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Abstract— We investigate the emergence of rationality in
repeated games where, at each iteration, the players’ payoffs are
randombly perturbed (to account e.g. for the effects of fading or
errors in the reading of one’s throughput). We see that even if
players start out completely uneducated about the game, there is
a simple learning scheme that enables them to eventually weed
out the noise and identify suboptimal choices, regardless of the
noise level. More precisely, we show that strategies that are
strictly dominated (even iteratively) become extinct in the long
run, i.e. players exhibit rational behavior. As an application, we
model a number of users that are able to switch dynamically
between multiple wireless nodes and see that they are able to
pick up which node works best for them, even in the presence
of high performance fluctuations.

I. Introduction

Ever since the seminal work of Maynard Smith on animal
conflicts [1], there has been established a profound link
between evolution and rationality: roughly speaking, one
leads to the other. In this way, when species compete for the
limited resources of their environment, evolution and natural
selection steer the conflict to an equilibrium where species
have essentially learnt to respect each other’s boundariesand
are loath to stray away from them (e.g. lest they suffer in
terms of reproductive fitness). As a consequence, “fight or
flight” responses that are deeply ingrained in a species can
be seen as a form of rational behavior, emerging over the
background of a species’ evolutionary path.

By extending this analogy to networks, one sees that
evolutionary schemes can yield substantial gains to interact-
ing agents who need to adjust to their ever-changing local
environment; after all, competition for the limited resources
of a network is one of the most important problems faced by
network designers. Still, this extension often depends on the
accuracy of the data each user has about their environment
and, given the finite time horizon for receiving this informa-
tion in a rapidly evolving network, this data may be widely
off the mark. For example, mobility in wireless networks
introduces both fast and slow fading to the channel gains
of each user and this, combined with overall bad channel
conditions, will decrease the quality of the feedback data.If,
on top of that, one adds the underlying competition between
different users for the available resources of the system, the
situation becomes quite complex.

In game-theoretic terms, one models this competition by
introducing a suitable game whose payoffs reflect the users’
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reproductive fitness. Here, evolution takes the form of a
selection mechanism that promotes strategies which perform
better “on average” and one would hope that users are thus
shepherded to a reasonable solution. This is precisely what
happens in the model ofexponential learningwhere players
keep scores of their strategies (based on their returns) and
employ the highest scoring one exponentially more often [2].
It then turns out that the evolution of the users’ strategic
choices is governed by thereplicator dynamicsof [3] and
[4], which are an excellent conduit for rationality: in time,
suboptimal strategies cease to be replicated and become
extinct [5].

As a result, the many applications of evolutionary game
theory to networks should not come as a surprise. To name
but a few examples, in Aloha-type games the convergence
properties of the replicator dynamics lead wireless users to an
equilibrial state [6]. More recently, randomness has also been
introduced in [7] by giving users revision opportunities and
letting them switch strategies based on a Markov decision
process that dictates whether to transmit and at what power.
And, in the case of users who are able to switch dynamically
between several wireless nodes, it was seen in [8] that if
users process a broadcast signal, they actually converge to
an efficient correlated equilibrium.

However, it is not at all clear if these results still hold
in the presence of uncertainty which blurs the waters and
may effectively “mask” the suboptimality of certain choices.
Indeed, since the “state of the world” also changes as players
learn to play the game, one should also take into account
stochastic perturbations caused by nature’s interference. In
traditional evolutionary game theory, this is done by in-
troducing “aggregate shocks” (weather-type effects) to the
phenotype (species) populations, so as to account for births
and deaths that are due to the fickle hand of nature. This
approach of Fudenberg and Harris [9] has stirred a con-
siderable amount of interest and many deterministic results
have been translated to the stochastic setting as well. To wit,
Cabrales showed in [10] that if the variance of the shocks
is low enough, rational play still emerges, even if mutations
are present. More recently, it was shown in [11] and [12]
that even equilibrial play emerges in the long run: strict
Nash equilibria are stochastically asymptotically stablein the
case of a single population of players but, again, only if the
hand of nature is soft enough. In high-noise environments,
this is no longer the case: if the attraction of evolutionarily
stable strategies is not sufficiently strong, the users’ behavior
becomes ergodic and the loud noise does not allow players
to pick up the underlying game.

In the present paper, we take a different approach based



on the analogy between evolution and learning that we just
outlined. So, instead of considering very large populations
of distinct species, we will consider a game with a finite
number of players who “evolve” thanks to their acquired
experience in playing the game. As was mentioned before, if
players keep a cumulative score of their strategies according
to their payoff and employ more often the ones with the
highest scores, this allows them to eventually drift away
from dominated strategies. This then is the main question
that concerns us: what happens if the players’ learning curve
is constantly perturbed as a result of random fluctuations to
their strategies’ payoffs?

Even though this approach seems closely related to the
evolutionary one, the landscape actually changes dramati-
cally. Indeed, we end up with a different stochastic replicator
equation that is so robust as to allow rationality to emerge
unconditionally and in complete generality:irrespective of
the noise level, only rationally admissible strategies survive
in the long run. As an immediate corollary, this shows that
if players employ exponential learning in a game which can
be solved by iterated elimination of dominated strategies
(e.g. the Prisoner’s Dilemma or its multiplayer variants),
thenthese players will converge to the game’s (unique) Nash
equilibrium.

Outline: We begin our presentation in section II by
presenting a simple wireless congestion scenario where mul-
tiple heterogeneous users seek to connect to one of several
wireless nodes (perhaps belonging to different standards).
There, numerical simulations reveal something even stronger
than what we have hinted at so far: users quickly become
rational and actually converge to a Nash equilibrium in pure
strategies, even when the noise is much louder than their
average payoff.1 In section III we review a few basic facts
and definitions from game theory in order to fix notation
and terminology and subsequently, in section IV, we derive
the stochastic replicator equation that emerges if the users’
payoffs are randomly perturbed (and which differs from its
other stochastic incarnations). Our main results are derived
in section V, where we proceed to show that, ultimately, only
rationally admissible strategies survive.

Notation and Conventions: If A is a set with finite
cardinality n, we will identify the set∆(A) of probability
measures onA with the standard (n−1)-dimensional simplex
of Rn: ∆n−1 = {x ∈ Rn : xi ≥ 0 and

∑

i xi = 1}. Also, in the
interest of preserving indicial sanity, we will not differentiate
between covariant and contravariant indices and we will only
use subscripts. However, we will consistently employ Latin
indices (i, j, . . .) for players and Greek (α, β, . . .) for their
strategies, separating the two by a semicolon if the need
arises. Finally, for a givenn, we will let ek denote the
standard basis vectorek = (0 . . .1 . . .0) ofRn; still, when it is
clear from the context thatek refers to some pure strategy and
there is no danger of confusion, we will sometimes simply
write k instead ofek.

1We address this issue of convergence to Nash equilibria in [13] .

II. The System Model: a Motivating Example

Seeing how our results revolve around arbitrary games,
they are best presented (and proven) in an abstract setting.
However, for concreteness, we focus here on a specific
wireless scenario which consists ofN wireless users (with
similar transmission characteristics) that wish to connect to
one of B nodes and can switch dynamically between them.
The users’ (selfish) objective is to maximize their throughput
uiβ, β = 1 . . . , B which, in general, depends on the actions
of other users as well as on the channel variations due to
fading and other uncertainties.

In this endeavor, users switch between nodes and they
keep track of each node’s performance, trying to identify the
one that works best for them. However, since there is no
regulation or communication between the users, there is the
very real problem that many users could switch at once. This
invariably leads to congestion and, perhaps, even to “ping-
pong” effects where a large group of users is locked in a
vicious cycle as they simultaneously (and, from an outside
perspective, irrationally) migrate from one node to the next,
unable to coordinate their actions. Even worse, this situation
is further exacerbated by the interference of nature; even in
the absence of other users, the SNR and throughput of a
single user are still stochastically perturbed.

Despite all that, one hopes that if users employ a suf-
ficiently robust learning scheme, all this interference will
“average out” and rational play will emerge. To that end,
we first describe the users’ scoring system:

Uiβ(t + 1) = Uiβ(t) + Tiβ + ηiβ (1)

i.e. at the tth iteration useri “awards” nodeβ with the
throughput that it would have yielded if the user had selected
it, modified by an “uncertainty” termηiβ to account for
stochastic shocks (due to fading, errors in reading one’s
throughput, etc.). Then, as this game is played again and
again, useri selects nodeβ with probability

piβ(t + 1) =
eUiβ(t+1)

∑B
β=1 eUiβ(t+1)

. (2)

To simulate this, we use for simplicity a specific form for
the throughput of each user connected to nodeβ:

Tiβ =
yβ
Nβ

(3)

where Nβ is the number of users connected to nodeβ and
yβ is a normalized (

∑

β yβ = 1) parameter that describes the
“strength” of nodeβ and encompasses the node’s spectral
efficiency, price charged per bit, etc.2 The advantage of using
this simple model is that it has a very elegant measure of
the users’ satisfaction with their choices, theirfrustration:

R=
1

N(B− 1)

∑B

β=1

1
yβ

(Nβ − yβN)2 (4)

2Clearly, a much more elaborate model could be used but, for now, we
prefer to keep things simple and on an intuitive level. Afterall, despite its
simplicity, this model has been shown to be of the correct form for TCP and
UDP protocols in IEEE 802.11b systems if we limit ourselves to a single
class of users [14]; see also [8] for a relevant discussion.



This is just a (normalized) version of the distance of the
users’ distributionNβ from the Nash allocation ofyβN users
to nodeβ. So, if the users experience no frustration (R= 0)
their choices will not only berational (in the sense that they
are avoiding suboptimal nodes), but also socially stable: no
user will have reason to deviate unilaterally [8].

Indeed, in figure 1 we see that the users’ frustration
eventually vanishes and users reach a Nash equilibrium.
Clearly, in such a steady state suboptimal strategies cannot
survive; hence, encouraged by these observations, we will
devote the rest of this paper to show that, in any game, only
rational strategies survive, regardless of the noise.
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Fig. 1. Simulation of a wireless scenario whereN = 30 users try to connect
to one of B = 3 nodes with the help of the exponential learning scheme
of equations (1) and (2). The users’ throughput is perturbedby Gaussian
white noise with varianceη2 and we plot the temporal evolution of the
users’ frustration (4) forη = 0, 0.5,1, 2, 5 (the users’ average throughput
is normalized to 1). Even for very high noise levels, the users’ frustration
is minimized as they approach an equilibirum (for comparison, uneducated
users would end up with an average frustration ofR= 1).

III. Preliminaries

A. Basic Facts and Definitions from Game Theory

As is typical in game theory, our starting point will be
a finite set ofN players, indexed byi ∈ N ≔ {1, . . .N}.
Each player comes with a (finite) set of(pure) strategies
α ∈ Si ≔ {1, . . .Si}, representing their possible actions when
paired against one another. Naturally, players can “mix” these
strategies by assigning different probabilitiespiα to every
α ∈ Si ; in that case, theirmixed strategieswill be represented
by the pointspi = (pi;1 . . . pi;N) ∈ ∆i ≔ ∆(Si) or, more
succinctly, by thestrategy profile p= (p1 . . . pN) ∈ ∆ ≔
∏

i ∆i . Alternatively, if we wish to focus on the strategy of
a particular playeri against hisopponentsN−i ≔ N\{i}, we
will use the standard shorthand (p−i ; q) to stand for the profile
(p1 . . .q . . . pN) where i plays q ∈ ∆i against his opponents’
strategyp−i ∈ ∆−i ≔

∏

j,i ∆i .
So, when the game is actually played, the players’ choices

are rewarded according to thepayoff functions ui : ∆→ R:

ui(p) =
∑

α1∈S1

· · ·
∑

αN∈SN

ui;α1...αN p1;α1 · · · pN;αN (5)

whereui;α1...αN is the payoff that the (pure) strategyαi ∈ Si

yields to playeri when paired against the strategyα−i ∈

S−i ≔
∏

j,i S j of i’s opponents. Under this light, the payoff
that a player receives when playing some pure strategyα ∈ Si

deseves special mention and we will denote it by:

uiα(p) = ui(p−i ;α) = ui(p1 . . . α . . . pN) (6)

This collection of playersi ∈ N, their strategiesα ∈ Si and
their payoffs ui will be our working definition for agame in
normal form, usually denoted byG (orG(N, S, u) when there
is danger of confusion).

Needless to say, rational players will seek to maximize
their individual payoff and, in so doing, will avoid those
strategies that always lead to diminished payoffs against
any play of their opponents. Making this idea more precise,
we will say that a strategyq ∈ ∆i of player i is (strictly)
dominatedby q′ ∈ ∆i - and we will writeq ≺ q′ - if:

ui(p−i; q) < ui(p−i ; q′) (7)

for all choices p−i ∈ ∆−i =
∏

j,i ∆ j of i’s opponents.3

In this way, strictly dominated strategies can be effectively
“removed” from the analysis of a game because rational
players will never use them. However, by deleting a strategy,
another strategy (perhaps of another player) might become
dominated and further deletions ofiteratively (strictly) domi-
natedstrategies might be in order. Proceeding in this way ad
infinitum, we will say that a strategy isrationally admissible
if it survives every round of deletion of (strictly) dominated
strategies.

The importance of this procedure is that many games can
be solved in this way: as a simple (but important) example,
if we remove the dominated strategiesCooperate from the
Prisoner’s Dilemma, we are left with the strategy(Defect,
Defect), which is also the game’s (unique) Nash equilibrium.
This behavior actually occurs in a rather large class of games
and we will say that a gameG is dominance-solvablewhen
there is only one rationally admissible strategy. In that case, it
should be clear that the game has a unique Nash equilibrium
in pure strategies: this is the players’ only rational strategy.

B. Exponential Learning and the Replicator Dynamics

Unfortunately, it is not realistic to expect users to be
able to perform this elimination of dominated strategies ina
timely fashion; if nothing else, this requires an exponentially
large amount of information that can hardly be made avail-
able to the players. On the brighter side however, players
can “learn” to play the game with the help of the so-called
logit modelof exponential learning (see [2] and [15] for its
relation to time-averaged best reply dynamics). In a nutshell,
players in this scenario play the game repeatedly and they
keep records of their strategies’ performance; then, at each
step, they employ the strategy with the best track record
according to an exponential probability law.

To be more precise, playeri ∈ N keeps a cumulative
scoreUiα of his strategyα ∈ Si as specified by the recursive

3The adjective “strict” characterizes the (strict) inequality (7); if the
inequality is not strict,q will be called weakly dominatedby q′ and we
will write q 4 q′.



formula:
Uiα(t + 1) = Uiα(t) + uiα(p(t)) (8)

where, in the absence of initial bias, players setUiα(0) = 0
for all i ∈ N, α ∈ Si and p(t) ∈ ∆ is the players’ strategy
profile at thet-th iteration of the game. Needless to say, these
profiles are not chosen arbitrarily but in accordance with the
scheme’s namesake, theexponential law:

piα(t + 1) =
eUiα(t+1)

∑

β∈Si
eUiβ(t+1)

(9)

Thus, if we descend to continuous time (which is much
more reasonable from an evoluationary perspective), we get:

dUiα(t) = uiα(p(t)) dt (10)

where, again,p(t) is the profile determined by the exponen-
tial learning model (9):

piα(t) =
eUiα(t)

∑

β eUiβ(t)
(11)

Hence, by differentiating (11) in order to decouple it from
(10), we obtain thestandard multi-population replicator
dynamics:

dpiα

dt
= piα

(

uiα(p) −
∑

β
piβ uiβ(p)

)

= piα
(

uiα(p) − ui(p)
)

(12)
These dynamics have been studied extensively (see e.g.

[16] for an excellent survey) and one of their most important
properties is that only rationally admissible strategies survive
in the long run. In particular, Samuelson and Zhang proved
the following theorem in [5]:

Theorem 1 (Samuelson and Zhang, 1992):If a pure strat-
egyα ∈ Si is strictly dominated (even iteratively), thenpiα(t)
converges to zero along any interior solution path of (11).

In sections IV and V, we will show that this result
also holds in the stochastic setting where payoffs could be
perturbed by arbitrarily loud noise.

IV. The Stochastic Replicator Dynamics

Clearly, one of the drawbacks of the logit model (11) is
the latent assumption that players have perfect knowledge
of their true payoffs ui and that the game is unaffected by
the stochastic fluctuations of their environment. Since we
wish to relax this requirement somewhat in order to study
the effect that noise has on learning, we will examine what
happens when the scores of (10) are perturbed by noise (e.g.
caused by imperfect readings of a player’s utility, stochastic
interference, fading, etc.).

To do that, we first need to note that players’ choices can
only depend on their past performance and that they cannot
see into nature’s future. In other words, their scores should be
modelled by Itô stochastic processes (as opposed to future-
correlated Stratonovich ones) satisfying the perturbed version
of (10):

dUiα(t) = uiα(X(t)) dt+ ηiα(X(t)) dWiα(t). (13)

Here, as in the deterministic setting,X(t) ∈ ∆ is the strategy
profile:

Xiα(t) =
eUiα(t)

∑

β eUiβ(t)
(14)

andWiα(t) is a Wiener process (Brownian motion) that lives
in

∏

i R
Si and whose components are independent both across

players i ∈ N and across a particular player’s individual
strategiesα ∈ Si .4 The intensity of the Wiener process is con-
trolled by the diffusion coefficientsηiα which, conceivably,
could depend on the player’s actions (for example, this is
what happens when there is fading). Somewhat surprisingly,
it turns out that this extra degree of generality does not affect
our results in any way: as long as the coefficients ηiα are
bounded on∆ (which is only reasonable from a physical
perspective), they might as well be constant.

Now, to obtain the noisy analogue of (12), we must
decouple the stochastic processesU and X, and this can be
done by applying Itô’s lemma (see e.g. [17]) to (13). Indeed,
with dWjβ · dWkγ = δ jkδβγ dt, we easily get:5

dXiα =
∑

j

∑

β

∂Xiα

∂U jβ
dU jβ

+
1
2

∑

j,k

∑

β,γ

∂2Xiα

∂U jβ∂Ukγ
dU jβ · dUkγ

=
∑

β

(

uiβ(X)
∂Xiα

∂Uiβ
+

1
2
ηiβ

∑

γ
ηiγ
∂2Xiα

∂Uiβ∂Uiγ

)

dt

+
∑

β
ηiβ
∂Xiα

∂Uiβ
dWiβ (15)

Then, differentiation of (14) finally yields:

dXiα = Xiα

[

(

uiα(X) − ui(X)
)

+
1
2

(

η2
iα(1− 2Xiα) −

∑

β
η2

iβXiβ(1− 2Xiβ)
) ]

dt

+ Xiα

(

ηiα dWiα −
∑

ηiβXiβ dWiβ

)

= Xiαρiα(X) dt+ Xiα

∑

β
τi;αβ(X) dWiβ (16)

where ρiα is the relative drift in the brackets of (16) and
τi;αβ(x) = ηiβ(x)(δαβ − xβ), x ∈ ∆ is the relative diffusion.

Equation (16) will be our stochastic version of the standard
replicator dynamics and thus merits some discussion in and
by itself. The first important question that needs to be
answered is whether the above dynamics admit a (unique)
solution X(t) for all t ∈ R. At first sight, the situation
appears to be a bit problematic since the driftµ = Xρ and
diffusion σ = Xτ of (13) do not satisfy the linear growth
condition |µ(x)|+ |σ(x)| ≤ C(1+ |x|) that is usually necessary
for solutions to exist (and to be unique). Fortunately, this
problem can be easily circumvented since a simple addition
in α ∈ Si reveals that the simplices∆i ⊆ ∆ remain invariant
under (16): if Xi(0) ∈ ∆i then d

(∑

αXiα
)

= 0 and, hence,

4In other words, the quadratic covariation ofW satisfies [Wiα,Wjβ](t) =
δi j δαβt, for all i, j ∈N, α, β ∈ Si .

5Recall here the formal rules of stochastic calculus:dt·dt = 0 = dt·dWiα.



Xi(t) ∈ ∆i for all t.6 So, if φ is a smooth bump function that is
equal to 1 on some compact setK ⊃ ∆ and vanishes outside
a compact neighborhoodK′ of K, the stochastic differential
equation:

dXiα = φ(X)Xiα

[

ρiα(X) dt+
∑

β
τi;αβ(X) dWiβ

]

(17)

will have smooth and bounded drift and diffusion coefficients
and, by the general theory [17], it will admit a unique
solution. Since the latter equation agrees with (16) onK ⊃ ∆
and since any solution of (16) that starts in∆ will always
stay in ∆, we conclude that (16)admits a unique solution
for any initial condition X(0) = x ∈ ∆.

With all this said and done, it is also important to compare
these dynamics to the traditional “aggregate-shocks” of Fu-
denberg and Harris where most rationality analysis has been
taking place (e.g. as in [10]–[12]). To that end, note that the
Fudenberg-Harris dynamics take the following form in our
notation:

dXiα = Xiα

[

(

uiα(X) − ui(X)
)

−
(

η2
iαXiα −

∑

β
η2

iβX
2
iβ

)]

dt

+ Xiα

(

ηiα dWiα −
∑

ηiβXiβ dWiβ

)

. (18)

It can be seen immediately that the first and last terms are
the same as in our case: they correspond to the drift incurred
by the underlying game and the direct effect of the noise
on the players’ strategy profile respectively. The difference
lies in the second term which describes the propagation of
noise in the drift. There, the two versions differ by a term
of η2

iα per strategyα ∈ Si and, innocuous as this difference
might appear, we will see that this term has some extremely
important ramifications: in stark contrast with [10] or [11],
the dynamics (16) lead to rational behavior in all noise levels.

V. The Emergence of Rationality

Thereby, armed with a stochastic differential equation for
the evolution of players in a noisy environment, we now seek
to show that players eventually do become rational, despite
all these disturbances. To that end, we will first need some
more technical machinery; motivated by [10], letpi , qi ∈ ∆i

be two strategies of playeri and define:

Vqi (pi) ≔
∏

α

(

piα
)qiα (19)

with the standard convention that 00 = 1 (this amounts to
taking the product over the pure strategies that have positive
weight in qi). In effect, this is just another guise of the
Kullback-Leibler relative entropy:

H(qi, pi) ≔
∑

α:qiα>0

qiα log
qiα

piα
=

∑

α:qiα>0

qiα log(qiα) − Lqi (pi)

(20)
whereLqi (pi) = log(Vqi (pi)). In particular, we can easily see
thatVqi (pi) = 0 if and only if pi is not using at least one pure
strategy that has positive weight underqi . So, if Vqi (pi) = 0
for all dominated strategiesqi of player i, it immediately
follows that pi cannot be dominated itself.

6This should come as no surprise; after all, we did begin with the premise
that X is a strategy profile in∆.

We can now give a precise formulation of our first impor-
tant result:

Theorem 2:Let X(t) be an interior solution path of the
stochastic replicator equation (16) for some gameG. Then,
if qi ∈ ∆i is (strictly) dominated:

lim
t→∞

Vqi (Xi(t)) = 0 almost surely. (21)

In other words,strictly dominated strategies do not survive
in the long run (a.s.).

Proof: To prove our assertion, we will first need to
estimate the temporal evolution ofVq(X(t)) (henceforward,
we will be dropping the indexi when there is no fear of
confusion). Thus, if we keep in mind that we can keep all
indices in the sums of (20) (on account ofX being an interior
path) and we apply Itô’s lemma toLq = logVq, we will get:

dLq =
∑

β

∂Lq

∂xβ
dXβ +

1
2

∑

β,γ

∂2Lq

∂Xγ ∂Xβ
dXβ · dXγ

=
∑

β

qβ
Xβ

dXβ −
1
2

∑

β

qβ
X2
β

(

dXβ
)2

(22)

Then, with dXβ given by (16), this last equation becomes:

dLq =
∑

β
qβ(uβ(X) − u(X))

−
∑

β
qβ ·

1
2

∑

µ
Xµ(1− Xµ)η2

µ(X) dt

+
∑

β
qβ

∑

µ
(δβµ − Xµ)ηµ(X) dWµ (23)

Now, if q is strictly dominated by someq′ ∈ ∆i (i.e.
ui(p−i; q) < ui(p−i ; q′) for all p−i ∈ ∆−i), we will also have:

dLq−q′ ≡ d
(

Lq − Lq′
)

=
(

u(X−i; q) − u(X−i; q′)
)

dt

+
∑

β
(qβ − q′β) ηβ(X) dWβ (24)

which represents the integral equation:

Lq−q′ (X(t)) =

∫ t

0

(

u(X−i(s); q) − u(X−i(s); q′)
)

ds

+
∑

β
(qβ − q′β)

∫ t

0
ηβ(X(s)) dWβ(s) (25)

Sinceq ≺ q′, the first term will be bounded above byvt
wherev = maxx−i {u(x−i; q) − u(x−i; q′)} < 0.7 However, since
monotonicity fails for Itô integrals,8 the second term must
be handled with more care. The trick here is to recall that
ηβ is bounded on∆, say by some constantη > 0. Therefore,
the integral

∫ t

0
ηβ(X(s)) dW(s) can be almost surely replaced

by another Wiener processW that evolves at a time scale
no faster thanηt (thm 3.4.6 in [18]). Hence, by the law of
the iterated logarithm (lim sup

t→∞

|W(t)|√
2t log logt

= 1), we will have

lim
t→∞

Lq−q′ (X(t)) = −∞ almost surely and, withLq′ ≤ 0, the
theorem follows.

7This is where the proof breaks down if the dominance is weak; in that
case, players could experience an ergodic oscillation between pure strategies
that yield the same payoff.

8For example,
∫ 1
0 1dW(t) = W(1) and the latter is positive or negative

with equal probability.



In fact, by induction on the rounds of elimination of
dominated strategies, we can now show that the result of
Samuelson and Zhang on the extinction of dominated strate-
gies (theorem 1) carries over to our stochastic environment:

Theorem 3:Let X(t) be an interior solution path of the
stochastic replicator equation (16) for some gameG. Then,
if qi ∈ ∆i is iteratively (strictly) dominated:

lim
t→∞

Vqi (Xi(t)) = 0 almost surely. (26)

In other words,only rationally admissible strategies survive
in the long run (a.s.).

Then, as an immediate consequence of this, we have:
Corollary 3.1: Let G be a dominance-solvable game and

let x0 ∈ ∆ be the (unique) Nash equilibrium ofG. Then,
every interior solution path X(t) of the replicator dynamics
(16) will converge to x0 (a.s.); more precisely:

lim
t→∞

X(t) = x0 almost surely. (27)

Intuitively, what happens is similar to the deterministic
case [5]. Since dominated strategies die out after some time,
we can approximate (16) by a “reduced” dynamical system
that lives on the faces of∆ that do not contain dominated
vertices. Then, by repeating this argument, further vertices
can be eliminated until we reach a point where no dominated
strategies remain. Essentially, the proof works just like in
[10] and for this reason we will not present it here (see [13]
instead); the point where our proofs diverge is that we need
no bounds on the noise levelη thanks to the form of (25).

Instead, it is more interesting to note that (16) can be
rewritten as:

log
Xα(t)
Xα(0)

=

∫ t

0

(

uα(X) − u(X) −
1
2

∑

β
η2
βXβ(1− Xβ)

)

ds

+
∑

β

∫ t

0
ηβ(δαβ − Xβ) dW(s) (28)

Then, if α ≺ β, we obtain the estimate:

Xα(t)
Xβ(t)

<
Xα(0)
Xβ(0)

exp

{

vt+
∫ t

0

(

ηα dWα(s) − ηβ dWβ(s)
)

}

(29)

with v andη as before. So, by using the same trick to estimate
the behavior of the Wiener process, we can see that the
deterministic driftvt will become the dominant term after
some time of the order ofh = η

2

v2 . In other words, rationality
emerges late for high noise and early for high dominance,
the precise time-scale depending on the square of the ratio
η

v which roughly describes the relation between the game’s
payoffs and the intensity of the noise.

VI. Conclusions and FutureWork

We have thus seen that the simplicity of the exponen-
tial learning scheme is complemented quite nicely by its
robustness: even when the players’ payoffs sustain arbitrarily
large shocks, irrational behavior always becomes extinct.
More to the point, if the underlying game can be solved
by deletion of dominated strategies, the players’ behavior
actually converges to the game’s (unique) Nash equilibrium.
The only way that noise affects this scenario is by slowing

down the players’ learning rate: as can be seen by (29), this
learning rate is controlled by the “payoff-to-noise” ratio.

On the other hand, corollary 3.1 also touches upon another
crucial issue: what happens when a game cannot be solved
by elimination of dominated strategies? In particular, does
rational behavior (in the form of equilibrial play) still emerge
in non-solvable games as it does in the deterministic case?
Numerical simulations reveal that this seems to be the case
indeed: in the congestion model of section II, users converge
to the game’s Nash equilibrium in time scales that agree with
those predicted by (29).

A thorough analysis of equilibrial play requires a different
approach because the payoff differences that allowed us to
weed out the noise in (25) cannot be properly bounded if a
strategy is not dominated. Still, with the aid of the stochastic
Lyapunov method (inspired by [11]), we may recover a
large part of the deterministic picture. As it turns out, strict
Nash equilibria are stochastically asymptotically stablein
the stochastic replicator dynamics (16), no matter how loud
the noise is. However, due to space limitations and some
technicalities that would take us too far afield, we feel that
this issue is better left to be addressed in future work [13].
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