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Abstract—Online Mirror Descent (OMD) is an important and
widely used class of adaptive learning algorithms that enjoys
good regret performance guarantees. It is therefore natural to
study the evolution of the joint action in a multi-agent decision
process (typically modeled as a repeated game) where every
agent employs an OMD algorithm. This well-motivated question
has received much attention in the literature that lies at the
intersection between learning and games. However, much of the
existing literature has been focused on the time average of the
joint iterates. In this paper, we tackle a harder problem that
is of practical utility, particularly in the online decision making
setting: the convergence of the last iterate when all the agents
make decisions according to OMD. We introduce an equilibrium
stability notion called variational stability (VS) and show that in
variationally stable games, the last iterate of OMD converges to
the set of Nash equilibria. We also extend the OMD learning
dynamics to a more general setting where the exact gradient is
not available and show that the last iterate (now random) of
OMD converges to the set of Nash equilibria almost surely.

I. Introduction

Online decision making is a broad and powerful paradigm
that has found widespread applications and has achieved great
success (see [1] for a survey). The archetypal online decision
process may be described as follows: At each instance t =

1, 2, . . . , a player (viewed here as an optimizing agent) selects
an action xt from some set X and obtains a reward ut(xt)
based on an a priori unknown payoff function ut : X → �.
Subsequently, the player receives some feedback (such as the
past history of the reward functions or some restricted infor-
mation thereof), and selects a new action xt+1 with the goal of
maximizing the obtained reward. Aggregating over the stages
of the process, this is usually quantified by asking that the
player’s (external) regret Rt ≡ maxx∈X

∑t
k=1

[
uk(x) − uk(xk)

]
grow sublinearly with t, a property known as “no regret”.

Starting with the seminal work of [2], one of the most
widely used learning algorithms for achieving no regret in such
online decision problems is the online mirror descent (OMD)
class of algorithms proposed by [3]. This class contains several
closely related variants and, perhaps unsurprisingly, takes on
different names such as dual averaging (DA) [4] or (lazy)
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online mirror descent [5] and so on. In a nutshell, the main idea
of OMD is as follows: at each stage t = 1, 2, . . . , every player
takes a step along (an estimate of) the individual gradient
of their payoff function and the output is “mirrored” onto
each player’s action space by means of a “choice map” that
is analogous to ordinary Euclidean projection – in fact, it
is a natural generalization thereof. Note that the merit of
OMD lies not only in its provable regret guarantees, but
also in the parsimonious feedback required: a player need
only have access to a single piece of gradient information of
the previous iteration’s reward function (i.e. evaluated at the
previous decision point).

So far, the reward (or cost) function for a single-player
online decision problem is kept at the most general and
abstract level. A common instantiation for such an abstract
reward function lies in repeated multi-player games, where
each player’s payoff function is determined by the actions
of all the players via a fixed mechanism – the stage game
(even though this mechanism may be unknown and/or opaque
to the players). For any particular player, its reward function
(as a function of his own action alone) will depend both on
its own utility function and on the actions adopted by all
the other players. Given the merits of no-regret algorithms
(OMD being one of them), it is natural to expect that every
player will adopt one in selecting their actions in the decision
process. This leads to the following central question: what is
the evolution of the joint action when every player adopts a
no-regret learning algorithm? In particular, if all players of
a repeated game employ an updating rule that leads to no
regret, do their actions converge to a Nash equilibrium of the
one-shot stage game?

In fact, these well-motivated questions have generated
an extensive literature that lies at the intersection between
learning and game theory, which has witnessed a surge in
interest in the past decade or so. Most of this literature
has focused on the convergence of the time average of the
iterates x̄t =

∑t
k=1 γkxk/

∑t
k=1 γ

k (where γt is the step-size
and xt is the joint action at time t) as opposed to the last
iterate xt (i.e. actual sequence of joint action employed by
the players). For instance, it is well-known that if each player
employs a no-regret learning algorithm, the time average of
the iterates converges to the Hannan set [6] (perhaps the
coarsest equilibrium notion). If each player plays employs a
no-internal-regret learning algorithm (a stronger regret notion),
then the time average of the iterates converges to a finer
equilibrium, called correlated equilibrium [6]. Convergence to
a Nash equilibrium is, in the words of [6] “considerably more



difficult", because Nash equilibrium is the finest equilibrium1:
in general, such convergence results do not hold for Nash
equilibria. However, it is also the most meaningful question
since it is the most stable equilibrium (and hence one that has
the most predictive power).

As such, a growing literature has been devoted to studying
this problem, each focusing on special classes of games.
Here again, the attention is almost exclusively focused on
the convergence of the time average [7–9]. However, the
convergence of the last iterate is also worth investigating
for two reasons. First, the convergence of the last iterate is
stronger and theoretically more appealing: it is easier for the
average iterate to converge than for the last iterate to converge.
Second, it is the convergence of the last iterate rather than that
of the average, that is of principal interest and practical utility
for an online repeated game setting considered here. This is
the main question we tackle: our overarching objective is to
analyze the last-iterate convergence properties of OMD, a wide
class of adaptive learning algorithms, for continuous games.

Our Contributions

Our contributions are threefold. First, we introduce an equi-
librium stability notion called variational stability (VS), which
is formally similar to the influential notion of evolutionary
stability introduced in [10]. Variational stability allows us to
look at the general class of continuous games as opposed to a
specific class of games (such as zero-sum or potential games).
Further, variational stability is related to monotone operators in
variational analysis [11] and can be seen as a generalization of
operator monotonicity in the current game context and results
in desirable structural properties of the game’s Nash equilibria.
In Section III we give two classes of games that satisfy this
equilibrium notion (as well as a convenient sufficient condition
that ensures variational stability). As an important example
in engineering applications, convex potential games is one
such special case. In addition, both the class of monotone
games introduced in [12] and the broader class of pseudo-
monotone games introduced in [13] are special cases satisfying
the equilibrium notion introduced here. See Section III-C for
a detailed discussion.

Second, we show that under variational stability, the last
iterate of OMD converges to the set of Nash equilibria. In
particular, when a unique Nash equilibrium exists, the last it-
erate of OMD converges to that unique Nash equilibrium. Our
proof relies on designing a particular Lyapunov function, λ-
Fenchel coupling, which serves as a “primal-dual divergence”
measure between action and gradient variables that extends
the well-known Bregman divergence. Thanks to its Lyapunov
properties, the λ-Fenchel coupling provides a potent tool for
proving convergence and we exploit it throughout. To the best
of our knowledge, this is the first convergence result at this
level of generality.

Third, we extend the OMD learning dynamics to a more
general setting where the exact gradient is not available. This

1In particular, a Nash equilibrium is a correlated equilibrium, which in turn
is in the Hannan set

extension is of practical utility since on one hand, there can
be noise associated with measuring/sensing the gradient in the
underlying environment; and on the other hand, even if such
noise is absent, a player’s utility can be a random quantity
fluctating from iteration to iteration. We consider the extended
feedback model where players only have access to a first-
order oracle providing unbiased, bounded-variance estimates
of their payoff gradients at each step. Apart from this, players
operate in a “black box” setting, without any knowledge of
the game’s structure or their payoff functions (or even that
they are playing a game). Drawing tools and techniques from
stochastic approximation, martingale limit theory and convex
analysis. we establish that under variational stability, when a
unique Nash equilibrium exists, the last iterate (now a random
variable) of OMD converges to that unique Nash equilibrium
almost surely. Further, when there are multiple Nash equilibria,
the last iterate of OMD converges to the set of Nash equilibria
almost surely.

Related work

The authors of [4, 14] already give several convergence
results for dual averaging in (stochastic) convex programs and
saddle-point problems, while [15] provides a thorough regret
analysis for online optimization problems (with or without
regularization). In addition to treating the interactions of
several competing agents at once, the fundamental difference
of our paper with these works is that the convergence analysis
in the latter is “ergodic”, i.e. it concerns the time-averaged
sequence x̄n =

∑n
k=1 γk xk/

∑n
k=1 γk From a mixed-strategy

perspective, [16, 17] examined actor-critic algorithms that
converge to a probability distribution that assigns most weight
to equilibrium states (but still assigns positive probability to
all pure strategies). At the pure strategy level, several authors
have considered variational inequality (VI)-based approaches
and Gauss–Seidel methods for solving generalized Nash equi-
librium problems (GNEPs); for a survey, see [18] and [19].
The intersection of these works with the current paper is when
the game satisfies a global monotonicity condition similar to
the so-called diagonal strict concavity condition of [20]: in
this case, VI methods converge to Nash equilibrium globally.
That being said, the literature on GNEPs does not consider the
implications for the players’ regret, the impact of uncertainty
and/or local convergence/stability issues, so there is no overlap
with our results.

Finally, we emphasize the distinction between the OMD
dynamics studied in this paper and the well-known best
response dynamics [12, 21] commonly encountered in game
theory. In best response dynamics, each player chooses its
current action assuming all the other players will adopt their
respective actions in the previous round. In other words, each
player’s action is the best response to all the players’ previous
actions. Consequently, it is easy to see that in adopting best
response dynamics, the current joint action of all players
only depends on the joint action in the previous iterate,
whereas in OMD, all the past joint actions are incorporated
in selecting the current action. In fact, precisely due to the



sole dependence of the previous joint action, best response
dynamics are not very stable, particularly when there is noise
in the environment. See [22, 23] for two recent studies of best
response dynamics under stochastic environments/feedback on
two different applications: they converge at best to a stationary
distribution, where in the current setting OMD converges
almost surely to a constant.

II. OnlineMirror Descent Learning on Continuous Games

In this section, we present the learning-on-games model,
which has two main components. First, a continuous game
with concave payoffs that players repeatedly play. Second, the
well-known Online Mirror Descent (OMD) learning dynamics
that enjoys the no-regret performance guarantee (see [6, 24]
for a precise statement).

A. Continuous Games with Concave Payoff

A continuous game is a multi-player game with continuous
actions sets. Here we focus on the class of continuous games
that have concave payoffs 2

Definition 1. A continuous game G with concave payoff, or
a concave game in short, is given by the tuple G = (N ,X =∏N

i=1 Xi, {ui}
N
i=1), where N is the set of N players {1, 2, . . . ,N},

X is the joint action space with Xi being the action space for
player i and ui : X → R is the utility function for player i,
such that the following hold:

1) Each Xi is a nonempty, compact and convex subset of
some finite dimensional real vector space Vi (i.e. Vi = Rmi

for some positive integer mi).
2) For each i ∈ N , ui is continuous in x and concave in xi.

The latter means that ui(xi, x−i) is concave in xi for every
x−i ∈

∏
j,i X j. Throughout the paper, we use x−i to denote

the joint action of all players but player i. Consequently,
the joint action x will frequently be written as (xi, x−i).

3) For each i ∈ N , ui is continuously differentiable in xi and
each individual gradient vi(x) , ∇xi ui(x) is continuous in
x.

Remark 1. A note on the notation: we use the boldfaced letter
x to denote the joint action of all players and xi to denote
the action of player i. It should be in kept in mind, however,
that xi is a vector itself: it is not boldfaced here in order to
distinguish the individual action from the joint action.

Two central quantities in this paper are the gradient of the
utility functions and Nash equilibrium, respectively, which we
define next.

Definition 2. We denote by v(x) to be the collection of all
individual gradients of the utility functions: v(x) , (vi(x))i∈N ,
where vi(x) , ∇xi ui(x), as defined in Definition 1.

2Note that all the convergence to Nash equilibria results in this paper
continue to hold even if we do not assume the continuous games have concave
payoffs. We make this concave payoff assumption mainly because the no-
regret guarantee of OMD is only guaranteed to hold when the payoff is
concave.

Note that per the last assumption in the definition of a
concave game (Definition 1), the gradient v(x) always exists
and is a continuous function on the joint action space X .

Definition 3. Given a concave game (N ,X =
∏N

i=1 Xi, {ui}
N
i=1),

x∗ ∈ X is called a Nash equilibrium if for each i ∈ N ,
ui(x∗i , x

∗
−i) ≥ ui(xi, x∗−i),∀xi ∈ Xi.

Remark 2. The gradients of the utility functions and a Nash
equilibrium are related. In this context, we state an equivalent
characterization of Nash equilibrium that is well-known in the
literature (e.g. [25]) and that will be useful later: x∗ is a Nash
equilibrium of the game if and only if for every i ∈ N , and
every x ∈ X , 〈vi(x∗), xi − x∗i 〉 ≤ 0, where 〈·, ·〉 denotes the
inner-product operation.

We close this subsection by citing a seminar result in [26]:

Theorem 1. For any concave game (N ,X =
∏N

i=1 Xi, {ui}
N
i=1),

there exists a Nash equilibrium x∗ ∈ X .

B. Online Mirror Descent

When the players play a repeated game with each stage
game being the concave game defined in the previous subsec-
tion, it is an interesting question as to what learning dynamics
the players would adopt (i.e. how each player would behave
in such a repeated strategically interactive setting). In fact,
from the perspective of each individual player, the adaptive
selection of an action in such a setting conforms to the broad
and elegant online convex optimization framework as given
below (see [1] for a survey).

Online Convex Optimization
Input: A Bounded Convex Set S ⊂ Rd

for t = 1, 2, . . .
Choose a vector st ∈ S
Receive a convex loss function ft(·) and incur loss
ft(st)

Note that our current repeated game setting provides a
natural formation of the convex loss function: for a particular
player i, ft(·) = −ui(·, xt

−i). In this case, even though the
individual utility function is fixed, the convex loss function is
time-dependent because all the other players’ actions change
over time, which in turn changes the convex loss function at
every iteration. A well-known class of learning dynamics in
the online convex optimization/online learning literature that
enjoys provably good performance is online mirror descent
(OMD), which, when applied to the repeated game setting
here results in Algorithm 1.

Several comments are in order here. First, the gradient step
size αt in Algorithm 1 can be any positive and non-increasing
sequence that satisfies the standard not-summable-but-square-
summable assumption:

Definition 4. A positive and non-increasing sequence {αt}∞t=0
is called slowly vanishing if the following conditions are



Algorithm 1 Online Mirror Descent under Perfect Information
1: Each player i chooses an initial y0

i .
2: for t = 0, 1, 2, . . . do
3: for i = 1, . . . ,N do
4: xt

i = arg maxxi∈Xi {〈y
t
i, xi〉 − hi(xi)}

5: yt+1
i = yt

i + αtvi(xt)
6: end for
7: end for

satisfied:
∞∑

t=0

αt = ∞,

∞∑
t=0

(αt)2 < ∞.

Second, we are referring to Algorithm 1 as Online Mirror
Descent under Perfect Information because here we assume the
exact gradient vi(xt) is available at each iteration in the update
(Line 5). Later, we shall generalize this to noisy gradient
case and analyze the behavior of OMD under those more
general, stochastic environments. Third, we emphasize that
yt

i is an auxiliary variable that accumulates gradient in a
discounted way (discounted by the pre-determined sequence
{αt}∞t=1), while the chosen actions is given by xt

i. Note that xt
i

is obtained via a lazy projection on yt
i (by finding a xi that

best aligns with yt
i subject to a penalty induced by hi). Fourth,

the penalty function hi(·) needs to be a regularizer on Xi:

Definition 5. Let D be a compact and convex subset of Rm

(for some positive integer m). We say that hi : D → R is a
regularizer (with respect to some vector norm ‖ · ‖) if:

1) hi is continuous.
2) hi is strongly convex with respect to ‖·‖: there exists some

K > 0 such that ∀t ∈ [0, 1],∀d,d′ ∈ D: hi(td+ (1− t)d′) ≤
thi(d) + (1− t)hi(d′)− 1

2 Kt(1− t)‖d′ −d‖2. In this case, we
say that hi is K-strongly convex (with respect to ‖ · ‖).

Consequently, the arg max in Step 4 of Algorithm 1 is well-
defined since it is a maximization of a continuous function
over a compact set (existence of a maximizer) and since
the (continuous) function to be maximized over is strongly
concave (uniqueness of the maximizer).

III. Variational Stability: A Key Criterion
In this section, we introduce the notion of variational

stability, a key quantity that will relate the structural properties
of the gradient function to the set of all Nash equilibria, and
that will, ultimately, ensure the convergence of the online
mirror descent.

A. Variational Stability

We start by defining variational stability and then relating
it to an important concept in variational analysis: monotone
operator.

Definition 6. Given a concave game (N ,X =
∏N

i=1 Xi, {ui}
N
i=1),

a set C ⊂ X is called variationally stable, if

〈v(x), x − x∗〉 ,
N∑

i=1

〈vi(x), xi − x∗i 〉 ≤ 0,∀x ∈ X ,∀x∗ ∈ C,

with equality if and only if x ∈ C.

We emphasize that variationaly stability is related to and
much weaker than an important concept in variational analysis.
Specifically, v(·) is called a monotone operator [11] if the
following holds:

〈v(x) − v(x̃), x − x̃〉 ≤ 0,∀x, x̃ ∈ X , (1)

with equality if and only if x = x̃. Let x∗ be a Nash equilibrium
(whose existence is guaranteed by Theorem 1). Per Remark 2,
we have

〈v(x∗), x − x∗〉 =

N∑
i=1

〈vi(x∗), xi − x∗i 〉 ≤ 0.

Consequently, by expanding Equation 1, it then follows that
〈v(x), x − x∗〉 ≤ 〈v(x∗), x − x∗〉 ≤ 0, where equality is achieved
if and only if x = x∗. This suggests that when v(x) is a
monotone operator, there exists a unique Nash equilibrium
and the singleton set of this unique Nash equilibrium is
variationally stable. The converse is not true: when v(x) is not
a monotone operator, we can still have a variationally stable
set C for the concave game.

Note also in the above definition, we referred to an element
in C as x∗, seemingly to suggest that such an element will be
a Nash equilibrium. This is not a coincidence, as we explore
in the next subsection.

B. Properties of Variational Stability

Here we study the structural properties of a variationally
stable set. It turns out that a variationally stable set contains
all Nash equilibria of the game (note that at least one Nash
equilibrium exists per Theorem 1). Before proceeding, a
word on the notation for the remainder of the paper: for
convenience, we shall write v j(x)(x j − x∗j) to denote the inner
product between v j(x) and x j − x∗j in replacement of the more
cumbersome notation 〈v j(x), x j − x∗j〉. Due to space limitation,
we omit all the proofs in the subsection.

Lemma 1. Give a concave game (N ,X =
∏N

i=1 Xi, {ui}
N
i=1). If

C is a non-empty variationally stable set, then C is a closed
and convex set of all Nash equilibria of the game.

We can then define variationally stable games:

Definition 7. A concave game is called variationally stable if
its set of Nash equilibria is a variationally stable set.

On the other hand, if x∗ is the unique Nash equilibrium of
the game (an important and useful special case), the set {x∗}
is not necessarily a variational stable set. This means that in
the singleton set case, variational stability is a stronger notion
than that of the unique Nash equilibrium per Lemma 1. In
general, however, the notion of variational stability is neither
stronger nor weaker than that of the unique Nash equilibrium.
The following lemma gives us a convenient sufficient condition
ensuring that there exists a singleton set {x∗} that is variation-
ally stable; in this case, to avoid notational clutter, we simply



say that x∗ is variationally stable, although it should be kept
in mind that variational stability always refers to a set.

Lemma 2. Given a concave game (N ,X =
∏N

i=1 Xi, {ui}
N
i=1),

where each ui is twice continuously differentiable. For each
x ∈ X , define the Hessian matrix H(x) as follows:

Hi j(x) =
1
2
∇x j vi(x) +

1
2

(∇xi v j(x))T . (2)

If H(x) is negative-definite for every x ∈ X , then the game
admits a unique Nash equilibrium x∗ that is variationally
stable.

Remark 3. It is important to note that the Hessian matrix
so defined is a block matrix: each Hi j(x) is a matrix itself.
Writing it in terms of the utility function, we have Hi j(x) =
1
2 ∇x j ∇xi ui(x) + 1

2 (∇xi ∇x j u j(x))T . In particular, Hi j(x) is a
mi × m j matrix, where dim(xi) = mi, dim(x j) = m j. Also note
that this sufficient condition is far more than necessary: it in
fact implies v(·) is a monotone operator (see [12]) (and hence
the game is variationally stable).

C. Examples

Here we give two important classes of games that satisfy
the variational stability criterion. This is by no means a
comprehensive list. Due to space limitation, we will only have
a very limited discussion here.

1) Potential Games A game G = (N ,X =
∏N

i=1 Xi, {ui}
N
i=1)

is called a potential game [27] if there exists a potential
function V : X → R such that ui(xi, x−i) − ui(x̃i, x−i) =

V(xi, x−i) − Vi(x̃i, x−i),∀i ∈ N ,∀x ∈ X ,∀x̃i ∈ Xi. A
potential game is called a convex potential game if the
potential function V(·) is concave3 Note that in a convex
potential game, we have

Hi j(x) =
1
2
∇x j vi(x) +

1
2

(∇xi v j(x))T (3)

=
1
2
∇x j ∇xi V(x) +

1
2

(∇xi ∇x j V(x))T . (4)

Consequently, H(x) = ∇2 V , which is negative semi-
definite when V is concave. This implies that in a convex
potential game, C = arg maxx∈X V(x) is variationally
stable.

2) Monotone Games and Pseudo-Monotone Games
Monotone games are introduced in [12] (called diagonally
strict concave games there): it is a concave game satisfy-
ing 〈v(x)−v(x̃), x−x̃〉 ≤ 0,∀x, x̃ ∈ X . Namely, a monotone
game is a concave game where the joint gradient is a
monotone operator. Per the discussion in Section III-A, a
monotone game is a variationally stable game.
The recent work [13] relaxed the monotone operator as-
sumption and introduced a broader class of games called
pseudo-monotone games. A pseudo-monotone game is a
concave game satisfying: ∀x, x̃ ∈ X , if 〈v(x̃), x − x̃〉 ≤ 0,

3It is called convex potential game as opposed to concave potential game
because in engineering, the utility is typically framed in terms of costs and
convex costs correspond to concave utilities.

then 〈v(x), x−x̃〉 ≤ 0. To see that a pseudo-monotone game
is variational stable, note that at a Nash equilibrium x∗,
we have 〈v(x∗), x − x∗〉 ≤ 0 per Remark 2. The definition
of a pseudo-monotone game then immediately implies
〈v(x), x − x∗〉 ≤ 0, thereby establishing the conclusion.

IV. Convergence of OMD to Nash Equilibria
In this section, we tackle the main problem of the paper

and establish that the last iterate of OMD converges to Nash
equilibria under variationaly stability.

A. Fenchel Coupling
We first construct a Lyapunov function called Fenchel

coupling, that will play a indispensable role in establishing
the convergence of the OMD dynamics. The Fenchel coupling
can be viewed as measuring the distance between the primal
decision variable x and the dual gradient variable y and is
a generalization of Bregman divergence. As a reminder, we
emphasize that for notational convenience, we denote the inner
product by xiyi (in replacement of 〈xi, yi〉).

Definition 8. Given a concave game (N ,X =
∏N

i=1 Xi, {ui}
N
i=1)

and for each player i, let hi : Xi → R be a regularizer with
respect to the norm ‖ · ‖i that is Ki-strongly convex. Let Y =∏N

i=1 Rmi .
1) The convex conjugate function h∗i : Rmi → R of hi is

defined as:

h∗i (yi) = max
xi∈Xi

{xiyi − hi(xi)},∀yi ∈ Rmi .

2) The choice function Ci : Rmi → Xi associated with the
regularizer hi for player i is defined as:

Ci(yi) = arg max
xi∈Xi

{xiyi − hi(xi)},∀yi ∈ Rmi .

3) The Fenchel coupling F : X × Y → R induced by the
regularizers {hi}

N
i=1 is defined as:

F(x, y) =

N∑
i=1

(hi(xi) − xiyi + h∗i (yi)),∀x ∈ X ,∀y ∈ Y .

Remark 4. Two things worth noting is that first, although the
domain of hi is Xi ⊂ Rmi , the domain of its conjugate h∗i is Rmi .
Second, the choice function Ci projects yi from the gradient
space to xi in the decision space, and corresponds to Line 4
in Algorithm 1.

The two key properties of Fenchel that will be important
in establishing the convergence of OMD are given next. The
proof is long and tedious and is therefore omitted.

Lemma 3. For each i ∈ {1, . . . ,N}, let hi : Xi → R be a
regularizer with respect to the norm ‖ · ‖i that is Ki-strongly
convex. Then, ∀x ∈ X ,∀ỹ, y ∈ Y :

1)

F(x, y) ≥
1
2

N∑
i=1

Ki‖Ci(yi) − xi‖
2
i (5)

≥
1
2

(min
i

Ki)
N∑

i=1

‖Ci(yi) − xi‖
2
i . (6)



2)

F(x, ỹ) ≤F(x, y) +

N∑
i=1

(ỹi − yi)(Ci(yi) − xi)+ (7)

1
2

(max
i

1
Ki

)
N∑

i=1

(‖ỹi − yi‖
∗
i )2, (8)

where ‖ · ‖∗i is the dual norm of ‖ · ‖i (i.e. ‖yi‖
∗
i =

max‖xi‖i≤1 xiyi).

Remark 5. Collecting each individual choice map into a vector,
we obtain the aggregate choice map C : Y → X , with C(y) =

(C1(y1), . . . ,CN(yN)). Since each space Xi is endowed with
norm ‖ · ‖i, we can define the induced aggregate norm ‖ · ‖ on
the joint space X as follows: ‖x‖ =

∑N
i=1 ‖xi‖i, which can be

easily verified to be a valid norm. We can also similarly define
the aggregate dual norm: ‖y‖∗ =

∑N
i=1 ‖yi‖

∗
i . Henceforth, it shall

be clear that the convergence in the joint space (e.g. C(yt)→ x,
yt → y) will be defined under the respective aggregate norm.

B. Convergence Analysis

We will primarily be focused on the case where the game
admits a singleton variationaly stable set (and hence a neces-
sarily unique Nash equilibrium), in which case the last iterate
of OMD converges to the unique Nash equilibrium. We do so
for two reasons: First, this is an important special case not only
because many games arising in engineering applications have
an unique Nash equilibrium, but also because it is not known
whether the last iterate of OMD would converge to the unique
Nash equilibrium even in this special case. Second, perhaps
more importantly, the analysis for multiple Nash equilibria
case is almost identical to the single Nash equilibrium case
and admits a trivial generalization. Before proceeding, we
identify an important class of choice maps that are regular
in an intuitive sense:

Definition 9. The choice map C(·) is said to be Fenchel
coupling conforming if C(yt) → x implies F(x, yt) → 0 as
t → ∞.

We are now ready to state our first main convergence result.

Theorem 2. Given a concave game (N ,X =
∏N

i=1 Xi, {ui}
N
i=1)

that admits x∗ as the unique Nash equilibrium that is varia-
tionaly stable. Then if the following assumptions are satisfied:

1) The step size sequence {αt}∞t=0 in Algorithm 1 is slowly
vanishing;

2) The choice map C(·) is Fenchel coupling conforming;
then the OMD iterate xt given in Algorithm 1 converges to x∗,
irrespective of the initial point x0.

Remark 6. There are three main ingredients that together
establish this theorem.

1) Let B(x∗, ε) , {x ∈ X | ‖x − x∗‖ < ε} be the open ball
centered around x∗ with radius ε, where the ‖ · ‖ is the
aggregate norm induced by the individual norms {‖·‖i}Ni=1.
Then, for any ε > 0 the iterate xt will eventually enter
B(x∗, ε) and visit B(x∗, ε) infinitely often, no matter what

the initial point x0 is. Mathematically, the claim is that
∀ε > 0,∀x0, |{t | xt ∈ B(x∗, ε)}| = ∞.

2) Fix any δ > 0 and consider the set B̃(x∗, δ) , {C(y) |
F(x∗, y) < δ}. In other words, B̃(x∗, δ) is some “neigh-
borhood" of x∗, which contains every x that is an image
of some y (under the choice map C(·)) that is within
δ distance of x∗ under the Fenchel coupling “metric".
Although F(x∗, y) is not a metric, B̃(x∗, δ) contains an
open ball within it. Mathematically, the claim is that for
any δ > 0, ∃ε(δ) > 0 such that: B(x∗, ε) ⊂ B̃(x∗, δ).

3) For any “neighborhood" B̃(x∗, δ), after long enough iter-
ations, if xt ever enters B̃(x∗, δ), it will be trapped inside
B̃(x∗, δ) thereafter. Mathematically, the claim is that for
any δ > 0, there exists a T (δ), such that for any t ≥ T (δ),
if xt ∈ B̃(x∗, δ), then xt̃ ∈ B̃(x∗, δ),∀t̃ ≥ t.

Putting all three elements above together, we note that the
significance of Claim 2 is that, since the iterate xt will enter
B(x∗, ε) infinitely often (per Claim 1), xt must enter B̃(x∗, δ)
infinitely often. It therefore follows that, per Claim 3, starting
from iteration t, xt will remain in B̃(x∗, δ). Since this is true
for any δ > 0, we have F(x∗, yt)→ 0 as t → ∞. Per Statement
1 in Lemma 3, this leads to that ‖C(yt) − x∗‖ → 0 as t → ∞,
thereby establishing that xt → x∗ as t → 0.

�
In fact, the result generalizes straightforwardly to a vari-

ationally stable set of Nash equilibria. The proof of the
convergence to the set case is similar, provided that we
redefine, in a standard way, every quantity that measures the
distance between two points to the corresponding quantity that
measures the distance between a point and a set (by taking the
infimum over the distances between the point and a point in
that set). We therefore have the following result.

Theorem 3. Given a concave game (N ,X =
∏N

i=1 Xi, {ui}
N
i=1)

that admits a variationaly stable set4 C. Then if the following
assumptions are satisfied:

1) The step size sequence {αt}∞t=0 in Algorithm 1 is slowly
vanishing;

2) The choice map C(·) is Fenchel coupling conforming;
then the OMD iterate xt given in Algorithm 1 converges to C,
irrespective of the initial point x0: limt→∞ dist(xt, C) = 0.

Remark 7. In the multiple Nash equilibria case, we point out
that Theorem 3 only says that the iterate converges to set
of Nash equilibria (under the point-to-set distance metric).
A priori, this does not imply that the iterate will converge
to any given Nash equilibrium in that set. However, by a
more refined analysis, one can show that the OMD iterate
will indeed converge to some Nash equilibrium in the set
of all Nash equilibria. We omit this discussion due to space
limitation.

V. OnlineMirror Descent under Noisy Feedback
The standard OMD as stated in Algorithm 1 is somewhat

restricted in most applications. This is because in order to

4Recall that per Lemma 1, this variationaly stable set is necessarily a set
of all Nash equilibria.



perform the update in Step 5 in Algorithm 1, player i needs to
know the exact gradient vi. This is not feasible in many cases
for at least two reasonse. First, there can be noise associated
with measuring/sensing the gradient in the underlying envi-
ronment. Second, a player’s utility ui(x) is typically the mean
of a random quantity: ui(x) = Eη[ f (x, η)]. Consequently, even
if there is no measurement noise, the player only obtains a
sample of the realized gradient ∇xi f (x, η), which is stochastic.

A natural extension then is to generalize the OMD to handle
such cases, where only a noisy estimate of the gradient (as
opposed to the exact gradient) is needed. Algorithm 2 gives a
formal description of this generalized version.

Algorithm 2 Online Mirror Descent under Noisy Feedback
1: Each player i chooses an initial Y0

i .
2: for t = 0, 1, 2, . . . do
3: for i = 1, . . . ,N do
4: Xt

i = arg maxXi∈Xi {〈Y
t
i , Xi〉 − hi(Xi)}

5: Y t+1
i = Y t

i + αt v̂i(Xt)
6: end for
7: end for

The main difference between Algorithm 2 and Algorithm 1
lies in Step 5, where a noisy estimate of the gradient is used.
In addition, the iterates are capitalized to make explicit the
fact that due to the noisy gradient used in Step 5, they are
now random variables. Specifically, we have used the capital
letters Xt

i and Y t
i in Algorithm 2 because these iterates are

now random variables as a result of the noisy gradients v̂i.
Of course, in order for convergence to be guaranteed, v̂i(Xt)
cannot be just any noisy perturbation of the gradient. Here we
employ a rather standard model on the noisy gradient that is
commonly seen in the optimization literature:

Assumption 1. Let F t be the canonical filtration induced by
the (random) iterates up to time t: X1, . . . ,Xt. We assume:

1) The noisy gradients are conditionally unbiased:

∀i ∈ N ,∀t,E[v̂i(Xt) | F t] = vi(Xt), a.s.. (9)

2) The noisy gradients are bounded in mean square:

∀i ∈ N ,∀t,E[‖v̂i(Xt)‖22 | F
t] ≤ V, a.s., (10)

for some constant V > 0.

Finally, note that when there is only one player, Algo-
rithm 1 exactly recovers the well-known optimization algo-
rithm stochastic mirror descent [28, 29].

Our main result is that under the above-stated uncertainty
model, OMD converges almost surely to the set of Nash equi-
libria. Again, we first start with the unique Nash equilibrium
case.

Theorem 4. Given a concave game (N ,X =
∏N

i=1 Xi, {ui}
N
i=1)

that admits x∗ as the unique Nash equilibrium that is varia-
tionaly stable. Then if the following assumptions are satisfied:

1) Assumption 1 holds.
2) Each vi(x) is Lipschitz continuous in x on X .

3) The step size sequence {αt}∞t=0 in Algorithm 1 is slowly
vanishing;

4) The choice map C(·) is Fenchel coupling conforming;
then the iterate Xt in the generalized OMD given in Algo-
rithm 2 converges to x∗ almost surely.

Proof Sketch: Due the stochastic gradient model in this case,
the proof here will be very different from and more involved
than that of Theorem 2. Due to space limitation, we will only
provide a brief sketch that outlines the main ideas of the major
steps.

1) Building on the proof to Theorem 2, and apply Martingale
convergence theorems (both Doob’s martingale conver-
gence theorem and the law of large number for Martingale
differences), we can establish that every neighborhood
B(x∗, ε) is recurrent: for every ε > 0, B(x∗, ε) will be
visited infinitely often with probability 1.

2) We consider the continuous dynamics approximation of
OMD:

˙̃y = v(x̃), x̃ = C(ỹ), (11)

and establish that the Fenchel coupling function can never
increase and will decrease linearly for a certain interval
of time before the continuous trajectory ỹ(t) gets close to
Nash equilibrium x∗ (in distance measured by F(x∗, ỹ(t))).
Note that we have used ỹ(t), x̃(t) to denote the trajectories
induced by the ODE given in Equation 11, in order
to distinguish them from the discrete version. Further
note that Assumption 2 ensures that a unique solution
trajectory to this ODE exists.

3) We then consider an affine interpolation of the discrete
trajectory Y(t) generated by Algorithm 2 (i.e. connect
consecutive iterates via a straight line). We show that
via a path-by-path argument that this affine interpolation
trajectory is an asymptotic pseudo-trajectory [30] of ỹ(t):

lim
t→∞

sup
0≤h≤T

‖Y(t + h) − Ỹ(t + h)‖∗ = 0,∀T > 0, a.s.,

where Ỹ(t + h) represents the solution trajectory to the
ODE in Equation 11 at time t + h, given that it starts
at Y(t) at time t. This essentially means that these
two trajectories, the affine interpolation of the discrete
trajectory and the continuous trajectory induced by the
OD, are close after long enough time.

4) Building on the previous point, one can then show that for
time sufficiently large, Fenchel coupling is approximately
the same whether one uses the affine interpolation of
the discrete trajectory or the continuous one. But note
that point 2) establishes that in the continuous case,
the Fenchel coupling will not increase. Consequently, it
implies that the affine interpolation trajectory will then
stay in a certain neighborhood B(x∗, ε). Note that this is
true only after large enough time t, but point 1) ensures
that the discrete trajectory visits B(x∗, ε) infinitely often
and will therefore be trapped inside starting from some
large t0 and onwards. Since this is true for any ε, the
conclusion follows.



�
Again, the argument for the unique Nash equilibrium case

generalizes straightforwardly to the multiple Nash equilibria
case as follows:

Theorem 5. Given a concave game (N ,X =
∏N

i=1 Xi, {ui}
N
i=1)

and let X ∗ be a variationally stable set (of all Nash equilibria).
Then if the following assumptions are satisfied:

1) Assumption 1 holds.
2) Each vi(x) is Lipschitz continuous in x on X .
3) The step size sequence {αt}∞t=0 in Algorithm 1 is slowly

vanishing;
4) The choice map C(·) is Fenchel coupling conforming;

then the iterate Xt in the generalized OMD given in Algo-
rithm 2 converges to X ∗ almost surely: limt→∞ dist(Xt,X ∗) =

0, a.s..

VI. Conclusion and FutureWork

We studied the problem of learning Nash equilibria via
OMD, under both perfect gradient feedback and noisy gradient
feedback. As we have briefly mentioned, concavity is not
needed for convergence to hold: variational stability suffices.
This raises the question if there exists a broader class of games
(than variationally stable games) in which OMD still converges
to Nash equilibria. Although we do not have a conclusive
answer, we do conjecture that variational stability, due to its
particularly light requirement on the attraction towards the
equilibria, is the minimal assumption needed for achieving
global convergence to Nash equilibria (irrespective of the
initial condition). Finally, we note that noisy gradient feedback
considered in this paper is but one type of imperfect feedback.
Delay is another important type of imperfect feedback that
frequently occurs (often in different ways) in the online
learning setting [31, 32]. We leave that for future work.
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