
Distribution of MIMO Mutual Information:
A Large Deviations Approach

Pavlos Kazakopoulos, Panayotis Mertikopoulos, Aris L. Moustakas and Giuseppe Caire

Abstract—Using a large deviations approach we calculate the
probability distribution of the mutual information of MIMO
channels in the limit of large antenna numbers. In contrast to
previous methods that only focused to the distribution close to its
most probable value, thus obtaining an asymptotically Gaussian
distribution, we calculate the full distribution includin g its tails,
which behave quite differently from the bulk of the distribu tion.
Our resulting probability distribution seamlessly interp olates be-
tween the Gaussian approximation for ratesR close to the ergodic
value of the mutual information and the approach of Zheng and
Tse [1], valid for large signal to noise ratiosρ. This provides us
with a tool to analytically calculate outage probabilities at any
point in the (R, ρ,N) parameter space, as long as the number
of antennas N is not too small. In addition, this method also
yields the probability distribution of eigenvalues constrained in
the subspace where the mutual information per antenna is fixed
to R for a given ρ. Quite remarkably, this eigenvalue density is of
the form of the Marcenko-Pastur distribution with square-r oot
singularities.

I. I NTRODUCTION

Considerable interest has followed from the prediction [2],
[3] that the use of multiple antennas in transmitting and
receiving signals can result to substantial gains in informa-
tion throughput. To analyze the theoretical limits of such a
MIMO (Multiple Input Multiple Output) system, it has been
convenient to focus on the i.i.d. Gaussian noise and input case
of the mutual information for a channel matrixH, which takes
the familiar form

IN = ln det
(

I + ρH†
H

)

. (1)

Hereln signifies the natural logarithm,ρ is the signal to noise
ratio andH is theM × N channel matrix, assumed to have
independentCN (0, 1/N) elements.

One first attempt to analytically quantify the gains of the
use of MIMO was to assume that the number of antennas
N is large andβ = M/N fixed and finite, in which case
H can be viewed as a large random matrix [4]. By applying
ideas and methods from the theory of random matrices, it was
shown that the value of the mutual information per antenna
I(ρ,H)/N “freezes” to a deterministic value in the largeN
limit, corresponding to its most likely value, the so-called
ergodic average rerg(ρ). Underlying this result is the fact that
the distribution of eigenvalues ofH†

H itself freezes to the

P. Kazakopoulos (pkazakop@phys.uoa.gr), P. Mertikopoulos (pmer-
tik@phys.uoa.gr) and A. L. Moustakas (arislm@phys.uoa.gr) are with the
Physics Dept., Athens Univ., 157 84 Athens, Greece. G. Caire(caire@usc.edu)
is with the EE - Systems Dept., Univ. Southern California LosAngeles, CA
90007, USA

celebrated Marcenko-Pastur (MP) distribution, given by

p(x) =

√

(b − x)(x − a)

2πx
(2)

wherea, b = (1 ±√
β)2 are the end-points of its support.

For finiteN , one is naturally interested in the distribution of
the mutual information since this would give the probability
of outage when transmitting at an arbitrary rate in a fading
channel. Various approaches [5]–[7] have shown that the
distribution of the mutual informationR becomes asymp-
totically Gaussian, with mean equal to the ergodic capacity
Rerg = Nrerg(ρ) and a variance of order unity inN . This
Gaussian variability of the mutual information is due to the
fluctuations of the eigenvalues of the matrix away from the
most probable distribution described by the MP law. Since
this Gaussian approximation is essentially a variation of the
central limit theorem, it is only valid within a finite number
of standard deviations fromRerg. As a result, it should fail to
capture the tails of the distribution, for example the probability
of the rateR being half the most probable oneRerg/2, since
this would correspond toO(N) standard deviations away from
the mean.

Nevertheless, the tails of the distributions of the mutual
information are important, since they correspond to regimes
with low outage probability, where one would want to operate
a MIMO system. This interplay between low outage and
multiplexing gain was exemplified in [1]. In this seminal paper,
the authors analyzed the asymptotics of the distribution ofthe
mutual information in the limit of largeρ, with R/ lnρ fixed.
They found that the asymptotic form of the logarithm of the
distribution of the mutual information is a piecewise linear
function of R/ lnρ, linearly interpolating between the values

lnP (Rn) ≈ − (Rn − M ln ρ)(Rn − N ln ρ)

ln ρ
(3)

where the intermediate rates are given byRn = n ln ρ for
integern ≤ N .1 When, in addition toρ, N is large,lnP (R)
in (3) becomes to leading order a continuous function ofR/N .
It should be pointed out that this result is complementary tothe
largeN asymptotics discussed above, since it provides insight
in the distribution of the mutual information quite far from
its peak, which for largeρ (and largeN ) is at IN ≈ N ln ρ.
However, it does not give any quantitative estimates of the

1It should be noted that [1] analyzed theoutage probability, namely the
Prob(IN < R), rather than the probability densityP (R) = dProb(IN <
R)/dR. However for largeρ and Rn < N ln ρ the expression of both is
identical up to corrections of O(1).



outage for finiteρ and therefore cannot be used to realistic
outage predictions.
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Fig. 1. Generalized MP distributions for SNR=10dB and different values of
r
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Fig. 2. Comparison of MP distribution and distribution resulting from shifting
the rate by two standard deviations from the most probable one rerg. The
agreement is quite remarkable with the numerical distribution.

Meantime, all variants of the largeN Gaussian approxima-
tion of the mutual information [5]–[7] fail spectacularly for
large ρ, even close to the peak of the distribution. Specifi-
cally, they all predict that the probability distribution is given
asymptotically by

lnP (R) ≈ − (R − N ln ρ)2

2 ln (1 − β−1)
(4)

whereβ = M/N > 1, which is in striking disagreement com-
pared to (3). It should be noted that forβ = 1 the asymptotic
form of (3) is recovered within the Gaussian approximation
[5], [7]. This discrepancy forβ 6= 1 indicates that the limits
N → ∞ and ρ → ∞ cannot naı̈vely be interchanged.
When one takes the largeN limit first, one focuses on the
most probable eigenvalue distribution, which tends to the
Marcenko-Pastur distribution (2), and small variations around
it. However, as can be seen in (2), this distribution (almost
surely) produces no eigenvalues close to zero whenβ > 1.

Nevertheless, the analysis for largeρ focuses at the regime
where the eigenvalues are of orderz ≡ ρ−1. As a result, it is
not surprising that the large-N Gaussian approximation of the
mutual information distribution misses the correct behavior.

In summary, we have two methods, the large-N Gaussian
approximation and the largeρ analysis, both of which have
their own regions of validity but fail to produce quantitative
results for the outage probability outside that region. Thus,
one still needs an approach that correctly describes the outage
behavior of the mutual information distribution for arbitrary ρ
andR.

In this paper, we introduce a large deviations approach:
this is formally valid only for largeN , but it actually works
over the whole range of values ofR and ρ. This method
bridges the two regions of small/intermediate and large signal
to noise ratios within a single formalism. In effect it amounts
to calculating the rate function of the logarithm of the aver-
age moment generating function of the mutual information.
Our method was first introduced in the context of random
matrix theory by Dyson [8] and is quite intuitive because it
looks at the eigenvalues as point charges repelling each other
logarithmically. As a byproduct of this approach, we obtain
the most probable eigenvalue distribution constrained on the
manifold of fixed total rateR and signal to noise ratioρ.
This is a generalized Marcenko-Pastur equation that gives the
eigenvalue distribution at the tails of the distribution ofR.

This generalized Marcenko-Pastur distribution can also be
seen as the inverse of the so-called Shannon transform in-
troduced in [9] in the following sense: While the Shannon
transform yields the value of normalized mutual information
IN/N as a functional of the asymptotic eigenvalue distribu-
tion of H

†
H (the Marcenko-Pastur distribution), in contrast

the generalized Marchenko-Pastur distribution introduced here
corresponds to the asymptotic eigenvalue distribution ofH

†
H

for a given value of the mutual informationR = Nr, i.e., when
H

†
H is constrained on the manifold defined byr = IN/N .

II. M ETHODOLOGY

In this section we will describe the basic steps of the
mathematical methodology, following the elegant approach
introduced in [10], [11]. We wish to calculate the probability
distribution of the mutual information (1), which can be
written in terms ofλk, the eigenvalues of the Wishart matrix
H

†
H as

IN =

N
∑

k=1

ln (1 + ρλk) (5)

We will assume thatβ = M/N > 1. In the opposite case
β < 1, we just need to redefineρnew = ρβ and interchange
M with N . Clearly, the probability distribution of the mutual
information will depend on the joint probability distribution
of the eigenvalues{λk}. This is well known to be

P ({λk}) = A∆({λi})2
N
∏

k=1

λM−N
k e−Nλk

= Ae−N
∑

k
(λk−(β−1) lnλk)+2

∑

j>k
ln|λj−λk|(6)



whereA is a constant and∆({λk}) =
∏

i>j(λi − λj) is the
so-called Vandermonde determinant of the eigenvaluesλk. An
intuitive way to interpret the eigenvaluesλk in the exponent
of (6) as the positions ofN positive unit charges located on
a line repelling each other and interacting with an external
electric field. Thus the exponent in (6) can be viewed as the
configuration energy of these charges. This picture was first
proposed by Dyson [8]. Within this interpretation, the last
term in the exponent corresponds to the logarithmic repulsion
energy, while the first term is the potential due to a constant
field, and the second term is the repulsion of a point charge
located at the origin. Indeed, these are simply the potentials
that one obtains in classical two-dimensional electrostatics.
Dyson also pointed out that, just as in electrostatics, when
the number of charges is large it is natural to analyze the
individual charges collectively as a charge densityp(x), which
in this case has to be normalized properly. It is therefore
convenient to express the sums in the exponent above as
integrals over a density, e.g.

∑

k λk = N
∫

dxp(x)x, where
Np(x) =

∑

k δ(x − λk). In this framework, an average of
any function of λk over their joint probability distribution
is interpreted as an integration over all possible normalized
charge densitiesp(x).

Our task is to calculate the probability density of the mutual
informationP (R) = Ep [δ(IN − Nr)], wherer is the value of
the (normalized) mutual information per antenna,r = R/N .
Representing theδ-function through its Laplace transform and
expressingIN asN

∫

dxp(x) ln(1 + ρx) yields

δ(IN − Nr) =

∫

Dk eN2k[
∫

dxp(x) ln(1+ρx)−r] (7)

where k is integrated along the path(t − i∞, t + i∞) for
some appropriate real numbert with the integration measure
Dk = Ndk/(2πi). Similarly, one can express the normaliza-
tion condition as aδ-function δ(N

∫

dxp(x) − N) inside the
p-average, which can then also be expressed by its Laplace
transform. Following an approach introduced by Dyson [8]
and more recently discussed in [11] the probability densityof
the mutual informationP (R) can be written as

P (R) =
Z1

Z0
(8)

Z0 =

∫

Dp

∫

Dc e−N2E0[p] (9)

E0[p] =

∫ ∞

0

dxxp(x) − (β − 1)

∫ ∞

0

dx p(x) ln x

−
∫ ∞

0

dx

∫ ∞

0

dx′p(x)p(x′) ln |x − x′|

+ c

[
∫ ∞

0

dx p(x) − 1

]

(10)

Z1 =

∫

Dp

∫

Dc

∫

Dke−N2E1[p] (11)

E1[p] = E0[p] + k

[
∫ ∞

0

dx p(x) ln(1 + ρx) − r

]

(12)

The notation
∫

Dp signifies a functional integral over all

possible charge density functionsp(x) ≥ 0.2 Similar to (7),
the integral overc ensures the normalization ofp(x). Z1

andZ0 represent volumes in configuration space ofp(x), the
latter constrained to normalizedp(x), while the former also
constrained in the subspace where the mutual information is
fixed to IN = R(= Nr) (7). In the same spirit,E1[p] and
E0[p] represent the energies of the configurationsp(x) with
and without the mutual information constraint.3

Following Dyson [8], it is instructive to interpret the terms
in E0[p], E1[p] above in the spirit of a Coulomb gas. Thus the
first term in (10) corresponds to the energy due to a constant
electric field attracting the charge density towards the origin.
The second term is a logarithmic repulsion due to aδ - function
charge density at the origin with strengthβ−1, while the third
one is the logarithmic repulsion between charges. The fourth
term adds a constantc shift in the potential of all charges,
which, just as in electrostatics, determines the total charge,
i.e. the normalization condition. Finally, the second termin
(12) is avirtual δ - function charge density at the (forbidden)
locationx = −z. This acts as a shift of the total charge density
to the left or the right, depending on the sign ofk, to ensure
that the mutual information per channel isr. It should be noted
that this intuition holds only for realc andk, however, as we
shall see these will be the only relevant values for largeN .

For largeN both Z0 and Z1 can be approximated by the
value of their integrands at the saddle points of the correspond-
ing exponents. The saddle points are determined by taking the
functional derivatives ofE0[p] and E1[p] respectively, with
respect to the functionp(x) and setting these to zero. As
a result we need to find the densityp1(x) that satisfies the
following relation

δE1[q]

δq

∣

∣

∣

∣

q=p1

= 0 (13)

with a similar relation forE0[p], which is minimized with a
different densityq = p0. In addition,E1[p] needs to be at a
saddle-point with respect to the variablesc and q. Is easy to
see that, in order for the final result to be positive, the saddle-
point values ofc, k have to be real. As a result we also need

∫

dxp(x) = 1 (14)
∫

dxp(x) ln(1 + ρx) = r (15)

Furthermore,p(x) has to be non-negative in the regionx > 0,
since it represents a density of eigenvalues. We will henceforth
denoteE1 = E1[p1] and E0 = E0[p0]. From the extremal
values ofE1 and E0 the asymptotic probability distribution
of the mutual informationP (R) (8) can be evaluated, in the
sense that

lim
N→∞

lnP (R)

N2
= − (E1 − E0) (16)

2We refer the reader to any standard advanced physics book, most notably
[12] for details on functional derivatives and functional integrals, orpath
integrals.

3It should be pointed out that the above equations are correctto ordero(N)
in the exponent; see e.g. [8], [11].



i.e. for finite N , P (R) ≈ e−N2(E1−E0). The above anal-
ysis yields identical results with a more standard large
deviations approach. For largeN , Varadhan’s lemma [13]
would imply thatlnZ0/N

2 would be asymptotically equal to
−maxp minc E0[p], while lnZ1/N

2 → −maxp minc,k E1[p].
Our task now is to find a solution of (13), subject to the

above conditions. The solution forE0 will result as a special
case when we relax the condition (15), which will correspond
to setting k = 0 in the final result, withp0(x) the MP
distribution. (13) results in

2

∫ ∞

0

dx′p(x′) ln |x−x′| = x−(β−1) lnx+c+k ln(1+ρx)

(17)
With a fair amount of hindsight we know that the solution of
the above integral equation will be positive between two as of
yet undetermined endpoints0 ≤ a < b < ∞. To eliminatec
for the moment, we differentiate with respect to x of (17):

2P
∫ b

a

p(x′)

x − x′
dx′ = 1 − β − 1

x
+

k

x + z
≡ f(x) (18)

whereP denotes the principal value of the expression. The
above equation has a straightforward physical meaning. It
represents a balance of forces at every locationb > x ≥ a:
The repulsion from all other charges of the distribution located
at x′ (expression at the LHS) is equal to the external forces
(RHS). Whenβ > 1, p(x) cannot have any support atx = 0,
because in this case the force from the finite charge density
located atx = 0 (second term above) would be infinite. As
a result we expect that forβ > 1, a > 0. The solution of
this integral equation for generalf(x) can be obtained using
standard methods [14].

p(x) =
P

∫ b

a

√
(y−a)(b−y)f(y)

y−x
dy + C

2π2
√

(x − a)(b − x)
(19)

=

√
b − x

2π
√

x − a

[

1 − k
√

a + z

(x + z)
√

b + z
− (β − 1)

√
a

x
√

b

]

In the second line above we have eliminated the constantC by
the conditionp(b) = 0.4 The unknownsa, b can be determined
as a function ofk by the normalization condition (14) and the
conditionp(a) = 0.

III. R ESULTS

When β > 1, i.e. M > N , the finite density of zero
eigenvalues repels other eigenvalues from the region therefore
the continuous charge density has a lower limita > 0, at
which it goes to zero. If we impose the conditionp1(a) = 0
on (19) we get

k
√

(a + z)(b + z)
+

β − 1√
ab

= 1 (20)

Thusp1(x) takes the form

p1(x) =
1

2π

√

(b − x)(x − a)

x(x + z)

(

x +
(β − 1)z√

ab

)

(21)

4It can be shown that whena, b are free to vary, this results to the extra
conditionsp(a) = p(b) = 0 [15].

Integratingp1(x) and imposing (14) implies

(a + b − 2 − 2k − 2β + 2z)
√

ab = 2(β − 1)z (22)

We will show elsewhere that (20), (22) admit a unique solution
a, b for givenk. It is worth commenting on (21). This equation
gives the asymptotic density of eigenvalues constrained onthe
subspace with fixed total rateR = Nr in the limit of large
N . Its form is reminiscent of the Marcenko-Pastur equation,
to which it actually reduces whenk = 0, or equivalently
r = rerg, i.e. when ther - constraint (15) is lifted. It is
quite remarkable that even away from the (most probable) MP
distribution, the constrained eigenvalue distribution “hardens”
to a deterministic one. In Fig. 1 we plot examples of such
eigenvalue distributions. Finally, we can readily integrate (15)
with p1(x) given by (21) to obtain

r = ln ρ +
∆

4

[

w2
− ln

(

∆

e

)

+ 2w2
+ ln

w+

2

]

(23)

− ∆

8

[

(w2
+ − w2

−) ln

(

w2
+ − w2

−

)

4

]

+
(β − 1)∆ ln∆

8
√

ab

(

w2
+ − w2

− − v2
+ + v2

−

4
− 1

)

+
(β − 1)∆(v2

+ − v2
−)

8
√

ab
ln v2

+

+
(β − 1)∆(w2

+ − w2
−)

8
√

ab
ln

(

w2
+ − w2

−

4

)

+
(β − 1)∆

2
√

ab

[

(2v − w2
+ + 1) lnw+ + z ln 4

]

− (β − 1)(v2
+ − v2

−)

4
√

ab
ln

(

√

v(1 + w) +
√

w(1 + v)
)

where ∆ = b − a, w = a+z
∆ , v = a

∆ , w± =
√

1 + w ±√
w, v± =

√
1 + v±√

v. This equation can be solved to give
k as a function ofr. For k = 0 (20) and (22) result to the MP
values ofa, b = (1 ±√

β)2 and (21) reduces to (2). In Fig. 2
we compare the distribution with the corresponding numerical
results. We see that the agreement is quite remarkable.

We may now calculate the values ofE0, E1. The simplest
way is to start by evaluating the saddle point value ofc
by evaluating the expression in (17) forx = a and then
substituting the RHS of that equation with its LHS in the
double integral of (10) and (12) [10]. The final result forE1

E1 =
∆2

8

[

1

2
+

4kz

w2
+ − w2

−

w2
−

]

(24)

− (β − 1)∆

4

[

ln ∆

2
w2

− − 1

2
v2
− + ln

v+

4

+ w ln
v2
+

4
+

w2
+ − w2

−

2

− 2 lnw+ ln
(

√

v(1 + w) +
√

w(1 + v)
)]

− ∆

4

[

ln ∆w2
− +

w2
+ − w2

−

2
ln

w2
+

w
− (1 + 2w) ln 4

]

+
1

2

[

kr + a − (β − 1) ln a − k ln
(

1 +
a

z

)]

+
∆

4



To obtain p0(x) and E0 and one can simply setk = 0
in (20), (22). Due to the factorN2 in the exponent of
P (R) ∼ exp

[

−N2(E1 − E0)
]

, P (R) falls off rapidly away
from its peak. Therefore, it can be shown that to leading order
in N the logarithm of the outage probabilitylnProb(IN < R)
is equal tolnP (R) when R < Rerg, while for R > Rerg,
lnProb(IN < R) = 0.

In Fig. 3 we plot the logarithm of the outage probability
as a function of throughputr and we compare the result
with the two other asymptotic forms, namely the Gaussian
approximation of the mutual information [5] and the large-
ρ asymptotic result given by (3) [1]. We see that our result
performs much better at low outage, even at largeρ = 100.
Fig. 4 shows more clearly the different trends of this curve
compared to the other two approximations.
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Fig. 3. Plot of the logarithm of the outage probability as a function of
throughputr for β = 2 and comparison to the Gaussian approximation and
the large-ρ asymptotic result obtained by Zheng and Tse given by (3) [1].The
numerical result forN = 5 follows closely our result, even at largeρ = 100.
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IV. CONCLUSION

In this paper we have used a large deviation approach,
first introduced in the context of statistical mechanics [8],
[10], to calculate the probability distribution of the mutual

information of MIMO channels in the limit of large antenna
numbers. In contrast to previous approaches that focused
only close to the most probable eigenvalue distribution, [5]–
[7], we also calculate the distribution forrare events in the
tails of the distribution, corresponding to instances where the
observed mutual information differs byO(N) from the most
probable value of the asymptotic distribution and hence the
Gaussian approximation for the mutual information is invalid.
We find that the distribution in those tails behaves markedly
different from the center. Our resulting probability distribution
seamlessly interpolates between the Gaussian approximation
for rates close to the ergodic mutual information to the results
of [1] for large signal to noise ratios, where the outage
probability is given asymptotically by (3). Our method thus
provides an analytic tool to calculate outage probabilities in
any point in the(R, ρ, N) parameter space, as long asN
is not too small. Additionally, this approach also provides
the probability distribution of eigenvalues constrained in the
subspace where the mutual information is fixed toR for a
given signal to noise ratioρ. Interestingly, this eigenvalue
density is of the form of the Marcenko-Pastur distribution
with square-root singularities. In a forthcoming work we will
analyze theβ = 1 case where a phase transition occurs, in
which a > 0 andp(a) = 0 beyond a critical value ofrc(ρ).
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