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Abstract. In wireless communication, the full potential of multiple-input multiple-
output (MIMO) arrays can only be realized through optimization of their trans-
mission parameters. Distributed solutions dedicated to that end include iterative
optimization algorithms involving the computation of the gradient of a given ob-
jective function, and its dissemination among the network users. In the context of
large-scale MIMO, however, computing and conveying large arrays of function
derivatives across a network has a prohibitive cost to communication standards.
In this paper we show that multi-user MIMO networks can be optimized with-
out using any derivative information. With focus on the throughput maximization
problem in a MIMO multiple access channel, we propose a “derivative-free” opti-
mization methodology relying on very little feedback information: a single func-
tion query at each iteration. Our approach integrates two complementary ingre-
dients: exponential learning (a derivative-based expression of the mirror descent
algorithm with entropic regularization), and a single-function-query gradient esti-
mation technique derived from a classic approach to derivative-free optimization.

Keywords: derivative-free optimization · zeroth-order optimization · exponen-
tial learning ·MIMO systems · throughput maximization· SPSA.

1 Introduction

The appeal of multiple-input and multiple-output (MIMO) technologies in wireless
communication is their ability to increase throughputs significantly and to improve the
systems’ robustness to ambient noise and channel fluctuations [1, 2]. On this account,
large-scale deployment of multiple-input and multiple-output (MIMO) terminals is per-
ceived as one of the key enabling technologies for next-generation wireless networks.

Releasing the full potential of large MIMO arrays requires, however, a principled
approach to optimization, with the aim of minimizing computational overhead and re-
lated expenditures.
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An essential aspect of the emblematic throughput maximization problem resides
in the optimization of MIMO transmission parameters (such as the users’ signal co-
variance matrices) [3–7]. In multi-user networks, conventional optimization methods
involve the use of water-filling (WF) techniques [4, 8, 9], which invariably rely on the
availability of perfect channel state information at the transmitter (CSIT), and are vul-
nerable to observation noise, asynchronicities, and other operational impediments that
arise in real-world networks.

More recently proposed in [10] as an alternative to water-filling, the matrix expo-
nential learning (MXL) algorithm proceeds incrementally by combining (stochastic)
gradient steps with a matrix exponential mapping that ensures feasibility of the users’
signal covariance variables. In so doing, MXL guarantees fast convergence in cases
where WF methods demonstrably fail. On the negative side, an important implementa-
tion bottleneck of MXL is the requirement to (i) invert a relatively large matrix at the
receiver; and (ii) broadcast the resulting matrix to all connected users3. In consequence,
the computation and communication overhead of MXL quickly becomes prohibitive in
larger MIMO systems.

In this paper, we focus on the problem (stated in Section 2) of throughput maxi-
mization in a MIMO multiple access channel (MAC), with the objective to overcome
the above limitations of the MXL by means of zeroth-order optimization, i.e., by mak-
ing no gradient computations whatsoever. Following a classic approach from the simul-
taneous perturbation stochastic approximation (SPSA) framework [12, 13], we devise
in Section 3 a “gradient-free” optimization algorithm by plugging into the chassis of
the original MXL method a gradient estimator based no longer on first-order feedback
but on function queries (a single one at each iteration). Our developments are followed
by a discussion on the performances and potential of gradient-free matrix exponential
learning (Section 4).

Notation We use bold capital letters for matrices, saving the letters k, l for user assign-
ments and t, s for time indices, so that e.g., matrix Qk relates to user k, Qt to time t, and
Qk,t to user k at time t.

2 Problem statement

Consider a MIMO network where K users are transmitting simultaneously to a wireless
receiver equipped with N antennas over a shared Gaussian vector MAC, modeled by

y =

K∑
k=1

Hkxk + z,

where y ∈ �N is the signal at the reception, Mk, xk ∈ �
Mk and Hk ∈ �

N×Mk respectively
denote the number of antennas, the transmitted messages and the channel matrix of
user k (k = 1, . . . ,K), and z ∈ � models additive zero-mean Gaussian noise with unit

3 In a MIMO array with N = 128 receive antennas, this would correspond to transmitting ap-
proximately 65 kB of data per frame, thus exceeding typical frame size limitations by a factor
of 50× to 500× depending on the specific standard [11].
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covariance. Without loss of generality, we assume every user to possess at least two
antennas (Mk ≥ 2). Let Pk be the maximum mean power consumption of user k due to
transmissions, and let

Qk =
1
Pk
�[xkx†k]

denote the normalized covariance matrix of xk. By definition, the matrix Qk is Hermitian—
we write Qk ∈ Herm (Mk)—and positive semidefinite.

Our goal is to maximize, under the maximum available transmit power constraint
tr(Qk) ≤ 1 for k = 1, . . . ,K, the achievable sum rate under successive interference
cancellation (SIC),

R(Q) = log det

I +

K∑
k=1

Pk HkQkH†k

 (1)

where the aggregate form Q = (Qk, . . . ,QK) contains all the unknowns of the problem.
Since the maximum sum rate is achieved at a boundary point Q where tr(Q1) = · · · =

tr(QK) = 1, the search domain of the problem is confined to the Cartesian product
set Q = Q1 × · · · ×QK , where

Qk = {Qk ∈ Herm (Mk) : tr(Qk) = 1,Qk � 0}

is a compact subset of a dk-dimensional real subspace, with dk = M2
k − 1 > 0 for every

user k.
The throughput maximization problem can be stated as the convex program:

maximize R(Q)
subject to Q ∈ Q. (RM)

The structure of the feasible set Q makes the problem amenable to parallel optimization
settings where (RM) is regarded as a collection of K sub-problems

maximize R(Qk; Q−k)
subject to Qk ∈ Qk

(RMk)

to be solved in parallel by the users. Equivalently, (RMk) can be interpreted as maxi-
mizing the achievable transmission rate of user k when single-user decoding (SUD) is
performed at the receiver,

Rk(Qk; Q−k) := R(Q) − R(Q1, . . . ,Qk−1, 0,Qk+1, . . . ,QK), (2)

given the covariance matrices of the remaining users, thus regarding the interference
due to the signals sent by other users as colored noise. Since the achievable sum rate (1)
is a concave potential function for the game defined by (2), the solutions of (RM) are the
solutions of the Nash equilibrium problem defined by (2), i.e. any solution Q? of (RM)
satisfies, for k = 1, . . . ,K,

Rk(Q?
k ; Q?

−k) ≥ Rk(Qk; Q?
−k) ∀Qk ∈ Qk, (NE)

and conversely. In other words, maximizing the achievable sum rate under SIC is equiv-
alent to equilibrating the individual transmission rates (2) under SUD.
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Many optimization methods rely on derivative information. Differentiation of the
achievable sum rate (1) gives us the gradient ∇R = (∇1R, . . . ,∇KR) where, for k =

1, . . . ,K,

∇kR(Q) = PkHk
†

I +

K∑
l=1

Pl HlQlH†l

−1

Hk. (3)

Making the derivatives ∇kR(Q) available to the users implies the inversion of the N ×
N Hermitian matrix I +

∑K
l=1 Pl HlQlH†l at the receiver, followed by the broadcast of

the result towards the users, which then are able to compute (3) locally. On account
that the communication overhead induced by the dissemination of the gradient may
be prohibitive, we proceed under the assumption that the gradient is not accessible to
the users, which instead are required to compute their own estimates of ∇kR, based no
longer on derivative information but on mere measurements of R(Q).

3 Derivative-free matrix exponential learning

3.1 The MXL algorithm

Among the existing (derivative-based) methods of solution for (RM) is the matrix ex-
ponential learning (MXL) [14], which in our developments will serve both as reference
and as a starting point. We refer to [15, 16] for a characterization of the MXL algorithm
as an instance of the mirror descent algorithm implemented with the von Neumann rela-
tive entropy for Bregman divergence. Given an initial point Y0 = Y1 = (0, . . . , 0) in the
space of the gradients Q∗ = Q∗1 × · · · ×Q∗K , where Q∗k =

{
Yk∈Herm (Mk) : tr(Yk) = 0

}
,

the t-th step of the algorithm is defined for t ≥ 1 by

Qt = Λ(Yt),
Yt+1 = Yt + γtV̂t,

(MXL)

where {Qt} denotes the issued sequence of estimates for the optimal configuration, {Yt}

is a sequence generated in the space of the gradients, {γt} is a sequence of positive
step-sizes, V̂t = (V̂1,t, . . . , V̂K,t) ∈ Q∗ is an estimate of the gradient ∇R(Qt), and we set
Λ = (Λ1, . . . ,ΛK), where the exponential learning mapping Λk is defined by

Λk(Yk) =
exp(Yk)

tr(exp(Yk))
,

in which exp denotes the (matrix) complex exponential function.
In contrast to the available implementations of MXL, which rely on full/noisy [14]

or partial [17] gradient feedback for the computation of V̂t, the gradient estimates V̂t in
this work are derived without gradient information, as explained in Section 3.2.

3.2 Derivative-free MXL

Description of the the gradient-free MXL. Our developments build on an early ap-
proach to derivative-free optimization [12, 13] which, in time, has been seen as the cor-
nerstone to the field of simultaneous perturbation stochastic approximation (SPSA).
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After translation into our distributed, Hermitian setting, the SPSA approach can be de-
scribed as follows.

In the absence of any gradient feedback, each user k infers an estimate V̂k ≈ ∇kR of
their individual gradient, derived from randomized queries of the sum rate R in the close
neighborhood of the current iterate. For k = 1, . . . ,K, let rk > 0 and Ck ∈ Qk such that
the ball Ck +rk���dk is entirely contained by Qk. Concretely, each user k draws, randomly
and independently, a matrix Zk on the sphere ���dk−1 = {Zk ∈ Q∗k : ‖Zk‖2 = 1} living in the
dk-dimensional space Q∗k, and we let Z = (Z1, . . . ,ZK) aggregate the random matrices
of all users. The gradient estimator for user k = 1, . . . ,K is then defined as

V̂k(Q) =
dk

δ
R(Q̂) Zk, (SPSA)

where Q̂ = (Q̂1, . . . , Q̂K), and each test matrix

Q̂k = Qk + δ
rk

(Ck −Qk) + δZk (4)

is derived from Qk after deviation by random quantity δZk, and prior shrinking of Qk

so as to keep the test configuration Q̂ inside the feasible set. The presence in (SPSA)
of the factor dk = M2

k − 1 can be explained as the ratio between the volumes of the
sphere ���dk−1 (where Zk is picked) and the containing ball ���dk = {Zk ∈ Q∗k : ‖Zk‖2 ≤ 1}.

The distinguishing property of (SPSA) lies in that the the bias of the gradient esti-
mator can be controlled by the parameter δ as this bias is uniformly bounded over Q:

‖�[V̂k(Q,Z; ρ) − ∇kR(Q)]‖∗ = O(δ) (5)

Besides, the norm of the gradient estimator (SPSA) satisfies

‖V̂k(Q,Z; ρ)‖∗ = O
(

1
δ

)
(6)

uniformly on Q. Equations (5) and (6) thus unveil a tradeoff between the O(δ) bias of
the estimator and its O( 1

δ
) deviation from the true derivative. This bias–variance tradeoff

induces in the present context strict restrictions on the choice of the query radius δ and
of the step-size policy of the MXL algorithm, with consequences on the performance
of the algorithm, as discussed towards the end of the section.

See Algorithm 1 for a pseudocode description of the gradient-free optimization al-
gorithm obtained after combining MXL with (SPSA). Given a (typically non-increasing)
query radius sequence {δt} and a step-size sequence {γt}, the task of user k at time step t
consists of (i) sampling a random direction Zk,t ∈ Q∗k, (ii) implementing the test covari-
ance matrix Q̂k,t obtained as in (4) by variation of the current covariance estimate Qk,t,
(iii) receiving the value of the achievable total transmission rate R(Q̂t), (iv) inferring
an estimate V̂k,t of the gradient along user direction k, and (v) updating Yk,t and Qk,t in
accordance with (MXL).

Convergence of the gradient-free MXL. The convergence of the gradient-free ver-
sion of MXL is guaranteed with probability 1 on condition that the implementation
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Algorithm 1: Gradient-free MXL
Parameters : {γt}

∞
t=1, {δt}

∞
t=1

Init.: t ← 1, Y← 0, ∀k: transmit with Qk ←
Pk
Mk

Ik

1: Repeat until stopping criterion is reached
2: For k ∈ {1, . . . ,K} do in parallel

Sample Zk uniformly in ���dk−1

Transmit with Q̂k ← Qk + δt
rk

(Ck −Qk) + δtZk

Receive feedback r ← R(Q̂)

V̂k ←
( M2

k−1
δt

)
r Zk

Yk ← Yk + γtV̂k

Qk ← Λk(Yk)
3: t ← t + 1

1 10 102 103 104 105 106

0

1

t

(y −R(Q1))/(R
? −R(Q1))

R(Q) : full-gradient MXL

R(Q̂) : gradient-free MXL

Fig. 1. Convergence of the gradient-free algorithm (N = 16, K = 20, �[Mk] = 3): Algorithm 1 is
run with policies (γt, δt) = (0.01 t−3/4, 0.1 t−1/4), while MXL with full gradient feedback run with
decreasing step size policy γt = 0.01 t−1/2.

parameters are chosen with care [16, 18]. Indeed, if Algorithm 1 is implemented with
non-increasing step-size and query-radius policies satisfying the conditions

(a)
∞∑

t=1

γt = ∞, (b)
∞∑

t=1

γ2
t

δ2
t
< ∞, (c) δt ↓ 0, (d) δt < min

k

1
√

Mk(Mk − 1)
(∀t),

(7)
then the sequences of estimates {Qt} and of test configurations {Q̂t} converge almost
surely towards the optimum Q?.

Numerical simulations. Figure 1 reports experimental results for a network with 16
antennas at the receiver and 20 homogeneous users equipped with, on average, 3 an-
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tennas. A comparison is made between the transmission rates iteratively realized by
Algorithm 1 and those of the reference MXL algorithm with perfect gradient feedback.
The gradient-free algorithm is run with decreasing step-size and query-radius sequences
chosen in accordance with (7).

It can be seen on Figure 1 that the gradient-based algorithm finds optimal config-
uration within a handful of iterations. If the gradient-free algorithm also progresses
towards the optimum, its convergence is less straightforward and much slower than
with full gradient feedback. This tendency to slowness, which can be explained by the
bias–variance tradeoff induced by the gradient estimator (SPSA), is only exacerbated
in networks of larger sizes, where high problem dimensionality creates a bottleneck
implying prohibitively slow convergence. In [16] it is shown that the convergence rate
of Algorithm 1 is at best O(1/ 4√T ) after T iterations, in contast to the considerably
faster O(1/

√
T ) rates that can be expected from the first-order methods.

4 Discussion and perspectives

Besides the very light nature of the feedback information it requires (a single query of
the objective function per iteration), the distributed, zeroth-order (derivative-free) opti-
mization methodology presented in this paper owes to the MXL algorithm the desirable
feature that it is both easy to implement, and flexible in the sense that it can be run
asynchronously for the users (cf. [16]). As seen in the previous section, its major draw-
back is slow convergence compared to gradient-based methods. The slowness issue is
addressed in detail in our more recent work [16], where the formulation of the gradient
estimator (SPSA) is revisited thoroughly in order to meet the O(1/

√
T ) convergence

rate of the fisrt-order methods. The interested reader is referred to the developments
and discussions of [16] for an extensive analysis of the performances, possibilities,
and guarantees of single-query zeroth-order optimization methods in the vein of Algo-
rithm 1.
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