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Abstract—Consider a dense wireless network of nodes, which
can be used to transfer data between arbitrary sources and
destinations. In this paper we develop a methodology based on
variational calculus to optimize a number of path metrics, such
as the success probability or the total power consumed of a packet
delivery in the presence of external interference. We then extend
the approach to a two-packet transmission, in which the relaying
of each packet causes interference to the other. In both cases, we
show that the optimal path may differ significantly from a straight
line. We then discuss the consequences of these deviations in the
context of network design.

I. Introduction

Future wireless networks are expected to become increas-
ingly dense, as a way to satisfy growing traffic demands, and
combat intereference by transmitting at lower local power. As
a result, nodes in the wireless network are expected to act not
only as sources and destinations but also as relays. Traffic will
then need to be routed in a way so as to optimize certain metrics,
in the presence of constraints and/or external interference from
exogenous factors, such as macro-base stations. Such objectives
include the reception probability over a number of many hops,
the total routing time, the number of hops, or the trasmitted
power.

One way to analyze this optimization problem is to take the
continuous limit, i.e. to treat the routing process as a continuous
information flow, treating each hop as an infinitesimal step.
Underlying this approximation is the observation that one is
interested in the behavior of quantities over lengthscales much
larger than a characteristic length. Since the pathloss is typically
assumed as a power law and hence scale-free, the length is
typically introduced either through the average node density
and its associated internode distance, or through a transmitted
power scale, necessary to obtain a target SNR over any given
hop.

This approach has been successfully applied in the past,
e.g. providing macroscopic predictions of the network capacity
limits in a wireless network [1]. In addition, the author of [2]
has applied it to find the optimal route for a packet in the
presence of a variable node density, by making the analogy
to the brachistochrone problem. Building on this result, [3]
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found the conditions for the minimal node number necessary to
transmit information from one region to another by taking into
account the interference effects of the node density on the routes
themselves. They obtain the optimal node solution by showing
that the optimal flow is irrotational. More recently, [4] used
the continuum approximation to find an optimality criterion
for transmission through a static interference field, assuming
a fixed hopping distance.

In this paper we extend the ideas of [4], focusing on a specific
optimization criterion for the path, namely the maximization
of the total reception probability for fixed average power and
maximum delay time. We assume a static interference field,
which may be present and makes the straight (closest) route not
necessarily optimal. In contrast to previous approaches, which
assumed a constant relay distance, we allow for a variable
distance, which in fact may be spatially varying and hence may
be optimized. By employing the continuum approximation,
we apply variational calculus to obtain a differential equation,
characterizing the optimal routing path. We map the logarithm
of the success probability to a quantity that has been called
action in classical mechanics [5]. We then optimize subject
to a number of constraints, such as the average power or the
packet delivery deadline. We also generalize the methodology
to the case of two packets being relayed simultaneously in the
network, while interfering each other.

In the next section we properly define the system model.
In Section III we analyze the behavior of single packet trans-
mission in the presence of interference. We derive the Euler-
Lagrange equations for this case and provide details for their
solution. In Section IV we generalize the approach to two
packets interfering with each other, while in Section V we
discuss a number of representative examples.

II. SystemModel

Consider a wireless network with relays distributed uni-
formly throughout the plane with density λ. Suppose that a
packet is transmitted at position ro with destination a given node
located at position rd. This packet can arrive at its destination
through a number of relays, that receive and re-transmit it along
a particular path. Hence an M-relay path is the set of positions
P = {r0, r1, · · · , rM}, where r0 = ro and rM = rd. The
distance of the kth relay retransmission (“hop”) is |δrk |, where
δrk = rk − rk−1.

The received signal at the kth relay can be expressed as

rk = hktk + zk (1)



where hk is the channel gain coefficient, tk is the transmitted
signal with variance p(rk), and zk is the total interference and
noise at the receiver. We further assume that the variance of hk

is
�[|hk |

2] = xkg(δrk), (2)

where xk is an independent exponentially distributed random
variable representing the fast-fading of the link, and g(r) is the
pathloss function. For the latter, we assume the general form
g(r) = g0|r|−α, where g0 is a constant and α > 2 is the pathloss
exponent. Similarly, the variance of zk is assumed to be of the
form

�[|zk |
2] = 1 + ykIk(rk), (3)

where again yk is exponentially distributed and Ik(r) denotes
the interference function at hop k. The first term corresponds
to thermal noise variance, which has been set to unity for sim-
plicity, while the second term corresponds to the interference
evaluated at the receiver node of the kth hop, which may be
position-dependent, due to the existence of a macro-base station
transmitting in the area, or due to the interference of other
packets being relayed at the same time in the network.

The success probability qk for the kth relay hop can be
expressed as

− log(qk) =
γ|δrk |

α

p(rk)
+ log

(
1 +

γI(rk)|δrk |
α

p(rk)

)
(4)

where γ = (er −1)/g0 and the desired rate of the transmission is
r. Hence, the success probability ΠP for a given path P is the
product of the success probabilities over each relay.

From an optimization point of view, the most challenging
case is when there are many hops per path. Of course, in this
case, for the total success probability to be sufficiently high,
the success probability for each hop needs to be close to unity.
Hence, both terms proportional to γ in the above equation
need to be O(1/M). This observation leads to the following
approximation

− log(qk) ≈
γ(1 + I(rk))|δrk |

α

p(rk)
(5)

In this case, the success probability for the total path can be
expressed as log ΠP = −S1, where

S1 = γ

M∑
k=1

I(rk)|δrk |
α

p(rk)
(6)

where for simplicity we have redefined the interference func-
tion I to include the thermal noise term, i.e. I(r)← I(r) + 1.

In the same limit, it should be pointed out that S1 is ap-
proximately the average excess delay of a packet being relayed
through a given path, if retransmissions are allowed whenever
the packet is not transmitted successfully over a given relay.
Indeed, for the kth relay, the average number of retransmissions
is given by q−1

k − 1. Hence, the total number of retransmissions
over a given path is

δNP =

M∑
k=1

(
q−1

k − 1
)
≈ S1 (7)

We now proceed to take the continuum limit of (6). For this
limit to be meaningful, we need the noise field to vary slowly
at the scale of the typical relay distance δr, which is of the
order of the internode distance, namely λ−1/2. In addition, and
as mentioned above, for the success probability for each path
to be appreciable, we need the right-hand-side of (6) to be of
order O(1), even for large number of hops M. With these con-
siderations in mind, we rescale γ to γ0 = γτα−1, where τ is the
time needed for any relay process and is assumed independent
of the relay distance, depending only on transceiver physical
layer specifics. As a result, (6) becomes

S1 = γ0

∫ T

0
dt

I(r(t))|ṙ(t)|α

p(r)
(8)

where ṙ(1) = δrk/τ is the velocity at position r, while T =

Mτ is the total time necessary for the relay. S1 is known as the
action in classical mechanics [5].

The objective of this paper is to minimize the above quan-
tity over all paths connecting the origin of the packet to its
destination, thus maximizing the success probability. It should
be pointed out that this maximization is optimal in the sense
that the interference field I(r) needs to be known over the
whole region of interest. In the Section III, we derive a second
differential equation that characterizes this optimal path subject
to a number of different constraints on the power. In Section IV
we explore the case where the paths of two packets are simul-
taneously optimized in the presence of mutual interference.

III. Analysis for Single Packet Routing

In this section we analyze the optimal path minimizing S1 in
the single origin-destination case.

A. Maximum Success Probability for Fixed Power and Time

The simplest case is to assume that the power over each
transmission is fixed at p(r) = p0. In this case we simply have

S1 =
γ0

p0

∫ T

0
dtI(r)|ṙ|α (9)

To proceed, it is convenient to introduce the so-called La-
grangian functional

L1(r, ṙ) = I(r)|ṙ|α (10)

We are now in a position to state the Euler-Lagrange equations
that are satisfied by the path that minimizes S1, subject to
required initial and final conditions.

Theorem 1. Let r(0) = ro and r(T ) = rd. Then, the path that
minimizes S1 satisfies the second-order differential equations:

d
dt

(
αI(r)|ṙ|α−2ṙ

)
= |ṙ|α∇I(r) (11)

Proof. See Appendix A. �



1) Optimal path and success probability: The solution of
the above differential equations is greatly facilitated by the
existence of constants of motion. In particular, the fact that
L1 does not depend explicitly on t implies that the so-called
Hamiltonian

H1 = ṙ ·
∂L1

∂ṙ
− L1 =

(
α

2
− 1

)
L1 (12)

remains constant along the optimal path. Therefore its value
can be obtained directly from the initial location of the packet
and its initial velocity, implying in turn that S1 = L(ro, ṙo)T .
However, this is not enough, since we need to express this in
terms of packet’s initial and final position; in particular we still
need to integrate the above differential equations.

An additional constant of motion exists, if I(r) only depends
on the modulus of the location r, i.e. if I(r) ≡ I(|r|). To find this
invariant, we first express the velocity in polar coordinates, as
ṙ = ṙ(cos θ, sin θ) + rθ̇(− sin θ, cos θ) so |ṙ|2 = (ṙ2 + r2θ̇2). As a
result, optimal routing paths conserve angular momentum

pθ =
∂L1

∂θ̇
= αI(r)r2|ṙ|α−2θ̇ (13)

Taking into account the above invariants, we obtain the fol-
lowing first order differential equation, which can be integrated
directly to obtain the evolution of the radius of the optimal path
r(t):

ṙ = ±

(
L1

I(r)

) 1
α

√√√
1 −

p2
θL

2
α−2
1

α2r2I(r)
2
α

(14)

In the above equation, the quantities L1, pθ are constants, while
the ± sign indicates the original sign of the radial velocity ṙ. If
at some point the quantity under the square-root sign vanishes,
the radial velocity re-emerges with the opposite sign. The time-
dependence of the angle θ(t) can be obtained by integrating over
(13).

2) Additional constraint on packet delivery deadlines: In
the previous subsection we showed how to obtain the path that
maximizes the success probability for fixed power per hop and
a fixed number of hops. However, the total relay duration is
a variable of the problem as well, which, depending on the
application may need to be constrained to be less then a given
maximum delay Tmax. Rather than adding an additional inequal-
ity constraint in the problem, we observe that by rescaling time
to t = sT with 0 < s < 1, the action S1 is rescaled as

S1(T ) = T 1−αS1(1) (15)

As a result of this rescaling, the dependence of the optimal
success probability on time can thus be obtained directly. The
above time-dependence indicates that the success probability
always decreases with increasing time. As a result, a maximum
time delay constraint will be exhausted with equality. This
indicates that we can trade probability of success with the
time duration depending on the urgency or aggression of the
information to be sent.

B. Minimum Total Power for Fixed Success Probability

A related optimization setting has to do with the case where
each relay is always able to provide enough power to ensure a
certain fixed success probability per link given by q = e−c0τ. In
this situation the total path success probability along the path is
fixed to Π = ec0T irrespective of the path choice (the path can
be further optimized to minimize the total power consumed). It
is then easy to see that the power per hop is given by

p(r) =
γ0I(r)|ṙ|α

c0
(16)

Hence, minimizing the total power is exactly analogous to
the analysis of the previous section by considering instead the
action

S1 =
γ0

c0

∫ T

0
dtI(r)|ṙ|α (17)

Therefore the optimal path for fixed instantaneous power and
variable success probability is identical to the case of fixed
success probability and minimum power. It is worth pointing
out that the same functional also appears in the case where the
time is to be minimized for a fixed success probability.

C. Minimum Success Probability for Maximum Average Power

If the inversion of the channel is not possible, one may
consider to fix an average power budget of the form∫ T

0
p(r(t))dt ≤ p0T (18)

Since S1 is a decreasing function of all powers, its minimum
will exhaust all available power, therefore making the above
expression an equality. To enforce this constraint, we modify
the objective function by adding a Lagrange multiplier, as
follows:

S1p = S1 + µ

∫ T

0
dt (p(r(t)) − p0) (19)

We may now directly minimize the above expression over
{p(r)}, to obtain the expression

p(r) =

√
I(r(t))|ṙ(t)|

α
2

µ
(20)

where µ can be evaluated using the total power constraint in
(18). As a result we have

S1p =
γ0

p0T

(∫ T

0
dt

√
I(r(t))|ṙ(t)|

α
2

)2

(21)

As we can see, the action functional in the above equation is, up
to a square root of exactly the same form as S1, so least action
paths are of the same in both cases.

IV. Analysis for Two Packet Routing

Let us now generalize the model of the previous section to
allow for two packets to be simultaneously transmitting origin-
destination pairs, in such a way that the interference on each
relay is due to the signal transmitted at the other. Note that
the analysis includes the case where two packets are routed
through different paths with the same origin and destination



pair. For simplicity, we assume constant power in each relay
transmission. The aim of the analysis will be to find the joint
paths of the packets that maximize the product of success
probabilities.

In this case the Lagrangian function can be expressed as

L2 =
1
p0

[
γ2I(r12 + δr1)|ṙ2|

α + γ1I(r12 + δr2)|ṙ1|
α] (22)

where r12 = r1 − r2. The first term is due to the relaying of
packet 2 and vice-versa. The extra factor of δr1 in the argument
of the first term is due to the fact that the interference at the
receiver of packet 2 is due to the transmitter of packet 1, which
is δr1 away from its corresponding receiver. Similarly, δr2 has
to appear in the second interference term. However, since δr1 =

ṙ1τ is of order O(1/M) when the number of hops grows large,
we will ignore them in the analysis below. As a result, the joint
− log Psuccess can be expressed as

S2 =
1
p0

∫ T

0
dtI(r12) (γ1|ṙ1|

α + γ2|ṙ2|
α) (23)

Note that in the above equation we have assumed reciprocity in
the interference between the two packets. The Euler-Lagrange
equations for the jointly optimal paths that minimize S2 are
summarized in the following theorem.

Theorem 2. Let r1(0) = r1,o, r1(T ) = r1,d and r2(0) = r2,o,
r2(T ) = r2,d be the two origin and destination pairs. Then the
paths ri(t), for i = 1, 2, that minimizes S2 satisfy the following
differential equations:

αγi
d
dt

(
I(r12)|ṙi|

α−2ṙi

)
= (γ1|ṙ1|

α + γ2|ṙ2|
α)∇I(r) (24)

where the index i = 1, 2 represents the corresponding packet.

Proof. The proof follows the lines of the proof of Theorem 1
and is therefore omitted. �

1) Optimal path and success probability: The above equa-
tions constitute a set of four coupled second order differential
equations. As in the case of a single origin-destination pair,
constants of motion are very useful to obtain analytic solutions
of these equations. Once again, the absence of explicit time de-
pendence of the integrand in (23) implies that the Hamiltonian
H2 below is constant

H2 = ṙ1 ·
∂L2

∂ṙ1
+ ṙ2 ·

∂L2

∂ṙ2
− L2 =

(
α

2
− 1

)
L2 (25)

In turn, this implies the invariance of the Lagrangian L2, which
will be useful in the solution for the optimal paths. In addition,
the fact that the location of the packets enters in the problem
only in terms of the difference of their position r12 = r1 − r2
provides two additional constants of motion. To find them, we
change velocity variables from ṙ1, ṙ2 to u = ṙ1 − ṙ2 and vc =

ṙ1 + ṙ2, where the latter is the velocity of the barycenter of the
two packet locations. Then the vector quantity

pc =
∂L2

∂vc
= I(r12)

(
γ1|ṙ1|

α−2ṙ1 + γ2|ṙ2|
α−2ṙ2

)
(26)

Finally, as in the case of a single origin-destination pair, if
I(r12) is only a function of the modulus of the distance between
the two packet positions, then an additional constant of motion
exists.

2) Additional constraint on packet delivery deadline: As in
the previous section, the dependence of the success probability
on time can be immediately extracted without solving the Euler-
Lagrange equations, by simply rescaling the time in L2. As a
result, we again obtain that

S2(T ) = T 1−αS2(1) (27)

V. Results and Analysis

In this section we will analyze the equations derived in the
previous sections and discuss the results.

A. Single Packet Analysis

1) Constant Interference: To provide a baseline case in the
case of the single packet routing, we start setting the interfer-
ence to a constant I(r) = 1. From (11) we see that

d2r(t)
dt2 = 0 (28)

This means that the velocity is constant, indicating a straight
line from origin to destination. This result is of course expected,
but it provides an additional validation of the method. The
corresponding value of the exponent of the success probability
is

S1 = T 1−α γ0|rd − ro|
α

p0
(29)

2) Interference due to Macro Base-Station: To analyze the
effects of the interference to the path, we choose a specific
dependence of I(r) on distance, namely I(r) = g0r−α. This is
the interference due e.g. to a static macro base station in the
vicinity of the transmitting O/D pair. In this case, the optimal
path solution of (14) can be expressed in polar coordinates as

r(t) = ro exp
[

t
T

log
(

rd

ro

)]
(30)

θ(t) =
(θd − θo)t

T
where ro, θo and rd, θd are the radial distance and angle of the
origin and destination locations of the packet with respect to the
location of the interferer. The corresponding success probability
exponent can be expressed as

S1 = T 1−α

(θd − θo)2 + log
[
rd

ro

]2
α
2

(31)

B. Two Packet Analysis

To obtain closed form results, we will make a number of
simplifying assumptions, which however do not diminish the
relevance of the results. First, we introduce a cutoff in the
interference between packets, namely

I(r) = min
(
r−α0 , r−α

)
(32)
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Fig. 1: Comparison between Linear and Elliptical paths when the both
origin and destination pairs are r0 apart, while each origin is L apart
from its destination. The red curve corresponds to the optimal path
in which the two origin and destination pairs are separated by r0.
Optimal Paths for 2 Packets traveling from the origin to 0, L. We have
also drawn the straight path for comparison. The circles on the paths
represent the location where the path switches from linear to elliptical.
Parameter values r0 = 0.25L and γ1 = γ2.
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Fig. 2: Comparison between Linear and Elliptical paths when the two
packets have the same origin and destination, which are L apart. The
pathloss here is given by max(r−α0 , r−α). The blue curve represents S2
for the elliptical path, while the green curve is S2 for the straight path.
In the inset we have included the shape of the elliptical paths. We have
also drawn the straight path for comparison. The circles on the paths
represent the location where the path switches from linear to elliptical.
Parameter values r0 = 0.25L and γ1 = γ2.

for some appropriately chosen distance r0 to control the un-
physical divergences when the packets are too close to each
other. Second we will take the symmetric transmission case,
namely assuming γ1 = γ2 = γ0 and with the positions of the
packets given by r1 = (x, y) and r2 = (−x, y). In this case we

can express the differential equations of x, y as

ẋ =
v0

x0
z(x)

√√
1 −

v2
y0z(x)2

v2
0x2

0

(33)

ẏ = vy0
z(x)2

x2
0

where r0 = 2x0, vy0, v0 are the y-component of the initial veloc-
ity and its total modulus respectively, and z(x) = max(x0, x).
The above equations can be integrated directly to give a
parabola with center (0, L/2) for x > x0 and x < L − x0 and
a linear dependence between x, y elsewhere, as can be seen in
Fig. 1. Denoting by sin 2θ = 2r0/L, we can obtain the maximum
horizontal separation between packets at the center of the path
to be

R =
r0

sin θ
(34)

In addition, we can calculate the exponent of the success
probability to be

S2 =
2γ0T 1−α

p0

(
1

cos θ
+ log

[
1 + cos θ

sin θ

])α
(35)

Interestingly, for L < 2.609r0 the straight, constant velocity
path has a lower value of S2 and hence is preferable, see Fig. 2.

VI. Conclusions and Perspectives
From the analysis in this paper we may conclude that inter-

ference plays an important role in the routing of data through an
ad-hoc network. We have seen that the deviation of paths from a
straight line may add significant benefits in success probability
or power gains for a fixed success probability. We have also
explored the possibility of variable range hopping. In fact we
have seen that the further away from the interference source,
the larger the steps the relaying process takes, suggesting the
possibility for different node density in various region of the
network. In the future we plan to include a dense set of relay
paths in the network.

Appendix A
Euler-Lagrange Equations

In this Appendix we derive the Euler-Lagrange equations that
appear in Theorem 1. As mentioned there, we let r(0) = ro and
r(T ) = rd. We now assume that r∗(t) is the path that extremizes
S1 in (9) and elsewhere. This means that small variations of the
path around the optimal one leave the value of S1 unaffected to
leading order. Hence, let

r(t) = r∗(t) + δr(t) (36)

be such a path, which however has the same initial and final
points fixed, namely δr(0) = δr(T ) = 0. The variation of S1 for
this path is

δS1 =

2∑
i=1

∫ T

0
dt

(
∂L1

∂ri
δri +

∂L1

∂ṙi
δṙi

)
(37)

=

2∑
i=1

∫ T

0
dt

(
∂L1

∂ri
δri −

d
dt

[
∂L1

∂ṙi

]
δri

)
+
∂L1

∂ṙi
δri

∣∣∣∣∣T
0



In the above equation, the index i = 1, 2 signifies the vector
component. To go from the first to the second line, we integrate
by parts. In the second line, the last term vanishes due to
the vanishing variations at the boundaries of the path. Thus
demanding that δS1 = 0 for any choice of path variation
makes the first term vanish identically, which then produces the
equations in (11).
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