infeasible with increasing probability for larger values of the target SINR value γ.

As a result, even though the problem of determining the average transmit power under power control can be
reduced to the analysis of a large random matrix, traditional RMT methods are only approximately correct. The
shortcomings of such methods can be traced to the fact that the interference that each receiver observes is mostly
due to nearby sites, so it exhibits sizable spatial fluctuations. Consequently, the interference fluctuations at each site
do not vanish in the large system limit (as posited by RMT); in fact, these fluctuations persist and, in some cases,
end up dominating the behavior of the system. Instead, by modeling power control as a random walk in a random
medium, we show that the problem is equivalent to the so-called Anderson impurity model which was originally
introduced to describe the motion of electrons in random crystal lattices [18] and was later applied to the study of
diffusion processes in disordered media [19]. Using this equivalence, we obtain analytic results for the probability
that the system becomes infeasible and we are also able to estimate the tails of the distribution of power in the
system under power control.

Even though we work with a specific network model, we will argue throughout the paper that this paradigm is
generic for power controlled networks when interference and randomness both play a significant part. In fact, one
of the main contributions of the paper is the introduction of tools and methodologies from the physics of disordered
metals and the theory of random walks in random media to analyze such networks.

A. Summary of results

We will now provide an outline of the paper, while at the same time summarizing our main contributions. In the
main text of the paper, we try to use intuitive arguments –as opposed to strictly mathematics based ones, trying to
bring out the important connections between the physics of disordered systems and the power control dynamics of
random wireless networks. Most appendices, in contrast, are more rigorous and there we try to elucidate the details
of the proofs.

Our random network model is introduced in Section II, where we also establish the connection between the
erasure channel model of [15, 16], random walks in random media, and the Anderson impurity model. In Section
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III, we then focus on a specific one-dimensional network where only adjacent transmitters interfere with each other
– the so-called Wyner model [20]. In this simple, yet insightful framework, we are then able to compute all relevant
quantities exactly: in particular, we calculate

1) The eigenvalue distribution of the system’s pathloss matrix, which determines its feasibility (Section III-A);
2) The system’s probability of infeasibility – which, for large but finite systems, turns out to be asymptotically

proportional to the tails of the system’s eigenvalue distribution (Section III-C);
3) The tails of the empirical distribution of powers in the optimal power vector (Section III-D).

Accordingly, the Wyner model will serve as a reference point throughout the paper, and will motivate the results
of later sections: for example, the failure of traditional RMT techniques will be established by comparing the exact
density of states of the Wyner model (a distribution with a countable dense set of atoms) to that derived by RMT
methods.

In Section IV, we introduce the so-called coherent potential approximation (CPA) method and we show that it is
equivalent to RMT (although more general in scope). Despite its approximate nature, we demonstrate numerically
that it is an extremely accurate predictor of both the average optimal power and the average variance of the power
vector of the network when power control is feasible. That said, CPA exhibits a fundamental shortcoming in that
it fails to predict the probability of instability of the network when operated beyond the stability region of the
pure, deterministic system – an instability which stems from the infrequent appearance of small eigenvalues in the
random, disordered system.

In Section V we show that power control in the network is always infeasible in the infinite system regime beyond
a particular value γc of the SINR target, irrespective of the degree of randomness in the network. Nevertheless, for
large (but finite) networks, this instability can be described by the so-called Lifshitz tails of the network’s cumulative
density of eigenvalues. In Section V-B, we show that the probability that power control becomes infeasible in a
finite (but large) network is proportional to the cumulative density of eigenvalues N(λ) of the corresponding infinite
system, thus providing an infeasibility criterion for network operation. In particular, we find that the tails of this
distribution scale as N(λ) ∼ (1 − e)kλλ−qλ (to exponential accuracy), where both kλ and qλ depend on the system’s
dimensionality d and the pathloss exponent α in an explicit way (that we also calculate).

Even though the average variance of the power vector calculated in Section IV provides an indication of how
large the optimal transmitting powers of the systems can become, it is also important to have an understanding
of how often much higher powers occur. In Section VI, we obtain a lower bound for the tails of the empirical
distribution of the optimal power vector, and we find that the cumulative power distribution P(p) scales as (1−e)R(p)

for α > d+2 (where R(p) is a power law which depends on α and d); in particular, in the near-critical limit γ → γ−c ,
we find that P(p) scales as (1− e)kp pd/2

for e ≥ 1/2. We argue that this bound appears to be tight, but we have not
been able to prove this; that said, in Appendix D we do establish a tight upper bound for 2-dimensional systems
where only adjacent transmitters interfere.

Finally, in Section VII, we analyze the long-term behavior of the Foschini–Miljanic power control algorithm [5]
and we examine its rate of convergence to the optimal power vector in the presence of random erasures.

B. Notational conventions

Throughout the paper, we will use the asymptotic equality notation “ f (x) ∼ g(x) near x0” to mean limx→x0 f (x)/g(x) =

1; when x0 = +∞, we will write more simply “ f (x) ∼ g(x) for large x”. To maintain the intuitive flow of the
discussion, we will sometimes not distinguish between finite- and infinite–dimensional operators in the main text;
whenever such a distinction is important, it will be detailed in a series of appendices at the end of the paper. Also,
if Λ is a discrete set, the real space spanned by Λ will be denoted by �Λ and the basis vector of �Λ corresponding
to m ∈ Λ will be denoted by em. Finally, we will use � to denote the indicator function which takes the value 1 if
its argument is true and zero otherwise.

II. Model description

A. Definitions and connection to random walks

We start by defining the basic quantities of the problem and establishing a deep connection between power
control and random walks of a particle in a random medium (a connection which will be crucial for later sections).
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Consider a general network with N transmit-receive pairs. Let fi j be the channel coefficient, or power gain,
between transmitter i and receiver j, and let pi denote the transmit power of transmitter i. We then assume that
every transmitter adjusts their power to meet the target SINR criterion

SINRk ≡
pk fkk

σ2 +
∑

j,k p j f jk
≥ γk, (1)

where γk denotes the threshold SINR of the k-th transmitter–receiver pair and σ2 is the thermal noise level at the
receiver. This inequality can then be written in linear form as

γ−1
k fkk pk −

∑
j,k

p j f jk ≥ σ
2, (2)

or, more concisely, as
Mp < σ2u, (3)

where u = (1, . . . , 1) is a vector of ones, p = (p1, . . . , pN) is the network’s power vector, and the matrix M ≡M(γ)
is defined in components as:

Mi j =

γ−1
i fii if i = j,
− f ji if i , j.

(4)

We will then say that power control in the network is feasible [3], if there exists a finite positive vector p∗ which
saturates the constraints (3); in particular, if M is invertible, we will have:

p∗ = σ2M−1u. (5)

In the seminal paper [5], it was shown that the power control dynamics

dpk

dt
= σ2 +

∑
j,k

p j f jk − γ
−1
k fkk pk (6)

converge to the power vector p∗ (if it exists), which saturates the inequalities in (2) – assuming of course that their
feasible set is not empty. In matrix form we can simply write

ṗ = −Mp + σ2u, (7)

so the corresponding stationary solution is simply p∗. In this way, (6) may be viewed as the evolution of a population
of particles spread over a point lattice (indexed by i = 1, . . . ,N) with constant birth rate equal to σ2, where fi j is
the particle transition rate from site j to site i and − fiiγ−1

i represents the rate of absorption at each site i = 1 . . . ,N.
The optimal power vector p∗ describes the stationary distribution of the process. This interpretation will allow us
to view power control as a random walk process, and will be crucial in what follows.

B. Networks without disorder

We begin with our model of an ordered network, namely a regular, deterministic network consisting of N
transmitters situated on the nodes of a regular d-dimensional lattice (d = 1, 2). For concreteness, in two dimensions,
we will focus on square lattices with inter-neighbor distance ` and we will assume that each receiver is located at
distance δ from the corresponding transmitter (see Fig. 1).

More precisely, let L be a positive integer and let Λ ≡ �L× · · · ×�L = �d
L denote the d-fold product of the cyclic

group �L = {0, 1, . . . , L−1} of integers modulo L. The elements of Λ will be indexed by i = 1, . . . ,N ≡ |Λ| = Ld so
that mi = (mi,1, . . . ,mi,d) denotes the position of the i-th transmitter on Λ and addition or subtraction of mi,m j ∈ Λ

is taken modulo L.
In this context, our model for the network’s channel coefficients (averaged for fading) will be:

fi j = f (mi −m j) ≡
δα

(|mi −m j|
2`2 + δ2)α/2

, (8)

where
a) The pathloss exponent α > d(= 1, 2) expresses how fast the channel strength decays as a function of distance.
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δ

Fig. 1. Schematic of a random wireless network: circles correspond to transmitters, while squares to receivers; the faded squares represent
transmitter-receiver pairs that have been “erased” and are thus inactive.

b) δ denotes the distance between a transmitter and its intended receiver.
c) ` represents the physical distance between elements of Λ.
d) The function f (m) = δα(|m|2`2 + δ2)−α/2 describes the pathloss between a transmitter and a receiver located at

the points in the lattice Λ with distance m apart.
This ordered network model will be crucial to our analysis, so a few remarks are in order:

Remark 1. A simplifying assumption in (8) is the dependence on the distances between transmitters and receivers:
indeed, (8) is technically correct only when each receiver is positioned vertically to the space spanned by the
transmitter lattice Λ (a line for d = 1 and a plane for d = 2) (see for example [7]). Nevertheless, (8) exhibits the
correct behavior for mi = m j as well as for |mi −m j| � δ/` thus, given that we will be focusing on the case where
interference is relevant, the exact location of interferers far away is not important. Moreover, when the pathloss
exponent α has to be estimated by curve-fitting large amounts of data with sizable errors, the error induced by the
perpendicularity assumption in (8) becomes negligible when compared to the estimation error for α [22], so this
approximation is harmless in the large system limit.

Remark 2. It should be mentioned here that the periodicity assumption of taking addition modulo L in Λ was
introduced in (8) purely for convenience: in the large system limit that we will focus on, boundary effects that
would occur from embedding Λ in �d instead of a d-dimensional torus can be effectively ignored when α > d
because each line of the matrix is absolutely summable so the approximation error from (8) becomes negligible
[21].
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C. Average power and feasibility

The first metric that we will consider for the optimal power vector p∗ is the average power per node, which can
be expressed (5) as

pavg = N−1
N∑

i=1

p∗i = σ2N−1
N∑

i=1

[
M−1u

]
i

(9)

= σ2N−1u>M−1u

where u = [1, . . . , 1]>. Clearly, for pavg to be well-defined, the eigenvalues of the inverse matrix must be themselves
positive, so it will be important to analyze the eigenvalue structure of M. To that end, note first that the eigenvalues
of M will be real on account of M being real and symmetric.1 Furthermore, given that the modular arithmetic of
Λ allows us to view M as a generalized circulant matrix indexed by m ∈ Λ [23], the eigenvectors of M will be
Fourier modes indexed by the row vector

q =
2π
L

(k1, . . . , kd) , k1, . . . , kd ∈ �L. (10)

The eigenvalue µ(q) corresponding to the index vector q will then be the associated Fourier transform of any line
of M, i.e.

µ(q) = γ−1 −
∑

m∈Λ\{0}

δαeiq·m

(|m|2`2 + δ2)α/2
. (11)

Accordingly, the minimum eigenvalue of M (corresponding to the eigenvector u) will be:

zγ = Mii +
∑

j,i
Mi j = γ−1 − γ−1

c , (12)

where
γ−1

c =
∑
j,i

fi j =
∑

m∈Λ\{0}

δα

(|m|2`2 + δ2)α/2
. (13)

In a network of infinite size, γc is finite if and only if α > d; the optimal power vector of the system will then be

p∗ = z−1
γ σ

2u (14)

leading to average power
pavg = z−1

γ σ
2. (15)

Hence, for the system to be well-defined and feasible we need zγ > 0 or, equivalently:

γ < γc. (16)

For simplicity, it will be convenient to shift the spectrum of M to positive values by introducing the positive-
semidefinite matrix H0 via the equation

M = H0 + zγI. (17)

In view of (11), the eigenvalues of H0 will then be

ε(q) =
∑
m∈Λ

δα
(
1 − eiqT m

)
(|m|2`2 + δ2)α/2

, (18)

so the feasibility of the optimal power vector p∗ will be determined by the behavior of ε(q) for small |q| (i.e. by
the lowest eigenvalues of H0).

For α ≥ d + 2, an asymptotic expansion of ε(q) yields

ε(q) = t2|q|2 + O(|q|4) (19)

1This is actually one of the main reasons for choosing the model (8).
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with

t2 =
1

2d

∑
m

δα|m|2

(|m|2`2 + δ2)α/2
. (20)

On the other hand, for d < α < d + 2, the series (20) for t2 is no longer summable; instead, using the Poisson
summation formula, it can be shown that the leading order asymptotic expression for ε(q) will be of the form

ε(q) = tα−d |q|α−d + O(|q|2) (21)

where tα−d is a computable constant. Thus, with a fair degree of hindsight, it will be convenient to introduce here
the effective pathloss exponent

αeff ≡ min{α, d + 2} (22)

and the corresponding leading order coefficient

teff ≡

tα−d if α ∈ (d, d + 2),
t2 if α ≥ d + 2.

(23)

In this way, (19) and (21) may be written more simply as:

ε(q) ∼ teff |q|αeff−d for small |q|. (24)

D. Random networks: disorder and erasures

There are two ways of introducing randomness (disorder) in the network model of the previous section. First,
the target SINR γk of each user (and hence, the corresponding rate) may be random at each site; second, a random
fraction of the transmitters could be turned off (“erased”) at any given time. The former type of randomness can be
analyzed in conjunction with the latter but, due to space limitations, we will defer this analysis for the future. In
the present paper, we will only focus on erasures, which will be introduced in two different (but equivalent) ways.

1) The Anderson model: The first “erasure” procedure that we will consider may be described as follows: first, the
sites to be turned off are chosen at random with a fixed erasure probability e ∈ [0, 1]. Then, the optimal transmitting
power pk of a transmitter which is to be switched off is set to 0 by setting fkk = +∞ for the corresponding channel
strength between the k-th transmitter and its intended receiver. Indeed it is not hard to see that when fkk becomes
arbitrarily large in (2), the SINR target constraint for the k-th link may be met with arbitrarily small power pk.
Formally, consider the random diagonal matrix

E = diag(e1, . . . , eN) (25)

with random i.i.d. entries ei ∈ {0, 1} such that

�(ei = 1) = e,

�(ei = 0) = 1 − e.
(26)

Erasures are then introduced by replacing H0 in (17) with

HV = H0 + VE ≡ H0 + V, (27)

with matrix elements EV,i j = H0,i j + Veiδi j, where V = VE and V > 0 is a large positive parameter which turns off

the sites determined by E in the limit V → ∞. In particular, the quantity V plays the role of the excess channel gain
of a given transmitter to its intended receiver: since we are interested only in optimal power solutions which assign
finite positive transmitting power to each site, the limit V → +∞ can then be taken in the end of the calculation of
the inverse matrix M−1 = (zγI + HV)−1.

The case of spatially random γk can be treated in a similar fashion, by including γ−1
k in V.

Remark. The matrix HV above has deterministic off-diagonal elements and diagonal disorder and it is known in
the physics literature as the Anderson model. This model was introduced by P. W. Anderson to explain localization
of particles (and waves) in random media [18], and it has since been extended to study random walks in random
media [24].
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In this context, the optimal power vector p∗ will be given by

p∗ = σ2[HV + zγI
]−1u, (28)

so its intra-sample average over non-erased sites can be derived by multiplying from the left by u> and dividing
with the expected number of non-erased sites N(1 − e), producing

pavg =
σ2

N(1 − e)
lim

V→∞
u>

[
HV + zγI

]−1u. (29)

As a result, via spectral decomposition, pavg may be expressed directly in terms of the eigenvalues and eigenvectors
of the random matrix HV as

pavg =
σ2

N(1 − e)
lim

V→∞

∑
s

|u>s u|2

λs + zγ
, (30)

where λs ≡ λs(HV) denotes the s-th eigenvalue of HV and us is the corresponding eigenvector (note that u is itself
an eigenvector in the absence of erasures). The effect of the V → ∞ limit above can be appreciated by invoking
GershgorinâĂŹs circle theorem, which tells us that for large V and a given realization of the randomness E with
K ≈ Ne ones in E, the spectrum of HV will consist of K large eigenvalues of order O(V) and and the remaining
ones are O(1) in V . Hence the former will not play any role in the power vector above.

In view of the above, the average optimal power will be finite and positive as long as the eigenvalues of the
matrix HV are large enough, i.e. λs + zγ > 0. More importantly, the analysis of [3, 7] (see Lemma 18.2.4 in [3])
readily yields the following stronger statement for the feasibility of power control:

Theorem 1. Power control is feasible if and only if HV + zγI � 0. Consequently, the probability of instability (or
infeasibility) for the network will be:

Pinst(γ) = �
[
λmin(HV) < −zγ

]
, (31)

where λmin(HV) denotes the minimum eigenvalue of HV .

This result provides a close connection between the feasibility of the system and the lower part of the spectrum
of HV . In fact, as an immediate corollary of Theorem 1, we obtain:

Corollary 1. The system is always feasible for γ < γc.

Despite their apparent simplicity, the results above do not provide any intuition on what happens in the network
for γ > γc and how feasibility breaks down for larger γ. In the next sections we will see that for γ > γc the system
becomes unstable (i.e. its powers explode) in the network configurations where the minimum eigenvalue of HV

becomes larger than −zγ. We will also calculate the probability for this to happen.
2) The erasure channel model: To make contact with previous work on the erasure channel [15–17], we will

also consider a different random network model and show that it is equivalent to the large V limit of (27). In
particular, for every transmitter-receiver pair that is to be “switched off”, we will set the corresponding column and
row elements of the channel matrix M to zero by considering the matrix

H = (I − E)H0(I − E), (32)

with matrix elements EV,i j = H0,i j(1− ei)(1− e j), and with E given by (26) as before. In this way, the multiplication
with I−E from the left and right, the “erased” sites are completely decoupled – and, hence, switched off. This has
the the effect of completely decoupling the erased sites, which are thus effectively switched off.

The previous discussion (e.g. the statement of Theorem 1) obviously still applies with HV replaced by H and
with the caveat that “minimum eigenvalue” should be interpreted as the “minimum eigenvalue over the range of
I−E” – simply note that the zero eigenvalues contributed by the erased sites should not be counted in (31). Thus,
given that the lower part of the spectrum of HV approaches that of H for large V (see Proposition 5 in Appendix
B), the two erasure models will be equivalent in the limit V → ∞.
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III. TheWyner model: Exact results

Our goal in this section will be to analyze the so-called Wyner model [20], a simple one-dimensional random
network where the asymptotic behavior of the optimal power vector can be calculated exactly. Thanks to this simple
model, we will have the opportunity to introduce several metrics for the behavior of the optimal power vector that
are at the core of our considerations; more importantly, the exact results obtained here will provide the intuition
and necessary groundwork to understand the asymptotic behavior of more general network models that require
significantly more sophisticated tools.

The Wyner model consists of a circular array Λ of |Λ| = N transmitters,2 located a fixed distance apart so that
only neighboring transmitters interfere with each others’ transmissions. Accordingly, the matrix H0 describing the
system in the sense of (17) will be a tridiagonal matrix with elements

H0
i j = 2t

[
δi j −

1
2
(
δi, j+1 + δi, j−1

)]
, (33)

where addition in i and j is taken modulo N, and the parameter t determines the interference level between users.
Comparing the above with (8), (13) and (20), it follows that the Wyner model (33) will have

γc = 1/(2t), t2 = t. (34)

Furthermore, since the system is one-dimensional and interference only comes from a site’s nearest neighbors,
erasures will simply partition the system into independent blocks of different (random) lengths, separated by sites
with zero power. In particular, in the infinite system limit, the distribution πr of the cluster length r ≥ 0 can be
shown to be exponential, i.e.

πr = e(1 − e)r. (35)

Thanks to this partition, we will calculate a) the eigenvalue distribution of H0 in the presence of erasures; b) the
resulting optimal power vector; c) the system’s instability probability (i.e. the probability of the optimal power
vector being infeasible); and d) the tails of the power distribution when power control is feasible.

A. Eigenvalue distribution

As we indicated in the previous section, the feasibility of the optimal power vector p∗ for a given erasure matrix
E will be determined by the spectrum of H = (I−E)H0(I−E). Accordingly, our aim here will be to determine the
system’s integrated density of states (IDS), i.e. the number of eigenvalues not exceeding a given level divided by
the size N = |Λ| of the system; formally, we let:

N(λ) = lim
N→∞

N−1|{λ′ ∈ spec(H) : 0 < λ′ ≤ λ}|, (36)

where spec(H) is the set of eigenvalues of the N × N matrix H (see Appendix B for a more detailed discussion).
Clearly, each realization of E partitions H0 into disjoint tridiagonal Tœplitz blocks of varying lengths, so the
eigenvalues corresponding to a block of length r will be:

εr(k) = γ−1
c

[
1 − cos

(
kπ

r+1

)]
, k = 1, . . . , r. (37)

In view of the above, the probability of observing a given eigenvalue may be calculated by averaging over the
possible block lengths r for which this eigenvalue may occur. To that end, since the probability of observing a
segment of length r in the infinite system limit follows the geometric distribution (35), some algebra yields the
following expression for the integrated eigenvalue density N(λ):

N(λ) =

∞∑
r=1

eπr

1 − e

r∑
k=1

�
[
λ ≥ γ−1

c

(
1 − cos

(
kπ

r+1

))]
=

∑
q∈�∩(0,1)

π̂`(q) �
[
λ ≥ γ−1

c (1 − cos(qπ))
]
, (38)

where

π̂` =
e2(1 − e)`−2

1 − (1 − e)`
, (39)

2Again, the effects of the geometry may safely be ignored for large N, so the system may be considered linear in the large N limit.
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and `(q) denotes the denominator of q in lowest terms.
To understand this expression, we note that the second sum in the first line of (38) counts the number of non-zero

eigenvalues that do not exceed λ in a block of length r. One then needs to normalize the expression with the average
number of eigenvalues, or, equivalently, the average block size e/(1 − e); finally, the expression for π̂`(q) results
from summing over all rationals of the form q = k/(r + 1) that correspond to an eigenvalue occurring in blocks of
different length.

The cumulative eigenvalue density (38) above has two interesting properties: First, the set of discontinuities of
N(λ) (corresponding to the atoms of the underlying eigenvalue distribution) is dense in [0,+∞): in particular, N(λ)
is discontinuous at all points of the form γ−1

c (1 − cos(qπ)), q ∈ � ∩ (0, 1), and is continuous otherwise. This is
consistent with the prediction that the cumulative density of eigenvalues is discontinuous for the one-dimensional
Bernoulli-distributed random potential above [25, 26].

Second, the infimum of the support of N(λ) is zero for all e > 0, a behavior which is intimately connected with
the infeasibility of power control in the system. However, very small eigenvalues correspond to very large (and
very rare) clusters that occur with probability of the order of (1 − e)rλ where

rλ ∼
π√
2γcλ

(40)

denotes the inverse of (37) for k = 1 (i.e. rλ is the size of the smallest cluster which supports the eigenvalue λ).
As a result, for small λ, the integrated density of eigenvalues becomes

N(λ) ∼ (1 − e)π(2γcλ)−1/2
. (41)

The importance of this expression will become clear below, where we show that N(λ) is proportional to the
instability probability for large (but finite) systems.

B. The optimal power vector

Owing to the partition of the system into erasure-free blocks, the optimal power at each point may be calculated
by noting that, in any given block of length r, the power control equations (2) may be rewritten more suggestively
as:

−
1
2
γ−1

c ∆(2) pk +
(
γ−1 − γ−1

c
)
pk = σ2, k = 1, . . . , r, (42)

where ∆(2) denotes the second-order difference operator ∆(2) pk = pk+1 + pk−1 − 2pk, and we are taking boundary
conditions p0 = pr+1 = 0 (recall that each end of the block is erased). Depending on the value of the target SINR
γ, we thus obtain three different solutions:

1) For subcritical γ < γc, we get the hyperbolic expression:

pk =
σ2

zγ

1 − cosh
[
κ
(
k − r+1

2

)]
cosh

(
κ r+1

2

)  , (43a)

κ = − arcosh(γc/γ). (43b)

2) At the critical value γ = γc, we get the quadratic solution:

pk = γcσ
2k(r + 1 − k). (44)

3) Finally, supercritical γ > γc leads to the elliptic solution:

pk =
σ2

zγ

1 − cos
[(

k − r+1
2

)
φ
]

cos
(

r+1
2 φ

)  , (45a)

φ = arccos(γc/γ), (45b)

which is obviously equivalent to the hyperbolic solution (43) with κ = −iφ.
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Fig. 2. Cumulative distribution of eigenvalues for the Wyner model. The system’s eigenvalues form a dense countable subset of [0, 2] but,
given the size of the simulated system, these discontinuities cannot be represented graphically. This figure demonstrates the failure of the
CPA expression obtained in Section IV (continuous line) to capture the exact structure of the distribution of eigenvalues in the system. For
our purposes, the inconsistency is most important in the lower left tails of the distributions.

Remark. We note here that the solutions (43)–(45) of the finite difference equation (42) may be mapped to the
solutions of the continuous differential equation

−
1
2
γ−1

c · p
′′(x) + (γ−1 − γ−1

c )p(x) = σ2, x ∈ [0, r + 1], (46)

with boundary conditions p(0) = p(r + 1) = 0. As we shall see in the next section, this last equation may be viewed
as a “large r” limit of (42) where the sites k = 0, . . . , r + 1 are approximated by a continuum of sites x ∈ [0, r + 1]
and the power vector pk by the power distribution p(x) (see also Appendix C). This approximation will be key to
the analysis of more general problems, so it is worth keeping in mind even in the exactly solvable Wyner model.
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C. Feasibility analysis and probability of instability

Obviously, for power control to be feasible, the components of the system’s optimal power vector p∗ (given by
(43) and (45) for the subcritical and supercritical regime respectively) must be finite and nonnegative. Since (43)
is positive for all k = 1, . . . , r,3 the optimal power vector p∗ will always be feasible if γ < γc (cf. Corollary 1).
On the other hand, for γ > γc, pk may take on negative values if φ > φc ≡

π
r+1 : indeed, the denominator of (45)

vanishes for φ = φc, so the optimal power vector p∗ will start becoming infeasible beyond the critical value φc.
The above criterion may be reformulated in terms of the length of each erasure-free block as follows: by (37),

the minimum eigenvalue of a block of length r such that π
r+1 < arccos(γc/γ) will satisfy the inequality:

εmin(r) = γ−1
c

(
1 − cos

π

r + 1

)
< γ−1

c (1 − γc/γ) = −zγ. (47)

As a result, for γ > γc, for a given realization of the erasure matrix E, power control will be feasible only if the
system’s largest erasure-free region (where the system’s smallest eigenvalue is encountered) satisfies the criterion
(47). Hence, in view of Theorem 1, the instability probability for a finite system of size N and target SINR γ > γc

will be:
Pinst(γ) = �(rmax > rc(γ)), (48)

where rmax is the maximum realized cluster size and

rc(γ) ≡
⌊
π
/

arccos
(
γc

/
γ
)⌋

(49)

denotes the minimum cluster size for which the infeasibility criterion (47) is satisfied.
The RHS of (48) may be evaluated explicitly to yield

Pinst = (1 − e)N
�
[
N > rc + 1

]
+ N

N∑
a=1

(−e)a−1(1 − e)arc
Γ(N − arc)

Γ(N − arc + 1 − a)Γ(a + 1)
,

(50)

where each term counts the number of ways that a blocks of rc non-erased sites can appear in a circle of length
N.4

Remark 1. As N → ∞, the probability of encountering arbitrarily large clusters approaches 1, so very large Wyner
networks will be infeasible almost surely. This prediction is consistent with (50) where, with a little algebra, one
can show that Pinst → 1 as N → ∞. Importantly, even though this result seems to depend crucially on the specific
structure of the Wyner model, we will see in Section V that this property remains true in a significantly more
general class of random networks.

Remark 2. For the instability probability to be small, rc(γ) has to be large and hence γ must be close to γc. In this
case, (50) may be expressed to leading order as

Pinst ∼ Ne (1 − e)rc(γ) ∼ Ne (1 − e)π/
√

2γc |zγ | , (51)

with the approximation being valid for rc � − log N/ log(1 − e) or, equivalently:

|
γc

γ
− 1| �

1
2

(
π log(1 − e)

log N

)2

. (52)

This shows that the instability probability in a network of size N is small whenever the target SINR value γ lies
within O((log N)−2) of the network’s critical threshold γc; in other words, if N is not too large, the parameter range
of γ for which power control remains feasible can be itself fairly large.

Remark 3. It is also important to note that the instability probability (51) is proportional to the tails of the integrated
density of eigenvalues N(−zγ) in (41). This is no coincidence: the instability probability is given by the cumulative
distribution function of the minimum eigenvalue of the system, which is in turn proportional to N(λ). This important
point will be made more precise in Section V-B.

3Simply note that cosh
(
κ
(
k − r+1

2

))
≤ cosh

(
κ r+1

2

)
for k = 0, . . . , r + 1.

4(50) was obtained by expressing Pinst as a sum over the possible positions of erasure-free regions, taking the z-transform, averaging over
the corresponding probabilities and taking the inverse z-transform of the result.
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D. Power distribution in the Wyner model

Thanks to the simplicity of the Wyner network model, we may also calculate the tails of the empirical distribution
of powers in the optimal power vector p∗, or equivalently the fraction P(p) of sites with power exceeding some
large value p. Since all sites are statistically equivalent, this distribution may be viewed as the probability that the
optimal power p0 at the origin exceeds p, i.e.:

P(p) = �[p0 ≥ p]. (53)

Now, given that the fraction of clusters of size r follows the geometric distribution (35) for large N, the distribution
of powers over the network may be written similarly to (38) as

P(p) =

∞∑
r=1

eπr

1 − e

r∑
k=1

�[pk > p]. (54)

The above expression is derived in a similar fashion as (38): We have taken into account the geometric distribution
of segment lengths and have normalized over the average segment length e−1 − 1. In addition, the second sum in
the above expression corresponds to the possible positions k = 1, · · · , r of the site located at the origin of the lattice
within a segment of length r.

As we saw in the previous section, in the supercritical regime γ > γc, there is a finite probability that the system
will be infeasible, so it only makes sense to analyze the distribution of powers for γ ≤ γc. To that end, we will
first consider the critical SINR target value γ = γc with pk given by (44).

Obviously, if we focus on the tails of the distribution (i.e. for powers p � σ2γc), only the terms with sufficiently
large r will contribute to the sum (54): in fact, since the maximum power for a segment of size r is roughly
σ2γcr2/4, (54) will only count the terms with r > rc(p) ≡

√
4p/(σ2γc). Hence, using the Euler-MacLauren formula

[27] to replace sums by integrals, we get

P(p) ∼
∫ ∞

rc(p)
e2(1 − e)r−1

√
r2 − r2

c (p) dr, (55)

where rc(p) =
√

4p/(σ2γc) and
√

r2 − r2
c (p) is the number of sites in a segment of length r with power greater

than p. This yields
P(p) ∼ A

√
rc(p) (1 − e)rc(p) (56)

for some constant A > 0 (independent of p), so the tails of the power distribution P(p) are again determined by
the rare event of observing an erasure-free region of size exceeding rc(p).

The subcritical regime γ < γc can be treated in the same way, the only difference being that the power in the
system will always be bounded by pmax = z−1

γ σ
2. When pmax is small there is no point in discussing the tails of the

distribution. However, the situation becomes quite interesting in the near-critical regime γc/γ−1 � 1 where powers
p � σ2γc are allowed. As before, p introduces a characteristic length rγ(p) which corresponds to the minimal
segment supporting power equal to p at its midpoint (i.e. the point of highest power in the segment); then, by
inverting (43) for k = (r + 1)/2, we obtain:

rγ(p) =

√
2
γczγ

· log
σ2 +

√
zγp(2σ2 − zγp)
σ2 − zγp

, (57)

and hence:
P(p) ∼ A′

√
rγ(p) (1 − e)rγ(p) (58)

This formula is quite interesting, because the exponent rγ(p) interpolates between rγ(p) ∼
√

4p/(σ2γc) for σ2/zγ �
p � σ2γc, and rγ(p) ∼

√
2/(zγγc)| log(1 − p/pmax)| → +∞ when p→ p−max.
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E. Bird’s eye view of the Wyner model

To sum up, it is worth pointing out here that the simple (but not simplistic) one-dimensional Wyner model carries
all the qualitative properties of the more general models that we will encounter in the following sections.

On the one hand, power control is feasible for all e ≥ 0 when the users’ SINR target γ is below the critical
feasibility SINR threshold γc of the pure, ordered Wyner network (e = 0). In this case, one obtains an explicit
expression for the average power per node, simply by summing over the distribution of erasure-free segments. On
the other hand, in the supercritical regime γ > γc, the infinite Wyner network becomes infeasible almost surely;
nonetheless, networks of finite size exhibit a finite instability probability, and this probability becomes exponentially
small when γ → γ−c . This instability is due to the occurrence of large, erasure-free regions, and the probability of
this rare event is proportional to the integrated density of states evaluated at λ = −zγ = γ−1

c − γ
−1 (in fact, these

rare, erasure-free regions are also responsible for the occurrence of atypically large powers in the optimal power
vector). In Sections V-B and VI, we will see that these mechanisms are responsible for the instability and large
power characteristics of more general networks as well.

IV. Average power via the coherent potential approximation

In this section, we will focus on the “bulk” characteristics of the network in the presence of randomness; in
particular, we will calculate the (intra-sample) average power per node and its variance by means of the so-
called coherent potential approximation (CPA) approach, an approximative methodology which has been applied
extensively in the physics literature to study the movement of electrons in disordered alloys [13, 14, 28]. For
simplicity, we will only show the intuition and the end results of the CPA method here; a more detailed discussion
of the derivation will be given in Appendix A where we also provide further pointers to the extensive literature on
the CPA method.

Importantly, even though CPA is not an exact method, it has enjoyed considerable success in calculating the energy
spectrum of systems with diagonal disorder, and its predictions become increasingly accurate when the number of
connections between different sites increases. It should also be mentioned that results obtained by the CPA method
turn out to be identical with those predicted in [15, 16] using tools and techniques from random matrix theory and
free probability theory: essentially, the self-energy Σ that is the cornerstone of the CPA method corresponds to the
R-transform in RMT, so CPA may be viewed as an approximative way of applying RMT methods.

To proceed, let GV be the Green’s function operator (often called the resolvent in RMT) associated to the matrix
HV = H0 + VE of (27), namely:

GV(λ) =
[
λI −HV

]−1
. (59)

In this notation, the intra-sample average optimal power of the system becomes

pavg = −
1

N(1 − e)
u>GV(−zγ)u, (60)

so we will calculate pavg by taking the expectation �[GV(λ)] of GV over all realizations of HV and then letting
V → ∞.

The first implicit assumption of the CPA method is that pavg becomes deterministic in the large N limit, i.e.
pavg → �[pavg] as N → ∞ (a.s.). With this in mind, we will replace each random diagonal element of VE in HV

with a so-called “self-energy” term Σ(λ) capturing the effects of all other sites in the network in a self-consistent
fashion (see Appendix A for a more detailed discussion of what “self-consistency” means here). In other words,
CPA is essentially a “mean-field” solution to the problem where interactions across different sites are replaced by
a “mean field” which measures the average effect of these interactions.

Apart from these caveats, we are now in a position to state the CPA equations (see Appendix A for details on
their derivation). To begin with, the average Green’s function operator in the CPA regime will be:

�[G(λ)] = G0(λ)
[
I − Σ(λ)G0(λ)

]−1 (61)

where
G0(λ) =

[
λI −H0

]−1
. (62)
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is the resolvent (Green’s function) operator in the absence of randomness and

Σ(λ) = �

[
Vei

1 − g(λ)[Vei − Σ(λ)]

]
=

eV
1 − g(λ)[V − Σ(λ)]

(63)

is the system’s self energy. Strictly speaking, this self energy corresponds to site i, hence the CPA recipe requires
only an averaging over the randomness of the given site. The implicit assumption is that all other sites have been
taken into account self-consistently and have been lumped into the diagonal element g(λ) of �[GV(λ)] (see Appendix
A), given by

g(λ) =
1
N

tr G0(λ − Σ(λ)) =

∫
dq

(2π)d

1
λ − Σ(λ) − ε(q)

. (64)

In this way, letting V → ∞ in (63) readily gives

Σ(λ) = −
e

g(λ)
, (65)

and hence, for λ = −zγ, (64) leads to the following implicit expression for the self-energy Σ ≡ Σ(−zγ):

e =

∫
Σ

Σ + ε(q) + zγ

dq
(2π)d . (66)

The above equation can be solved numerically to yield Σ(−zγ). Then, to evaluate the average optimal power we
may use (29) and the fact that u is proportional to the q = 0 eigenvector; doing just that, we get:

pavg =
σ2

1 − e
1

Σ + zγ
. (67)

Importantly, this equation is identical to the one derived in [17] under the (false) conjecture that the matrices E
and M are asymptotically free. Moreover, it is easy to see that the above result reduces to pavg = σ2/zγ in the limit
e → 0: for zγ > 0, the RHS of (66) vanishes only when Σ = 0, so (67) yields pavg = σ2/zγ. Similarly, for e → 1,
(66) gives (1 − e)Σ ≈ γ−1 leading to the non-interference value pavg = σ2γ.

Remarkably, the CPA approach also allows us to describe the fluctuations of the optimal power vector from its
average value. Indeed, for large N, the (intra-sample) variance of the optimal power vector will be

Var(p∗) =
1

N(1 − e)

∑
k
(pk − pavg)2, (68)

so, by employing (28), we will have∑
k

p2
k = σ4u>

[
zγI + HV

]−2u = −N(1 − e)
dpavg

dzγ
. (69)

By differentiating (67) with respect to zγ, we then obtain

Var(p∗) =
σ4

1 − e
1(

Σ + zγ
)2

∫
Σ

(Σ+zγ+ε(q))2 dq∫ ε(q)+zγ

(Σ+ε(q)+zγ)2 dq

−
eσ4

(1 − e)2

1
(zγ + Σ)2 , (70)

with Σ given by (66).

A. Numerical analysis and validation

To study the accuracy of the CPA appraoch, we will analyze here the validity of (67) and (70) for the average
optimal power and its variance via numerical simulations. In Figs. 3(a) and 3(b), we plot pavg for one and two
dimensional systems respectively, as calculated from (67) and as obtained by generating instances for E in (29)
versus the SINR threshold γ. As it turns out, the analytically calculated value of pavg is finite not only for γ < γc, but
also for a range of SINR target values γ > γc for which the erasure-free network (e = 0) is infeasible. Nonetheless,
(65) and (66) show that the CPA solution cannot be extended indefinitely: it eventually reaches a value of γ beyond
which the optimal power vector becomes infeasible.
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The agreement between the CPA solutions and the Monte Carlo data is excellent over a wide range of γ.
Nevertheless, for γ > γc, the behavior of the simulated system becomes sample-dependent: in particular, for any
given realization of E, the graph of pavg versus γ follows the CPA curve very closely until a certain random γ > γc

beyond which the two curves start to diverge, with the simulated network becoming infeasible soon after. We
illustrate this phenomenon from two different points of view in both Fig. 3(a) and Fig. 3(b). In Fig. 3(a), and for
each value of e, we plotted the curve pavg vs. γ that became infeasible at the largest value of γ from a sample
of 103 random realizations. In Fig. 3(b) we also plot the curve corresponding to the average value of pavg over
all realizations generated. This last curve terminates at the minimum value of γ at which some realization became
infeasible. Although both curves look identical, what is striking is the significant gap in the value of γ where the
first realization became infeasible, compared to the last. The good agreement between numerics and CPA appears
also in the case of the variance (70), which is plotted for both one- and two-dimensional networks in Fig. 4.

B. The breakdown of the CPA approach

Remarkably, even though the CPA expressions agree with the numerically generated data when the simulated
system is feasible, there exists a significant gap between the infeasibility threshold predicted by the CPA approach
and the largest value of γ where the simulated system breaks down. This is strongly reminiscent of our analysis
of the Wyner network model in the previous section: indeed, for γ > γc, the Wyner network becomes infeasible
with finite probability, related to the minimum eigenvalue of H becoming negative. In other words, while the bulk
behavior of the system is captured remarkably well by the CPA method, tail events are not.

The aim of the following sections will be to highlight this tail behavior; for now, we will only give an intuitive
explanation of why the CPA and RMT equations cannot be expected to obtain a result which remains valid for
all values of γ.5 Indeed, RMT typically addresses systems described by operators (or matrices) connecting all
states in a random way: in the context of matrices, this means that the randomness permeates the whole matrix,
so every site experiences the same, average environment. By contrast, randomness in our systems appears only
in the diagonal elements of the matrix, and as it turns out, this is not “enough” to apply an approach based on
a law of large numbers. In particular, since each site is connected to a finite number of sites, it experiences an
independent realization of the randomness and hence the behavior at different parts of the system will exhibit
significant fluctuations; as a result, it may be very misleading to replace a site’s local environment with an average
“mean field” quantity.6

This was first exemplified by Anderson [18] who suggested that averages may often be spurious, while the
distribution of rare events can be more important. The significance of tail events already appeared in the instability
analysis for the Wyner model in the previous section and it will be made clearer in the following sections where
we go beyond the CPA regime.

V. Stability analysis

In the previous section, the numerical validation of the CPA results showed that while the CPA equations match
numerical results very closely in most realizations of the network, power control becomes infeasible well before the
SINR threshold predicted by the CPA method. In particular, when the simulated network is large, this instability
occurs for some random, sample-dependent γ > γc. In this section, we will analyze the probability of such an
instability occurring: we will see that power control is always infeasible for γ > γc for infinite networks (Section
V-A), and we will also calculate the instability probability for finite networks (Section V-B).

A. Feasibility and instability in infinite networks

Corollary 1 shows that the system is always feasible if γ < γc, i.e. for all e ≥ 0 and for all L. In contrast, we
will now show that the infinite system is always infeasible if γ > γc:

Theorem 2. In the infinite system limit, power control is feasible if γ < γc and infeasible if γ > γc (a.s.).

5A similar version of the CPA equations was also derived in [29–31].
6This only makes sense in the large d limit discussed in[31].
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Proof. In view of Corollary 1, it suffices to consider the case γ > γc. To that end, consider a finite network of edge
length L and a cubic region with M � L sites per edge. Initially, we will ignore the surroundings of the smaller
region, which corresponds to setting all sites outside this region to zero. Let µmin ≡ µmin(M) be the minimum
eigenvalue of M in this smaller region. Since M is a Tœplitz matrix, we will have

µmin ≥ zγ = γ−1 − γ−1
c , (71)

where γc is defined as in (13), and the RHS corresponds to the minimum eigenvalue of M in the limit L → ∞
[21, 32]. Now, with γ > γc and limM→∞ µmin = γ−1 − γ−1

c < 0, there exists some Mγ such that µmin(M) < 0 for all
M ≥ Mγ. This means that for M ≥ Mγ, power control in this region is infeasible, as was to be shown.

Up to this point we have neglected the effects of neighboring sites outside the region in question. However, since
the power of each transmitter inside the smaller region will grow in the presence of other transmitters outside the
region, it follows that power control will be infeasible in the M-sized erasure-free region for M ≥ Mγ, even in
the presence of outside transmitting powers. As a result, if there exists an erasure-free region of size M ≥ Mγ the
whole system will be itself infeasible.

Now, let EM be the event that there are no erasures in any region of edge length M. Clearly, any fixed region of
size M will be erasure-free with probability pM = (1 − e)Md

; as a result, the network’s instability probability will
be bounded from below by the probability of EM, i.e.

Pinst(γ) ≥ �(EM) ≥ 1 − (1 − pM)(L/M)d
→ 1 as L→ ∞. (72)

We conclude that power control in an infinite network is infeasible for any target SINR which is larger than the
critical SINR threshold γc corresponding to an erasure-free network. �

Remark. It should be pointed out that the above analysis does not deal with the case γ = γc. Of course, any finite
network with γ = γc is feasible, because it has finite power even if it is completely devoid of erasures. Furthermore,
in the case of the Wyner model (Section III-D), we saw that even though the support of the optimal power vector
is unbounded for γ = γc, the probability of observing an infinite power value is zero. We conjecture that this holds
in general, and we will prove this assertion for some representative cases in Section VI.

B. Instability probability in finite networks: Lifshitz tails

The instability in the supercritical regime γ > γc that was established in the previous section concerns only infinite
networks. In finite networks, the numerical simulations of Section IV show that this instability is probabilistic in
nature: the average power is close to the one that was derived analytically using the CPA method until the system
becomes infeasible at a random, sample-dependent value of γ > γc. In this section we will quantify the instability
probability Pinst(γ) for γ > γc by building on the insights of Section III where we saw that the system becomes
unstable when rare, large erasure-free regions occur. In this way, we will show that instability events are always
local in origin, and we will characterize the associated instability probability by relating the size of these regions
to γ.

We begin by recalling the relationship (31) between infeasibility and the distribution of the minimum eigenvalue
of the matrix HV of the network, i.e.

Pinst(γ) = �
[
λmin(HΛ

V ) < −zγ
]
, (73)

where we emphasize the dependence on the size |Λ| = Ld = N of the network by writing HΛ
V instead of HV . Of

course, for finite V , sites are not really erased in the network – their power is simply reduced. Thus, to obtain the
instability probability for a network with bona fide erasures, we will need to take V → ∞ in (73) or, equivalently
(see Appendix B), to apply Theorem 1 to the erasure model (32) and write:

Pinst(γ) = �
[
λmin(HΛ) < −zγ

]
, (74)

where, again, we write HΛ instead of H to emphasize the dependence on the size of the network.
Of course, Pinst(γ) will be positive only if zγ < 0, i.e. when γ > γc; in that case, we need to look at the low-end

part of the spectrum of HΛ which we will study by means of its cumulative eigenvalue distribution. Formally, for
finite networks, we define the cumulative densities

NΛ(λ) = L−d |{λ′ ∈ spec(HΛ) : 0 < λ′ ≤ λ}|,

NΛ
V (λ) = L−d |{λ′ ∈ spec(HΛ

V ) : 0 < λ′ ≤ λ}|,
(75)
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where spec(·) denotes the spectrum of the matrices HΛ
V and HΛ, defined in (27) and (32), respectively. Then, in the

infinite system limit, we will have
N(λ) = lim

L→∞
NΛ(λ),

NV(λ) = lim
L→∞
NΛ

V (λ),
(76)

with NV → N as V → ∞ (see App. B for a detailed discussion).
Of the above quantities, the object of interest is NΛ for large (but finite) networks Λ; indeed, we have:

Lemma 1. Let λmin(HΛ) be the minimum eigenvalue of the matrix HΛ. Then:

�ω
[
NΛ(λ)

]
≤ �

[
λmin(HΛ) < λ

]
≤ N �ω

[
NΛ(λ)

]
, (77)

where the expectation �ω is taken over the realizations of the erasure matrix E of (26).

Proof: With �
[
λmin(HΛ < λ)

]
= �

[
NΛ(λ) > 1/N

]
, Markov’s inequality readily yields:

�(NΛ(λ) > 1/N) ≤ N �ω
[
NΛ(λ)

]
. (78)

For the leftmost inequality, a second application of Markov’s inequality then gives

�
[
NΛ(λ) = 0

]
≤ 1 − �ω

[
NΛ(λ)

]
, (79)

and our claim follows by noting that �
[
λmin(HΛ) < λ

]
= 1 − �

[
NΛ(λ) = 0

]
.

Remark. The above inequalities provide bounds for Pinst(γ) in terms of the averaged integrated density of states
�ω

[
NΛ

]
of HΛ evaluated at λ = −zγ. At first sight, these inequalities seem quite loose: indeed, for large N and fixed

λ, the RHS of (77) may exceed 1, so the rightmost inequality becomes trivial. Nevertheless, we will be interested
in the case where N and λ are such that N �ω[NΛ(λ)] � 1, and we will argue at the end of the section that the
rightmost inequality of (77) becomes tight in this case. Hence, for large but finite N, the instability probability will
be proportional to NNΛ(−zγ) ∼ NN(−zγ) with the proportionality constant depending only on λ.

In light of the above, we are left to calculate NΛ(λ) for large Λ, a quantity which we will approximate with
NV(λ) for large V (see Appendix B for a justification of this approximation). This last quantity has a long history
in statistical physics: in his study of the electronic properties of dirty semiconductors, Lifshitz conjectured the
correct form of the density of eigenvalues close to the edge of the spectrum using a truly insightful argument based
on the size of regions that are free of impurities [33]. Subsequently, a large corpus of sophisticated mathematical
techniques has provided a formal footing for the method (see e.g. [26, 34–38] and references therein), and our
instability analysis follows from applying these techniques to our random network model with erasures viewed as
impurities:

Theorem 3. Let N(λ) be the integrated density of states of the Hamiltonian matrix H of the random network model
(32). Then

lim
λ→0+

λd/(αeff−d) logN(λ) = log(1 − e) (teffε0)d/(αeff−d) (80)

or, equivalently:

logN(λ) ∼ log(1 − e)
( teffε0

λ

)d/(αeff−d)
(81)

where
a) d is the dimensionality of the network;
b) e is the erasure probability;
c) αeff = min{α, d + 2} denotes the system’s effective pathloss exponent as given by (22);
d) the leading order coefficient teff is given by (23);
e) the quantity ε0 ≡ ε0(α, d) is defined as

ε0 = inf{λmin(D) : D ⊆ �d, vol(D) = 1}, (82)

where λmin(D) is the lowest Dirichlet eigenvalue (over D ⊆ �d) of the linear operator:

L =

−∇2 if α ≥ d + 2,(
−∇2

)(α−d)/2
if d < α < d + 2,

(83)
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i.e. the infinitesimal generator of a standard Brownian motion on �d for α ≥ d + 2, or of a symmetric stable
process of order α − d for α ∈ (d, d + 2). In particular, for α > d + 2, we will have:

ε0 =

π2 for d = 1,
πk2

0 for d = 2,
(84)

where k0 ≈ 2.4048 is the first zero of the 0-th order Bessel function J0(x).

The convergence of NΛ to N then gives:

Corollary 2. With notation as in Theorem 3, the integrated density of states in a random network of size |Λ| = N
satisfies

logNΛ(λ) ∼ log(1 − e)
( teffε0

λ

)d/(αeff−d)
for small λ, (85)

with probability approaching one as N → ∞.

Remark. Just as the Laplacian operator −∇2 is the infinitesimal generator of a standard Brownian motion in �d,
the operator denoted as

(
−∇2

)(α−d)/2
is the infinitesimal generator of a d-dimensional symmetric stable process of

degree α − d < 2 [39]. Despite its similarity with the Laplacian, it is not a local operator and can be expressed
equivalently as [40] (see also Appendix C)

L φ = −

∫
D

φ(x + h) − 2φ(x) + φ(x − h)
|h|α

dh, (86)

The proof of Theorem 3 is quite technical, so we defer it to Appendix B; instead, in the remainder of this section,
we will provide a qualitative analysis based on Lifshitz’s original approach and the related analysis of Section III
for α > d + 2. Lifshitz’s key insight was to realize that very low eigenvalues close to the minimum of the spectrum
become exceedingly rare because they correspond to large regions without impurities (erasures) – this is so because
erasures create kinks in the corresponding eigenfunctions, and these tend to increase the eigenvalue. In this way,
the measure of eigenvalues below a given low eigenvalue λ becomes dominated by the probability of having an
erasure-free region D(λ) in the system such that λ is the minimum eigenvalue in D(λ), i.e.

N(λ) ∼ (1 − e)|D(λ)| , (87)

where the dependence of |D(λ)| on λ is to be determined.
At the boundary of D(λ), the corresponding eigenfunction vanishes due to the appearance of erasures, so the

eigenvalues within this region can be evaluated by diagonalizing H0 in D(λ). From (19), we know that the eigenvalues
of H0 close to the minimum one will be

ε(q) ∼ t2|q|2. (88)

Hence, by dimensional analysis, the value of |q| for the minimum eigenvalue must be proportional to the inverse
R−1 of the (effective) radius of D(λ), implying that λ scales as R−2.7

This conclusion can be reached independently by noting that the discrete operator H0 can be approximated for
large |D| by the Laplacian; indeed, for any m ∈ D, we will have:

e>mH0p =
∑

m′∈Λ
pm′e>mH0em′ ∼ −

t2
R2 ∆p̂(x) (89)

where e>mH0em′ denotes the (m,m′)-th element of H0, pm stands for the power at transmitter located at m in Λ,
and p̂(m/L) = pm (for more details about this continuum approximation, see Appendix C). We thus obtain

|D(λ)| ∝ (t2/λ)d/2 , (90)

with the proportionality constant depending on the shape of D. Thus, in order to obtain the maximum of (87), we
need to minimize this constant.

This can be accomplished by means of the well-known Rayleigh–Faber–Krahn inequality [41], which states that
the lowest Dirichlet eigenvalue of the Laplacian over a domain with fixed volume is minimized when the domain

7The exact meaning of R will become apparent later, but for simplicity we take R to be the only characteristic lengthscale of the domain
D(λ).
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is a d-dimensional ball; equivalently, for a fixed value of λ, this isoperimetric principle implies that the minimal
erasure-free domain (and hence the most probable one) will be a d-dimensional ball. The relationship between
the minimum eigenvalue and the radius of this ball can then be evaluated by solving the eigenvalue problem
−t2∇2φ = λφ with Dirichlet boundary conditions φ|∂D = 0. By doing just that, we obtain:

λ = t2
ε0

R2 (91)

with ε0 given by (84) [42]. In this way, Lifshitz was able to obtain the following asymptotic expression for the
cumulative density of eigenvalues (correct to exponential accuracy):

N(λ) ∼ (1 − e)|D(λ)| = (1 − e)(t2ε0/λ)d/2
(92)

This result coincides with (80) for α > d + 2; by contrast, it is worth recalling that the cumulative density of
eigenvalues for the pure system vanishes asymptotically as N(λ) ∼ λd/2 – cf. (20).

Remark 1. To illustrate the exponential sensitivity of the above result to the occurrence of even a small number of
erasures in the domain D(λ), it is helpful to revisit the one-dimensional case of the Wyner model and estimate the
probability of occurrence of the eigenvalue λ. In the absence of erasures the minimum eigenvalue of a segment of
length R is t2ε0/R2. The appearance of even a single erasure, for simplicity in the center of the segment, increases
the eigenvalue of this region to roughly 8t2ε0/R2. Hence, such an event with approximately the same probability
will contribute to the eigenvalue density at a much higher value, where a region of size R/

√
8 which exponentially

more probable. Hence, such events with few erasures inside the region of interest are negligible.

Remark 2. We can use the Wyner model to also show why N(λ) is dominated (to leading exponential order) by the
occurrence of an erasure-free disc with minimum eigenvalue λ rather than its higher eigenvalues. As we saw above,
one way that this eigenvalue can occur is when an erasure free region of length R appears, where λ = t2ε0/R2. This
event occurs with probability of the order of (1 − e)R. However, λ can also occur in a size R′ of the erasure-free
region as the second lowest eigenvalue such that λ ∼ 4t2ε0/R′2. This means that R′ ∼ 2R, so the probability of
λ occurring as the second lowest eigenvalue is exponentially small compared to the case where λ is the lowest
eigenvalue.

Remark 3 (Accuracy of the IDS approximation). An important byproduct of this analysis is that in the low eigenvalue
regime, an eigenvalue λ appears only when an erasure-free region with volume roughly equal to |D(λ)| occurs in
the sample (recall that D(λ) is such that the minimum eigenvalue of the Laplacian over D(λ) is λ/t2). Also, since
the eigenfunction of such an eigenvalue is localized within D(λ), it will not depend on the random disorder beyond
this region. Therefore, since such erasure-free regions appear randomly and independently in the system, we may
estimate the probability �(λmin < λ) in (73) by assuming that there are O(N/|D(λ)|) independent regions in the
system, in each of which the probability that λ appears is of the order of (1 − e)|D(λ)| ∼ N(λ). As a result,

�(λmin < λ) ∼ 1 −
(
1 − N(λ)

) N
|D(λ)|

∼ A(λ)NN(λ), (93)

where A(λ) is a power-law function of λ, which does not depend on N. As a result, when NN(λ) � 1, we conclude
that

Pinst(γ) = �(λmin < −zγ) ∼ NN(−zγ). (94)

corroborating the tightness of the upper bound in (77).

C. Numerical validation in finite networks

We now turn to the numerical validation of our stability analysis for finite networks. As discussed above, the
instability probability corresponds to the probability that the minimum eigenvalue of the system is less than −zγ > 0
(Theorem 1). To obtain a better comparison with our theoretical predictions, it will be convenient to introduce the
parameter

y = − log(1 − e)
(
teffε0

|zγ|

)d/(αeff−d)

, (95)
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which corresponds to the function of zγ that appears in (80). Thus, for our numerical simulations to be consistent
with Theorem 3, the plots of log Pinst against y for different values of e must be concentrated around parallel lines
with negative unit slope (the axis intercept is irrelevant).

Fig. 5 presents our simulations for one-dimensional networks and demonstrates remarkable agreement with
Theorem 3. Just as in the case of the Wyner model (Fig. 2), the jump discontinuities that appear in the numerically
calculated IDS are due to the fact that the cumulative eigenvalue density of the system is not Hölder continuous to
any order in the limit V → ∞ [25, 26]. Finally, the plots corresponding to the long-range interaction regime α = 2
also show excellent agreement with our theoretical predictions.8

Fig. 6 presents our simulations for 2-dimensional networks for three different values of the erasure probability e.
For simplicity, we only simulated the case where only nearest neighbors interfere each other. In this case, although
the plots look straight, the convergence to the theoretical exponent is not so obvious. One important reason is that
the rare regions of interest are now 2-dimensional and hence susceptible to shape fluctuations that can be significant
when the radii are not sufficiently large. In fact, based on the analysis of [44], these surface fluctuations introduce a
subleading correction in the exponent of the cumulative density of eigenvalues which is of order O(R(λ)d−1), where
R(λ) is given in (91), i.e.

NV(λ) ∼ e−
t2ε0
R(λ)2 (1 − e)R(λ)d

ecR(λ)d−1
(96)

for some constant c > 0. Importantly, this last term does not appear for d = 1; on the other hand, for d = 2, it
introduces a subleading correction of order O(λ−1/2) in (80) which can be significant if λ is not sufficiently small.
In the inset of Fig. 6 we have subtracted such a term from the exponent and fitted the coefficient c, obtaining
asymptotic convergence to our theoretical predictions for small λ.

VI. Tails of the power distribution

Having analyzed the instability probability for finite random networks generated by (32) in the supercritical
regime γ > γc, we now turn to the tails of the power distribution for γ ≤ γc. This analysis is complementary to
that of Section IV where we calculated the “bulk” statistics of the optimal power vector; indeed, the importance
of analyzing the tails of the power distribution lies in that they serve as an alternative outage criterion: since the
available power at each transmitter is bounded, transmitters with assigned powers higher than their maximum power
will effectively be in outage.

In this section, we will present a lower bound for the tails of the power distribution using the intuitive approach
of the previous section, and we will argue that this lower bound becomes tight for large powers – an assertion
backed by our numerical simulations and the discussion of the Wyner model in Section III. On the other hand,
establishing an upper bound is significantly more difficult: using arguments from percolation theory, we obtain
a tight upper bound for the power distribution when interference is only caused by nearest neighbors and the
erasure probability e exceeds a critical value ec derived from an associated bond percolation model. This approach
however does not apply when the erasure probability is low, leaving a gap between the lower and upper bounds
in this regime. Nevertheless, we conjecture that the scaling obtained through the lower bound is tight: in fact, as
has been emphasized by Pastur for the case of the integrated density of states, the lower bounds obtained with our
methodology capture the correct behavior in all known cases [26].

A. A lower bound for the tails of the power distribution

We will begin by presenting a lower bound for the tails of the power distribution in the short-range regime
α ≥ d + 2. To that end, recall that the fraction P(p) of sites with power exceeding some value p in a large network
may be seen as the probability that the optimal power p0 at the origin exceeds p, i.e.

P(p) = �(p0 > p). (97)

We will thus say that a connected domain D ⊆ �d supports power p at 0 when a) 0 ∈ D; and b) p0 ≥ p for
all realizations of the erasure matrix E such that ∂D is erased while D remains erasure-free (i.e. E = 0 on D and
E = 1 on ∂D). Of course, if p is sufficiently large, arbitrarily small domains D containing 0 cannot support power

8The exact value of ε0 for d < α < d + 2 has not been calculated analytically, but is known to lie between ε0,` = 2 and ε0,h = 3π/4 ≈ 2.356
[43].
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p at 0: if D is small enough and every site outside D is erased (i.e. not transmitting), no point in D will have
high optimal transmitting power. Clearly then, if V ≡ |D| denotes the number of sites contained in D, there exists
some minimal value Vp such that D does not support power p at 0 if |D| < Vp. Therefore, if Dp ⊆ �

d is a domain
supporting power p at 0 with minimal volume |Dp| = Vp, we will have

P(p) ≥ �
(
E|Dp ≡ 0 and E|∂Dp ≡ 1

)
= (1 − e)Vp , (98)

so the problem boils down to determining the minimal volume Vp which supports power p at 0.9

Since we are interested in large powers for α > d + 2, we will focus on large domains Vp. In Section V-B
we related the volume of an erasure-free domain to the minimum eigenvalue of the Dirichlet Laplacian over the
domain; here, we need to relate it instead to the maximum power that can be supported therein. In Appendix D-A
we will provide details to the proof of the following proposition:

Proposition 1. Let α ≥ d + 2 and γ ≤ γc. Then, for large p:

P(p) ≥ (1 − e)Vp ∼ (1 − e)ΩdRd
p , (99)

where Ωd = πd/2/Γ(d/2 + 1) is the volume of the unit d-dimensional ball and Rp is given by

Rp = κ−1 arcosh
(

σ2

σ2 − zγp

)
for d = 1, (100a)

Rp = κ−1I−1
0

(
σ2

σ2 − zγp

)
for d = 2, (100b)

where I0 is the 0-th order modified Bessel function of the first kind and κ2 = zγ/t2. In particular, for γ → γ−c , we
will have:

P(p) ≥ (1 − e)Vp ∼ exp(−cd pd/2), (101)

where

c1 = −2
√

2t2/σ2 log(1 − e) for d = 1, (102a)

c2 = −4π log(1 − e)t2/σ2 for d = 2. (102b)

Remark. Comparing the above equations with (56), (57) and (58) we conclude that the above lower bound is tight
in the case of the (one-dimensional) Wyner model.

B. An upper bound for nearest neighbor interactions

We now provide an upper bound for the tails of the empirical power distribution P(p) summarized in Proposition
2. Technically, it only applies to the random network model where interference arises only from nearest neighbor
interactions. In the one dimensional case, this corresponds to the Wyner model discussed in Section III for which,
as mentioned above, the lower bound is indeed tight. In the two dimensional case, we can also obtain a matching
upper bound for the tails of the power distribution by using a site percolation argument (see Appendix D):

Proposition 2. For erasure probabilities e ≥ 1/2, we have:

P(p) ≤ exp(−ηπR2
p), (103)

where Rp is given by (100b) and 0 < η ≤ − log(1 − e).

By combining (101) and (103) for the case γ = γc, we then obtain the following growth estimate for the tails of
P(p):

Corollary 3. With notation as in Propositions 1 and 2, we have

c′d p . − logP(p) . cd p, (104)

for a constant c′d ≤ cd, whenever e ≥ ec(d) and p is large enough.

9Interestingly, even though the lower bound (98) appears lax for arbitrary p, it tightens considerably for large p. Indeed, when p is
large, only very large domains can support power p, and the minimal volume Vp will be exponentially more probable to occur than larger
erasure-free volumes; as a result, the leading contribution to P(p) from erasure-free domains will be coming from Dp.
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VII. Long-term behavior of the power control dynamics
So far, our analysis has focused on the statistical properties of the optimal power vector p∗ in (5), as well as the

conditions under which this vector (and power control in general) is feasible. In Section II-A we also discussed the
Foschini–Miljanic power control algorithm (6) which provably converges to p∗ – assuming that p∗ is itself feasible
– i.e. that γ < γc. Two related obvious questions which arise are the following:
(a) If the system is feasible (i.e. γ < γc), what is the rate of convergence of the power control dynamics (6) in the

presence of random erasures?
(b) On the other hand, if γ > γc, how long does it take for the powers in the network to start becoming very large?

To answer these questions, we will first analyze the solution of the Foschini–Miljanic power control dynamics
with M = HV + zγI for finite V: in the limit V → ∞, this solution will converge to the actual vector p(t) with
erasures at the sites with Eii = 1 in (26). Beginning with the subcritical case γ < γc, let ξV(t) = pV(t) − p∗V ; then:

ξV(t) = e−zγte−(H0+VE)tξV(0). (105)

Without loss of generality, we may focus on the origin m = 0; thus, projecting to the 0-th element ξV(0, t) of ξV(t),
we obtain:

ξV(0, t) = e−zγt e>0 e−(H0+VE)tξV(0) (106)

In the limit V → ∞, the LHS of this expression converges to ξ(0, t) = p(0, t) − p∗0 which is the quantity we are
interested in. Since zγ > 0, if the initial powers of the sites are bounded, the elements of ξV(0) will also be bounded
for all V; hence, since exp(−HV t)e0 � 0, we will also have |ξV(0, 0)| ≤ δ+ for some δ+ > 0, leading to

|ξV(0, t)| ≤ δ+e−zγte>0 e−(H0+VE)tu (107)

Taking the average of the above expression and the limit V → ∞ we get

�
[
|ξ(0, t)|

]
= δ+e−zγtÑ∗(t) (108)

where Ñ∗(t) is the average number of distinct sites visited by a random walk generated by H up to time t – cf.
(142). As a result, our analysis in Appendix B gives

Proposition 3 (Asymptotic behavior for subcritical γ < γc). If zγ > 0, we will have

lim
t→+∞

t−d/αeff

[
log�

[
|ξ(0, t)|

]
+ zγt

]
≤ −k(α, d), (109)

where the effective pathloss exponent αeff is given by (22) and k(α, d) by (147).

We demonstrate the tightness of the above inequality in a couple of cases. First, assume that all initial powers
are greater than σ2/zγ (which itself is an upper bound for the elements of pV(0)), so all elements in ξV(0) are
positive. Denoting with δ− > 0 the minimum of all elements of ξV(0), we will have

�
[
|ξ(0, t)|

]
≥ δ−e−zγtÑ∗(t) (110)

Corollary 4. If p(t = 0) � σ2/zγu, the inequality in (109) becomes an equality, i.e.

lim
t→+∞

t−d/αeff

[
log�

[
|ξ(0, t)|

]
+ zγt

]
= −k(α, d), (111)

The same can be shown when p(0) has zero elements and hence ξV(0) ≺ 0 for finite V . In the limit V → ∞, the
minimum of this vector will be zero; that said, the operation of exp(−HV t will project out such terms, so this issue
does not make a difference. Therefore, in this limit, the inequality (110) will hold for δ− ≤ 1/(zγ + λmax), where
λmax is the maximum eigenvalue of H0. We therefore expect that the equality in (111) should be tight in general.

As a result of the above discussion we see that the timescale at which the system converges to its optimal vector
p∗ is t ∼ z−1

γ for γ < γc. It interesting to compare this timescale with the corresponding one at which an infeasible
system with γ > γc becomes unstable, that is the powers of the system become very large. For concreteness, we
will focus on the case where γc|zγ| � 1 where we can make precise quantitative statements. To that end, it will be
more convenient to express the solution of (7) in the form

pV(t) = e−(zγI+HV )tp(0) +

∫ t

0
ds e−(zγI+HV )su

= I1(t) + I2(t) (112)
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where I1 and I2 correspond to the two terms in the top line. Taking the average over realizations and evaluating the
element at m = 0 in the infinite size and V limits, I1(t) will be bounded by pminÑ∗(t) ≥ I1(t) ≥ pmaxÑ∗(t), where
pmin and pmax are the minimum/maximum values of the elements in p(0), respectively. The resulting integrand in
the second term above can then be expressed as exp(−zγs)Ñ∗(s). For large times t, Ñ∗(t) ∼ exp(−k(α, d)td/αe f f ) so
the integral may be approximated by

�
[
I2(t)

]
∼

e−zγt−k(α,d)td/αeff if t � t∗,
O(1) if t � t∗,

(113)

where t∗ is the solution of the equation |zγ|t∗ − kt∗d/αeff = 0.
This result can also be obtained by an asymptotic evaluation of the integral of the asymptotic expression of the

integrand. To do this, one only needs to bound the small time behavior of the integrand (where its approximate
expression is not valid) and to control in a similar way the leading correction o(td/αeff ) to the asymptotic expression
of Ñ∗(t). Doing just that, we obtain:

Proposition 4 (Asymptotic behavior for supercritical γ > γc). For γ > γc, such that γc|zγ| � 1 we have

log�
[
|p(0, t)|

]
=

|zγ|t if t � t∗,
O(1) if t � t∗.

(114)

where the notation O(1) refers to |zγ| and

t∗ =
[
k(α, d)/|zγ|

] αeff
αeff−d (115)

the effective pathloss exponent αeff is given by (22) and k(α, d) by (147).

Remark. The above result shows that the characteristic time over which an infinite infeasible system becomes
unstable is given by t∗. This time for small |zγ| can be much larger than |zγ|−1.

VIII. Conclusions

In this paper we studied the optimal power vector that achieves an SINR target criterion in the presence of both
randomness and interference. In particular, we derived the statistics of the optimal power vector and the long-term
behavior of the Foschini–Miljanic power control algorithm [5] in the presence of random erasures. This was made
possible by mapping the problem of power minimization in the presence of nonlinear SINR constraints to the
so-called Anderson impurity model which can be analyzed by studying random walks in a lattice with randomly
placed traps.

Drawing tools and ideas from statistical physics, we calculated the average power and the variance of the optimal
power vector by means of the coherent potential approximation (CPA) approach, a method originally introduced in
the study of disordered metals. Despite the method’s approximative nature, our results are fairly accurate over a wide
range of parameters for the erasure density e in the network and the users’ target SINR value γ; on the other hand,
the CPA method fails to predict the infeasibility of power control in the system when the users’ target SINR exceeds
a certain critical value. To calculate the probability of the system becoming unstable, we then employed a different
set of mathematical tools in order to calculate the low eigenvalue density of the random system. Remarkably, the
same tools also allowed us to estimate the tails of the power distribution under power control, thus obtaining a
complementary outage criterion for networks with power-limited transmitters. In all cases, our predictions for the
system’s instability probability and its large power tail behavior were confirmed by numerical simulations. Finally,
we calculated the average long-term behavior of the Foschini–Miljanic power control algorithm in the presence of
random erasures, and we showed that its rate of convergence exhibits nontrivial time-dependencies.

Summing up, we have found that approximate methods (like CPA) provide good quantitative results for quantities
related to bulk properties of the system (such as the intra-sample average of the optimal power vector or its variance).
Nevertheless, rare events (such as instability or the occurrence of atypically large powers in the optimal power vector)
are conditional on the appearance of large regions with no inactive transmitters. These regions are then responsible
for the breakdown of the whole system, so our analysis focused on estimating the probability of observing such
erasure-free regions.
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We believe that the results (and insights) obtained in this paper regarding tail events may be applied to significantly
more general network models. For example, the probability that a finite-sized network can become infeasible may
be approximated by the probability of occurrence of large regions of a given critical size with closely packed users.
Due to the size of the paper however, we decided not to present applications of these methods to specific situations,
but to defer them instead to a future paper.

Appendix A
Derivation of the CPA equations

In this appendix we will motivate the derivation of the CPA equations applied in Section IV; the interested reader
can find more information on the method in [13, 14] and references therein.

Specifically, our aim will be to calculate the average resolvent operator �[G(λ)] (61). Unfortunately, methods
from random matrix theory cannot be applied here directly because the random matrix V is diagonal (nevertheless,
the end results will end up being related). As such, the main idea behind CPA is to replace the random matrix
V = VE in the resolvent operator G with a constant diagonal matrix Σ(λ)I so that the difference δV = V − IΣ(λ)
is “small” if we pick Σ in the right way.10

We thus start by defining the matrix

Ĝ(λ) =
[
(λ − Σ(λ)) I −H0

]−1
= G0(λ − Σ(λ)) (116)

where G0 is the resolvent operator in the absence of disorder:

G0(λ) = [λI −H0]−1 . (117)

The matrix G can then be expressed as

G(λ) =
[
Ĝ(λ)−1 − δV

]−1

= Ĝ(λ) + Ĝ(λ)δVG(λ)

= Ĝ(λ) + Ĝ(λ)TĜ(λ) (118)

where the so-called scattering matrix T is defined as

T = δV
[
1 − Ĝ(λ)δV

]−1
. (119)

Up to this point everything is exact, and by expressing (119) recursively and averaging over V (in δV) we can
obtain �[T]. This could be plugged into (118) to obtain �[G(λ)], but this is an impossible task in general. On
the other hand, if we assume that δV is small, we may expect that the second term in the last equation will also
be small on average. The CPA approach amounts to averaging over the randomness of a single random site i and
demanding that the corresponding diagonal element Tii of T vanishes on average. Hence, it is an approximation
which “hides” the effects of all other sites into Σ and then reduces to a self-consistent single site problem. This
somewhat obscure assumption leads to

�
[
Tii

]
= �

[
Vei − Σ(λ)

1 − (Vei − Σ(λ))g(λ)

]
= 0 (120)

where

g(λ) =
[
(λ − Σ(λ))I −H0

]−1
ii

=

∫
dk

(2π)d

1
λ − Σ(λ) − ε(k)

(121)

is the (shifted) unperturbed resolvent operator evaluated at the i-th site (the second equality follows from the fact
that the eigenvectors of G0 are Fourier modes).

Rearranging terms in (120) yields (63); together with (121), these two expressions constitute the CPA equations
for this system, leading to expression (65) for Σ(λ).

10This assumption is correct for full random matrices, but only approximately so for diagonal random matrices V.
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Appendix B
Derivation of the integrated density of states

Our aim in this appendix will be twofold: First and foremost, we seek to derive the low-energy asymptotic
expressions (80) for the IDS of the disordered Hamiltonian matrix H = (I − E)H0(I − E) in the large lattice limit
|Λ| = Ld → ∞. This will provide an approximation for the integrated density of eigenvalues for a large finite
system, which will then be used to approximate the instability probability in Section V-B. In so doing however,
we will also provide the necessary tools that are required in Section VII to estimate the long-term behavior of the
Foschini–Miljanic power control dynamics (6).

In a nutshell, our approach will be as follows:
1. First, we will approximate the IDS of the Hamiltonian H of the erasure model (32) by the Anderson Hamiltonian

HV = H0 + VE of (27) for large V and finite L (Section B-1).
2. In Section B-2, we will derive the IDS of H in the large system limit by exchanging the limits V → ∞ and

L → ∞: specifically, by working in the infinite system where H and HV are viewed as infinite-dimensional
operators (instead of as matrices of order N = Ld), we will harvest the integrated density of states N(λ) of H
from the density NV(λ) of HV by taking the limit limV→∞NV(λ).

3. To calculate limV→∞NV(λ), we will take the Laplace transform ÑV(t) =
∫ ∞

0 e−tλ dNV(λ) of NV(λ) and express
it as a Feynman–Kac path integral over a random walk in �d with transition probabilities determined by H0

(Section B-3).
4. In Section B-4, we apply the analysis of [40] to get an upper bound for the large t behavior of Ñ(t) by averaging

over the number of distinct sites visited by the random walk.
5. A matching lower bound for Ñ(t) is then obtained in Section B-5 by using techniques discussed in [45].
6. Finally, in Section B-6, we obtain the small λ behavior of N(λ) by inverting the Laplace transform Ñ(t) for

large t.
In what follows, we will make this roadmap precise by encoding each step in a series of lemmas.
1) Approximation of NΛ(λ) by NΛ

V (λ): First, to resolve any notational ambiguities, we will view H0, H =

(I − E)H0(I − E) and HV = H0 + VE as infinite-dimensional operators acting on `2(�d), and we will denote their
restrictions to the lattice Λ = �d

L by HΛ
0 , HΛ and HΛ

V respectively. With this in mind, we begin by showing that the
spectrum of HΛ can be approximated within O(1/V) by that of the Anderson Hamiltonian HΛ

V .
More precisely, let K = dim ker(I − E) denote the number of erased sites in the network model (32). Then, the

spectrum of HΛ will consist of K zero eigenvalues (representing the erased lines of I−E) and N − K non-negative
eigenvalues comprising the effective spectrum of H over the range of I−E. Similarly, for large V , Gershgorin’s circle
theorem shows that the spectrum of HΛ

V will consist of K large eigenvalues of order O(V) and N − K non-negative
eigenvalues of order O(1) which determine the stability behavior of the erasure model (27).11

Obviously, for the erasure models (27) and (32) to yield equivalent predictions, their effective spectra (defined
as above) must agree in the limit V → ∞. Indeed, we have:

Proposition 5. For large V > 0, the positive eigenvalues of HΛ
V lie within O(1/V) of the low-end eigenvalues of

HΛ. More precisely, the eigenvalues of HΛ over the range of I − E may be mapped bijectively to the eigenvalues
of HΛ

V that are of order O(1), and the error of this bijection is at most O(1/V).

Proof: By rearranging indices, the matrix HΛ
V = HΛ

0 + VE may be written as

HΛ
V =

(
A B
C D + VI

)
, (122)

with the component blocks A,B,C and D all being independent of V . Then, if v = (vA, vD) is the block decompo-
sition of an eigenvector of HΛ

V with eigenvalue λ, we will have:

AvA + BvD = λvA,

CvA + (D + VI)vD = λvD.
(123)

11Simply note that the Gershgorin discs corresponding to the erased diagonal elements will be centered around V and their radius will be
of order O(1).
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Solving for vD, we get vD = −
[
D + (V − λ)I

]−1CvA and hence:

AvA − B
[
D + (V − λ)I

]−1CvA = λvA. (124)

Coupled with the fact that A,B,C and D do not depend on V , Gershgorin’s circle theorem shows that if V is large
enough, K = rank(E) eigenvalues of HΛ

V will lie within O(1) of V while the N −K remaining ones will be of order
O(1). Thus, if λ is an O(1) eigenvalue, (124) yields AvA = λvA +O(1/V), and our claim follows by noting that HΛ

may be written in the form HΛ = diag(A, 0) after properly rearranging indices.
2) Exchanging the order of the limits L → ∞ and V → ∞: We now turn to the definition of the integrated

density of states of H and HV viewed as random infinite-dimensional operators on `2(�d). Fixing some finite cubic
lattice Λ = �d

L, let NΛ(λ) (resp. NΛ
V (λ)) denote the so-called prelimit function of H (resp. HV) on Λ, namely

the number of positive eigenvalues of HΛ (resp. HΛ
V ) not exceeding λ, normalized by the volume |Λ| = Ld of Λ;

formally, we let
NΛ(λ) = L−d |{λ′ ∈ spec(HΛ) : 0 < λ′ ≤ λ}|,

NΛ
V (λ) = L−d |{λ′ ∈ spec(HΛ

V ) : 0 < λ′ ≤ λ}|,
(125)

where spec(·) denotes the spectrum of the matrix in question. It is then well-known that NΛ and NΛ
V converge

vaguely12 to a nonrandom limit (see e.g. Theorem 4.4 in [45]), i.e. there exist nonrandom densities N and NV on
[0,+∞) such that

N(λ) = lim
L→∞
NΛ(λ),

NV(λ) = lim
L→∞
NΛ

V (λ),
(126)

at every continuity point of N and NV . Accordingly, the limit cumulative density N (resp. NV) will be called the
integrated density of states of H (resp. HV).

On the other hand, Proposition 5 shows that NΛ
V converges to NΛ as V → ∞, so it is natural to expect that NV

and N are similarly related. Indeed, the next lemma shows that the order of the limits V → ∞ and L→ ∞ can be
exchanged, so N can be harvested itself from the pointwise limit limV→∞NV :

Lemma 2. NV converges vaguely to N as V → ∞.

Proof: It obviously suffices to show that limV→∞NV(λ) = N(λ) for all λ ∈ (0,+∞) at which N is continuous.
To that end, let λ > 0 be a continuity point of N ; then, by Proposition 5, there exists εV > 0 with εV → 0 as
V → ∞ such that

NΛ
V (λ − εV) ≤ NΛ(λ) ≤ NΛ

V (λ + εV) for all λ. (127)

By a theorem of Craig and Simon [46], the integrated density NV of HV will be continuous on (0,+∞). Thus,
letting L→ ∞ in the sandwich above, we readily obtain NV(λ− εV) ≤ N(λ) ≤ NV(λ+ εV) – recall that the prelimit
functions NΛ

V and NΛ converge vaguely to NV and N respectively. Our claim then follows by taking the limit
V → ∞ as in the proof of Lemma 4.6 in [45].

3) The Laplace transform of NV: Our next step will be to calculate the Laplace transform ÑV of NV , that is

ÑV(t) =
∫ ∞

0 e−λt dNV(λ). (128)

To that end, we will use the Feynman–Kac path integral formula to express ÑV(t) as an integral over random walks:

Lemma 3. Let X(t) be a random walk on �d with generator H0, i.e.

�
(
X(t) = y | X(0) = x

)
≡ K(x, y; t) = e>x e−tH0ey, (129)

where ex, ey denote the basis vectors of `2(�d) corresponding to the sites x, y ∈ �d – i.e. e>x e−tH0ey denotes the
(x, y)-th element of e−tH0 . Then:

ÑV(t) = �ω e>0 e−tHV e0

= K(0, 0; t) · �ω�0,t
0,0 e−V

∫ t
0 �{X(s) is erased} ds, (130)

12That is, in the weak∗ topology of Radon measures on [0,+∞).
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where the expectation �ω is taken over the realizations of the erasure matrix E of (26), “X(s) is erased” means
that E is equal to one at X(s), and �y,0

x,0 is the conditional expectation

�
y,t
x,0

[
·
]

= �
[
· |X(t) = y, X(0) = x

]
. (131)

To prove Lemma 3, we will first need an intermediate result (which will also be used in the proof of Propositions
3-4):

Lemma 4. With notation as in Lemma 3, we have

e>x e−tHV ey = K(x, y; t) · �y,t
x,0 e−V

∫ t
0 �{X(s) is erased} ds (132)

Proof: With HV = H0 + VE, the Lie-Trotter product formula readily gives:

e>x e−tHV ey = lim
n→∞

e>x
(
e−tH0/ne−tEV/n

)n
ey

= lim
n→∞

∑
x1,...,xn−1

e>x0
e−tH0/nex1 · · · e>xn−1

e−tH0/nexn

× exp
(
−tV/n

∑n

k=1
�{xk is erased}

)
, (133)

where x1, . . . , xn−1 ∈ �
d and x0 = x, xn = y. However, by the definition of the generator H0 of X and the definition

of the conditional expectation over random walks (131), the sum over x0, . . . , xn becomes

K(x, y; t) · �y,t
x,0 exp

(
−V

t
n

∑n

k=1
�{X(kt/n) is erased}

)
. (134)

Hence, in the limit n→ ∞, we will have

e>x e−tHV ey = K(x, y; t) · �y,t
x,0 e−V

∫ t
0 �{X(s) is erased} ds (135)

where the limit was moved under the expectation sign by applying the dominated convergence theorem and noting
that the sum in (134) converges a.s. to the integral in (135).

Proof of Lemma 3: By the definition of NV and the weak convergence of the prelimits NΛ
V to NV , we obtain

ÑV(t) = lim
L→∞

∫ ∞

0
e−λt dNΛ

V (λ)

= lim
L→∞

L−d
�ω

[
tr exp(−tHΛ

V )
]

= �ω
[
e>0 e−tHV e0

]
, (136)

where 0 has been chosen arbitrarily (recall that the randomness of E is spatially homogeneous)13 and we have used
the easily verifiable fact that the diagonal elements of HV are identically distributed. Our assertion then follows by
applying Lemma 4 with x = y = 0.

Lemma 3 shows that the contribution of (almost) every realization of the random walk X(t) becomes exponentially
small if the path spends a finite time on erased sites. Hence, for a given realization of the erasure matrix E, the
path integral of (130) will be dominated by paths that do not go through erasures; more formally:

Lemma 5. With notation as in Lemma 4, we have

lim
V→∞
�ω

[
e>x e−tHV ey

]
= K(x, y; t)�y,t

x,0
[
(1 − e)|D(t)|], (137)

where D(t)⊆�d is the set of sites visited by X(t) up to time t.

Proof: By Lemma 4, we readily get

�ω

[
e>x e−tHV ey

]
= K(x, y; t)�ω�

y,t
x,0 e−V

∫ t
0 �{X(s) is erased} ds

= K(x, y; t)�y,t
x,0

∏
r

[
(1 − e) + e · e−V sr

]
, (138)

13In the more precise language of [45], E is metrically transitive.
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where the product is taken over the sites r ∈ D(t) visited by X(t) up to time t, sr denotes the time spent by X(t) at
each distinct site, and we have used Tonelli’s theorem to exchange expectations in the first line. Thus, for V → ∞,
we will have:

lim
V→∞
�ω

[
e>x e−tHV ey

]
= K(x, y; t) lim

V→∞
�

y,t
x,0

∏
r∈D(t)

[
(1 − e) + e · exp(−V sr)

]
= K(x, y; t)�y,t

x,0(1 − e)|D(t)|, (139)

where we used the dominated convergence theorem to take the limit V → ∞ under the expectation in the second
line (simply note that (1 − e) + e · exp(−V sr) in (138) is bounded by 1).

Thanks to Lemmas 3, 4 and 5, the large V limit of ÑV may be written in terms of the number of distinct sites
visited by a random loop of X(t) as follows:

lim
V→∞
ÑV(t) = K(0, 0; t) · �0,t

0,0
[
(1 − e)|D(t)|]. (140)

The above shows that the limit Ñ∞(t) ≡ limV→∞ ÑV(t) is well-defined; hence, by the (vague) continuity of the
Laplace transform (see e.g. Theorem 8.5 in [47]), the convergence of ÑV to Ñ∞ implies the vague convergence of
the underlying integrated density NV to some limit density N∞ with Laplace transform Ñ∞. By Lemma 2 and the
uniqueness of the Laplace transform, it then follows that Ñ∞ will simply be the Laplace transform of the IDS of
H, i.e.

Ñ(t) = Ñ∞(t) = K(0, 0; t)�0,t
0,0

[
(1 − e)|D(t)|]. (141)

Thus, to obtain the asymptotic expression (80) for N(λ), we only need to derive the large t behavior of Ñ(t) from
(142) and then deduce the small λ behavior of N(λ) by inverting the Laplace transform. We will achieve this by
providing explicit bounds for (141) that exhibit the same asymptotic behavior.

4) An upper bound for Ñ(t): First, let

Ñ∗(t) = �0,0
[
(1 − e)|D(t)|], (142)

where �x,0 is the open-ended conditional expectation �0,0[·] = �
[
· |X(0) = 0

]
. The law of total expectation then

yields:

Ñ∗(t) =
∑

y
�

y,t
0,0

[
(1 − e)|D(t)|] K(0, y; t)

≥ K(0, 0; t)�0,t
0,0

[
(1 − e)|D(t)|] = Ñ(t), (143)

so we are left to calculate the asymptotic behavior of (142).
This can be done as follows: first, let S (t) denote the (a.s. finite) number of hops performed by X over the

interval [0, t]. Then, conditioning the hop count S (t) to some large n ∈ �, we will use the calculations of [40] for
the number of distinct sites D(t) visited by a random walk to calculate the expectation of (142) conditioned on
S (t); finally, to obtain (142), we will average the result of this calculation over the hop count S (t).

Since we have already averaged over the realizations of the erasure matrix E, the random walk X(t) generated
by H0 will be spatially homogeneous. As a result, the probability of hopping from x to y given that X does not
remain at x will be:

Π(x, y) =
e>x H0ey∑

z,0 e>x H0ez
C γcg(x, y) (144)

Since Π(x, y) > 0 for every x, y ∈ �d, the random walk will be irreducible; moreover, by the symmetry properties
of H0, it follows that Π will actually be a function of the difference y − x, i.e. Π(x, y) ≡ Π(y − x). Thus, to check
that the criteria of [40] apply to the random walk generated by H0, we only need to calculate the characteristic
function Π̂(q) of Π for small values of |q|. To that end, using (19) and (21), we obtain

Π̂(q) = 1 −

γct2|q|2 + O(|q|4) if α > d + 2,
γctα−d |q|α−d + O(|q|2) if d < α < d + 2,

(145)
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or, more concisely, using the definitions in (23), (22), (24), Π̂(q) ≈ 1 − γcteff |q|αeff−d. Also, Π̂(q) = 1 if and only
if q = 2π(k1, . . . , kd), with integer ki. However, (145) shows that Π lies in the domain of attraction of a Brownian
process (for α ≥ d+2) and of a non-degenerate symmetric stable law of order α−d for α ∈ (d, d+2) [40, 48]. Hence,
by the analysis of [40], the expected value of (142) conditioned on the number of hops S (t) will be asymptotically
equal to:

�0,0
[
(1 − e)|D(t)|

∣∣∣ S (t) = n
]
∼ exp

[
−k(α, d) (γcn)

d
αeff

]
. (146)

In the above equation, the coefficient k(α, d) is given by

k(α, d) =
[
log(1 − e)

]1− d
αeff

αeff

αeff − d

(
(αeff − d)teffε0

d

) d
αeff

, (147)

where ε0 = ε0(α, d) is the minimum eigenvalue of a d-dimensional ball of unit volume with Dirichlet boundary
conditions, of the linear operator L defined in (83) [40]. As can be seen in (83) this operator is just the Laplacian
L = −∇2 for α > d +2, while in the case d < α < d +2, it is the infinitesimal generator of a symmetric (α−d)-stable
process given in (86).14

In view of the above, to obtain the large t behavior of Ñ∗(t), we only need to average the conditional expectation
(146) over the number of hops S (t) that took place in [0, t]. To that end, since S (t) is Poisson distributed with
parameter t/γc, we get

Ñ∗(t) =

∞∑
n=1

e−t/γc
tn

γn
cn!
�0,0

[
(1 − e)|D(t)| | S (t) = n

]
(148)

For large t, the sum is dominated by large n, hence the asymptotic approximation of (146) holds. Approximating
the sum by its maximum term for which γcn∗ = t we thus obtain

log�0,0

[
(1 − e)|D(t)|

]
∼ −k(α, d) t

d
αeff , (149)

so (143) becomes:
log Ñ(t) ≤ log Ñ∗(t) ∼ −k(α, d) t

d
αeff . (150)

5) A Lower Bound for Ñ(t): To obtain a matching lower bound for (150), we will employ a slightly more
elaborate variant of the methodology described in the main text. Specifically, our approach will be based on
Theorem 9.5 from [45] which, in our notation, states that

�ω

[
e>0 e−tHV e0

]
≥

1
|Λ′|
�ω

[
e−tΨ>HVΨ

]
(151)

for every normalized vector Ψ ∈ `2(�d) with finite support supp(Ψ) = Λ′ ⊆ �d. We will thus have:

Ñ(t) ≥
1
|Λ′|

e−tΨ>H0Ψ lim
V→∞
�ω

[
e−tΨ>VΨ

]
=

1
|Λ′|

e−tΨ>H0Ψ lim
V→∞

∏
x∈Λ′

(
1 − e + e · e−tV |Ψ(x)|2

)
, (152)

where we have used the dominated convergence theorem to take the limit under the integral sign in the second
line.

To make this last inequality as tight as possible, let Ψ be the eigenvector of the minimum eigenvalue of H0 over
Λ′ with corresponding eigenvalue λ(Λ′). We will then have

log Ñ(t) ≥ supΛ′
{
−tλ(Λ′) + |Λ′| log(1 − e) − log |Λ′|

}
, (153)

where the supremum is taken over all finite connected domains of �d. For large t, and in anticipation of the
volume of Λ′ being large, rescale all distances in the set Λ′ by the length scale R = |Λ′|1/d so that the rescaled set
Λ′R ≡ {y ∈ �

d : y = x/R for some x ∈ Λ′} has unit volume. As expected from dimensional analysis (and shown

14The fact that a ball minimizes the minimum eigenvalue is proven in [39].
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rigorously in [32]), we will have λ(Λ′) ∼ Rd−αeffλ(Λ′R) where λ(Λ′R) is the minimum Dirichlet eigenvalue of L over
Λ′. We thus get

log Ñ(t) ≥ sup
{
−tRd−αeffλ(Λ′R) + Rd log(1 − e) − d log R

}
, (154)

where the supremum is taken over all Λ′R for fixed R and over all R. Therefore, by minimizing λ(Λ′R) over Λ′R and
then maximizing the RHS of (153) over R, we finally obtain the lower bound

log Ñ(t) ≥ −k(α, d) t d/αeff (1 + o(1)), (155)

which is an asymptotic match for the upper bound (150).
6) Harvesting N(λ) from Ñ(t): From the matching exponential bounds (150) and (155) above, we conclude

that:
log Ñ(t) ∼ log(1 − e)k(α, d) t d/αeff for large t, (156)

with k(α, d) given from (147). We are thus left to invert the large t behavior of the Laplace transform Ñ(t) to obtain
the small λ behavior of N(λ); to that end, Theorem 9.7 in [45] readily yields

logN(λ) ∼ inf
t

{
λt + log(1 − e)k(α, d) t d/αeff

}
∼ log(1 − e)

(
ε0(α, d)teff

λ

) d
αeff−d

for small λ. (157)

Appendix C
Continuous Approximation of H0

In this appendix we will discuss briefly how the discrete operator H0 can be approximated by a continuous one.
For simplicity, we will keep our discussion at an intuitive level; for a rigorous treatment, the reader is instead
referred to [32].

We will begin with the short-range interaction case α ≥ d + 2 and assume that H0 is defined over a large erasure-
free region D of |D| sites. To that end, let a be an arbitrary length scale which is much larger than the inter-site
distance and much smaller than the effective radius of D, i.e. 1 � a � |D|1/d. Assume further that the boundary of
D is smooth when measured with balls of radius a,15 and that the optimal power vector p∗ vanishes at the boundary
∂D of D.

Define now a function φ(x), x ∈ �d, such that φ(x) is equal to the value of p at the site ax whenever ax ∈ �d and
φ interpolates smoothly between these values otherwise. Then, letting em denote the basis vector corresponding to
the site m ∈ D, we will have:

e>mH0p =
∑

m′∈D

(
e>mH0em′

) (
e>m′p

)
=

∑
m′∈D

(
e>mH0em′

)
φ(x + δx) (158)

where x = m/a and δx = (m′ −m)/a. For large a, we may then expand φ to obtain:

φ(x + δx) = φ(x) + (δx·∇) φ(x) +
1
2

(δx·∇)2 φ(x) + O(a−3), (159)

We next plug this expression into (158). The first constant term (∝ φ(x)) vanishes because each row (or column)
of H0 add to zero, while the second also vanishes, because

∑
m(m −m′)eT

mH0em′ = 0. As a result, we obtain

e>mH0p = −
t2
a2∇

2φ(x) + O(a−3) (160)

with t2 given by (20).
On the other hand, for α < d + 2, t2 is infinite due to the slow decay of the elements of the transition matrix

H0, so H0 cannot be approximated by a differential operator in the sense of (160). In this case, by following the
reasoning of [40] and [32], the leading order approximation to H0 will be:

e>mH0p ≈
tα−d

aα−d

∫
Λ

2φ(x) − φ(x + h) − φ(x − h)
|h|α

dh, (161)

with x = m/a as before and tα−d given by (21), which is the generator of a d-dimensional symmetric stable process
of degree α − d and can also be written as tα−d

aα−d

(
− ∇2)(α−d)/2 [39] (see discussion after (83)).

15By this, we mean that if we rescale everything by |D|1/d, the boundary ∂D of D will have Hausdorff dimension d − 1, and a cover of
∂D by balls of radius a/|D|1/d will suffice to estimate its (d − 1)-dimensional Hausdorff content as |D| → ∞. Alternatively, this means that,
for large |D|, the boundary ∂D of D scaled down by |D|1/d is m-rectifiable by balls of size a/|D|1/d for all m > d − 1).
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Appendix D
Details for the bounds of the power distribution

In this Appendix our goal is to provide details on the lower and upper bounds on the exponential tails of the
empirical power distribution of the optimal power vector discussed in Section VI.

A. A lower bound for the distribution of power in the network

We start with (98) and look for the minimum volume Vp that can support the power p at the origin. Since we
are interested in large powers for α > d + 2, we will focus on large domains Vp; in addition, we anticipate domains
whose boundaries are “smooth” at a length scale a � 1 which is sufficiently small compared to the effective size
Ep = V1/d

p of the domain, and which will become irrelevant in the end (cf. Appendix C). In this way, the discrete
equation Mp∗ = (H0 + zγI)p∗ = σ2u which defines the optimal power vector p∗ may be approximated in the small
a/Ep limit by the stationary Klein–Gordon equation (sometimes referred to as the screened Poisson equation):

− ∇2φ + κ2
aφ = 1, (KG)

where
φ(x) =

t2
a2σ2 p∗(ax) for ax ∈ �d, (162)

and κ2
a = κ2a2 with κ2 = zγ/t2. In view of this, it suffices to determine the minimal domain D ∈ �d for which the

solution of the Dirichlet problem (KG) with boundary conditions φ ≡ 0 on ∂D has maxx∈D φ(x) = t2 p/(a2σ2) – that
is, p∗max = p.

This last problem may be reformulated as follows: let φ be the solution to (KG) with boundary conditions
φ|∂D = 0 for some (smooth) domain D ⊆ �d containing 0; we then seek the domain for which φ(0) is maximal over
all domains with unit volume |D| = 1 (and, obviously, containing 0). On that account, let GD(x, y) be the problem’s
Green’s function, which is the solution to the unit impulse Dirichlet problem:

(∇2 − κ2
a) GD(x, y) = −δ(x − y) for all x ∈ D,

GD(x, y) = 0 for all x ∈ ∂D,

so that φ(x) =
∫

D GD(x, y)dy. Since the operator ∇2−κ2
a is (uniformly) elliptic, an extension of Bandle’s isoperimetric

inequality for integrals of Green’s functions readily gives [39]

φ(0) ≤ sup
x∈D

∫
D

GD(x, y) dy ≤
∫

B
GB(0, y) dy, (163)

where B is a ball of unit d-dimensional volume centered at 0. Hence, going back to the original problem of
determining the minimal volume of a domain containing 0 and giving rise to a solution φ of (KG) with maximum
value t2 p/(a2σ2) at 0, we are left to determine the radius Ra(p) of a ball centered at 0 such that φ(0) = t2 p/(a2σ2)
and φ ≡ 0 on its boundary.

To that end, spherical symmetry allows us to write (KG) in the more convenient form

1
rd−1

∂

∂r

(
rd−1 ∂φ

∂r

)
− κ2

aφ = −1,

φ(Ra) = 0.
(164)

Hence, focusing on the cases of interest d = 1 and d = 2, some calculus yields the radial solutions:

φ(r) = κ−2
a

[
1 −

cosh(κar)
cosh(κaRa)

]
for d = 1, (165a)

φ(r) = κ−2
a

[
1 −

I0(κar)
I0(κaRa)

]
for d = 2, (165b)
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where I0(x) is the 0-th order hyperbolic Bessel function of the first kind. Accordingly, with φ(0) = t2 p/(σ2a2), we
obtain the expressions

Rp =

√
t2
zγ

arcosh
(

σ2

σ2 − zγp

)
for d = 1, (166a)

Rp =

√
t2
zγ

I−1
0

(
σ2

σ2 − zγp

)
for d = 2, (166b)

where I−1
0 (y) is the function inverse of I0(x) and Rp = aRa(p) is the length in the original (unscaled) lattice – so

the final result does not depend on the length scale a, as expected. We thus get:

Vp = 2Rp ∼ 2
(
2t2 p

/
σ2)1/2 for d = 1, (167a)

Vp = πR2
p ∼ 4πt2 p/σ2 for d = 2, (167b)

where the asymptotic approximations are taken in the limit zγp → 0 (and are exact for all p in the critical case
zγ = 0 which corresponds to γ = γc). Proposition 1 then follows trivially.

Remark. Extending the above analysis to α < d + 2, we see that we have to replace the stationary Klein-Gordon
equation (KG) with

L φ + κα−d
a φ = 1 (168)

where L is given by (86), κα−d
a = zγaα−d/tα−d and φ(x) = tα−dp∗(ax)/(σ2aα−d). For fixed volume, the solution of

the above differential equation with Dirichlet boundary conditions is maximized at x = 0, when the domain is a
ball of radius Ra centered at x = 0 as in the case α > d + 2 discussed above [39]. In this case, we obtain the radial
solution:

φ(r) = κd−α
a

[
1 −

φ(κar)

φ(κaRa)

]
(169)

where φ(x) is the non-increasing, radially symmetric solution of L φ + φ = 0, with φ(0) = tα−d p/(a2σ2).
In the critical case γ = γc, φ(r) satisfies L φ(x) = 1 with Dirichlet boundary conditions on the boundary of the

ball of radius Ra. By guessing that the solution of φ(x) is of the form Rβ
aφ(x/Ra) we then find that β = α− d. As a

result, we will have Vp = ΩdRd
p ∝ pd/(α+d) and hence, for γ = γc and α < d + 2, we conjecture that

P(p) ∼ exp(−cα,d pd/(α+d)), (170)

for some constant cα,d.

B. A percolation-based upper bound

In this section, our goal will be to prove the upper bound (103) for random networks where interference is
only caused by nearest neighbors. Of course, in the one-dimensional case, this coincides with the Wyner model
for which the lower bound obtained in the previous section is tight. In the 2-dimensional case, we consider four
nearest neighbors per site, one for each of the unit steps in the x and y axes. In this case, the cumulative power
distribution P(p) may be written as

P(p) =
∑

D
�(p∗(0) > p | 0 ∈ D) · �(0 ∈ D), (171)

where the event “0 ∈ D” signifies that 0 belongs to an erasure-free cluster D ⊆ �2 whose boundary ∂D is completely
erased (i.e. E = 1 on ∂D). Thus, letting Vp be the minimal volume which supports power p at 0, we obtain the
upper bound:

P(p) ≤
∑

D:|D|≥Vp
�(0 ∈ D) = F(Vp), (172)

where F(Vp) is the probability of 0 belonging to an erasure-free cluster of size at least Vp. The value of Vp can
be obtained from the discussion in the lower bound and is given by Vp = πR2

p, where Rp is the radius appearing in
(166).



34

Since sites in �2 are erased uniformly with probability e, F(Vp) may be viewed as the probability of 0 belonging
to a cluster of size at least Vp in a site percolation model over �d with occupancy probability 1 − e [49]. As a
result, the cumulative probability F(Vp) will be bounded from above by

F(Vp) ≤ Fbond(Vp), (173)

where Fbond now denotes the probability of 0 belonging to an open cluster of size at least Vp in an associated bond
percolation model with bonding probability 1 − e – see e.g. [49, Sec. 1.6].

Below the percolation threshold for �2,16 it is well known that the probability of observing a cluster of size
exactly V decays asymptotically as Pbond(V) ∼ e−ηV where η ≡ η(e, d) > 0 is a constant which depends only on the
erasure probability e and the dimensionality d of the network (the bound η ≤ − log(1 − e) follows from the fact
that (1 − e)Vp ≤ P(p) and the above inequalities). Combining all of the above, we thus obtain

P(p) ≤ Fbond(Vp) ∼
e−ηVp

1 − e−η
= e−ηVp+β, (174)

whenever 1 − e < pc(d); in particular, thanks to Kester’s celebrated result that pc(2) = 1/2 [49], the asymptotic
bound (174) will hold in �2 for all e ≥ 1/2.17 This proves Proposition 2 and concludes our discussion.
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Fig. 3. Plot of average power for a 1- and 2-dimensional network as a function of the target SINR value γ for different values of the erasure
probability e. In both cases, we took a pathloss exponent α = d + 3, noise level σ = 1, and ratio s = δ/` = 0.5. The solid curves represent
our theoretical predictions, while the numerical datasets (starred and dashed curves) were generated from 103 and 500 random erasure
instantiations in 1- and 2-dimensional networks respectively; in the 1-dimensional case we only plot the realization which has remained
feasible the longest (indicated as “num max”), while for 2-dimensional networks we also plot an average over all realizations that remain
feasible at any given γ. In both cases, the vertical line corresponds to the critical threshold SINR value γc where the ordered network (e = 0)
becomes infeasible.
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3(b)
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for α = 2, where ε0,` = 2 is the lower bound for the corresponding minimum eigenvalue as discussed in Theorem

3. The curves have been shifted appropriately to allow for easy comparison. Despite the different values of the parameters for each curve,
the slope is identical for all cases with same α. In the case of α = 2, two straight lines have been draw for comparison, corresponding to
the lower and upper bounds of ε0, i.e. ε0,h = 2.356 and ε0,` = 2 [43].
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