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Abstract—Using a large deviations approach we calculate the celebrated Marcenko-Pastur (MP) distribution, given by
probability distribution of the mutual information of MIMO
channels in the limit of large antenna numbers. In contrast o (b— x)(:v - a)
previous methods that only focused to the distribution clos to its (x) = I @
most probable value, thus obtaining an asymptotically Gausian ) )
distribution, we calculate the full distribution includin g its tails, Wherea,b = (1++/3)? are the end-points of its support.
which behave quite differently from the bulk of the distribu tion. For finite N, one is naturally interested in the distribution of
Our resulting probability distribution seamlessly interp olates be-  the mutual information since this would give the probayilit
tween the Gaussian approximation for ratesR close to the ergodic of outage when transmitting at an arbitrary rate in a fading

value of the mutual information and the approach of Zheng and .
Tse [1], valid for large signal to noise ratiosp. This provides us channel. Various approaches [5]-[7] have shown that the

with a tool to analytically calculate outage probabilitiesat any distribution of the mutual information? becomes asymp-
point in the (R, p, N) parameter space, as long as the number totically Gaussian, with mean equal to the ergodic capacity
of antennas N is not too small. In addition, this method also Rerg = Nrerg(p) @and a variance of order unity iv. This
yields the probability distribution of eigenvalues constained in  5,,ssjan variability of the mutual information is due to the
the subspace where the mutual information per antenna is fixa fl - f the i | fth . f h
to R for a given p. Quite remarkably, this eigenvalue density is of Tuctuations of the eigenvalues of the matrix away from the
the form of the Marcenko-Pastur distribution with square-root Most probable distribution described by the MP law. Since
singularities. this Gaussian approximation is essentially a variationhef t
central limit theorem, it is only valid within a finite number
. INTRODUCTION of standard deviations frorft.,.,. As a result, it should fail to
. . - apture the tails of the distribution, for example the phnlig
Considerable interest has followed from the prediction [2
P hl %the rateR being half the most probable orfe.,.,/2, since
t

3] that the use of multiple antennas in transmitting angd. .
[l - . P . nSmiting is would correspond t® (V) standard deviations away from
receiving signals can result to substantial gains in mﬁ){mthe mean.

tion throughput. To analyze the theoretical limits of such & Nevertheless, the tails of the distributions of the mutual
MIMO (Multiple Input Multiple Output) system, it has been.
information are important, since they correspond to regime

convenient to focus on the i.i.d. Gaussian noise and inpaé ca

of the mutual information for a channel matiik, which takes with low outage probability, where one would want to operate

the familiar form a MIMO system. This interplay between low outage and
multiplexing gain was exemplified in [1]. In this seminal pap

Iy =Indet (I+ pH'H). (1) the authors analyzed the asymptotics of the distributiotef

mutual information in the limit of large, with R/ 1n p fixed.

Hereln signifies the natural logarithm, is the signal to noise They found that the asymptotic form of the logarithm of the

ratio andH is the M x N channel matrix, assumed to havelistribution of the mutual information is a piecewise linea

independentN'(0,1/N) elements. function of R/ In p, linearly interpolating between the values
One first attempt to analytically quantify the gains of the R — M1 R _ NI
use of MIMO was to assume that the number of antennas In P(R,) ~ (R nfz(p - np) (3)

N is large andg = M/N fixed and finite, in which case
H can be viewed as a large random matrix [4]. By applyinghere the intermediate rates are given By = nlnp for
ideas and methods from the theory of random matrices, it wiéegern < N.* When, in addition top, N is large,In P(R)
shown that the value of the mutual information per antentia(3) becomes to leading order a continuous functioRgiv.
I(p,H)/N “freezes” to a deterministic value in the largé It should be pointed out that this result is complementaitp¢éo
limit, corresponding to its most likely value, the so-cdllelarge N asymptotics discussed above, since it provides insight
ergodic average r..., (p). Underlying this result is the fact thatin the distribution of the mutual information quite far from

the distribution of eigenvalues difH itself freezes to the its peak, which for large (and largeN) is at Iy ~ N Inp.
However, it does not give any quantitative estimates of the
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outage for finitep and therefore cannot be used to realistiblevertheless, the analysis for largefocuses at the regime

outage predictions. where the eigenvalues are of ordets p~!. As a result, it is
not surprising that the larga* Gaussian approximation of the
o eneralized Marchenko-Pastur Distributions, B=2, p = 10 mutual information distribution misses the correct bebavi
oSt probeble o =278 In summary, we have two methods, the lafjeSaussian
e Tz ] approximation and the large analysis, both of which have
Lah : their own regions of validity but fail to produce quantitati

results for the outage probability outside that region. §hu
one still needs an approach that correctly describes tregeut
behavior of the mutual information distribution for arlaity p
osF} T andR.
ook ! ] In this paper, we introduce a large deviations approach:
this is formally valid only for large/N, but it actually works
over the whole range of values @t and p. This method
bridges the two regions of small/intermediate and largaalig
to noise ratios within a single formalism. In effect it améain
to calculating the rate function of the logarithm of the aver
age moment generating function of the mutual information.
Fig. 1. Generalized MP distributions for SNR=10dB and défe values of Qur method was first introduced in the context of random
" matrix theory by Dyson [8] and is quite intuitive because it
looks at the eigenvalues as point charges repelling eadr oth
Distribution of Eigenvalues withr<r 20, p=2,p=10,N =30, 10° runs Iogarithmically. As a byprOdUCt of this approaCh. we obtain
oS T e the most probable eigenvalue distribution constrainedhen t
oask 4N = Numerical Simlaion manifold of fixed total rateR and signal to noise rati@.
A This is a generalized Marcenko-Pastur equation that ghes t
eigenvalue distribution at the tails of the distribution i®f
This generalized Marcenko-Pastur distribution can also be
seen as the inverse of the so-called Shannon transform in-
troduced in [9] in the following sense: While the Shannon
transform yields the value of normalized mutual informatio
In/N as a functional of the asymptotic eigenvalue distribu-
tion of H'H (the Marcenko-Pastur distribution), in contrast
L the generalized Marchenko-Pastur distribution introduvere
Eigenvalue x corresponds to the asymptotic eigenvalue distributioRI6H
for a given value of the mutual informatidd = Nr, i.e., when

Fig. 2. Comparison of MP distribution and distribution riéisg from shifting  HTH is constrained on the manifold defined by= Iy /N.
the rate by two standard deviations from the most probabkerep,. The

agreement is quite remarkable with the numerical distioiout Il. METHODOLOGY

p(x)

In this section we will describe the basic steps of the
mathematical methodology, following the elegant approach

S _Introduced in [10], [11]. We wish to calculate the probatili
large p, even close to the peak of the distribution. SpecncHistribution of the mutual information (1), which can be

cally, they all predict that the probability distributios given written in terms of)\,, the eigenvalues of the Wishart matrix
asymptotically by H'H as

(R — Nlnp)? @ N

2In (1 — 51 In = > In(1+pA) (5)

k=1

Meantime, all variants of the larg¥ Gaussian approxima-
tion of the mutual information [5]-[7] fail spectacularlyif

InP(R) ~ —

wheref = M/N > 1, which is in striking disagreement com- ] ]
pared to (3). It should be noted that fér= 1 the asymptotic e Will assume thay = M/N > 1. In the opposite case

form of (3) is recovered within the Gaussian approximatiofi < 1, We just need to redefing,.., = p( and interchange
[5], [7]. This discrepancy for3 # 1 indicates that the limits .]\/f with N. Clearly, the probability distribution of the mutual

N — oo and p — oo cannot naively be interchanged.'nformat_ion will depend on t_he joint probability distriban
When one takes the largs limit first, one focuses on the Of the eigenvalueg), }. This is well known to be

most probable eigenvalue distribution, which tends to the N

Marcenko-Pastur distribution (2), and small variationsusmd ~ P({\x}) AN T A N e M2

it. However, as can be seen in (2), this distribution (almost k=1

surely) produces no eigenvalues close to zero when 1. = Ae NEXrGem(B=DInA)+230 5, A=Ak ()



where A is a constant and\ ({A\x}) = [[;~;(\i — A;) is the possible charge density functiopgz) > 0.2 Similar to (7),
so-called Vandermonde determinant of the eigenvalye#\n the integral overc ensures the normalization of(z). 7,
intuitive way to interpret the eigenvalues in the exponent and Z, represent volumes in configuration spacepf), the
of (6) as the positions ofV positive unit charges located onlatter constrained to normalizedz), while the former also
a line repelling each other and interacting with an externebnstrained in the subspace where the mutual information is
electric field. Thus the exponent in (6) can be viewed as tfiged to Iy = R(= Nr) (7). In the same spiritF; [p] and
configuration energy of these charges. This picture was fils§[p] represent the energies of the configuratip(is) with
proposed by Dyson [8]. Within this interpretation, the lasind without the mutual information constrait.
term in the exponent corresponds to the logarithmic repnlsi Following Dyson [8], it is instructive to interpret the tesm
energy, while the first term is the potential due to a constaint Ey[p], E1[p] above in the spirit of a Coulomb gas. Thus the
field, and the second term is the repulsion of a point charfjest term in (10) corresponds to the energy due to a constant
located at the origin. Indeed, these are simply the potentilectric field attracting the charge density towards theiori
that one obtains in classical two-dimensional electracstat The second term is a logarithmic repulsion due o-&unction
Dyson also pointed out that, just as in electrostatics, wheharge density at the origin with strength- 1, while the third
the number of charges is large it is natural to analyze tlome is the logarithmic repulsion between charges. The fourt
individual charges collectively as a charge dengity), which term adds a constarnt shift in the potential of all charges,
in this case has to be normalized properly. It is therefomhich, just as in electrostatics, determines the total gdar
convenient to express the sums in the exponent abovei.as the normalization condition. Finally, the second temm
integrals over a density, e.g_, \v = N [ dap(z)z, where (12)is avirtual 4 - function charge density at the (forbidden)
Np(xz) = >, 0(z — Ag). In this framework, an average oflocationz = —z. This acts as a shift of the total charge density
any function of A\, over their joint probability distribution to the left or the right, depending on the signigfto ensure
is interpreted as an integration over all possible norredlizthat the mutual information per channelisit should be noted
charge densitieg(z). that this intuition holds only for real and k&, however, as we
Our task is to calculate the probability density of the mutuahall see these will be the only relevant values for lakge
informationP(R) = E, [6(Iny — Nr)], wherer is the value of ~ For large N both Z, and Z; can be approximated by the
the (normalized) mutual information per antenna= R/N. value of their integrands at the saddle points of the comedp
Representing thé-function through its Laplace transform andng exponents. The saddle points are determined by taking th
expressingy as N [ dzp(z)In(1 + pz) yields functional derivatives ofEy[p] and E;[p] respectively, with
respect to the functiom(z) and setting these to zero. As
§(Iy — Nr) = /Dk N7k dep()In(itpm)=r] (7) @ result we need to find the density(z) that satisfies the
following relation
where k is integrated along the patft — ioco,t 4 ico) for SE1[q]
some appropriate real numbewith the integration measure T5a
Dk = Ndk/(2xi). Similarly, one can express the normaliza- 1
tion condition as a@-function §(N [ dzp(z) — N) inside the with a similar relation forEy[p], which is minimized with a
p-average, which can then also be expressed by its Laplatilerent densityg = p,. In addition, E [p] needs to be at a
transform. Following an approach introduced by Dyson [8faddle-point with respect to the variablesind g. Is easy to
and more recently discussed in [11] the probability densfty see that, in order for the final result to be positive, the kadd

0 (13)

q=Pr1

the mutual informationP(R) can be written as point values ofc, k have to be real. As a result we also need
P(R) = 4 (8) /d:vp(x) = 1 (14)
Zo
Zy = /Dp /Dce_N2E°[p] 9) /da:p(x) In(1+pz) = r (15)
_ > ia > Furthermorep(x) has to be non-negative in the region> 0,
Eolp} = /0 dw p(z) = (B 1)/0 dap(z)Inz since it represents a density of eigenvalues. We will hetef

o0 < , , denoteEy, = Ei[p1] and Ey = Eg[po]. From the extremal
- /0 dx/o dz'p(x)p(2’) In |z — 'l values of E; and E, the asymptotic probability distribution
oo of the mutual informationP(R) (8) can be evaluated, in the
+ ¢ {/ drp(z) — 1] (10) sense that
. InP(R)
lim B} = — (El - EO) (16)
7 = / Dp / De / Dke~N*Erlp) (11) N—oo N
2We refer the reader to any standard advanced physics boait, matbly
E [p] _ [ ]+ k {/ da:p( )ln(l + px) —r (12) |[$t2e]grf;; details on functional derivatives and functionaltegrals, orpath
0

31t should be pointed out that the above equations are cawemrtdero(N)
The notation [ Dp signifies a functional integral over allin the exponent; see e.g. [8], [11].



i.e. for finite N, P(R) ~ e N'(E1-Fo) The above anal- Integratingp: (z) and imposing (14) implies
ysis vyields identical results with a more standard large
deviations approach. For largd, Varadhan's lemma [13] (a+b=2=2k=25+2z) Vab=2(3 1)z (22)
would imply thatln Z,/N? would be asymptotically equal to We will show elsewhere that (20), (22) admit a unique sohutio
— max, min. Fy[p], whileln Z; /N? — — max, min. ; F1[p]. a,b for givenk. It is worth commenting on (21). This equation
Our task now is to find a solution of (13), subject to thgives the asymptotic density of eigenvalues constraineith@n
above conditions. The solution fdf, will result as a special subspace with fixed total ratB = Nr in the limit of large
case when we relax the condition (15), which will correspondy. Its form is reminiscent of the Marcenko-Pastur equation,
to settingk = 0 in the final result, withpo(z) the MP to which it actually reduces wheh = 0, or equivalently
distribution. (13) results in T = Terg, I.€. When ther - constraint (15) is lifted. It is
© , quite remarkable that even away from the (most probable) MP
2/ de'p(a’) In |z —a'| = x—(B—1)Inz+c+kIn(l+pr) gistribution, the constrained eigenvalue distributioartiens”
0 (17) to a deterministic one. In Fig. 1 we plot examples of such
With a fair amount of hindsight we know that the solution oéigenvalue distributions. Finally, we can readily integrél5)
the above integral equation will be positive between twofas with p;(z) given by (21) to obtain
yet undetermined endpoints< a < b < co. To eliminatec
Inp+ — [w 1n< )+2 21 —}

for the moment, we differentiate with respect to x of (17): 7 = (23)

" pa) ., p-1_  k _ WP — w?
27)/11 x—x’dx_l T +x+z_f(x) (18) - % (wi—wz)lni( +4 _)]
where P denotes the principal value of the expression. The 9 9 5 5
above equation has a straightforward physical meaning. It (B-1)AA (w+ i S N 1)
represents a balance of forces at every location = > a: 8vab 4
The repulsion from all other charges of the distributioraleci (B—1)A@0E —v?) "
at o’ (expression at the LHS) is equal to the external forces + 8\/_ U+
(RHS). Wheng > 1, p(x) cannot have any support at= 0, (B—1A(w
because in this case the force from the finite charge density + 8\/_ ( )
located atr = 0 (second term above) would be infinite. As (ﬁ “1)A
a result we expect that fgf > 1, a > 0. The solution of + [( + DInwy —l—zlnéﬂ
this integral equation for generglz) can be obtained using 2\/—
standard methods [14]. - B- ( A0+ /a 1+U))
fpfb AU a)(b Y f(y)d +C
plz) = (19) WhereA_b—aw:“T,v:%,wi:\/H——wi
2m? (x —a)(b—x) Vw, vx = /1 + v+ /. This equation can be solved to give
N kva+z (B—-1)va k as a function of. Fork = 0 (20) and (22) result to the MP
- 2T —a 1= (z+2)vVb+ 2 Vb values ofa, b = (1 +/B3)? and (21) reduces to (2). In Fig. 2

we compare the distribution with the corresponding nunagric
results. We see that the agreement is quite remarkable.
We may now calculate the values &%, E;. The simplest
way is to start by evaluating the saddle point value cof
by evaluating the expression in (17) far = a and then

In the second line above we have eliminated the constanyt

the conditionp(b) = 0.* The unknowns:, b can be determined
as a function of by the normalization condition (14) and the
conditionp(a) = 0.

1. RESULTS substituting the RHS of that equation with its LHS in the
When 3 > 1, i.e. M > N, the finite density of zero double integral of (10) and (12) [10]. The final result by
eigenvalues repels other eigenvalues from the regionftrere A2 1 Akz )
the continuous charge density has a lower limit- 0, at £1 = —- {5 + mw_} (24)
which it goes to zero. If we impose the conditipp(a) = 0 DA ;r A B 1
on (19) we get _ B-1A D22 — 2 4l &t
1 g1 4 2 2 4
+ =1 20 2 2 — w?
(a+z)(b+z) Vab (20) + wln%—l—%
Thusp, (z) takes the form ~ 2w, In (\/v(l )+ ol + v))}

2 w2 2

pl(x):iw(ﬁu) (21) ~ %[mAwQ_er*i;‘ln%—(l—FQw)anL}

27 x(x+ 2) Vab

4lt can be shown that whea, b are free to vary, this results to the extra

1 a A
conditionsp(a) = p(b) = 0 [15]. t 3 [lﬂ“ +a—(B—-1)lna—kln (1 + ;)] t7



To obtain po(z) and E, and one can simply set = 0 information of MIMO channels in the limit of large antenna

in (20), (22). Due to the factotN? in the exponent of numbers. In contrast to previous approaches that focused

P(R) ~ exp [—NQ(El — EO)], P(R) falls off rapidly away only close to the most probable eigenvalue distributiof [5

from its peak. Therefore, it can be shown that to leading ordg], we also calculate the distribution foare events in the

in N the logarithm of the outage probability Prob(Iy < R) tails of the distribution, corresponding to instances wehthe

is equal toln P(R) when R < R4, While for R > R.,,, 0bserved mutual information differs b9 (V) from the most

In Prob(Iy < R) = 0. probable value of the asymptotic distribution and hence the
In Fig. 3 we plot the logarithm of the outage probabilityGaussian approximation for the mutual information is ifal

as a function of throughput and we compare the resultWe find that the distribution in those tails behaves markedly

with the two other asymptotic forms, namely the Gaussialifferent from the center. Our resulting probability dilstrition

approximation of the mutual information [5] and the largeseamlessly interpolates between the Gaussian approgimati

p asymptotic result given by (3) [1]. We see that our resulbr rates close to the ergodic mutual information to the ltesu

performs much better at low outage, even at lapge 100. of [1] for large signal to noise ratios, where the outage

Fig. 4 shows more clearly the different trends of this curverobability is given asymptotically by (3). Our method thus

compared to the other two approximations. provides an analytic tool to calculate outage probabdiiie
any point in the(R, p, N) parameter space, as long a5
Outage Exponent vs Normalized Throughput; ~ B=2,N =5, p =100, 10" runs is not too small. Additionally, this approach also provides
0 T T T T = T T T e . . . . . .
the probability distribution of eigenvalues constrainedthe
subspace where the mutual information is fixedRofor a
25 given signal to noise ratigp. Interestingly, this eigenvalue
g density is of the form of the Marcenko-Pastur distribution
S with square-root singularities. In a forthcoming work welwi
a7 analyze thes = 1 case where a phase transition occurs, in
o . oy
2 which a > 0 andp(a) = 0 beyond a critical value of.(p).
—
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