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Abstract

The diversification of languages is one of the most interesting facts about language that seek explanation from an
evolutionary point of view. Conceptually the question is related to explaining mechanisms of speciation. An argument
that prominently figures in evolutionary accounts of language diversification is that it serves the formation of group
markers which help to enhance in-group cooperation. In this paper we use the theory of evolutionary games to show
that language diversification on the level of the meaning of lexical items can come about in a perfectly cooperative
world solely as a result of the effects of frequency-dependent selection. Importantly, our argument does not rely on some
stipulated function of language diversification in some coevolutionary process, but comes about as an endogenous
feature of the model. The model that we propose is an evolutionary language game in the style of Nowak et al. [1999,
The evolutionary language game. J. Theor. Biol. 200, 147–162], which has been used to explain the rise of a signaling
system or protolanguage from a prelinguistic environment. Our analysis focuses on the existence of neutrally stable
polymorphisms in this model, where, on the level of the population, a signal can be used for more than one concept
or a concept can be inferred by more than one signal. Specifically, such states cannot be invaded by a mutation for
bidirectionality, that is, a mutation that tries to resolve the existing ambiguity by linking each concept to exactly one
signal in a bijective way. However, such states are not resistant against drift between the selectively neutral variants
that are present in such a state. Neutral drift can be a pathway for a mutation for bidirectionality that was blocked
before but that finally will take over the population. Different directions of neutral drift open the door for a mutation
for bidirectionality to appear on different resident types. This mechanism—which can be seen as a form of shifting
balance—can explain why a word can acquire a different meaning in two languages that go back to the same common
ancestral language, thereby contributing to the splitting of these two languages. Examples from currently spoken
languages, for instance, English clean and its German cognate klein with the meaning of “small,” are provided.
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1. Introduction

Language is our legacy, language is what makes us
uniquely human. And yet we can communicate ef-
fectively only with those of our conspecifics who have
grown up in the same linguistic community, typically the
same geographical region. There are at present about
7,000 languages spoken in the world (Lewis, 2009). Lan-
guages differ at all levels of linguistic expression: the lex-
icon, morphology, phonology, syntax, semantics. From
an evolutionary point of view, the differentiation and di-
versification of languages is one of the most interesting
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facts about language that seek explanation (see, for exam-
ple, Hurford, 2003 or the recent target article and debate
in Evans and Levinson, 2009). Conceptually, the ques-
tion is related to explaining mechanisms of speciation (for
an overview of models of speciation see, for example,
Gavrilets, 2004).

Evolutionary accounts of the origin of language
typically evoke the communicative function of lan-
guage—language helps us to exchange information about
the world, enhances cooperation, and thereby increases
fitness. It has been argued that functionalist-adaptionist
approaches to language make it difficult to account
for the fact that natural human languages have always
tended to diversify into dialects and eventually split into
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separate and mutually unintelligible languages.1

An argument that has been advanced in an evolution-
ary context to explain language diversification is that it
serves the formation of group markers which can be ex-
ploited to enhance in-group cooperation (for example,
Dunbar, 1998). Ultimately this argument boils down to
postulating that there is a function, or if one wishes, a
preference for diversity.

In this paper we use the theory of evolutionary games
to show that language diversification on the level of the
meaning of lexical items can come about in a perfectly
cooperative world—a world where everybody wants to
cooperate with everybody—solely as a result of the ef-
fects of frequency-dependent selection. Importantly, our ar-
gument does not rely on some stipulated function of lan-
guage diversification, but comes about as an endogenous
feature of the model.

1.1. Language change

Language change, like biological evolution, can be un-
derstood as a process of descent with modification. While
it affects all levels of linguistic description (sound, gram-
mar, lexicon, meaning), a good way of appreciating its ef-
fects is to look at word pairs such as Modern English clean
and Modern German klein: systematic correspondences
between their sound structures prove that they derive
from a common ancestor in what once must have been a
single language (in this case West Germanic). Yet English
clean means “clean” while German klein means “small.”
Thus, either one or both words must have adopted a new
meaning and thereby contributed to splitting West Ger-
manic into English and German. Table 1.1 contains some
more well documented examples of cognates in Modern
English and Modern German that exhibit a shift in mean-
ing.

While there is a huge discussion among linguists about
what it is that makes a language, and what it is that all
languages have in common (see, for example, Evans and
Levinson 2009), most linguistic theories, if not explicitly
so tacitly, postulate form-meaning correspondences (lexi-
cal mappings in the narrow sense but also form-meaning
correspondences that encode a grammatical feature like
markers of tense, mood, etc.) as a basic building block of
language. A major reason why linguistic change is notori-
ously difficult to account for is that it affects both changes
of form (for example, changes in the sound shape of lex-
ical items) as well as changes in meaning (which form is
mapped to which concept). In this paper, we will focus on
change in the meaning of lexical items while abstracting

1See, for example, Piattelli-Palmarini (2000), who expresses this cri-
tique most explicitly: “Different human communities speak different
and, for the most part, not mutually understandable languages. This
fact is a mighty challenge to all naive functionalist and adaptionist ex-
planations of the origins and structure of language. Had language been
the result of the need to communicate, then linguistic diversity should
not have been possible.”

English German

dish Tisch (“table”)
knave Knabe (“boy”)
knight Knecht (“servant”)
tide Zeit (“time”)
town Zaun (“fence”)
to starve sterben (“to die”)
to worry würgen (“to retch”)
to reckon rechnen (“to calculate”)
clean klein (“small”)
silly selig (“blessed”)
true treu (“faithful”)

Table 1.1: Cognates in Modern English and Modern German exhibiting
a shift in meaning

from changes in the form of lexical items. For the exam-
ple given above this means that we look at clean and klein
as two instances of the same form, and wish to account
for the fact that they acquire a different meaning in two
languages that go back to a common ancestral language.

1.2. Language games
The model that we present is an evolutionary language

game in the style of Nowak et al. (1999a), which has
been proposed as a model for the evolution of a sig-
naling system or protolanguage, that is, a collection of
form-meaning correspondences (see also, Nowak and
Krakauer, 1999; Trapa and Nowak, 2000; Komarova and
Nowak, 2001; Nowak et al., 2002; Komarova and Niyogi,
2004). Evolutionary game theory (Maynard Smith and
Price, 1973; Maynard Smith, 1982; Hofbauer and Sig-
mund, 1988, 1998; Weibull, 1995; Cressman, 2003; Nowak,
2006; Sandholm, 2011) provides a formal framework for
studying frequency-dependent selection. Language is a
typical case where the performance or fitness of a type de-
pends on the frequencies of the other types present in the
population; it therefore naturally lends itself to an analy-
sis in terms of evolutionary games.

In the Nowak et al. language game the evolving enti-
ties—strategies—are lexical mappings. More precisely, a
strategy is a pair of two mappings: a mapping from the
set of concepts to the set of available signals (a strategy
in the role of the sender), and a mapping from signals to
concepts (a strategy in the role of the receiver). Signals
are of no cost and the concepts to be potentially commu-
nicated are of no differential weight. There is a homoge-
neous population of individuals with perfectly coinciding
interests, and whenever two individuals correctly com-
municate a concept, this will give both of them a positive
payoff which translates into an incremental fitness advan-
tage. Similar formulations of this model can be found
in Lewis (1969)—see also Skyrms (1996, 2002)—and Hur-
ford (1989); extensions have been studied in Nowak et al.
(1999b), Donaldson et al. (2007), Jäger (2008), and Hof-
bauer and Huttegger (2008).
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Provided that there is the same number of signals as
there are concepts to be potentially communicated, an op-
timum signaling system or optimum protolanguage is a pair
of mappings such that each concept is bijectively linked
to one signal and vice versa, and an optimum in the pop-
ulation will be attained if one such signaling system has
become fixed in the population.

In Lewis (1969), one can find the idea that some kind
of trial-and-error process that operates in a population of
agents will lead to the emergence of such an optimum
signaling system. Lewis—who writes just before the ad-
vent of evolutionary game theory—motivates this by the
“salient” character of these strategies. Later, when Lewis’
model has been taken up under the use of methods which
in the meantime had been introduced by evolutionary
game theory, it has been shown that there is indeed a
formal foundation for the selection of optimum signaling
systems: optimum signaling systems are the only evolu-
tionarily stable strategies in this game (Wärneryd, 1993; see
also Trapa and Nowak, 2000). However, computer exper-
iments with this model have given rise to the conjecture
that some form of suboptimality—as expressed by one
signal being used for more than one concept or one con-
cept being inferred by more than one signal—can have
some form of evolutionary stability (see, for example,
Nowak and Krakauer, 1999). More recently it has been
shown analytically that for this game some well-defined
evolutionary dynamics, most importantly the replicator
dynamics (Taylor and Jonker, 1978), will indeed not al-
most always converge to an optimum signaling system,
but instead can lead to suboptimum states where on the
level of the population’s average strategy—the idealized
“language” of the population—two or more concepts are
linked to the same signal, or where two or more signals
are linked to the same concept (Huttegger, 2007; Pawlow-
itsch, 2008). While such states are not evolutionarily sta-
ble in the strict sense as defined by Maynard Smith and
Price (1973), they do satisfy a weaker version of this no-
tion known as neutral stability or weak evolutionary stabil-
ity (Maynard Smith, 1982; Thomas, 1985). Neutrally sta-
ble states are Lyapunov stable in the replicator dynamics
(Bomze and Weibull, 1995), which is why the replicator
dynamics can be blocked in these suboptimum states.

Ensuing research on the Lewis-Hurford-Nowak lan-
guage game has to a good part focused on the question
whether some other dynamic processes, or perturbations
of the replicator dynamics, will or will not lead to the rise
of an optimal signaling system (for an overview of this lit-
erature, see, for example, Huttegger and Zollman 2011).
What has received much less attention so far—but which,
in our mind, leaves a number of questions to be inves-
tigated from a linguistic point of view—is the fact that
neutral stability supports polymorphic states where differ-
ent types resolve the ambiguity in concept-to-signal or
signal-to-concept mappings that appears on the level of
the population in different ways. We consider this an in-
teresting property of the model since language change,

like biological evolution, essentially thrives on variation
in the population.

In this paper, we take a closer look at the specific form
of variation that can persist in a neutrally stable state, and
we will show that the variation sustained by neutral sta-
bility is rich enough to account for the branching of lan-
guages. We will consider neutral drift—that is, a random
shift in the relative type frequencies—among the variants
that can coexist in a neutrally stable state, and we will see
that this can be a pathway for mutations that so far have
been blocked. But different directions of neutral drift may
open the door to different mutations, which will eventu-
ally lead to different long-run outcomes. It is in tracing
these different evolutionary paths that we will encounter
the phenomenon that the meaning of a signal may shift,
or switch, between two populations that go back to the
same common ancestral population. Formally, the mech-
anism that we describe can be seen as a particular case
of shifting balance (Wright, 1931) where different fitness
peaks can be reached by drift along (locally stable) ridges
of high, but not globally maximal fitness (see, for exam-
ple, Gavrilets and Hastings, 1996).

2. The model

There are n concepts that potentially become the ob-
ject of communication, and there are m signals (words or
morphemes that encode a grammatical feature) that are
available to individual agents. We assume that by its very
nature no signal is any more or less “fit” to represent a
particular concept. In other words, signals are of no dif-
ferential costs, which we will express formally by assum-
ing that signals are of no cost at all. In particular, this
implies that the cost of a signal does not depend on the
state of the world, so that observation of a particular sig-
nal would not reveal any information about the state of
the world. In this sense, signals are “arbitrary.”

We aim at modeling certain aspects of natural lan-
guage. In doing so we make a very broad assumption
about the cooperative nature of language: We assume that
there is a homogeneous population, where (i) over their
lifetimes, individuals randomly and repeatedly engage in
potential communication over all possible concepts with
everybody else in the population, (ii) the sender and the
receiver benefit from successful communication in equal
terms, and (iii) individuals appear in the role of the sender
or the receiver with equal probabilities.

A (pure) strategy for an individual in the role of the
sender is a mapping from potential objects of communi-
cation to available signals. We represent this by a matrix

P =




p11 . . . p1j . . . p1m
...

...
pi1 . . . pij . . . pim
...

...
pn1 . . . pnj . . . pnm




, (1)
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where pij is either 0 or 1, and there is exactly one 1 in each
row of P—the interpretation being that if pij = 1, then
concept i is mapped to signal j. That is, if this individual
wants to communicate concept i, he or she will use signal
j. Formally,

P ∈ Pn×m =
{

P ∈ Rn×m
+ : ∀i, pij = 1 for some j ≡ j(i)

and pij = 0 if j 6= j(i)
}

. (2)

Similarly, a strategy for an individual in the role of the
receiver is a mapping from potentially received signals to
objects, which we represent by a matrix

Q =




q11 . . . q1i . . . q1n
...

...
qj1 . . . qji . . . qjn
...

...
qm1 . . . qmi . . . qmn




, (3)

where qji is either 0 or 1, and there is exactly one 1 in every
row of Q—the interpretation being that if qji = 1, then
signal j is mapped to concept i. That is, if this individual
receives signal j, then he or she will link it mentally to
concept i. Formally,

Q ∈ Qm×n =
{

Q ∈ Rm×n
+ : ∀j, qji = 1 for some i ≡ i(j)

and qji = 0 if i 6= i(j)
}

. (4)

For given m and n, there are mn P-matrices and nm Q-
matrices. Note that the restrictions on P and Q do not
preclude that, in the role of the sender, there can be a sig-
nal that is used for more than one concept, or in the role of
the receiver, a concept that is associated with more than
one signal: there can be more than one 1 in a column of P,
or respectively Q.

If a sender who uses strategy P interacts with a receiver
who uses strategy Q, then a specific concept, say i?, will
be correctly communicated between these two if there is
a signal j? such that pi? j? = 1 = qj?i? . We take the sum
of all correctly communicated concepts between a sender
P and a receiver Q as a measure for the communicative po-
tential between P and Q (we adopt this terminology from
Hurford 1989). In the notation that we use here, the com-
municative potential between P and Q can be written as

π(P, Q) =
n

∑
i=1

m

∑
j=1

pijqji = tr(PQ) (5)

We identify the communicative potential with the pay-
off that both the sender and the receiver get out of their
interaction. The payoff functions π1(P, Q) = π(P, Q) and
π2(P, Q) = π(P, Q) together with the strategy sets Pn×m
and Qm×n define an asymmetric game (with common in-
terests).

We look at the symmetrization of this game, where an
individual adopts the role of a sender or of a receiver with
equal probabilities. A strategy for an individual then is a




p11 · · · p1j · · · p1m
...

...
pi1 · · · pij · · · pim
...

...
pn1 · · · pnj · · · pnm




s1 · · · sj · · · sm
↑ ↑ ↑

c1 →
...

ci →
...

cn →




q11 · · · q1i · · · q1n
...

...
qj1 · · · qji · · · qjn
...

...
qm1 · · · qmi · · · qmn




c1 · · · ci · · · cn
↑ ↑ ↑

s1 →
...

sj →
...

sm →

π(P, Q) = p11q11 + · · ·+ p1jqj1 + · · ·+ p1mqm1

· · ·
+ pi1q1i + · · ·+ pijqji + · · ·+ pimqmi

· · ·
+ pn1q1n + · · ·+ pnjqjn + · · ·+ pnmqmn

=
n

∑
i=1

m

∑
j=1

pijqji = tr(PQ)

1

Figure 1: Sender matrix P and receiver matrix Q (ci stands for concept i,
sj for signal j, etc.), and the communicative potential π(P, Q).

pair of a sender and a receiver matrix (P, Q) ∈ Pn×m ×
Qm×n, and the payoff of strategy (Pk, Qk) from interaction
with (Pl , Ql) is given by

f [(Pk, Qk), (Pl , Ql)] =
1
2
[
π(Pk, Ql) + π(Pl , Qk)

]
. (6)

Note that for fixed n and m, there are N = mn × nm such
“pure strategies.” Note also that f [(Pk, Qk), (Pl , Ql)] =
f [(Pl , Ql), (Pk, Qk)], that is, the payoff function is sym-
metric; in other words, the payoff that (Pk, Qk) gets out
of interaction with (Pl , Ql) is the same as the payoff that
(Pl , Ql) gets out of interaction with (Pk, Qk). Symmetric
games with a symmetric payoff function are sometimes
called doubly symmetric games. In our case, this property
is, of course, a consequence of the identity of payoffs
in the underlying asymmetric game and the symmetry
of weights for the two roles (for more on symmetrized
asymmetric games, in particular on their dynamic prop-
erties, see, Cressman, 2003).

2.1. The classical case of an infinitely large population

We take the symmetrized game in pure strategies as the
base game of a population game that is played in an in-
finitely large population (the basic model in evolutionary
game theory; see, for example, Hofbauer and Sigmund,
1998; Weibull, 1995; or Cressman, 2003). With every strat-
egy (P, Q) ∈ Pn×m ×Qm×n we identify a particular type
of player and we represent a state of the population by a vec-
tor

x = (x1, . . . , xl , . . . , xN),
N

∑
l=1

xl = 1, (7)

where xl is the relative frequency of type (Pl , Ql). To ev-
ery vector of type frequencies x we can assign the popula-
tion’s average strategy (Px, Qx), where Px = ∑l xl Pl is the
population’s average sender matrix, and Qx = ∑l xlQl
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the population’s average receiver matrix. Px will then be
a row-stochastic matrix of dimensions n×m, that is,

Px ∈ Mn×m =

{
M ∈ Rn×m

+ : ∑
j

mij = 1, ∀ i.

}
, (8)

and Qx a row-stochastic matrix of dimensions m× n,

Qx ∈ Mm×n =

{
M ∈ Rm×n

+ : ∑
i

mji = 1, ∀ j.

}
. (9)

Note thatMn×m is indeed spanned by Pn×m, that is, ev-
ery element in Mn×m can be represented by a convex
combination of elements in Pn×m (possibly not unique);
andMm×n is spanned by Qm×n.2

The fitness of type l is the average payoff that a type l in-
dividual gets from interaction with all other types present
in the population proportional to their type frequencies,
fl(x) = ∑k xk f [(Pl , Ql), (Pk, Qk)]. This can be written as
the payoff of type l from play against the population’s
average strategy,

fl(x) = f [(Pl , Ql) , (Px, Qx)]

=
1
2
[π (Pl , Qx) + π (Px, Ql)] . (10)

The average fitness in the population, f̄ = ∑l xl fl(x), can be
written as the payoff of the population’s average strategy
from play against itself,

f̄ (x) = f [(Px, Qx) , (Px, Qx)] = π (Px, Qx) . (11)

We call π (Px, Qx) the eigen communicative potential of a
“language” (Px, Qx).

Example 1. Let n = m = 3 and suppose that there are only
two types present in the population,

(P1, Q1) =






1 0 0
0 1 0
0 0 1


 ,




1 0 0
0 1 0
0 0 1






and

(P2, Q2) =






0 1 0
1 0 0
0 0 1


 ,




0 1 0
1 0 0
0 0 1




 ,

and let the corresponding type frequencies be x1 = 0.75
and x2 = 0.25. Then the population’s average strategy is

(Px, Qx) =






.75 .25 0

.25 .75 0
0 0 1


 ,




.75 .25 0

.25 .75 0
0 0 1




 .

2In the papers by Nowak et al. the game is defined right away on
Mn×m×Mm×n as the strategy space. Here we build the game explicitly
from a model with a finite number of types, in order to have a proper
framework for defining the standard replicator dynamics on this game
and connecting the evolutionary-stability analysis to the analysis of this
dynamics.

The fitness of type 1 is f1(x) = 2.5, and the fitness of type
2 is f2(x) = 1.5. The fitness of a type clearly depends on
the relative frequencies of all types. Consider a different
vector of type frequencies, for example, x′, where x′1 = 0.5
and x′2 = 0.5. Then the population’s average strategy is

(Px′ , Qx′) =






.5 .5 0

.5 .5 0
0 0 1


 ,




.5 .5 0

.5 .5 0
0 0 1




 ;

f1(x′) = 2, and the fitness of type 2, f2(x′), is equally 2.

The infinite-population scenario is conceptually inti-
mately linked to the replicator dynamics, a simple feedback
process where the frequency of a type grows proportion-
ally to its fitness difference relative to the average fitness
in the population (Taylor and Jonker 1978, Hofbauer et al.
1979). In our model,

ẋl = xl [ f [(Pl , Ql), (Px, Qx)]− f [(Px, Qx), (Px, Qx)]]. (12)

Usually this dynamics is interpreted in terms of biolog-
ical evolution, but it can also be interpreted in terms of
cultural evolution or learning—for example, it can be de-
rived from a process where individuals imitate strategies
that do better than their current strategy (Schlag, 1998;
see also Traulsen et al., 2005 and Sandholm, 2011). A rest
point of the replicator dynamics is a state where all resi-
dent types attain the same fitness. Such a state is called
a population equilibrium. In the Example 1 above, the state
where x′1 = 0.5 and x′2 = 0.5 is a population equilibrium.

2.2. Evolutionary stability
A characteristic of the present model is that it has many

equilibria; in fact infinitely many. However, not all of
these satisfy the same stability properties. A strategy
(Px, Qx) ∈ Mn×m ×Mm×n is an evolutionarily stable strat-
egy (ESS) in the sense of Maynard Smith and Price (1973)
if

(i) f [(Px, Qx), (Px, Qx)] ≥ f [(P, Q), (Px, Qx)] for all
(P, Q) ∈ Mn×m ×Mm×n; and

(ii) whenever (i) holds with equality for some (P, Q) ∈
Mn×m ×Mm×n with P 6= Px or Q 6= Qx, then

f [(Px, Qx), (P, Q)] > f [(P, Q), (P, Q)]. (13)

The first condition states that (Px, Qx) has to be a best
response to itself—the condition for a symmetric Nash
equilibrium. The second condition states that whenever
there is an alternative best response (P, Q) to the original
Nash-equilibrium strategy (Px, Qx), then this alternative
best response has to yield a strictly lower payoff against
itself than the original Nash-equilibrium strategy yields
against the alternative best response.

For the game discussed here, these conditions can be
simplified. Condition (i) holds if and only if:

π(Px, Qx) ≥ π(Px, Q), for all P ∈ Mn×m (14a)
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and

π(Px, Qx) ≥ π(P, Qx), for all Q ∈ Mm×n. (14b)

That is, Qx has to be a best response to Px, and Px has to
be a best response to Qx.3 The following remark charac-
terizes best responses in terms of properties of the P and
Q matrices.

Remark 1 (Best-response properties of P and Q). (1)
Consider a fixed P̄ ∈ Mn×m. Then

(1.a) Q̄ ∈ Mm×n is a best response to P̄ inMm×n (that
is, an argument Q that maximizes π(P̄, Q) in
Mm×n) if and only if for all j, ∑i′ q̄ji′ = 1, where
i′ ∈ argmaxi( p̄ij); and

(1.b) maxQ (π(P̄, Q)) = ∑j maxi( p̄ij).

(2) Similarly, for fixed Q̄ ∈ Mm×n,

(2.a) P̄ ∈ Mn×m is a best response to Q̄ in Mn×m
(that is, an argument P that maximizes π(P, Q̄)
in Mn×m) if and only if for all i, ∑j′ p̄ij′ = 1,
where j′ ∈ argmaxj(q̄ji); and

(2.b) maxP (π(P, Q̄)) = ∑i maxj (q̄ji).

(1.a) tells us that a receiver who responds optimally to a
given sender matrix P̄ will infer concept i from signal j
if and only if this is one of the concepts that have maxi-
mal probability of being meant by signal j. (1.b) tells us
that for given P̄ ∈ Mn×m the communicative potential
π(P̄, Q) is bounded by the sum of the column maxima in
P̄. Similarly for (2.a) and (2.b). A more detailed discus-
sion of these conditions, including a proof, can be found
in Pawlowitsch (2008).

Condition (ii), in (13) above, is equivalent to requiring
that if there is a P ∈ Mn×m that is an alternative best
response to Qx and a Q ∈ Mm×n that is an alternative
best response to Px, with P 6= Px or Q 6= Qx, then

π(Px, Qx) > π(P, Q). (15)

That is, the eigen communicative potential of the origi-
nal Nash-equilibrium strategy (Px, Qx) has to be higher
than the communicative potential of any pair of alterna-
tive best responses.4

Example 1 continued. With conditions (14) and (15) at
hand, together with the best-response properties of the

3This is a general property of symmetrized asymmetric games: Sup-
pose that there is a Q ∈ Mn×m such that π(Px , Q) > π(Px , Qx), and
consider the pair (Px , Q). Then f [(Px , Q), (Px , Qx)] = 1

2 [π(Px , Qx) +

π(Px , Q)] > 1
2 [π(Px , Qx) + π(Px , Qx)] = f [(Px , Qx), (Px , Qx)], yielding

a contradiction to condition (i). Similarly for the roles of P and Q re-
versed.

4This comes from the symmetry of the payoff function:
f [(Px , Qx), (Px , Qx)] = f [(P, Q), (Px , Qx)] = f [(Px , Qx), (P, Q)] >
f [(P, Q), (P, Q)], and hence π(Px , Qx) > π(P, Q).

P and Q matrices (Remark 1), it is easy to see that in Ex-
ample 1 above, the state (x′1, x′2) = (0.5, 0.5) corresponds
to a Nash-equilibrium strategy, but is not evolutionarily
stable: (i) Px′ is a best response to Qx′ and Qx′ is a best
response to Px′ ; (ii), as it should be true for a Nash equi-
librium in mixed strategies, P1 is an alternative best re-
sponse to Qx′ and Q1 is an alternative best response to
Px′ , but π(P1, Q1) = 3 while π(Px′ , Qx′) = 2. Similarly, P2
is an alternative best response to Qx′ and Q2 is an alter-
native best response to Px′ , but π(P2, Q2) = 3. However,
compare this now to the state where the entire popula-
tion is of type (P1, Q1), (x′′1 , x′′2 ) = (1, 0), in which case
(Px′′Qx′′) = (P1, Q1). From the best-response properties
of the P and Q matrices we can easily see that Px′′ = P1
is not only a, but the unique best response to Qx′′ = Q1,
and that Qx′′ = Q1 is not only a, but the unique best re-
sponse to Px′′ = P1. In other words, (Px′′ , Qx′′) is a strict
Nash-equilibrium strategy (there are no alternative best
responses), and hence it is evolutionarily stable. Simi-
larly, P2 is the unique best response to Q2 and Q2 is the
unique best response to P2, and hence, the state where
the entire population is of type (P2, Q2) will be evolution-
arily stable. Note that both (P1, Q1) and (P2, Q2) establish
a bijection between concepts and signals.

Evolutionary stability captures the idea that a state is
resistant against the invasion of mutant strategies. For a
variety of selection dynamics, most importantly the repli-
cator dynamics, this can be given a precise formulation
in terms of dynamic stability properties: If a strategy
(Px, Qx) is evolutionarily stable, then the corresponding
state x will be an asymptotically stable rest point of the
replicator dynamics (Taylor and Jonker, 1978).5 That is,
if the system starts close enough to such a rest point, then
it will always remain close to it and will eventually con-
verge to it.

It can be shown that an evolutionarily stable strategy
of this game will exist if and only if m = n, that is, there
is the same number of signals as there are concepts to be
communicated, and that (Px, Qx) ∈ Mn×n ×Mn×n will
be an evolutionarily stable strategy if and only if both Px
and Qx have the form of a permutation matrix (a matrix
that has exactly one 1 in every row and in every column)
and one matrix is the transpose of the other (Trapa and
Nowak, 2000). That is, an evolutionarily stable strategy
can only be a “language” that bijectively links every con-
cept to exactly one signal such that the mapping used in
the role of the receiver is the inverse of the mapping used
in the role of the sender; in other words, a language that
is unambiguous.6 (P1, Q1) and (P2, Q2), which we have
seen above in Example 1, are of this form. If such a strat-

5Note that the converse is not true in general; an example of an asym-
totically stable rest point that is not an evolutionarily stable state can be
found in Taylor and Jonker (1978).

6Restricting attention to pure strategies, or what in our model corre-
sponds to states where the entire population is of the same type, this first
has been shown by Wärneryd (1993). In view of Selten’s 1980 general
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egy is adopted by the entire population, the maximum
communicative potential will be attained.

2.3. The Lyapunov function—fitness landscapes

Due to the symmetry of the payoff function, the repli-
cator dynamics of this model has a special property: the
average fitness function constitutes a Lyapunov function
for the dynamics, that is, a function that is increasing
along every trajectory.7 In other words, the dynamical
system satisfies Fisher’s fundamental theorem of natu-
ral selection (Fisher, 1930)—the average fitness increases
along every evolutionary path.8 This can be represented
by a fitness landscape, where evolution is represented by
moving along its uphill directions. The strict local maxi-
mum points of the Lyapunov function coincide with the
evolutionarily stable states, and as a consequence, the
evolutionarily stable states coincide with the asymptoti-
cally stable rest points of the replicator dynamics (Hof-
bauer and Sigmund, 1988, 1998).

2.4. Monomorphic ESS—no language change

An important aspect of the results above is that an evo-
lutionarily stable state, and fitness peak, can only be at-
tained in a monomorphic population state where a language
that bijectively links every concept to exactly one signal
has become fixed in the population. But languages, like
biological organisms, change on the basis of existing or
newly occurring variation. Once evolution has settled
down to such an evolutionarily stable state—with all vari-
ation having been driven out and resistance to any possi-
ble mutant strategy—all descendant populations will be
of exactly the same type with the same (P, Q) being fixed
throughout. And, importantly, this will be the case even
if populations get isolated and evolve separately: for, no mat-
ter how we draw subgroups of the original population,
since there is no variation, the same (P, Q) will resurface
in all descendant populations, and this identically inher-
ited (P, Q) will be a form that is resistant against any pos-
sible mutant. Hence, the same perfectly bijective (P, Q)

result that for asymmetric games—and as a consequence also for sym-
metrized games—evolutionarily stable strategies can only be strict Nash
equilibria, and hence in pure strategies, the two results are equivalent.
From the best-response properties of the P and Q matrices (Remark 1) it
is not difficult to see that for a pair (P, Q) to be a strict Nash equilibrium
strategy (that is, a pair (P, Q) such that P is the unique best responses
to Q and Q the unique best response to P), both P and Q have to be
permutation matrices and one has to be the transpose of the other. The
result then is immediate.

7In fact, for this game—and doubly symmetric games in general—
the average fitness is not only a Lyapunov function, but a potential
function and the replicator dynamics constitutes a gradient system with
respect to the Shashahani metric; for more on this see Hofbauer and
Sigmund (1998) and Huttegger (2007).

8This is a rather special property for a model of frequency-dependent
selection. For a number of games that prominently have been studied
in an evolutionary context this is not true, and there are even games, for
example, the Prisoner’s Dilemma, where the average fitness decreases
along any evolutionary path.

will be fixed in all descendant populations, and there will
be no change in the meaning of signals. However—and
this is the first step in our argument—the replicator dy-
namics does not necessarily converge to an evolutionarily
stable state.

3. Neutral stability—stable polymorphisms

There are equilibrium states in this model that are
not evolutionarily stable but that satisfy a weaker condi-
tion known as neutral stability (Maynard Smith, 1982) or
weak evolutionary stability (Thomas, 1985) and that do al-
low for variation in the population. Formally, a strategy
(Px, Qx) ∈ Mn×m ×Mm×n is neutrally stable if

(i) f [(Px, Qx), (Px, Qx)] ≥ f [(P, Q), (Px, Qx)] ∀ (P, Q) ∈
Mn×m ×Mm×n; and

(ii) whenever (i) holds with equality for some (P, Q) ∈
Mn×m ×Mm×n, then

f [(Px, Qx), (P, Q)] ≥ f [(P, Q), (P, Q)]. (16)

This condition is similar to the notion of evolutionary sta-
bility (13), only that the strict inequality in the second con-
dition is replaced by a weak inequality. We have already
seen above in (14) that the first condition simplifies to re-
quiring that Px and Qx be best responses to each another.
By the symmetry of the payoff function, the second condi-
tion simplifies analogously to what we have seen in (15):
If there is a P ∈ Mn×m that is a best response to Qx and a
Q ∈ Mm×n that is a best response to Px, then it should be
true that

π(Px, Qx) ≥ π(P, Q). (17)

Note that a state that is evolutionarily stable will also be
neutrally stable. We call a state that is neutrally stable but
not evolutionarily stable, properly neutrally stable. Exam-
ple 2 discusses a typical properly neutrally stable state.

Example 2. Suppose there are 4 resident types who all
have the same sender matrix P0, but different receiver ma-
trices,

(P0, Q1) =






1 0 0
1 0 0
0 0 1


 ,




1 0 0
0 1 0
0 0 1




 ,

(P0, Q2) =






1 0 0
1 0 0
0 0 1


 ,




0 1 0
1 0 0
0 0 1




 ,

(P0, Q3) =






1 0 0
1 0 0
0 0 1


 ,




1 0 0
0 0 1
0 0 1




 ,

(P0, Q4) =






1 0 0
1 0 0
0 0 1


 ,




0 1 0
0 0 1
0 0 1




 ,
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and let the corresponding type frequencies be
(x1, x2, x3, x4) = (0.3, 0.3, 0.2, 0.2). Then the popula-
tion’s average strategy is

(Px, Qx) =






1 0 0
1 0 0
0 0 1


 ,




.5 .5 0

.3 .3 .4
0 0 1




 .

With the help of the characterization of best responses
(Remark 1), it is straightforward to check that Px = P0
is a best response to Qx, and that Qx is a best response to
Px (in order to have an immediate glance at the column
maxima, we have highlighted them in boldface). In fact,
Px = P0 is not only a best response, but the unique best
response to Qx. Hence, for any pair of alternative best
responses (P′, Q′) ∈ Mn×m ×Mm×n to (Px, Qx) we will
have that P′ = Px. And this is in fact sufficient to see that
(Px, Qx) is neutrally stable, since for any Q ∈ Mm×n (irre-
spective of whether it will be a best response to Px or not)
we will have

π(Px, Q) ≤ 2 = π(Px, Qx).

Hence, the communicative potential of any pair of alter-
native best responses to the original Nash equilibrium
strategy π(P′, Q′) = π(Px, Q′) will always be bounded
by the eigen communicative potential of the original
Nash equilibrium strategy π(Px, Qx). Note in particular
that (Px, Qx) cannot be invaded by a mutant who switches
to

(P1, Q1) =






1 0 0
0 1 0
0 0 1


 ,




1 0 0
0 1 0
0 0 1






or

(P2, Q2) =






0 1 0
1 0 0
0 0 1


 ,




0 1 0
1 0 0
0 0 1




 .

However, while (Px, Qx) is neutrally stable, it fails to
be evolutionarily stable, since there are alternative best
responses Q′ ∈ Mm×n to Px such that π(Px, Q′) =
π(Px, Qx). Of course, every pure-strategy Ql , l = 1, 2, 3, 4,
that is in the support of Qx is already a best response to
Px, but, more generally, every Q′ ∈ Mm×n that is of the
form

Q′ =




q11 q12 0
q21 q22 q23
0 0 1


 ,

will be a best response to Px, and for any such Q′ we will
have π(Px, Q′) = 2 = π(Px, Qx).

While evolutionary stability translates the idea that a
strategy can protect itself against the invasion of mutant
strategies—in the strict sense that it can drive out mu-
tant strategies—neutral stability is more apt to capture
the idea that the currently resident types cannot be driven
out by other, potentially intruding, strategies. Instead,

there can be coexistence of types. Again, for the replicator
dynamics this can be given a precise formulation in terms
of dynamic stability properties: If a strategy (Px, Qx) is
neutrally stable, then the corresponding state x will be
a Lyapunov stable rest point of the replicator dynamics
(Bomze and Weibull, 1995). That is, if the system starts
close enough to such a rest point, then it will always re-
main close to it, but need not converge to it. For doubly
symmetric games, the converse is true as well (Bomze,
2002), and hence for the game discussed here, a state is
neutrally stable if and only if it is Lyapunov stable in the
replicator dynamics. And, again, this comes from the fact
that the average fitness is a Lyapunov function for the dy-
namics: the local maxima of this function coincide with
the neutrally stable states.

3.1. Patterns in the P and Q matrices
It can be shown that a Nash-equilibrium strategy

(Px, Qx) ∈ Mn×m ×Mm×n is neutrally stable if and only
if the following condition holds:

(i) at least one of the matrices Px or Qx (or both) has no
zero column, and

(ii) none of the two matrices, neither Px nor Qx, has a col-
umn with multiple maximal elements that are strictly
between 0 and 1 (Pawlowitsch, 2008).

Necessity of these conditions is quite intuitive: (i) a
zero column in P means that there is a signal that is never
used, and a zero column in Q means that there is a con-
cept that is never possibly inferred. It is straightforward
to show then that a mutant who links this empty signal
to this unknown concept can do as well against the pop-
ulation but can do better against itself. (ii) By the use of
the best-response properties of the P and Q matrices, it is
easy to show that if, in equilibrium, there is one column
with multiple maximal elements strictly between 0 and
1, then there will always be another column with multi-
ple maximal elements strictly between 0 and 1. In terms
of the language model this means that there are two (or
more) signals that are simultaneously linked to two (or
more) concepts. It is straightforward to show then that
a mutant who resolves this ambiguity by linking one of
these concepts bijectively to one of these signals, and the
other concept to the other signal, can do as well against
the population as all the resident types but can do strictly
better against itself. Example 1 illustrates this case. Suffi-
ciency follows from a generalization of the argument that
we have seen in Example 2. A complete proof can be
found in (Pawlowitsch, 2008).
A couple of observations follow:

(a) A monomorphic population can never be properly neu-
trally stable. From the best-response properties of the
P and Q matrices it is easy to see that in a monomor-
phic Nash-equilibrium state there will be necessarily
a zero column in both P and Q. By condition (i), then,
(P, Q) cannot not be neutrally stable.
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(b) A population state at the interior of the state space can
never be neutrally stable. This follows from condition
(ii): In a population state at the interior of the state
space, the population’s average Px, and respectively
Qx, will always be of the form that each element is
strictly between 0 and 1. Best-response properties of
the P and Q matrices then imply that the elements in
each column of Px, and respectively Qx, have to be
identical, and hence there will be multiple maximal
column elements strictly between 0 and 1.

(c) Minimal consistency. The characterization of neu-
trally stable strategies above can be interpreted in the
sense of some minimal consistency criteria between
the sender and the receiver matrix. Condition (i) has
a straightforward interpretation: it tells us that there
can be no signal that remains idle (a zero column in
Px) as long as there is a concept that is never possi-
bly inferred (a zero column in Qx). Condition (ii),
together with the best-response properties of the Px
and Qx matrices (Remark 1), implies the following:
There can be different resident types who use dif-
ferent signals to communicate a particular concept
(multiple entries between 0 and 1 in a row of Px), but
if this is the case, then all resident types will infer this
particular concept from any of the signals that some
resident type uses to communicate this concept (a col-
umn with multiple 1s in Qx), or this concept is never
inferred by any resident type (a zero column in Qx).
And, similarly for the roles of Px and Qx reversed:
there can be different resident types who infer differ-
ent concepts from the same signal (multiple entries
between 0 and 1 in a row of Qx; in Example 2, the
first and the second row of Qx), but if this is the case,
then all resident types will use this particular signal
to communicate all the concepts that some resident
type infers from this signal (a column with multiple
1s in Px; in Example 2, the first column in Px), or this
signal is never used by any resident type (a zero col-
umn in Px; in Example 2, the second column of Px).

(d) Stabilizing variation and uninvadability by perfectly bi-
jective strategies. While a monomorphic population
that is not evolutionarily stable can always be in-
vaded by another strategy, it is the very coexistence of
types that stabilizes multiplicities in concept-to-signal
(or signal-to-concept) mappings in a neutrally stable
state. Example 2 illustrates this property.

Example 2 continued. Since there are some types who,
in the role of the receiver, will map signal 1 to concept
1 and some types who will map signal 1 to concept 2
(and these concepts are no more likely to be inferred
by any other signal), the unique optimal response to
this aggregate receiver behavior, in the role of the
sender, is to link both concept 1 and concept 2 to sig-
nal 1. In a Nash equilibrium all resident types will
do so, as reflected in the two 1s in the first column of

HP0, Q4L HP0, Q3L

HP1, Q1L

R

Figure 2: The phase portrait of the replicator dynamics when the popu-
lation consists only of the three types (P1, Q1), (P0, Q3), and (P0, Q4)
mentioned in Example 2. The light purple stationary point R =
1/4(P1, Q1) + 3/4(P0, Q4) is unstable and, in fact, it corresponds to the
global minimum of the average population fitness f (x) with respect to
these three types; the dashed gray contours represent the level sets of
f , which, for this model, is a Lyapunov function for the dynamics—it is
increasing along every trajectory. Moreover, we see that the line which
joins R to the semi-stable type (P0, Q3) (light blue) is actually a sepa-
ratrix of the system: it is invariant under the replicator dynamics and
separates the state space into two regions that are themselves invariant
as well. Every point on the face spanned by (P0, Q3) and (P0, Q4), except
for the vertex (P0, Q3), is neutrally stable. Hence, even though the type
(P1, Q1) corresponds to the global maximum of the average population
fitness f , we see that there is a positive measure of initial conditions
which do not converge to it. (Note that (P0, Q4) is neutrally stable for the
truncation of the game to the subset of strategies considered here, but is
not neutrally stable in the complete strategy space P3×3 ×Q3×3; it can
be invaded by (P2, Q2), see also Figure 5. )

the population’s sender matrix Px = P0, but it is only
this property of the population’s sender matrix that
enables variation in the role of the receiver. Though
variation in Q is not imposed by Nash-equilibrium
conditions (for Qx to be a best response to Px, it is
not necessary that both q11 and q12 are strictly posi-
tive), once it is there (once q11 and q12 have taken val-
ues strictly between 0 and 1), any best response to Qx
will have to set both p11 and p21 equal to 1, thereby
freezing the multiplicity in the population’s average
sender matrix and blocking off mutations who try to
resolve the existing ambiguity by linking each con-
cept to exactly one signal. As we have seen above,
(Px, Qx) cannot be invaded by any of the perfectly
bijective strategies (P1, Q1) or (P2, Q2). In Appendix
Appendix A we discuss this phenomenon in the con-
text of the so-called “bidirectional Saussurean sign.”

3.2. Convergence to neutrally stable states
An important consequence of the average fitness being

a Lyapunov function for the dynamics is that every tra-
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jectory will converge to a rest point (Akin and Hofbauer,
1982). For the game discussed here it can be shown that
for every properly neutrally stable state there is a neigh-
borhood in which every rest point of the dynamics is a
neutrally stable state (Pawlowitsch, 2008). From this, to-
gether with the fact that neutrally stable states are Lya-
punov stable, one can see that there are in fact compo-
nents of properly neutrally stable strategies that have a
basin of attraction of non-zero measure. More precisely,
properly neutrally stable states occur in connected (but
not closed) sets of Nash equilibria at the boundary of the
state space. Of course, the replicator dynamics can con-
verge to an evolutionarily stable state, but it will not do
so “almost always” (Huttegger, 2007; Pawlowitsch, 2008).
Figures 2 and 3 illustrate this for a truncation of the game.

In a neutrally stable state the forces of selection and
mutation exert no further pressure on the coexistence of
types: selection has come to an end since all resident
types get the same payoff, and it is the very coexistence of
these types that protects the population from being taken
over by mutants “from outside.” However, as we shall
see in the next section, this form of neutrally stable coex-
istence of types can be destabilized by a redistribution of
the relative frequencies of the types who are present in such
a state.

4. A third evolutionary force: neutral drift

Evolutionary and neutral stability, or more precisely
their dynamic counterparts in the form of asymptotic sta-
bility and Lyapunov stability, test locally around an equi-
librium against small perturbations in the state of the
population. These concepts do not test against a sce-
nario where a larger fraction of the population simultane-
ously switches to a new strategy, or where a major shift in
the relative type frequencies of the types already present
in the population occurs. The first type of change is in
fact hard to argue in an evolutionary setting, or a set-
ting where individual strategies are updated in a decen-
tralized way. The second type of change, however, a re-
distribution of the types already present in the population,
does not seem artificial for a scenario of language change.
Such a shift can be brought about by a pronounced re-
duction in population size, so-called bottlenecks, or it can
be the result of a subset of the population migrating to a
different neighborhood. Archeological, genetic, and lin-
guistic evidence suggests that such events have dramat-
ically shaped human evolution and the geographic dis-
tribution of languages (see, for example, Cavalli-Sforza,
1997; Cavalli-Sforza and Feldman, 1981).

4.1. Neutral drift as a pathway for a mutation for bidirection-
ality

If the population has reached a state where all agents
are of the same type, in whichever way we draw sub-
sets of the original population, all descendant popula-
tions will be of exactly the same type. However, if the

HP0, Q1L

HP0, Q3LHP0, Q4L

HP1, Q1L HP1, Q1L

HP1, Q1L

R

R

(a) 2-dimensional foldout of the faces of the replicator dynamics for four
types

HP1,Q1L

HP0,Q3L

HP0,Q4L

HP0,Q1L

HP1,Q1L

HP0,Q3L

HP0,Q4L

HP0,Q1L

HP1,Q1L

HP0,Q3L

HP0,Q4L

HP0,Q1L

(b) Phase portrait of the replicator dynamics for four types

Figure 3: 3(a) A 2-dimensional foldout of the faces of the phase por-
trait of the replicator dynamics when the 3-type population of Figure
2 is augmented by the fourth type (P0, Q1). Since the types containing
P0 all yield the same payoff when paired against each other, the corre-
sponding face (center) consists entirely of fixed points; however, not all
of them are neutrally stable. The light blue triangle shows the set of
neutrally stable states. This set is convex, but not closed; it is open all
along the boundary that conncets the vertex (P0, Q3) to the midpoint on
the face (P0, Q4) – (P0, Q1). (The vertex (P0, Q4) is neutrally stable for
the truncation of the game considered here, but is not neutrally stable in
the complete strategy space P3×3×Q3×3; it can be invaded by (P2, Q2).)
The light purple lines represent separatrices of the system and show that
the type (P1, Q1), which maximizes population fitness, is not globally
attracting. In Fig. 3(b) we present the full 3-dimensional phase portrait
of the replicator dynamics for this subset of strategies. The separtrices
that we can see in 3(a) delineate the boundary of a higher-dimensional
separatrix (semi-transparent plane) that breaks up the state space in two
distinct invariant sets. Both sets have positive measure. So, even though
the type (P1, Q1) is evolutionarily stable, there is a positive measure of
initial conditions which do not converge to it, but which, instead, con-
verge to neutrally stable states in the face spanned by the other three
types.
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1 0 0
0 1 0
0 0 1


 ,




1 0 0
0 1 0
0 0 1











0 1 0
1 0 0
0 0 1


 ,




0 1 0
1 0 0
0 0 1






︸ ︷︷ ︸
Cannot invade

Ancestral Population
(neutrally stable)

Perturbed Population

Neutral
Drift

+ Mutation

Different Descendants

Selection






1 0 0
1 0 0
0 0 1


 ,




.5 .5 0

.3 .3 .4
0 0 1






×
×






1 0 0
1 0 0
0 0 1


 ,




.625 .375 0

.125 .375 .5
0 0 1











1 0 0
1 0 0
0 0 1


 ,




.375 .625 0

.375 .325 .5
0 0 1






. . . . . .






1 0 0
0 1 0
0 0 1


 ,




1 0 0
0 1 0
0 0 1











0 1 0
1 0 0
0 0 1


 ,




0 1 0
1 0 0
0 0 1











1 0 0
0 1 0
0 0 1


 ,




1 0 0
0 1 0
0 0 1






Descendant Population 1






0 1 0
1 0 0
0 0 1


 ,




0 1 0
1 0 0
0 0 1






Descendant Population 2

1

Figure 4: The ancestral population is neutrally stable; in particular, it cannot be invaded by mutants who try to resolve the existing ambiguity by
establishing a bijection between concepts and signals. However, a shift in the relative type frequencies (neutral drift) can overcome neutral stability
and open the door for such mutations. Different directions of neutral drift are pathways for different mutations, which finally lead to the fixation of
different languages. As a result we can observe a switch in the meaning of lexical items in two languages that go back to the same common ancestor.

population is composed of different types, we cannot ex-
pect that the type frequencies in the descendant popula-
tion will be an exact image of the ancestral population.

Suppose that we are in a neutrally stable state as we
have seen it in Example 2 with the type frequencies given
by (x1, x2, x3, x4) = (0.3, 0.3, 0.2, 0.2) so that

(Px, Qx) =






1 0 0
1 0 0
0 0 1


 ,




.5 .5 0

.3 .3 .4
0 0 1




 ,

but that now there is an exogenous random event that
brings about a shift in the relative frequencies of the
resident types such that after this shift, for example,
(x′1, x′2, x′3, x′4) = (0.375, 0.125, 0.25, 0.25). The average
sender-receiver pair then is

(Px′ , Qx′) =






1 0 0
1 0 0
0 0 1


 ,




.625 .375 0

.125 .375 .5
0 0 1




 .

Now, Px′ and Qx′ are still best responses to each other,
and hence (Px′ , Qx′) still is a Nash-equilibrium strategy.
But, as we can readily see from the multiple maximal el-
ements in the second column of Qx′ , it is no longer neu-
trally stable. If a small fraction of the population now
switches to (P1, Q1)—as it could come about, for example,
by a mutation for bidirectionality, as we discuss it in Ap-
pendix Appendix A, that appears on type 1 (a mutation
that was blocked before)—then this mutant strategy will
do as well against (Px′ , Qx′) as any of the resident types,

but will do strictly better against itself, and hence under
a monotonic selection dynamics will eventually become
fixed in the population. If—all else being equal—an even
more pronounced reduction of type 2 comes about, then
the resulting population state will still be a rest point of
the replicator dynamics (since all resident types gain the
same payoff against each other), but it will no longer be a
Nash equilibrium. (P1, Q1) will then be a better response
to (Px′ , Qx′) than (Px′ , Qx′) is to itself, and hence a mutant
who switches to (P1, Q1) will be immediately on its way
to fixation.

A similar scenario will obtain if type 4 goes extinct,
bringing about a shift in the relative type frequencies to
(x′′1 , x′′2 , x′′3 , x′′4 ) = (0.375, 0.375, 0.25, 0). In this case,

(Px′′ , Qx′′) =






1 0 0
1 0 0
0 0 1


 ,




.625 .375 0

.375 .375 .5
0 0 1




 .

A mutation to (P1, Q1) will now also be able to invade,
and will finally take over the population.

4.2. Different histories of change

A different outcome, however, obtains if a shift in the
relative frequency of the resident types to the detriment of
type 1 or type 3 occurs. Consider, for example a shift that
results in (x′′′1 , x′′′2 , x′′′3 , x′′′4 ) = (0.125, 0.375, 0.25, 0.25).
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Then,

(Px′′′ , Qx′′′ ] =






1 0 0
1 0 0
0 0 1


 ,




.375 .625 0

.375 .125 .5
0 0 1




 .

This produces also a change in the column maxima of Qx,
but this time in a different column. If a small fraction of
mutants now switches to (P2, Q2)—for example a muta-
tion for bidirectionality that appears on type 2 —then this
mutant strategy will do as well against (Px, Qx) as all the
resident types, but will do strictly better against itself and
hence will finally take over the population. The same mu-
tation will be enabled if type 3 goes extinct. So, depend-
ing on the direction of drift between selectively neutral
variants, the same ancestral population can give rise to
two different, perfectly bidirectional, languages. Figure 4
illustrates these different evolutionary outcomes. Figure
5 provides a graphical representation of this phenomenon
for the case that the ancestral population consists of the
two types (P0, Q3) and (P0, Q4) only: The face connecting
(P0, Q3) and (P0, Q4) is a ridge of selectively neutral vari-
ants. As long as both (P0, Q3) and (P0, Q4) are present
in the population, the population is in a neutrally sta-
ble state. In this case, the population’s average sender-
receiver pair (Px, Qx) is of the form






1 0 0
1 0 0
0 0 1


 ,




x3 x4 0
0 0 1
0 0 1




 ,

and neither (P1, Q1) nor (P2, Q2) can invade. But if
(P0, Q4) goes extinct—which means that the population
drifts to the boundary of this ridge of selectively neu-
tral variants—the population can be invaded by (P1, Q1),
and from thereon selection will take it towards the point
where everybody will be of type (P1, Q1). If, on the other
hand, (P0, Q3) goes extinct, the population will drift to
the opposite boundary of this neutral ridge, and will fi-
nally be invaded by (P2, Q2). Note that along any of these
possible paths, the average fitness stays constant or is in-
creasing, but is never decreasing.

4.3. Shifting balance
The mechanism that we describe can be seen as a

form of shifting balance (Wright, 1931) where for dif-
ferent species (here “languages”) represented by fitness
peaks to be reached, populations do not have to cross fit-
ness valleys, but where different species (“languages”)
can form by drift along ridges of high, locally maxi-
mal, fitness. Drift along ridges of selectively neutral
variants naturally comes about if populations are sub-
ject to exogenous random shocks like bottlenecks or
migration leading to the founders’ effect (Mayr, 1963).
Gavrilets and Hastings (1996) have analyzed scenarios
of shifting-balance–founder-effect speciation in a classi-
cal population-genetics model. In economics, Binmore
and Samuelson (1999) have studied the role of drift along

HP2, Q2L

HP0, Q3LHP0, Q4L

HP1, Q1L HP1, Q1L

HP1, Q1L

R

R

Figure 5: A 2-dimensional foldout of the faces of the phase portrait of
the replicator dynamics when the population consists of the four types
(P0, Q3), (P0, Q4), (P1, Q1), and (P2, Q2) mentioned in Example 2. The
vertices (P1, Q1) and (P2, Q2) are evolutionarily stable states. The face
connecting (P0, Q3) and (P0, Q4) is a ridge of selectively neutral vari-
ants. As long as both (P0, Q3) and (P0, Q3) are present in the popula-
tion, the population is in a neutrally stable state, and neither (P1, Q1)
nor (P2, Q2) can invade. But if (P0, Q4) goes extinct, the population can
be invaded by (P1, Q1); and if (P0, Q3) goes extinct, the population can
be invaded by (P2, Q2).

ridges of neutral evolution in its relation to classical
game theoretic—strategic—approaches to equilibirum se-
lection. Importantly, the shape of the fitness landscape
that gives rise to this phenomenon is not an ad hoc as-
sumption,9 but comes about as an endogenous feature of
the model—in our case the underlying language game.
The proposed mechanism is in line with empirical find-
ings which support a serial founder effect model of lan-
guage expansion (for a recent contribution focusing on a
phonological trait see, Atkinson, 2011).

5. Conclusions

In linguistics the question whether all human lan-
guages can be traced back to one unique common ances-
tor remains the subject of a heated debate (see, for exam-
ple, Evans and Levinson, 2009). A standard argument in
evolutionary accounts for the diversification of language
is that it serves as an in-group marker to enhance coop-
eration in small groups (see, for example, Dunbar, 1998).
From a conceptual point of view, postulating a function
of language differentiation for enhancing in-group coop-
eration (which will result in increased material payoffs)

9A critique that sometimes has been addressed to Wright’s shifting
balance theory is that the fitness landscapes that he used to illustrate the
theory were drawn in an ad hoc manner.
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amounts to postulating a preference for diversification in
the language game, that is, making it an assumption of
the model, and therefore, in our mind, cannot be consid-
ered something explained by the model.

Another mechanism for language diversification that
is sometimes proposed is adaptation to different environ-
ments. In the context of a game-theoretic model, this is
to assume different payoff functions in different environ-
ments, which, conceptually, also boils down to writing
part of what has to be explained into the payoff function.

The argument that we give here shows that language
diversification can come about in a perfectly cooperative
world (a world where everybody wants to cooperate with
everybody) solely by the effects of frequency-dependent
selection. This does not mean that language differenti-
ation and diversification cannot have other sources (for
example, adaption to different environments) or cannot
be adapted to serve some function in a co-evolutionary
process (possibly as an in-group marker to enhance coop-
eration), but it shows that we do not need these quite specific
assumptions to give an evolutionary account for the differenti-
ation of languages. Rather it can come about already under
weaker assumptions.

In historical linguistics, language change is often de-
scribed as two, or more, variant forms coexisting for some
time and then one giving way to another (see, for exam-
ple, Schendl 2001). From an evolutionary point of view,
this begs the question how variation in the population is
sustained in the first place. The argument that we give
here does not only show why languages can differenti-
ate and branch on the basis of actual variation, but also
why variation in the population, and the resulting ambi-
guities, can be a locally stable phenomenon in the first
place even though ex ante there is no incentive for dif-
ferentiation, and globally it would always be the best if
everybody used the same language that bijectively links
every concept to exactly one signal.

The suboptimality that we observe in polymorphic
Nash equilibria reflects a problem that has long been
known to social philosophers and philosophers of lan-
guage and to which game theorists have given a precise
formulation: the problem of being stuck in a bad equi-
librium. We would all be better off if we could simulta-
neously jump out of the bad equilibrium, and right into
another, but as long as there is no central institution that
makes us jump simultaneously, we are stuck in the bad
equilibrium, since unilaterally nobody has an incentive to
deviate from the old one, and in fact would lose if he were
the only one to deviate. Language abounds with this type
of inefficiencies; the existence of centralized institutions
of language regulation seems to testify to this fact. Big co-
ordinated jumps are difficult to argue in an evolutionary
setting. What is not difficult to argue in an evolutionary
setting is a redistribution of the frequencies of the types
that are already present in the population. This form of
drift can open the door for mutations that can take us out
of these inefficient states—but thereby also opening the

door for the diversification of languages.
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Appendix A. Excursion: Evolution of the bidirectional
Saussurean sign?

Linguists call the property that if a concept A is linked
to a signal s, and if s, when received, evokes the image
of A, bidirectionality, and a form-meaning pair that satis-
fies this property, the bidirectional Saussurean Sign. Most
linguistic theories postulate such form-meaning pairs as
the underlying basic building blocks of language and the
ability to grasp and operate with these objects as geneti-
cally implemented as part of the human language acqui-
sition device. It is in the search of an evolutionary foun-
dation for bidirectionality that Hurford (1989) has intro-
duced a version of the model that we investigate here in
the linguistics literature.

Hurford’s approach is to study this model by agent-
based computer simulations and to compare the perfor-
mance of different behavioral types. Specifically he is in-
terested in the question whether types who align their Q
with their P in a bidirectional way will outperform other
behavioral types, where the formal criterion for bidirec-
tionality that he uses is that the individual’s Q has to be
a best response to the individuals’s P. The two other be-
havioral types that he considers are basically agents who
adopt a P that is randomly sampled from the population
and a Q that is independently randomly sampled from the
population. For some specific initial conditions, Hurford
can show that bidirectional types will indeed do better
than the two other behavioral types, but altogether the
results that he gets are inconclusive. Hurford’s 1989 pa-
per—which has been written at a time when evolutionary
game theory was very little known outside a small group
of mathematicians and biologists—mentions the work of
Maynard Smith, but does not evoke the term evolutionary
game theory, nor does it include an evolutionary stability
analysis. So it is also of some methodological interest to
ask what we can say about the question of bidirectional-
ity from the point of view of the game-theoretic analysis
of the model that is available to us now.

An immediate answer that we can give on the basis
of the replicator dynamics, if we take as a formal defi-
nition of bidirectionality that the P and the Q have to be
best responses to each other, is that replication operating on
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the (P, Q) pairs can account for the rise of bidirectionality
on the level of the population’s average strategy (Px, Qx)—the
“language” of the population—but that it is not sufficient
to guarantee that each individual type who is present in
this population will be perfectly bidirectional with itself.
Example 2 illustrates this: All resident types use a Ql that
is a best response to the fixed sender matrix Px = P0. But
while the fixed sender matrix P0 = Px is a best response
to Qx, it is not a best response to each individual Ql that is
present in the population: it is a best response to Q3 and
Q4, but it is not a best response to Q1 or Q2. That is, type
1 and 2, when they appear in the role of the sender, do
not respond optimally to themselves in the role of the re-
ceiver. Note that what prevents them from doing so—in
equilibrium—is the need to respond optimally to the pop-
ulation’s average Q. Hence, the aggregate property that
in a Nash equilibrium (Px, Qx), Px and Qx have to be best
responses to each other does not necessarily carry over to
the (P, Q) of each individual type that is present in such
a state. From a game-theoretic point of view this is not
surprising; it simply reflects the fact that in a mixed Nash
equilibrium not every pure strategy that is in its support
has to constitute a Nash equilibrium in itself.

What is interesting about Example 2 in the context of
bidirectionality as Hurford asks the question—namely
whether a behavioral program for bidirectionality will out-
perform other behavioral types—is that there can be
states where a mutation for bidirectionality cannot break
through: Suppose we are in a neutrally stable state as we
have seen it above with (x1, x2, x3, x4) = (0.3, 0.3, 0.2, 0.2)
and that there is a mutation that appears on type 1 that
makes this type want to be consistent with himself and
adopt a P that is a best response to his individual Q,
that is, a mutation of (P0, Q1) to (P1, Q1): Under a mono-
tonic selection dynamics this mutation has no chance of
invading the population since it will attain a strictly lower
payoff against the current population’s average strategy
than any of the resident types. Likewise, a mutation for
bidirectionality that appears on type 2—a mutation of
(P0, Q2) to (P2, Q2)—will also be blocked. However, as
we discuss in Section 4, drift between the selectively neu-
tral variants that are present in such a state can be a path-
way for a mutation for bidirectionality. Different direc-
tions of drift may enable mutations for bidirectionality on
different resident types and thereby can give rise to differ-
ent long-run outcomes, where different proto-languages
become fixed in the population.
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