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Abstract. In this paper, we examine the convergence of mirror descent in a
class of stochastic optimization problems that are not necessarily convex (or even
quasi-convex), and which we call variationally coherent. Since the standard
technique of “ergodic averaging” offers no tangible benefits beyond convex
programming, we focus directly on the algorithm’s last generated sample (its
“last iterate”), and we show that it converges with probabiility 1 if the underlying
problem is coherent. We further consider a localized version of variational
coherence which ensures local convergence of SMD with high probability. These
results contribute to the landscape of nonconvex stochastic optimization by
showing that (quasi-)convexity is not essential for convergence to a global
minimum: rather, variational coherence, a much weaker requirement, suffices.
Finally, building on the above, we reveal an interesting insight regarding the
convergence speed of SMD: in problems with sharp minima (such as generic
linear programs or concave minimization problems), SMD reaches a minimum
point in a finite number of steps (a.s.), even in the presence of persistent gradient
noise. This result is to be contrasted with existing black-box convergence rate
estimates that are only asymptotic.

1. Introduction

Stochastic mirror descent (SMD) and its variants arguably comprise one of the
most widely used families of first-order methods in stochastic optimization – convex
and non-convex alike [3, 9, 10, 12, 24, 26–32, 34, 41, 46]. Heuristically, in the “dual
averaging” (or “lazy”) incarnation of the method [34, 41, 46], SMD proceeds by
aggregating a sequence of i.i.d. gradient samples and then mapping the result back to
the problem’s feasible region via a specially constructed “mirror map” (the namesake
of the method). In so doing, SMD generalizes and extends the classical stochastic
gradient descent (SGD) algorithm (with Euclidean projections playing the role of
the mirror map) [33, 35, 37], the exponentiated gradient method of [22], the matrix
regularization schemes of [21, 26, 43], and many others.

Starting with the seminal work of Nemirovski and Yudin [32], the convergence of
mirror descent has been studied extensively in the context of convex programming
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(including distributed and stochastic optimization problems) [3, 31, 34, 46], non-
cooperative games/saddle-point problems [28, 31, 34], and monotone variational
inequalities (VIs) [20, 30, 34]. In this monotone setting, it is customary to consider
the so-called “ergodic average” X̄n =

∑n
k=1 γkXk

/∑n
k=1 γk of the algorithm’s

generated sample points Xn, with γn denoting the method’s step-size. The reason
for this is that, by Jensen’s inequality, convexity guarantees that a regret-based
analysis can lead to explicit convergence rates for X̄n [31, 34, 41, 46]. However, this
type of averaging provides no tangible benefits in non-convex programs, so it seems
more natural to focus directly on the algorithm’s last generated sample – its “last
iterate”.

The long-term behavior of the last iterate of SMD was recently studied by Shamir
and Zhang [42] and Nedic and Lee [29] in the context of strongly convex problems.
In this case, the algorithm’s last iterate achieves the same value convergence rate
as its ergodic average, so averaging is not more advantageous. Jiang and Xu
[19] also examined the convergence of the last iterate of SGD in a class of (not
necessarily monotone) variational inequalities that admit a unique solution, and
they showed that it converges to said solution with probability 1. In a very recent
paper [11], it was shown that in phase retrieval problems (a special class of non-
convex problems that involve systems of quadratic equations), SGD with random
initialization converges to global optimal solutions with probability 1. Finally, in
general non-convex problems, Ghadimi and Lan [15, 16] showed that running SGD
with a randomized stopping time guarantees convergence to a critical point in the
mean, and they estimated the speed of this convergence. However, beyond these
(mostly recent) results, not much is known about the convergence of the individual
iterates of mirror descent in non-convex programs.

Our contributions. In this paper, we examine the asymptotic behavior of mirror
descent in a class of stochastic optimization problems that are not necessarily convex
(or even quasi-convex). This class of problems, which we call variationally coherent
(VC), are related to a class of variational inequalities studied by Jiang and Xu [19]
and, earlier, by Wang et al. [45] – though, importantly, we do not assume here the
existence of a unique solution. Focusing for concreteness on the dual averaging (DA)
variant of SMD (also known as “lazy” mirror descent) [34, 41, 46], we show that the
algorithm’s last iterate converges to a global minimum with probability 1 under mild
assumptions for the algorithm’s gradient oracle (unbiased i.i.d. gradient samples
that are bounded in L2). This result can be seen as the “mirror image” of the
analysis of [19] and reaffirms that (quasi-)convexity/monotonicity is not essential
for convergence to a global optimum point: the weaker requirement of variational
coherence suffices.

To extend the range of our analysis, we also consider a localized version of
variational coherence which includes multi-modal functions that are not even locally
(quasi-)convex near their minimum points (so, in particular, an eigenvalue-based
analysis cannot be readily applied to such problems). Here, in contrast to the
globally coherent case, a single, “unlucky” gradient sample could drive the algorithm
away from the “basin of attraction” of a local minimum (even a locally coherent
one), possibly never to return. Nevertheless, we show that, with overwhelming
probability, the last iterate of SMD converges locally to minimum points that are
locally coherent (for a precise statement, see Section 5).
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Going beyond this “black-box” analysis, we also consider a class of optimization
problems that admit sharp minima, a fundamental notion due to Polyak [35]. In
stark contrast to existing ergodic convergence rates (which are asymptotic in nature),
we show that the last iterate of SMD converges to sharp minima of variationally
coherent problems in an almost surely finite number of iterations, provided that the
method’s mirror map is surjective. As an important corollary, it follows that the
last iterate of (lazy) stochastic gradient descent attains a solution of a stochastic
linear program in a finite number of steps (a.s.). For completeness, we also derive a
localized version of this result for problems with sharp local minima that are not
globally coherent: in this case, convergence in a finite number of steps is retained but,
instead of “almost surely”, convergence now occurs with overwhelming probability.

Important classes of problems that admit sharp minima are generic linear pro-
grams (for the global case) and concave minimization problems (for the local case).
In both instances, the (fairly surprising) fact that SMD attains a minimizer in
a finite number of iterations should be contrasted to existing work on stochastic
linear programming which exhibits asymptotic convergence rates [2, 44]. We find
this result particularly appealing as it highlights an important benefit of working
with “lazy” descent schemes: “greedy” methods (such as vanilla gradient descent)
always take a gradient step from the last generated sample, so convergence in a
finite number of iterations is a priori impossible in the presence of persistent noise.
By contrast, the aggregation of gradient steps in “lazy” schemes means that even
a “bad” gradient sample might not change the algorithm’s sampling point (if the
mirror map is surjective), so finite-time convergence is possible in this case.

Our analysis hinges on the construction of a primal-dual analogue of the Bregman
divergence which we call the Fenchel coupling, and which tracks the evolution of
the algorithm’s (dual) gradient aggregation variable relative to a target point in
the problem’s (primal) feasible region. This energy function allows us to perform a
quasi-Fejérian analysis of stochastic mirror descent and, combined with a series of
(sub)martingale convergence arguments, ultimately yields the convergence of the
algorithm’s last iterate – first as a subsequence, then with probability 1.

2. Problem setup and basic definitions

2.1. The main problem. Let X be a convex compact subset of a d-dimensional
vector space V with norm ‖·‖. Throughout this paper, we will focus on stochastic
optimization problems of the general form

minimize f(x),

subject to x ∈ X , (Opt)

where
f(x) = E[F (x;ω)] (2.1)

for some stochastic objective function F : X ×Ω→ R defined on an underlying (com-
plete) probability space (Ω,F ,P). In terms of regularity, our blanket assumptions
for (Opt) will be as follows:

Assumption 1. F (x, ω) is continuously differentiable in x for almost all ω ∈ Ω.

Assumption 2. The gradient of F is uniformly bounded in L2, i.e., E[‖∇F (x;ω)‖2∗] ≤
V 2 for some finite V ≥ 0 and all x ∈ X .
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Remark. In the above, gradients are treated as elements of the dual space Y ≡ V∗
of V, and ‖y‖∗ = sup{〈y, x〉 : ‖x‖ ≤ 1} denotes the dual norm of y ∈ Y. We also
note that ∇F (x;ω) refers to the gradient of F (x;ω) with respect to x; since Ω is
not assumed to carry a differential structure, there is no danger of confusion.

Assumption 1 is a token regularity assumption which can be relaxed to account
for nonsmooth objectives by using subgradient devices (as opposed to gradients).
However, this would make the presentation significantly more cumbersome, so we
stick with smooth objectives throughout. Assumption 2 is also standard in the
stochastic optimization literature: it holds trivially if F is uniformly Lipschitz
(another commonly used condition) and, by the dominated convergence theorem,
it further implies that f is smooth and ∇f(x) = ∇E[F (x;ω)] = E[∇F (x;ω)] is
bounded. As a result, the solution set

X ∗ = arg min f (2.2)

of (Opt) is closed and nonempty (by the compactness of X and the continuity of f).

We briefly discuss below two important examples of (Opt):

Example 2.1 (Distributed optimization). An important special case of (Opt) with
high relevance to statistical inference, signal processing and machine learning is
when f is of the special form

f(x) =
1

N

N∑
i=1

fi(x), (2.3)

for some family of functions (or training samples) fi : X → R, i = 1, . . . , N . As
an example, this setup corresponds to empirical risk minimization with uniform
weights, the sample index i being drawn with uniform probability from {1, . . . , N}.

Example 2.2 (Noisy gradient measurements). Another widely studied instance of
(Opt) is when

F (x;U) = f(x) + 〈U, x〉 (2.4)
for some random vector U such that E[U ] = 0 and E[‖U‖2∗] < ∞. This gives
∇F (x;U) = ∇f(x) + U , so (Opt) can be seen here as a model for deterministic
optimization problems with noisy gradient measurements.

2.2. Variational coherence. We are now in a position to define the class of varia-
tionally coherent problems:

Definition 2.1. We say that (Opt) is variationally coherent if

〈∇f(x), x− x∗〉 ≥ 0 for all x ∈ X , x∗ ∈ X ∗, (VC)

and there exists some x∗ ∈ X ∗ such that equality holds in (VC) only if x ∈ X ∗.
In words, (VC) states that solutions of (Opt) can be harvested by solving a

(Minty) variational inequality – hence the term “variational coherence”. To the
best of our knowledge, the closest analogue to this condition first appeared in
the classical paper of Bottou [5] on online learning and stochastic approximation
algorithms, but with the added assumptions that a) the problem (Opt) admits a
unique solution x∗; and b) an extra positivity requirement for 〈∇f(x), x− x∗〉 in
punctured neighborhoods of x∗. In the context of variational inequalities, a closely
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related variant of (VC) has been used to establish the convergence of extra-gradient
methods [14, 45] and stochastic gradient descent [19] in (Stampacchia) variational
inequalities with a unique solution. By contrast, there is no uniqueness requirement
in (VC), an aspect of the definition which we examine in more detail below.

We should also note that, as stated, (VC) is a non-random requirement for f so
it applies equally well to deterministic optimization problems. Alternatively, by the
dominated convergence theorem, (VC) can be written equivalently as

E[〈∇F (x;ω), x− x∗〉] ≥ 0, (2.5)

so it can be interpreted as saying that F is variationally coherent “on average”,
without any individual realization thereof satisfying (VC). Both interpretations will
come in handy later on.

All in all, the notion of variational coherence will play a central role in our paper
so a few examples are in order:

Example 2.3 (Convex programming). If f is convex, ∇f is monotone [39] in the
sense that

〈∇f(x)−∇f(x′), x− x′〉 ≥ 0 for all x, x′ ∈ X . (2.6)
By the first-order optimality conditions for f , it follows that 〈f(x∗), x− x∗〉 ≥ 0 for
all x ∈ X . Hence, by monotonicity, we get

〈∇f(x), x− x∗〉 ≥ 〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ X , x∗ ∈ X ∗. (2.7)

By convexity, it further follows that 〈∇f(x), x − x∗〉 < 0 whenever x∗ ∈ X ∗ and
x ∈ X \X ∗, so equality holds in (2.7) if and only if x ∈ X ∗. This shows that convex
programs automatically satisfy (VC).

Example 2.4 (Quasi-convex problems). More generally, the above analysis also
extends to quasi-convex objectives, i.e., when

f(x′) ≤ f(x) =⇒ 〈∇f(x), x′ − x〉 ≤ 0 (QC)

for all x, x′ ∈ X [6]. In this case, we have:

Proposition 2.2. Suppose that f is quasi-convex and non-degenerate, i.e.,

〈∇f(x), z〉 6= 0 for all nonzero z ∈ TC(x), x ∈ X \ X ∗. (2.8)

Then, f is variationally coherent.

Remark. The non-degeneracy condition (2.8) is generic in that it is satisfied by every
quasi-convex function after an arbitrarily small perturbation leaving its minimum set
unchanged. In particular, it is automatically satisfied if f is convex or pseudo-convex.

Proof. Take some x∗ ∈ X ∗ and x ∈ X . Then, letting x′ = x∗ in (QC), we readily
obtain 〈∇f(x), x − x∗〉 ≥ 0 for all x ∈ X , x∗ ∈ X ∗. Furthermore, if x /∈ X ∗ but
〈∇f(x), x− x∗〉 = 0, the gradient non-degeneracy condition (2.8) would be violated,
implying in turn that, for any x∗ ∈ X ∗, we have 〈∇f(x), x− x∗〉 = 0 only if x ∈ X ∗.
This shows that f satisfies (VC). �

Example 2.5 (Beyond quasi-convexity). A simple example of a function that is
variationally coherent without even being quasi-convex is

f(x) = 2

d∑
i=1

√
1 + xi, x ∈ [0, 1]d. (2.9)
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When d ≥ 2, it is easy to see f is not quasi-convex: for instance, taking d = 2,
x = (0, 1) and x′ = (1, 0) yields f(x/2 + x′/2) = 2

√
6 > 2

√
2 = max{f(x), f(x′)},

so f is not quasi-convex. On the other hand, to estabilish (VC), simply note that
X ∗ = {0} and 〈∇f(x), x− 0〉 =

∑d
i=1 xi/

√
1 + xi > 0 for all x ∈ [0, 1]d\{0}.

Example 2.6 (A weaker version of coherence). Consider the function

f(x) =
1

2

d∏
i=1

x2i , x ∈ [−1, 1]d. (2.10)

By inspection, it is easy to see that the minimum set of f is X ∗ = {x∗ ∈ [−1, 1]d :
x∗i = 0 for some i = 1, . . . , d}.1 Since X ∗ is not convex for d ≥ 2, f is not quasi-
convex. On the other hand, we have∇f(x) = 2f(x)·(1/x1, . . . , 1/xd), so 〈∇f(x), x−
0〉 ≥ 0 for all x ∈ [−1, 1]d with equality only if x ∈ X ∗. Moreover, for any x∗ ∈ X ∗
and all x ∈ X sufficiently close to x∗, we have

〈∇f(x), x− x∗〉 = 2f(x)

d∑
i=1

[
1− x∗i

xi

]
= 2f(x)

d− ∑
i:x∗i 6=0

x∗i
xi

 ≥ 0. (2.11)

We thus conclude that f satisfies the following weaker version of (VC):

Definition 2.3. We say that f : X → R is weakly coherent if the following conditions
are satisfied:

a) There exists some p ∈ X ∗ such that 〈∇f(x), x− p〉 ≥ 0 with equality only if
x ∈ X ∗.

b) For all x∗ ∈ X ∗, 〈∇f(x), x− x∗〉 ≥ 0 whenever x is close enough to x∗.
Our analysis also applies to problems satisfying these less stringent requirements,

in which case the minimum set X ∗ = arg min f of f need not even be convex.2 For
simplicity, we will first work with Definition 2.1 and relegate these considerations to
Section 5.

2.3. Stochastic mirror descent. To solve (Opt), we will focus on the family of
algorithms known as stochastic mirror descent (SMD), a class of first-order methods
pioneered by Nemirovski and Yudin [32] and studied further by Beck and Teboulle
[3], Nesterov [34], Lan et al. [24], and many others. Referring to [8, 41] for an
overview, the specific variant of SMD that we consider here is usually referred to as
dual averaging (DA) [28, 34, 46] or “ lazy” mirror descent [41].

The main idea of the method is as follows: At each iteration, the algorithm
takes as input an i.i.d. sample of the gradient of F at the algorithm’s current state.
Subsequently, the method takes a step along this stochastic gradient in the dual
space Y ≡ V∗ of V (where gradients live), the result is “mirrored” back to the
problem’s feasible region X , and the process repeats. Formally, this gives rise to the
recursion

Xn = Q(Yn)

Yn+1 = Yn − γn∇F (Xn;ωn)
(SMD)

where:

1Linear combinations of functions of this type play an important role in training deep learning
models – and, in particular generative adversarial networks (GANs) [17].

2Obviously, Definitions 2.1 and 2.3 coincide if X ∗ is a singleton. This highlights the intricacies
that arise in problems that do not admit a unique solution.
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Algorithm 1 Stochastic mirror descent (SMD)

Require: mirror map Q : Y → X; step-size sequence γn > 0
1: choose Y ∈ Y ≡ V∗ # initialization
2: for n = 1, 2, . . . do
3: set X ← Q(Y ) # set state
4: draw ω ∈ Ω # gradient sample
5: get v̂ = −∇F (X;ω) # get oracle feedback
6: set Y ← Y + γnv̂ # update score variable
7: end for
8: return X # output

X ⊆ V

Y = V∗

Q

Y1

Y2 Y3

−γ1∇F (X1;ω1)

−γ2∇F (X2;ω2)

X1 X2

X3

Q

Q
Q

Figure 1. Schematic representation of SMD (Algorithm 1).

(1) n = 1, 2, . . . denotes the algorithm’s running counter.
(2) Yn ∈ Y is a score variable that aggregates gradient steps up to stage n.
(3) Q : Y → X is the mirror map that outputs a solution candidate Xn ∈ X as

a function of the score variable Yn ∈ V∗.
(4) ωn ∈ Ω is a sequence of i.i.d. samples.3

(5) γn > 0 is the algorithm’s step-size sequence, assumed in what follows to
satisfy the Robbins–Monro summability condition

∞∑
n=1

γ2n <∞ and
∞∑
n=1

γn =∞. (2.12)

For a schematic illustration and a pseudocode implementation of (SMD), see Fig. 1
and Algorithm 1 respectively.

In more detail, the algorithm’s mirror map Q : Y → X is defined as

Q(y) = arg max
x∈X

{〈y, x〉 − h(x)}, (2.13)

where the regularizer (or penalty function) h : X → R is assumed to be continuous
and strongly convex on X , i.e., there exists some K > 0 such that

h(τx+ (1− τ)x′) ≤ τh(x) + (1− τ)h(x′)− 1
2Kτ(1− τ)‖x′ − x‖2, (2.14)

3The indexing convention for ωn means that Yn and Xn are predictable relative to the natural
filtration Fn = σ(ω1, . . . , ωn) of ωn, i.e., Yn+1 and Xn+1 are both Fn-measurable. To this history,
we also attach the trivial σ-algebra as F0 for completeness.
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for all x, x′ ∈ X and all τ ∈ [0, 1]. The mapping Q : V∗ → X defined by (2.13) is
then called the mirror map induced by h. For concreteness, we present below some
well-known examples of regularizers and mirror maps:

Example 2.7 (Euclidean regularization). Let h(x) = 1
2‖x‖

2
2. Then, h is 1-strongly

convex with respect to the Euclidean norm ‖·‖2, and the induced mirror map is the
closest point projection

Π(y) = arg max
x∈X

{
〈y, x〉 − 1

2‖x‖
2
2

}
= arg min

x∈X
‖y − x‖22. (2.15)

The resulting descent algorithm is known in the literature as (lazy) stochastic gradient
descent (SGD) and we study it in detail in Section 6. For future reference, we also
note that h is differentiable throughout X and Π is surjective (i.e., im Π = X ).

Example 2.8 (Entropic regularization). Let ∆ = {x ∈ Rd+ :
∑d
i=1 xi = 1} denote the

unit simplex of Rd. A widely used regularizer in this setting is the (negative) Gibbs
entropy h(x) =

∑d
i=1 xi log xi: this regularizer is 1-strongly convex with respect to

the L1-norm and a straightforward calculation shows that the induced mirror map
is

Λ(y) =
1∑d

i=1 exp(yi)
(exp(y1), . . . , exp(yd)). (2.16)

This example is known as entropic regularization and the resulting mirror descent
algorithm has been studied extensively in the context of linear programming, online
learning and game theory [1, 41]. For posterity, we also note that h is differentiable
only on the relative interior ∆◦ of ∆ and im Λ = ∆◦ (i.e., Λ is “essentially” surjective).

2.4. Overview of main results. To motivate the analysis to follow, we provide below
a brief overview of our main results:

• Global convergence: If (Opt) is variationally coherent, the last iterate Xn

of (SMD) converges to a global minimizer of f with probability 1.
• Local convergence: If x∗ is a locally coherent minimum point of f (a notion
introduced in Section 5), the last iterate Xn of SMD converges locally to
x∗ with high probability.

• Sharp minima: If Q is surjective and x∗ is a sharp minimum of f (a
fundamental notion due to Polyak which we discuss in Section 6), Xn

reaches x∗ in a finite number of iterations (a.s.).

3. Main tools and first results

As a stepping stone to analyze the long-term behavior of (SMD), we derive in
this section a recurrence result which is interesting in its own right. Specifically, we
show that, if (Opt) is coherent, then, with probability 1, Xn visits any neighborhood
of X ∗ infinitely often; as a corollary, there exists a (random) subsequence Xnk

of
Xn that converges to arg min f (a.s.). In what follows, our goal will be to state this
result formally and to introduce the analytic machinery used for its proof (as well
as the analysis of the subsequent sections).

3.1. The Fenchel coupling. The first key ingredient of our analysis will be the
Fenchel coupling, a primal-dual variant of the Bregman divergence [7] that plays
the role of an energy function for (SMD):
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Definition 3.1. Let h : X → R be a regularizer on X . The induced Fenchel coupling
F (p, y) between a base-point p ∈ X and a dual vector y ∈ Y is defined as

F (p, y) = h(p) + h∗(y)− 〈y, p〉 (3.1)

where h∗(y) = maxx∈X {〈y, x〉 − h(x)} denotes the convex conjugate of h.
By Fenchel’s inequality (the namesake of the Fenchel coupling), we have h(p) +

h∗(y) − 〈y, p〉 ≥ 0 with equality if and only if p = Q(y). As such, F (p, y) can be
seen as a (typically asymmetric) “distance measure” between p ∈ X and y ∈ Y . The
following lemma quantifies some basic properties of this coupling:

Lemma 3.2. Let h be a K-strongly convex regularizer on X . Then, for all p ∈ X
and all y, y′ ∈ Y, we have:

a) F (p, y) ≥ K

2
‖Q(y)− p‖2. (3.2a)

b) F (p, y′) ≤ F (p, y) + 〈y′ − y,Q(y)− p〉+
1

2K
‖y′ − y‖2∗. (3.2b)

Lemma 3.2 (which we prove in Appendix B) shows that Q(yn) → p whenever
F (p, yn) → 0, so the Fenchel coupling can be used to test the convergence of the
primal sequence xn = Q(yn) to a given base point p ∈ X . For technical reasons, it
will be convenient to also make the converse assumption, namely:

Assumption 3. F (p, yn)→ 0 whenever Q(yn)→ p.
Assumption 3 can be seen as a “reciprocity condition”: essentially, it means

that the sublevel sets of F (p, ·) are mapped under Q to neighborhoods of p in X
(cf. Appendix B). In this way, Assumption 3 can be seen as a primal-dual analogue
of the reciprocity conditions for the Bregman divergence that are widely used in
the literature on proximal and forward-backward methods [9, 23]. Most common
regularizers satisfy this technical requirement (including the Euclidean and entropic
regularizers of Examples 2.7 and 2.8 respectively).

3.2. Main recurrence result. To state our recurrence result, we require one last
piece of notation pertaining to measuring distances in X :
Definition 3.3. Let C be a subset of X .

(1) The distance between C and x ∈ X is defined as dist(C, x) = infx′∈C‖x′−x‖,
and the corresponding ε-neighborhood of C is

B(C, ε) = {x ∈ X : dist(C, x) < ε}. (3.3a)

(2) The (setwise) Fenchel coupling between C and y ∈ Y is defined as F (C, y) =
infx∈C F (x, y), and the corresponding Fenchel δ-zone of C under h is

BF (C, δ) = {x ∈ X : x = Q(y) for some y ∈ Y with F (C, y) < δ}. (3.3b)

We then have the following recurrence result for variationally coherent problems:

Proposition 3.4. Fix some ε > 0 and δ > 0. If (Opt) is variationally coherent and
Assumptions 1–3 hold, the (random) iterates Xn of Algorithm 1 enter B(X ∗, ε) and
BF (X ∗, δ) infinitely many times (a.s.).

Corollary 3.5. With probability 1, there exists a subsequence Xnk
of Xn converging

to a (random) minimum point x∗ of (Opt).
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The proof of Proposition 3.4 consists of three main steps which we outline below:
Step 1: Martingale properties of Yn. First, let

v(x) = −E[∇F (x;ω)] = −∇f(x) (3.4)

denote the negative gradient of f at x ∈ X , and write

v̂n = −∇F (Xn;ωn) (3.5)

for the corresponding oracle feedback at stage n. Then, Algorithm 1 may be written
in Robbins–Monro form as

Yn+1 = Yn + γnv̂n = Yn + γn[v(Xn) + Un], (3.6)

where
Un = ∇f(Xn)−∇F (Xn;ωn) (3.7)

denotes the difference between the mean gradient of f at Xn and the n-th stage
gradient sample.4 By construction, Un is a martingale difference sequence relative
to the history (natural filtration) Fn = σ(ω1, . . . , ωn) of ωn, i.e.,

E[Un | Fn−1] = 0 for all n. (3.8a)

Furthermore, by Assumption 2, it readily follows that Un has uniformly bounded
second moments, i.e., there exists some finite σ ≥ 0 such that

E[‖Un‖2∗ | Fn−1] ≤ σ2 for all n, (3.8b)

implying in turn that Un is bounded in L2 (for a more detailed treatment, see
Appendix B).

Step 2: Recurrence of ε-neighborhoods. Invoking the law of large numbers for
L2-bounded martingale difference sequences and using the Fenchel coupling as an
energy function (cf. Appendix B), we show that if Xn remains outside B(X ∗, ε) for
sufficiently large n, we must also have F (X ∗, Yn) → −∞ (a.s.). This contradicts
the positive-definiteness of F , so Xn must enter B(X ∗, ε) infinitely often (a.s.).

Step 3: Recurrence of Fenchel zones. By reciprocity (Assumption 3), BF (X ∗, δ)
always contains an ε-neighborhood of X ∗. Since Xn enters B(X ∗, ε) infinitely many
times (a.s.), the same must hold for BF (X ∗, δ). Our claim and Corollary 3.5 then
follow immediately.

4. Global convergence under coherence

The convergence of a subsequence of Xn to the minimum set of (Opt) is one of
the crucial steps in establishing our first main result:

Theorem 4.1 (Almost sure global convergence). Suppose that (Opt) is variationally
coherent. Then, under Assumptions 1–3, Xn converges with probability 1 to a
(possibly random) minimum point of (Opt).

Corollary 4.2. If f is a non-degenerate quasi-convex (or pseudo-convex, or convex )
function and Assumptions 1–3 hold, the last iterate of (SMD) converges with
probability 1 to a (possibly random) minimum point of (Opt).

4Recall here that there is a one-step offset between Xn and ωn+1 at the n-th iteration of SMD.
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Before discussing the proof of Theorem 4.1, it is important to note that most
of the literature surrounding (SMD) and its variants (see e.g., [12, 31, 34, 46] and
references therein) focuses on the so-called ergodic average of Xn, i.e.,

X̄n =

∑n
k=1 γkXk∑n
k=1 γk

(4.1)

Despite the appealing “self-averaging” properties of X̄n in convex problems [31, 34],
it is not clear how to extend the standard tools used to establish convergence of
X̄n beyond convex/monotone problems (even to pseudo-convex programs). Since
convergence of Xn automatically implies that of X̄n, Theorem 4.1 simultaneously
establishes the convergence of the last iterate of SMD and extends existing ergodic
convergence results to a wider class of non-convex stochastic programs.

Corollary 4.2 also extends the corresponding results of [29] for the convergence of
the last iterate of (SMD) when f is (strongly) convex and h has Lipschitz-continuous
gradients (so the induced Bregman divergence can be bounded from above by a
quadratic surrogate of the primal norm). Our proof strategy is similar and relies on
the following lemma, often attributed to Gladyshev [35, p. 49]:5

Lemma 4.3 (Gladyshev). Let an, n = 1, 2, . . . , be a sequence of nonnegative random
variables such that

E[an+1 | a1, . . . , an] ≤ (1 + δn)an + εn, (4.2)

where δn and εn are nonnegative deterministic sequences with
∞∑
n=1

δn <∞ and
∞∑
n=1

εn <∞. (4.3)

Then, an converges (a.s.) to some random variable a∞ ≥ 0.
As shown below, this “quasi-Fejérian” monotonicity property plays a critical part

in establishing the convergence of (SMD):

Proof of Theorem 4.1. Let x∗ ∈ X ∗ be a minimum point of (Opt). Then, letting
Fn = F (x∗, Yn), Lemma 3.2 gives

Fn+1 = F (x∗, Yn+1) = F (x∗, Yn + γnv̂n)

≤ F (x∗, Yn) + γn〈v̂n, Xn − x∗〉+
γ2n
2K
‖v̂n‖2∗

= Fn + γn〈v(Xn), Xn − x∗〉+ γnξn +
γ2n
2K
‖v̂n‖2∗

≤ Fn + γnξn +
γ2n
2K
‖v̂n‖2∗, (4.4)

where we set ξn = 〈Un, Xn − x∗〉 in the third line and used the fact that f satisfies
(VC) in the last one. Since Yn is predictable relative to Fn (i.e., Yn is Fn−1-
measurable), the process Fn = F (x∗, Yn) is itself adapted to the shifted filtration

5We thank an anonymous reviewer for suggesting this approach. Our original proof strategy
relied on the so-called “ODE method” of stochastic approximation [4] and was considerably more
intricate.



12 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, S. BOYD, AND P. W. GLYNN

F ′n = σ(ω1, Y2 . . . , ωn−1, Yn) = Fn−1. Thus, taking conditional expectations and
invoking Assumption 2, the bound (4.4) becomes:

E[Fn+1 | F ′n] ≤ Fn + E[ξn | F ′n] +
γ2n
2K

E[‖v̂n‖2∗ | F ′n]

= Fn + E[ξn | Fn−1] +
γ2n
2K

E[‖∇F (Xn;ωn)‖2∗ | Fn−1]

≤ Fn +
γ2nV

2

2K
, (4.5)

where, in the last line, we used Assumption 2 and the fact that Un is a martingale
difference sequence (so E[ξn | Fn−1] = 0; for a detailed derivation, see the proof of
Proposition 3.4 in Appendix B). Hence, with

∑∞
n=1 γ

2
n < ∞, Lemma 4.3 implies

that Fn converges (a.s.) to some finite limit F∞.
Now, by Proposition 3.4, there exists (a.s.) a subsequence Ynk

of Yn and some
(possibly random) x∗ ∈ X ∗ such that limk→∞ F (x∗, Ynk

) = 0. Since the limit
limn→∞ F (x∗, Yn) exists (a.s.), it follows that limn→∞ F (x∗, Yn) = 0. This shows
that, with probability 1, Xn = Q(Yn) converges to some (random) minimum point
x∗ of (Opt), as claimed. �

In closing this section, we should note that the conclusion of Theorem 4.1 also
applies to problems that are “almost” coherent in the sense of Example 2.6, i.e.,

a) There exists a minimizer p ∈ X ∗ such that 〈∇f(x), x− p〉 ≥ 0 with equality
only if x ∈ X ∗.

b) For all x∗ ∈ X ∗, 〈∇f(x), x− x∗〉 ≥ 0 whenever x is close enough to x∗.

Proving this more general result requires some of the machinery presented in the
following section, so we relegate its discussion until all the requisite tools are in
place.

5. Convergence under local/weak coherence

In this section, our goal is to extend the convergence analysis of the previous sec-
tion to account for optimization problems that are only “locally” coherent. Building
on Definition 2.1, these are defined as follows:

Definition 5.1. Let C be a closed set of local minimizers of f , viz. f(x) ≥ f(x∗) for
all x∗ ∈ C and all x sufficiently close to C. We say that C is locally coherent if there
exists an open neighborhood U of C such that

〈∇f(x), x− x∗〉 ≥ 0 for all x ∈ U , x∗ ∈ C, (LVC)

and there exists some x∗ ∈ C such that equality holds in (LVC) only if x ∈ C.
An immediate consequence of Definition 5.1 is that locally coherent sets are

isolated components of local minimizers of f . To see this, if C, U and x∗ are as in
Definition 5.1 and x ∈ U is a local minimizer of f , we would have 〈∇f(x), z〉 ≥ 0
for all tangent z ∈ TC(x). Applying this to z = x∗ − x gives 〈∇f(x), x− x∗〉 ≥ 0,
so, by the definition of local coherence, we conclude that x ∈ C.

We also note that although the minimum set of a globally coherent problem is
a fortiori locally coherent, the converse need not hold. A concrete example of a
function which is not globally coherent but which admits a locally coherent minimum
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is the Rosenbrock test function

f(x) =

d∑
i=1

[100(xi+1 − xi)2 + (1− x2i )], x ∈ [−2, 2]d, (5.1)

which has seen extensive use in the literature as a non-convex convergence speed
benchmark (cf. Section 7).6 From this example, we see that the profile of f around
a locally coherent set could be highly non-convex, possibly including a wide variety
of valleys, talwegs and ridges; in fact, even quasi -convexity may fail to hold locally.

Now, in contrast to globally coherent optimization problems, an “unlucky” gradient
sample could drive (SMD) out of the “basin of attraction” of a locally coherent set
(the largest neighborhood U for which (LVC) holds), possibly never to return. For
this reason, instead of focusing on global convergence results with probability one,
we will focus on local convergence with high probability. Our main result along
these lines is as follows:

Theorem 5.2 (Local convergence with high probability). Let C be locally coherent
for (Opt) and fix some confidence level δ > 0. Then, under Assumptions 1–3, there
exists an open neighborhood U of C, independent of δ, such that

P(Xn converges to C |X1 ∈ U) ≥ 1− δ, (5.2)

provided that the algorithm’s step-size sequence γn is small enough.

Remark. As a concrete application of Theorem 5.2, fix any β ∈ (1/2, 1]. Then,
for every confidence level δ > 0, Theorem 5.2 implies that there exists some small
enough γ > 0 such that if Algorithm 1 is run with step-size γn = γ/nβ , Eq. (5.2)
holds. We emphasize the interesting point here: the open neighborhood U is fixed
once and for all, and does not depend on the probability threshold δ. That is, to get
convergence with higher probability, it is not necessary to assume that X1 starts
closer to C: one need only use a smaller step-size sequence satisfying (2.12).

The key idea behind the proof of Theorem 5.2 is as follows: First, it suffices to
consider the case where C consists of a single local minimizer x∗; the argument for
the general follows the same techniques as in Section 4. Then, conditioning on the
event that Xn remains sufficiently close to x∗ for all n, convergence can be obtained
by invoking Theorem 4.1 and treating (Opt) as a variationally coherent problem
over a smaller subset of X over which (LVC) holds. Therefore, to prove Theorem 5.2,
it suffices to show that Xn remains close to x∗ for all n with probability no less
than 1− δ. To achieve this, we rely again on the properties of the Fenchel coupling,
and we decompose the stochastic errors affecting each iteration of the algorithm
into a first-order O(γn) martingale term and a second-order O(γ2n) submartingale
perturbation. Using Doob’s maximal inequality, we then show that the aggregation
of both errors remains controllably small with probability at least 1− δ.

We formalize all this below:

Proof of Theorem 5.2. We break the proof into three steps.
Step 1: Controlling the martingale error. Fix some ε > 0. As in the proof of

Theorem 4.1, let Un = ∇f(Xn) −∇F (Xn;ωn) and set ξn = 〈Un, Xn − x∗〉 where

6Local coherence can be proved by a straightforward algebraic calculation (omitted for concision).
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x∗ ∈ C is such that (LVC) holds as an equality only if x ∈ C (cf. Definition 5.1). We
show below that there exists a step-size sequence (γn)∞n=1 such that

P

(
sup
n

n∑
k=1

γkξk ≤ ε

)
≥ 1− δ

2
. (5.3)

To show this, we start by noting that, as in the proof of Proposition 3.4, the aggregate
process Sn =

∑n
k=1 γkξk is a martingale relative to the natural filtration Fn of ωn.

Then, letting R = supx∈X ‖x‖, we can bound the variance of each individual term
of Sn as follows:

E[ξ2k] = E[E[|〈Uk, Xk − x∗〉|2 | Fk−1]]

≤ E[E[‖Uk‖2∗‖Xk − x∗‖2 | Fk−1]]

= E[‖Xk − x∗‖2 E[‖Uk‖2∗ | Fk−1]]

≤ R2V 2, (5.4)

where the first inequality follows from the definition of the dual norm and the second
one follows from (3.8b). Consequently, by Doob’s maximal inequality (Theorem A.4
in Appendix A), we have:

P
(

sup
0≤k≤n

Sk ≥ ε
)
≤ P

(
sup

0≤k≤n
|Sk| ≥ ε

)
≤ E[S2

n]

ε2
≤
R2V 2

∑n
k=1 γ

2
k

ε2
, (5.5)

where the last inequality follows from expanding E[|Sn|2], using Eq. (5.4), and noting
that E[ξkξ`] = E[E[ξkξ`] | Fk∨`−1] = 0 whenever k 6= `. Therefore, by picking γn so
that

∑∞
k=1 γ

2
k ≤ ε2δ/(2R2V 2), Eq. (5.5) gives

P
(

sup
0≤k≤t

Sk ≥ ε
)
≤
R2V 2

∑n
k=1 γ

2
k

ε2
≤
R2V 2

∑∞
k=1 γ

2
k

ε2
≤ δ

2
for all n. (5.6)

Since the above holds for all n, our assertion follows.

Step 2: Controlling the submartingale error. Again, fix some ε > 0 and, with a
fair amount of foresight, let Rn = (2K)−1

∑n
k=1 γ

2
k‖v̂k‖2∗. By construction, Rn is

a non-negative submartingale relative to Fn. We again establish that there exists
step-size sequence (γn)∞n=1 satisfying the summability condition (2.12) and such
that

P
(

sup
n
Rn ≤ ε

)
≥ 1− δ

2
. (5.7)

To show this, Doob’s maximal inequality for submartingales (Theorem A.3) gives

P
(

sup
0≤k≤n

Rk ≥ ε
)
≤ E[Rn]

ε
≤
V 2
∑n
k=1 γ

2
k

2Kε
, (5.8)

where we used the fact that E[‖∇F (Xn;ωn)‖2∗] ≤ V 2 for some finite V < ∞.
Consequently, if we choose γn so that

∑∞
k=1 γ

2
k ≤ Kδε/V 2, Eq. (5.8) readily gives

P
(

sup
0≤k≤n

Rk ≥ ε
)
≤
V 2
∑∞
k=1 γ

2
k

2Kε
≤ δ

2
for all n (5.9)

Since the above is true for all n, Eq. (5.7) follows.

Step 3: Error aggregation. To combine the above, fix some sufficiently small
ε̄ > 0 so that BF (x∗, 3ε̄) ⊂ U , where U is the open neighborhood given in LVC.
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Furthermore, let U = BF (x∗, ε̄) and pick a step-size sequence γn satisfying (2.12)
and such that

∞∑
n=1

γ2n ≤ min

{
δε̄2

2R2V 2
,
Kδε̄

V 2

}
. (5.10)

If X1 ∈ U , it follows that F (x∗, Y1) < ε̄ by the definition of BF (cf. Definition 3.3).
Then, by Eqs. (5.3) and (5.7), we get P(supn Sn ≥ ε̄) ≤ δ/2 and P(supnRn ≥ ε̄) ≤
δ/2. Consequently, with this choice of γn, it follows that

P(supn max{Sn, Rn} ≤ ε̄) ≥ 1− δ/2− δ/2 = 1− δ (5.11)

Then, letting Fn = F (x∗, Yn) and arguing as in the proof of Theorem 4.1, we may
expand Fn = F (x∗, Yn) to get

Fn = F (x∗, Yn + γnv̂n)

≤ Fn + γn〈v(Xn), Xn − x∗〉+ γnξn +
γ2n
2K
‖∇F (Xn;ωn)‖2∗ (5.12)

with ξn = 〈Un, Xn − x∗〉 defined as above. Telescoping (5.12) then yields

Fn ≤ F1 +

n∑
k=1

γk〈v(Xk), Xk − x∗〉+ Sn +Rn (5.13)

≤ ε̄+

n∑
k=1

γk〈v(Xk), Xk − x∗〉+ ε̄+ ε̄, (5.14)

with probability at least 1− δ. Therefore, with probability at least 1− δ, we have

F (x∗, Yn) ≤ 3ε̄+

n∑
k=1

γk〈v(Xk), Xk − x∗〉. (5.15)

Now, assume inductively that, for all k ≤ n, we have F (x∗, Yk) ≤ 3ε̄ or, equiv-
alently, Xk ∈ BF (x∗, 3ε̄). In turn, this implies that 〈v(Xk), Xk − x∗〉 ≤ 0 for all
k ≤ n, and hence, by (5.15), that F (x∗, Yn) ≤ 3ε̄ as well. Since the base case
X1 ∈ U = BF (x∗, ε̄) ⊂ BF (x∗, 3ε̄) is satisfied automatically, we conclude that Xn

stays in BF (x∗, 3ε̄) ⊂ U for all n with probability at least 1 − δ. Our claim then
follows by conditioning on this event and repeating the same steps as in the proof
of Theorem 4.1. �

We close this section by revisiting the notion of weak coherence (Definition 2.3).
In view of Definition 5.1, we see that weak coherence mixes elements of both
global and local coherence: on the one hand, it posits the existence of a (global)
minimizer p ∈ X ∗ for which (VC) holds globally, thus satisfying the second part
of Definition 2.1; on the other hand, minimizers other than p are only required to
satisfy (VC) locally (though they need not be locally coherent themselves). From a
stability viewpoint, this means that individual elements of a weakly coherent set
may be stable but not necessarily attracting (even locally). However, taken as a
whole, weakly coherent sets are globally attracting:

Theorem 5.3. Suppose that (Opt) is weakly coherent. Then, under Assumptions 1–3,
Xn converges with probability 1 to a (possibly random) minimum point of (Opt).

Proof. The proof is essentially a combination of the proofs of Theorems 4.1 and 5.2,
so we only provide the main arguments and omit the minor details.
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The first observation is that the conclusion of Proposition 3.4 only requires the
first part of Definition 2.3 (simply take x∗ = p in the proof of Proposition 3.4).
From this, we conclude that the generated sequence Xn admits (a.s.) a subsequence
Xnk

converging to some x∗ ∈ X ∗.
In view of this, arguing as in the proof of Theorem 5.2 allows us to conclude

that, with probability 1, Xn itself remains in some neighborhood U of x∗ such that
〈∇f(x), x− x∗〉 ≥ 0 for all x ∈ U . To see this, recall first that

∑∞
n=1 γ

2
n <∞; thus,

by starting at some sufficiently large n0 (recall that Xn comes arbitrarily close to
x∗ infinitely many times), we can assume without loss of generality that (5.10) is
satisfied for any ε, δ > 0. Since δ is arbitrary, this means that (5.15) actually holds
with probability 1, and our claim follows.

The above shows that 〈∇f(Xn), Xn − x∗〉 for all sufficiently large n. Thus,
going back to the proof of Theorem 4.1, it follows that the Fenchel coupling
Fn = F (x∗, Yn) converges. Since lim infn→∞ Fn = 0 (by Assumption 3 and the fact
that Xnk

= Q(Ynk
) → x∗), we conclude that limn→∞Xn = x∗, and our proof is

complete. �

6. Sharp minima and applications

Given the randomness involved at each step, obtaining an almost sure (or high
probability) bound for the convergence speed of the last iterate of SMD is fairly
involved: indeed, in contrast to the ergodic rate analysis of SMD for convex programs,
there is no intrinsic averaging in the algorithm’s last iterate, so it does not seem
possible to derive a precise black box convergence rate for Xn. Essentially, as
in the analysis of Section 5, a single “unlucky” gradient sample could violate any
convergence speed estimate that is probabilistically independent of any finite subset
of realizations.

Despite this difficulty, if SMD is run with a surjective mirror map, we show below
that Xn reaches a minimum point of (Opt) in a finite number of iterations for a
large class of optimization problems that admit sharp minima (see below). As we
noted in Section 2, an important example of a surjective mirror map is the standard
Euclidean projection Π(y) = arg minx∈X ‖y − x‖2. The resulting descent method is
the well-known stochastic gradient descent (SGD) algorithm (cf. Algorithm 2 below),
so our results in this section also provide new insights into the behavior of SGD.

6.1. Definition and characterization. The starting point of our analysis is Polyak’s
fundamental notion of a sharp minimum [35, Chapter 5.2], which describes functions
that grow at least linearly around their minimum points:

Definition 6.1. We say that x∗ ∈ X is a ρ-sharp (local) minimum of f if

f(x) ≥ f(x∗) + ρ‖x− x∗‖ for some ρ > 0 and all x sufficiently close to x∗. (6.1)

Polyak’s original definition concerned global sharp minima of unconstrained
(convex) optimization problems; by contrast, the above definition is tailored to
local optima of constrained (and possibly non-convex) programs. In particular,
Definition 6.1 implies that sharp minima are isolated (local) minimizers of f , and
they remain invariant under small perturbations of f (assuming of course that such
a minimizer exists in the first place). In what follows, we shall omit the modifier
“local” for concision and rely on the context to resolve any ambiguities.

Sharp minima admit a useful geometric interpretation in terms of the polar cone
of X . To state it, recall first the following basic facts from convex analysis:
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Definition 6.2. Let X be a closed convex subset of Rd. Then:
(1) The tangent cone TC(p) to X at p is defined as the closure of the set of all

rays emanating from p and intersecting X in at least one other point.
(2) The dual cone TC∗(p) to X at p is the dual set of TC(p), viz. TC∗(p) =
{y ∈ Rd : 〈y, z〉 ≥ 0 for all z ∈ TC(p)}.

(3) The polar cone PC(p) to X at p is the polar set of TC(p), viz. PC(p) =
−TC∗(p) = {y ∈ Rd : 〈y, z〉 ≤ 0 for all z ∈ TC(p)}.

The above gives the following geometric characterization of sharp minima:

Lemma 6.3. If x∗ ∈ X is a ρ-sharp minimum of f , we have

〈∇f(x∗), z〉 ≥ ρ‖z‖ for all z ∈ TC(x∗). (6.2)

In particular, ∇f(x∗) belongs to the topological interior of TC∗(x). Conversely, if
(6.2) holds and f is convex, x∗ is sharp.

Proof of Lemma 6.3. For the direct implication, fix some x ∈ X satisfying (6.1),
and let z = x− x∗ ∈ TC(x∗). Then, by the definition of a sharp minimum, we get

f(x∗ + τz) ≥ f(x∗) + ρτ‖z‖ for all τ ∈ [0, 1]. (6.3)

In turn, this implies that

f(x∗ + tz)− f(x∗)

t
≥ ρ‖z‖ for all sufficiently small t > 0. (6.4)

Hence, taking the limit τ → 0+, we get 〈∇f(x∗), z〉 ≥ ρ‖z‖, and our claim follows
from the definition of TC(x∗) as the closure of the set of all rays emanating from
x∗ and intersecting X in at least one other point. As for the converse implication,
simply note that f(x)− f(x∗) ≥ 〈∇f(x∗), x− x∗〉 ≥ ρ‖x− x∗‖ if f is convex. �

Example 6.1 (Linear programs). A first important class of examples of functions
that admit sharp minima is that of generic linear programs.7 Indeed, by definition, a
linear function grows (exactly) linearly around its minimum points so, by genericity,

Example 6.2 (Concave minimization). For a non-convex class of examples, let
f : X → R be a strictly concave function defined over a convex polytope X of Rd.
Concavity implies that f is superharmonic, i.e.,

∆f(x) =

d∑
i=1

∂2f

∂x2i
≤ 0 (6.5)

for all x ∈ X .8 By the minimum principle for superharmonic functions, the minimum
of f over any connected region C of X is attained at the boundary of C. Hence, by
strict concavity, we conclude that the local minima of f are attained at 0-dimensional
faces of X , and they are de facto sharp (simply note that f is strictly concave along
any ray of the form x∗ + tz, z ∈ TC(x∗)).

7“Generic” means here that X is a polytope, f : X → R is affine, and f is constant only on
the zero-dimensional faces of X . Any linear program can be turned into a generic one after an
arbitrarily small perturbation.

8We tacitly assume above that f is twice-differentiable but this conclusion still holds even if f
is not differentiable.
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Sharp minima have several other interesting and useful properties. First, by
Lemma 6.3, sharp minimum points are locally coherent. To see this, simply note that
for all x ∈ X sufficiently close to x∗ (with x 6= x∗), we have z = x− x∗ ∈ TC(x∗)
and 〈∇f(x∗), z〉 ≥ ρ‖z‖ > 0. Consequently, 〈∇f(x∗), x − x∗〉 > 0, implying by
continuity that 〈∇f(x), x − x∗〉 > 0 for all x in some open neighborhood of x∗
(excluding x∗). In addition, if (Opt) is variationally coherent, then a sharp (local)
minimum is globally sharp as well.

A second important property is that the dual cone TC∗(x∗) of a sharp minimum
must necessarily have nonempty topological interior – since it contains ∇f(x∗) by
Lemma 6.3. This implies that sharp minima can only occur at corners of X : for
instance, if a sharp minimum were an interior point of X , the dual cone to X at x∗
would be a proper linear subspace of the ambient vector space, so it would have no
topological content (see also Example 6.2 above).

6.2. Global convergence in a finite number of iterations. We now turn to showing
that, if a variationally coherent program admits a sharp minimum x∗, Algorithm 1
reaches x∗ in a finite number of iterations (a.s.). The interesting feature here is
that convergence is guaranteed to occur in a finite number of iterations: specifically,
there exists some (random) n0 such that Xn = x∗ for all n ≥ n0. In general, this is
a fairly surprising property for a first-order descent scheme, even if one considers
the ergodic average n−1

∑n
k=1Xk: a priori, a single “bad” sample could kick Xn

away from x∗, which is the reason why (ergodic) convergence rates are typically
asymptotic.

The key intuition behind our analysis is that sharp minima must occur at corners
of X (as opposed to interior points). As a further key insight, when the solution
of (Opt) occurs at a corner, noisy gradients may still play the role of a random
disturbance; however, since they are applied to the dual process Yn, a surjective
mirror map would immediately project Yn back to a corner of X if Yn has progressed
far enough in the interior of the polar cone to X at x. This ensures that the
last iterate Xn of SMD will stay exactly at the optimal point, irrespective of the
persistent noise entering Algorithm 1.

Exploiting these insights and the structural properties of sharp minima, we have:

Theorem 6.4. Suppose that (Opt) is variationally coherent. If f admits a (necessarily
unique) sharp minimum x∗, and Algorithm 1 is run with a surjective mirror map
and Assumptions 1–3 hold, Xn converges to x∗ in a finite number of steps (a.s.).
More precisely, we have

P(Xn = x∗ for all sufficiently large n) = 1 (6.6)

Corollary 6.5. Let f be a non-degenerate quasi-convex (or pseudo-convex, or convex )
function and let x∗ be a sharp minimum of f . Then, with assumptions as above,
Xn reaches x∗ in a finite number of steps (a.s.).

The prototypical example of a surjective mirror map is the Euclidean projec-
tor Π(y) = arg minx∈X ‖y − x‖2 induced by the quadratic regularization function
h(x) = ‖x‖22/2 (cf. Example 2.7). The resulting descent scheme is the well-known
stochastic gradient descent (SGD) algorithm (see Algorithm 2 for a pseudocode
implementation), for which we obtain the following novel convergence result:

Corollary 6.6. If (Opt) is a generic linear program, the last iterate Xn of SGD
reaches its (necessarily unique) solution in a finite number of steps (a.s.).
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Algorithm 2 Stochastic gradient descent (SGD)
Require: step-size sequence γn > 0
1: choose Y ∈ Rd, X = Π(Y ) # initialization
2: for n = 1, 2, . . . do
3: get v̂ = −∇F (X;ω) # oracle feedback
4: set Y ← Y + γnv̂ # gradient step
5: set X ← Π(Y ) # set state
6: end for
7: return X # output

With all this said and done, we proceed with the proof of Theorem 6.4:

Proof of Theorem 6.4. Since x∗ is a ρ-sharp minimum, there exists a sufficiently
small open neighborhood U of x∗ such that 〈∇f(x), z〉 ≥ ρ‖z‖/2 for all z ∈ TC(x∗)
and all x ∈ U . By Theorem 4.1, Xn converges to x∗ (a.s.), so there exists
some (random) n0 such that Xn ∈ U for all n ≥ n0. In turn, this implies that
〈∇f(Xn), z〉 ≥ ρ‖z‖/2 for all n ≥ n0. Thus, continuing to use the notation
v(Xn) = −∇f(Xn) and Un = ∇f(Xn) − ∇F (Xn;ωn), we get for all z ∈ TC(x∗)
with ‖z‖ ≤ 1:

〈Yn, z〉 =

〈
Yn0

+

n∑
k=n0

γkv̂k, z

〉

= 〈Yn0 , z〉+

n∑
k=n0

γk〈v(Xk), z〉+

n∑
k=n0

γk〈Uk, z〉

≤ ‖Yn0
‖∗ −

ρ

2

n∑
k=n0

γk +

n∑
k=n0

γk〈Uk, z〉, (6.7)

where, in the last line, we used the fact that Xk ∈ U for all k ≥ n0.
As we discussed in the proof of Theorem 4.1, γnUn is a martingale difference

sequence relative to the natural filtration Fn of ωn. Hence, by the law of large
numbers for martingale differences (cf. Theorem A.1 for p = 2 and τn =

∑n
k=0 γk),

we get

lim
n→0

∑n
k=n0

γkUk∑n
k=n0

γk
= 0 (a.s.). (6.8)

Thus, there exists some n∗ such that ‖
∑n
k=n0

γkUk‖∗ ≤ (ρ/4)
∑n
k=n0

γk for all
n ≥ n∗ (a.s.). Eq. (6.7) then implies

〈Yn, z〉 ≤ ‖Yn0
‖∗ −

ρ

2

n∑
k=n0

γk +

n∑
k=n0

γk〈Uk, z〉

≤ ‖Yn0‖∗ −
ρ

2

n∑
k=n0

γk +
ρ

4

n∑
k=n0

γk = ‖Yn0‖∗ −
ρ

4

n∑
k=n0

γk, (6.9)

where we used the assumption that ‖z‖ ≤ 1. Since
∑n
k=n0

γk →∞ as n→∞, we
get 〈Yn, z〉 → −∞ with probability 1.

To proceed, we claim that y∗ + PC(x∗) ⊆ Q−1(x∗) whenever Q(y∗) = x∗, i.e.,
Q−1(x∗) contains all cones of the form y∗ + PC(x∗) for y∗ ∈ Q−1(x∗). Indeed, note
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first that x∗ = Q(y∗) if and only if y∗ ∈ ∂h(x∗), where ∂h(x∗) is the set of all
subgradients of h at x∗ [38]. Therefore, it suffices to show that y∗ + w ∈ ∂h(x∗)
whenever w ∈ PC(x∗). To that end, note that the definition of the polar cone gives

〈w, x− x∗〉 ≤ 0 for all x ∈ X , w ∈ PC(x∗), (6.10)

and hence

h(x) ≥ h(x∗) + 〈y∗, x− x∗〉 ≥ h(x∗) + 〈y∗ + w, x− x∗〉. (6.11)

The above shows that y∗ + w ∈ ∂h(x∗), as claimed.
With Q surjective, the set Q−1(x∗) is nonempty, so it suffices to show that Yn

lies in the cone y∗ + PC(x∗) for some y∗ ∈ Q−1(x∗) and all sufficiently large n. To
do so, simply note that Yn ∈ y∗ + PC(x∗) if and only if 〈Yn − y∗, z〉 ≤ 0 for all
z ∈ TC(x∗) with ‖z‖ = 1. Since 〈Yn, z〉 converges to −∞ (a.s.), our assertion is
immediate. �

6.3. Local convergence in a finite number of iterations. Our convergence analysis
for locally coherent sets of minimizers (cf. Section 5), showed that SMD converges
locally with high probability. Our last result in this section complements this
analysis by showing that, with high probability, SMD converges locally to sharp
local minima in a finite number of iterations:

Theorem 6.7. Let x∗ be a sharp (local) minimum of f , and fix some confidence level
δ > 0. If Algorithm 1 is run with a surjective mirror map and Assumptions 1–3
hold, there exists an open neighborhood U of x∗, independent of δ, such that

P(Xn = x∗ for all sufficiently large n |X1 ∈ U) ≥ 1− δ, (6.12)

provided that the algorithm’s step-size sequence γn is small enough.
Given that local minimizers of concave minimization programs are sharp, an

application of Theorem 6.7 gives the following convergence result for SGD:

Corollary 6.8. Suppose that f is strictly concave as in Example 6.2. Then, under
assumptions Assumptions 1 and 2, the last iterate of SGD converges locally to a
local minimum of (Opt) with arbitrarily high probability.

Proof of Theorem 6.7. Under the stated assumptions, Theorem 5.2 implies that
there exists an open neighborhood U of x∗ such that P(limn→∞Xn = x∗ |X0 ∈
U) ≥ 1− δ. In turn, this means that there exists some (random) n0 which is finite
with probability at least 1− δ and is such that 〈∇f(xn), z〉 ≥ ρ‖z‖/2 for all n ≥ n0
(by the sharpness assumption). Our assertion then follows by conditioning on this
event and proceeding as in the proof of Theorem 6.4. �

We close this section by noting that the convergence of Xn in a finite number of
steps is a unique feature of lazy descent schemes with a surjective mirror map. For
example, if we consider the greedy (or “eager ”) projected descent scheme

Xn+1 = Π(Xn − γn∇F (Xn;ωn)), (6.13)

it is not possible to obtain a result similar to Theorems 6.4 and 6.7 without further
assumptions on the stochasticity affecting (Opt). To see why, assume that x∗ is
a sharp minimum of (Opt) and Xn = x∗ for some n. If the sampled gradient
∇F (Xn;ωn) attains all directions with positive probability (more precisely, if the
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unit vector ∇F (Xn;ωn)/‖∇F (Xn;ωn)‖∗ is supported on the entire unit sphere Sd
of Rd), there exists some δ > 0 such that

P(∇F (Xn;ωn) /∈ TC∗(x∗)) ≥ δ for all n. (6.14)

We thus obtain

P(Xn+1 6= x∗ |Xn = x∗) ≥ δ for all n, (6.15)

implying in turn that Xn cannot converge to x∗ in a finite number of iterations. We
find this property of lazy descent schemes particularly appealing as it ensures very
fast convergence in the presence of sharp minima.

7. Numerical experiments

In this section, we validate the theoretical analysis of the previous sections via
a series of numerical experiments. As a first illustration of Theorems 4.1 and 5.3,
we begin by plotting the generated trajectories of (SMD) for two non-convex test
functions satisfying the coherence requirements of Definitions 2.1 and 2.3 respectively.
Referring to Fig. 2 for the detailed expressions, the specific setup is as in Example 2.2
with U following a standard Gaussian distribution; (SMD) was then run with the
Euclidean projector of Example 2.7 and a step-size sequence γn ∝ 1/n. In both
cases, the (randomly) generated trajectories of (SMD) are seen to converge to a
minimum point of (Opt), even when the problem’s minimum set is non-convex (as
in the second example plotted in Fig. 2).

To go beyond globally coherent problems, we also test the convergence of (SMD)
against the widely used Rosenbrock benchmark of Eq. (5.1). This test function
admits a unique global minimum point at x∗ = (1, . . . , 1); however, this minimum
is at the lowest point of a very flat and thin parabolic valley which is notoriously
difficult for first-order methods to traverse [40]. Because of the parabolic shape of
this valley, the problem is not globally coherent (there are rays emanating from x∗

along which f fails to be nondecreasing) but an easy algebraic calculation in the
spirit of Example 2.6 shows that x∗ is locally coherent.

For illustration purposes, we first focus on a low-dimensional example with d = 2
degrees of freedom and algorithmic parameters as in Fig. 2. Despite the lack of global
coherence, the simulated trajectories of (SMD) quickly reach the Rosenbrock valley
and eventually converge to the minimum of f ; a typical such trajectory is shown in
Fig. 3. Subsequently, in Fig. 4, we run a series of tests on the Rosenbrock function
for d = 103 and d = 104 degrees of freedom. Because the calculation of the gradient
becomes increasingly difficult as d grows large, we take the approach of Example 2.1
and, at each iteration n = 1, 2, . . . of the algorithm, we randomly pick an integer
between 1 and d and calculate the gradient of fi(x) = 100(xi+1 − xi)2 + (1− xi)2.

In so doing, we obtain the plots of Fig. 4 where, for statistical significance, we
report the findings of S = 100 sample realizations. For comparison purposes, we also
include in the figure the performance of the ergodic average X̄n of Xn as defined in
Eq. (4.1). This sequence is the standard output of mirror descent/dual averaging
schemes in convex problems; however, in our non-convex setting, this averaging
offers no tangible benefits. This is seen clearly in Fig. 4 where the convergence
speed of X̄n is considerably slower than that of the algorithm’s last iterate.
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(a) f(r, θ) = (3 + sin(5θ) + cos(3θ))r2(5/3− r) in polar coordinates (0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π).
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(b) f(x1, x2) = x21x
2
2, −1 ≤ x1, x2 ≤ 1.

Figure 2. Convergence of SMD in a coherent problem with a unique minimizer
(top) and a weakly coherent problem with a non-convex minimum set (bottom).
In both cases, the minimum set of f is plotted in solid black.

Finally, in Fig. 5, we examine the convergence rate of (SMD) for quadratic
objective functions of the form

f(x) =
1

2

d∑
i,j=1

Qijxixj +

d∑
i=1

bixi, (7.1)

with Q = (Qij)
d
i,j=1 negative-definite (so f is concave). When x is constrained to lie

on the unit simplex of Rd, the minimization of f is related to the maximum weight
clique problem [25]: this problem is well known to be NP-hard, so fast convergence
to local minima of f is essential in order to get reasonable approximate solutions.
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Figure 3. Convergence of the SMD algorithm in the Rosenbrock test with d = 2
degrees of freedom.
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Figure 4. Convergence speed of SMD in the Rosenbrock benchmark for d = 103

and d = 104 degrees of freedom (left and right respectively). The lightly shaded
envelope indicates the best and worst realizations of the algorithm over S = 100
sample runs; the corresponding sample mean is represented by a solid black
line. For comparison purposes, we also plot the performance of the ergodic
average X̄n =

∑n
k=1 γkXk

/∑n
k=1 γk of Xn (dashed red line). Due to lack of

convexity, the ergodic average of Xn converges at a significantly slower rate.

Using again the stochastic setup of Example 2.2, we ran both Algorithm 2 and
its greedy variant (6.13) for a concave quadratic objective of the form (7.1) with
d = 100 and randomly drawn Q and b. As can be seen in Fig. 5, the lazy variant
of SGD converges within a finite number of iterations whereas the greedy variant
still oscillates within the allocated time window. This behavior is explained by
Theorem 6.7 and the discussion that follows: because the greedy variant essentially
“remembers” only the last state, convergence within a finite number of iterations is
not possible; by contrast, the dual averaging that takes place in the lazy variant
allows Xn to converge in finite time, despite all the noise.

8. Discussion

To conclude, we first note that our analysis can be extended to the study of
stochastic variational inequalities with possibly non-monotone operators. The notion
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Figure 5. Convergence of the lazy and greedy variants of SGD in a quadratic
minimization problem of the form (7.1) with d = 100. The lightly shaded
area traces the best and worst realizations of the algorithm over S = 100
sample runs; the corresponding sample mean is drawn as a solid black line. In
the dedicated runtime (n = 1000 iterations), the greedy variant still hasn’t
converged; by contrast, even the worst realization of lazy SGD has converged
within approximately 300 iterations.

of a variationally coherent problem still make sense for a variational inequality “as
is”, and the Fenchel coupling can also be used to establish almost sure convergence
to the solution set of a variational inequality. That said, there are several details
that need to be adjusted along the way, so we leave this direction to future work.

Finally, we should also mention that another merit of SMD is that, at least
for (strongly) convex optimization problems [13, 36], the algorithm is amenable to
asynchronous parallelization. This is an increasingly desirable advantage, especially
in the presence of large-scale datasets that are characteristic of “big data” applications
requiring the computing power of a massive number of parallel processors. Although
we do not tackle this question in this paper, the techniques developed here can
potentially be leveraged to provide theoretical guarantees for certain non-convex
stochastic programs when SMD is run asynchronously and in parallel.

Appendix A. Elements of martingale limit theory

In this appendix, we state for completeness some basic results from martingale
limit theory which we use throughout our paper. The statements are adapted from
[18] where we refer the reader for detailed proofs.

We begin with a strong law of large numbers for martingale difference sequences:

Theorem A.1. Let Mn =
∑n
k=1 dk be a martingale with respect to an underlying

stochastic basis (Ω,F , (Fn)∞n=1,P) and let (τn)∞n=1 be a nondecreasing sequence of
positive numbers with limn→∞ τn =∞. If

∑∞
n=1 τ

−p
n E[|dn|p | Fn−1] <∞ for some

p ∈ [1, 2] (a.s.), we have:

lim
n→∞

Mn

τn
= 0 (a.s.) (A.1)

The second result we use is Doob’s martingale convergence theorem:

Theorem A.2. If Mn is a submartingale that is bounded in L1 (i.e. supn E[|Mn|] <
∞), Mn converges almost surely to a random variable M with E[|M |] <∞.

The next result is also due to Doob, and is known as Doob’s maximal inequality:
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Theorem A.3. Let Mn be a non-negative submartingale and fix some ε > 0. Then:

P(supnMn ≥ ε) ≤
E[Mn]

ε
. (A.2)

Finally, a widely used variant of Doob’s maximal inequality is the following:

Theorem A.4. With assumptions and notation as above, we have

P(supn|Mn| ≥ ε) ≤
E[M2

n]

ε2
. (A.3)

Appendix B. Technical proofs

In this appendix, we present the proofs that were omitted from the main text.
We begin with the core properties of the Fenchel coupling:

Proof of Lemma 3.2. To prove the first claim, let x = Q(y) = arg maxx′∈X {〈y, x′〉−
h(x′)}, so y ∈ ∂h(x) from standard results in convex analysis [38]. We thus get:

F (p, y) = h(p) + h∗(y)− 〈y, p〉 = h(p)− h(x)− 〈y, p− x〉. (B.1)

Since y ∈ ∂h(x) and h is K-strongly convex, we also have

h(x)+τ〈y, p−x〉 ≤ h(x+τ(p−x)) ≤ (1−τ)h(x)+τh(p)− 1
2Kτ(1−τ)‖x−p‖2 (B.2)

for all τ ∈ [0, 1], thereby leading to the bound
1
2K(1− τ)‖x− p‖2 ≤ h(p)− h(x)− 〈y, p− x〉 = F (p, y). (B.3)

Our claim then follows by letting τ → 0+ in (B.3).
For our second claim, we start by citing a well-known duality principle for strongly

convex functions [39, Theorem 12.60]: If f : Rd → R ∪ {−∞,+∞} is proper, lower
semi-continuous and convex, its convex conjugate f∗ is σ-strongly convex if and
only if f is differentiable and satisfies

f(x′) ≤ f(x) + 〈∇f(x), x′ − x〉+
1

2σ
‖x′ − x‖2 (B.4)

for all x, x′ ∈ Rd. In our case, if we extend h to all of V by setting h ≡ +∞
outside X , we have that h is K-strongly convex, lower semi-continuous and proper,
so (h∗)∗ = h [39, Theorem 11.1]. It is also easy to see that h∗ is proper, lower
semi-continuous and convex (since it is a point-wise maximum of affine functions by
definition), so the K-strong convexity of h = (h∗)∗ implies that h∗ is differentiable
and satisfies

h∗(y′) ≤ h∗(y) + 〈y′ − y,∇h∗(y)〉+
1

2K
‖y′ − y‖2∗ (B.5)

= h∗(y) + 〈y′ − y,Q(y)〉+
1

2K
‖y′ − y‖2∗ (B.6)

for all y, y′ ∈ Y, where the last equality follows from the fact that ∇h∗(y) = Q(y).
Therefore, substituting the preceding inequality in the definition of the Fenchel
coupling, we obtain

F (x, y′) = h(x) + h∗(y′)− 〈y′, x〉

≤ h(x) + h∗(y) + 〈y′ − y,∇h∗(y)〉+
1

2K
‖y′ − y‖2∗ − 〈y′, x〉

= F (x, y) + 〈y′ − y,Q(y)− x〉+
1

2K
‖y′ − y‖2∗, (B.7)
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and our assertion follows. �

We now turn to the recurrence properties of SMD:

Proof of Proposition 3.4. Our proof proceeds step-by-step, as discussed in Section 3:
Step 1: Martingale properties of Yn. By Assumption 2 and the fact that finiteness

of second moments implies finiteness of first moments, we get E[‖F (x;ωn)‖∗] <∞.
We then claim that Un = ∇f(Xn) − ∇F (Xn;ωn) is an L2-bounded martingale
difference sequence with respect to the natural filtration of ωn. Indeed, we have:

(1) Since Xn is Fn−1-measurable and ωn is i.i.d., we readily get

E[Un | Fn−1] = E[∇f(Xn)−∇F (Xn;ωn) | Fn−1]

= E[∇f(Xn)−∇F (Xn;ωn) |ω1, . . . , ωn−1]

= ∇f(Xn)−∇f(Xn)

= 0. (B.8)

(2) Furthermore, by Assumption 2, the L2 norm of U satisfies

E[‖Un‖2∗ | Fn−1] = E[‖∇f(Xn)−∇F (Xn;ωn)‖2∗ | Fn−1]

≤ 2E[‖∇f(Xn)‖2∗ | Fn−1] + 2E[‖∇F (Xn;ωn)‖2∗ | Fn−1]

≤ 2‖∇f(Xn)‖2∗ + 2V 2

= 2‖E[∇F (Xn;ω)]‖2∗ + 2V 2

≤ 2E[‖∇F (Xn;ω)‖2∗] + 2V 2

≤ σ2, (B.9)

where we set σ2 = 4V 2, and we used the dominated convergence theorem to
interchange expectation and differentiation in the second line, and Jensen’s
inequality in the penultimate one.

Step 2: Recurrence of ε-neighborhoods. We proceed to show that every ε-neigh-
borhood B(X ∗, ε) of X ∗ is recurrent under Xn. To do so, fix some ε > 0 and assume
ad absurdum that Xn enters B(X ∗, ε) only a finite number of times, so there exists
some finite n0 such that dist(X ∗, Xn) ≥ ε for all n ≥ n0. Since X \ B(X ∗, ε) is
compact, v(x) = −∇f(x) is continuous in x; furthermore, letting x∗ be such that
〈∇f(x), x− x∗〉 = 0 only if x ∈ X ∗ (cf. Definition 2.1), it follows that there exists
some c ≡ c(ε) > 0 such that

〈v(x), x− x∗〉 ≤ −c < 0 for all x ∈ X \ B(X ∗, ε). (B.10)

To proceed, let R = maxx∈X ‖x‖ and set βn = γ2n/(2K). Then, letting Fn =
F (x∗, Yn) and ξn = 〈Un, Xn − x∗〉, Lemma 3.2 yields

Fn+1 = F (x∗, Yn+1) = F (x∗, Yn + γnv̂n)

≤ F (x∗, Yn) + γn〈v(Xn) + Un, Xn − x∗〉+ βn‖v̂n‖2∗
= Fn + γn〈v(Xn), Xn − x∗〉+ γnξn + βn‖v̂n‖2∗
≤ Fn − γnc+ γnξn + βn‖v̂n‖2∗. (B.11)
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Hence, letting τn =
∑n
k=n0

γk and telescoping from n0 to n, we get

Fn+1 ≤ Fn0
− c

n∑
k=n0

γk +

n∑
k=n0

γkξk +

n∑
k=n0

βk‖v̂k‖2∗

= Fn0
− τn

[
c−

∑n
k=n0

γkξk

τn

]
+

n∑
k=n0

βk‖v̂k‖2∗ (B.12)

We now proceed to bound each term of (B.12). First, by construction, we have

E[ξn | Fn−1] = E[〈Un, Xn − x∗〉 | Fn−1] = 〈E[Un | Fn−1], Xn − x∗〉 = 0, (B.13)

where we used the fact thatXn is Fn−1-measurable. Moreover, by Young’s inequality,
we also have

|ξn| = |〈Un, Xn − x∗〉| ≤ ‖Un‖∗‖Xn − x∗‖ ≤ 2R‖Un‖∗, (B.14)

where, as before, R = maxx∈X ‖x‖. Eq. (B.9) then gives

E[ξ2n | Fn−1] ≤ (2R)2 E[‖Un‖2∗ | Fn−1] ≤ 4R2σ2, (B.15)

implying in turn that ξn is an L2-bounded martingale difference sequence. It then
follows that ξn satisfies the summability condition

∞∑
n=n0

E[|γnξn|2 | Fn−1]

τ2n
≤ 4R2σ2

∞∑
n=n0

γ2n
τ2n

<∞, (B.16)

where the last inequality follows from the assumption that γn is square-summable.
Thus, by the law of large numbers for martingale difference sequences (Theorem A.1),
we get ∑n

k=n0
γkξk

τn
→ 0 as n→∞ (a.s.), (B.17)

and, with
∑∞
k=n0

γk =∞, we finally obtain

lim
n→∞

τn

[
c−

∑n
k=n0

γkξk

τn

]
=∞ (a.s.). (B.18)

For the last term of (B.12), let Sn =
∑n
k=n0

βk‖v̂k‖2∗, so Sn is Fn-measurable
and nondecrasing. In addition, we have

E[Sn] =

n∑
k=n0

βk E[‖v̂k‖2∗] ≤ V 2
n∑

k=n0

βk <∞, (B.19)

with the last step following from (B.9). This implies that Sn is an L1-bounded
submartingale so, by Doob’s submartingale convergence theorem (Theorem A.2), Sn
converges almost surely to some random variable S∞, i.e., the last term of (B.12) is
bounded. Hence, combining all of the above, we finally obtain

lim sup
n→∞

Fn = −∞ (a.s.), (B.20)

contradicting the positive-definiteness of the Fenchel coupling (cf. Lemma 3.2). We
thus conclude that Xn enters B(X ∗, ε) infinitely many times (a.s.), as claimed.

Step 3: Recurrence of Fenchel zones. Using the reciprocity of the Fenchel coupling
(Assumption 3), we show below that every Fenchel zone BF (X ∗, δ) of X ∗ contains
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an ε-neighborhood of X ∗. Then, given that Xn enters B(X ∗, ε) infinitely often (per
the previous step), it will also enter BF (X ∗, δ) infinitely often.

To establish this claim, assume instead that there is no ε-ball B(X ∗, ε) con-
tained in BF (X ∗, δ). Then, for all k > 0 there exists some yk ∈ Y such that
dist(X ∗, Q(yk)) = 1/k but F (X ∗, yδ) ≥ ε. This produces a sequence (yk)∞k=1 such
that dist(X ∗, Q(yk))→ 0 but F (X ∗, yk) ≥ ε. Since X is compact and X ∗ is closed,
we can assume without loss of generality that Q(yk)→ p for some p ∈ X ∗ (at worst,
we only need to descend to a subsequence of yk). We thus get

ε ≤ F (X ∗, yk) ≤ F (p, yk). (B.21)

However, since Q(yk)→ p, Assumption 3 gives F (p, yk)→ 0, a contradiction. We
conclude that BF (X ∗, δ) contains an ε-neighborhood of X ∗, as required. �
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