
ar
X

iv
:0

90
7.

50
24

v2
  [

cs
.IT

]  
14

 O
ct

 2
01

0
1

Living at the Edge: A Large Deviations Approach
to the Outage MIMO Capacity

Pavlos Kazakopoulos, Panayotis Mertikopoulos, Aris L. Moustakas and Giuseppe Caire

Abstract—A large deviations approach is introduced, which
calculates the probability density and outage probability of
the MIMO mutual information, and is valid for large antenna
numbers N . In contrast to previous asymptotic methods that
only focused on the distribution close to itsmost probablevalue,
this methodology obtains thefull distribution, including its non-
Gaussian tails. The resulting distribution interpolates between
the Gaussian approximation for ratesR close its mean and the
asymptotic distribution for large signal to noise ratios ρ [1]. For
large enoughN , this method provides the outage probability over
the whole (R, ρ) parameter space. The presented analytic results
agree very well with numerical simulations over a wide rangeof
outage probabilities, even for smallN . In addition, the outage
probability thus obtained is more robust over a wide range ofρ
and R than either the Gaussian or the large-ρ approximations,
providing an attractive alternative in calculating the probability
density of the MIMO mutual information. Interestingly, thi s
method also yields the eigenvalue density constrained in the
subset where the mutual information is fixed toR for given
ρ. Quite remarkably, this eigenvalue density has the form of the
Mar čenko-Pastur distribution with square-root singularities.

Index Terms—Diversitymultiplexing tradeoff (DMT), Gaus-
sian approximation, information capacity, large-system limit,
multiple-input multiple-output (MIMO) channels.

I. I NTRODUCTION

Considerable interest has arisen from the initial prediction
[2], [3] that the use of multiple antennas in transmitting and
receiving signals can lead to substantial gains in information
throughput. To analyze the theoretical limits of such a MIMO
(Multiple Input Multiple Output) system, it has been conve-
nient to focus on the case of i.i.d. Gaussian noise and input.
For the MIMO channel model

y = Hx+ z (1)

with coherent detection and no channel state information at
the transmitter [2], [3], the mutual informationIN for a given
value of the channel matrixH takes the familiar form:

IN = log det
(

I+ ρH†H
)

. (2)

where “log” signifies the natural logarithm,ρ is the signal
to noise ratio andH is the M × N channel matrix whose
elements are independentCN(0, 1/N) random variables. This
corresponds to the case ofN transmitting andM receiving
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antennas, which is captured by the ratioβ = M/N . Without
loss of generality we assume thatβ ≥ 1; otherwise, if
β < 1, we may simply replaceρ with ρnew = ρβ in (2) and
interchange the roles ofM andN .

If the channel matrixH varies in time according to a
stationary ergodic process, and coding spans an arbitrarily
large number of fading states, then the “ergodic” channel
capacity is given by the mutual information expected value
E [IN ] [3]. Initially, this quantity was calculated asymptotically
for largeN , with β remaining fixed and finite. In particular,
in this case,H can be viewed as a large random matrix.
Then, by applying ideas and methods from the theory of
random matrices, it was shown in [4] that the value of the
mutual information per antennaIN (ρ,H)/N “freezes” to a
deterministic value in the largeN limit, the so-calledergodic
averagererg(ρ). Underlying this result is the fact that the
very eigenvalue distribution ofH†H freezes to the celebrated
Marčenko-Pastur distribution:

p(x) =

√

(b − x)(x − a)

2πx
(3)

wherea, b = (
√
β±1)2 are the end-points of its support. Even

though later the closed form solution ofE[IN ] for general
M , N was found [5], the asymptotic form ofrerg(ρ) was
particularly popular due to its simplicity and accuracy, even
for small number of antennas.

Another more relevant regime is when the channel matrix is
random, but varies in time much more slowly than the typical
coding delay. In this case (usually referred to as the “quasi-
static” fading channel)H can be considered as a random
constant and the mutual informationIN (H) is a random
variable. In this regime, the relevant performance metric is
the “rate versus outage probability” tradeoff [6], captured
by the cumulative distribution function ofIN (H). Various
approaches [7]–[11] have shown that the mutual information
IN (H) becomes asymptotically Gaussian for largeN , with
mean equal to the ergodic capacityRerg = Nrerg(ρ) and a
variance of orderO(1) in N . This Gaussian variability of the
mutual information is due to the fluctuations of the eigenvalues
of the matrix around the most probable distribution described
by the Marčenko-Pastur law. Since this Gaussian approxima-
tion is essentially a variation of the central limit theorem, it
only applies within a small number of standard deviations
away from the meanRerg. As a result, this approximation
fails to capture the tails of the distribution, e.g. the probability
of the mutual informationIN falling below half its ergodic
valueRerg/2, because this event only occursO(N) standard
deviations away from the mean.
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Nevertheless, the tails of the distributions of the mutual
information are important, because they correspond to regions
with low outage probability, where one would want to operate
a MIMO system. This is particularly important when, for large
ρ, the slopes of the outage curves are large. The interplay
between low outage and multiplexing gain was exemplified
in the seminal paper [1] where the authors analyzed the
asymptotics of the distribution of the mutual information in
the limit of largeρ (keepingR/ log ρ fixed). They found that
the asymptotic form of the logarithm of the outage probability
of the mutual informationPout(R) ≡ P(IN (H) ≤ R) is a
piecewise linear function ofR/ log ρ, interpolating between
the discrete set of values:

logPout(Rn) ∼ − log ρ

(

Rn

log ρ
−M

)(

Rn

log ρ
−N

)

(4)

where Rn = n log ρ for integer n ≤ N ≤ M . When, in
addition to ρ, N is also large,logPout(R) in (4) becomes
(to leading order) a continuous function ofR/N . It should
be pointed out that this approach generalizes the largeN
asymptotics discussed above, since it provides insight in the
distribution of the mutual information quite far from its peak,
which for largeρ (and largeN ) is situated atIN ≈ N log ρ.
More recently, in [12] the authors recast the DMT problem
providing a formula to calculatelogPout as a function ofR
when R lies in each linear subsegment of (4). Nevertheless
both approaches [1], [12] do not provide the offset to the lead-
ing, O(log ρ) behavior of (4). As a result, these approaches,
while quite intuitive fail, often by a large margin, to provide
an acceptable quantitative estimate ofPout unless log ρ is
extremely large.

In the meantime, all variants [7]–[9] of the largeN Gaussian
approximation of the mutual information fail for largeρ.
Specifically, they all predict that the outage probability is given
asymptotically by:

logPout(R) ∼ (log ρ)2

2 log (1− β−1)

(

R

log ρ
−N

)2

(5)

where β = M/N > 1, an expression which is in striking
disagreement with (4). Even though forβ = 1 the asymptotic
form of (4) is recovered within the Gaussian approximation
[7], [9], the discrepancy forβ 6= 1 indicates that the limits
N → ∞ and ρ → ∞ cannot be naı̈vely interchanged.
In the Gaussian approximation, one focuses on the most
probable eigenvalue distribution, which converges vaguely to
the Marčenko-Pastur distribution (3). However, as can be seen
in (3), this distribution (almost surely) produces no eigenvalues
of H†H close to zero whenβ > 1. Nevertheless, the analysis
for largeρ focuses at the regime where the eigenvalues are of
orderO(ρ−1). As a result, it is not surprising that the large-N
Gaussian approximation of the mutual information distribution
misses the correct behavior.

In summary, we have two methods, the large-N , fixed-ρ
Gaussian approximation on the one hand and the large-ρ,
fixed-N limit on the other, both having their own regions of
validity, and both failing to produce quantitative resultsfor
the outage probability outside their respective regions. Thus,
one still needs an approach that correctly describes the outage

behavior of the mutual information distribution for arbitrary ρ
andR.

In this paper, we introduce a large deviations approach to
calculate the full asymptotic distribution ofR. It is formally
valid for largeN , but works over the whole range of val-
ues of R and ρ. This method bridges the two regions of
small/intermediate and large signal to noise ratios withina
single framework and, in effect, it amounts to calculating
the rate function of the logarithm of the average moment
generating function of the mutual information. Our approach
was first introduced in the context of random matrix theory by
Dyson [13] and has been more recently applied in a variety of
problems [14]–[17]. It is quite intuitive because it interprets
the eigenvalues ofH†H as point charges on a line repelling
each other logarithmically. This is the first time this approach
has been applied in information theory and communications.
As a byproduct of this approach, we obtain the most probable
eigenvalue distribution constrained on the subset of channel
matricesH†H that have fixed total rateR and signal to noise
ratioρ. This is a generalized Marčenko-Pastur distribution that
gives the constrained eigenvalue distribution for values of R
even far from its ergodic value. It is worth pointing out that
many of the results presented here could be set on a more
formal mathematical footing using tools developed in [18].
However, we will follow the less formal but more intuitive
approach developed by Dyson.

This generalized Marčenko-Pastur distribution can also be
seen as the inverse of the so-calledShannon transform[19] in
the following sense: while the Shannon transform produces
the value of normalized mutual informationIN/N as a
functional of the asymptotic eigenvalue distribution ofH†H
(the Marčenko-Pastur distribution), the generalized Marčenko-
Pastur distribution introduced here boils down to the asymp-
totic eigenvalue distribution ofH†H for a given value of the
mutual informationR = Nr, i.e., whenH†H is constrained
on the subset defined byr = IN (H)/N .

A. Outline

In the next section we will introduce the necessary mathe-
matical methodology. In particular, Section II-A describes the
mapping of the joint probability distribution of eigenvalues
of the Wishart matrix to a Coulomb gas of charges with a
continuous density (discussed in more detail in Appendix B)
and the large-deviations analysis of the problem. Next, section
II-B deals with the solution of the resulting integral equation
that produces the most-likely eigenvalue distribution at the tails
of the full distribution.

If one is not particularly interested in the details of our
derivation, Section II may be skipped in favor of section III
where we present our main results. Specifically, in Section
III-A we rederive the Marčenko-Pastur distribution (thatis,
the most likely distribution without the mutual information
constraint) to highlight the efficacy of our method. Subse-
quently, Sections III-B and III-C contain our results for the
casesβ > 1 andβ = 1 respectively, while in Section III-D
we show how to calculate the outage probability directly by
means of the results of the previous sections. In Section IV
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we analytically obtain previous results as limiting cases of
this method, and also examine a number of different limiting
cases. In Section V we provide numerical comparisons of our
method to other approximations previously outlined and to
Monte Carlo simulations.

The proofs of the properties oftame distributions (intro-
duced in section II-A) are given in appendix A and we
discuss Dyson’s original construction of the Coulomb gas
model in appendix B. Appendices C and D have been reserved
for the exposition of some technical issues that cropped up
during our calculations. Finally, Appendix E discusses higher
orderO(1/N) corrections to our model and comparisons with
Monte Carlo simulations.

II. M ETHODOLOGY

Our approach can roughly be divided in two main parts.
First, in section II-A we reduce the original problem of
finding the probability distribution of the mutual information
to harvesting the minimum energy of a gas of charged particles
(among other things we show here that the minimum energy
configuration is unique). Then, in section II-B, we will solve
the integral equation that comes up and actually obtain the
minimum energy configuration of the charges.

A. Mapping the Problem to a Coulomb Gas

We begin by establishing the mathematical methodology,
treading on the elegant footsteps of [15], [20]. Our overall
aim will be to calculate the probability distribution of the
mutual information (2), which can be written in terms of the
eigenvaluesλk of the Wishart matrixH†H as:

IN (λ) =

N
∑

k=1

log (1 + ρλk) (6)

Note that the aforementioned probability distribution of
the mutual information thus depends on the joint probability
distribution function of the eigenvaluesλ1 . . . λN of H†H. In
its turn, this distribution takes the well-known form:

Pλ(λ1 . . . λN ) = AN∆(λ)2
N
∏

k=1

λM−N
k e−Nλk (7)

= ANe−N2E(λ) (8)

whereAN is a normalization constant and∆(λ) =
∏

i>j(λi−
λj) is the Vandermonde determinant of the eigenvaluesλk.
The exponentE(λ) is an energy function of the eigenvalues
{λi} that will become very useful later:

E(λ) =
1

N

∑

k

(λk − (β − 1) logλk) (9)

+
2

N2

∑

j>k

log |λj − λk|

Note that the normalization we have chosen is such thatE(λ)
corresponds roughly to the energy per eigenvalue.

The cumulative probability distribution (CDF) of the nor-
malized mutual informationIN/N can then be written as a
ratio of two volumes inλ-space:

FN (r) = P(IN/N ≤ r) =
Vr

Vtot
(10)

=

∫

Pλ(λ)Θ(r − IN/N) dλ

whereIN is given by (6),Θ(x) is the Heaviside step function
(Θ(x) = 1 if x > 0 and Θ(x) = 0 if x < 0) and the
integrals are taken with respect to the ordinaryN -dimensional
Lebesgue measuredλ =

∏

i dλi. The above CDF is by
definition the outage probability, i.e. the probability that the
normalized mutual information falls belowr. Its corresponding
probability density (PDF) can be obtained from (10) by taking
the derivative with respect tor [21]:

PN (r) = F ′
N (r) =

∫

Pλ(λ) δ(r − IN/N) dλ (11)

where we have used the fact that the (distributional) derivative
of the step function is the Diracδ-function:Θ′(x) = δ(x).

Our primary goal will be to use (11) in order to obtain an
analytic expression for the probability distribution function of
the mutual informationIN . However, in general there is no
standard way to evaluate integrals likeVr (except for some
special cases [22]). Nevertheless, in the large-N limit it is
possible to analyze such integrals in a systematic way. This
so-called Coulomb-gas approach [23] is based on the intuitive
idea to interpret the eigenvaluesλ as the positions ofN
positive unit charges located on a line, a picture first proposed
by Dyson [13]. Within this interpretation, the last term in the
exponentE(λ) in (9) corresponds to the logarithmic repulsion
energy, while the first term is the potential due to a constant
field and the second term is the repulsion of a point charge
located at the origin.1

Now, it is instructive to look at the form ofE(λ) to get an
intuitive understanding of the minimum energy configuration
of λ in the absence of the constraintIN/N = r. As discussed
above, the first two terms inE(λ) correspond to the external
forces acting on the charges, while the last term represents
the repulsion between charges. In the absence of the charge
repulsion the minimum energy configuration will correspond
to all charges settling at the minimum of the external potential,
i.e. λk = β − 1 for all k = 1, . . . , N . However, the repulsion
between charges will make them move away from that point
but still, from simple electrostatics considerations, theexternal
forces will not allow this repulsion to carry charges too far
away from the minimum. As a result, we expect that at the
minimum of E(λ) all charges will be concentrated in the
neighborhood ofβ−1. As the number of charges increases, it
will make sense, at least for configurations with energyE(λ)
close to the minimum, to expect that the charge distribution
will be approximately acontinuousdistribution. As a result,
all sums overλ in E(λ) may be replaced by integrals, and we
expect that this will also be true in the presence of constraints
as in (11).

1Note that these are simply the potentials that one obtains inclassical two-
dimensional electrostatics.
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To make this continuum limit more precise, one begins by
conditioning the probability lawP of the eigenvalues of the
Wishart matrixH†H on the setJr = {λ : IN (λ)/N = r}, i.e.
by considering the conditional probability lawP(·|IN/N = r)
and the corresponding PDF. AsN → ∞, large deviations
theory suggests that this density function will be sharply
concentrated around its most probable value, i.e. the minimum
of the energy functional (9). Then, according to Dyson, this
minimum can be asymptotically recovered by looking at the
minimum of thecontinuousversion of (9):

Conjecture 1 (Coulomb Gas Assumption). As N → ∞, the
empirical distribution of charges/eigenvalues under the rate
constraintIN/N = r converges vaguely to an absolutely con-
tinuous densityp(x) which minimizes the continuous energy
functional:

E[p] =

∫

xp(x) dx − (β − 1)

∫

p(x) log x dx (12)

−
∫∫

p(x)p(y)log |x− y| dxdy

over the space of densities which satisfy the constraint
∫∞
0

p(x) log(1 + ρx) dx = r. In other words, asN → ∞,
the total charge in any intervalI ⊆ R will be given by:

σ(I) =

∫

I

p(x)dx, (13)

with p as above.

This assumption is essentially identical to the one in Mehta’s
book [23] and has been extensively employed in the literature
[13]–[15]. Unfortunately, despite its simple and intuitive na-
ture, this assumption has resisted most attempts at a rigorous
proof, thereby giving birth to different approaches, such as
the one in [18]. Nevertheless, the results obtained there are
in agreement with the ones obtained with the help of the
Coulomb Gas assumption and, hence, we feel that our posit
here is rather mild (see also appendix B for a more detailed
discussion).

At any rate, to make proper use of the energy functional
E (12) we must first make sure that it remains finite over a
reasonably large class of densitiesp(x). This leads us to the
concept of “tameness”:

Definition 2. An integrable functionp : R+ → R will be
calledε-tamewhen:
(i) the “absolute mean” ofp is finite:

∫ ∞

0

x|p(x)| dx < ∞; (14)

(ii) there exists someε > 0 such thatp is L1+ε-integrable,
i.e.

∫ ∞

0

|p(x)|1+ε dx < ∞. (15)

Remark 2.1. The phrasing of condition (i) simply reflects
our interest in tame functionsp ≡ pX that are probability
densities of random variablesX with values inR+. In that
case, condition (i) simply states thatX has finite mean:

E [X ] =

∫ ∞

0

xp(x) dx < ∞. (14’)

Remark2.2. Condition (ii) will be crucial to our analysis. At
first, it might appear as a mere technical necessity (see e.g.
section II-B and appendix C) but, in fact, it has a very deep
physical interpretation: a probability density with finitemean
might still fail to have finite energy, making it inadmissible
on physical grounds. Condition (ii) ensures thatE[p] will be
finite (see lemma 3 below).

Remark2.3. When it is not necessary to make explicit mention
of the exponentε, we will simply say thatp is tame. Similarly,
an absolutely continuous (signed) measureσ on R+ will be
called tame when its Lebesgue derivativep(x) = dσ(x)

dx is
tame. Given this equivalence between continuous measures
and Lebesgue derivatives, we will use the two terms inter-
changeably.

Going back to the energy functionalE of (12), we can see
that condition (i) guarantees that the first term in (12) is finite,
while (ii) bounds the second and third terms. This is captured
in the following:

Lemma 3 (Finiteness and Continuity ofE). Let Ω be the
space of tame functions onR+ and let E be defined as in
(12). Then,E[p] < ∞ for all p ∈ Ω and the restriction ofE to
any subspace ofL1+ε-integrable functions with finite mean is
continuous (in theL1+ε norm). In other words, tame densities
have finite energy and tame variations in density induce small
variations in energy.

We prove this lemma in Appendix A where we also give
some background information on theLr norms. For now, it
will be more useful to express the probability densityPN (r)
as the ratio:

PN (r) =
Zr

Z
(16)

where, in accordance with (8), (11) and (12),Zr andZ are
the (un-normalized)partition functions:2

Zr =

∫

Xr

Dp e−N2
E[p] (17)

Z =

∫

X

Dp e−N2
E[p] (18)

and Dp denotes the path-integral measure over the domains
of tame densitiesX,Xr ⊆ Ω:

X =

{

p ∈ Ω : p ≥ 0 and
∫

p(x) dx = 1

}

(19)

Xr =

{

p ∈ X :

∫

p(x) log(1 + ρx) dx = r

}

. (20)

Of course, from a mathematical point of view, constructing
a measureDp over the infinite-dimensional space of functions
is an intricate process which is far from trivial. Path integrals
were first introduced by R. Feynman [24] in physics and have
been used there extensively over the last 70 years. We prefer
not to introduce them formally but, rather, to follow a more
intuitive approach instead, in Appendix B.

2It is worth pointing out that the correction to the termN2E[p] in the
exponent isO(1) (see appendix B for more details). Also a nice analysis of
the mapping from theλ integrals to path integrals overp can also be found
in [20].
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With all these considerations taken into account, we may
take the largeN limit and write:

lim
N→∞

1

N2
logPN (r) = lim

N→∞

1

N2
(logZr − logZ) (21)

and, by invoking Varadhan’s lemma [25], we obtain:

lim
N→∞

1

N2
logPN (r) = E0 − E1(r) (22)

or, equivalently:

PN (r) ∼ e−N2(E1(r)−E0) (23)

where

E0 = inf
p∈X

E[p] (24)

E1(r) = inf
p∈Xr

E[p] (25)

In other words, we have reduced the problem of determining
the asymptotic behavior ofPN (r) to finding the minimum of
the convex functionalE over the two convex domainsX and
Xr. To that end, we have:

Lemma 4 (Convexity of E). Let X ⊆ Ω be
the set of tame probability measures:X =
{

p ∈ Ω : p ≥ 0 and
∫

p(x) dx = 1
}

. Then, X is a convex
subset of the topological vector spaceΩ and E is (strictly)
convex onX.

Again, we will postpone the proof of this lemma until
appendix A. However, an immediate corollary is that there
exists a unique charge densityp which minimizes (24) and
(25). To find this unique solution - and the corresponding
(global) minimaE0,E1(r) - it turns out to be more convenient
to work over the whole space of tame measuresΩ and
introduce Lagrange multipliers for the two domainsX and
Xr. This leads to the Lagrangian functions:

L0[p, ν, c] = E[p]− c

(
∫ ∞

0

p(x) dx − 1

)

−
∫ ∞

0

ν(x)p(x) dx (26)

L1[p, ν, c, k] = L0[p, ν, c]

− k

(
∫ ∞

0

p(x) log(1 + ρx) dx − r

)

(27)

from which we obtainE0 andE1(r) by maximizing over the
dual parametersν (non-negativity constraint),c (normalization
constraint) andk (mutual information constraint):

E0 = sup
ν≥0; c

inf
p
L0[p, ν, c] (28)

E1(r) = sup
ν≥0; c,k

inf
p
L1[p, ν, c, k] (29)

The convexity ofL0, L1 overp ensures that it suffices to find
a local minimump(x) for the corresponding LagrangianL,
for fixed ν, c, k. Then, any value ofk, c that satisfies the
constraints ofp will be unique [26]. It is also worth pointing
out that the only difference betweenE0 andE1 above is that
the former can be seen as the maximum overL1[p, ν, c, k]
keepingk = 0; this relation will come in handy later, because

it allows us to work withL1 and at the very last step setk = 0
to obtainE0.

We are now left to find a local minimum ofL1 and the
easiest way to do this is by looking at its functional derivative
w.r.t. p. Indeed, recall that the functional derivative ofL1 at
p ∈ Xr is the distributionδL1[p, ν, c, k] whose action on test
functionsφ ∈ Ω is given by:3

〈δL1[p], φ〉 =
d

dt

∣

∣

∣

∣

t=0

L1[p+ tφ]. (30)

Note now that the expressionL1[p + tφ] is well-defined
for all p ∈ Xr, φ ∈ Ω, thanks to lemma 3 so that, at
least, it makes sense to study its behavior ast → 0. In
addition to that, our convexity result (lemma 4) simplifies
things even more because, ifδL1[p] = 0 for somep ∈ Xr,
it immediately follows thatL1 will be attaining its global
minimum atp.4 Then, maximizing the result with respect tok
and c simply corresponds to enforcing the normalization and
mutual information constraints that appear in (26) and (27):

∫ ∞

0

p(x) dx = 1 (31)
∫ ∞

0

p(x) log(1 + ρx) dx = r (32)

Furthermore, we must also maximize with respect toν,
in order to ensure thatp(x) be non-negative inR+. This
optimization constraint can be enforced by observing that
ν(x) = 0 when p(x) > 0 and vice-versa, as we shall see
below.

As a result, once we manage to find a solution to the above
optimization problem, we will have:

Proposition 5 (Uniqueness of Solution). Assume that the tame
probability measurep satisfies the stationarity condition:

δL[p] = 0 (resp.δL1[p] = 0) (33)

along with the constraint (31) (resp. (31), (32)). Then,p is the
unique global minimum point of (24) (resp. (25)).

This proposition stems directly from the convexity ofE and
will be of considerable help to us in what follows because it
ensures that any stationary point ofL,L1 which satisfies the
relevant constraints will be the (unique) solution to our original
minimization problem.

B. Solving the Integral Equation

Our task now will be to actuallyfind the solution of (30),
subject to the constraints (31), (32). The solution forE0 in
(28) can then be obtained by relaxing the constraint (32) and
settingk = 0 in the final result. To that end, a brief calculation

3Since Ω is a locally convex space, this is just another guise of the
Gâteaux/Fréchet derivative.

4Indeed, note that the functionw(t) = L1[p + t(q − p)], t ∈ [0, 1] is
strictly convex in[0, 1] for any choice ofp andq in Xr . Thus, if there were
someq ∈ Xr with L1[q] < L1[p], we would havew′(0) = 0 (on account
of (30)) but alsow(0) > w(1), a contradiction.
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(see appendix C) for the functional derivative for the functional
derivativeδL1[p] of (30) yields the integral equation:

2

∫ ∞

0

p(x′) log |x− x′| dx′ = x− (β − 1) log x (34)

− c− k log(1 + ρx) − ν(x).

The role of ν(x) in the above equation is to enforce the
inequality constraintp(x) ≥ 0 for all x ≥ 0. It is well known
[26] that ν(x) > 0 only when the probability densityp(x)
vanishes, while when the probability density is positive,ν(x)
has to be zero.

The solution of the integral equation involves the inversion
of the integral operator in the left-hand-side of (34), which
is no simple task, because the inversion process depends on
the supportsupp(p) of the densityp(x) [27]. As discussed in
the previous subsection (and with a fair amount of hindsight
gained from the Coulomb gas analogy), we will be looking for
compactly supported solutions that are continuous in(0,∞);
in other words, we will be assuming thatsupp(p) = [a, b]
where0 ≤ a < b < ∞.

There is one important issue that must be mentioned here:
when the dimensions of the channel matrix attain the critical
valueβ = 1, we will see thatp exhibits two different behaviors
depending on the values ofr andρ in constraint (32). On one
hand, we could havea > 0 which, by continuity, introduces
the constraintp(a) = 0; on the other hand, we could also
have solutions witha = 0 (which impose no extra constraints
becausep is assumed continuous only on(0,∞)). If the rater
is less than some critical valuerc(ρ), it turns out that solutions
with a > 0 must be rejected because they attain negative
values. In that case, we are led to solutions witha = 0 which
have no such problems; the converse happens whenr > rc,
while whenr = rc the two solutions coincide.

Having said that, we may return to (34), where we have
ν(x) > 0 if and only if p(x) = 0. By restrictingx to lie in
the interval[a, b], we may henceforth ignoreν(x) altogether.
Furthermore, to eliminatec for the moment, a differentiation
of (34) with respect tox yields:

2P

∫ b

a

p(x′)

x− x′ dx
′ = 1− β − 1

x
− kρ

1 + ρx
≡ f(x) (35)

whereP denotes the Cauchy principal value of the integral.5

The above equation has a straightforward physical meaning:
it represents a balance of forces at every locationa ≤ x < b,
because the repulsion from all other charges of the distribution
located atx′ (the LHS expression) is equal to the external
forces (RHS). Forβ > 1, we intuitively expect thatp(x) must
vanish atx = 0 because in this case the force from the finite
charge density located atx = 0 (the second term of (35))
would be infinite. As a result, we intuitively expect thata > 0
for all β > 1; this expectation will be vindicated shortly.

Indeed, the solution of this integral equation for general
f(x) can be obtained using standard methods from the theory
of integral equations [27], [28]. So as not to interrupt the
presentation, we will postpone the details until appendix C

5The principle value appears because of the absolute value|x′−x| in (34).

and will only give the final result here:

p(x) =
P
∫ b

a

√
(y−a)(b−y)f(y)

y−x dy + C′

2π2
√

(x− a)(b− x)
(36)

=
−x− k

√
(1+aρ)(1+bρ)

1+ρx − (β−1)
√
ab

x + C

2π
√

(x− a)(b − x)

whereC,C′ are unknown constants to be determined by the
conditionp(b) = 0.

As we explain in Appendix C, this formula is valid only
when the functionf is itself Lη-integrable for someη > 1.
This is always true ifβ = 1, because the singular term
proportional to(β − 1) is not present in the LHS of (35).
However, as we have already mentioned, the caseβ = 1 has
its own set of subtleties, analyzed at length in section III-C.
In particular, we obtain two different solutions dependingon
whether the support ofp extends to0 or not (imposing the
constraintsa = 0 or p(a) = 0 respectively), but only one
of them is physically admissible (i.e. is a tame probability
measure lying in the rate-constrained domainXr).

On the other hand, this dichotomy ceases to exist when
β > 1. Indeed, if β > 1 and a = 0, the LHS of (35)
is no longer integrable. However, the RHS of (35)is L1+ε-
integrable wheneverp is itself ε-tame, on account of the prop-
erties of the finite Hilbert transform [27] (see also appendix
C). We thus conclude that any solution to (35) whose support
extends to0 cannot be tame and will thus have to be rejected.
As a result, the support ofp for β > 1 has to be bounded away
from 0, thus leading to the constraintp(a) = 0 and proving
our intuitive expectation above.

So, starting with the general casea, b > 0, we find that
the constraint of continuity requires that the distribution p(x)
vanish at the endpointsa, b of its support. The condition
p(b) = 0 determines the value ofC in (36) resulting in the
following form for p(x):

p(x) =

√
b− x

2π
√
x− a

(

1− kρ

(1 + ρx)

√

1 + aρ

1 + bρ
− β − 1

x

√

a

b

)

(37)
The additional conditionp(a) = 0 (whena > 0) results to

p(x) =
1

2π

√

(b− x)(x − a)

x(1 + ρx)

(

ρx+
β − 1√

ab

)

(38)

with the value ofa determined (as a function ofb andk) by
the equation:

kρ
√

(1 + ρa)(1 + ρb)
+

β − 1√
ab

= 1. (39)

Demanding thatp be properly normalized as in (31), imposes
the constraint:

∫ b

a

p(x)dx =
a+ b− 2k − 2(β − 1)

4
(40)

+
k

2
√

(1 + aρ)(1 + bρ)
= 1.

In Appendix D we show that (39) and (40) admit a unique
solution a, b for any givenk and, as a result, Proposition 5
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guarantees the existence of a (necessarily unique) densityp(x)
that minimizes (29).

Now, given the resulting solutionp(x) we can readily
calculate the minimum energyE[p] itself:

E[p] =

∫ b

a

xp(x) dx − (β − 1)

∫ b

a

p(x) log x dx

−
∫ b

a

∫ b

a

p(x)p(y) log |x− y| dy dx

=
1

2

∫ b

a

xp(x)dx − β − 1

2

∫ b

a

p(x) log x dx

+
k

2

∫ b

a

p(x) log(1 + ρx) dx+
c

2
(41)

where in the second line we eliminated the double integral by
substituting it from (34) [15]. As for the value ofc itself, it
can be determined by evaluating (34) at a fixed value ofx,
sayx = a:

c = a− (β − 1) log a− k log(1 + ρa) (42)

− 2

∫ b

a

log(x− a)p(x)dx

Inserting this in (41) then yields:

E[p] =
1

2

∫ b

a

xp(x)dx − β − 1

2

∫ b

a

p(x) log xdx (43)

−
∫ b

a

p(x) log(x− a)dx

+
1

2
(k (r − log(1 + ρa)) + a− (β − 1) log a)

III. PROBABILITY DISTRIBUTIONSPN (r), POUT(r)

The central aim of the paper is to evaluate the probability
density of the rater for largeN , namelyPN (r) given by (23)

PN (r) ≈ BNe−N2(E1(r)−E0) (44)

whereBN is a normalization constant, whileE1(r) (25) and
E0 (24) are the most probable values of the energy evaluated
with and without the mutual information constraint (32),
respectively. In this section we will calculate these values and
derive the corresponding eigenvalue probability densities p(x)
that minimize the energy functionalE[p]. In Section III-A,
we will derive E0 and we will show how the corresponding
densityp(x) is the Marčenko-Pastur Distribution. In Sections
III-B and III-C we will calculateE1(r) for the casesβ > 1
andβ = 1 respectively. Finally, in Section III-D we will show
how one can calculate the outage probabilityPout(r).

A. Evaluation ofE0

As mentioned above, it is instructive to first calculate the
most probable distribution of eigenvalues without the mutual
information constraint (32), which will end up being the well-
known Marčenko-Pastur distribution. This can be immediately
extracted from the analysis in Section II-B by settingk = 0.
Solving for a, b in (39), (40) gives

a =
(

√

β − 1
)2

(45)

b =
(

√

β + 1
)2

and (38) then takes the well-known form (3).6

We may also evaluate the energyE0 by settingk = 0 in
(43). Thus we get:

E0 =
1

2

∫ b

a

xp(x) dx +
1

2
(a− (β − 1) log a) (46)

− β − 1

2

∫ b

a

p(x) log x dx −
∫ b

a

p(x) log(x− a) dx

and, after some algebra, we can rewrite the above expression
in the closed form:

E0 =
∆2

32
+

a

2
− log∆− β − 1

2
log(a∆) (47)

− ∆

2

[

G
(

0,
a

∆

)

+
β − 1

2
G
( a

∆
,
a

∆

)

]

where∆ ≡ b− a and the functionG(x, y) is given by [29]:

G(x, y) =
1

π

∫ 1

0

√

t(1 − t)
log(t+ x)

t+ y
dt (48)

= −2
√

y(1 + y) log

[

√

x(1 + y) +
√

y(1 + x)√
1 + y +

√
y

]

+ (1 + 2y) log

[
√
1 + x+

√
x

2

]

− 1

2

(√
1 + x−

√
x
)2

Whenβ = 1, a, b in (45) take the valuesb = 4 anda = 0,
and hence (46) becomesE0 = 3/2.

B. Evaluation ofE1(r): β > 1

We will now calculateE1 for the caseβ > 1. To do so,
we need to evaluate the constantsa, b, k as a function ofr
andρ using (39), (40) and (32). The values of these constants
will determine the density of eigenvalues constrained on the
subset with fixed total rateR = Nr in the largeN limit. After
inserting (38) into the last equation and integrating, (32)can
be expressed explicitly as

r =

∫ b

a

p(x) log(1 + ρx) dx (49)

= log∆ρ+
∆kρ

2
√

(1 + ρa)(1 + ρb)
G

(

1 + ρa

∆ρ
,
1 + ρa

∆ρ

)

+
∆

2

(

1− kρ
√

(1 + ρa)(1 + ρb)

)

G

(

1 + ρa

∆ρ
,
a

∆

)

whereG(x, y) is given in (48).
Based on the arguments discussed in the previous section, it

suffices to show that there exists a distributionp(x) in the form
of (38) satisfying the constraints (31), (32). This corresponds
to finding values ofa, b, andk that satisfy (39), (40) and (49),
while at the same time maintainingp(x) ≥ 0 for all x ∈ [a, b].
If such a solution exists, then according to Theorem 5 it will
be unique.

6Note that whenβ = 1, the lower endpoint vanishes (a = 0) and a square-
root (integrable) singularity appears inp(x) in (3).
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In Appendix D we show that equations (39) and (40) admit
a unique solution for anyk. We therefore only need to show
that (49) has a solution ink for any r > 0.

It suffices to show that the function defined solely as a
function of k by the right-hand-side of (49) (witha and b
expressed in terms ofk) takes all values in(0,∞). Hence
by continuity it will attain the valuer for all positive rates
r > 0. We first see that ask → −∞ the solution of (39),
(40) is a ≈ (

√
β − 1)2/(ρ|k|) and b ≈ (

√
β + 1)2/(ρ|k|);

then, inserting these solutions into (49), we see that it may
be written in leading order asr ≈ β/|k|. On the other hand,
for k → ∞ (39), (40) givea ≈

√

k + β − ρ−1/2 − 1 and
b ≈

√

k + β − ρ−1/2 + 1, resulting to r ≈ log kρ. This
shows that the corresponding solutionp(x; r) is the unique
minimizing distribution ofE in Xr.

In Fig. 1 we compare this distribution with the correspond-
ing empirical probability distribution function obtainedby
numerical simulations. We see that the agreement is quite
remarkable, indicating a quick convergence to the asymptotic
distribution function of the eigenvalues constrained at the tails
of the distribution of the mutual information. Furthermore, to
get a feeling for the dependence of the eigenvalue distribu-
tions in terms of their parameters, in Fig. 2 we plot a few
representative examples.

We may now calculate the value ofE1. Insertingp(x) from
(38) into (43) and integrating finally gives us:

E1 =
∆2

32
+

a

2
− log∆− β − 1

2
log(a∆) (50)

+
k

2

(

r − log(1 + ρa)−
(√

1 + ρb−√
1 + ρa

)2

4ρ
√

(1 + ρa)(1 + ρb)

)

− ∆kρ

2
√

(1 + ρa)(1 + ρb)

·
[

G

(

0,
1 + ρa

∆ρ

)

+
β − 1

2
G

(

a

∆
,
1 + ρa

∆ρ

)]

− ∆

2

(

1− kρ
√

(1 + ρa)(1 + ρb)

)

·
[

G
(

0,
a

∆

)

+
β − 1

2
G
( a

∆
,
a

∆

)

]

whereG(x, y) is given by (48). Plugging this together withE0

into (44) we obtainPN (r), up to the normalization constant.

C. Evaluation ofE1(r): β = 1

The caseβ = 1 deserves special attention. In this case the
logarithmic repulsion from theδ-function density of eigenval-
ues at the origin in (12) and (34) is no longer present. As
discussed in Section II.B, depending on the parametersr and
ρ there are two distinct types of solutions, which we treat here
separately.

1) Caseβ = 1 and r > rc(ρ): We start by attempting to
solve the problem as in theβ > 1 case, namely by looking
for solutions of0 < a < b for the distribution’s support. It is
straightforward to show that the conditions (39) and (31) yield

0 1 2 3 4 5 6
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0.4

0.5

0.6
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0.8

0.9

1

CDF of Eigenvalues of H’H/N constrained on submanifold I
N

(H)=r=5; β=2; ρ=200

Eigenvalue t

P
ro

b(
X

<
t)

 

 

2x4
3x6
5x10
7x14
Analytic β=2
MP β=2

Fig. 1. Cumulative distribution function (CDF) of eigenvalues for a
conventional and a generalizedMP distribution with β = 2, r = 5 and
ρ = 200. For β = 2 and ρ = 100, the value of the ergodic mutual
information is rerg = 5.0014. Thus, the generalizedMP distribution with
ρ = 100 would correspond to the conventionalMP distribution above. Also
plotted are the empirical CDFs for eigenvalues ofH

†
H/N conditioned on

the subsetIN ≤ Nr. It is remarkable that even for the not-too-large antenna
array system5×10 the empirical distribution converges to the analytic result.

the following values fora, b whenβ = 1:

a =
(√

k + 1− 1
)2

− ρ−1

b =
(√

k + 1 + 1
)2

− ρ−1. (51)

As a result, the probality density functionp becomes:

p(x) =
ρ

2π

√

(b − x)(x − a)

1 + ρx
(52)

The value of the parameterk can be obtained in a unique
way from the mutual information condition, which now reads:

r − log ρ = (k + 1) log(k + 1)− k log k − 1. (53)

The monotonicity of the right-hand-side of this equation with
respect tok implies a uniquek(r) satisfying (53) and hence
a unique set ofa,b in (51), guaranteeing uniqueness of (52).

In its turn, this can be used to evaluate the value of the
outage exponent:

E1 − E0 =
k − 1

2
(r − log ρ) + k − 1

2
− ρ−1 − k log k

2
. (54)

From (51) we can see that this solution can only be valid
for k ≥ kc(z) ≡ ρ−1 + 2/

√
ρ, or equivalently forr > rc(ρ)

where

rc(ρ) ≡ 1 + 2
√
ρ

ρ
log

(

1 +
ρ

1 + 2ρ

)

(55)

+ 2 log (1 +
√
ρ)− 1 > rerg

The reason is that fork < kc(ρ) (or r < rc(ρ)) the value of
a becomes negative, which is unacceptable.

2) Caseβ = 1 and r ≤ rc(ρ): In this case we can no
longer treata as a free variable. Instead, becausep(x) = 0 for
x < 0, the charge density becomes confined at the boundary
x = 0. Thus, we need to look for solutions of (34) witha = 0,
in which case the charge density has a square-root singularity
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Fig. 2. GeneralizedMP distributions forβ = 4 and different values ofρ andr. In (a) we plot the eigenvalue distributions for different values ofρ and fixed
r = 5.78, which is the value ofrerg for the curve in the middle withρ = 100. In (b) we plot the eigenvalue distributions for fixedρ = 100 and different
valuesr. We see that in the latter plot the distribution is more sensitive on r rather thanρ.

at x = 0 (instead of vanishing continuously). This is actually
quite natural since we expect that, fork = 0 (or, equivalently,
for r = rerg), the charge distribution should take the form of
the β = 1 Marčenko-Pastur density:

p(x) =

√
4− x

2π
√
x
. (56)

Indeed, for generalb, k, the distribution becomes:

p(x) =

√
b− x

2π(1 + ρx)
√
x

(

ρx+ 1− kρ√
1 + ρb

)

, (57)

and the normalization condition (31) implies

k =
b
2 − 2

1− 1√
1+ρb

(58)

It can easily be shown that the right-hand-side of (58) is
increasing inb and, hence, (58) has a unique solution inb
for all k.

In the last case (a = 0), the mutual information condition
(32) can be integrated using (57) to give:

r = 2(k + 1) log
1 +

√
1 + ρb

2

− 1

4ρ

(

√

1 + ρb− 1
)2

− k

2
log (1 + ρb) . (59)

We may use the same argument as in the previous subsection
to show that this equation has at least one solution for any
0 < r < rc(ρ). Indeed whenk = kc, the right-hand-side
above takes the value ofrc. In contrast, whenk → −∞, (58)
givesb ≈ 4/(ρ|k|), in which case the right-hand-side of (59)
becomes≈ 1/|k|. Thus all values between(0, rc(ρ)) are taken
whenk ∈ (−∞, kc(ρ)). Hence by continuity it will attain the
valuer ∈ (0, rc).

After solving for b andk as a function ofr andρ, E1 can
be calculated easily. Therefore, the exponent of the probability

distributionPN (r) becomes:

E1 − E0 =
k

2

(

r − b

4

)

− log
b

4
− k log

1 +
√
1 + ρb

2

+
1

32
(b− 4)

(

4ρ−1 + 3b+ 12
)

(60)

We should point out that just as the solution (57) is not
valid for r > rc(ρ), the solution (57), which we found to
be valid for r > rc(ρ) is not valid for r < rc(ρ). To see
this, it is straightforward to show that in this case the constant
term in the last parenthesis in (57) (namely1− kρ/

√
1 + ρb)

is negative. As a result, (57) cannot be valid fork < kc(ρ)
because the charge density becomes negative at some point
x > 0. As a result the solutions we found above are unique in
their domains of validity. Interestingly there is a weak, third
order discontinuity at the transitionr = rc(ρ), in the sense that
the first two derivatives ofE1(r) with respect tor evaluated at
r = rc are continuous, while the third is discontinuous. This
is analogous to the phase transition observed in [16].

D. Evaluation of the Outage ProbabilityPout(r)

In this section we will calculate the outage probability
Pout(r) = P(IN < Nr) from E1(r). To do this we need to
integrateexp

[

−N2(E1(r) − E0)
]

over r. Generally it is im-
possible to evaluate this integral in closed form. Nevertheless,
due to the presence of the factorN in the exponent,PN (r)
falls rapidly away from its peak and thus we may use Watson’s
lemma [30] (a special case of Varadhan’s lemma), to evaluate
the asymptotic value of the integral. First, we will calculate
the normalization factor of the distribution.

As we shall see in Section IV forr close torerg, E1(r) −
E0 ∼ (r − rerg)

2/verg, whereverg is the ergodic variance (69)
of the mutual information distribution. Therefore, we have
∫ ∞

0

e−N2(E1(r)−E0) dr ≈
∫ ∞

0

e
−N2(r−rerg)

2

2verg dr ≈
√

2πverg

N
(61)
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which then gives

PN (r) ≈ N
√

2πverg
e−N2(E1(r)−E0) (62)

and fixes the normalization constant in (44). To calculate the
outage probabilityPout(r) = P(IN < Nr) to leading order
in N , we first note that forr < rerg (r > rerg), E1(r) is a
decreasing (increasing) function ofr. Therefore, to leading
order, the behavior will be dominated by the value of the
exponent atr. Using Watson’s lemma once again we obtain
the following expression for the outage probability:

Pout(r) ≈
e
−N2

[

E1(r)−E0−
E
′

1(r)2

2E′′

1
(r)

]

Q

(

N|E′

1(r)|√
E′′

1 (r)

)

√

E′′
1 (r)verg

(63)

whenr < rerg and

Pout(r) ≈ 1−
e
−N2

[

E1(r)−E0−
E
′

1(r)2

2E′′

1 (r)

]

Q

[

N|E′

1(r)|√
E′′

1 (r)

]

√

E′′
1 (r)verg

(64)

when r > rerg. In the above,E′
1(r) and E′′

1 (r) are the first
and second derivatives ofE1(r) with respect tor andQ(x) is
given by

Q(x) =

∫ ∞

x

dx√
2π

e−
t2

2 (65)
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Fig. 3. Dependence ofserg = E′′′
1
(rerg) on ρ for different values ofβ.

We see that for not too largeρ the behavior ofserg quickly converges to the
correct asymptotic limit (70), included here with dashed lines.

IV. A NALYSIS OF L IMITING CASES

We will now analyze the results of the previous section in
specific limiting cases of the parameter space(ρ, r, β). We
will thereby be able to connect with already existing results
in specific regions, and also to describe the behavior of the
probability density ofPN (r) in other regions, which hitherto
have defied asymptotic analysis.

A. Gaussian Regionr ≈ rerg(ρ)

The most relevant limiting case is the Gaussian regime:
after all, the Gaussian approximation, as well as the present
approach assume that the number of antennasN is large.
The difference is that our approach does not focus only
in the region ofN |r − rerg| = O(1), where the Gaussian
approximation should be valid. To reach that limit, we need
to analyze the smallk region of (49), (59) since, in the limit
k = 0, both equations reduce tor = rerg(ρ), where the
normalized ergodic mutual informationrerg is well known to
be [4], [7], [31]:

rerg = log u+ β log
[

1 +
ρ

u

]

−
(

1− u−1
)

(66)

with:

u =
1

2

(

1 + ρ(β − 1) +
√

(1 + ρ(β − 1))2 + 4ρ
)

(67)

By implicitly differentiatinga, b, k with respect tor through
the equations that define them, and expressing their values and
the values of their derivatives atr = rerg we can obtain the
following expansion

E1 − E0 =
(r − rerg)

2

2verg
+

serg
6

(r − rerg)
3
+ O

(

(r − rerg)
4
)

(68)
where

verg = − log

[

1− (1− u)2

βu2

]

(69)

coincides with the variance of the mutual information distribu-
tion as analyzed in [7], [9], andserg is the thirdtotal derivative
of E1 with respect tor and evaluated atr = rerg(ρ). Without
the cubic term, (68) is exactly the Gaussian limit of the mutual
information distribution discussed in various papers in the past.
This Gaussian limit is valid as long as the cubic (as well as
all higher order) terms in the exponent of the probability are
smaller than unity. Since this condition depends onserg, it is
worth looking its behavior withρ. In Fig. 3 we plotserg as a
function ofρ. We see that it has a well-defined limit for large
ρ. Specifically, it has the following asymptotic form

serg(ρ) ≈
{

− 2
log(ρ)3 β = 1

− 1
β(β−1) log(1−β−1)3

β > 1
(70)

Also, for small ρ ≪ 1 we can show thatserg ≈ −cβ/ρ
3,

where cβ > 0 is a constant that depends onβ. Thus the
condition for validity of the Gaussian approximation is

|r − rerg(ρ)| ≪ 3

√

6

|serg|
N−2/3 (71)

We therefore see that the Gaussian approximation should not
be valid for significant deviations fromrerg, e.g.r = rerg/2.
In contrast our large deviations (LD) approximation continues
to be valid in that rate region as well.
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B. Largeρ Approximation:r < rerg

Next we analyze the behavior of the probability distribution
of r in the largeρ limit, while keeping the ratior/ log ρ finite
and less than1.7 Since in the largeρ limit rerg ∼ log ρ, the
region q ≤ 1 with ρ ≫ 1 corresponds tok < 0, equations
(40), (39) will admit the following solutions fora, b:

a ∼ (β − 1)2

4ρ(1− q)(β − q)
(72)

b ∼ 4q (73)

whereq = r/ log ρ and we are assuming that0 < q < 1.
Now, note that the lower end of the spectrum has become

of orderO(1/ρ), while the upper limit is still finite, just as
expected. It is also interesting to calculate the proportion of
eigenvalues that are in the neighborhood ofx = 1/ρ when
ρ → ∞. Indeed, by integrating the probability distribution
p(x) (38) froma = O(ρ−1) (72) toLρ−1 for some (arbitrarily)
largeL we get

lim
L→∞

lim
ρ→∞

P(ρx < L) = 1− q (74)

Thus, the proportion of “small” eigenvalues is simply1 − q,
in agreement with [1]. Plugging (72), (73) into the equation
for E1 then gives the expected result for the exponent:

E1 − E0 ∼ log ρ [(1 − q)(β − q)] (75)

which is exactly the diversity exponent (divided byN2) of
[1].

From the above, we see the difference between the two
asymptotic analyses discussed above. In the previous section,
the eigenvalue distribution did not deviate significantly from
the most probable Marčenko-Pastur distribution, sincek was
assumed to be small. In contrast, here,k is finite, and in
particular equal tok = 2q − 1 − β, In addition, a significant
portion of the eigenvalues in this subset of fixedr = q log ρ
is now to become very small, of order1/ρ.

In the above discussion, we see that generally the exponent
E1(r) is not only continuous, but also differentiable inr. This
is in disagreement to the prediction by [1], [12] that when
ρ → ∞, the outage has a piecewise linear behavior. The length
of these segments is∆R ≈ log ρ, or ∆r ≈ log ρ/N . Thus for
these segments to be pronounced we need

N ≪ log ρ (76)

for largeρ. This provides a limit on the formal limitations of
our large deviations (LD) approach. In particular, clearlythe
antenna numberN has to be large, as in the Gaussian case.
But, in contrast to the Gaussian approximation, there is no
constraint here that the deviation of the rate from the ergodic
rate has to be small, as in (71). Thus thescale of N at which
the method should break down is given bylog ρ for large
ρ, rather thanρ itself. This is corroborated in the numerical
results in the next section. Surprisingly, however, the analysis
in this section shows that theform of the DMT exponent (4)
is correctly predicted within the LD approach in (75).

7This is the region analyzed in the diversity-multiplexing trade-off [1].

C. Largeρ Approximation:r > rerg

The regime of largeρ and fixed q = r/ log ρ ≤ 1 is
relevant in the analysis of the link-level outage probability.
However, the opposite regime ofq > 1 is also of interest in a
cellular setting with many multi-antenna users receiving data
in a TDMA fashion from a single multi-antenna base-station.8

In this context, to analyze the system level throughput, it is
the higher end of the probability distribution of the link-level
mutual information that is important [8], [32]. Therefore,it
is worthwhile to calculate the probability distribution ofr for
largeρ with q > 1.

Interestingly enough, the behavior here is quite different
from theq < 1 case. Herek ∼ ρq−1 and

a ∼
(

√

k + β − 1
)2

(77)

b ∼
(

√

k + β + 1
)2

(78)

resulting to

E1 − E0 ∼ ρq−1 =
er

ρ
(79)

independent ofβ. The resulting probability distribution ofr
is

P (r) ∼ e−N2er/ρ (80)

We see that whenN is not too small, the probability of finding
IN significantly larger than its ergodic value is extremely
small (in fact, doubly exponentially small inr). This is the
manifestation of the fact that scheduling the best user in a
MAC-layer in a multi-antenna setting does not seem to provide
any clear advantage. Interestingly, in [8] the authors have
the same conclusion, even though they assume a Gaussian
distribution for IN even for its tails. Here we see that the
distribution of IN goes to zero forr > rerg in a rate even
faster than Gaussian, thereby making the above conclusion,to
which they also reached even stronger.

This result has the following intuitive explanation. For large
ρ andr > rerg all eigenvalues of the matrixH†H will be large
and the only constraint imposed upon them is (32). Thus, we
may say that all of them are constrained by the condition
r ∼ log(1 + ρλi) ∼ log ρλi i.e. λi ∼ er/ρ. In this limit, the
exponent is roughlyN times the sum of the eigenvalues.

D. Limit r → 0

The final regime that is interesting to analyze is whenr →
0, independently ofρ. In this regime the solution of (49) (59)
for small r is r ∼ β/|k| for k → −∞ and the corresponding
values ofa, b are:

a ∼ r

ρβ

(

√

β − 1
)2

(81)

b ∼ r

ρβ

(

√

β + 1
)2

(82)

resulting in:

E1 − E0 ∼ −β log

[

er

βρ

]

. (83)

8In that case a MAC-layer scheduler would be transmitting to the user with
the best channel, for example.



12

wheree is the Euler number. This means that the probability
distributionPN (r) has a tail of the form

P (r) ∼
(

re

ρβ

)MN

(84)

The above behavior ofPN (r) for smallr is easy to understand:
for r to be small, we need all matrix elements of the matrixH

to be small. In fact, sinceH appears in a quadratic way in the
mutual information equation (2) we need allMN elements of
H to be less thanO(

√

r/ρ). However, there are2MN real
degrees of freedom in theM ×N complex matrixH. Hence
the allowed volume of space scales as(r/ρ)MN as above.

It should also be noted that the behaviorP (r) ∼ ρ−MN

of the mutual information cumulative distribution function
is precisely what is known as the “full diversity” of error
probability, i.e., the SNR exponent of error probability for
fixed but very small rateR while SNRρ increases isρ−MN ,
which corresponds to the left extreme point of the Zheng-Tse
exponent [1].

V. NUMERICAL SIMULATIONS

To test the applicability of this approach, we have performed
a series of numerical simulations and have compared our large
deviations (LD) approach to other popular approximations.

We start with the case of small ratesr. In this limit
the Gaussian approximation is guaranteed to give misleading
results. For example, the Gaussian approximation predictsa
finite outage probability at zero rate, while this is clearly
wrong. The LD approximation, on the other hand, correctly
predicts that the outage probability goes to zero at smallr, as
seen in (84). In Figs. 4 and 5 we plot the outage probability
of the LD approach with the Gaussian and Monte Carlo
simulations for low rates, smallρ and small square (2 × 2
and3 × 3) antenna arrays. The comparison shows that while
the Gaussian curves miss the correct outage, the LD curves
remain close to the simulated ones, even for the2× 2 MIMO
system. It is worthwhile to mention that the Gaussian outage
probability is consistently greater than the correct (simulated)
one. The reason for this can be traced to the fact that for all
β = 1 and all values ofρ, the third derivative of the exponent
E1(r) − E0 with respect tor evaluated atrerg, i.e. serg(ρ)
in (68) is negative. Disturbing away from the peaks of the
distribution we have

logPout,Gaussian(r) ≈ −N2(r − rerg)
2

2verg
(85)

while

logPout(r) ≈ −N2(r − rerg)
2

2verg
− sergN

2(r − rerg)
3

6
(86)

We may thus conclude that whenr < rerg and serg < 0
we should havePout,Gaussian > Pout. From Fig. 3 we see
that for increasingρ, serg decreases in absolute size, which
correctly predicts that the discrepancy between the Gaussian
and the Monte-Carlo curves (and LD) decreases for largerρ.

We have also analyzed the probability distribution for rates
greater than the ergodic rater > rerg. Even though this
region is not relevant for the outage probability evaluation, it is

important in the analysis of the multiuser capacity for MIMO
links in a multi-user setting with a greedy scheduler, such as
a maximum rate scheduler. [8] In such a case, the multiuser
diversity gain comes from the opportunity the scheduler has
to schedule transmission to users when their fading rates are
greater than their mean. Thus it is important to understand the
tails of the distribution in this region. In Fig. 6 we obtained the
complementary CDF (CCDF) of the mutual information, i.e.
1−Pout(r), for a3×3 setting. Here the probability of finding
users with high rates falls faster than the Gaussian, especially
in Fig. 6b for largeρ. We also find that the LD approximation
follows the Monte Carlo simulations more accurately than the
Gaussian curve, especially for lower outages. In this situation
it is worth pointing out that the argument mentioned above
regarding the sign ofserg would make1 − Pout(r) smaller
in the Gaussian approximation compared to the correct result.
We see that this only occurs for rates relatively close to the
peak. In contrast, for rates greater than the critical raterc(ρ)
the behavior of the numerical and the LD outage probability
changes markedly and they both become substantially smaller
than the Gaussian curve. This is not surprising in view of the
phase transition occurring atr = rc(ρ) as discussed in Section
III-C2.

We next analyzed the outage probability as a function of the
SNR. The outage has been analyzed in the large SNR limit
for finite rates in [12], where they have dubbed this analysis
as throughput reliability tradeoff (TRT). This model provides
a piecewise linear function of the outage probability, which
for completeness is provided below:

log2 Pout ≈ c(k)R− g(k) log2 ρ (87)

c(k) = M +N − 2k − 1

g(k) = MN − k(k + 1)

whenρ is large andk log2 ρ < R < (k + 1) log2 ρ.
This piecewise linear behavior however is observable only at

extremely high rates and SNRs, which may not necessarily be
relevant for realistic MIMO systems. We analyzed the case of
3×6, 3×3 and6×6 arrays in Figs. 7 and 8. In all three we have
found that the LD approximation agrees with simulations over
a wide region of ratesr and SNRρ. Characteristic is Fig. 7b,
where the TRT curve is accurate in large SNR, the Gaussian is
accurate in low SNR, but the LD curve is consistently closer
to the correct outage. For theN = M = 3 case and extremely
high SNRs and rates the piecewise linear behavior predictedby
TRT starts becoming visible. Nevertheless, even in those high
rates the TRT curve also fails to give quantitatively correct
outage estimates and the LD curve is still closer to the correct
outage.

It is sensible to point out that here the Gaussian outage
probability is consistently less than the simulated and theLD
values. In this case the argument made above forserg is
reversed. As can be seen in Fig. 3 forβ = 2 and largeρ
the sign ofserg is opposite, i.e. we haveserg > 0 and hence
indeed we should havePout,Gaussian < Pout.

In Fig. 9, we plot the logarithm of the appropriately normal-
ized probability density function (PDF)PN (r) as a function
of the throughputr and we compare the result with the two
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Fig. 4. Comparison of the outage probability curves forN = M = 2 of the Large Deviation result with the Gaussian approach andMonte-Carlo simulations.
The three subplots are for different SNR values: (a) withρ = −10dB, (b) with ρ = 0dB and (c) withρ = 10dB. We see that for decreasingρ the discrepancy
between the Gaussian curve (dashed) and the other two, i.e. LD (solid)) and simulated (dash-dotted) is increasing.
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Fig. 5. Comparison of the outage probability curves forN = M = 3 of the Large Deviation result with the Gaussian approach andMonte-Carlo simulations.
The three subplots are for different SNR values: (a) withρ = −10dB, (b) with ρ = 0dB and (c) withρ = 10dB. We see that for decreasingρ the discrepancy
between the Gaussian curve (dashed) and the other two, i.e. LD (solid)) and numerical (dash-dotted) is increasing. Comparing theN = 3 with the N = 2
results, we see that the former are generally closer to the simulated curve, nevertheless, the Gaussian curve is always clearly further away.
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Fig. 6. In these figures we depict the complementary cumulative distribution function (CCDF) of the mutual information for the antenna array3 × 3.
In this region of parameters we compare the the current methodology (LD) (solid) with numerical Monte-Carlo simulations (dash-dotted) and the Gaussian
approximation (dashed). We also depict the rate valuerc at which, for the given SNR, the exponent dependence onr changes from (60) to (54). We see that
at that point the distribution starts deviating strongly from the Gaussian approximation. It should be pointed out thatthis point corresponds to a mildphase
transition as discussed in Section III-C2 and also analyzed in a different context in [16]. Nevertheless, in both moderate and largeSNRs the LD curve is
consistently close to the simulated curves. (a) CCDF forρ = 20dB (b) CCDF forρ = 50dB
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(b) Outage probability only for R=16 bpcu

Fig. 7. In these figures we depict the outage probability as a function of SNR for the antenna array3×6. The current methodology (LD) (solid) is compared
with numerical Monte-Carlo simulations (108 runs, solid with dots) and two other approximations, the Gaussian (dashed) and the Throughput-Reliability-
Tradeoff (TRT) approximation (dash-dot), analyzed in [12]. The red stars on the TRT curve depict the points at which the lines change slope. (a) In this
figure, we collectively plot the curves at a number of bpcu values. At this scale all three candidates behave rather well, except perhaps for the TRT curve
at the lowest bpcu value (R=4). (b) Nevertheless, zooming infor the R=16 bpcu case, we see that both the TRT and Gaussian approximations significantly
depart from the numerical curve, at low and high SNRs correspondingly. In contrast, the LD curve is consistently closer to the numerics.
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(b) Outage forN = M = 6, and R =4, 16, 28, 40, 52 bpcu

Fig. 8. In these figures we depict the outage probability as a function of SNR for the antenna arraysN = M . The current methodology (LD) (solid)
is compared with numerical Monte-Carlo simulations (solidwith dots) and two other approximation, the Gaussian (dashed) and the Throughput-Reliability-
Tradeoff (TRT) approximation (dash-dot), analyzed in [12]. The red stars on the TRT curve depict the points at which the lines change slope. (a) Curves
for outage probability versus SNR for the antenna array3 × 3 for the same bpcu values as in Fig. 7. In contrast to that figure, for very large values of
SNR (ρ > 45dB) both the LD and Gaussian approximations deviate from the numerics (108 runs), which exhibits a linear behavior (in a log-log plot).This
deviation of the LD approximation is expected. Here the number of antennas is still quite small (N = 3), while the SNR is extremely large, making the LD
approximation (in addition to the Gaussian) not valid. In these extreme SNRs the TRT approximation seems to have the correct slope, but also misses the
exact value of the outage probability. For more reasonable SNR, the LD is quite close to the numerical plot. (b) Curves foroutage probability versus SNR
for the antenna array6× 6. In this case, the LD approximation works well even for such large SNRs.

other asymptotic forms, namely the Gaussian approximation
of the mutual information [7] and the large-ρ asymptotic result
given by (4) [1]. We see that our result performs much better
at low outage, even at moderately largeρ = 20dB.

As discussed in the Introduction, the LD method is the cor-
rect generalization of the Gaussian approximation to capture
the tails of the distribution of the mutual information. As a
result, it is expected to give increasingly accurate results as
the antenna numberN increases. In the above comparisons
we have compared the LD method with numerical simulations
focusing on its tails (low outagePout or low values of1−Pout)
for small antenna numbers. We have found that the LD

approximation behaves well even at these values ofN . The
discrepancy between the LD approximation and Monte Carlo
simulations becomes smaller for largerN as seen in Fig. 9.

In Appendix E we provide an improved estimate on the
probability distribution close its center. This estimate is a result
of the inclusion of theO(1/N) corrections to the distribution
derived in [7]. Fig. 10 shows the normalized probability distri-
bution function of the Gaussian approximation as well as the
LD approximation with and without theO(1/N) corrections.
We see that the improved estimate behaves extremely well
when the antenna numbers are quite small, in which cases
the leading approximation (without theO(1/N) correction),
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Fig. 9. Plot of the logarithm of the normalized probability distribution curve
of the mutual informationIN/N for β = 2 and comparison to the Gaussian
approximation and the large-ρ asymptotic result obtained by (4) [1]. The
numerical result forN = 5 follows closely our result, even at largeρ = 100.

has some small discrepancies. (This should be contrasted with
Fig. 9, whereN = 5 and theO(1/N) correction is no longer
necessary to provide close agreement.)

VI. CONCLUSION

In this paper we have used a large deviation approach,
first introduced in the context of statistical mechanics [13],
[15], to calculate the probability distribution of the mutual
information of MIMO channels in the limit of large antenna
numbers. In contrast to previous approaches that focused only
close to the mean of the distribution, [7]–[9], we also calculate
the probability forrare eventsin the tails of the distribution,
corresponding to instances where the observed mutual infor-
mation differs byO(N) from the most probable value of the
asymptotic distribution (where the Gaussian approximation for
the mutual information is invalid). We find that the distribution
in those tails is markedly different from what happens near
the mean and our resulting probability distribution interpolates
seamlessly between the Gaussian approximation for rates close
to the ergodic mutual information and the results of [1] for
large signal to noise ratios (where the outage probability is
given asymptotically by (4)). Our method thus provides an
analytic tool to calculate outage probabilities at any point
in the (R, ρ,N) parameter space, as long asN is large
enough. We performed numerical simulations that showed
the robustness of our approximation over a wide range of
parameters.

Additionally, this approach also provides the probability
distribution of eigenvalues constrained in the subset where
the mutual information is fixed toR for a given signal to
noise ratioρ. Interestingly, this eigenvalue density is of the
form of the Marčenko-Pastur distribution with square-root
singularities. Since the outage probability is an increasing
function of the rater for fixed ρ, we may use our approach
to evaluate the transmission rateR for a required outagePout

andρ. Thus, if the channel is known at the transmitter, we can
optimize the transmitted rate by waterfilling on the known
eigenvalue density that corresponds to the required outage
probability [33]. This generalization is left for a future work.

Finally, it is worth pointing out that, to our knowledge,
this is the first time this methodology has been applied to
information theory and communications, and it is our belief
that it may find other applications in this field. We can
corroborate this belief by pointing out that this Coulomb gas
methodology can be generalized to other channel distributions,
as long as the resulting distribution can be written as a product
of functions of the eigenvalues ofH†H. Another related
generalization is, for example, to include the correlations of
the channel, a problem which is considerably more difficult
compared to the present one. Some preliminary mathematical
tools have already been developed in [34], and we will expand
on this in the future.

APPENDIX A
PROPERTIES OF TAME PROBABILITY MEASURES

This appendix is largely devoted to the study of the energy
functionalE:

E[p] =

∫

xp(x) dx − (β − 1)

∫

p(x) log x dx (12)

−
∫∫

p(x)p(y)log |x− y| dx dy

wherep ∈ Ω is a tame density. As evidenced by definition 2
where the concept of tameness was introduced, an extremely
important part in our analysis will be played by the so-called
Lr norm ‖ · ‖r defined by:

‖f‖r ≡
(
∫

|f(x)|r dx
)1/r

. (88)

If a function f has finiteLr norm it is calledLr-integrable
and the space of such functions constitutes a complete vector
space (also denoted byLr). The completeness of this space
follows fromHölder’s inequalitywhich we state without proof
and which will be of great use to us [35]:

‖fg‖1 ≤ ‖f‖r‖g‖s (89)

whenever the exponentsr, s > 1 areconjugate, that is:r−1 +
s−1 = 1.

We will also make heavy use of the convolutionf ∗ g
between two functionsf andg:

(f ∗ g)(x) =
∫

f(x− y)g(y) dy. (90)

If f ∈ L1 and g ∈ Lr, Young’s inequality(pp. 240–241 in
[35]) states that their convolution will be finite for almostevery
x and also that:

‖f ∗ g‖r ≤ ‖f‖1‖g‖r. (91)

We may now proceed with the proof of lemma 3 regarding
the domain ofE and its continuity properties:

Proof of Lemma 3:To show thatE is finite for all tame
functionsp ∈ Ω, we will study E[p] term by term. To that
end, letp : R+ → R be tame for some exponentε > 0; that
is, assume that

∫

|p|1+ε < ∞ and that
∫

xp(x) dx < ∞. We
then have:

• The first term ofE[p] is finite by definition.
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• The second term in (12) can be written as:
∣

∣

∣

∣

∫

p(x) log x dx

∣

∣

∣

∣

≤
∫

|p(x) log x| dx

=

∫ 1

0

|p(x) log x| dx+

∫ ∞

1

|p(x) log x| dx.

Since log x < x for x > 1, the second integral will
be bounded from above by

∫

x|p(x)| dx < ∞. As for
the first integral, setr = 1 + ε and s = 1 + 1

ε so that
r−1+ s−1 = 1. Now, if χ[0,1] is the indicator function of
[0, 1], note that

∫

|χ[0,1] log x|s dx =
∫ 1

0
| log x|s dx < ∞

for all s > −1. As a result, Hölder’s inequality yields:
∫ 1

0

|p(x) log x| dx = ‖p · χ[0,1] log ‖1

≤ ‖p‖1+ε · ‖χ[0,1] log ‖1+1/ε < ∞
(92)

on account ofp beingL1+ε-integrable.
• For the last term ofE, let D+ = {(x, y) ∈ R

2 : y > x}
and note that:
∣

∣

∣

∣

∫∫

p(x)p(y) log |x− y| dy dx
∣

∣

∣

∣

≤ 2

∫∫

D+

|p(x)p(y) log |x− y|| dy dx

= 2

∫ ∞

0

|p(x)|
∫ ∞

x

|p(y) · log(y − x)| dy dx. (93)

Now, the innermost integral can be written in the form:
∫ ∞

x

|p(y)| · | log(y − x)| dy

=

∫ ∞

0

|p(x+ w) · logw| dw

=

∫ ∞

0

|p(x+w)K(w)| dw+

∫ ∞

1

|p(x+w) logw| dw

≤
∫ ∞

0

|p(y)|K(y − x) dy

+

∫ ∞

0

|p(1 + x+ w) log(1 + w)| dw. (94)

whereK(w) is the kernel:

K(w) =

{

log |w|, 0 < w ≤ 1

0, otherwise.
(95)

As above,K will be Ls-integrable for alls > −1 and,
in particular, fors = 1 + 1

ε . Therefore, we will have:

∫ ∞

0

|p(x)|
∫ ∞

0

|p(y)|K(x− y) dy dx

=
∥

∥|p| ·
(

|p| ∗ |K|
)∥

∥

1

≤ ‖p‖1+ε · ‖p ∗K‖1+1/ε

≤ ‖p‖1+ε · ‖p‖1 · ‖K‖1+1/ε < ∞ (96)

where the penultimate step is an application of Hölder’s
estimate and the last one follows from Young’s inequality.

Finally, the second integral of (94) can be estimated by:

∫ ∞

0

|p(1 + x+ w) log(1 + w)| dw

≤
∫ ∞

0

|p(1 + x+ w)|w dw

≤ Cx

∫ ∞

0

w|p(w)| dw (97)

for some sufficiently largeC > 0. Then, sincep is tame
(i.e.

∫

w|p(w)| dw < ∞), we may integrate (97) overx
to finally obtain thatE[p] < ∞.

This completes the proof thatE[p] is finite for all tame
functionsp ∈ Ω. To show thatE is continuous on all subspaces
of L1+ε-integrable functions with finite absolute mean, it
simply suffices to note that all our estimates ofE[p] are
bounded by theL1+ε norm of p.

Remark.If a function is inLr for somer > 1 and has finite
mean, it will necessarily be inL1 as well; in this way, tame
measures form a (dense) subspaceΩ of L1(R+) that is similar
to the union

⋃

ε>0 L
1+ε.

We will now prove Lemma 4 showing thatE is not only
continuous but also convex over the (convex) domainX of
tameprobability measures.

Proof of Lemma 4:Let p, q ∈ X be two tame probability
measures and introduce the bilinear pairing:

〈p, q〉 = −
∫ ∫

p(x)q(y) log |x− y| dx dy (98)

which is actually well-defined on the whole spaceΩ (as can
be seen by the proof of lemma 3). Since the first two terms of
E are linear (and hence convex), it will suffice to show that:

〈

(1 − t)p+ tq, (1− t)p+ tq
〉

< (1− t)〈p, p〉+ t〈q, q〉 (99)

for all t ∈ (0, 1). Indeed, if we letφ = p−q ∈ Ω, equation (99)
reduces to showing that the pairing〈·, ·〉 is an inner product
on the subspace of densities with zero total charge, i.e. that:

〈φ, φ〉 > 0 (100)

for any nonzero tameφ ∈ Ω with
∫

φ(x) dx =
∫ (

p(x) −
q(x)

)

dx = 0.
From the point of view of electrostatics, this is plain to see:

after all 〈φ, φ〉 is just the self-energy of the charge densityφ.
More specifically, let us defineD+ = {(x, y) : x < y} as in
the proof of lemma 3. Then we will have:

〈φ, φ〉 = −2

∫

D+

φ(x)φ(y) log |x− y| dx dy

= −2

∫ ∞

0

φ(x)

∫ x

0

φ(y) log(x− y) dy dx

> 2

∫ ∞

0

φ(x)

∫ x

0

φ(y)(y − x) dy dx (101)

So, if we setΦ(x) =
∫ x

0
φ(y) dy and integrate by parts, we
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get:

〈φ, φ〉 >

∫ ∞

0

φ(x)

∫ x

0

yφ(y) dy dx−
∫ ∞

0

xφ(x)Φ(x) dx

= −
∫ ∞

0

φ(x)

(
∫ x

0

Φ(y) dy

)

dx

=

∫ ∞

0

Φ2(x) dx − Φ(∞)

∫ ∞

0

Φ(y) dy

> 0 (102)

sinceΦ(∞) ≡
∫∞
0

φ(x) dx = 0 = Φ(0) on account ofφ
having zero total charge.

APPENDIX B
CONSTRUCTION OF THECOULOMB GAS MODEL

In this appendix we will briefly show how the transition
from discrete to continuous eigenvalue measures discussed
in Section II-A occurs. As in the main text, we will not
present any formal proof here either. However, we will argue
that treating the formally discrete distribution of eigenvalues
appearing in (9), as continuous in the largeN limit is quite
reasonable. A more formal method showing the same result
appears in [15]. The main reasoning, also discussed in the
main text, is that the external confining potentials defined by
the first two terms in (9) or (12) are strong enough to overcome
the logarithmic repulsion between eigenvalues (third termin
(9)), and therefore guarantee that (with high probability)most
of the eigenvalues will be confined in a finite width region
near the minimum of the external potential. At the same time,
this will mean that the eigenvalue density per unit length will
be scaling withN if N is large enough. As a result, this can
be seen as a high-density limit and therefore the continuous
approximation for the measure will be valid, at least close to
configurations whose energy is low enough.

In the remainder of this section we will motivate the
transition from the discrete to continuous eigenvalue densities
and show what kind of terms we expect to see. We start by
focusing in a finite region of eigenvalues of lengthD. We then
divide the integration overλk in (10) in L segments of length
ℓ, such thatLℓ = D. The length of each segmentℓ has to be
small enough so that the energy (9) can be well approximated
with all eigenvalues within a given segment being placed at the
endpoint of the segment. At the same time, it has to be large
enough so that there is a macroscopic (i.e.O(N)) number of
eigenvalues inside each segment. In principle, at the end of
this exercise we need to take the limitℓ → 0 as well, however
we will discuss the subtleties of this limit later on. As a result,
the integral overDλ can be written as:
∫

Dλ ∼
N
∏

k=1

(

L
∑

mk=1

ℓ

)

=

L
∏

m=1

(

N
∑

nm=0

)

N !ℓN
∏L

m=1 nm!
(103)

∼
L
∏

m=1

(

N
∑

nm=0

)

exp

[

−Nℓ
∑

m

p(mℓ) log (p(mℓ))

]

(104)

where nm are the number ofλk ’s that appear in themth
segment, with constraint

∑

m nm = N . The factorials ap-
pearing at the RHS of (103) are the number of ways the

N eigenvalues can be re-arranged inL segments. This factor
constitutes the entropy term and, for largeN andnm, we can
apply Stirling’s formula to get the exponent in (104) (where
p(mℓ) = nm/(Nℓ) is the fraction of eigenvalues per unit
length appearing in segmentm).

We next look at the form of the energy in (9)

E(λ) ∼ ℓ
∑

m

p(mℓ) (mℓ− (β − 1) logmℓ) (105)

+ ℓ2
∑

m 6=m′

p(mℓ)p(m′ℓ) log |(m−m′)ℓ|

+
ℓ

N

∑

m

p(mℓ) log amℓ

The last term captures the repulsive interaction between eigen-
values in the same segmentm. The value ofam represents the
typical distance between eigenvalues in segmentm in units
of ℓ and therefore is a number of order unity. We may now
let ℓ → 0, which will make the sums converge to integrals
ℓ
∑

m →
∫

dx and p(mℓ) can be written as a continuous
function p(x). Representing the sum over all possible states
(i.e. the product of sums in (104)) by

∫

Dp we can now get

Z ∼
∫

χ

Dp e−N2
E[p]e−N

∫

dxp(x) log p(x)eN
∫

dxp(x) log d(x)

(106)
whered(x) = amℓ is the average distance between eigenvalues
at the positionx = mℓ. One can estimate this average inter-
eigenvalue distance to be

d(x) ∼ amℓ ∼ 1

Np(x)
(107)

This was first proposed by Dyson [13], [15], [23] and was
shown explicitly more recently in [36]. It is remarkable that
with this choice ofd(x) theO(N) dependence onp(x) in the
exponent of (106) vanishes. This surprising fact is true only for
complex matrices [23] in which, up to uninteresting constants,
the leading correction to theN2E[p] term in the exponent is
O(1).

APPENDIX C
SOLUTION OF THE VARIATIONAL EQUATION

In this appendix, we give a more detailed account of the
solution of the variational equation:

δL1[p] = 0

whereL1 is the Lagrangian function of (27). To that end, if
φ ∈ Ω is tame, we get:

L1[p+ tφ] = L1[p] + tL1[φ]

− 2t

∫∫

φ(x)p(y) log |x− y| dy dx+ O(t2)

(108)
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and a simple differentiation att = 0 yields:

〈δL1[p], φ〉 =
d

dt

∣

∣

∣

∣

t=0

L1[p+ tφ]

= L1[φ]− 2

∫∫

φ(x)p(y) log |x− y| dy dx

=

∫

φ(x)Ψ[p, x] dx, (109)

where the expressionΨ[p, x] is given by:

Ψ[p, x] = 2

∫

p(y) log |x− y| dy − x

+ (β − 1) log x+ c+ k log(1 + ρx) + ν(x). (110)

Thus, for the above expression to vanish identically for all
φ ∈ Ω, we must haveΨ[p, x] = 0, and this is precisely (34),
repaeted below:

2

∫ ∞

0

p(x′) log |x− x′| dx′ = x− (β − 1) log x

− c− k log(1 + ρx)− ν(x). (111)

Having derived this stationarity equation in terms ofp, we
will devote the rest of this appendix to the expression (35),
also repeated below for convenience, that is obtained after
differentiating (34) above:

2P

∫ b

a

p(y)

x− y
dy = 1− β − 1

x
− kρ

1 + ρx
≡ f(x) (112)

for all x ∈ [a, b] (cf. section II-B). This integral equation is
known as theairfoil equationand can be studied with the help
of the finite Hilbert transform [27]:

T[φ](x) = P

∫ 1

−1

φ(y)

y − x
dy. (113)

If r > 1, theT-transform mapsLr to Lr but, nevertheless,
it lacks a unique inverse.9 Indeed, the kernel ofT is spanned
by the functionω(x) = (1 − x2)−

1
2 : T[ω](x) = 0 for all

x ∈ (−1, 1). Outside this kernel, the solutionsφ to the airfoil
equationT[φ] = g with φ, g ∈ Lr[−1, 1] will satisfy [27]:

φ(x) = − 1

π
P

∫ 1

−1

√

1− y2

1− x2

g(y)

y − x
dy +

c√
1− x2

(114)

wherec is an arbitrary constant that stems from the fact that
any two solutions of the airfoil equation differ by a multiple
of ω(x) = (1− x2)−

1
2 .

Hence, after rescaling the interval[−1, 1] to [a, b], the
solution of the stationarity equation (35) will be given by:

p(x) =
P
∫ b

a

√
(y−a)(b−y)f(y)

y−x dy + C′

2π2
√

(x− a)(b − x)
(115)

whenever f is itself L1+ε-integrable. So, by substituting
f(x) = 1 − β−1

x − k
x+z from (35) and performing one last

integration, we obtain the final result (36).
It is worthwhile to mention here again how this procedure

breaks down if we allow the support ofp to extend toa = 0

9This is a remarkable difference from the case of theinfinite Hilbert
transform which integrates over allR and whichis invertible [27].

for β > 1: in that case, the functionf also extends all the way
to a = 0 and the termβ−1

x makes it non-integrable. However,
since the Hilbert transform preservesLr-integrability forr > 1
andp is assumed tame (and henceL1+ε-integrable), equation
(35) would equate an integrable function with a non-integrable
one, thus yielding a contradiction. Therefore, as we statedin
section II-B, solutions witha = 0 are physically inadmissible
whenβ > 1.

APPENDIX D
PROOF OF UNIQUENESS OF SOLUTION OF(39),(40)

In order to show that (39), (40) admit a unique solution,
we start by observing that for fixedk, β and z, (39) has
a unique positive solutiona ≤ b. Then, from the implicit
function theorem, this solution can be captured in terms of
b by a smooth functiona(b) whose derivative can be obtained
implicitly from (39) (and which is negative). With this in mind,
the normalization integralg(b) =

∫ b

a(b) p(x) dx takes the form:

g(b) =
a(b) + b

4
+
1

2

(

ρ−1 − k − (β − 1)

(

1 +
1

ρ
√

a(b)b

))

and this is actually an increasing function ofb. Indeed, after
a somewhat painful calculation, one obtains:

g′(b) =
ρ

4

[

1 +
(β − 1)

ρ
√

a(b) b3

]

b− a(b)

1 + ρb
> 0 (116)

However, with a(b) decreasing and bounded below by0,
this last equation yieldsg′(b) > 1/8 for large enoughb,
i.e. limb→∞ g(b) = +∞. So, by continuity, there will be a
(necessarily) uniqueb∗ such thatg(b∗) = 1. Hence, the pair
a∗ = a(b∗), b = b∗ will be the unique solution to (39), (40).

APPENDIX E
O(1/N) CORRECTION TO THELD APPROXIMATION

Here we provide an improved estimate on the probability
distribution close to the center of the distribution. This estimate
is a result of the inclusion theO(1/N) higher moment
corrections to the distribution derived in [7].

It is well known [37] that to provide asymptotic corrections
to the limiting Gaussian distribution due to the presence ofa
small (but finite) skewness we need to change the distribution
as follows:

PN (x) =
e−

x2

2v

√
2πv

(

1− s

2v2

(

x− x3

3v

))

(117)

wherev is the variance of the asymptotically Gaussian distri-
bution ands is the third moment of the distribution. Clearly,
the above distribution cannot be valid over the entire support
of x since the cubic polynomial will become negative for some
value ofx. Nevertheless, since the third moment is small for
largeN this value ofx will become asymptotically large.

We may therefore apply the above formula to our model.
The value of the third moments = s3/N has been calculated
in [(60) in [7]] and it is of orderO(1/N). As a result,
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Fig. 10. Normalized probability distribution curves for the PDF of the mutual information for the antenna arrayN = 2, M = 4 for ρ = 20dB (a) and
ρ = 50dB (b). In addition to the LD and Gaussian approximations and the Monte Carlo-generated curves, we have plotted the LD approximation including
theO(1/N) correction analyzed in Appendix E. We see that the latter curve agrees very well with the numerical one.

the correction to the Gaussian approximation of the mutual
information is given by

PN (R) =
e
− (R−Nrerg)2

2verg

√

2πverg
· (118)

(

1− s3
2Nv2erg

(R −Nrerg) +
(R −Nrerg)

3

3verg

)

To orderO(1/N), there is also the correction to the mean of
the mutual information [7], which needs to be subtracted off
from IN .

Now, to obtain the correction to the LD approximation, we
need to take into account that the large deviations functionE1

also has a cubic term forr ≈ rerg , which needs to be balanced.
This can be done by adding a cubic term that cancels this term
for r ≈ rerg . Thus we obtain

PN (r) =
Ne−N2(E1(r)−E0)

√

2πverg

(

1− s3
2v2erg

(r − rerg)

+
N2

6

(

s3
v3erg

+ serg

)

(r − rerg)
3

)

(119)

whereserg is given by (70).
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