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Abstract— We investigate the emergence of rationality in reproductive fitness. Here, evolution takes the form of a
repeated games where, at each iteration, the players’ paflis are  selection mechanism that promotes strategies which parfor
randombly perturbed (to account e.g. for the dfects of fading or better “on average” and one would hope that users are thus

errors in the reading of one’s throughput). We see that evenfi . - .
players start out completely uneducated about the game, the is shepherded to a reasonable solution. This is precisely what

a simple learning scheme that enables them to eventually wee happens in the model @xponential learningvhere players

out the noise and identify suboptimal choices, regardlessfthe  keep scores of their strategies (based on their returns) and
noise level. More precisely, we show that strategies that ar employ the highest scoring one exponentially more often [2]
strictly dominated (even iteratively) become extinct in tke long It then turns out that the evolution of the users’ strategic

run, i.e. players exhibit rational behavior. As an applicaion, we . . . .
model a number of users that are able to switch dynamically CNOICeS is governed by theplicator dynamicsof [3] and

between multiple wireless nodes and see that they are able to [4], Which are an excellent conduit for rationality: in time
pick up which node works best for them, even in the presence suboptimal strategies cease to be replicated and become
of high performance fluctuations. extinct [5].
| INTRODUCTION As a result, the many applications of evolutlpnary game
) ) ) . theory to networks should not come as a surprise. To name

Ev_er since the seminal work of Maynard Smith on ammaﬂ)ut a few examples, in Aloha-type games the convergence
conflicts [1], there has been established a profound link,herties of the replicator dynamics lead wireless useast
between evolution and rationality: roughly speaking, ongijiprial state [6]. More recently, randomness has atsenb
leads to the other. In this way, when species compete for o4, ced in [7] by giving users revision opportunitiesian
limited resources of their environment, evolution and reitu letting them switch strategies based on a Markov decision
selection steer the conflict to an equilibrium where Speciesocess that dictates whether to transmit and at what power.
have essentially learnt to respect each other's boundamies anq in the case of users who are able to switch dynamically
are loath to stray away from them (e.g. lest theff&uin  oyeen several wireless nodes, it was seen in [8] that if

terms of reproductive fitness). As a consequence, “fight Qfsers process a broadcast signal, they actually converge to
flight” responses that are deeply ingrained in a species cap gicient correlated equilibrium.

be seen as a form of rational behavior, emerging over the jyvever it is not at all clear if these results still hold

background of a species’ evolutionary path. in the presence of uncertainty which blurs the waters and
By extending this analogy to networks, one sees thaf,, erectively “mask” the suboptimality of certain choices.

evolutionary schemes can yield substantial gains to intera Indeed, since the “state of the world” also changes as pgayer

ing .agents who need to adju§t. to their ev_er-_changing |°CFHarn to play the game, one should also take into account

enwronment;.after all, competm_on for the limited resoes stochastic perturbations caused by nature’s interferelimce

of a network is one of the most important problems faced by jitional evolutionary game theory, this is done by in-

network designers. Still, this extension often dependshen ttroducing “aggregate shocks” (weather-typieets) to the

accuracy of the data each user has about their environmefenotype (species) populations, so as to account forsbirth
and, given the finite time horizon for receiving this informa 4,4 geaths that are due to the fickle hand of nature. This

tion in a rapidly evolving network, this data may be Widelyapproach of Fudenberg and Harris [9] has stirred a con-

_Off the mark. For example, mOb'I'_ty in wireless network_ssiderable amount of interest and many deterministic result
introduces both fast and slow fading to the channel gaing, e peen translated to the stochastic setting as well. ffo wi
of each user and this, combined with overall bad channglyp ajes showed in [10] that if the variance of the shocks
conditions, will decrease the quality of the feedback ddta. 5 1o\ enough, rational play still emerges, even if mutasion

on top of that, one adds the underlying competition betweef} present. More recently, it was shown in [11] and [12]
different users for the available resources of the system, the,, o\ an equilibrial play emerges in the long run: strict

situation becomes quite complex. _ . Nash equilibria are stochastically asymptotically stablthe
_In game-theoretic terms, one models this competition by,se of 4 single population of players but, again, only if the
introducing a suitable game whose pégaeflect the users’ panq of nature is soft enough. In high-noise environments,
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on the analogy between evolution and learning that we just Il. TuE SystEM MoDEL: A MOTIVATING EXAMPLE

outlined. So, instead of considering very large population Seeing how our results revolve around arbitrary games,
of distinct species, we will consider a game with a finitgney are best presented (and proven) in an abstract setting.
number of players who “evolve” thanks to their acquiredyowever, for concreteness, we focus here on a specific
experience in playing the game. As was mentioned before, ffireless scenario which consists Nf wireless users (with
players keep a cumulative score of their strategies aaegrdisimilar transmission characteristics) that wish to conmec

to their paydf and employ more often the ones with thépne of B nodes and can switch dynamically between them.
highest scores, this allows them to eventually drift awayhe ysers’ (selfish) objective is to maximize their throughp
from dominated strategies. Thls_ then is the main _quest|qu|1/3, B = 1...,B which, in general, depends on the actions
that concerns us: what happens if the players’ learingecuryf other users as well as on the channel variations due to
is constantly perturbed as a result of random fluctuations ?ﬁding and other uncertainties.

their strategies’ payifs? In this endeavor, users switch between nodes and they

Even though this approach seems closely related to ti@ep track of each node’s performance, trying to identiy th
evolutionary one, the landscape actually changes dramagine that works best for them. However, since there is no
cally. Indeed, we end up with affierent stochastic replicator regulation or communication between the users, there is the
equation that is so robust as to allow rationality to emerggery real problem that many users could switch at once. This
unconditionally and in complete generalityrespective of invariably leads to congestion and, perhaps, even to “ping-
the noise level, only rationally admissible strategiesvéte pong” efects where a large group of users is locked in a
in the long run As an immediate corollary, this shows thatyicious cycle as they simultaneously (and, from an outside
if players employ exponential learning in a game which caperspective, irrationally) migrate from one node to thetnex
be solved by iterated elimination of dominated strategiesnable to coordinate their actions. Even worse, this sinat
(e.g. the Prisoner's Dilemma or its multiplayer variants)is further exacerbated by the interference of nature; emen i
thenthese players will converge to the game’s (unique) Nasfhe absence of other users, the SNR and throughput of a
equilibrium single user are still stochastically perturbed.

Outline: We begin our presentation in section Il by Despite all that, one hopes that if users employ a suf-
presenting a simple wireless congestion scenario where mjfiéntly robust learming scheme, all this interferencel wil
tiple heterogeneous users seek to connect to one of sevefyerage out” and rational play will emerge. To that end,
wireless nodes (perhaps belonging tdfefient standards). We first describe the users’ scoring system:

There, numerical simulations reveal something even stong Uig(t + 1) = Ujp(t) + Tip + 7ig (1)

than what we have hinted at so far: users quickly become ) . . )

rational and actually converge to a Nash equilibrium in purk€. at thet" iteration useri “awards” nodes with the
strategies, even when the noise is much louder than thélﬂrough_put that it would havg yielded if the user had seti&cte
average pay.! In section Il we review a few basic facts it modified by an “uncertainty” termy; to account for
and definitions from game theory in order to fix notatiorstochastic shocks (due to fading, errors in reading one’s
and terminology and subsequently, in section IV, we derivéiroughput, etc.). Then, as this game is played again and
the stochastic replicator equation that emerges if thesuseP9ain, usei selects nodg with probability

paydfs are randomly perturbed (and whicHfdrs from its gUis(t+1)

other stochastic incarnations). Our main results are éériv Pis(t +1) = m" ©)

in section V, where we proceed to show that, ultimately, only p=1

rationally admissible strategies survive. To simulate this, we use for simplicity a specific form for
the throughput of each user connected to néde

Notation and Conventions: If A is a set with finite
cardinality n, we will identify the setA(A) of probability Tig = l}\/l_ﬂ 3)
measures oA with the standardn— 1)-dimensional simplex B
of Rm A™1 = {xeR":x >0andy;x = 1}. Also, in the whereN; is the number of users connected to ngdend
interest of preserving indicial sanity, we will notfiirentiate Yy is a normalized X5y = 1) parameter that describes the
between covariant and contravariant indices and we wilf onl‘strength” of nodeg and encompasses the node’s spectral
use subscripts. However, we will consistently employ Latirefficiency, price charged per bit, étd’he advantage of using
indices (, j,...) for players and Greeke{p,...) for their this simple model is that it has a very elegant measure of
strategies, separating the two by a semicolon if the nedble users’ satisfaction with their choices, thiirstration
arises. Finally, for a givem, we will let e denote the 1 B 1 5
standard basis vectex = (0...1...0) of R"; still, when it is R= NE-D Zﬁzl %(Nﬁ - ysN) (4)
clear from the context thak refers to some pure strategy and

there is no danger of confusion, we will sometimes simply 2Clearly, a much more elaborate model could be used but, for ne
write k instead ofe. prefer to keep things simple and on an intuitive level. Afily despite its
simplicity, this model has been shown to be of the correcnftor TCP and
UDP protocols in IEEE 802.11b systems if we limit ourselvesatsingle

1We address this issue of convergence to Nash equilibriadh.[1 class of users [14]; see also [8] for a relevant discussion.



This is just a (normalized) version of the distance of thé_; := [, 8; of i's opponents. Under this light, the pdjo
users’ distributiorN; from the Nash allocation ofsN users that a player receives when playing some pure strateg;
to nodeg. So, if the users experience no frustratiéh=(0) deseves special mention and we will denote it by:

their choices will not only beational (in the sense that they

are avoiding suboptimal nodes), but also socially stabde: n Ui (P) = Ui(P-is @) = Ui(p1... ... pn) (6)

user will have reason to deviate unilaterally [8]" _ This collection of players € N, their strategies € 8; and
Indeed, in figure 1 we see that the users’ frustratiogheir naydfs u; will be our working definition for agame in

eventually vanishes and users reach a Nash equilibriugy mal form usually denoted b (or G(N, S, u) when there
Clearly, in such a steady state suboptimal strategies ¢anfpg danger of confusion).

survive; hence, encouraged by these observations, we will\gedless to say, rational players will seek to maximize

devote the rest of this paper to show that, in any game, onf)eir individual payd and, in so doing, will avoid those
rational strategies survive, regardless of the noise. strategies that always lead to diminished pEscagainst
any play of their opponents. Making this idea more precise,
we will say that a strategy € A; of playeri is (strictly)

Learning for Various Levels of Noise
T T T

T T
Deterministic Learningr( =0)

e dominatedby g € A; - and we will writeq < ¢’ - if:
High Noise § =2)
Extremely High Noiser( = 5) /
ui(p-i; @) < ui(p-i; q) ()
for all choicesp; € A = []j;A; of i's opponents.

\ In this way, strictly dominated strategies can leetively
. “removed” from the analysis of a game because rational
‘ players will never use them. However, by deleting a strategy
! another strategy (perhaps of another player) might become
: \ dominated and further deletionsitératively (strictly) domi-
20 40 w0 80 ldo 1200 L0 1600 1s00 2000 natedstrategies might be in order. Proceeding in this way ad
infinitum, we will say that a strategy mtionally admissible
Fig. 1. Simulation of a wireless scenario whéte= 30 users try to connect If it survives every round of deletion of (strictly) domireat
to one of B = 3 nodes with the help of the exponential learning schemstrategies_
of equations (1) and (2). The users’ throughput is pertutbgdSaussian e jmportance of this procedure is that many games can
white noise with variance;” and we plot the temporal evolution of the . . . . .
users' frustration (4) fom = 0,0.5,1,2,5 (the users' average throughput D€ Solved in this way: as a simple (but important) example,
is normalized to 1). Even for very high noise levels, the siskustration  if we remove the dominated strategi€soperate from the
is minimized as they approach an equilibirum (for comparjameducated Prisoner’s Dilemma, we are left with the strate(yefect,
users would end up with an average frustratiorRof 1). S , . L
Defect), which is also the game’s (unique) Nash equilibrium.
This behavior actually occurs in a rather large class of game
IIl. PRELIMINARIES and we will say that a gamé is dominance-solvable/hen
A. Basic Facts and Definitions from Game Theory there is only one rationally admissible strategy. In thaegat

As is typical in game theory, our starting point wil be_should be clear that the game has a unique Nash equilibrium

a finite set ofN players indexed byi € N = (1,...N}. in pure strategies: this is the players’ only rational styat

Each player comes with a (finite) set gbure) strategies B Exponential Learning and the Replicator Dynamics
a € 8 :=1{1,...Sj}, representing their possible actions when

paired against one another. Naturally, players can “migsth Unfortunately, iF s _nqt r(_ealistic to _expect USErs to _be
strategies by assigning ftérent probabilitiesp, to every able to perform_ this e_I|m|nat|on (.)f doml_nated strategiea in

a € §;; in that case, theimixed strategiewvill be represented timely fashion; if _nothlng _else, this requires an exponaiiyti .
by the pointsp = (pia...pin) € Ai == A(S) or, more large amount of information thgt can hgrdly be made avail-
succinctly, by thestrategy profile p= (ps...pn) € A = able to the players. On the brighter side however, players

[T Ai. Alternatively, if we wish to focus on the strategy of ¢an “learn” to play the game W.ith the help of the so—cal_led
a particular playef against hisopponents\; := N\ {i}, we logit modelof exponential learning (see [2] and [15] for its

will use the standard shorthanpl(; g) to stand for the profile relation FO time-averag_ed best reply dynamics). In a niltshe

(P1...q...pn) Wherei playsq e A; against his opponents’ players in this scenario play the game repeatedly and they

strategyp_i € A = [ A keep records of their strategies’ performance; then, ah eac
i€ AL = [Tjs A

So, when the game is actually played, the players’ choic&LEP: they employ the strategy with the best track record

are rewarded according to tlpaygf functions y: A — R: according to an exp_onential probability law. .
To be more precise, playaére N keeps a cumulative

u(p) = Z e Z Uiay...an Pl * PNian (5) scoreU;, of his strategyr € §; as specified by the recursive

@1€87 anESn
. 3The adjective “strict” characterizes the (strict) inedyal(7); if the
where Uiay..ay 1S the payd that the (pure) strategy; € S; inequality is not strict,q will be called weakly dominatecby g and we

yields to playeri when paired against the strategy; €  will write q<¢'.

Frustration Level (R)
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formula: Here, as in the deterministic setting(t) € A is the strategy

Uio(t + 1) = Ui () + Uia(p(t)) (8) profile:
aYia(t)
where, in the absence of initial bias, players get(0) = 0 Xia(t) = 5. 0 (14)
foralli e N, @ € § and p(t) € A is the players’ strategy A

profile at thet-th iteration of the game. Needless to say, thesand W, (t) is a Wiener process (Brownian motion) that lives
profiles are not chosen arbitrarily but in accordance with thin []; RS and whose components are independent both across

scheme’s namesake, tegponential law playersi € N and across a particular player’s individual
QUi (t+D) strategiesy € $;.* The intensity of the Wiener process is con-
Pie(t+1) = S (9) trolled by the difusion codicientszi, which, conceivably,
Dpes € could depend on the player’s actions (for example, this is

Thus, if we descend to continuous time (which is muchvhat happens when there is fading). Somewhat surprisingly,

more reasonable from an evoluationary perspective), we gétturns out that this extra degree of generality does fietca
our results in any way: as long as the fiméentsn;, are

dUia(t) = uio(p(t)) dt (10)  bounded onA (which is only reasonable from a physical
perspective), they might as well be constant.
Now, to obtain the noisy analogue of (12), we must
decouple the stochastic procestesand X, and this can be
gUia (1) done by applying Itd’s lemma (see e.g. [17]) to (13). Indeed
Pia(t) = ¥ €90 (1) with dWijs- dWk, = jdg, dt, we easily geb:

where, againp(t) is the profile determined by the exponen-
tial learning model (9):

Hence, by diferentiating (11) in order to decouple it from 4y Z Z OXia du.
(10), we obtain thestandard multi-population replicator ¢ ﬁau,ﬁ 8

dynamics 0 Xiq

dpa i 2zlkzﬁyau,ﬁauk AU~ dUky

ot~ Pe (Um(p) Z Pig Ul,B(p)) Pia(Uia(P) — Ui (D)) X 92X

_ i i
(12) = 2 ( 650, 2”"32 T 50001, )dt
. . . iB Iy

These dynamics have been studied extensively (see e.g. ax

[16] for an excellent survey) and one of their most important + Z Mo 50 < dV\,{ﬁ (15)

properties is that only rationally admissible strategiavive
in the long run. In particular, Samuelson and Zhang provefhen, diferentiation of (14) finally yields:
the following theorem in [5]:
Theorem 1 (Samuelson and Zhang, 19925 pure strat- dX, = Xm[(uia(x) - ui(X))
egya € §; is strictly dominated (even iteratively), thgm,(t)

converges to zero along any interior solution path of (11). i }(’Iii(l— 2Xia) — Z ’Iéxi/i(l— wa))] dt
In sections IV and V, we will show that this result 2 A
also holds in the stochastic setting where @s/@ould be + X (Uia dW, — Zniﬁxiﬁ dvv,ﬁ)

perturbed by arbitrarily loud noise. = Xupa(X) dt+ X Zﬁ S— (16)

V. The Srocuastic RepLicator Dynawics where p;, is the relative drift in the brackets of (16) and
Clearly, one of the drawbacks of the logit model (11) isy;.,5(x) = 7i5(X)(0us — Xs), X € A is the relative dfusion.
the latent assumption that players have perfect knowledgegquation (16) will be our stochastic version of the standard
of their true payfis u; and that the game is uffacted by replicator dynamics and thus merits some discussion in and
the stochastic fluctuations of their environment. Since wpy itself. The first important question that needs to be

wish to relax this requirement somewhat in order to stud¥nswered is whether the above dynamics admit a (unique)
the efect that noise has on learning, we will examine whagolution X(t) for all t € R. At first sight, the situation
happens when the scores of (10) are perturbed by noise (ea@pears to be a bit problematic since the duift Xp and
caused by imperfect readings of a player’s utility, stotieas diffusion o = Xr of (13) do not satisfy the linear growth
interference, fading, etc.). condition|u(x)| + [o(X)| < C(1+|x]) that is usually necessary

To do that, we first need to note that players’ choices car solutions to exist (and to be unique). Fortunately, this
only depend on their past performance and that they canngioblem can be easily circumvented since a simple addition
see into nature’s future. In other words, their scores gshbel jn o € §; reveals that the simplices; € A remain invariant
modelled by Itd stochastic processes (as opposed to futuignder (16): if X;(0) € A; then d(3,X.,) = O and, hence,
correlated Stratonovich ones) satisfying the perturbesioe

of (10): “4In other words, the quadratic covariation \0f satisfies Wi, Wig](t) =
ijoapt, foralli,je N, a,f € §;.
dUi, (1) = Ui, (X(1) dt + i (X(1)) dW, (). (13) 5Recall here the formal rules of stochastic calculdsdt = 0= dt dW,,.



Xi(t) € A for all t.8 So, if ¢ is a smooth bump function thatis  We can now give a precise formulation of our first impor-
equal to 1 on some compact €D A and vanishes outside tant result:

a compact neighborhodd’ of K, the stochastic dlierential Theorem 2:Let X(t) be an interior solution path of the
equation: stochastic replicator equation (16) for some gafeThen,

if g € A is (strictly) dominated:
0% = 00X [0 0O AL+ Y Ti0p(X) AW an

will have smooth and bounded drift andfdision codicients
and, by the general theory [17], it will admit a uniqueln other wordsstrictly dominated strategies do not survive
solution. Since the latter equation agrees with (16Kon A in the long run (a.s.).

and since any solution of (16) that starts Anwill always
stay in A, we conclude that (16admits a unique solution
for any initial condition X0) = x € A.

tIim Vg (Xi(t)) =0 almost surely. (22)

Proof: To prove our assertion, we will first need to
estimate the temporal evolution &(X(t)) (henceforward,
we will be dropping the index when there is no fear of

%onfusion). Thus, if we keep in mind that we can keep all

these dynamics to the traditional “aggregate-shocks” of Fu dices in the sums of (20) (on accountobeing an interior

denberg and Harris where most rationality analysis has be ] A : .
. . th) and ly Ito’s | =log Vg, Il get:

taking place (e.g. as in [10]-[12]). To that end, note that thB ) and we apply Ito's lemma o, = log Vg, we will ge

Fudenberg-Harris dynamics take the following form in our B olq 1 9Lq
notation: diy = Zg @ dXs + 2 ZM 0X,, 0Xg dXs- dX,
1
AXs = X (000 - u() - (%0 = Y, 83| = 2 % 0% =5 >, 6 (%) (22)
B
+  Xia (i AW, — isXip d . 18 ) . ) .
' (n' W Zn'ﬁ d Wﬁ) (18) Then, with dX; given by (16), this last equation becomes:

It can be seen immediately that the first and last terms are
the same as in our case: they correspond to the drift incurred digy = Zﬁ ds(Us(X) — u(X))

by the underlying game and the diredfezt of the noise 1 )
on the players’ strategy profile respectively. Th&atience - Zﬁ%'é Z” X (1 = X, )m(X) dt

lies in the second term which describes the propagation of 3

noise in the drift. There, the two versionsfdr by a term " Zﬁqﬁzu(éﬁ” X )m(X) AW, (23)

of 17, per strategyr € §; and, innocuous as thisfiérence Now, if q is strictly dominated by some € A; (i.e.

might appear, we will see that this term has some extremely(p_;; q) < u(p_i; ) for all p_; € A_;), we will also have:
important ramifications: in stark contrast with [10] or [11]

the dynamics (16) lead to rational behavior in all noiselleve ~ dlgq = d(La—Ly) = (u(Xi;0) - u(X;q))dt
V. THE EMERGENCE OF RATIONALITY + Z ﬁ(% = O) mp(X) dW; (24)

Thereby, armed with a stochastididrential equation for \ynich represents the integral equation:
the evolution of players in a noisy environment, we now seek .
to show that players eventually do become rational, despite Loq(X(®) = f(u(x,i(s); q - u(X,i(s);q’))ds
all these disturbances. To that end, we will first need some 0
more technical machinery; motivated by [10], gt € A;
be two strategies of playérand define:

t
* Zg(qﬁ_%) fo ns(X(9) dWs(s) (25)

Vg (pi) = ]_[ (Pia) (19) Sinceq < ¢, the first term will be bounded above by

_ e _ wherev = max {u(x_i; g) — u(x_i;q')} < 0.” However, since
with the standard convention that & 1 (this amounts to monotonicity fails for It integralé the second term must

taking the product over the pure strategies that have pesitihe handled with more care. The trick here is to recall that

weight in ). In effect, this is just another guise of the;; is bounded om, say by some constant> 0. Therefore,
Kullback-Leibler relative gntropy the integralfot np(X(s)) dW(s) can be almost surely replaced
H(q. pi) := . log ~2 — 109, = Lq (pi by another Wiener proces# that evolves at a time scale
(@) Z 409y Z % 109(ic) = La () no faster thamt (thm 3.4.6 in [18]). Hence, by the law of

(20)  the iterated logarithm (limsup 2 _ = 1), we will have

whereLq (pi) = log(Vq (pi))- In particular, we can easily see . too0 V2oglogt .
thatVq (pi) = 0 if and only if p; is not using at least one pure M Lo-q(X(1)) = —eo almost surely and, witthy <0, the

strategy that has positive weight undgr So, if Vq (pi) =0 theorem follows. u
for all dominated strategieg; of playeri, it immediately "This is where the proof breaks down if the dominance is wealkhat

la

@.je>0 @.je>0

follows that p; cannot be dominated itself. case, players could experience an ergodic oscillation destvpure strategies
that yield the same pagto
6This should come as no surprise; after all, we did begin Withgremise 8For example,fo1 1dW(t) = W(1) and the latter is positive or negative

that X is a strategy profile im. with equal probability.



In fact, by induction on the rounds of elimination ofdown the players’ learning rate: as can be seen by (29), this
dominated strategies, we can now show that the result &farning rate is controlled by the “paffeto-noise” ratio.
Samuelson and Zhang on the extinction of dominated strate-On the other hand, corollary 3.1 also touches upon another
gies (theorem 1) carries over to our stochastic environmemtrucial issue: what happens when a game cannot be solved

Theorem 3:Let X(t) be an interior solution path of the by elimination of dominated strategies? In particular, floe
stochastic replicator equation (16) for some gateThen, rational behavior (in the form of equilibrial play) still earge
if g € A is iteratively (strictly) dominated: in non-solvable games as it does in the deterministic case?

Numerical simulations reveal that this seems to be the case
(26) indeed: in the congestion model of section Il, users coreserg

In other wordsonly rationally admissible strategies survive 10 the game’s Nash equilibrium in time scales that agree with
in the long run (a.s.). those predicted by (29). . .

Then, as an immediate consequence of this, we have: A thorough analysis of equ_lllbrlal play requires dfdrent
Corollary 3.1: Let ® be a dominance-solvable game andapproach becau;e the paydifferences that allowed us ©
let % € A be the (unique) Nash equilibrium 6. Then, weed ou_t the noise in (25) c_annc_>t be prc_)perly bounded if a

every interior solution path ¥) of the replicator dynamics strategy is not dominated. Still, with the aid of the stocitas

. ; ) Lyapunov method (inspired by [11]), we may recover a
(16) will converge to  (a.s.) more precisely: large part of the deterministic picture. As it turns outjcstr

Nash equilibria are stochastically asymptotically stainle

(27)

Intuitively, what happens is similar to the deterministicthe sto_cha§t|c replicator dynamics (16)’. no ”.‘a“er how loud
! . . . . the noise is. However, due to space limitations and some

case [5]. Since dominated strategies die out after some time

we can approximate (16) by a “reduced” dynamical syste eéchnicalities that would take us too far afield, we feel that
AN app y yr ' SYST®lhis issue is better left to be addressed in future work [13].
that lives on the faces ok that do not contain dominated

tIim Vg (Xi(t)) =0 almost surely.

tIim X(t) = xo almost surely.

vertices. Then, by repeating this argument, further vestic
can be eliminated until we reach a point where no dominatet;
strategies remain. Essentially, the proof works just like i
[10] and for this reason we will not present it here (see [13][2]
instead); the point where our proofs diverge is that we need
no bounds on the noise levglthanks to the form of (25).

Instead, it is more interesting to note that (16) can be®!
rewritten as:

Xa(t)

X.(0)

(4
(5]
(6]

t
log [ @o0-u00-5 3, a1 %) ds

t
PN XA OENE

Then, if @ < 8, we obtain the estimate:

[7]
Xa() _ X(0) ¢
X X,(0) exp{vt+ j; (nudW(,(s)—nﬁdvvﬁ(s))} (29) (8

with v andn as before. So, by using the same trick to estimatgo]
the behavior of the Wiener process, we can see that the
deterministic driftvt will becozme the dominant term after -, I
some time of the order di = I;. In other words, rationality
emerges late for high noise and early for high dominancéll
the precise time-scale depending on the square of the ratio
I which roughly describes the relation between the gamefsy]
paydfs and the intensity of the noise.

+ (28)

<

VI. ConcLusioNs AND FuTurRe WORK (23]

We have thus seen that the simplicity of the exponeni4]
tial learning scheme is complemented quite nicely by its
robustness: even when the players’ pgsustain arbitrarily [15
large shocks, irrational behavior always becomes extinct.
More to the point, if the underlying game can be solvedt®]
by deletion of dominated strategies, the players’ behavitglr
actually converges to the game’s (unique) Nash equilibriunmus]
The only way that noisefBects this scenario is by slowing

] B. @ksendal,Stochastic Dferential Equations
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