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Abstract—We analyze the problem of finding the optimal signal
covariance matrix for multiple-input multiple-output (MIMO)
multiple access channels by using an approach based on ”ex-
ponential learning”, a novel optimization method which applies
more generally to (quasi-)convex problems defined over sets of
positive-definite matrices (with or without trace constraints). If
the channels are static, the system users converge to a power
allocation profile which attains the sum capacity of the channel
exponentially fast (in practice, within a few iterations); otherwise,
if the channels fluctuate stochastically over time (following e.g.
a stationary ergodic process), users converge to a power profile
which attains their ergodic sum capacity instead.

An important feature of the algorithm is that its speed can be
controlled by tuning the users’ learning rate; correspondingly, the
algorithm converges within a few iterations even when the number
of users and/or antennas per user in the system is large.

Index Terms—Distributed optimization; exponential learning;
multiple access channel; MIMO; sum rate.

I. Introduction

FOLLOWING the seminal prediction that the use of
multiple-input multiple-output (MIMO) technologies in

signal transmission and reception can lead to substantial perfor-
mance gains [1], [2], MIMO has become an integral component
of numerous state-of-the-art wireless protocols (4G, HSPA+,
802.11n WiFi and WiMAX to name but a few). As a result, con-
siderable impetus has been afforded to developing distributed
algorithms that would allow the users of a MIMO system to
attain their performance limits at a network level.

On that account, since the actual theoretical limits of MIMO
models still elude us even in basic network models (such as the
interference channel), it is useful to start instead with the mutual
information for Gaussian input and noise, and to optimize the
input covariance matrix of each transmitter in the presence of
interference from other network users. In this way, one obtains
a nonlinear (and possibly non-convex) optimization problem
defined over a set of positive-definite matrices, representing the
users’ power allocation policies (i.e. the spread of their symbol
distributions over their antennas). However, given the non-
explicit nature of the problem’s constraints, standard gradient
descent or interior point methods do not apply, so these prob-
lems are usually solved by means of the classical waterfilling
algorithm [3], properly adapted to multi-user environments [4].
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The most recent and general incarnations of waterfilling
[5] are fully distributed and thus apply to large, unregulated
networks where users cannot be assumed to adhere to central
control. Unfortunately however, the convergence of these al-
gorithms typically depends on the channel satisfying certain
“mild-interference” conditions [6] which, quite often, fail to
hold: in fact, in the simple case of a single receiver and several
transmitters who communicate over non-overlapping channels
(the parallel multiple access channel (PMAC) model), it was
shown that these conditions always fail [7]. Furthermore, if
the channels are not static but evolve over time following a
stationary ergodic process (e.g. due to fading), then the problem
becomes significantly more difficult (see e.g. [8] for a survey or
[9] for some recent results in the asymptotic regime).

Instead of taking a waterfilling approach, we present here an
optimization method for problems defined over sets of positive-
definite matrices which works by tracking the gradient of the
objective function in an unconstrained space, and then maps the
resulting orbits back to the original (constrained) state space via
exponentiating (an approach similar to the one used in [10] for
learning a positive semidifinite matrix online). In this manner,
if the function to be minimized is convex, we show that this
method of “exponential learning” converges exponentially fast
to a global minimum (Theorem 1).

Obviously, this method applies to a wide array of MIMO
problems, but for concreteness, we will focus on the MIMO
multiple access channel (MAC) with transmit power con-
straints. In this setting, we show that exponential learning
converges to the system’s maximum achievable sum rate, and
this convergence is independent of whether the channels are
static or ergodic (Theorem 2). More importantly, the speed of
this convergence can be controlled by a learning rate parameter,
allowing the system to equilibrate within a few iterations even
for very large numbers of users and/or antennas per user.

II. SystemModel

We begin by considering a vector Gaussian multiple access
channel with a finite set K = {1, . . . ,K} of K wireless users,
each of whom transmits simultaneously over mk antennas to an
n-antenna receiver who decodes individual messages by treat-
ing the signals of other users as interference. More specifically,
this corresponds to the familiar baseband signal model:

y =
∑

k Hkxk + z, (1)

where y ∈ Cn is the aggregate message reaching the receiver,
xk ∈ Cmk is the individual message transmitted by user k ∈ K,
Hk ∈ Cn×mk is the corresponding n × mk channel matrix and



z ∈ Cn is the channel noise (assumed zero-mean Gaussian, and
without loss of generality, with identity covariance matrix).

In this context, the total transmit power of user k is simply
E

[
‖xk‖

2] = tr(Pk), where the expectation is taken over the
codebook of user k (assumed Gaussian), and Pk denotes the
covariance matrix Pk = cov(xk) = E

[
xkx†k

]
. As is then cus-

tomary, the performance metric that we will be using is the
system’s achievable sum rate, i.e. the maximum information
transmission rate for a given set of covariance matrices.

This objective naturally depends on the variability of the
channel matrices H over time, so we will consider two different
(and diametrically opposed) scenarios:

a) Static Channels: the channel matrices Hk, k ∈ K are
drawn randomly at the outset of the transmission but remain
fixed for its duration. In this case, the system’s sum rate is [2]:

Φ(P) = log det
(
I +

∑
k HkPkH†k

)
, (2)

where P denotes the collective profile P = (P1, . . . ,PK).
b) Fast-fading Channels: in the presence of fast fading,

the channel matrices Hk are stationary ergodic processes with
a characteristic time-scale much faster than the typical trans-
mission block (for simplicity, we will also assume that they are
temporally uncorrelated).1 Under these assumptions, we have
the following expression for the users’ achievable sum rate [12]:

Φ(P) = E
[
Φ(P)

]
, (3)

where the expectation is now taken over the variables Hk.
In both the static and the ergodic case, higher transmit powers

lead to higher sum rates (individually at least), so users can
be assumed to saturate their power constraints.In this way, we
obtain the optimization problem:

minimize F(P),
subject to Pk < 0, tr(Pk) = Pk (k = 1, . . . ,K),

(MP)

where F = −Φ or F = −Φ depending on the channel model,
and the power levels Pk are non-negative real numbers.

As is well-known, Φ and Φ are both concave, so F is
convex; furthermore, if we denote each user’s state space by
Xk = {Pk ∈ Cmk×mk : Pk < 0, tr(Pk) = Pk}, then it is easy to see
that the problem’s state space X ≡

∏
k Xk of (MP) is also convex

(viewed as a subset of the complex space CQ, Q =
∑

k m2
k),

making (MP) itself convex. Our goal will thus be to present a
general solution method for problems of the type (MP), which
when restricted to the objectives (2)-(3), will allow the users of
the channel to attain their sum capacity.2

It is important to remark here that any solution of (MP) with
respect to the sum rate objectives (2)-(3) is also individually
optimal in the sense that users cannot improve their individual
rates by unilaterally changing their power matrices Pk. Indeed,
under the single user decoding (SUD) scheme in which the

1In fact, the time-uncorrelated case can be seen as a worst-case scenario:
temporally correlated models (such as Jakes fading) typically yield much faster
convergence times because the channels evolve at a smoother pace [11].

2We should stress here that the trace constraint will not be important in our
analysis; in fact, it can be easily replaced by any number of (convex) functional
constraints of the form G(P) = 0 without affecting the validity of our results.

receiver treats the signal of all other users as interference, the
achievable rate of user k ∈ K for static channels is just:

uk(P) = log det
(
I + HkPkH†kW−1

k
)
, (4)

where Wk = I +
∑
`,k H`P`H†` is the interference-plus-noise

matrix for user k; on the other hand, for ergodically fluctuating
channels, we have the expression:

uk(P) = E
[
uk(P)

]
. (5)

The sum rate functions (2)–(3) obviously do not correspond
to the sums of (4)–(5) over all transmitters k ∈ K, but, as was
shown in [13], any solution Q of (MP) with the static objective
(2) (resp. the ergodic objective (3)) will satisfy:

uk(Q) ≥ uk(Q′k; Q−k) (resp. uk(Q) ≥ uk(Q′k; Q−k)), (6)

for all k ∈ K, i.e. it will be at Nash equilibrium.3 In other words,
users are aligned with their global objective in the MIMO
multiple access channel, so solving (MP) is both globally and
individually optimal: even selfish users have nothing to gain by
unilaterally deviating from the global optimum of (MP).

III. Exponential Learning

The main challenge in solving (MP) is that the positivity
constraints Pk < 0 cannot be expressed in functional form, so
(Lagrangian) descent or interior point methods do not readily
apply; instead, the static MIMO problem (2) is usually solved
by the well-known method of waterfilling [4], [5], [9]. Our aim
here will be to overcome this difficulty and present an interior
point method which does apply to the problem, in both the static
and ergodic incarnation of Eqs. (2) and (3) respectively.

A. Exponential learning in parallel multiple access channels

One special case of (MP) which can be solved by a variant
gradient descent method is the so-called “parallel MAC” where
the channels do not overlap and the matrices Pk are diagonal:
Pk = diag(pk,1, . . . , pk,mk ), with pkα ≥ 0 and

∑mk
β=1 pkβ = Pk . In

this setting, the system’s configuration space X is a product of
simplices, and if we let vkα = − ∂F

∂pkα
denote (minus) the gradient

of F, then all interior orbits of the dynamics

ṗkα = pkα

(
vkα − P−1

k
∑mk
β=1 pkβvkβ

)
, α = 1, . . . ,mk, (7)

converge to the minimum of F exponentially fast [11].4

This dynamical system is known in game theory and biology
as the replicator equation, and it is one of the most well-
studied models for the evolution of biological populations under
natural selection [15], [16]. Regrettably however, this approach
cannot be extended to the MIMO case because there is no
obvious way to treat (7) as a matrix equation. On the other
hand, the replicator dynamics (7) can also be derived from the
“exponential learning” scheme [17]:

ẏkα = vkα (8a)

pkα = Pk
exp(ykα)∑mk
β=1 exp(ykβ)

, (8b)

3Recall here that the shorthand (Q′k; Q−k) stands for (Q1, . . . ,Q′k , . . . ,QK ).
4See also [14] for a Lagrangian approach in the presence of estimation errors.



by substituting (8a) in the time derivative of (8b).
In this learning context (related itself to the inverse logit

choice model of [18]), the auxiliary “score” variable ykα ∈ R
simply measures how well the eigenvalue pkα has “learned”
the gradient vector v which leads to higher sum rates in the
unconstrained y-space. Hence, the only difference between the
replicator dynamics and exponential learning is one of view-
point: (7) is written directly on the state space of the system
(so extra care must be taken in order to satisfy the problem’s
constraints),5 while the otherwise equivalent scheme of (8a) is
an unconstrained descent which relies on the Gibbs distribution
(8b) to map solutions back to the system’s original state space.

B. Exponential learning in the full matrix problem

Motivated by the above, we introduce the following expo-
nential learning method for the matrix program (MP):

Ẏk = Vk, (9a)

Pk = Pk
exp(Yk)

tr(exp(Yk))
, (9b)

where Vk ≡ −∂F
/
∂P∗k is the conjugate derivative of F w.r.t. Pk.6

Needless to say, in a MIMO setting, this scheme hinges on
users being able to calculate the gradient matrices Vk. To that
end, a differentiation of the static sum rate Φ of (2) gives:

Vk = −
∂F
∂P∗k

=
∂Φ

∂P∗k
= H†kW−1Hk, (10)

where W = I +
∑
` H`P`H†` is the aggregate signal-plus-noise

covariance matrix, assumed to be measured at the receiver end
and then made known to the transmitters (e.g. by broadcast-
ing) under the same hypotheses used in standard water-filling
schemes [4], [5]. We thus obtain:

Algorithm 1 Exponential Learning
Require: For all k ∈ K, pick Hermitian initial score matrices

Yk ∈ Cmk×mk and positive learning rates λk > 0.
t ← 0;
repeat

t ← t + 1;
for all k ∈ K do

Yk ← Yk + δ(t)Vk;
Pk ← exp(λkYk)

/
tr(exp(λkYk));

end for
until required accuracy is reached or transmission ends.

Remark 1. We first note that exponential learning as defined
above has the following desirable properties:
(P1) It is distributed: users may update the algorithm based on

local measurements and information.
(P2) It is reinforcing: users move along a direction which

increases their individual rates (see also Proposition 3).
(P3) It is stateless: users are oblivious to the state of the

algorithm, even to the existence of other users.

5Note that constraint satisfaction is built into (7) by virtue of the fact that∑mk
β=1 dpkβ

/
dt = 0 and that dpkβ

/
dt = 0 when pkβ = 0.

6Namely, if Pαβ = Xαβ + iYαβ, then the elements of ∂F
/
∂P∗ are ∂F

∂Xαβ
+ i ∂F

∂Yαβ
.

Remark 2. We also see that exponential learning does not
differentiate between the static and fast-fading regime: the
matrices Hk (and obviously W) are simply the ones measured
at the t-th iteration of the algorithm. In the next section, we
will show that if the channel is static, exponential learning
converges to the maximum of the static sum rate Φ; otherwise,
if the channel matrices evolve ergodically over time, the users
converge to the maximum of the ergodic sum rate Φ.
Remark 3. The discrete-time implementation of the exponential
learning dynamics has two additional (and important) compo-
nents that are not present in (9): i) the users “learning rates”
λk > 0; and ii) the step sequence δ(t). The time-step se-
quence δ(t) is a standard feature of both deterministic [19] and
stochastic [20] optimization algorithms and its role is to ensure
convergence when passing from the continuous to the discrete.
On the other hand, the role of the learning rate parameter λk

is much more interesting. Indeed, λk can be interpreted as the
inverse temperature of the (matrix-valued) Gibbs distribution
(9b), and as in simulated annealing, it controls the algorithm’s
speed: for small λ, learning is slower and smoother, while for
larger λ, the algorithm induces rapid changes and then freezes
(see also Fig. 1).

IV. Analysis and Convergence Properties
In this section, we will focus on the behavior and con-

vergence properties of the exponential learning dynamics (9)
and the corresponding discrete-time algorithm. We thus begin
by establishing that the dynamics (9) are consistent, i.e. they
respect the structure of the matrix state space X:

Proposition 1. For any Hermitian initialization Yk(0), k ∈ K,
the corresponding solution P(t) of the exponential learning
dynamics (9) remains in X for all t; in particular, Pk(t) < 0
and tr(Pk(t)) = Pk for all k ∈ K and for all t ≥ 0.

Sketch of proof: Note that Vk is Hermitian whenever
the Yk are, so if we start with Hermitian initial conditions in
(9a), Yk(t) will remain Hermitian for all time. As a result,
Pk(t) ∝ exp(Yk(t)) will be positive-definite as well, and the trace
condition tr(Pk(t)) = Pk follows immediately from (9b).

Proposition 1 allows us to overcome the important hurdle of
consistence in a surprisingly painless way: instead of specifying
the dynamics directly on X (a very hard task given the implicit
nature of the positivity constraints Pk < 0), the scheme (9)
evolves in an unconstrained space and trajectories are then
mapped to the original state space via the Gibbs map (9b).

That said, it is only natural to ask what are the dynamics that
govern the evolution of P(t) in X; to that end, we have:

Proposition 2. Let P(t) be an interior solution orbit of the dy-
namics (9). If {pkα(t),ukα(t)}, α = 1, . . . ,mk, is an eigensystem
of Pk, k ∈ K, and we set Vk

αβ ≡ u†kαVkukβ, then:

ṗkα = pkα

(
Vk
αα − P−1

k
∑mk
β=1 pkβVk

ββ

)
, (11a)

u̇kα =
∑

β,α
Vk
βα

(
log pkα − log pkβ

)−1
ukβ. (11b)

From a mathematical viewpoint, Proposition 2 (proven by
taking the Fréchet derivative of (9b) in an eigen-decomposition
of P) is a reformulation of the exponential learning dynamics
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Fig. 1. Convergence of exponential learning (with a constant step size) in static (left) and ergodic channels (right). We plotted the efficiency ratio eff(t) =
(F(t) − Fmin)

/
(Fmax − Fmin) for a MIMO MAC system with n = 5 receiver antennas and K = 5, 10, 25, 50 and 100 users (for simplicity, we only considered

diagonal allocations in the ergodic case). In all cases, the system equilibrates rapidly and the convergence rate scales well with the number of users.

(9), so its importance lies in that it illuminates the evolution of
the actual state variables Pk.7 On the other hand, from a compu-
tational standpoint, (11) represents a significant simplification
of the exponential learning algorithm because users can employ
it to update their power allocation policies directly, and without
first having to diagonalize/exponentiate the score matrices Yk.

This computational benefit is obviously key when one needs
to operate with sizable antenna arrays; putting such compu-
tational issues aside however, the key property of exponential
learning is that its trajectories always descend the objective F:

Proposition 3. If P(t) is a (non-stationary) solution of the
exponential learning dynamics (9), then F(P(t)) is decreasing.

Sketch of proof: By the chain rule for matrices, we obtain
dF

/
dt =

∑
k tr

(
∂F

/
∂P∗k · Ṗ†k

)
=

∑
k tr

(
Vk Ṗk). It can then be

shown that this quantity is negative unless Ṗk = 0 (in which
case dF/dt vanishes), so our assertion follows.

Proposition 3 shows that the system’s sum rate always in-
creases along the trajectories of exponential learning; hence,
with F convex, we immediately see that exponential learning
converges to the minimum set of F (i.e. attains its sum capacity).
Nonetheless, F need not be strictly convex (and in the static
case it isn’t [7]), so this convergence result does not imply that
exponentially learning actually converges to a point.

From a systems point of view, this is an important question
because it is crucial to predict the users’ end power allocation
policies (and not only the system’s sum capacity). To that end,
our next result is that exponential learning does converge to a
point, and, in fact, it converges exponentially fast:

Theorem 1. For any initial Hermitian initialization Yk(0),
k ∈ K, the exponential learning dynamics (9) converge to a
(possibly initialization-dependent) point Q∗ which minimizes F.
Moreover, there exists a positive constant c > 0 such that:

‖P(t) −Q∗‖ ≤ ‖P(0) −Q∗‖ e−ct. (12)

Sketch of proof: The basic ingredient for our proof is
the quantum-theoretic generalization of the Kullback-Leibler

7Importantly, if Pk is diagonal, then the dynamics (11) reduce to the ordinary
replicator dynamics – simply compare (11a) to (7). Note also that if pkα → 0,
then u̇kα → 0, so ukα decouples from the other eigenvectors.

divergence,8 which, for P,Q ∈ X, is defined as:

DKL (Q ‖P) ≡
∑

k
tr

[
Qk(log Qk − log Pk)

]
. (13)

By Klein’s inequality [21], we have that DKL(Q ‖P) is strictly
convex in P and positive, except at Q where it vanishes; more
importantly, a differentiation of (13) yields the key expression:

d
dt

DKL (Q ‖P(t)) = −
∑

k
tr

[
(Qk − Pk) Vk

]
, (14)

which shows that d
dt DKL(Q ‖P(t)) ≤ 0 if Q is a minimum point

of F (recall that F is convex so dF(Q) · Z ≥ 0 for all Z tangent
to X at a minimum point Q).9 Thus, given that P(t) converges
to the minimum set X∗ of F by Proposition 3, it follows (by
compactness of X) that the orbit P(t) will have an ω-limit Q∗ ∈
X∗, i.e. P(tn) → Q∗ for some increasing sequence of times {tn},
tn → ∞. Consequently, we will also have DKL(Q∗ ‖P(tn))→ 0,
and since the function DKL(Q∗ ‖P(t)) is itself decreasing, we
obtain P(t) → Q∗, which proves that P(t) converges to a point.
The convergence rate (12) can then be proven as in [11] (which
essentially covers the diagonal case), the details being omitted
for lack of space.

The above theorem ensures that the continuous exponential
learning dynamics (9) always converge to a (global) minimum
point of the program’s objective (MP). Thus, specializing to the
discretized version of the exponential learning algorithm and
the MIMO sum rates (2) and (3), we obtain:

Theorem 2. Let Yk(0), k ∈ K, be a Hermitian initialization
of the exponential learning algorithm with time-steps δ(t) such
that

∑
t δ(t) = ∞ and

∑
t δ

2(t) < ∞. Then:
1) In static channels, users converge to a power allocation

profile Q which maximizes the sum rate (2).
2) In ergodic (fast-fading) channels, users converge (a.s.) to

the profile Q which maximizes their ergodic sum rate (3).

Sketch of proof: The static case is an Euler approximation
scheme with vanishing step size and is thus trivial to dispatch.
As for the fast fading regime, recall that exponential learning
can be viewed as a dynamical system on X, evolving according

8Note that in the diagonal PMAC case, X is just a product of simplices so
power allocation matrices can be interpreted as probability distributions.

9Interestingly, this is an alternative proof that P(t) converges to arg minX F.



to the dynamics (11) of Proposition 2. In particular, if the chan-
nel matrices Hk = Hk(t) are time-dependent (but uncorrelated
over time), the eigenvalue dynamics (11a) can be written in
discrete time as:

pkα(t + 1) = pkα(t) + δ(t)pkα(t)
[
Vk
αα(t) − P−1

k
∑mk
β=1 pkβ(t)Vk

ββ(t)
]
,

where the Vk
αα depend on t through both P(t) and H(t). Thus, if

we set V
k
αβ = E

[
Vk
αβ

]
and Rk

αβ = Vk
αβ − V

k
αβ, we will have:

pkα(t + 1) = pkα(t) + δ(t)pkα(t)
[
V

k
αα(t) − P−1

k
∑mk
β=1 pkβ(t)V

k
ββ(t)

]
+ δ(t)pkα(t)

[
Rk
αα(t) − P−1

k
∑mk
β=1 pkβ(t)Rk

ββ(t)
]
, (15)

and similarly for the eigenvector dynamics (11b). Then, by
interchanging expectation with differentiation, the resulting ma-
trix Vk = {Vk

αβ} of the previous equation corresponds precisely
to (minus) the gradient ∂Φ

/
∂P∗k of the ergodic sum rate Φ.

Hence, with Hk stationary and ergodic, the general theory of
stochastic approximation (see e.g. Thm. 2 in Chap. 2 of [20])
shows that (15) will track the mean dynamics:

ṗkα = pkα

(
Vαα − P−1

k
∑mk
β=1 pkβV

k
ββ

)
, (16)

and similarly for the eigenvectors of P. Consequently, since (16)
converges to the (globally) minimum point of Φ by Theorem 1,
the exponential algorithm will also converge there (a.s.).
Remark. A diminishing step size ensures the convergence of
the algorithm, but at the expense of convergence speed. With
a bit more work however (which we reserve for the future due
to space limitations), it can be shown that exponential learning
with a constant step still converges, always in static channels
and with high probability in ergodic ones (see also Fig. 1).

V. Conclusions and FutureWork
In this paper, we analyzed the power allocation problem

in MIMO multiple access channels by means of an approach
based on “exponential learning”, a distributed optimization
method which applies to general nonlinear problems defined
over sets of positive-definite matrices (where traditional op-
timization methods do not apply because of the form of the
problem’s constraints). Focusing on the case at hand, we
showed that if the system’s channels are static, then exponential
learning converges to a power allocation profile which attains
the sum capacity of the channel exponentially fast; otherwise,
if the channels fluctuate stochastically over time following a
stationary ergodic process, users converge to a power profile
which maximizes their ergodic sum rate instead. Importantly,
the algorithm’s speed can be controlled by tuning the users’
learning rate; as a result, the algorithm converges within a few
iterations, even when the number of users and/or antennas per
user in the system is very large.

Since the method of exponential learning is a rather general
one, future applications include the interference channel frame-
work of [5] where the method can be used to attain the Nash
equilibria of the channel (in both static and ergodic channels).
Moreover, it can also be shown that via the Gibbs transform
(9b), exponential learning induces a Riemannian structure on
the space of positive-definite matrices, and this structure can
be further exploited to yield other learning algorithms, possibly
with even faster convergence rates.
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