
DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS

ZHENGYUAN ZHOU∗, PANAYOTIS MERTIKOPOULOS♯, NICHOLAS BAMBOS⋄,
PETER W. GLYNN⋄, AND YINYU YE⋄

Abstract. One of the most widely used methods for solving large-scale stochastic
optimization problems is distributed asynchronous stochastic gradient descent (DASGD),
a family of algorithms that result from parallelizing stochastic gradient descent on
distributed computing architectures (possibly) asychronously. However, a key obstacle in
the efficient implementation of DASGD is the issue of delays: when a computing node
contributes a gradient update, the global model parameter may have already been updated
by other nodes several times over, thereby rendering this gradient information stale. These
delays can quickly add up if the computational throughput of a node is saturated, so
the convergence of DASGD may be compromised in the presence of large delays. Our
first contribution is that, by carefully tuning the algorithm’s step-size, convergence to
the critical set is still achieved in mean square, even if the delays grow unbounded at a
polynomial rate. We also establish finer results in a broad class of structured optimization
problems (called variationally coherent), where we show that DASGD converges to a
global optimum with probability 1 under the same delay assumptions. Together, these
results contribute to the broad landscape of large-scale non-convex stochastic optimization
by offering state-of-the-art theoretical guarantees and providing insights for algorithm
design.

1. Introduction

With the advent of high-performance computing infrastructures that are capable of
handling massive amounts of data, distributed stochastic optimization has become the
predominant paradigm in a broad range of applications in operations research [15, 16, 30,
32, 44, 45, 50]. Starting with a series of seminal contributions by Tsitsiklis et al. [49], recent
years have witnessed a commensurate surge of interest in the parallelization of first-order
methods, ranging from ordinary (stochastic) gradient descent [1, 11, 18, 31, 35, 40, 42], to
coordinate/dual coordinate descent [2, 17, 33, 34, 46, 47], randomized Kaczmarz algorithms
[34], online methods [22, 24, 26, 41], block coordinate descent [36, 51, 52], ADMM [23, 53],
and many others.

This popularity is a direct consequence of Moore’s law of silicon integration and the
commensurately increased distribution of computing power. For instance, in a typical
supercomputer cluster, up to several thousands of “workers” (or sometimes tens of thousands)
perform independent computations with little to no synchronization – as the cost of such
coordination quickly becomes prohibitive in terms of overhead and energy spillage. Similarly,
massively parallel computing grids and data centers (such as those of Google, Amazon,

∗ Stern School of Business, New York University, NYC, USA.
♯ Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000, Grenoble, France.
⋄ Department of Management Science and Engineering, Stanford University.
E-mail addresses: zzhou@stern.nyu.edu, panayotis.mertikopoulos@imag.fr, bambos@stanford.edu,

glynn@stanford.edu, yinyu-ye@stanford.edu.
2020 Mathematics Subject Classification. Primary 90C15, 90C26; secondary 90C25, 90C06.
Key words and phrases. Distributed optimization; delays; stochastic gradient descent; stochastic

approximation.
1

2 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

IBM or Microsoft) may house up to several million computing nodes and/or servers, all
working asynchronously to execute a variety of different tasks. Finally, taking the concept of
distributed computing to its logical extreme, volunteer computing grids (such as Berkeley’s
BOINC infrastructure or Stanford’s folding@home project) essentially span the entire globe
and harness the computing power of a vast, heterogeneous network of non-clustered nodes
that receive and process computational requests in a non-concurrent fashion, rendering
syncrhonization impossible. In this way, by eliminating the required coordination overhead,
asynchronous operations become simultaneously more appealing (in physically clustered
systems) and more scalable (in massively parallel and/or volunteer computing grids).

In this broad context, perhaps the most widely deployed method is distributed asynchro-
nous stochastic gradient descent (DASGD) and its variants. In addition to its long history
in mathematical optimization, DASGD has also emerged as one of the principal algorith-
mic schemes for training large-scale machine learning models. In “big data” applications
in particular, obtaining first-order information on the underlying learning objective is a
formidable challenge, to the extent that the only information that can be readily computed is
an imperfect, stochastic gradient thereof [13, 14, 27, 40, 54, 55]. This information is typically
obtained from a group of computing nodes (or processors) working in parallel, and is then
leveraged to provide the basis for a distributed descent step.

Depending on the specific computing architecture, the resulting DASGD scheme varies
accordingly. More concretely, there are two types of distributed computing architectures
that are common in practice: The first is a cluster-oriented, multi-core, shared memory
architecture where different processors independently compute stochastic gradients and
update a global model parameter [11, 18, 31]. The second is a “master-worker” architecture
used predominantly in computing grids (and, especially, volunteer computing grids): here,
each worker node independently – and asynchronously – computes a stochastic gradient
of the objective and sends it to the master; the master then updates the model’s global
parameter and sends out new computation requests [1, 31]. In both cases, DASGD is
inherently susceptible to delays, a key impediment that is usually absent in centralized
stochastic optimization settings. For instance, in a master-worker system, when a worker
sends its gradient update to the master, the master may have already updated the model
parameters several times (using updates from other workers), so the received gradient is
already stale by the time it is received. In fact, even in the perfectly synchronized setting
where all workers have the same speed and send input to the master in an exact round-robin
fashion, there is still a constant delay that grows roughly proportionally to the number of
workers in the system [1].

This situation is exacerbated in volunteer computing grids: here, workers typically
volunteer their time and resources following a highly erratic and inconstant update/work
schedule, often being turned off and/or being used for different tasks for hours (or even days)
on end. In such cases, there is no lower bound on the fraction of resources used by a worker
to compute an update at any given time (this is especially true in heterogeneous computing
grids such as BOINC and SimGrid), meaning in turn that there is no upper bound on the
induced delays. This can also happen in parallel computing environments where many tasks
with different priorities are executed at the same time across different machines and, likewise,
even in multi-core infrastructures with a shared memory, memory-starved processors can
become arbitrarily slow in performing gradient computations.

From a theoretical standpoint, the issue of delays and asynchronicities has been studied
from the early days of distributed computing [7], and one of the principal results in the field is
the subsequential convergence of DASGD with probability 1 when no constraints are present
and when the observed delays grow moderately with time – i.e., sublinearly relative to a

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 3

global clock [48, 49]. In several current systems (for example, in volunteer computing grids),
as slower workers become saturated and accumulate computation requests over time while
new (and possibly faster) workers enter the system, delays can quickly add up and grow at a
superlinear rate relative to the system’s global timer. Further, in several applications, there
are natural constraints imposed on a subset (or all) of the decision variables that represent
the model parameters. In such contexts, the following questions remain open: How robust is
the performance envelope of DASGD for constrained optimization under large delays and
asynchronicities? Can this robustness be leveraged from a theoretical viewpoint in order to
design new and more efficient algorithms?

1.1. Our Contributions and Related Work. Our aim in this paper is to establish the conver-
gence of DASGD in the presence of large, superlinear delays, in as wide a class of objectives
as possible and in the presence of constraints where efficient projection can be performed. To
that end, we focus on the following classes of problems, where different convergence results
can be obtained:

General non-convex objectives. We first consider the class of general smooth non-convex
functions, with no structural assumption on the objectives. In this (difficult) case, Tsitsiklis
et al. [49] showed that, under sublinear delays, DASGD converges to a level set of the
objective which contains a critical point with probability 1; in particular, if every such
point is a global minimizer (e.g., if the problem is pseudo-convex) and the method is run
with an Ω(1/n) step-size schedule, DASGD converges to the problem’s solution set. More
recently, Lian et al. [31] derived an estimate for the rate of convergence of the surrogate
length n−1

∑n
k=1 E[∥∇ f(Xk)∥22] as n→∞ under the assumption that the delays affecting

the algorithm are bounded. Our first contribution is to show that these assumptions on the
delays are not needed: specifically, as we show in Theorem 1, by tuning the algorithm’s
step-size appropriately, it is possible to retain this convergence guarantee, even if delays grow
as polynomials of arbitrary degree.

Variationally coherent objectives. Albeit directly applicable to general non-convex stochas-
tic optimization, Theorem 1 only guarantees convergence to stationarity in the mean square
sense; to ensure global optimality, stronger structural assumptions on the objectives must be
imposed. The “gold standard” of such assumptions (and by far the most widely studied one)
is convexity: in the context of distributed stochastic convex optimization, recent works by
Agarwal and Duchi [1] and Recht et al. [42], have established convergence for DASGD under
bounded delays for each of the two distributed computing architectures, while Chaturapruek
et al. [11] and Feyzmahdavian et al. [18] extended the bounded delays assumption to a
setting with finite-mean i.i.d. delays. To go beyond this framework, we focus the class of
mean variationally coherent optimization problems [56, 57], which includes pseudo-, quasi-
and/ star-convex problems, as well as many other classes of functions with non-convex
profiles. Our main result here is that, in such problems, the global state parameter Xn of
DASGD converges to a global minimum with probability 1, even when the delays between
gradient updates and requests grow at a polynomial rate (and this, without any distributional
assumption on how the underlying delays are generated).

To go beyond this framework, we focus on a class of unimodal problems, which we call
variationally coherent, and which properly includes all pseudo-, quasi- and/ star-convex
problems, as well as many other classes of functions with highly non-convex profiles. Our
main result here may be stated as follows: in stochastic variationally coherent problems,
provided a lazy descent scheme is used (akin to dual averaging) to mesh with the constraint
set in the distributed procedure, the global state parameter Xn of DASGD converges to a
global minimum with probability 1, even when the delays between gradient updates and

4 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

requests grow at a polynomial rate (and this, without any distributional assumption on how
the underlying delays are generated).

This result extends the works mentioned above in several directions: specifically, it shows
that

1. Convexity is not required to obtain global convergence results.
2. Constraints do not hinder almost sure convergence under a suitable lazy projection

scheme.
3. The robustness of DASGD is guaranteed even under large, superlinear delays.

We find these outcomes particularly appealing because, coupled with the existing rich
literature on the topic, they help explain and reaffirm the prolific empirical success of
DASGD in large-scale machine learning problems, and offer concrete design insights for
fortifying the algorithm’s distributed implementation against delays and asynchronicities.

Techniques. Our analysis relies on techniques and ideas from stochastic approximation
and (sub-)martingale convergence theory. A key feature of our approach is that, instead of
focusing on the discrete-time algorithm, we first establish the convergence of an underlying,
deterministic dynamical system by means of a particular energy (Lyapunov) function which
is decreasing along continuous-time trajectories and “quasi-decreasing” along the iterates of
DASGD. To control this gap, we connect the continuous- and discrete-time frameworks via
the theory of asymptotic pseudotrajectories (APTs), as pioneered by Benaïm and Hirsch [4].
By itself, the APT method does not suffice to establish convergence under delays. However,
if the step-size of the method is chosen appropriately (following a quasi-linear decay rate
for polynomially growing delays), it is possible to leverage Lp martingale tail convergence
results to show that the problem’s solution set is recurrent under DASGD. This, combined
with the above, allows us to prove our core convergence results.

Even though the ordinary differential equation (ODE) approximation of discrete-time
Robbins–Monro algorithms has been widely studied in control and optimization theory
[20, 28], transferring the convergence guarantees of an ODE solution trajectory to a discrete-
time algorithm is a fairly subtle affair that must be done on a case-by-case basis. Further, even
if this transfer is complete, the results typically have the nature of convergence-in-probability:
almost-sure convergence is usually much harder to obtain [9]. Specifically, exisiting stochastic
approximation results cannot be applied to our setting because a) the non-invertibility of
the projection map makes the underlying dynamical system on the problem’s feasible region
non-autonomous (so APT results do not apply); b) unbounded delays only serve to aggravate
this issue, as they introduce a further disconnect between the DASGD algorithm and its
continuous-time version. To control the discrepancy between discrete and continuous time
requires a more fine-grained analysis, for which we resort to a sharper law of large numbers
for Lp-bounded martingales. Finally, we also mention that the recent work of Lian et al. [32]
has also considered distributed zeroth-order methods (where only the function value, rather
than the gradient is available) and used techniques that are different from gradient-based
analyses.

2. Problem Setup

Let X be a subset of Rd and let (Ω,F ,P) be some underlying (complete) probability space.
Throughout this paper, we focus on the following stochastic optimization problem:

minimize f(x)

subject to x ∈ X , (Opt)

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 5

where the objective function f : X → R is of the form

f(x) = E[F (x;ω)] =

∫
Ω

F (x;ω) dP(ω) (1)

for some random function1 F : X × Ω → R. Using standard optimization terminologies,
(Opt) is called an unconstrained stochastic optimization problem if X = Rd, and is called
a constrained stochastic optimization problem otherwise. In this paper, we study both
unconstrained and constrained stochastic problems under smooth objectives. Specifically, we
make the following regularity assumptions for the rest of the paper, which are standard in
the literature:

Assumption 1. We assume the following:
(1) F (x;ω) is differentiable in x for P-almost all ω ∈ Ω.
(2) ∇F (x;ω) has2 finite second moment, that is, supx∈X E[∥∇F (x;ω)∥22] <∞.
(3) ∇F (x;ω) is Lipschitz continuous in the mean: E[∇F (x;ω)] is Lipschitz on X .

Remark 1. Assumptions 1 and 2 together imply that f is differentiable, because finite
second moment (by Statement 2) implies finite first moment: E[∥∇F (x;ω)∥2] < ∞ for
all x ∈ X ; and hence the expectation E[∇F (x;ω)] exists. By a further application of the
dominated convergence theorem, we have ∇f(x) = ∇E[F (x;ω)] = E[∇F (x;ω)]. Additonally,
Assumption 3 implies that ∇f is Lipschitz continuous. In the deterministic optimization
literature, f is sometimes called L-smooth, where L is the Lipschitz constant.

One important class of motivating applications that can be cast in the current stochastic
optimization problem (Opt) is empirical risk minimization (ERM) in machine learning. As
is well-known in the distributed optimization/learning literature [1, 27, 31, 40, 54], the
expectation in Eq. (1) contains as a special case the common machine learning objectives of
the form 1

N

∑N
i=1 fi(x), where each fi(x) is the loss associated with the i-th training sample.

This setup corresponds to ERM without regularization. With regularization, ERM takes the
form 1

N

∑N
i=1 fi(x) + r(x), where r(·) is a regularizer (typically convex and known), which is

again a special case of (Opt). Other related examples that are also special cases of (Opt)
include the objective

∑N
i=1 vifi(x), which are standard in curriculum learning: vi are weights

(between 0 and 1) generated from a learned curriculum that indicates how much emphasis
each loss fi should be given.

In the large-scale data setting (N is very large), such problems are typically solved in
practice using stochastic gradient descent (SGD) on a distributed computing architecture.
SGD3 is widely used primarily because in many applications, stochastic gradient, computed
by first drawing a sub-batch of data and then computing the average of the gradients on that
sub-batch, is the only type of information that is computationally feasible and practically
convenient to obtain4. Further, such problems are generally solved on a distributed computing
architecture because: 1) Computing gradients is typically the computational bottleneck.
Consequently, having multiple processors compute gradients in parallel can harness the
available computing power in modern distributed systems. 2) The data (which determine

1It is understood that a random function here means that F (x; ·) : Ω → R is a measureable function for
each x ∈ X .

2It is understood here that the gradient ∇F (x;ω) is only taken with respect to x: no differential structure
is assumed on Ω.

3In vanilla SGD (i.e. centralized/single-processor setting), an iid sample of the gradient of F at the
current iterate is used to make a descent step (with an appropriate projection made in the constrained
optimization case).

4For instance, Google’s Tensorflow system does automatic differentiation on samples for neural networks
(i.e. fi(·)’s are parametrized neural networks).

6 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

MASTER

WORKER 1

WORKER k

WORKER K

. . .

. . .

SHARED
MEMORY

PROCESSOR 1

PROCESSOR k

PROCESSOR K

. . .
. . .

Figure 1. Two commonly used distributed computing architecutures: (a) master-
worker (left) and multi-processorwith shared memory (right).

the individual cost functions fi’s) may simply be too large to fit on a single machine; and
hence a distributed system is necessary even from a storage perspective.

With the above background, our goal in this paper is to study and establish theoretical
convergence guarantees for applying stochastic gradient descent (SGD) to solve (Opt) on a
distributed computing architecture. Two common distributed computing architectures that
are widely delpoyed in practice (see also Fig. 1):

(1) Master-worker system. This architecture is mostly used in data-centers and parallel
computing grids (each computing node is a single machine, virtual or physical).

(2) Multi-processor system with shared memory. This architecture is mostly used in
multi-core machines or GPU computing: in the former, each processor is a CPU,
while in the latter, each processor is a GPU.

In the next two subsections (Sections 2.1 and 2.2), we describe the standard procedure
of parallelizing SGD on each of the two distributed computing architectures. Although
running SGD on these two architectures have some differences, in Section 2.3 we give a meta
algorithmic description, called distributed asynchronous stochastic gradient descent (DASGD)
that unifies these two parallelizations on the same footing.

2.1. SGD on Master-Worker Systems. Here we consider the first distributed computing
architecture: the master-worker system. The standard way of deploying stochastic gradient
descent in such systems – and that which we adopt here – is for the workers to asychronously
compute stochastic gradients and then send them to the master,5 while the master updates
the global state of the system and pushes the updated state back to the workers ([1, 31]).
This process is presented in Algorithm 1.

Due to the distributed nature of the master-worker system, a gradient received by the
master on any given iteration can be stale. As a simple example, consider a fully coordinated
update scheme where each worker sends the computed gradient to and receives the updated
iterate from the master following a round-robin schedule. In this case, each worker’s gradient
is received with a delay exactly equal to K − 1 (K is the number of workers in the system),
because by the time the master receives worker K’s computed gradient, the master has
already applied K − 1 gradient updates from workers 1 to K − 1 (and since the schedule is
round-robin, this delay of K − 1 is true for any one of the K workers).

However, delays can be much worse since we allow full asynchrony: workers can compute
and send (stochastic) gradients to the master without any coordinated schedule. In the

5As alluded to before, in machine learning applications, this is done by sampling a subset of the training
data, computing the gradient for each datapoint and averaging over all datapoints in the sample.

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 7

Algorithm 1. Running SGD on a Master-Worker Architecture

Require: 1 Master and K workers, k = 1, . . . ,K
1: Each worker is seeded with the same inital iterate
2: repeat
3: Master:

(a) Receive a stochastic gradient from worker k
(b) Update current iterate.
(c) Send updated iterate to worker k

4: Workers:
(a) Receive iterate
(b) Compute an i.i.d. stochastic gradient (at the received iterate)
(c) Send the computed gradient to master

5: until end

asynchronous setting, fast workers (workers that are fast in computing gradients) will cause
disproprotionately large delays to gradients produced by slow workers (workers that are slow
in computing gradients): when a slower worker has finished computing a gradient, a fast
worker may have already computed and communicated many gradients to the master. Since
the master updates the global state of the system (the current iterate), one can gain a clearer
representation of this scheme by looking at the master’s update. This is given in Section 2.3.

2.2. SGD on Multi-Processor Systems with Shared Memory. Here we consider the second
distributed computing architecture: multi-processor system with shared memory. In this
architecture, all processors can access a global, shared memory, which holds all the data
needed for computing a (stochastic) gradient, as well as the current iterate (the global state
of the system). The standard way of deploying stochastic gradient descent in such systems
([11, 31]) is for each processor to independently and asychronously read the current global
iterate, compute a stochastic gradient 6, and then update the global iterate in the shared
memory. This process is given Algorithm 2:

Algorithm 2. Running SGD on a Multi-Processor System with Shared Memory

Require: K processors and global (shared) memory.
1: The initial iterate in the global memory.
2: repeat
3: (a) Each proceesor reads the current global iterate.

(b) Each processor reads data from memory and computes a stochastic gradient.
(c) Each processor updates the global iterate.

4: until end

The key difference from Algorithm 1 is that there is no central entity that updates the
global state; instead, each processor can both read the global state and update it. Since each
processor is performing the operations asynchronously, different processors may be reading
the same global iterate at the same time. Further, the delays in this case is again caused by
the heterogeneity across different processors: if a processor is slow in computing gradients,
then by the time it finishes computing its gradient, the global iterate has been updated by
other, faster processors many times over, thereby causing its own gradient stale. Here, we

6This is again done by sampling a subset of the training data in the global memory and computing the
gradient at the iterate for each datapoint and averaging over all the comptued gradients in the sample.

8 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

also adopt a common assumption that updating the global iterate is an atomic operation
(and hence no two processors will be updating the global iterate at the same time). This is
justified7 because performing gradient update is a simple arithemtic operation, and hence
takes negligible time compared to reading data and computing a stochastic gradient, which
is the main computational bottleneck in practice. However, despite a cheap computation,
performing the whole gradient update (typically achieved via locking) does have overhead.
In particular, a less stringent model would be only updating one coordinate at a time: this is
known as an inconsistent write/read model since different processors are updating different
components of the global parameters and hence can read in elements of different ages. For
simplicity, we do not consider this case, as our focus in this paper is on delays. See [31] and
[34] for lucid discussions and analyses on this model. Finally, one can gain a clearer picture
of this update scheme by tracking the update to the global iterate in the shared memory.
This is given in Section 2.3.

2.3. DASGD: A Unifying Algorithmic Representation. In this subsection, we present a
unified algorithmic description, aptly called distributed asynchronous stochastic gradient
descent (DASGD), that formally captures both Algorithm 1 and Algorithm 2, where their
differences are reflected in the assumptions of the meta algorithm’s parameters. We start
with the unconstrained case, see Algorithm 3.

Algorithm 3. Distributed asynchronous stochastic gradient descent

Require: Initial state X0 ∈ Rd, step-size sequence αn

1: n← 0;
2: repeat
3: Xn+1 = Xn − αn+1∇F (Xs(n), ωn+1);
4: n← n+ 1;
5: until end
6: return solution candidate Xn

Algorithm 4. Distributed asynchronous stochastic gradient descent with projection

Require: Initial state Y0 ∈ Rd, step-size sequence αn

1: n← 0;
2: repeat
3: Xn = prX (Yn);
4: Yn+1 = Yn − αn+1∇F (Xs(n), ωn+1);
5: n← n+ 1;
6: until end
7: return solution candidate Xn

In more detail, n is a global counter and is incremented every time an update occurs to the
current solution candidate Xn (the global iterate): in the master-worker systems, the master
updates it; in the multi-processor systems, each processor updates it. Since there are delays
in both systems, the gradient applied to the current iterate Xn can be a gradient associated
with a previous time step. This fact is abstractly captured by Line 3 in Algorithm 4. In full

7On a related note, we also note that our analysis can be further extended to cases where only one variable
or a small block of variables are being updated at a time. We omit this discussion because the resulting
notation is quite onerous, and will obscure the main ideas behind the already complex theoretical framework
developed here.

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 9

generality, we will write s(n) for the iteration from which the gradient received at time n
originated. In other words, the delay associated with iteration s(n) is n− s(n), since it took
n − s(n) iterations for the gradient computed on iteration s(n) to be received at stage n.
Note that s(n) is always no larger than n; and if n = s(n), then there is no delay in iteration
n.

Now, the difference between the two distributed computing archecitures is reflected in
the assumption of s(n). Specifically, in the master-worker systems, each s(·) is a one-to-
one function8, because no two workers will ever receive same iterates from the master per
Algorithm 1. On the other hand, in multi-processor systems, s(n) can be the same for
different n’s (since different processors may read the current iterate at the same time);
however, it is easy to observe that the same s will appear at most K times for different
n’s, since there are K processors in total. As an important note, our analysis is agnostic
to whether s(n) is one-to-one or not. Consequently, in establishing theoretical guarantees
for the meta algorithm DASGD, we obtain the same guarantees for both architectures
simultaneously.

Notation-wise, we will write dn for the delay required to compute a gradient requested
at iteration n. This gradient is received at iteration n + dn. Following this notation, the
delay for a gradient received at n is ds(n) = n− s(n). Note also we have chosen the subscript
associated with ω to be n+ 1: we can do so because ωn’s are iid (and hence the indexing
is irrelevant). Finally, in constrained optimization case (where X is a strict subset of Rd),
projection must be performed. This results in DASGD with projection9, which is formally
given in Algorithm 4.

3. General Nonconvex Objectives

In this section, we take X = Rd (i.e. unconstrained optimization) and consider general
non-convex objectives. Note that for a general non-convex objective where no further
structural assumption (e.g. convexity) is made, convergence to an optimal solution (even a
local optimal solution) cannot be expected, and will not hold in general, even in the absence
of both noise and delays (i.e. single machine deterministic optimization). In such cases, the
best one can hope for, which is also the standard metric to determine the stability of the
algorithm, is that the gradient vanishes in the limit10.

3.1. Delay Assumption. Our goal here is to establish convergence guarantees (in mean
square) of DASGD for a general non-convex objective in the presence of delays. In fact, a
large family of unbounded delay processes can be tolerated. We state our main assumption
regarding the delays and step-sizes:

Assumption 2. The gradient delay process dn and the step-size sequence αn of DASGD
(Algorithms 3 and 4) satisfy one of the following conditions:

(1) Bounded delays: supn dn ≤ D for some positive number D and
∑∞

n=1 α
2
n < ∞,∑∞

n=1 αn =∞.

(2) Sublinearly growing delays: dn = O(np) for some 0 < p < 1 and αn ∝ 1/n.

8Except initially if all the workers have the same initial point.
9This tpe of projection is technically known as lazy projection.
10An alternative phrase that is commonly used is that the criticality gap vanishes. This is also colloquially

referred to as convergence to a stationary point/critical point in the machine learning community. Note
further that convergence to second-order-stationary points can be achieved by stochastic gradient descent
(and its variants) under weaker assumptions (than convexity): Lipschitz Hessian and strict saddle point
property. See [19, 25, 29] for this line of work.

10 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

(3) Linearly growing delays: dn = O(n) and αn ∝ 1/(n log n).

(4) Polynomially growing delays: dn = O(nq) for some q ≥ 1 and αn ∝ 1/(n log n log log n).

Note that as delays get larger, we need to use less aggressive step-sizes. This is to be
expected, because the larger the delays, the more “averaging" one needs perform in order
to remove the staleness that is caused by the delays; and smaller step-sizes correspond to
averaging over a longer horizon. This is a one of the important insights that occur throughout
the paper. Another thing to note that is the Assumption 2 also highlights the quantitative
relationship between the class of delays and the class of step-sizes. For instance, when the
delays increase from a linear rate to a polynomial rate, only a factor of 1

log logn needs to
be added (which is effectively a constant). From a practical standpoint, this means that a
step-size on the order of 1/(n log n) will be a good model-agnostic choice and more-or-less
sufficient for almost all delay processes.

3.2. Controlling the Tail Behavior of Second Moments. We now turn to establish the
theoretical convergence guarantees of DASGD for general non-convex objectives. Our first
step lies in controlling the tail behavior of the second moments of the gradients that are
generated from DASGD. By leveraging the Lipschitz continuity of the gradient, its telescoping
sum, appropriate conditionings and a careful analysis of the interplay between delays and
step-sizes, we show that (next lemma) a particularly weighted tail sum of the second moments
are vanishingly small in the limit (see appendix for a detailed proof).

Lemma 1. Under Assumptions 1 and 2, if infx∈X f(x) > −∞, then
∞∑

n=0

αn+1 E[∥∇ f(Xn)∥22] <∞. (2)

Remark 2. Since
∑∞

n=0 αn+1 =∞, Lemma 1 implies that lim infn→∞ E[∥∇ f(Xn)∥22] = 0
(see Appendix A of [6]). Note that the converse is not true: when a subsequence of
E[∥∇ f(Xn)∥22] converges to 0, the sum in Equation (5) need not be finite. As a simple
example, consider αn+1 = 1

n , and

E[∥∇ f(Xn)∥22] =

{
1
n , if n = 2k

1, otherwise.
(3)

Then the subsequence on indicies 2n converges to 0, but the sum still diverges. Consequently,
Lemma 1 is stronger than subsequence convergence.

3.3. Bounding the Successive Differences. However, Lemma 1 is still not strong enough to
guarantee that limn→∞ E[∥∇ f(Xn)∥22] = 0. This is because the convergent sum given in
Equation (5) only limits the tail growth somewhat, but not completely. To demonstrate this
point, let ct be the following boolean variable:

cn =

{
1, if n contains the digit 9 in its decimal expansion,
0, otherwise.

(4)

For instance, c9 = 1, c11 = 0. Now define αn+1 = 1
n , and E[∥∇ f(Xn)∥22] =

{
1
n , if cn = 1

1, if cn = 0.

As first-year Berkeley Math PhDs delightfully found out during– or painfully found out after
– their qualifying exam,

∑∞
n=1 αn+1 E[∥∇ f(Xn)∥22] <∞ (see Problem 1.3.24 in [12]), even

though the limit E[∥∇ f(Xn)∥22] does not exist. This indicates that to obtain convergence
of E[∥∇ f(Xn)∥22], we need to impose more stringent conditions to ensure its sufficient tail
decay. Note that one issue that is revealed by the above counter-example is that the distance

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 11

between two successive terms is always bounded away from 0, no matter how large n is. This
obviously makes it possible for convergence to occur: a necessary condition for convergence is
that the difference converges to 0. Note that intuitively, this pathological case cannot occur
for gradient descent, because the step-size is shrinking to 0, hence making the successive
difference converge to 0 (at least in expectation). Consequently, we can bound the difference
between every two successive terms in terms of a decreasing sequence that is converging to
0. This ensures that E[∥∇ f(Xn)∥22] cannot change two much from iteration to iteration.
Further, the change between two successive terms will be vanishing. This result is formalized
in the following lemma (the proof is given in the appendix):

Lemma 2. Under Assumptions 1 and 2, there exists a constant C > 0 such that for every
n, ∣∣∣E[∥∇ f(Xn+1)∥22]− E[∥∇ f(Xn)∥22]

∣∣∣ ≤ Cαn+1.

3.4. Main Convergence Result. Putting the above two characterizations together, we obtain:

Theorem 1. Let Xn be the DASGD iterates generated from Algorithm 3. Under Assump-
tions 1 and 2, if infx∈X f(x) > −∞, then

lim
n→∞

E[∥∇ f(Xn)∥22] = 0. (5)

Remark 3. Three remarks are in order here. First, note that the condition infx∈X f(x) >
−∞ means that the optimization problem (Opt) has a solution. This is necessary, because
otherwise, a stationary point may not exist in the first place, and DASGD (or even simple
gradient descent) may continue decrease the objective value ad infinitum. Note that since f
is smooth, a minimum point is necessarily a stationary point.

Second, the above convergence is a fairly strong characterization of the fact that the
gradient vanishes. In particular, it means that the gradient of the DASGD iterates converges
to 0 in mean square. Consequently, this implies that the norm of the gradient vanishes in
expectation, and that the gradient converges to 0 with high probability. Note further that
if we strengthen Assumption 1 to require that all stochastic gradients are bounded almost
surely (as opoosed to just bounded in second moments), then a similar analysis ensures
almost sure convergence of ∥∇ f(Xn)∥2. We omit the details due to space limitation. Finally,
that Theorem 1 is a direct consequence of Lemmas 1 and 2 is a simple excercise in elementary
series theory (in particular, Lemma A.4).

4. Variationally Coherent Problems

In this section, our goal is to establish global optimality convergence guarantees of DASGD
in as wide a class of optimization problems as possible. Since global convergence cannot
be expected to hold for all non-convex optimization problems (even without delays). a
standard structural assumption to make in the existing literature on the objectives (even in
the no-delay case) is convexity. Here we instead consider a much broader class of stochastic
optimization problems than convex problems. Further, we allow for constrained optimization;
in particular, X is assumed to be a convex and compact subset of Rd throughout the section.
We first discuss the class of objectives and then present global convergence results and their
analyses in the subsequent two subsections. We focus on the class of mean variationally
coherent optimization problems [37, 38, 57, 58], defined here as follows:

Assumption 3. The optimization problem (Opt) is called variationally coherent in the
mean if

E[⟨∇F (x;ω), x− x∗⟩] ≥ 0, (VC)
for all x∗ ∈ X ∗ and all x ∈ X with equality only if x ∈ X ∗.

12 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

-� -� � � �

-�

-�

�

�

�

-��� -��� ��� ��� ���

-���

-���

���

���

���

Figure 2. Examples of variationally coherent objectives: on the top row, the Beale
function f(x1, x2) = (1.5−x1+x1x2)

2+(2.25−x1+x1x
2
2)

2+(2.625−x1+x1x
3
2)

2

over the benchmark domain [−4, 4]× [−4, 4]; on the bottom row, the polar example
f(r, θ) = (3 + sin(5θ) + cos(3θ))r2(5/3− r) over the unit ball 0 ≤ r ≤ 1. In both
figures, the black curves indicate a sample trajectory of DASGD with linearly
growing delays.

Note that we do not impose the “if" condition for equality: if x ∈ X ∗, then the equality
may or may not hold. By Assumption 1, we can interchange expectation and differentiation
in (VC) to obtain

⟨∇f(x), x− x∗⟩ ≥ 0, (6)
for all x ∈ X , x∗ ∈ X ∗. As a result, mean variational coherence can be interpreted as
an averaged coherence condition for the deterministic optimization problem with objective
f(x). Mean variationally coherent optimization problems include convex programs, pseudo-
convex programs, non-degenerate quasi-convex programs and star-convex programs as
special cases. For instance, if g is star-convex, then ⟨∇f(x), x − x∗⟩ ≥ f(x) − f(x∗) for
all x ∈ X , x∗ ∈ X ∗. This is easily seen to be a special case of variational coherence
because ⟨∇f(x), x− x∗⟩ ≥ f(x)− f(x∗) ≥ 0, with the last inequality strict unless x ∈ X ∗.
Note that star-convex functions contain convex functions as a subclass (but not necessarily
pseudo/quasi-convex functions). See [56, 57] for a more detailed discussion on why these
various classes of optimization problems are special cases. Fig. 2 also provides two more

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 13

elaborate examples of a variationally coherent optimization problem that are not quasi-convex.
Put together, these examples indicate that variationally coherent objectives can have highly
non-convex profiles. Nevertheless, for the class of variationally coherent functions, it is
possible to establish almost sure convergence guarantees (which we do so in the subsequent
sections).

4.1. Deterministic Analysis: Convergence to Global Optima. To streamline our presentation
and build intuition along the way, we will begin with the deterministic case in this subsec-
tion, where there is no randomness in the calculation of a gradient update. In this case,
DASGD boils down to distributed asynchronous gradient descent (DAGD), as illustrated in
Algorithm 5:

Algorithm 5. Distributed Asynchronous Gradient Descent (DAGD)

Require: Initial state y0 ∈ Rd, step-size sequence αn

1: n← 0
2: repeat
3: xn = prX (yn);
4: yn+1 = yn − αn+1∇f(xs(n));
5: n← n+ 1;
6: until end
7: return solution candidate xn

4.1.1. Energy Function. We start with an energy function that measures on how “optimal"
the dual variable y is: the smaller the energy (i.e. the closer it is to 0), the better the dual
variable.

Definition 1. Let x∗ ∈ X ∗. Define the energy function E : Rd → R as follows:

E(y) = inf
x∗∈X∗

Ex∗(y), where Ex∗(y) = ∥x∗∥22 − ∥prX (y)∥22 + 2⟨y,prX (y)− x∗⟩. (7)

Note that one can think of Ex∗(y) as the energy of y with respect to a fixed optimal
solution x∗, while E(y) is the best (smallest) energy for a given y. We next characterize a
few of its useful properties.

Lemma 3. For all y ∈ Rd, we have:

(1) E(y) ≥ 0 with equality if and only if prX (y) ∈ X ∗.

(2) Let {yn}∞n=1 be a given sequence. If limn→∞ E(yn) = 0, then prX (yn) → X ∗ as11

n→∞.

Remark 4. The proof is given in the appendix, but it is helpful to make a few quick remarks.
The first statement justifies the terminology of “energy", as E(y) is always non-negative.
This energy function will also be the tool we use to establish an important component of
the global convergence result. Further, given that E(y) ≥ 0, it should also be clear that
when prX (y) ∈ X ∗ ⊂ X , we can choose a particular x∗ = prX (y) such that E(y) = 0 (but
that E(y) = 0 implies prX (y) ∈ X ∗ is less obvious). Statement 2 of the lemma provides us
with a way to establish convergence to optimal solutions. If we can show that E(yn)→ 0,
then xn = prX (yn)→ X ∗. Nevertheless, as we shall see later, unlike many other Lyapunov

11Following the convention in point-set topology, a sequence sn converges to a set S if dist(sn,S) → 0,
with dist(·, ·) being the standard point-to-set distance function: dist(sn,S) ≜ infs∈S dist(sn, s), where
dist(sn, s) is the Euclidean distance between sn and s.

14 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

functions in optimization, E(yn) does not decrease monotonically; consequently, it is difficult
to directly establish E(yn)→ 0. In fact, a finer-grained analysis is required to characterize
the convergence behavior of E(yn) (see Section 4.1.2).

We also assume that the converse of Statement 2 of the above lemma holds:

Assumption 4. If limn→∞ E(yn) = 0, then prX (yn)→ X ∗ as n→∞.

Assumption 4 can be seen as a primal-dual analogue of the reciprocity conditions for
the Bregman divergence. This assumption usually holds (e.g. when the feasible set X is a
polytope), unless X is pathological.

Lemma 4. Fix any x∗ ∈ X ∗.

(1) ∥prX (y)− ŷ∥22 − ∥prX (ŷ)− ŷ∥22 ≤ ∥y − ŷ∥22, for any y, ŷ ∈ Rd.

(2) Ex∗(y +∆y)− Ex∗(y) ≤ 2⟨∆y,prX (y)− x∗⟩+ ∥∆y∥22, for any y,∆y ∈ Rd.

Remark 5. The first statement of the above lemma serves as an important intermediate
step in proving the second statement, and is established by leveraging the envelop theorem
and several important properties of Euclidean projection. To see that this is not trivial,
consider the quantity ∥prX (y)− ŷ∥2−∥prX (ŷ)− ŷ∥2, which we know by triangle’s inequality
satisfies:

∥prX (y)− ŷ∥2 − ∥prX (ŷ)− ŷ∥2 ≤ ∥prX (y)− prX (ŷ)∥2 ≤ ∥y − ŷ∥2, (8)

where the last inequality follows from the fact that projection is a non-expansive map. How-
ever, this inequality is not sufficient for our purposes because in quantifying the perturbation
E(y + ∆y) − E(y), we also need the squared term ∥∆y∥22, which is not easily obtainable
from Equation (8). In fact, a tighter analysis is needed to establish that ∥y− ŷ∥22 is an upper
bound on ∥prX (y)− ŷ∥22 − ∥prX (ŷ)− ŷ∥22.

4.1.2. Main Convergence Result. An intermediate result, interesting on its own and useful
also as a heavy-lifting tool for our convergence analysis is then provided by the following
technical result:

Proposition 1. Under Assumptions 1 to 4, DAGD admits a subsequence xnk
that converges

to X ∗ as k →∞.

We highlight the main steps below and refer the reader to the appendix for the details:
(1) Letting bn = ∇ f(xs(n))−∇ f(xn), we can rewrite the gradient update in DAGD as:

yn+1 = yn − αn+1∇ f(xs(n))

= yn − αn+1∇ f(xn)− αn+1{∇ f(xs(n))−∇ f(xn)}
= yn − αn+1(∇ f(xn) + bn). (9)

Recall here that s(n) denotes the previous iteration count whose gradient becomes
available only at the current iteration n. By bounding the magnitude of bn using
the delay sequence through a careful analysis, we establish that under any one of
the conditions in Assumption 2, limn→∞ ∥bn∥2 = 0. The analysis here, particularly
the one for the last three conditions, reveals the following pattern: as the magnitude
of the delays gets larger and larger in the order of growth, one needs to use a more
conservative step-size sequence in order to mitigate the damage done by the stale
gradient information. Intuitively, smaller step-sizes are more helpful in larger delays
because they carry a better “amortization" effect that makes DAGD more tolerant
to delays.

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 15

(2) With the defintion of bn, DAGD can be written as:

xn = prX (yn),

yn+1 = yn − αn+1(∇ f(xn) + bn).
(10)

We then use the energy function to study the behavior of yn and xn. More specifically,
we look at the quantity E(yn+1)− E(yn) and, using Lemma 4, we bound this one-
step change using the step size αn, the bn sequence and the defining quantity
⟨∇ f(xn), xn − x∗⟩ of a variationally coherent function (as well as another term that
will prove inconsequential). We then telescope on E(yn+1) − E(yn) to obtain an
upper bound for E(yn+1)−E(y0). Since the energy function is always non-negative,
E(yn+1) − E(y0) is at least −E(y0) for every n. Then, utilizing the fact that bn
converges to 0 and that ⟨∇ f(xn), xn − x∗⟩ is always positive (unless the iterate is
exactly an optimal solution, in which case it is 0), we show that the upper bound will
approach −∞ if Xn only enters N (X ∗, ϵ), an open ϵ-neighborhood of X ∗, a finite
number of times (for an arbitrary ϵ > 0). This generates an immediate contradiction,
and thereby establishes that Xn will get arbitrarily close to X ∗ for an infinite number
of times. This then implies that there exists a subsequence of DAGD iterates that
converges to the solution set of (Opt), i.e, xnk

→ X ∗ as k →∞.

Theorem 2. Under Assumptions 1 to 4, the global state variable xn of DAGD (Algorithm 5)
converges to the solution set X ∗ of (Opt).

We give an outline of the proof below, referring to the appendix for the details.
Fix a δ > 0. Since xnk

→ x∗, as k → ∞ (per Proposition 1), we have E(ynk
) → 0

as k → ∞ per Lemma 3. So we can pick an n that is sufficiently large and E(yn) < δ.
Our goal here is to show that for n large enough, once E(yn) < δ, it will stay so forever:
E(ym) < δ, ∀m ≥ n. Note in particular that the above statement is not true for all n, but
only for n large enough.

However, the behavior of E(yn) is not very regular: it can certainly increase from iteration
to iteration for any n. Nevertheless, we can precisely quantify how large this increment (if
any) can be. This leads us to break it down to two cases:

(1) Case 1: E(yn) < δ/2.

(2) Case 2: δ/2 ≤ E(yn) < δ.
For Case 1, we show in the appendix that

E(yn+1)− E(yn) ≤ 2BC4αn+1 + 2α2
n+1(C2 +B2), (11)

for suitable constants B and C‘s. Now for n sufficiently large, we can make the right-hand
arbitrarily small, and in particular, smaller than δ/2. This means E(yn+1) ≤ E(yn) +

δ
2 < δ.

Consequently, in this case, the energy stays within the δ bound in the next iteration.
For Case 2, we show in the appendix that

E(yn+1)− E(yn) ≤ −2αn+1

[a
2
− αn+1(C2 +B2)

]
, (12)

where a is a positive constant that depends only on δ. Again, since n is sufficiently large,
we can make a

2 − αn+1(C2 + B2) positive, thereby making the right-hand side negative.
Consequently, E(yn+1) < E(yn) < δ. Hence, again, the energy stays within the δ bound in
the next iteration.

The key conclusion from the above is that, for large enough n, once E(yn) is less than δ,
E(yn+1) is less than δ as well and so are all the iterates afterwards. Since δ is arbitrary, it
follows E(yn)→ 0, and therefore xn → X ∗ by Lemma 3.

16 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

4.2. Stochastic Analysis: Almost Sure Convergence to Global Optima. Having established
deterministic global convergence of DAGD, we now proceed to study stochastic global
convergence of DASGD. Compared to the deterministic analysis, the stochastic case is much
more involved because randomness can lead to very volatile behavior in the presence of
delays; in particular, the simple approach employed in Theorem 2 (to establish that once
E(yn) is less than δ, it will always remain so) no longer works. To deal with both delays and
noise, a much more sophisticated analysis framework needs to be developed, which requires
several news ideas. To streamline our presentation, we break the theoretical development into
four subsections, each comprising an important component and step of the overall analysis.

4.2.1. Recurrence of DASGD. Our first step lies in generalizing Proposition 1 to the sto-
chastic case. Specifically, in the presence of noise, we show that the iterates of DASGD visit
any neighorhood of X ∗ infinitely often almost surely.

Proposition 2. Under Assumptions 1 to 4, DASGD admits a subsequence Xnk
that con-

verges to X ∗ almost surely: Xnk
→ X ∗ with probability 1 as k →∞.

We outline the two main steps of the proof below, referring the reader to the appendix for
the details.

(1) We begin by rewriting the gradient update step in DASGD as:

Yn+1 − Yn

αn+1
= −∇F (Xs(n), ωn+1)

= −∇ f(Xn)

− [∇ f(Xs(n))−∇ f(Xn)]

− [∇F (Xs(n), ωn+1)−∇ f(Xs(n))]. (13)

Letting Bn = ∇ f(Xs(n))−∇ f(Xn) and Un+1 = ∇F (Xs(n), ωn+1)−∇ f(Xs(n)), we
can rewrite the DASGD update as

Yn+1 = Yn − αn+1{∇ f(Xn) +Bn + Un+1}. (14)

We then establish the following two facts in this step. First, we verify that∑n
r=0 Un+1 is a martingale adapted to Y1, Y2 . . . , Yn+1, where {Un+1}∞n=0 is a L2-

bounded martingale difference sequence. Second, we show that limn→∞ ∥Bn∥2 =
0, a.s..

The second claim is done by first giving an upper bound on ∥Bn∥2 by writing
∇ f(Xs(n))−∇ f(Xn) as a sum of one-step changes (∇ f(Xs(n))−∇ f(Xs(n)+1) +
∇ f(Xs(n)+1) − · · · + ∇ f(Xn−1) − ∇ f(Xn)) and analyzing each such successive
change. We then break that upper bound into two parts, one deterministic and one
stochastic. For the deterministic part, the same analysis in the proof of Proposition 1
yields convergence to 0.

The stochastic part turns out to be the tail of a martingale. By leveraging
the property of the step-size and a crucial property of martingale differences (two
martingale differences at different time steps are uncorrelated), we establish that
said martingale is L2-bounded. Then, by applying a version of Doob’s martingale
convergence theorem, it follows that said martingale converges almost surely to a
limit random variable with finite second moment (and hence almost surely finite).
Consequently, writing the tail as a difference between two terms (each of which
converges to the same limit variablewith probability 1), we conclude that the tail
converges to 0 (a.s.).

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 17

(2) The full DASGD update may then be written as

Xn = prX (Yn)

Yn+1 = Yn − αn+1[∇ f(Xn) +Bn + Un+1]. (15)

As in Step 2 of the proof of Proposition 1, we again bound the one-step change
of the energy function E(Yn+1) − E(Yn) and then telescope the differences. The
two distinctions from the determinstic case are: 1) Everything is now a random
variable. 2) We have three terms: in addition to the random gradient ∇ f(Xn) and
the random drift Bn, we also have a martingale term Un+1. Since Bn converges
to 0 almost surely (as shown in the previous step), its effect can be shown to be
negligible. Futher, the analysis utilizes law of large numbers for martingale as well as
Doob’s martingale convergence theorem to bound the effect of the various martingale
terms and to establish that the final dominating term converges to −∞ almost surely
(which generates a contradiction since the energy function is always positive) unless
a subsequence Xnk

converges almost surely to X ∗. ■

Even though recurrence, which can be seen as the counterpart of Proposition 1, holds
as per the above proposition, the random iterates Xn are much more irregular than their
deterministic counterpart xn in DAGD. To deal with this complexity, we work with and
characterize the sample trajectories “generated" (to be made precise later) by Xn (rather
than individual iterates Xn). To work towards this general direction, we first push the
DASGD update into a determinstic ordineary differential equation (ODE), as explained in
the next subsection.

4.2.2. Mean-Field Approximation of DASGD. We can rewrite the DASGD update as:

Xn = prX (Yn)

Yn+1 = Yn − αn+1{∇ f(Xn) +Bn + Un+1}. (16)

Written in this way, DASGD can be viewed as a discretization of the “mean-field” ODE

x = prX (y),

ẏ = −∇ f(x). (17)

The intuition is that this ODE provides a “mean" approximation of the DASGD update,
because in (16), the noise term Un+1 has 0 mean, and the term Bn converges to 0 (and
therefore has negilible effect in the long run). Thes leaves only the term Yn+1 = Yn −
αn+1∇ f(Xn), which can be seen as a Euler discretization of the ODE. (Of course, that
Equation (17) is a good-enough approximation of Equation (16) for global almost sure
convergence purposes here will be rigorously justified later.)

Next, writing Equation (17) solely in terms of y yields ẏ = −∇ f(prX (y)). Since ∇ f
and prX are both Lipschitz continuous and X is a compact set, the composition ∇ f ◦ prX
is itself Lipschitz continuous and bounded. Standard results from the theory of dynamical
systems then show that (17) admits a unique global solution y(t) for any initial condition
y(0). On the other hand, since prX is not a one-to-one map, it is not invertible; consequently,
there need not exist a unique solution trajectory for x(t). By this token, the rest of our
analysis will focus on the trajetory of y(t).

With the guarantee of the existence and uniqueness of the y trajectory, let P : R+×Rd →
Rd be the semiflow12 of (17), i.e., P (t, y0) denotes the state of (17) at time t when the
initial condition is y0. In other words, when viewed as a function of time, P (·, y0) is the
solution trajectory to ẏ = −∇ f(prX (y)). It is worth pointing out that writing it in this

12See Appendix A for a more rigorous definition. Furthermore, R+ is the set of non-negative reals.

18 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

double-argument form also allows us to interpret P as a function of the initial condition:
for a fixed t, P (t, ·) gives different states at t when the ODE starts from different initial
conditions (in particular, P (0, y) = y). Both views will be useful later.

It turns out that with the energy function introduced here, E(P (t, y)) is always non-
increasing. Furthermore, it is also decreasing at a meaingful rate. We end this subsection
with a “sufficient decrease” property of the mean dynamics (17) (the proof given in the
appendix due to space limitation):

Lemma 5. With notation as above, we have:

(1) If prX (P (t, y)) /∈ X ∗, then E(P (t, y)) is strictly decreasing in t for all y ∈ Rd.

(2) For all δ > 0, there exists some T ≡ T (δ) > 0 such that, for all t ≥ T , we have

supy{E(P (t, y))− E(y) : E(P (t, y)) ≥ δ/2} ≤ −δ/2. (18)

Lemma 5 essentially says E(P (t, y)) is strictly and uniformly (across all y) decreasing
at a non-vanishing rate. More specifically, to give some intuition of the second part of
Lemma 5, note that E(P (t, y)) − E(y) is the energy change at time t when starting at y.
The first part says this quantity is always non-negative. While the second part says provided
E(P (t, y)) ≥ δ/2, the decrease in energy will be at least δ

2 , no matter what the initial point
y is. If E(P (t, y)) ≥ δ/2 does not hold, that means the energy at time t is already really
small (i.e. E(P (t, y)) < δ/2). Consequently, the mantra of the above lemma can be stated
succinctly as follows: either the energy is already close to 0, or the energy will decrease
towards 0.

In fact, by some additional analysis, one can further show13 that Lemma 5 implies
P (t, y) → X ∗,∀y as t → ∞. Now, despite being an interesting result on its own (which
establishes that the continuous dynamics of DASGD converges to X ∗), it is still some distance
away from our final desideratum: our goal is to establish (almost sure) convergence of the
discrete-time process in DASGD. So unless we can somehow relate the discrete-time iterates
to the continuous-time trajectories, the convergence of DASGD is still uncertain. We fulfill
this taks in the next subsection.

4.2.3. Relating DASGD Iterates to ODE Trajectories. Our goal here is to establish a
quantitative connection between the DASGD iterates and the ODE trajectory studied in
the previous subsection. Our general idea is that if we show the trajectory generated by the
discrete-time iterates of DASGD is path-by-path “close" to the continuous-time trajectory
P (t, y), then likely almost-sure convergence of the DASGD iterates can be guaranteed as
well.

To be more specific, there are two things that need to be more precisely defined from the
preceding high-level discussion. First, what does it mean to be a trajectory generated by
the discrete-time iterates of DASGD? Second, what does it mean for this trajectory to be
“close" to the ODE trajectory? In general, the answers to these questions can vary depend
on the specific goal at hand. In the current context, our goal is to establish global almost
sure convergence (a very strong result). Consequently, we need to choose the answers rather
judiciously: on the one hand, the answers must be stringent enough to ensure global almost
sure convergence in the end (for instance, for the second question, a fairly strong notion of
“closeness" is needed); on the other hand, they must also be flexible enough to fit in the
current context.

13Although this is an interesting conclusion, we do not prove it here because we are mainly concerned
with establishing convergence of the DASGD iterates, rather than the ODE solution trajectory.

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 19

As it turns out, the answer to the first question is rather intuitive: (perhaps) the simplest
way to generate a continuous trajectory from a sequence of discrete points is the affine
interpolation: connect the iterates Y0, Y1, . . . , Yn at times 0, α1, . . . ,

∑n=1
r=1 αr. We call this

curve the affine interpolation curve of DASGD and denote it by A(t). Note that A(t) is a
random curve because the DASGD iterates Y0, Y1, . . . , Yn are random. To avoid confusion,
we summarize the three different objects discussed so far:

(1) The DASGD iterates Y0, Y1, . . . , Yn.

(2) The affine interpolation curve A(t) of Yn.

(3) The flow P (t, y) of the ODE (17).
The answer to the second question lies in the notion of an asymptotic pseudotrajectory

(APT) , a concept introduced by Benaïm and Hirsch [4] and Benaïm and Schreiber [5].
Specifically, in our current context, a continuous curve s(t) is considered close to ODE
solution P (t, y) if the following holds:

Definition 2. A continuous function s : R+ → Rd is an APT for P if for every T > 0,

lim
t→∞

sup
0≤h≤T

d(s(t+ h), P (h, s(t))) = 0, (19)

where d(·, ·) is the Euclidean metric14 in Rd.

Intuitively, the definition matches exactly the naming: s is an APT for P if, for sufficiently
large t, the flow lines of P remain arbitrarily close to s(t) over a time window of any (fixed)
length. More precisely, for each fixed T > 0, one can find a large enough t0, such that for all
t > t0, the curve s(t+ h) approximates the trajectory P (h, s(t)) on the interval h ∈ [0, T]
with any predetermined degree of accuracy.

With this definition in place, to push through the agenda, we need to establish that A(t),
the affine interpolation curve of the DASGD iterates, is an APT for the flow P (t, y) induced
by the ODE (17). More precisely, we establish that A(t) is an APT for the flow P (t, y)
almost surely, because as mentioned before, A(t) is a random curve.

Lemma 6. Let A(t) be the random affine interpolation curve generated from the DASGD
iterates. Then A(t) is an APT of P (t, y) almost surely.

Note that this result means any resulting affine interpolation curve of DASGD is close to
the ODE trajectory. This also forms the basis for reasoning convergence on a path-by-path
scale. However, more work still remains to be done because, unfortunately, the condition
that A(t) is an APT for P almost surely does not guarantee that the discrete-time iterates
of DASGD converge to X ∗ (for many counterexamples in general dynamical systems, see
Benaïm [3]). In other words, the notion of APT is not sharp enough to ensure direct
convergence result. We fulfill this final gap in the next subsection.

4.3. Main Convergence Result. Even though A(t) being an APT for P almost surely does
not itself guarantee that the discrete-time iterates of DASGD converge to X ∗, we can use the
energy function to further sharpen this result. Specifically, we use E(A(t)) to further control
the behavior of the affine interpolation curve. In fact, the advantage of working with the
affine interpolation curve A(t) is that once we show E(A(t)) is bounded by some δ almost
surely from some point onwards, then we know E(Yn) is bounded by δ almost surely (also
from some point onwards): this is because the discrete-time iterates and the affine curve

14As should be obvious from the definition, APTs can be defined more generally in metric spaces in
exactly the same way.

20 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

coincide at discrete time points. Consequently, we focus on boudning E(A(t)), which will
enable us to obtain our main convergence result:

Theorem 3. Under Assumptions 1 to 4, the global state variable Xn of DASGD (Algo-
rithm 4) converges (a.s.) to the solution set X ∗ of (Opt).

Again, we only give an outline of the proof below. By Proposition 2, Xn gets arbitrarily
close to X ∗ infinitely often. Thus, it suffices to show that, if Xn ever gets ϵ-close to X ∗, all the
ensuing iterates are ϵ-close to X ∗ (a.s.). The way we show this “trapping" property is to use
the energy function. Specifically, we consider E(A(t)) and show that no matter how small ϵ
is, for all sufficiently large t0, if E(A(t0)) is less than ϵ for some t0, then E(A(t)) < ϵ,∀t > t0.
This would then complete the proof because A(t) actually contains all the DASGD iterates,
and hence if E(A(t)) < ϵ,∀t > t0, then E(Yn) < ϵ for all sufficiently large n. Furthermore,
since A(t) contains all the iterates, the hypothesis that “ if E(A(t0)) is less than ϵ for some
t0" will be satisfied due to Proposition 2.

We expand on one more layer of detail and defer the rest into appendix. To obtain control
E(A(t)), we control two things: the energy on the ODE path E(P (t, y)) and the discrepancy
between E(P (t, y)) and E(A(t)). The former can be made arbitrarily small as a result of
Lemma 5 (we have a direct handle on how the ODE path would behave). The latter can also
be made arbitrarily small as a result of Lemma 6: since A(t) is an APT for P , the two paths
are close. Therefore, the discrepancy between E(P) and E(A) should also be vanishingly
small. Consequently, since E(A(t)) = E(P (t, y)) + {E(A(t))− E(P (t, y))}, and both terms
on the right can be made arbitrarily small, so can E(A(t)) be made arbitrarily small.

5. Discussion

We end the paper with a short simulation discussion that reveals an interesting practical
observation. Specifically, we test the convergence of Algorithm 4 against a Rosenbrock
test function with d = 1001 degrees of freedom, a standard non-convex global optimization
benchmark [43]. Specifically, we consider the objective

fRos(x) =

1000∑
i=1

[1000(xi+1 − x2
i)

2 + (1− xi)
2], (20)

with xi ∈ [0, 2], i = 1, . . . , 1001. The global minimum of fRos is located at (1, . . . , 1), at the
end of a very thin and very flat parabolic valley which is notoriously difficult for first-order
methods to traverse [43]. Since the minimum of the Rosenbrock function is known, (VC) is
easily checked over the problem’s feasible region.

For our numerical experiments, we considered a) a synchronous update schedule as a
baseline; and b) an asynchronous master-worker framework with random delays that scale
as dn = Θ(n). In both cases, Algorithm 4 was run with a decreasing step-size of the form
αn ∝ 1/(n log n) and stochastic gradients drawn from a standard multivariate Gaussian
distribution (i.e., zero mean and identity covariance matrix).

Our results are shown in Fig. 3. Starting from a random (but otherwise fixed) initial
condition, we ran S = 105 realizations of DASGD (with and without delays). We then
plotted a randomly chosen trajectory (“test sample” in Fig. 3), the sample average, and the
min/max over all samples at every update epoch. For comparison purposes, we also plotted
the value of the so-called “ergodic average”

X̄n =

∑n
k=1 αkXk∑n
k=1 αk

, (21)

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 21

◦

◦

◦

◦
◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦◦◦◦◦◦◦◦ ◦◦ ◦◦ ◦◦◦◦◦◦◦◦ ◦◦◦◦ ◦◦◦◦◦◦◦◦◦ ◦◦
◦
◦
◦
◦
◦

◦

◦

◦

◦

◦

◦

◦

◦
◦
◦
◦◦

△

△

△
△

△
△

△ △ △ △ △△△

���� ������

◦ ������ �������

△ ������� �������

������ ���/���

� � �� �� ��� ��� ����

��-�

�����

�����

�����

�

���������

�
�
��
��
��
��
��
�

����� ����������� (�������� ���� �=��� �������)

(a) Convergence with no delays between gradient
updates

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦◦◦◦◦◦◦ ◦◦◦ ◦ ◦◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦◦

◦
◦
◦◦

◦
◦◦

◦
◦◦

◦
◦
◦
◦

△ △ △ △ △ △ △ △ △ △△△△△△△△△△△△△△△△△△△
△
△
△△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△△
△△

���� ������

◦ ������ �������

△ ������� �������

������ ���/���

� �� ��� ���� ���
����

����

����

�

���������

�
�
��
��
�
�
��
��
�

����� ����������� (�������� ���� �=��� �������� ������������)

(b) Convergence with linearly growing delays

Figure 3. Value convergence in a non-convex stochastic optimization problem
with d = 1001 degrees of freedom.

which is often used in the analysis of DASGD in the convex case (see e.g., 1). Even though
this averaging leads to very robust convergence rate estimates in the convex case, we see here
that it performs worse than the worst realization of DASGD. The reason for this is the lack
of convexity: due to the ridges and talwegs of the Rosenbrock function, Jensen’s inequality
fails dramatically to produce an improvement over Xn (and, in fact, causes delays as it causes
Xn to deviate from its gradient path). Consequently, this simple simulation indicates that
establishing convergence of the iterate Xn itself is not only theoretically stronger (and hence
more difficult) than convergence of the ergodic average, but also more practically relevant.

A. Auxiliary Results

We collect here in one place all the auxiliary results in the existing literature that will be
used in our proofs subsequently. The first one is a well-known characterization of convex
sets and the projection operator given in [39]:

Lemma A.1. Let X be a compact and convex subset of Rd. Then for any x ∈ X , y ∈ Rd:

⟨prX (y)− x,prX (y)− y⟩ ≤ 0. (A.1)

The second one is an Lp-bounded martingale convergence theorem given in [21]:

Lemma A.2. Let Sn be a martingale adapted to the filtration Sn. If for some p ≥ 1,
supn≥0 E[|Sn|p] < ∞, then Sn converges almost surely to a limiting random variable S∞
with E[|S∞|p] <∞.

Remark 6. Note that E[|S∞|p] <∞ for p ≥ 1 obviously implies S∞ is finite almost surely.

The third one is the classical envelope theorem (see [10]).

Lemma A.3. Let f : Rn × Rm → R be a continuously differentiable function. Let U be a
compact set and consider the problem

max
x∈U

f(x, θ). (A.2)

Let x∗ : O → Rm be a continuous function defined on an open set O ⊂ Rm such that
for each θ ∈ O, x∗(θ) solves the problem in Equation A.2. Define V : Rm → R where
V (θ) = f(x∗(θ), θ). Then V (θ) is differentiable on O and:

∇V (θ) = ∇ f(x∗(θ), θ). (A.3)

22 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

The fourth one is an elementary sequence result (see [8]).

Lemma A.4. Let an, bn be two non-negative sequences such that
∑∞

n=1 an =∞,
∑∞

n=1 anbn <
∞. If there exists a real number K > 0 such that |bn+1 − bn| ≤ Kan. Then, limn→∞ bn = 0.

The fifth one is law of large numbers for martingales given in [21]:

Lemma A.5. Let Mn =
∑n

k=0 dk be a martingale adapted to (Fn)
∞
n=0 and let (un)

∞
n=0 be a

nondecreasing sequence of positive numbers with limn→∞ un =∞. If
∑∞

n=0 u
−p
n E[|dk|p |Fn] <

∞ for some p ∈ [1, 2] (a.s.), then:

lim
n→∞

Mn

un
= 0 (a.s.) (A.4)

Finally, we recall the standard notion of semiflow.

Definition 3. A semiflow P on a metric space (M,d) is a continuous map P : R+×M →M :

(t, x)→ Pt(x),

such that the semi-group properties hold: P0 = identity, Pt+s = Pt◦Ps for all (t, s) ∈ R+×R+.

Remark 7. A standard way to induce a semiflow is via an ODE. Specifically, if F : Rm →
Rm is a continuous function and if the following ODE has a unique solution trajectory for
each initial point x̃ ∈ Rm:

dx

dt
= F (x),

x(0) = x̃,

then Pt(x̃) defined by the solution trajectory x(t) ∈ Rm as follows is a semiflow: Pt(x̃) ≜ x(t)
with x(0) = x̃. We say P defined in this way is the semiflow induced by the corresponding
ODE.

B. Technical Proofs

B.1. General Nonconvex Objectives.

B.1.1. Proof of Lemma 1. Proof: We start by rewriting the delayed gradient update Xn+1 =
Xn − αn+1∇F (Xs(n), ωn+1) in Algorithm 3 in two forms as follows, both of which will be
used subsequently:

Xn+1 = Xn − αn+1

(
∇ f(Xs(n)) +∇F (Xs(n), ωn+1)−∇ f(Xs(n))

)

= Xn − αn+1

(
∇ f(Xn) +∇ f(Xs(n))−∇ f(Xn) +∇F (Xs(n), ωn+1)−∇ f(Xs(n))

)
.

(B.1)

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 23

Denoted B ≜ supx∈X E[∥∇F (x, ω)∥22] per Assumption 1. Since ∇ f(x) = E[∇F (x, ω)] is
Lipschitz per Assumption 1, letting L be the Lipschitz constant, we have:

f(Xn+1)− f(Xn) ≤ ⟨∇ f(Xn), Xn+1 −Xn⟩+
L

2
∥Xn+1 −Xn∥22

= −αn+1⟨∇ f(Xn),∇F (Xs(n), ωn+1)⟩+
L

2
∥αn+1∇F (Xs(n), ωn+1)∥22

= −αn+1⟨∇ f(Xn),∇ f(Xn) +∇ f(Xs(n))−∇ f(Xn) +∇F (Xs(n), ωn+1)−∇ f(Xs(n))⟩

+
L

2
α2
n+1∥∇ f(Xs(n)) +∇F (Xs(n), ωn+1)−∇ f(Xs(n))∥22

= −αn+1∥∇ f(Xn)∥22 − αn+1⟨∇ f(Xn),∇ f(Xs(n))−∇ f(Xn)⟩
− αn+1⟨∇ f(Xn),∇F (Xs(n), ωn+1)−∇ f(Xs(n))⟩

+
L

2
α2
n+1∥∇ f(Xs(n)) +∇F (Xs(n), ωn+1)−∇ f(Xs(n))∥22

≤ −αn+1∥∇ f(Xn)∥22 + αn+1∥∇ f(Xn)∥2∥∇ f(Xs(n))−∇ f(Xn)∥2
− αn+1⟨∇ f(Xn),∇F (Xs(n), ωn+1)−∇ f(Xs(n))⟩

+
L

2
α2
n+1

{
2∥∇ f(Xs(n))∥22 + 2∥∇F (Xs(n), ωn+1)−∇ f(Xs(n))∥22

}
≤ −αn+1∥∇ f(Xn)∥22 +

√
Bαn+1∥∇ f(Xs(n))−∇ f(Xn)∥2

− αn+1⟨∇ f(Xn),∇F (Xs(n), ωn+1)−∇ f(Xs(n))⟩

≤ Lα2
n+1

{√
B + ∥∇F (Xs(n), ωn+1)−∇ f(Xs(n))∥22

}
,

where in the last inequality follows because by Jensen’s inequality, we have:

∥∇ f(Xn)∥22 ≤ sup
x∈X
∥E[∇F (x, ω)]∥22 ≤ sup

x∈X
E[∥∇F (x, ω)∥22] ≤ B.

Denote the filtration generated by X0, X1, . . . , Xn to be Fn. We take the expectation of
both sides of Equation (B.2) and obtain:

E[f(Xn+1)− f(Xn)] ≤ −αn+1 E[∥∇ f(Xn)∥22] +
√
Bαn+1 E[∥∇ f(Xs(n))−∇ f(Xn)∥2]

− αn+1 E[⟨∇ f(Xn),∇F (Xs(n), ωn+1)−∇ f(Xs(n))⟩] + L
√
Bα2

n+1

+ Lα2
n+1 E[∥∇F (Xs(n), ωn+1)−∇ f(Xs(n))∥22]

= −αn+1 E[∥∇ f(Xn)∥22] +
√
Bαn+1 E[∥∇ f(Xs(n))−∇ f(Xn)∥2]

− αn+1 E

{
E
{
⟨∇ f(Xn),∇F (Xs(n), ωn+1)−∇ f(Xs(n))⟩

∣∣∣Fn

}}
+ L
√
Bα2

n+1 + Lα2
n+1 E[∥∇F (Xs(n), ωn+1)−∇ f(Xs(n))∥22]

= −αn+1 E[∥∇ f(Xn)∥22] +
√
Bαn+1 E[∥∇ f(Xs(n))−∇ f(Xn)∥2]

− αn+1 E

{
⟨∇ f(Xn),E

{
∇F (Xs(n), ωn+1)−∇ f(Xs(n))

∣∣∣Fn

}
⟩

}
+ L
√
Bα2

n+1 + Lα2
n+1 E[∥∇F (Xs(n), ωn+1)−∇ f(Xs(n))∥22]

= −αn+1 E[∥∇ f(Xn)∥22] +
√
Bαn+1 E[∥∇ f(Xs(n))−∇ f(Xn)∥2] + L

√
Bα2

n+1

+ Lα2
n+1 E[∥∇F (Xs(n), ωn+1)−∇ f(Xs(n))∥22]

≤ −αn+1 E[∥∇ f(Xn)∥22] +
√
Bαn+1 E[∥∇ f(Xs(n))−∇ f(Xn)∥2] + L

√
Bα2

n+1 + 4LBα2
n+1,

24 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

where the third equality follows from E
{
∇F (Xs(n), ωn+1) − ∇ f(Xs(n))

∣∣∣Fn

}
= 0, since

ωn+1 is independent of Fn, and the last inequality follows from E[∥∇F (Xs(n), ωn+1) −
∇ f(Xs(n))∥22] ≤ supx∈X E[∥∇F (x, ωn+1)−∇ f(x)∥22] ≤ 4B. Since ∇ f is L-Liptchiz contin-
uous, we have:

∥∇ f(Xs(n))−∇ f(Xn)∥2 ≤ L∥Xs(n) −Xn∥2

= L
∥∥∥Xs(n) −Xs(n)+1 +Xs(n)+1 −Xs(n)+2 + · · ·+Xn−1 −Xn

∥∥∥
2

= L
∥∥∥ n−1∑

r=s(n)

{
Xr −Xr+1

}∥∥∥
2
= L

∥∥∥ n−1∑
r=s(n)

αr+1∇F (Xs(r), ωr+1)
∥∥∥
2
≤ L

n−1∑
r=s(n)

αr+1

∥∥∥∇F (Xs(r), ωr+1)
∥∥∥
2
.

(B.2)

Taking the expectation of both sides of the above equation then yields:

E[∥∇ f(Xs(n))−∇ f(Xn)∥2] ≤ L

n−1∑
r=s(n)

αr+1 E[∥∇F (Xs(r), ωr+1)∥2]

≤ L

n−1∑
r=s(n)

αr+1 sup
x∈X

E[∥∇F (x, ωr+1)∥2] (B.3)

≤ LB̄

n−1∑
r=s(n)

αr+1, (B.4)

where B̄ ≜ supx∈X E[∥∇F (x, ωr+1)∥2] <∞ per Remark 1. Combining Equation (B.3) with
Equation (B.2) then yields:

E[f(Xn+1)]− E[f(Xn)] ≤ −αn+1 E[∥∇ f(Xn)∥22] + LB̄
√
Bαn+1

n−1∑
r=s(n)

αr+1 + L
√
Bα2

n+1 + 4LBα2
n+1.

(B.5)

Telescoping Equation (B.5) then yields:

−∞ < inf
x∈X

f(x)− f(X0) ≤ E[f(XT+1)]− f(X0) =

T∑
n=0

{
E[f(Xn+1)]− E[f(Xn)]

}
≤ −

T∑
n=0

αn+1 E[∥∇ f(Xn)∥22] + LB̄
√
B

T∑
n=0

(
αn+1

n−1∑
r=s(n)

αr+1

)
+ (L

√
B + 4LB)

T∑
n=0

α2
n+1.

(B.6)

Taking T →∞, the above equation yields:

−∞ < −
∞∑

n=0

αn+1 E[∥∇ f(Xn)∥22] + LB̄
√
B

∞∑
n=0

(
αn+1

n−1∑
r=s(n)

αr+1

)
+ (L

√
B + 4LB)

∞∑
n=0

α2
n+1.

(B.7)

Note that in all cases in Assumption 2, we have
∑∞

n=0 α
2
n+1 <∞. We next proceed to bound∑∞

n=0

(
αn+1

∑n−1
r=s(n) αr+1

)
and show that it is finite in each of the cases in Assumption 2.

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 25

(1) In the bounded delays case, since supn dn ≤ D, it follows that s(n) +D ≥ n and
hence:

∞∑
n=0

(
αn+1

n−1∑
r=s(n)

αr+1

)
≤

∞∑
n=0

(
αn+1

n∑
r=n−1−D

αr+1

)
≤ (D + 1)

∞∑
n=0

(
αn+1 max

r∈{n−1−D,...,n}
αr+1

)

≤ (D + 1)

∞∑
n=0

(
max

r∈{n−1−D,...,n}
αr+1 · max

r∈{n−1−D,...,n}
αr+1

)
= (D + 1)

∞∑
n=0

(
max

r∈{n−1−D,...,n}
α2
r+1

)
≤ (D + 1)

∞∑
n=0

(n∑
r=n−1−D

α2
r+1

)
= (D + 1)2

∞∑
n=0

α2
n+1 <∞,

where all the terms αr are defined to be 0 when r drops below 0.
(2) In the sublinearly growing delays case, since dn = O(np), it follows that s(n) +

Ksp(n) ≥ n for some positive number K, which further implies that s(n) +Ks(n) ≥
s(n) +Ksp(n) ≥ n, thereby leading to s(n) ≥ n

K+1 . Consequently, we have:

∞∑
n=0

(
αn+1

n−1∑
r=s(n)

αr+1

)
≤

∞∑
n=0

(1
n

n∑
r=s(n)

1

r

)
≤

∞∑
n=0

(1
n

Ksp(n)

s(n)

)
= K

∞∑
n=0

1

n
sp−1(n) ≤ K

∞∑
n=0

1

n
(

n

K + 1
)p−1

≤ (K + 1)−p
∞∑

n=0

np−2 <∞.

(B.8)

(3) In the linearly growing delays case, since dn = O(n), it follows that s(n)+Ks(n) ≥ n
for some positive number K and hence again s(n) ≥ n

K+1 . Consequently, we have:

∞∑
n=0

(
αn+1

n−1∑
r=s(n)

αr+1

)
≤

∞∑
n=0

(1

n log n

n∑
r=s(n)

1

r log r

)
≤

∞∑
n=0

(1

n log n

s(n)+Ks(n)∑
r=s(n)

1

r log r

)

≤
∞∑

n=0

(1

n log n

∫ s(n)+Ks(n)

s(n)

1

r log r
dr
)
=

∞∑
n=0

(1

n log n
log

log(s(n) +Ks(n))

log s(n)

)
=

∞∑
n=0

(1

n log n
log

log(K + 1) + log s(n)

log s(n)

)
=

∞∑
n=0

(1

n log n
log(1 +

log(K + 1)

log s(n)
)
)

≤
∞∑

n=0

(1

n log n

log(K + 1)

log s(n)

)
≤

∞∑
n=0

(1

n log n

log(K + 1)

log n− log(K + 1)

∼ K

∞∑
n=0

1

n(log n)2
<∞. (B.9)

(4) In the polynomially growing delays case, since dn = O(nq), it follows that s(n) +

Ksq(n) ≥ n for some positive number K. Note that in this case, s(n) = Ω(n
1
2q),

because otherwise, s(n) +Ksq(n) = O(n
1
2q +Kn

1
2) = o(n), which is a contradiction.

Consequently, we have:
∞∑

n=0

(
αn+1

n−1∑
r=s(n)

αr+1

)
≤

∞∑
n=0

(1

n log n log log n

n∑
r=s(n)

1

r log r log log r

)

26 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

≤
∞∑

n=0

(1

n log n log log n

s(n)+Ksq(n)∑
r=s(n)

1

r log r log log r

)

≤
∞∑

n=0

(1

n log n log log n

∫ s(n)+Ksq(n)

s(n)

1

r log r log log r
dr
)

≤
∞∑

n=0

(1

n log n log log n
log

log((K + 1) log s(n) + a log s(n))

log log s(n)

)
≤

∞∑
n=0

(1

n log n log log n
log(1 +

log(K + 1 + a)

log log s(n)
)
)

≤
∞∑

n=0

(1

n log n log log n

log(K + 1 + a)

log log s(n)

)
≤

∞∑
n=0

(1

n log n log log n

log(K + 1 + a)

log log n
1
2q

K′

)

∼ K

∞∑
n=0

1

n log n(log log n)2
<∞. (B.10)

Consequently, in each of the above 4 cases, we have
∑∞

n=0

(
αn+1

∑n−1
r=s(n) αr+1

)
< ∞.

Therefore, Equation (B.7) yields

−∞ < −
∞∑

n=0

αn+1 E[∥∇ f(Xn)∥22] + LB̄
√
B

∞∑
n=0

(
αn+1

n−1∑
r=s(n)

αr+1

)
+ (L

√
B + 4LB)

∞∑
n=0

α2
n+1

≤ −
∞∑

n=0

αn+1 E[∥∇ f(Xn)∥22] + C,

(B.11)

for some finite constant C. Reversing the above inequality immediately yields the result:
∞∑

n=0

αn+1 E[∥∇ f(Xn)∥22] <∞.

■

B.1.2. Proof of Lemma 2. Proof: We first recall a useful fact: for any two vectors a,b and
any finite-dimensional vector norm ∥ · ∥,∣∣∣(∥a∥+ ∥b∥)(∥a∥ − ∥b∥)∣∣∣ ≤ ∥a+ b∥∥a− b∥. (B.12)

Using this fact, we can expect bound the term in question as follows:∣∣∣∣E[∥∇f(Xn+1)∥22]− E[∥∇f(Xn)∥22]
∣∣∣∣ =

∣∣∣∣∣E
[(
∥∇f(Xn+1)∥2 + ∥∇f(Xn)∥2

)(
∥∇f(Xn+1)∥2 − ∥∇f(Xn)∥2

)]∣∣∣∣∣
≤ E

[∣∣∣∣∥∇f(Xn+1)∥2 + ∥∇f(Xn)∥2
∣∣∣∣ · ∣∣∣∣∥∇f(Xn+1)∥2 − ∥∇f(Xn)∥2

∣∣∣∣
]

≤ E

[∥∥∥∥∇f(Xn+1) +∇f(Xn)

∥∥∥∥
2

·
∥∥∥∥∇f(Xn+1)−∇f(Xn)

∥∥∥∥
2

]
≤ E

[
2 sup
x∈X
∥∇f(x)∥2 ·

∥∥∥∥∇f(Xn+1)−∇f(Xn)

∥∥∥∥
2

]

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 27

≤ 2
√
BE

[∥∥∥∥∇f(Xn+1)−∇f(Xn)

∥∥∥∥
2

]
≤ 2
√
BE

[
L

∥∥∥∥Xn+1 −Xn

∥∥∥∥
2

]
= 2L

√
BE

[∥∥∥∥Xn+1 −Xn

∥∥∥∥
2

]

= 2L
√
BE

[∥∥∥∥αn+1∇F (Xs(n), ωn+1)

∥∥∥∥
2

]
≤ 2L

√
Bαn+1 sup

x∈X
E

[∥∥∥∥∇F (x, ωn+1)

∥∥∥∥
2

]

= 2L
√
Bαn+1 sup

x∈X
E

[√∥∥∥∥∇F (x, ωn+1)

∥∥∥∥2
2

]

≤ 2L
√
Bαn+1 sup

x∈X

√√√√E

[∥∥∥∥∇F (x, ωn+1)

∥∥∥∥2
2

]
≤ 2L

√
Bαn+1

√
B = 2LBαn+1,

where the first inequality is an application of Jensen’s inequality, the second inequality
follows from Equation (B.12) the fifth inequality follows from Lipschitz continuity and the
second-to-last inequality follows from another application of Jensen’s inequality and that the
squre root function is concave. ■

B.2. Variationally Coherent Objectives. We define the following constants that will be handy
later:

(1) C1 = supx∈X E[∥∇F (x;ω)∥2].
(2) C2 = supx∈X E[∥∇F (x;ω)∥22].
(3) C3 is the Lipschitz constant for ∇ f(x)(= E[∇F (x;ω)]) :

∥∇ f(x)−∇ f(x′)∥2 ≤ C3∥x− x′∥2. (B.13)

(4) C4 = supx,x′∈X ∥x− x′∥2.

B.2.1. Proof of Lemma 3. Per the definition of the energy function, we have:

Ex∗(y)− ∥prX (y)− x∗∥22 = ∥x∗∥22 − ∥prX (y)∥22 + 2⟨y,prX (y)− x∗⟩ −
{
∥prX (y)∥22 − 2⟨prX (y), x∗⟩+ ∥x∗∥22

}
= −2∥prX (y)∥22 + 2⟨y − prX (y),prX (y)− x∗⟩+ 2⟨prX (y),prX (y)− x∗⟩+ 2⟨prX (y), x∗⟩
= 2⟨y − prX (y),prX (y)− x∗⟩ ≥ 0,

(B.14)

where the last inequality follows from Lemma A.1. Consequently, Ex∗(y) ≥ ∥prX (y)−x∗∥22 ≥
0. Taking the infimum over X ∗ yields E(y) ≥ 0.

Next, we establish that E(y) = 0 if and only if prX (y) ∈ X ∗. The if part is already
established in Remark 4. It suffices to show that E(y) = 0 implies prX (y) ∈ X ∗. To see
this, observe that if Ex∗(y) = 0, we must have ∥prX (y) − x∗∥22 = 0, therefore implying
prX (y) = x∗. Since Ex∗(y) is a continuous function of x∗ for each fixed y, and since X ∗ is a
compact set, infx∗∈X∗ Ex∗(y) must be achieved by some z∗ ∈ X ∗. Namely E(y) = Ez∗(y).
Consequently, by the preceding observation, E(y) = 0 implies prX (y) = z∗ ∈ X ∗.

For the second statement, suppose on the contrary E(yn) → 0 but prX (yn) does not
converge to X ∗. Then there must exist a subsequence nk such that prX (ynk

) is bounded
away from X ∗. Denoting by N (X ∗, ϵ) the ϵ-open ball around X ∗ (i.e. N (X ∗, ϵ) ≜ {x ∈ Rd |
dist(x,X ∗) < ϵ}). Then for the subsequence nk, there must exist some positive ϵ such that
prX (yn) remains in X ∩ N c(X ∗, ϵ). Since X ∩ N c(X ∗, ϵ) is an intersection of two closed
sets, it is itself closed; it is also bounded since X is bounded: hence it is compact. Further,
since for each fixed x∗, Ex∗(y) is a continuous function of prX (y), Ex∗(y) must achieve the

28 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

minimum value on the compact set X ∩N c(X ∗, ϵ), where the minimum value ax∗ is positive
per the first statement:

Ex∗(y) ≥ ax∗ > 0,∀prX (y) ∈ X ∩N c(X ∗, ϵ),∀x∗ ∈ X ∗

Finally, since Ex∗(y) is continuous in x∗, it must achieve the minimum value (over x∗) on
the compact set X ∗, where the minimum value a (corresponding to some Ex∗(y)) must again
be positive:

E(y) = inf
x∗∈X∗

Ex∗(y) ≥ inf
x∗∈X∗

ax∗ = a > 0.

Consequently, E(ynk
) ≥ a > 0 since prX (ynk

) ∈ X ∩ N c(X ∗, ϵ),∀k. However, on this
subsequence, the energy function still converges to 0 by assumption: E(ynk

) → 0, which
immediately yields a contradiction. The claim is hence established. ■

B.2.2. Proof of Lemma 4. We first prove the first claim. By expanding it, we have:

∥prX (y)− ŷ∥22 − ∥prX (ŷ)− ŷ∥22 = ∥prX (y)− y + y − ŷ∥22 − ∥prX (ŷ)− ŷ∥22
= ∥y − ŷ∥22 + ∥prX (y)− y∥22 + 2⟨prX (y)− y, y − ŷ⟩ − ∥prX (ŷ)− ŷ∥22

= ∥y − ŷ∥22 −
{
∥prX (ŷ)− ŷ∥22 − ∥prX (y)− y∥22 − 2⟨y − prX (y), ŷ − y⟩

}
.

(B.15)

Now define the function f(x, y) = ∥x− y∥22. It follows easily that the solution to the problem
maxx∈X ∥x− y∥22 is x∗(y) = prX (y). Consequently, by Lemma A.3, V (y) = f(x∗(y), y) is a
differential function in y and its derivative can be computed explicitly as follows:

∇V (y) = ∇ f(x∗(y), y) = 2(y − x∗(y)) = 2(y − prX (y)). (B.16)

Futher, since for each x ∈ X , f(x, y) is a convex function in y, and taking the maximum
preserves convexity, we have V (y) is also a convex function in y. This means that

V (ŷ)− V (y)− ⟨∇V (y), ŷ − y⟩ ≥ 0.

By Equation (B.16) and that V (y) = f(x∗(y), y) = ∥prX (y) − x∥22, the above equation
becomes:

∥prX (ŷ)− ŷ∥22 − ∥prX (y)− y∥22 − 2⟨y − prX (y), ŷ − y⟩ ≥ 0.

Consequently, Equation (A.2) then immediately yields:

∥prX (y)− ŷ∥22 − ∥prX (ŷ)− ŷ∥22 ≤ ∥y − ŷ∥22.

We now prove the second part. Expanding using the definition of the Lyapunov function
(and skipping some tedious algebra in between), we have:

Ex∗(y +∆)− Ex∗(y) = ∥x∗∥22 − ∥prX (y +∆)∥22 + 2⟨y +∆,prX (y +∆)− x∗⟩

−
{
∥x∗∥22 − ∥prX (y)∥22 + 2⟨y,prX (y)− x∗⟩

}
= ∥prX (y)∥22 − ∥prX (y +∆)∥22 − 2⟨y,prX (y)− x∗⟩+ 2⟨y +∆,prX (y +∆)− x∗⟩
= ∥prX (y)∥22 − ∥prX (y +∆)∥22 + 2⟨y,prX (y +∆)− prX (y)⟩
+ 2⟨∆,prX (y)− x∗ + prX (y +∆)− prX (y)⟩
= 2⟨∆,prX (y)− x∗⟩+ 2⟨y +∆,prX (y +∆)− prX (y)⟩+ ∥prX (y)∥22 − ∥prX (y +∆)∥22
= 2⟨∆,prX (y)− x∗⟩+ ∥prX (y)− (y +∆)∥22 − ∥prX (y +∆)− (y +∆)∥22
≤ 2⟨∆,prX (y)− x∗⟩+ ∥∆∥22 (B.17)

where the last equality follows from completing the squares and the last inequality follows
from the first part of the lemma. ■

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 29

B.2.3. Proof of Proposition 1. We provide the details for all the steps.
(1) Defining bn = ∇ f(xs(n))−∇ f(xn), we can rewrite the gradient update in DAGD

as:

yn+1 = yn − αn+1∇ f(xs(n))

= yn − αn+1∇ f(xn)− αn+1{∇ f(xs(n))−∇ f(xn)}
= yn − αn+1(∇ f(xn) + bn). (B.18)

Recall here once again that s(n) denotes the previous iteration count whose gradient
becomes available only at the current iteration n. To establish the claim, we start
by expanding bn as follows:

∥bn∥2 = ∥∇ f(xs(n))−∇ f(xn)∥2 ≤ C3∥xs(n) − xn∥2
= C3∥prX (ys(n))− prX (yn)∥2 ≤ C3∥ys(n) − yn∥2

≤ C3

{
∥ys(n) − ys(n)+1∥2 + ∥ys(n)+1 − ys(n)+2∥2 + · · ·+ ∥yn−1 − yn∥2

}
= C3

n−1∑
r=s(n)

∥αr+1∇ f(xs(r))∥2 ≤ C3 sup
x∈X
∥∇ f(x)∥2

n−1∑
r=s(n)

αr+1 = C3Vmax

n−1∑
r=s(n)

αr+1.

(B.19)

We now consider two cases, depending on whether the delays are bounded or not.
(a) If {αn}∞n=1 and dn ≤ D,∀n satisfy Assumption 2, then ds(n) = n− s(n) ≤ D.

Consequently,

0 <

n−1∑
r=s(n)

αr+1 =

n∑
r=s(n)+1

αr ≤
n∑

r=n−D

αr ≤ D max
r∈{n−D,...,n}

αr → 0 as n→∞, (B.20)

where the limit approaching 0 follows from limn→∞ αn = 0, which itself is a
consequence of Assumption 2. This implies limn→∞ C3Vmax

∑n−1
r=s(n) αr+1 = 0

and consequently, limn→∞ ∥bn∥2 = 0.
(b) We consider each of the three conditions in turn.

When αn−1 = 1
n and dn = o(n), we have n−s(n) ≤ Ko(s(n)) for some universal

constant K > 0, which means n ≤ s(n) +Ko(s(n)). Consequently, we have:

0 <

n−1∑
r=s(n)

αr+1 =

s(n)+Ko(s(n))∑
r=s(n)

αr ≤
∫ s(n)+Ko(s(n))

s(n)

1

r
dr

= log(s(n) +Ko(s(n)))− log s(n) = log
Ko(s(n)) + s(n)

s(n)
→ log 1 = 0 as n→∞,

(B.21)

where the last limit follows from s(n) → ∞ as n → ∞ because n ≤ s(n) +
Ko(s(n)).
When αn−1 = 1

n logn and dn = O(n), it is easy to verify (by integration) that
this particular choice of sequence satisfies

∑∞
n=1 α

2
n <∞,

∑∞
n=1 αn =∞. Since

dn = O(n), we have n − s(n) ≤ Ks(n) for some universal constant K > 0,
which means n ≤ s(n) +Ks(n). Consequently, we have:

0 <

n−1∑
r=s(n)

αr+1 =

s(n)+Ks(n)∑
r=s(n)

αr ≤
∫ s(n)+Ks(n)

s(n)

1

r log r
dr

30 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

= log
log(s(n) +Ks(n))

log s(n)
= log

log(K + 1) + log s(n)

log s(n)
→ 0 as n→∞, (B.22)

where the last limit follows from s(n)→∞ as n→∞ because n ≤ s(n)+Ks(n).
When αn−1 = 1

n logn log logn and dn = O(na), a > 1, it is again easy to verify
(by integration) that this particular choice of sequence satisfies Assumption 2.
Since dn = O(na), we have n − s(n) ≤ Ks(n)a for some universal constant
K > 0, which means n ≤ s(n) +Ks(n)a. Consequently, we have:

0 <

n−1∑
r=s(n)

αr+1 =

s(n)+Ks(n)a∑
r=s(n)

αr ≤
∫ s(n)+Ks(n)a

s(n)

1

r log r log log r
dr

= log
log log(s(n) +Ks(n)a)

log log s(n)

≤ log
log log(s(n)a +Ks(n)a)

log log s(n)

< log
log((K + 1) log s(n) + a log s(n))

log log s(n)

= log
log(K + 1 + a) + log log s(n)

log log s(n)
→ 0 as n→∞,

(B.23)

where the last limit follows from the fact that s(n) → ∞ as n → ∞ (again,
because n ≤ s(n) +Ks(n)a).

(2) With the defintion of bn, DAGD can be written as:
xn = prX (yn),

yn+1 = yn − αn+1(∇ f(xn) + bn).
(B.24)

To prove the claim, we start by fixing an arbitrary x∗ ∈ X ∗ and applying Lemma 4
to bound the energy change in a single gradient update as follows:

Ex∗(yn+1)− Ex∗(yn) ≤ 2⟨yn+1 − yn,prX (yn)− x∗⟩+ ∥yn − yn+1∥22
= −2⟨αn+1(∇ f(xn) + bn), xn − x∗⟩+ ∥yn − yn+1∥22.

(B.25)

Now telescoping the above inequality yields:

Ex∗(yn+1)− Ex∗(y0) =

n∑
r=0

{Ex∗(yr+1)− Ex∗(yr)}

≤
n∑

r=0

{−2αr+1⟨∇ f(xr) + br, xr − x∗⟩+ α2
r+1∥∇ f(xr) + br∥22}

≤ −2
n∑

r=0

αr+1{⟨∇ f(xr), xr − x∗⟩ − ∥br∥2∥xr − x∗∥2}+ 2

n∑
r=0

α2
r+1{∥∇ f(xr)∥22 + ∥br∥22}

≤ −2
n∑

r=0

αr+1{⟨∇ f(xr), xr − x∗⟩ − C4∥br∥2}+ 2

n∑
r=0

α2
r+1{C2 +B},

(B.26)

where the last inequality follows from the fact that bn’s must be bounded (since
limn→∞ ∥bn∥2 = 0) and hence let B ≜ supn ∥bn∥2. By Assumption 2, we have
2
∑n

r=0 α
2
r+1{C2 + B} = B < ∞. Now fix any positive number ϵ. Assume for

contradiction purposes xn only enters N (x∗, ϵ) a finite number of times and let t1

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 31

be the last time this occurs. This means that for all r > t1, xr is outside the open
set N (X ∗, ϵ). Therefore, since a continuous function always achieves its minimum
on a compact set, we have: ⟨∇ f(xr), xr − x∗⟩ ≥ minx∈X−N (X∗,ϵ)⟨∇ f(x), x− x∗⟩ ≜
a > 0,∀r > t1 (note that a depends on ϵ). Further, since br → 0 as r →∞, pick t2
such that ∥br∥2 < a

2C4
,∀r ≥ t2. Denoting t = max(t1, t2), we continue the chain of

inequalities in Equation (B.26) below:
−Ex∗(y0)

≤ Ex∗(yn+1)− Ex∗(y0) ≤ −2
t∑

r=0

αr+1{⟨∇ f(xr), xr − x∗⟩ − C4∥br∥2}

− 2

n∑
r=t+1

αr+1{⟨∇ f(xr), xr − x∗⟩ − C4∥br∥2}+ 2

n∑
r=0

α2
r+1{C2 +B}

≤ −2
t∑

r=0

αr+1{⟨∇ f(xr), xr − x∗⟩ − C4∥br∥2} − 2

n∑
r=t+1

αr+1{a− C4∥br∥2}+B

≤ 2C4

t∑
r=0

αr+1|br∥2 +B − 2

n∑
r=t+1

αr+1{a−
a

2
}

= B − a

n∑
r=t+1

αr+1 → −∞, as n→∞

where the first inequality follows from the energy function always being positive
(Lemma 3), the second-to-last inequality follows from variational coherence and the
limit on the last line follows from Assumption 2 and that B ≜ 2C4

∑t
r=0 αr+1|br∥2+B

is just some finite constant. This yields an immediate contradiction and the claim is
therefore established.

■

B.2.4. Proof of Theorem 2. Fix a given δ > 0. Since αn → 0, bn → 0 as n → ∞, for any
a > 0, we can pick an N large enough (depending on δ and a) such that ∀n ≥ N , the
following three statements all hold:

2BC4αn+1 + 2α2
n+1(C2 +B2) ≤ δ

2
,

C4∥bn∥2 ≤
a

2
,

αn+1(C2 +B2) <
a

2
.

(B.27)

We show that under either of the following two (exhaustive) possibilities, if E(yn) is less
than δ, E(yn+1) is less than δ as well, where n ≥ N .

(1) Case 1: E(yn) <
δ
2 .

(2) Case 2: δ
2 ≤ E(yn) < δ.

Under Case 1, it follows from Equation (B.25):

Ex∗(yn+1)− Ex∗(yn) ≤ −2αn+1⟨∇ f(xn) + bn, xn − x∗⟩+ α2
n+1∥∇ f(xn) + bn∥22

≤ −2αn+1⟨bn, xn − x∗⟩+ α2
n+1∥∇ f(xn) + bn∥22

≤ 2αn+1∥bn∥2∥xn − x∗∥2 + 2α2
n+1(C2 +B2)

≤ 2BC4αn+1 + 2α2
n+1(C2 +B2) ≤ δ

2
,

(B.28)

32 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

where the second inequality follows from variational coherence. Taking the infimum of x∗ over
X ∗ then yields: E(yn+1)−E(yn) ≤ δ

2 . This then implies that E(x∗, yn+1) ≤ E(x∗, yn)+
δ
2 < δ.

Under Case 2, Eq. (B.25) readily yields:

Ex∗(yn+1)− Ex∗(yn) ≤ −2αn+1⟨∇ f(xn) + bn, xn − x∗⟩+ α2
n+1∥∇ f(xn) + bn∥22

= −2αn+1⟨∇ f(xn), xn − x∗⟩ − 2αn+1⟨bn, xn − x∗⟩+ α2
n+1∥∇ f(xn) + bn∥22

≤ −2αn+1a+ 2αn+1∥bn∥2∥xn − x∗∥2 + 2α2
n+1(C2 +B2)

≤ −2αn+1

{
a− C4∥bn∥2 − αn+1(C2 +B2)

}
≤ −2αn+1

{
a− a

2
− αn+1(C2 +B2)

}
= −2αn+1

{a
2
− αn+1(C2 +B2)

}
< 0,

(B.29)

where the second inequality follows from ⟨∇ f(xn), xn − x∗⟩ ≥ a under Case 215. Taking the
infimum of x∗ over X ∗ then yields: E(yn+1) ≤ E(yn). This then implies that E(yn+1) ≤
E(yn) <

δ
2 .

Consequently, putting the above two cases together therefore yields E(yn+1) < δ. ■

B.2.5. Proof of Proposition 2. Using the definitions introduced in the main text, we rewrite
the gradient update in DASGD as:

Yn+1 = Yn − αn+1{∇ f(Xn) +Bn + Un+1}. (B.30)

(1) To see that
∑n

r=0 Un+1 is a martingale adapted to Y0, Y1 . . . , Yn+1, first note that,
by defintion, Bn is adapted to Y0, Y1 . . . , Yn (since Xn is a deterministic function
of Yn) and Yn+1, Yn, Bn together determine Un+1. We then check that their first
moments are bounded:

E[∥
n∑

r=0

∥Ur+1∥2] ≤
n∑

r=0

E[∥Ur+1∥2] =
n∑

r=0

E[∥∇F (Xs(r), ωr+1)−∇ f(Xs(r))∥2]

≤
n∑

r=0

{
E[∥∇F (Xs(r), ωr+1)∥2] + E[∥∇ f(Xs(r))∥2]

}
≤

n∑
r=0

{
sup
x∈X

E[∥∇F (x, ω)∥2] + sup
x∈X
∥∇ f(x)∥2

}
=

n∑
r=0

{
sup
x∈X

E[∥∇F (x, ω)∥2] + sup
x∈X
∥E[∇F (x, ω)]∥2

}
≤

n∑
r=0

2 sup
x∈X

E[∥∇F (x, ω)∥2] =
n∑

r=0

2C1 = 2(n+ 1)C1 <∞,

(B.31)

where the last inequality follows from Jensen’s inequality (since ∥ ·∥2 is a convex func-
tion). Finally, the martingale property holds because: E[

∑n
r=0 Ur+1 | Y1, . . . , Yn+1] =

E[∇F (Xs(n), ωn+1) − ∇ f(Xs(n)) | Y1, . . . , Yn] +
∑n−1

r=0 Ur+1 =
∑n−1

r=0 Ur+1., since
ωn+1 is iid. Therefore,

∑n
r=0 Ur+1 is a martingale, and Un+1 is a martingale differ-

ence sequence adapted to Y0, Y1 . . . , Yn+1.

15Here a is a constant that only depends on δ: if E(x∗, y) ≥ δ
2
, then by part 2 of Lemma 3, prX (y) must

be outside an ϵ-neighborhood of x∗, for some ϵ > 0. On this neighborhood, the strictly positive continuous
function ⟨∇ f(x), x− x∗⟩ must achieve a minimum value a > 0.

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 33

Next, we show that limn→∞ ∥Bn∥2 = 0, a.s.. By definition, we can expand Bn as
follows:

∥Bn∥2 = ∥∇ f(Xs(n))−∇ f(Xn)∥2 ≤ C3∥Xs(n) −Xn∥2 = C3∥prX (Ys(n))− prX (Yn)∥2

≤ C3∥Ys(n) − Yn∥2 = C3

∥∥∥Ys(n) − Ys(n)+1 + Ys(n)+1 − Ys(n)+2 + · · ·+ Yn−1 − Yn

∥∥∥
2

= C3

∥∥∥ n−1∑
r=s(n)

{
Yr − Yr+1

}∥∥∥
2
= C3

∥∥∥ n−1∑
r=s(n)

αr+1∇F (Xs(r), ωr+1)
∥∥∥
2

= C3

∥∥∥ n−1∑
r=s(n)

αr+1

{
∇ f(Xs(r)) +∇F (Xs(r), ωr+1)−∇ f(Xs(r))

}∥∥∥
2

= C3

∥∥∥ n−1∑
r=s(n)

αr+1∇ f(Xs(r)) +

n−1∑
r=s(n)

αr+1Ur+1

∥∥∥
2

≤ C3

n−1∑
r=s(n)

αr+1∥∇ f(Xs(r))∥2 + C3

∥∥∥ n−1∑
r=s(n)

αr+1Ur+1

∥∥∥
2

≤ C3C1

n−1∑
r=s(n)

αr+1 + C3∥
n−1∑

r=s(n)

αr+1Ur+1∥2

= C3C1

n−1∑
r=s(n)

αr+1 + C3∥
n−1∑
r=0

αr+1Ur+1 −
s(n)−1∑
r=0

αr+1Ur+1∥2, (B.32)

where the first inequality follows from ∇ f being Liptichz-continuous (Assumption 3)
and the second inequality follows from prX is a non-expansive map.

By the same analysis as in the deterministic case, the first part of the last line of
Equation (B.32) converges to 0 (under each one of the conditions on step-size and
delays in Assumption 2):

lim
n→∞

C3C1

n−1∑
r=s(n)

αr+1 = 0. (B.33)

We then analyze the limit of ∥
∑n−1

r=0 αr+1Ur+1 −
∑s(n)−1

r=0 αr+1Ur+1∥2. Define:

Mn =

n−1∑
r=0

αr+1Ur+1.

Since Ur+1’s are martingale differences, Mn is a martingale. Further, in each of the
three conditions,

∑∞
n=1 α

2
n <∞. This implies that Mn is an L2-bounded martingale

because:

sup
n

E[∥Mn∥22] = sup
n

E[
∥∥∥ n−1∑

r=0

αr+1Ur+1

∥∥∥2
2
] = sup

n
E[⟨

n−1∑
r=0

αr+1Ur+1,

n−1∑
r=0

αr+1Ur+1⟩]

= sup
n

E[
∑
i,j

⟨αi+1Ui+1, αj+1Uj+1⟩] = sup
n

n−1∑
r=0

E[⟨αr+1Ur+1, αr+1Ur+1⟩]

= sup
n

n−1∑
r=0

α2
r+1 E[∥Ur+1∥22] ≤ sup

n
4C2

n−1∑
r=0

α2
r+1 ≤ 4C2

∞∑
r=0

α2
r+1 <∞,

(B.34)

34 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

where the last inequality in the second line follows from the martingale property as
follows:

E[⟨αi+1Ui+1, αj+1Uj+1⟩] = αi+1αj+1 E[⟨Ui+1, Uj+1⟩]
= αi+1αj+1 E[E[⟨Ui+1, Uj+1⟩ | Y0, Y1, . . . , Yi+1]]

= αi+1αj+1 E[⟨Ui+1,E[Uj+1 | Y0, Y1, . . . , Yi+1]⟩] = αi+1αj+1 E[⟨Ui+1, 0⟩] = 0,

(B.35)

where the second equality follows from the tower property (and without loss of
generality, we have assumed i < j, the third equality follows from Ui+1 is adapted
to Y0, Y1, . . . , Yi+1 and the second-to-last equality follows from Un+1 is a martingale
difference. Consequently, all the cross terms in the second line of Equation (B.34)
are 0. Therefore, by Lemma A.2, by taking p = 2 limn→∞ Mn = M∞, a.s., where
M∞ has finite second-moment. Further, since in all three cases s(n) → ∞ as
n → ∞ (because there is at most a polynomial lag between s(n) and n), we have
limn→∞ Ms(n) = M∞, a.s.. Therefore

lim
n→∞

{ n−1∑
r=0

αr+1Ur+1 −
s(n)−1∑
r=0

αr+1Ur+1

}
= lim

n→∞

{
Mn −Ms(n)

}
= 0, a.s.,

thereby implying:

lim
n→∞

C3

∥∥∥ n−1∑
r=0

αr+1Ur+1 −
s(n)−1∑
r=0

αr+1Ur+1

∥∥∥
2
= 0. (B.36)

Combining Equation (B.33) and Equation (B.36) yields limn→∞ ∥Bn∥2 = 0, a.s..
(2) The full DASGD update is then:

Xn = prX (Yn) (B.37)
Yn+1 = Yn − αn+1{∇ f(Xn) +Bn + Un+1}. (B.38)

We now bound the one-step change of the energy function E(X ∗, Yn+1)−E(X ∗, Yn)
(which is now a random quantity) and then telescope the differences.

Pick an arbitrary x∗ ∈ X ∗ and apply Lemma 4, we have:

Ex∗(Yn+1)− Ex∗(Yn) ≤ −2αn+1⟨∇ f(Xn) +Bn + Un+1, Xn − x∗⟩+ ∥Yn − Yn+1∥22
= −2αn+1⟨∇ f(Xn) +Bn + Un+1, Xn − x∗⟩+ α2

n+1∥∇ f(Xn) +Bn + Un+1∥22

≤ −2αn+1⟨∇ f(Xn) +Bn + Un+1, Xn − x∗⟩+ 3α2
n+1

{
∥∇ f(Xn)∥22 + ∥Bn∥22 + ∥Un+1∥22

}
≤ −2αn+1⟨∇ f(Xn) +Bn + Un+1, Xn − x∗⟩+ 3α2

n+1

{
C2 + ∥Bn∥22 + ∥Un+1∥22

}
.

(B.39)

For contradiction purposes assume Xn enters N (X ∗, ϵ) only a finite number of
times with positive probability. By starting the sequence at a later index if necessary,
we can without loss of generality Xn never enters N (x∗, ϵ) with positive probability.
Then on this event (of Xn never entering N (X ∗, ϵ)), we have ⟨∇ f(Xn), Xn − x∗⟩ ≥

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 35

a > 0 as before. Telescoping Equation (B.39) then yields:

−∞ < −Ex∗(Y0) ≤ Ex∗(Yn+1)− Ex∗(Y0) =

n∑
r=0

{Ex∗(Yr+1)− Ex∗(Yr)}

≤ −2
n∑

r=0

αn+1⟨∇ f(Xn) +Bn + Un+1, Xn − x∗⟩+ 3

n∑
r=0

α2
n+1

{
C2 + ∥Bn∥22 + ∥Un+1∥22

}
≤ −2

n∑
r=0

αn+1

{
a+ ⟨Bn + Un+1, Xn − x∗⟩

}
+ 3

n∑
r=0

α2
n+1

{
C2 + ∥Bn∥22 + ∥Un+1∥22

}
→ −∞ a.s. as n→∞.

(B.40)

We justify the last-line limit of Equation (B.40) by looking at each of its compo-
nents in turn:
(a) Since

∑n
r=0 α

2
n+1 <∞, and per the previous step, limn→∞ ∥Bn∥22 = 0, a.s., we

have 3
∑∞

r=0 α
2
n+1

{
C2 + ∥Bn∥22

}
= C, a.s., for some constant C <∞.

(b)
∑n

r=0 α
2
n+1∥Un+1∥22 is submartingale that is L1 bounded since:

sup
n

E[
n∑

r=0

α2
n+1∥Un+1∥22] ≤ sup

n

n∑
r=0

α2
n+1 E[∥Un+1∥22] ≤ sup

n

n∑
r=0

α2
n+1 E[∥Un+1∥22]

= sup
n

n∑
r=0

α2
n+1 E[∥∇F (Xs(n), ωn+1)−∇ f(Xs(n))∥22]

≤ 2 sup
n

n∑
r=0

α2
n+1

{
E[∥∇F (Xs(n), ωn+1)∥22] + E[∥∇ f(Xs(n))∥22]

}
≤ 2 sup

n

n∑
r=0

α2
n+1

{
sup
x∈X

E[∥∇F (x, ω)∥22] + sup
x∈X
∥∇ f(x)∥22

}
≤ 2 sup

n

n∑
r=0

2C2α
2
n+1 <∞.

Consequently, by martingale convergence theorem (Lemma A.2 by taking p = 1),
3
∑n

r=0 α
2
n+1∥Un+1∥22 → R, a.s., for some random variable R that is almost

surely finite (in fact E[|R|] <∞).
(c) Since ∥Bn∥2 converges to 0 almost surely, its average also converges to 0 almost

surely:
∞∑

n=0

αn+1∥Bn∥2∑n
r=1 αr+1

= 0, a.s.,

there by implying that
∞∑

n=0

αn+1⟨Bn, Xn − x∗⟩∑n
r=1 αr+1

= 0, a.s.,

since |⟨Bn, Xn − x∗⟩| ≤ ∥Bn∥2∥Xn − x∗∥2 ≤ C4∥Bn∥2.
In addition, αn+1⟨Un+1, Xn − x∗⟩ is a martingale difference that is L2 bounded
because αn+1 is square summable and

E[∥⟨Un+1, Xn − x∗⟩∥22] ≤ E[∥Un+1∥22∥Xn − x∗∥22] ≤ C4 E[∥Un+1∥22] ≤ 4C4C2 <∞.

36 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

Consequently, by applying Lemma A.5 with p = 2 and un =
∑n

r=1 αr+1 (which
is not summable), law of large number for martingales therefore implies:

∞∑
n=0

αn+1⟨Un+1, Xn − x∗⟩∑n
r=1 αr+1

= 0, a.s.

Combining the above two limits, we have

lim
n→∞

∑n
r=0 αn+1⟨Bn + Un+1, Xn − x∗⟩∑n

r=0 αr+1
= 0, a.s.

Consequently, −
∑n

r=0 αn+1

{
a+ ⟨Bn+Un+1, Xn−x∗⟩

}
= −{

∑n
r=0 αn+1}

{
a+∑n

r=0 αn+1⟨Bn+Un+1,Xn−x∗⟩∑n
r=0 αr+1

}
→ −∞, as n→ −∞.

B.2.6. Proof of Lemma 5. The first claim follows by computing the derivative of the energy
function with respect to time (for notational simplicity, here we just use y(t) to denote
P (t, y)):

d

dt
Ex∗(y(t)) =

d

dt

{
∥x∗∥22 − ∥prX (y(t))∥22 + 2⟨y(t),prX (y(t))− x∗⟩

}
=

d

dt

{
− ∥prX (y(t))− y(t)∥22 + ∥y(t)∥22 + 2⟨y(t),−x∗⟩

}
= 2⟨ẏ(t),prX (y(t))− y(t)⟩+ 2⟨y(t), ẏ(t)⟩+ 2⟨ẏ(t),−x∗⟩

}
= −2⟨∇ f(x(t)), x(t)− y(t)⟩ − 2⟨∇ f(x(t)), y(t)⟩ − 2⟨∇ f(x(t)),−x∗⟩

}
= −⟨∇ f(x(t)), x(t)− x∗⟩ ≤ 0,

(B.41)

where the last inequality is strict unless prX (y(t)) = x(t) = x∗. Take the infimum over x∗

then yields the result: in particular, if prX (y(t)) = x(t) /∈ X ∗, then d
dtEx∗(y(t)) ≤ −ϵ <

0,∀x∗ ∈ X ∗, hence yielding the strict part of the inequality. Note also that even though
prX (y(t))− y(t) is not differentiable, ∥prX (y(t))− y(t)∥22 is; and in computing its derivative,
we applied the envelope theorem as given in Lemma A.3.

For the second claim, consider all y that satisfy E(P (t, y)) > δ
2 . Fix any x∗ ∈ X ∗. By the

monotonicity property in the first part of the lemma, it follows that Ex∗(P (s, y)) > δ
2 ,∀0 ≤

s ≤ t. Consequently, P (s, y) must be outside some ϵ neighborhood of X ∗ for 0 ≤ s ≤ t, for
otherwise, Ex∗(P (t, y)) would be 0 for at least some x∗ ∈ X ∗, which is a contradiction to
E(P (t, y)) > δ

2 .
This means that there exists some positive constant a(δ) such that ∀0 ≤ s ≤ t,∀x∗ ∈ X ∗:

d

ds
Ex∗(P (s, y)) = −⟨∇ f(x(s)), x(s)− x∗⟩ ≤ −a(δ). (B.42)

Consequently, pick T (δ) = δ
2a(δ) , Equation (B.42) implies that for any t > T (δ):

Ex∗(P (t, y)) ≤ Ex∗(P (T (δ), y)) ≤ Ex∗(y)− T (δ)a(δ) ≤ Ex∗(y)− δ

2
. (B.43)

Taking the supremum over x∗ ∈ X ∗ then yields:

E(P (t, y)) ≤ E(y)− δ

2
. (B.44)

Since Equation (B.44) is true for any y, taking sup over y establishes the claim. ■

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 37

B.3. Proof of Lemma 6. First, from previous analysis, we already know that Un+1 is a
martingale difference sequence with supn E[∥Un+1∥22] <∞ and that αn is a square-summable
sequence. Recall also limn→∞ Bn = 0 (a.s.). Now, by combining Proposition 4.1 and
Proposition 4.2 in Benaïm [3], we obtain the following sufficient condition for APT:

The affine interpolation curve of the iterates generated by the difference equation Yn+1 =
Yn−αn+1{G(Xn)+Un+1} is an APT for the solution to the ODE ẏ = −G(y) if the following
three conditions all hold:

(1) G is Lipschitz continuous and bounded. 16.
(2) Un+1 is a martingale difference sequence with supn E[∥Un+1∥p2] <∞ and

∑∞
n=0 α

1+ p
2

n+1 <
∞ for some p > 2.

By using a similar analysis as in Benaïm [3] (which we omit here due to space limitation),
we can show that if the following conditions all hold:

(1) G is Lipschitz continuous and bounded.
(2) limn→∞ Bn = 0 (a.s.).
(3) Un+1 is a martingale difference sequence with supn E[∥Un+1∥p2] <∞ and

∑∞
n=0 α

1+ p
2

n+1 <
∞ for some p > 2,

then, the affine interpolation curve of the iterates generated by the difference equation
Yn+1 = Yn −αn+1{G(Xn) +Bn +Un+1} is an APT for the solution to the ODE ẏ = −G(y).

Take p = 2 and recall ∇ f(prX (·)) is Lipschitz continuous and bounded. The above list of
three conditions are thus all verified, thereby yielding the result.

B.3.1. Proof of Theorem 3. By Proposition 2, Yn will get arbitrarily close to X ∗ infinitely
often. It then suffices to show that, after long enough iterations, if Yn ever gets ϵ-close to X ∗,
all the ensuing iterates will be ϵ-close to X ∗ almost surely. The way we show this “trapping"
property is to use the energy function. Specifically, we consider E(x∗, A(t)) and show that
no matter how small ϵ is, for all sufficiently large t, if E(x∗, A(t0)) is less than ϵ for some
t0, then E(x∗, A(t)) < ϵ,∀t > t0. This would then complete the proof because A(t) actually
contains all the DASGD iterates, and hence if E(x∗, A(t)) < ϵ,∀t > t0, then E(x∗, Yn) < ϵ
for all sufficiently large n. Furthermore, since A(t) contains all the iterates, the hypothesis
that “ if E(x∗, A(t0)) is less than ϵ for some t0" will be satisfied due to Prop 2.

We now flesh out more details of the proof. Fix any ϵ > 0. Since A(t) is an asymptotic
pseudotrajectory for P , we have:

lim
t→∞

sup
0≤h≤T

∥Y (t+ h)− P (h, Y (t))∥2 = 0. (B.45)

Consequently, for any δ > 0, there exists some τ(δ, T) such that ∥Y (t+h)−P (h, Y (t))∥2 < δ
for all t ≥ τ and all h ∈ [0, T]. We therefore have the following chain of inequalities:

Ex∗(A(t+ h)) = Ex∗(P (h,A(t)) +A(t+ h)− P (h,A(t))) (B.46)

≤ Ex∗(P (h,A(t))) + ⟨A(t+ h)− P (h,A(t)),prX (P (h,A(t)))− x∗⟩+ 1

2
∥A(t+ h)− P (h,A(t))∥22

≤ Ex∗(P (h,A(t))) + C4δ +
1

2
δ2 = Ex∗(P (h,A(t))) +

ε

2
, (B.47)

where in the last step we have choosen δ small enough such that C4δ +
1
2δ

2 = ε
2 .

Now by Proposition 2, there exists some τ0 such that Ex∗(A(τ0)) < ε
2 . Our goal is to

establish that Ex∗(A(τ0 + h)) < ε for all h ∈ [0,∞). To that end, partition the [0,∞) into

16This condition is also sufficient for the existence and uniqueness of the ODE solution

38 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

disjoint time intervals of the form [(n− 1)Tε, nTε) for some appropriate Tε. By Lemma 5,
we have:

Ex∗(P (h,A(τ0))) ≤ Ex∗(P (0, A(τ0))) = Ex∗(A(τ0)) <
ε

2
for all h ≥ 0. (B.48)

Consequently:

Ex∗(A(τ0 + h)) < Ex∗(P (h,A(τ0))) +
ε

2
<

ε

2
+

ε

2
= ε, (B.49)

where the last inequality is a consequence of (B.48).
Now, assume inductively that Eq. (B.49) holds for all h ∈ [(n− 1)Tε, nTε) for some n ≥ 1.

Then, for all h ∈ [(n− 1)Tε, nTε), we have:

Ex∗(A(τ0 + Tε + h)) < Ex∗(P (Tε, A(τ0 + h))) +
ε

2
≤ max

{ε
2
, Ex∗(A(τ0 + h))− ε

2

}
+

ε

2

≤ ε

2
+

ε

2
= ε. (B.50)

Consequently, Eq. (B.49) holds for all h ∈ [nTε, (n+ 1)Tε). This completes the induction.
Taking the infimum over x∗ then completes our proof.

Acknowledgments

The authors are grateful to an associate editor and two anonymous referees for their suggestions
and remarks, and to John Tsitsiklis for his insightful input on previous work. The first author in
particular enjoyed the conversations with John on this topic during the winter of 2019 when visiting
MIT.

Zhengyuan Zhou was partially supported by IBM Goldstine fellowship. P. Mertikopoulos
was partially supported by the COST Action CA16228 “European Network for Game Theory”
(GAMENET). P. Mertikopoulos also received financial support from the French National Research
Agency (ANR) in the framework of the “Investissements d’avenir” program (ANR-15-IDEX-02), the
LabEx PERSYVAL (ANR-11-LABX-0025-01), MIAI@Grenoble Alpes (ANR-19-P3IA-0003), and
the grants ORACLESS (ANR-16-CE33-0004) and ALIAS (ANR-19-CE48-0018-01).

References

[1] Agarwal, Alekh, John C Duchi. 2011. Distributed delayed stochastic optimization. J. Shawe-Taylor, R. S.
Zemel, P. L. Bartlett, F. Pereira, K. Q. Weinberger, eds., Advances in Neural Information Processing
Systems 24 . Curran Associates, Inc., 873–881.

[2] Avron, Haim, Alex Druinsky, Anshul Gupta. 2015. Revisiting asynchronous linear solvers: Provable
convergence rate through randomization. Journal of the ACM (JACM) 62(6) 51.

[3] Benaïm, Michel. 1999. Dynamics of stochastic approximation algorithms. Jacques Azéma, Michel Émery,
Michel Ledoux, Marc Yor, eds., Séminaire de Probabilités XXXIII , Lecture Notes in Mathematics, vol.
1709. Springer Berlin Heidelberg, 1–68.

[4] Benaïm, Michel, Morris W. Hirsch. 1996. Asymptotic pseudotrajectories and chain recurrent flows, with
applications. Journal of Dynamics and Differential Equations 8(1) 141–176.

[5] Benaïm, Michel, Sebastian J. Schreiber. 2000. Ergodic properties of weak asymptotic pseudotrajectories
for semiflows. Journal of Dynamics and Differential Equations 12(3) 579–598.

[6] Bertsekas, Dimitri P, John N Tsitsiklis. 1996. Neuro-dynamic programming. Athena Scientific.
[7] Bertsekas, Dimitri P., John N. Tsitsiklis. 1997. Parallel and Distributed Computation: Numerical

Methods. Athena Scientific.
[8] Bertsekas, D.P. 1995. Nonlinear Programming. Athena Scientific. URL https://books.google.com/

books?id=QeweAQAAIAAJ.
[9] Borkar, Vivek S. 2008. Stochastic Approximation: A Dynamical Systems Viewpoint . Cambridge

University Press and Hindustan Book Agency.
[10] Carter, M. 2001. Foundations of Mathematical Economics. MIT Press. URL https://books.google.

com/books?id=KysvrGGfzq0C.

https://books.google.com/books?id=QeweAQAAIAAJ
https://books.google.com/books?id=QeweAQAAIAAJ
https://books.google.com/books?id=KysvrGGfzq0C
https://books.google.com/books?id=KysvrGGfzq0C

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 39

[11] Chaturapruek, Sorathan, John C Duchi, Christopher Ré. 2015. Asynchronous stochastic convex
optimization: the noise is in the noise and sgd don’t care. Advances in Neural Information Processing
Systems. 1531–1539.

[12] de Souza, P.N., J.N. Silva. 2012. Berkeley Problems in Mathematics. Problem Books in Mathematics,
Springer New York. URL https://books.google.com/books?id=cikdswEACAAJ.

[13] Dean, Jeffrey, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior,
Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale distributed deep networks. Advances in
neural information processing systems. 1223–1231.

[14] Dean, Jeffrey, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao,
Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng. 2012. Large scale
distributed deep networks. Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1 . NIPS’12, Curran Associates Inc., USA, 1223–1231.

[15] Dey, Santanu S, Marco Molinaro, Qianyi Wang. 2017. Analysis of sparse cutting planes for sparse milps
with applications to stochastic milps. Mathematics of Operations Research .

[16] Feng, Jiashi, Huan Xu, Shuicheng Yan. 2013. Online robust pca via stochastic optimization. Advances
in Neural Information Processing Systems. 404–412.

[17] Fercoq, Olivier, Peter Richtárik. 2015. Accelerated, parallel, and proximal coordinate descent. SIAM
Journal on Optimization 25(4) 1997–2023.

[18] Feyzmahdavian, Hamid Reza, Arda Aytekin, Mikael Johansson. 2016. An asynchronous mini-batch
algorithm for regularized stochastic optimization. IEEE Transactions on Automatic Control 61(12)
3740–3754.

[19] Ge, Rong, Furong Huang, Chi Jin, Yang Yuan. 2015. Escaping from saddle points?online stochastic
gradient for tensor decomposition. Conference on Learning Theory. 797–842.

[20] Ghadimi, Saeed, Guanghui Lan. 2013. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization 23(4) 2341–2368.

[21] Hall, P., C. C. Heyde. 1980. Martingale Limit Theory and Its Application. Probability and Mathematical
Statistics, Academic Press, New York.

[22] Héliou, Amélie, Panayotis Mertikopoulos, Zhengyuan Zhou. 2020. Gradient-free online learning in
continuous games with delayed rewards. ICML ’20: Proceedings of the 37th International Conference
on Machine Learning.

[23] Hong, Mingyi. 2017. A distributed, asynchronous and incremental algorithm for nonconvex optimization:
An admm approach. IEEE Transactions on Control of Network Systems .

[24] Hsieh, Yu-Guan, Franck Iutzeler, Jérôme Malick, Panayotis Mertikopoulos. 2020. Multi-agent online
optimization with delays: Asynchronicity, adaptivity, and optimism. https://arxiv.org/abs/2012.
11579.

[25] Jin, Chi, Rong Ge, Praneeth Netrapalli, Sham M Kakade, Michael I Jordan. 2017. How to escape saddle
points efficiently. Proceedings of the 34th International Conference on Machine Learning-Volume 70 .
JMLR. org, 1724–1732.

[26] Joulani, Pooria, András György, Csaba Szepesvári. 2016. Delay-tolerant online convex optimization:
Unified analysis and adaptive-gradient algorithms. AAAI ’16: Proceedings of the 30th Conference on
Artificial Intelligence.

[27] Krizhevsky, Alex, Ilya Sutskever, Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional
neural networks. F. Pereira, C. J. C. Burges, L. Bottou, K. Q. Weinberger, eds., Advances in Neural
Information Processing Systems 25 . Curran Associates, Inc., 1097–1105.

[28] Kushner, H., G.G. Yin. 2013. Stochastic Approximation and Recursive Algorithms and Applications.
Stochastic Modelling and Applied Probability, Springer New York. URL https://books.google.com/
books?id=sB0GCAAAQBAJ.

[29] Lee, Jason D, Max Simchowitz, Michael I Jordan, Benjamin Recht. 2016. Gradient descent converges to
minimizers. arXiv preprint arXiv:1602.04915 .

[30] Lee, Jinho, John Hasenbein, David Morton. 2011. Stochastic optimization models for rapid detection of
viruses in cellphone networks. Tech Report .

[31] Lian, Xiangru, Yijun Huang, Yuncheng Li, Ji Liu. 2015. Asynchronous parallel stochastic gradient for
nonconvex optimization. Advances in Neural Information Processing Systems. 2737–2745.

https://books.google.com/books?id=cikdswEACAAJ
https://arxiv.org/abs/2012.11579
https://arxiv.org/abs/2012.11579
https://books.google.com/books?id=sB0GCAAAQBAJ
https://books.google.com/books?id=sB0GCAAAQBAJ

40 Z. ZHOU, P. MERTIKOPOULOS, N. BAMBOS, P. W. GLYNN, AND N. BAMBOS

[32] Lian, Xiangru, Huan Zhang, Cho-Jui Hsieh, Yijun Huang, Ji Liu. 2016. A comprehensive linear speedup
analysis for asynchronous stochastic parallel optimization from zeroth-order to first-order. Advances in
Neural Information Processing Systems. 3054–3062.

[33] Liu, Ji, Stephen J Wright. 2015. Asynchronous stochastic coordinate descent: Parallelism and convergence
properties. SIAM Journal on Optimization 25(1) 351–376.

[34] Liu, Ji, Stephen J Wright, Srikrishna Sridhar. 2014. An asynchronous parallel randomized kaczmarz
algorithm. arXiv preprint arXiv:1401.4780 .

[35] Mania, Horia, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, Michael I
Jordan. 2017. Perturbed iterate analysis for asynchronous stochastic optimization. SIAM Journal on
Optimization 27(4) 2202–2229.

[36] Marecek, Jakub, Peter Richtarik, Martin Takac. 2015. Distributed block coordinate descent for
minimizing partially separable functions. Numerical Analysis and Optimization. Springer, 261–288.

[37] Mertikopoulos, Panayotis, Bruno Lecouat, Houssam Zenati, Chuan-Sheng Foo, Vijay Chandrasekhar,
Georgios Piliouras. 2019. Optimistic mirror descent in saddle-point problems: Going the extra (gradient)
mile. ICLR ’19: Proceedings of the 2019 International Conference on Learning Representations.

[38] Mertikopoulos, Panayotis, Zhengyuan Zhou. 2019. Learning in games with continuous action sets and
unknown payoff functions. Mathematical Programming 173(1-2) 465–507.

[39] Nesterov, Yurii. 2004. Introductory Lectures on Convex Optimization: A Basic Course. No. 87 in
Applied Optimization, Kluwer Academic Publishers.

[40] Paine, Thomas, Hailin Jin, Jianchao Yang, Zhe Lin, Thomas Huang. 2013. Gpu asynchronous stochastic
gradient descent to speed up neural network training. arXiv preprint arXiv:1312.6186 .

[41] Quanrud, Kent, Daniel Khashabi. 2015. Online learning with adversarial delays. NIPS ’15: Proceedings
of the 29th International Conference on Neural Information Processing Systems.

[42] Recht, Benjamin, Christopher Re, Stephen Wright, Feng Niu. 2011. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. Advances in neural information processing systems. 693–701.

[43] Rosenbrock, Howard Harry. 1960. An automatic method for finding the greatest or least value of a
function. Computer Journal 3(3) 175–184.

[44] Ruszczyński, Andrzej, Alexander Shapiro. 2003. Stochastic programming models. Handbooks in
operations research and management science 10 1–64.

[45] Shapiro, Alexander, Andy Philpott. 2007. A tutorial on stochastic programming .
[46] Tappenden, Rachael, Martin Takac, Peter Richtarik. 2017. On the complexity of parallel coordinate

descent. Optimization Methods and Software 1–24.
[47] Tran, Kenneth, Saghar Hosseini, Lin Xiao, Thomas Finley, Mikhail Bilenko. 2015. Scaling up stochastic

dual coordinate ascent. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’15, ACM, New York, NY, USA, 1185–1194.

[48] Tsitsiklis, John N. 1984. Problems in decentralized decision making and computation. Ph.D. thesis,
MIT.

[49] Tsitsiklis, John N., Dimitri P. Bertsekas, Michael Athans. 1986. Distributed asynchronous deterministic
and stochastic gradient optimization algorithms 31(9) 803–812.

[50] Uryasev, S., P.M. Pardalos. 2010. Stochastic Optimization: Algorithms and Applications. Applied
Optimization, Springer US. URL https://books.google.com/books?id=MNL6kQAACAAJ.

[51] Wang, Yu-Xiang, Veeranjaneyulu Sadhanala, Wei Dai, Willie Neiswanger, Suvrit Sra, Eric Xing. 2016.
Parallel and distributed block-coordinate frank-wolfe algorithms. International Conference on Machine
Learning. 1548–1557.

[52] Wright, Stephen J. 2015. Coordinate descent algorithms. Mathematical Programming 151(1) 3–34.
[53] Zhang, Ruiliang, James Kwok. 2014. Asynchronous distributed admm for consensus optimization.

International Conference on Machine Learning. 1701–1709.
[54] Zhang, Shanshan, Ce Zhang, Zhao You, Rong Zheng, Bo Xu. 2013. Asynchronous stochastic gradient

descent for dnn training. 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing.

[55] Zhang, Sixin, Anna E Choromanska, Yann LeCun. 2015. Deep learning with elastic averaging sgd.
Advances in Neural Information Processing Systems. 685–693.

[56] Zhou, Zhengyuan, Panayotis Mertikopoulos, Nicholas Bambos, Stephen Boyd, Peter W Glynn. 2017. Sto-
chastic mirror descent in variationally coherent optimization problems. Advances in Neural Information
Processing Systems 30 7040–7049.

https://books.google.com/books?id=MNL6kQAACAAJ

DISTRIBUTED STOCHASTIC OPTIMIZATION WITH LARGE DELAYS 41

[57] Zhou, Zhengyuan, Panayotis Mertikopoulos, Nicholas Bambos, Stephen P. Boyd, Peter W. Glynn.
2020. On the convergence of mirror descent beyond stochastic convex programming. SIAM Journal on
Optimization 30(1) 687–716. doi:10.1137/17M1134925.

[58] Zhou, Zhengyuan, Panayotis Mertikopoulos, Nicholas Bambos, Peter Glynn, Yinyu Ye, Li-Jia Li,
Li Fei-Fei. 2018. Distributed asynchronous optimization with unbounded delays: How slow can you go?
International Conference on Machine Learning. 5970–5979.

	1 Introduction
	1.1 Our Contributions and Related Work

	2 Problem Setup
	2.1 SGD on Master-Worker Systems
	2.2 SGD on Multi-Processor Systems with Shared Memory
	2.3 DASGD: A Unifying Algorithmic Representation

	3 General Nonconvex Objectives
	3.1 Delay Assumption
	3.2 Controlling the Tail Behavior of Second Moments
	3.3 Bounding the Successive Differences
	3.4 Main Convergence Result

	4 Variationally Coherent Problems
	4.1 Deterministic Analysis: Convergence to Global Optima
	4.2 Stochastic Analysis: Almost Sure Convergence to Global Optima
	4.3 Main Convergence Result

	5 Discussion
	A Auxiliary Results
	B Technical Proofs
	B.1 General Nonconvex Objectives
	B.2 Variationally Coherent Objectives
	B.3 Proof of Lemma 6

