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Abstract. Continuous-time dynamics for games are typically first order sys-
tems where payoffs determine the growth rate of the players’ strategy shares. In
this paper, we investigate what happens beyond first order by viewing payoffs
as higher order forces of change, specifying e.g. the acceleration of the players’
evolution instead of its velocity (a viewpoint which emerges naturally when it
comes to aggregating empirical data of past instances of play). To that end, we
derive a wide class of higher order game dynamics, generalizing first order imi-
tative dynamics, and, in particular, the replicator dynamics. We show that strictly
dominated strategies become extinct in n-th order payoff-monotonic dynamics
n orders as fast as in the corresponding first order dynamics; furthermore, in
stark contrast to first order, weakly dominated strategies also become extinct for
n ≥ 2. All in all, higher order payoff-monotonic dynamics lead to the elimina-
tion of weakly dominated strategies, followed by the iterated deletion of strictly
dominated strategies, thus providing a dynamic justification of the well-known
epistemic rationalizability process of Dekel and Fudenberg (1990). Finally, we
also establish a higher order analogue of the folk theorem of evolutionary game
theory, and we show that convergence to strict equilibria in n-th order dynamics
is n orders as fast as in first order.

1. Introduction.

Owing to the considerable complexity of computing Nash equilibria and other
rationalizable outcomes in non-cooperative games, a fundamental question that
arises is whether these outcomes may be regarded as the result of a dynamic
learning process where the participants “accumulate empirical information on
the relative advantages of the various pure strategies at their disposal” (Nash,
1950, p. 21). To that end, numerous classes of game dynamics have been proposed
(from both a learning and an evolutionary “mass-action” perspective), each with
its own distinct set of traits and characteristics – see e.g. the comprehensive
survey by Sandholm (2010) for a most recent account.

Be that as it may, there are few rationality properties that are shared by a deci-
sive majority of game dynamics. For instance, if we focus on the continuous-time,
deterministic regime, a simple comparison between the well-known replicator
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dynamics (Taylor and Jonker, 1978) and the Smith dynamics (Smith, 1984) re-
veals that game dynamics can be imitative (replicator) or innovative (Smith), rest
points might properly contain the game’s Nash set or coincide with it (Hofbauer
and Sandholm, 2009), and strictly dominated strategies might become extinct
(Samuelson and Zhang, 1992) or instead survive (Hofbauer and Sandholm, 2011).
In fact, negative results seem to be much more ubiquitous: there is no class of
uncoupled game dynamics that always converges to equilibrium (Hart and Mas-
Colell, 2003) and weakly dominated strategies may survive in the long run, even
in simple 2× 2 games (Samuelson, 1993; Weibull, 1995).

From a mathematical standpoint, the single unifying feature of the vast major-
ity of game dynamics is that they are first order dynamical systems. Interestingly
however, this restriction to first order is not present in the closely related field of
optimization (corresponding to games against nature): as it happens, the second
order “heavy ball with friction” method studied by Alvarez (2000) and Attouch,
Goudou, and Redont (2000) has some remarkable optimization properties that
first order schemes do not possess. In particular, by interpreting the gradient of
the function to be maximized as a physical, Newtonian force (and not as a first or-
der vector field to be tracked by the system’s trajectories), one can give the system
enough energy to escape the basins of attraction of local maxima and converge
instead to the global maximum of the objective function (something which is not
possible in ordinary first order dynamics).

This, therefore, begs the question: can second (or higher) order dynamics be intro-
duced and justified in a game theoretic setting? And if yes, do they allow us to obtain
better convergence results and/or escape any of the first order impossibility results?

The first challenge to overcome here is that second order methods in opti-
mization apply to unconstrained problems, whereas game dynamics must respect
the (constrained) structure of the game’s strategy space. To circumvent this con-
straint, Flåm and Morgan (2004) proposed a heavy-ball method as in Attouch
et al. (2000) above, and they enforced consistency by projecting the orbits’ ve-
locity to a subspace of admissible directions when the updating would lead to
inadmissible strategy profiles (say, assigning negative probability to an action).
Unfortunately, as is often the case with projection-based schemes (see e.g. Sand-
holm, Dokumacı, and Lahkar, 2008), the resulting dynamics are not continuous,
so even basic existence and uniqueness results are hard to obtain.

On the other hand, if players try to improve their performance by aggregat-
ing information on the relative payoff differences of their pure strategies, then
this cumulative empirical data is not constrained (as mixed strategies are). Thus,
a promising way to obtain a well-behaved second order dynamical system for
learning in games is to use the player’s accumulated data to define an uncon-
strained performance measure for each strategy (this is where the dynamics of
the process come in), and then map these “scores” to mixed strategies by means
e.g. of a logit choice model (Hofbauer, Sorin, and Viossat, 2009; Mertikopoulos
and Moustakas, 2010; Rustichini, 1999; Sorin, 2009). In other words, the dynamics
can first be specified on an unconstrained space, and then mapped to the game’s
strategy space via the players’ choice model.

This use of aggregate performance estimates also has important implications
from the point of view of evolutionary game theory and population dynamics.
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Indeed, it is well-known that the replicator dynamics arise naturally in popula-
tions of myopic agents that evolve based on “imitation of success” (Hofbauer,
1995; Sandholm, 2010) or on “imitation driven by dissatisfaction” (Björnerstedt
and Weibull, 1996). Revision protocols of this kind are invariably steered by the
players’ instantaneous payoffs; remarkably however, if players are more sophisti-
cated and keep an aggregate (or average) of their payoffs over time, then the same
revision rules driven by long-term success or dissatisfaction give rise to the same
higher order dynamics discussed above.

Paper outline. After a few preliminaries in Section 2, we make this approach pre-
cise in Section 3, where we derive a higher order variant of the well-known repli-
cator dynamics of Taylor and Jonker (1978). Regarding the rationality properties
of the derived dynamics, we show in Section 4 that the higher order replicator
dynamics eliminate strictly dominated strategies, including iteratively dominated
ones: in the long run, only iteratively undominated strategies survive. Qualita-
tively, this result is the same as its first order counterpart; quantitatively however,
the rate of extinction increases dramatically with the order of the dynamics: dom-
inated strategies become extinct in the n-th order replicator dynamics n orders as fast as
in first order (Theorem 4.1).

The reason for this enhanced rate of elimination is that empirical data accrues
much faster if a higher order scheme is used rather than a lower order one: play-
ers who use a higher order learning rule end up looking deeper into the past,
so they identify consistent payoff differences and annihilate dominated strate-
gies much faster. As a consequence of the above, in the higher order (n ≥ 2)
replicator dynamics, even weakly dominated strategies become extinct (Theorem 4.3,
a result which comes in stark contrast to the first order setting. The higher order
replicator dynamics thus perform one round of elimination of weakly dominated
strategies followed by the iterated elimination of strictly dominated strategies;
from an epistemic point of view, Dekel and Fudenberg (1990) showed that the
outcome of this deletion process is all that can be expected from rational players
who are not certain of their opponents’ payoffs, so our result may be regarded as
a dynamic justification of this form of rational behavior.

Extending our analysis to equilibrium play, we show in Section 5 that modulo
certain technical modifications, the folk theorem of evolutionary game theory
(Hofbauer and Sigmund, 1988; Weibull, 1995) continues to hold in our higher
order setting. More specifically, we show that: a) if an interior solution orbit
converges, then its limit is Nash; b) if a point is Lyapunov stable, then it is also
Nash; and c) if players start close enough to a strict equilibrium and with a small
learning bias, then they converge to it; conversely, only strict equilibria have this
property (Theorem 5.1). In fact, echoing our results on the rate of extinction of
dominated strategies, we show that the n-th order replicator dynamics converge
to strict equilibria n orders as fast as in first order.

Finally, in Section 6, we consider a much wider class of higher order dynamics
that extends the familiar imitative dynamics of Björnerstedt and Weibull (1996)
– including all payoff-monotonic dynamics (Samuelson and Zhang, 1992) and,
in particular, the replicator dynamics. The results that we described above go
through essentially unchanged for all higher order payoff-monotonic dynamics,
with one notable trait standing out: the property that only pure strategy profiles
can be attracting holds in all higher order imitative dynamics for n ≥ 2, and not
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only for the n-th order replicator dynamics. As with the elimination of weakly
dominated strategies, this is not the case in first order: for instance, the payoff-
adjusted replicator dynamics of Maynard Smith exhibit interior attractors even in
simple 2× 2 games (see e.g. Ex. 5.3 in Weibull, 1995).

2. Notation and preliminaries.

2.1. Notational conventions. If S = {sα}n
α=0 is a finite set, the vector space

spanned by S over R will be the set RS of all maps x : S→ R, s ∈ S 7→ xs ∈ R. The
canonical basis {es}s∈S of this space consists of the indicator functions es : S→ R

which take the value es(s) = 1 on s and vanish otherwise, so, thanks to the iden-
tification s 7→ es, we will not distinguish between s ∈ S and the corresponding
basis vector es of RS. In the same spirit, we will use the index α to refer inter-
changeably to either sα or eα (writing e.g. xα instead of xsα ); likewise, if {Sk}k∈K
is a finite family of finite sets indexed by k ∈ K, we will write (α; α−k) for the
tuple (α0, . . . , αk−1, α, αk+1, . . . ) ∈ ∏k Sk and ∑k

α in place of ∑α∈Sk
.

We will also identify the set ∆(S) of probability measures on S with the n-di-
mensional simplex of RS: ∆(S) ≡ {x ∈ RS : ∑α xα = 1 and xα ≥ 0}. Finally,
regarding players and their actions, we will follow the original convention of
Nash and employ Latin indices (j, k, . . . ) for players, while keeping Greek ones
(α, β, . . . ) for their actions (pure strategies); also, unless otherwise mentioned, we
will use α, β, . . . , for indices that start at 0, and µ, ν, . . . , for those which start at 1.

2.2. Finite games. A finite game in normal form will comprise a finite set of play-
ers N = {1, . . . , N}, each with a finite set of actions (or pure strategies) Ak =
{αk,0, αk,1, . . . } that can be mixed by means of a probability distribution (mixed
strategy xk ∈ ∆(Ak). The set ∆(Ak) of a player’s mixed strategies will be de-
noted by Xk, and aggregating over all players, the space of strategy profiles x =
(x1, . . . , xN) ∈ ∏k RAk will be the product X ≡ ∏k Xk; in this way, if A = äk Ak
denotes the (disjoint) union of the players’ action sets, X may be seen as a product
of simplices embedded in RA ∼= ∏k RAk .

As is customary, when we wish to focus on the strategy of a specific (focal)
player k ∈ N versus that of his opponents N−k ≡ N \{k}, we will use the shorthand
(xk; x−k) ≡ (x1, . . . , xk, . . . , xN) ∈ X to denote the strategy profile where player k
plays xk ∈ Xk against the strategy x−k ∈ X−k ≡ ∏` 6=k X` of his opponents. The
players’ (expected) rewards are then prescribed by the game’s payoff (or utility
functions uk : X → R:

uk(x) = ∑1
α1
· · ·∑N

αN
uk(α1, . . . , αN) x1,α1 · · · xN,αN , (2.1)

where uk(α1, . . . , αN) denotes the reward of player k in the profile (α1, . . . , αN) ∈
∏k Ak; specifically, if player k plays α ∈ Ak, we will use the notation:

ukα(x) ≡ uk(α; x−k) = uk(x1, . . . , α, . . . , xN). (2.2)

In light of the above, a game in normal form with players k ∈ N, action sets
Ak and payoff functions uk : X → R will be denoted by G ≡ G(N,A, u). A
restriction G′ of G (denoted G′ ≤ G) will then be a game G′ ≡ G′(N,A′, u′)
played by the players of G, each with a subset A′k ⊆ Ak of their original actions,
and with payoff functions u′k ≡ uk|X′ suitably restricted to the reduced strategy
space X′ = ∏k ∆(A′k) of G′.
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Given a game G ≡ G(N,A, u), we will say that the pure strategy α ∈ Ak is
(strictly) dominated by β ∈ Ak (and we will write α ≺ β) when

ukα(x) < ukβ(x) for all strategy profiles x ∈ X. (2.3)

More generally, we will say that qk ∈ Xk is dominated by q′k ∈ Xk if

uk(qk; x−k) < uk(q′k; x−k) for all strategies x−k ∈ X−k of k’s opponents. (2.4)

Finally, if the above inequalities are only strict for some (but not all) x ∈ X, then
we will employ the term weakly dominated and write qk 4 q′k instead.

Of course, by removing dominated (and, thus, rationally unjustifiable) strate-
gies from a game G, other strategies might become dominated in the resulting
restriction of G, leading inductively to the notion of iteratively dominated strategies:
specifically, if a strategy survives all rounds of elimination, then it will be called
iteratively undominated, and if the space X∞ of iteratively undominated strategies
is a singleton, the game G will be called dominance-solvable.

On the other hand, when a game cannot be solved by removing dominated
strategies, we will turn to the equilibrium concept of Nash which characterizes
profiles that are resilient against unilateral deviations; formally, we will say that
q ∈ X is a Nash equilibrium of G if

uk(xk; q−k) ≤ uk(q) for all xk ∈ Xk and for all k ∈ N. (2.5)

If (2.5) is strict for all xk ∈ Xk \{qk}, k ∈ N, q itself will be called strict; finally,
equilibria of restrictions G′ of G will be called restricted equilibria of G.

2.3. Dynamical systems. Following Lee (2003), a flow on X will be a smooth map
Θ : X ×R+ → X such that a) Θ(x, 0) = x for all x ∈ X; and b) Θ(Θ(x, t), s) =
Θ(x, t + s) for all x ∈ X and for all s, t ≥ 0. The curve Θx : R+ → X, t 7→ Θ(x, t),
will be called the orbit (or trajectory) of x under Θ, and when there is no danger
of confusion, Θx(t) will be denoted more simply by x(t). In this way, Θ induces
a vector field V on X via the mapping x 7→ V(x) ≡ ẋ(0) ∈ Tc

xX where ẋ(0) is the
initial velocity of x(t) and Tc

xX denotes the tangent cone to X at x, viz.:

Tc
xX ≡ {z ∈ RA : ∑k

α
zkα = 0 for all k ∈ N and zkα ≥ 0 if xkα = 0}. (2.6)

By the fundamental theorem on flows, x(t) will be the unique solution to the
(first order) dynamical system ẋ(t) = V(x(t)), t ≥ 0. Accordingly, we will say that
q ∈ X is:

• stationary if V(q) = 0 (i.e. if q(t) ≡ Θ(q, t) = q for all t ≥ 0).
• Lyapunov stable if, for every neighborhood U of q, there exists a neighbor-

hood V of q such that x(t) ∈ U for all x ∈ V, t ≥ 0.
• attracting if x(t)→ q for all x in a neighborhood U of q in X.
• asymptotically stable if it is Lyapunov stable and attracting.

Higher order dynamics of the form “x(n) = V” are defined via the recursive
formulation:

ẋ(t) = x1(t)

ẋ1(t) = x2(t)
. . .

ẋn−1(t) = V(x(t), x1(t), . . . , xn−1(t)).

(2.7)



6 RIDA LARAKI AND PANAYOTIS MERTIKOPOULOS

An n-th order dynamical system on X will thus correspond to a flow on the phase
space Ω = äx(Tc

xX)n−1 whose points (n-tuples of the form (x, x1, . . . , xn−1) as
above) represent all possible states of the system;1 by contrast, we will keep the
designation “points” for base points x ∈ X, and X itself will be called the config-
uration space of the system. Obviously, the evolution of an n-th order dynamical
system depends on the entire initial state ω = (x(0), ẋ(0), . . . , x(n−1)(0)) ∈ Ω and
not only on x(0), so stationarity and stability definitions will be phrased in terms
of states ω ∈ Ω. On the other hand, if we wish to characterize the evolution of an
initial position x(0) ∈ X over time, we will do so by means of the corresponding
rest state (x(0), 0, . . . , 0) which signifies that the system starts at rest: using the
natural embedding x 7→ (x, 0 . . . , 0) ∈ Ω, we may thus view X as a subset of
Ω, and when there is no danger of confusion, we will identify x ∈ X with the
associated rest state (x, 0, . . . , 0) ∈ Ω.

3. Derivation of higher order dynamics.

A fundamental requirement for any class of game dynamics is that solution
trajectories must remain in the game’s strategy space X for all time. For a first
order system of the form

ẋkα = Fkα(x), (3.1)

with Lipschitz Fkα : RA → R, this is guaranteed by the tangency requirements
a) ∑k

α Fkα = 0 for all k ∈ N, and b) Fkα ≥ 0 whenever xkα = 0. In second order
however, this does not suffice: if we simply replace ẋkα with ẍkα in (3.1) and
players start with sufficiently high velocity ẋ(0) pointing towards the exterior of
X, then they will escape X in finite time.

Flåm and Morgan (2004) forced solutions to remain in X by exogenously pro-
jecting the velocity v(t) ≡ ẋ(t) of an orbit to the tangent cone Tc

xX of “admissible”
velocity vectors. This approach however has the problem that projections do not
vary continuously with x, so existence and (especially) uniqueness of solutions
might fail; moreover, players need to know exactly when they hit a boundary face
of X in order to change their projection operator, so machine precision errors are
bound to arise (Cantrell, 2000). To circumvent these problems, we will take an
approach rooted in reinforcement learning, allowing us to respect the restrictions
imposed by the simplicial structure of X in a natural way.

3.1. The second order replicator dynamics in dyadic games. We will first de-
scribe our higher order reinforcement learning approach in the simpler context
of two-strategy games, the main idea being that players keep and update an
unconstrained measure of their strategies’ payoff differences instead of updating
their (constrained) strategies directly. In this way, second (or higher) order effects
arise naturally when players look two (or more) steps into the past, and it is the
dynamics of these “scores” that induce a well-behaved dynamical system on the
game’s strategy space.

More precisely, consider an n-person game where every player k ∈ N has two
possible actions, “0” and “1”, that are appraised based on the associated payoff
differences ∆uk ≡ uk,1 − uk,0, k ∈ N. With this regret-like information at hand,

1By convention, we let (Tc
x X)0 = {0}, so Ω = äx{0} ∼= X for n = 1.
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players can measure the performance of their strategies over time by updating
the auxiliary score variables (or propensities):

Uk(t + h) = Uk(t) + h∆uk(x(t)), (3.2)

where h is the time interval between updates and ∆uk(x(t)) represents the pay-
off difference between actions “1” and “0” at time t (assumed discrete for the
moment). The players’ strategies xk ∈ Xk are then updated following the logit
(or exponential weight) choice model whereby actions that score higher are played
exponentially more often (Hofbauer et al., 2009; Mertikopoulos and Moustakas,
2010; Rustichini, 1999; Sorin, 2009):

xk(t) =
exp(Uk(t))

1 + exp(Uk(t))
. (3.3)

This process is repeated indefinitely, so, for simplicity, we will descend to
continuous time by letting h → 0 in (3.6).2 In this way, by collecting terms in
the LHS of (3.2) and replacing the discrete difference ratio (Uk(t + h)−Uk(t))/h
with U̇k, the system of (3.2) and (3.3) becomes:

U̇k = ∆uk(x) (3.4a)

xk = (1 + exp(−Uk))
−1 . (3.4b)

Hence, by differentiating (3.4b) to decouple it from (3.4a), we readily obtain the
2-strategy replicator dynamics of Taylor and Jonker (1978):

ẋk =
dxk
dUk

U̇k = xk(1− xk)∆uk(x). (3.5)

In this well-known derivation of the replicator dynamics from the exponential
reinforcement rule (3.4) (see also Hofbauer et al., 2009 and Mertikopoulos and
Moustakas, 2010), the constraints xk ∈ (0, 1), k ∈ N, are automatically satisfied
thanks to (3.3). On the downside however, (3.4a) itself “forgets” a lot of past (and
potentially useful) information because the “discrete-time” recursion (3.2) only
looks one iteration in the past. To remedy this, players could take (3.2) one step
further by aggregating the scores Uk themselves so as to gather more momentum
towards the strategies that tend to perform better.

This reasoning yields the double-aggregation reinforcement scheme:

Uk(t + h) = Uk(t) + h∆uk(x(t)) (3.6a)

Zk(t + h) = Zk(t) + hUk(t), (3.6b)

where, as before, the profile x(t) is updated following the logistic distribution
(3.3) applied to the double aggregate Z, viz. xk(t) = 1/(1+ exp(−Zk(t))).

3 Thus,
by eliminating the intermediate (first order) aggregation variables Uk from (3.6),
we obtain the second order recursion:

Zk(t + 2h)− Zk(t + h)
h

=
Zk(t + h)− Zk(t)

h
+ h∆uk(x(t)), (3.7)

2We should stress that the passage to continuous time is done here at a heuristic level – see
Rustichini (1999) and Sorin (2009) for some of the discretization issues that arise. This discretization
is a very important topic in itself, but since our focus is the properties of the underlying continuous-
time dynamics, we will not address it here.

3Of course, players could look even deeper into the past by taking further aggregates in (3.6), but
we will not deal with this issue here in order to keep our example as simple as possible.
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which in turn leads to the continuous-time variant:

Z̈k = ∆uk(x) (3.8a)

xk = (1 + exp(−Zk))
−1 . (3.8b)

The second order system (3.8) automatically respects the simplicial structure
of X by virtue of the logistic updating rule (3.3), so this overcomes the hurdle of
staying in X; still, it is quite instructive to also derive the dynamics of the strategy
profile x(t) itself. To that end, (3.8b) gives Zk = log(xk)− log(1− xk), so a simple
differentiation yields:

Żk =
ẋk
xk

+
ẋk

1− xk
=

ẋk
xk(1− xk)

. (3.9)

Differentiating yet again, we thus obtain

Z̈k =
ẍkxk(1− xk)− ẋ2

k(1− xk) + ẋ2
k xk

x2
k(1− xk)2

, (3.10)

and some algebra readily yields the second order replicator dynamics for dyadic
games:

ẍk = xk(1− xk)∆uk +
1− 2xk

xk(1− xk)
ẋ2

k . (3.11)

This derivation of a second order dynamical system on X will be the archetype
for the significantly more general class of higher order dynamics of the next
section, so we will pause here for some remarks:

Remark 1 (Initial Conditions). In the first order exponential learning scheme (3.4),
the players’ initial scores Uk(0) determine their initial strategies via the logit
rule (3.4b), namely xk(0) = (1 + exp(−Uk(0)))−1. The situation however is less
straightforward in (3.8) where we have two different types of initial conditions:
the players’ initial scores Zk(0) and the associated initial velocities Żk(0) (them-
selves corresponding to the initial values of the intermediate aggregation vari-
ables Uk in (3.6)).

In second order, the initial scores Zk(0) determine the players’ initial strategies
via (3.8b). On the other hand, the scores’ initial velocities Żk(0) = Uk(0) play a
somewhat more convoluted role: indeed, differentiating (3.8b) yields

ẋk(0) = Żk(0)
exp(Zk(0))

1 + exp(Zk(0))
1− exp(Zk(0))
1 + exp(Zk(0))

= xk(0)(1− xk(0))Żk(0), (3.12)

so the initial score velocities Żk(0) control the initial growth rate ẋk(0) of the play-
ers’ strategies. As we shall see in the following, nonzero Żk(0) introduce an inher-
ent bias in a players’ learning scheme; hence, given that ẋk(0) = 0 when Żk(0) = 0
(independently of the players’ initial strategy), starting “at rest” (ẋk(0) = 0) is ba-
sically equivalent to learning with no initial bias (Żk(0) = 0).

Remark 2 (Past information). The precise sense in which the double aggregation
scheme (3.8) is “looking deeper into the past” can be understood more clearly by
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writing out explicitly the first and second order scores Uk and Zk as follows:

Uk(t) = Uk(0) +
∫ t

0
∆uk(x(s)) ds, (3.13a)

Zk(t) = Zk(0) +
∫ t

0
Uk(s) ds = Zk(0) + Żk(0)t +

∫ t

0
(t− s)∆uk(x(s)) ds. (3.13b)

We thus see that the first order aggregate scores Uk assign uniform weight
to all past instances of play, while the second order aggregates Zk put (linearly)
more weight on instances that are farther removed into the past. This mode of
weighing can be interpreted as players being reluctant to forget what has oc-
curred, and this is precisely the reason that we describe the second order scheme
(3.8) as “looking deeper into the past”. From the point of view of learning, this
may appear counter-intuitive because past information is usually discounted (e.g.
by an exponential factor) and ultimately discarded in favor of more recent obser-
vations (Fudenberg and Levine, 1998). As we shall see, “refreshing” observations
in this way results in the players’ scores Uk growing at most linearly in time (see
e.g. Hofbauer et al., 2009, Rustichini, 1999, and Sorin, 2009); on the flip side, if
players reinforce past observations by using (3.13b) in place of (3.13a), then their
scores may grow quadratically instead of linearly.

From (3.13) we also see that nonzero initial score velocities Żk(0) 6= 0 introduce
a skew in the players’ learning scheme: for instance, in a constant game (∆uk ≡ 0),
the integral expression (3.13b) gives limt→∞ Zk(t) = sgn(Zk(0)) ·∞, i.e. xk(t) will
converge to 0 or 1, depending only on the sign of Żk(0). Put differently, the bias
introduced by the initial velocities Żk(0) is not static (as the players’ choice of
initial strategy/score), but instead drives the player to a particular direction, even
in the absence of external stimuli.

3.2. Reinforcement learning and higher order dynamics. In the general case,
we will consider the following reinforcement learning setup:

(1) For every action α ∈ Ak, player k keeps and updates a score (or propensity)
variable ykα ∈ R which measures the performance of α over time.

(2) Players transform the scores yk ∈ RAk into mixed strategies xk ∈ Xk by
means of the Gibbs map Gk : RAk → Xk, yk 7→ Gk(yk):

xkα = Gkα(yk) ≡
exp (λkykα(t))

∑k
β exp

(
λkykβ(t)

) , (GM)

where the “inverse temperature” λk > 0 controls the model’s sensitivity
to external stimuli (Landau and Lifshitz, 1976).

(3) The game is played and players record the payoffs ukα(x) for each α ∈ Ak.
(4) Players update their scores and the process is repeated ad infinitum.

Needless to say, the focal point of this learning process is the exact way in
which players update the performance scores ykα ∈ R at each iteration of the
game. In the previous section, these scores were essentially defined as double
aggregates of the received payoffs via the two-step process (3.6). Here, we will
further extend this framework by considering an n-fold aggregation scheme in
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which the scores ykα are formed via the following n-step process:

Y(n−1)
kα (t + h) = Y(n−1)

kα (t) + hukα(x(t)),

Y(n−2)
kα (t + h) = Y(n−2)

kα (t) + hY(n−1)
kα (t)

. . .

Y(1)
kα (t + h) = Y(1)

kα (t) + hY(2)
kα (t),

ykα(t + h) = ykα(t) + hY(1)
kα (t).

(3.14)

In other words, at each update period, players first aggregate their payoffs by
updating the first order aggregation variables Y(n−1)

kα ; they then re-aggregate these

intermediate variables by updating the second order aggregation scores Y(n−2)
kα

above, and repeat this step up to n levels, leading to the n-fold aggregation score
ykα.

Similarly to the analysis of the previous section, if we eliminate the intermedi-
ate aggregation variables Y(1), Y(2) and so forth, we readily obtain the straight-
forward n-th order recursion:

∆(n)
h ykα(t)

hn = ukα(x(t)), (3.15)

where ∆(n)
h ykα denotes the n-th order finite difference of ykα, defined inductively

as ∆(n)
h y(t) = ∆(n−1)

h y(t + h)− ∆(n−1)
h y(t), with ∆(1)

h y(t) = y(t + h)− y(t).4 Thus,
if we descend to continuous time by letting h→ 0, we obtain the n-th order learning
dynamics:

y(n)kα (t) = ukα(x(t)), (LDn)

with x(t) given by the Gibbs map (GM) applied to y(t).
The learning dynamics (LDn) together with the logit choice model (GM) com-

pletely specify the evolution of the players’ mixed strategy profile x(t) and will
thus constitute the core of our considerations. However, it will also be important
to derive the associated higher order dynamics induced by (LDn) on the players’
strategy space X; to that end, we begin with the identity

log(xkα)− log(xkβ) = λk(ykα − ykβ), (3.16)

itself an easy consequence of (GM). By Faà di Bruno’s higher order chain rule
(Fraenkel, 1978), we then obtain

dn

dtn log(xkα(t)) = ∑
n!

m1! · · ·mn!
(−1)m−1(m− 1)!

xm
kα

∏n
r=1

(
x(r)kα (t)

/
r!
)mr

, (3.17)

where m = m1 + · · · + mn, and the sum is taken over all non-negative integers
m1, . . . , mn such that ∑n

r=1 rmr = n. In particular, since the only term that contains

x(n)kα has m1 = m2 = . . . = mn−1 = 0 and mn = 1, we may rewrite (3.17) as

dn

dtn log(xkα(t)) =
x(n)kα (t)
xkα(t)

+ Rn−1
kα

(
x(t), ẋ(t), . . . , x(n−1)(t)

)
, (3.18)

4In fact, we have Y(r)
kα (t) = ∆(r)

h ykα(t)
/

hr for all r = 1, . . . , n− 1, explaining our choice of notation.
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where Rn−1
kα denotes the (n− 1)-th order remainder of the RHS of (3.17):

Rn−1
kα

(
x, ẋ, . . . , x(n−1)

)
= ∑

(−1)m−1n!
m1! · · ·mn−1!

(m− 1)!
xm

kα

n−1

∏
r=1

(
x(r)kα (t)

/
r!
)mr

. (3.19)

By taking the n-th derivative of (3.16) and substituting, we thus get

λk

(
ukα − ukβ

)
=

x(n)kα

xkα
−

x(n)kβ

xkβ
+ Rn−1

kα − Rn−1
kβ , (3.20)

so, by multiplying both sides with xkβ and summing over β ∈ Ak (recall that

∑k
β x(n)kβ = 0), we finally obtain the n-th order (asymmetric) replicator dynamics:

x(n)kα = λkxkα (ukα − uk)− xkα

(
Rn−1

kα −∑k
β

xkβRn−1
kβ

)
. (RDn)

The higher order replicator equation (RDn) above will be the chief focus of our
paper; as such, a few remarks are in order:

Remark 1. As one would expect, for n = 1, we trivially obtain R0
kα = 0 for all

α ∈ Ak, k ∈ N, so (RDn) reduces to the standard (asymmetric) replicator dynamics
of Taylor and Jonker (1978):

ẋkα = λkxkα (ukα(x)− uk(x)) . (RD1)

On the other hand, for n = 2, the only lower order term that survives in (3.19) is
for m1 = 2; a bit of algebra then yields the second order replicator equation:

ẍkα = λkxkα (ukα(x)− uk(x)) + xkα

(
ẋ2

kα

/
x2

kα −∑k
β ẋ2

kβ

/
xkβ

)
. (RD2)

At first glance, the above equation seems different from the dynamics (3.11) that
we derived in Section 3.1, but this is just a matter of reordering: if we restrict
(RD2) to two strategies, “0” and “1”, and set xk ≡ xk,1 = 1− xk,0, we will have
ẋk = ẋk,1 = −ẋk,0, and (3.11) follows immediately.

Remark 2. In terms of structure, (RDn) consists of a replicator-like term (driven
by the game’s payoffs) and a game-independent adjustment Rn−1

kα which reflects
the higher order character of (RDn). As noted by the associate editor (whom
we thank for this remark), if we put the order of the dynamics aside, there is
a structural similarity between the higher order replicator dynamics (RDn), the
replicator dynamics with aggregate shocks of Fudenberg and Harris (1992), and
the stochastic replicator dynamics of exponential learning (Mertikopoulos and
Moustakas, 2010). The reason for this similarity is that all these models are first
defined in terms of an auxiliary set of variables: absolute population sizes in
Fudenberg and Harris (1992) and payoff scores here and in Mertikopoulos and
Moustakas (2010). Differentiation of these variables with respect to time then
always yields a replicator-like term carrying the game’s payoffs, plus a correction
term which is independent of the game being played (because it is coming from
Itô calculus or higher order considerations).

Remark 3. Technically, given that the higher order adjustment terms Rn−1
kα blow

up for xkα = 0 and n > 1, the dynamics (RDn) are only defined for strategies that
lie in the (relative) interior rel int (X) of X. If the players’ initial strategy profile
is itself interior, then this poses no problem to (RDn) because the Gibbs map
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(GM) ensures that every strategy share xkα(t) will remain positive for all time.
For the most part, we will not need to consider non-interior orbits; nonetheless,
if required, we can consider initial conditions on any subface X′ of X simply by
restricting (GM) to the corresponding restriction G′ of G, i.e. by effectively setting
the score of an action that is not present in the initial strategy distribution to −∞.
In this manner, we may extend (RDn) to any subface of X, and it is in this sense
that we will interpret (RDn) for non-interior initial conditions.

Remark 4. In the same way that we derived the integral expressions (3.13) for the
payoff scores, we obtain the following integral representation for the higher order
learning dynamics (LDn):

ykα(t) =
1

(n− 1)!

∫ t

0
(t− s)n−1ukα(x(s)) ds +

n−1

∑
r=0

y(r)kα (0)
tr

r!
. (3.21)

As with our previous discussion in Section 3.1, the players’ initial scores ykα(0)
determine the players’ initial strategies. Similarly, the higher order initial condi-
tions y(r)kα 6= 0, r ≥ 1, control the initial derivates ẋkα(0), . . . of (RDn), and it is
easy to see that starting “at rest” is equivalent to having no initial learning bias
that could lead players to a particular strategy in the absence of external stimuli
(e.g. in a constant game; see also the concluding remarks of Section 3.1).

3.3. Evolutionary interpretations of the higher order replicator dynamics. In
the mass-action interpretation of evolutionary game theory, it is assumed that
there is a nonatomic population linked to each player role k ∈ N, and that the
governing dynamics arise from individual interactions within these populations.
In the context of (RDn), such an evolutionary interpretation may be obtained as
follows: focusing on the case n = 2 for simplicity, assume that each (nonatomic)
player receives an opportunity to switch strategies at every ring of a Poisson
alarm clock as described in detail in Chapter 3 of Sandholm (2010). In this context,
if ρk

αβ denotes the conditional switch rate from strategy α ∈ Ak to strategy β ∈ Ak
in population k ∈ N (i.e. the probability of an α-strategist becoming a β-strategist
up to a normalization factor), then the strategy shares xkα will follow the mean
dynamics associated to ρ:

ẋkα = ∑k
β

xkβρk
βα − xkα ∑k

β
ρk

αβ. (MDρ)

Conditional switch rates are usually functions of the current population state
x ∈ X and the corresponding payoffs ukα: for instance, the well-known “imitation
of success” revision protocol is described by the rule

ρk
αβ = xkβukβ(x), (3.22)

and the resulting mean field (MDρ) is simply the standard replicator equation
(Hofbauer, 1995; Sandholm, 2010).5 On the other hand, if players are more so-
phisticated and keep track of the long-term performance Ukα(t) =

∫ t
0 ukα(x(s)) ds

5Other revision protocols that lead to the replicator dynamics are Schlag’s (1998)“pairwise pro-
portional imitation” and the protocol of “pure imitation driven by dissatisfaction” of Björnerstedt
and Weibull (1996). We will only focus here on “imitation of success” for simplicity; that said, the
discussion that follows can easily be adapted to these revision protocols as well.
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of a strategy over time (instead of only considering the instantaneous payoffs ukα),
then the “long-term” analogue of the revision rule (3.22) will be

ρ̃k
αβ = xkβUkβ = xkβ

∫ t

0
ukβ(x(s)) ds, (3.23)

leading in turn to the mean dynamics:

ẋkα = xkα

(
Ukα −∑k

β
xkβUkβ

)
. (3.24)

Of course, (3.24) is not a dynamical system per se, but a system of integro-
differential equations (recall that Ukα has an integral dependence on x). However,
by differentiating (3.24) with respect to time and recalling that U̇kα = ukα, we
readily obtain:

ẍkα = ẋkα

(
Ukα −∑k

β
xkβUkβ

)
+ xkα

(
ukα −∑k

β
xkβukβ

)
− xkα ∑k

β
ẋkβUkβ. (3.25)

By (3.24), the first term in the RHS of (3.25) above will be equal to ẋ2
kα

/
xkα; more-

over, some easy algebra also yields

∑k
β

ẋkβUkβ = ∑k
β

xkβ

(
Ukβ −∑k

γ
xkγUkγ

)
Ukβ

= ∑k
β

xkβU2
kβ −

(
∑k

β
xkβUkβ

)2

= ∑k
β

xkβ

(
Ukβ −∑k

γ
xkγUkγ

)2
= ∑β

ẋ2
kβ

/
xkβ.

(3.26)

Thus, after some rearranging, (3.25) becomes

ẍkα = xkα (ukα(x)− uk(x)) + xkα

(
ẋ2

kα

/
x2

kα −∑k
β

ẋ2
kβ

/
xkβ

)
, (3.27)

i.e. the mean dynamics associated to the “imitation of long-term success” revision
protocol (3.23) is just the second order replicator equation (RD2) with λk = 1.

The higher order dynamics (RDn) may be derived from similar considerations,
simply by taking a revision protocol of the form (3.23) with U replaced by a dif-
ferent (higher order) payoff aggregation scheme. Accordingly, the evolutionary
significance of higher order is similar to its learning interpretation: higher order
dynamics arise when players revise their strategies based on long-term perfor-
mance estimates instead of instantaneous payoff information. Obviously, this
opens the door to higher order variants of other population dynamics that arise
from revision protocols (such as the Smith dynamics and other pairwise compar-
ison dynamics), but since this discussion would take us too far afield, we will
delegate it to a future paper.

Remark. The definition of the payoff aggregates Ukβ(t) =
∫ t

0 ukβ(x(s)) ds gives
ẋkβ(0) = 0 in (3.24), so players will be starting “at rest” in (3.25). On the other
hand, just as in (3.13a), if players are inherently predisposed towards one strategy
or another, these aggregates could be offset by some nonzero initial bias Ukβ(0),
which would then translate into a nonzero initial velocity ẋ(0). In view of the
above, when it is safe to assume that players are not ex-ante biased, starting at
rest will be our baseline assumption.
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4. Elimination of dominated strategies.

A fundamental rationality requirement for any class of game dynamics is that
dominated strategies die out in the long run. Formally, if play evolves over time,
say along the path x(t), t ≥ 0, we will say that the strategy α ∈ Ak becomes
extinct along x(t) if xkα(t) → 0 as t → ∞; more generally, for mixed strategies
qk ∈ Xk, we will follow Samuelson and Zhang (1992) and say that qk becomes
extinct along x(t) if min{xkα(t) : α ∈ supp(qk)} → 0, with the minimum taken
over the support supp(qk) ≡ {β ∈ Ak : qkβ > 0} of qk. Equivalently, if we let

DKL(qk ‖ xk) = ∑α
qkα log

(
qkα

/
xkα

)
(4.1)

denote the Kullback-Leibler divergence of xk with respect to qk (with the usual con-
vention 0 · log 0 = 0 when qkα = 0), then DKL(qk ‖ xk) blows up to +∞ whenever
min{xkα : α ∈ supp(qk)} → 0, so qk ∈ Xk becomes extinct along x(t) if and only
if DKL(qk ‖ xk(t))→ ∞ as t→ ∞ (see e.g. Weibull 1995).

In light of the above, our first result is to show that in the n-th order replicator
dynamics, dominated strategies die out at a rate which is exponential in tn:

Theorem 4.1. Let x(t) be an interior solution orbit of the n-th order replicator dynamics
(RDn). If qk ∈ Xk is iteratively dominated, we will have

DKL(qk ‖ xk(t)) ≥ λkctn/n! +O(tn−1), (4.2)

for some constant c > 0. In particular, for pure strategies α ≺ β, we will have

xkα(t)
/

xkβ(t) ≤ exp
(
−λk∆uβαtn/n! +O(tn−1)

)
, (4.3)

where ∆uβα = minx∈X{ukβ(x)− ukα(x)} > 0.

As an immediate corollary, we then obtain:

Corollary 4.2. In dominance-solvable games, the n-th order replicator dynamics (RDn)
converge to the game’s rational solution.

Remark. Before proving Theorem 4.1, it is worth nothing that even though (4.2)
and (4.3) have been stated as inequalities, one can use any upper bound for the
game’s payoffs to show that the rate of extinction of dominated strategies in
terms of the K-L divergence is indeed O(tn).6 As a result, the asymptotic rate of
extinction of dominated strategies in the n-th order replicator dynamics (RDn) is
n orders as fast as in the standard first order dynamics (RD1), so irrational play
becomes extinct much faster in higher orders.

Proof of Theorem 4.1. We will begin by showing that if qk ∈ Xk is dominated by
q′k ∈ Xk, then DKL(qk ‖ xk(t)) ≥ ctn/n! for some positive constant c > 0. Indeed,
let Vk(x) = DKL(qk ‖ xk)− DKL(q′k ‖ xk), and rewrite (GM) as log xkα = λkykα −
log(Zk(y)) where Zk(y) = ∑k

β exp(λkykβ) denotes the partition function of player

6In fact, the coefficients that make (4.2) and (4.3) into asymptotic equalities can also be determined,
but we will not bother with this calculation here.
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Figure 1. Extinction of dominated strategies in the first and second order
replicator dynamics. In Fig. 1(a) we plot the second order solution orbits of a
dominance solvable game with payoff matrices U1 = ((1, 1), (0, 0)) for the “x”
player and U2 = ((1, 0), (1, 9/10)) for the “y” player (see also the figure’s labels).
In Fig. 1(b), we illustrate the rate of extinction of the dominated strategy of player
1 by plotting the corresponding K-L divergence of a typical trajectory: the K-L
distance grows exp-quadratically in second order dynamics compared to exp-
linearly in first order.

k. Then, some algebra yields:

Vk(x) = ∑α∈supp(q) qkα log
(
qkα

/
xkα

)
−∑α∈supp(q′) q′kα log

(
q′kα

/
xkα

)
= ∑k

α

(
q′kα − qkα

)
log xkα + hk(qk, q′k)

= ∑k
α

(
q′kα − qkα

)
λkykα + hk(qk, q′k), (4.4)

where hk(qk, q′k) is a constant depending only on qk and q′k, and the last equality
follows from the fact that ∑k

α(q′kα − qkα) logZk = 0 (recall that ∑k
α qkα = ∑k

α q′kα =
1). In this way, we obtain:

dn

dtn Vk(x(t)) = λk ∑k
α

(
q′kα − qkα

)
y(n)kα = λk ∑k

α

(
q′kα − qkα

)
ukα(x(t))

= λk
[
uk(q′k; x−k(t))− uk(qk; x−k(t))

]
≥ λk∆uk > 0, (4.5)

where the constant ∆uk is defined as ∆uk = minX−k{uk(q′k; x−k) − uk(qk; x−k)}
and its positivity follows from the fact that X is compact and uk is continuous.

Hence, if we set cr = (r!)−1 drVk
dtr

∣∣∣
t=0

, r = 0 . . . n − 1, Taylor’s theorem with La-
grange remainder readily gives:

Vk(x(t)) ≥ λk∆uktn/n! + ∑n−1
r=0 crtr, (4.6)

and our assertion follows by noting that DKL(qk ‖ xk(t)) ≥ Vk(x(t)). In particular,
for pure strategies α ≺ β, we will have Vk(x(t)) = log xkβ(t)− log xkα(t), so (4.6)
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gives:
log
(

xkβ(t)
/

xkα(t)
)
≥ λk ∆uβαtn/n! +O(tn−1), (4.7)

and (4.3) follows by exponentiating.
Now, to establish the theorem for iteratively dominated strategies, we will re-

sort to induction on the rounds of elimination. To that end, let Xr
k denote the space

of strategies that survive r elimination rounds, and assume that DKL(qk ‖ xk(t)) =
O(tn) for all strategies qk /∈ Xr

k; in particular, if α /∈ Ar
k ≡ Ak ∩ Xr

k, this implies
that xkα(t) → 0 as t → ∞. We will show that this also holds if qk ∈ Xr

k survives
for r deletion rounds but dies in the subsequent one. Indeed, if qk ∈ Xr

k \Xr+1
k ,

there will be some q′k ∈ Xr
k with uk(q′k; x−k) > uk(qk; x−k) for all x−k ∈ Xr

−k.
With this in mind, decompose x ∈ X as x = xr + zr where xr denotes the “r-
rationalizable” part of x, i.e. the orthogonal projection of x on the subspace
of X spanned by the surviving pure strategies Ar

`, ` ∈ N. Then, if we set
∆ur

k = min{uk(q′k; α−k)− uk(qk; α−k) : α−k ∈ Ar
−k}, we will also have:

uk(q′k; xr
−k)− uk(qk; xr

−k) ≥ ∆ur
k > 0 for all x−k ∈ X−k. (4.8)

Moreover, it is easy to see that our induction hypothesis implies zr(t) → 0 as
t→ ∞ (recall that xkα(t)→ 0 for all α /∈ Ar

k), so, for large enough t, we also get:

|uk(q′k; zr
−k(t))− uk(qk; zr

−k(t))| < ∆ur
k/2. (4.9)

Hence, by combining (4.8) and (4.9), we obtain uk(q′k; x−k(t))− uk(qk; x−k(t)) >
∆ur

k/2 for large t, and the induction is complete by plugging this last estimate
into (4.5) and proceeding as in the base case r = 0 (our earlier assertion). �

On the other hand, if a strategy is only weakly dominated, the payoff differences
∆uβα in (4.3) and related estimates vanish, so Theorem 4.1 cannot guarantee that
it will be annihilated. In fact, it is well-known that weakly dominated strategies
may survive in the standard first order replicator dynamics: if the pure strategy
α ∈ Ak of player k is weakly dominated by β ∈ Ak, and if all adversarial strategies
α−k ∈ A−k against which β performs better than α die out, then α may survive
for an open set of initial conditions (for instance, see Example 5.4 and Proposition
5.8 in Weibull, 1995).

Quite remarkably, this can never be the case in a higher order setting if players
start unbiased:

Theorem 4.3. Let x(t) be an interior solution orbit of the n-th order (n ≥ 2) replicator
dynamics (RDn) that starts at rest: ẋ(0) = . . . = x(n−1)(0) = 0. If qk ∈ Xk is weakly
dominated, then it becomes extinct along x(t) with rate

DKL(qk ‖ xk(t)) ≥ λkctn−1/(n− 1)!, (4.10)

where λk is the learning rate of player k and c > 0 is a positive constant.

The intuition behind this surprising result can be gleaned by looking at the
reinforcement learning scheme (LDn). If we take the case n = 2 for simplicity,
we see that the “payoff forces” Fkα ≡ ukα never point towards a weakly domi-
nated strategy. As a result, solution trajectories are always accelerated away from
weakly dominated strategies, and even if this acceleration vanishes in the long
run, the trajectory still retains a growth rate that drives it away from the domi-
nated strategy. By comparison, this is not the case in first order dynamics: there,
we only know that growth rates point away from weakly dominated strategies,
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and if these rates vanish in the long run, solution trajectories might ultimately
converge to a point where weakly dominated strategies are still present (see for
instance Fig. 2. The proof follows by formalizing these ideas:

Proof of Theorem 4.3. Let qk 4 q′k and let A′−k ≡ {α−k ∈ A−k : uk(q′k; α−k) >
uk(qk; α−k)} be the set of pure strategy profiles of k’s opponents against which
q′k yields a strictly greater payoff than qk. Then, with notation as in the Proof of
Theorem 4.1, we will have:

dn

dtn Vk(x(t)) = λk ∑α−k∈A′−k

[
uk(q′k; α−k)− uk(qk; α−k)

]
xα−k (t), (4.11)

where xα−k ≡ ∏` 6=k xα` denotes the α−k-th component of x. Thus, with x(t)

starting at rest, Faà di Bruno’s formula gives drVk
dtr

∣∣∣
t=0

= 0 for all r = 1, . . . , n− 1,
and a simple integration then yields:

dn−1

dtn−1 Vk(x(t)) = λk ∑α−k∈A′−k

[
uk(q′k; α−k)− uk(qk; α−k)

] ∫ t

0
xα−k (s) ds, (4.12)

However, with x(t) interior, the integrals in the above equation will be positive
and increasing, so for some suitably chosen c > 0 and t large enough, we obtain

dn−1

dtn−1 Vk(x(t)) ≥ λkc > 0, (4.13)

and our claim follows from a (n− 1)-fold integration. �

In view of this qualitative difference between first and higher order dynamics,
some further remarks are in order:

Remark 1. In the first order replicator dynamics, the elimination of weakly dom-
inated strategies when evidence of their domination survives requires that all
players adhere to the same dynamics (see e.g. the proof of Proposition 3.2 in
Weibull, 1995). To wit, consider a simple Entry Deterrence game where a com-
petitor (Player 1) “enters” or “stays out” of a market controlled by a monopolist
(Player 2) who can either “fight” the entrant or “share” the market, and where
“fighting” is a weakly dominated strategy that yields a strictly worse payoff if
the competitor “enters” (Weibull, 1995, Ex. 5.4). Under the replicator dynamics,
“fight” becomes extinct if “enter” survives (cf. Figure 2); however, if Player 1 were
to follow a different process under which “enter” survives but the integral of its
population share over time is bounded, then “fight” does not become extinct (cf.
the proof of Proposition 3.2 in Weibull, 1995). In higher orders though, the proof
of Theorem 4.3 goes through for any continuous play x−k(t) ∈ X−k, t ≥ 0, of k’s
opponents, so weakly dominated strategies become extinct independently of how
one’s opponents evolve over time.

Remark 2. As noted in Section 3, starting “at rest” is a natural assumption to
make from both learning and evolutionary considerations. First, as far as learn-
ing is concerned, this assumption means that players may start with any mixed
strategy they wish, but that the learning process (LDn) is not otherwise skewed
towards one strategy or another; similarly, with regards to evolution, starting
with ẋ(0) = . . . = 0 is just the baseline of the “imitation of long-term success”
revision protocol (3.23).
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Figure 2. Extinction of weakly dominated strategies and survival of itera-
tively weakly dominated ones in the second order replicator dynamics. Fig. 2(a)
shows solution orbits starting at rest in an Entry Deterrence game: the weakly
dominated strategy “fight” of Player 2 becomes extinct, in stark contrast to the
first order case (compare the highlighted trajectory with the first order portrait
in the inlay). Fig. 2(b) shows an Outside Option supergame where the strat-
egy “fight” in Fig. 2(a) is only iteratively weakly dominated; this strategy pays
very well against certain initial conditions, so it ends up surviving when all evi-
dence that it is (iteratively weakly) dominated vanishes. (The payoff matrices for
the Outside Option supergame are U1 = ((2, 0), (0, 2), (−1, 1)) for Player 1 and
U2 = ((2, 0), (0, 0), (0, 3)) for Player 2; see also the corresponding figure labels.)

That said, Theorem 4.3 still holds if the players’ initial velocities (or higher
order derivates) are nonzero but small; if they are too large, weakly dominated
strategies may indeed survive.7 This observation is important for strategies which
are only iteratively weakly dominated because, if a strategy becomes weakly dom-
inated after removing a strictly dominated strategy, then the system’s solutions
could approach the face of X associated with the resulting restriction of the game
with a high velocity towards the newly weakly dominated strategy (e.g. if the
iteratively weakly dominated strategy pays very well against the disappearing
strictly dominated one; cf. Fig. 2). Thus, although Theorem 4.3 guarantees the
elimination of weakly dominated strategies, its conclusions do not extend to iter-
atively weakly dominated ones.

Remark 3. A joint application of Theorems 4.3 and 4.1 reveals that the higher
order replicator dynamics (RDn) perform one round of elimination of weakly
dominated strategies followed by the elimination of all strictly dominated strate-
gies. This result may thus be seen as a dynamic justification of the claim of Dekel
and Fudenberg (1990) who argue that asking for the iterated deletion of weakly
dominated strategies is too strong a requirement for “rational” play.

7More precisely, it suffices for the RHS of (4.12) to exceed V(r)
k (0) for some t > 0.
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In particular, Dekel and Fudenberg posit that if players are not certain about
their opponents’ payoffs, then they will not choose a weakly dominated strat-
egy; however, to proceed with a second round of elimination, players must know
that other players will not choose certain strategies, and since weak dominance is
destroyed by arbitrarily small amounts of payoff uncertainty, only strictly domi-
nated strategies may henceforth be deleted. In the same spirit, weakly dominated
strategies are eliminated in the higher order replicator dynamics when players
begin unbiased; however, because of the inertial character of (LDn), players may
develop such a bias over time, so only (iteratively) strictly dominated strategies
are sure to become extinct after that phase.

Remark 4. In a very recent paper, Balkenborg, Hofbauer, and Kuzmics (2013) ob-
serve a similar behavior in a refined variant of the best reply dynamics of Gilboa
and Matsui (1991) where the players’ best reply correspondences are modified to
include only strategies that are best replies to an open set of nearby states of play.
This refined update process also eliminates weakly dominated strategies, but it
requires players to be significantly more informed than in the myopic context of
continuous-time deterministic dynamics: it applies to highly informed, highly
rational players who know not only their payoffs at the current state of play, but
also their payoffs in all nearby states as well. Instead, Theorem 4.3 shows that
weakly dominated strategies (and weakly dominated equilibria) become extinct
under much milder information assumptions, namely the players’ payoffs at the
current state.

Remark 5. Tying in with Remark 2 above, we get the following result for weakly
dominated Nash equilibria (or for Nash equilibria whose support contains a
weakly dominated strategy): if q is such an equilibrium and players start with
sufficiently small learning bias ẏ(0), ÿ(0), etc., then DKL(q ‖ x(t)) → +∞. In par-
ticular, there exists a neighborhood V of q in X such that every solution orbit x(t)
of (RDn) which starts at rest in V will escape V in finite time, never to return.
In this sense, weakly dominated equilibria are repelling, so they may not be se-
lected in the higher order replicator dynamics (RDn) if players start at rest (see
also Theorem 5.1 in the following section).

Remark 6. Finally, it is important to note that our estimate of the rate of extinction
of weakly dominated strategies is one order lower than that of strictly dominated
ones; as a result, Theorem 4.3 does not imply the annihilation of weakly dom-
inated strategies in first order dynamics (as well it shouldn’t). Instead, in first
order, if there is some adversarial strategy against which the weakly dominant
strategy gives a strictly greater payoff than the weakly dominated one, and if
the share of this strategy always remains above a certain level, then the weakly
dominated strategy becomes extinct (see e.g. Proposition 3.2 in Weibull, 1995). In
our higher order setting, this assumption instead implies that weakly dominated
strategies become extinct as fast as strictly dominated ones:

Proposition 4.4. Let x(t) be an interior solution of the n-th order replicator dynamics
(RDn), and let qk 4 q′k. If there exists α−k ∈ A−k with uk(qk; α−k) < uk(q′k; α−k) and
xα−k (t) ≥ ε > 0 for all t ≥ 0, then:

DKL(qk ‖ xk(t)) ≥ ελk
[
uk(q′k; α−k)− uk(qk; α−k)

]
tn/n! +O(tn−1). (4.14)
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Proof. Simply note that the estimate (4.11) is bounded from below by ελkuk(q′k −
qk; α−k) and follow the same reasoning as in the proof of Theorem 4.1. �

5. Stability of Nash play and the folk theorem.

In games that cannot be solved by the successive elimination of dominated
strategies, one usually tries to identify the game’s Nash equilibria instead. Thus,
given the prohibitive complexity of these solutions (Daskalakis, Goldberg, and
Papadimitriou, 2006), one of the driving questions of evolutionary game theory
has been to explain how Nash play might emerge over time as the byproduct of
a simpler, adaptive dynamic process.

5.1. The higher order folk theorem. A key result along these lines is the folk
theorem of evolutionary game theory (Hofbauer and Sigmund, 1988; Sandholm, 2010;
Weibull, 1995); for the multi-population replicator dynamics (RD1), this theorem
can be summarized as follows:

I. Nash equilibria are stationary.
II. If an interior solution orbit converges, its limit is Nash.

III. If a point is Lyapunov stable, then it is also Nash.
IV. A point is asymptotically stable if and only if it is a strict equilibrium.

Accordingly, our aim in this section will be to extend the above in the con-
text of the higher order dynamics (RDn). To that end however, it is impor-
tant to recall that the higher order playing field is fundamentally different be-
cause the choice of an initial strategy profile x(0) ∈ X does not suffice to de-
termine the evolution of (RDn); instead, one must prescribe the full initial state
ω(0) = (x(0), ẋ(0), . . . , x(n−1)(0)) in the system’s phase space Ω. Regardless, a
natural way to discuss the stability of initial points q ∈ X is via the correspond-
ing rest states (q, 0, . . . , 0) ∈ Ω (recall also the relevant discussion in Section 2.3,
Section 3, and the remarks following Theorem 4.3). With this in mind, we will
say that q ∈ X is stationary (resp. Lyapunov stable, resp. attracting) when the asso-
ciated rest state (q, 0, . . . , 0) ∈ Ω is itself stationary (resp. Lyapunov stable, resp.
attracting).

In spite of these differences, we have:

Theorem 5.1. Let x(t) be a solution orbit of the n-th order replicator dynamics (RDn),
n ≥ 1, for a normal form game G ≡ G(N,A, u), and let q ∈ X. Then:

I. x(t) = q for all t ≥ 0 iff q is a restricted equilibrium of G (i.e. ukα(q) =
max{ukβ(q) : qkβ > 0} whenever qkα > 0).

II. If x(0) ∈ int(X) and limt→∞ x(t) = q, then q is a Nash equilibrium of G.
III. If every neighborhood U of q in X admits an interior orbit xU(t) such that xU(t) ∈

U for all t ≥ 0, then q is a Nash equilibrium of G.
IV. Let q be a strict equilibrium of G. For every neighborhood U of q in X, there exists

a neighborhood V of q in X and an open set W ⊆ Ω containing V \{(q, 0, . . . , 0)}
such that x(t) ∈ U and x(t) → q for all initial states (x(0), ẋ(0), . . . ) ∈ W; put
differently, for every x ∈ X sufficiently close to q, we can find a neighborhood Vx of
(x, 0, . . . , 0) in Ω such that x(t) converges to q for all (x(0), ẋ(0), . . . ) ∈ Vx, but
the bound on ẋ(0), ẍ(0), etc. will depend on x(0). Conversely, only strict equilibria
have this property.

As an immediate corollary of (IV), we also have:
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IV′. If q is a strict equilibrium of G, then it is attracting: there exists a neighborhood
U of q in X such that x(t) → q whenever x(t) starts at rest in U (that is,
x(0) ∈ U and ẋ(0) = . . . = 0); conversely, only strict equilibria have this
property.

The basic intuition behind Theorem 5.1 is as follows: First, stationarity is a
trivial consequence of the replicator-like term of the dynamics (RDn). Parts II and
III follow by noting that if a trajectory eventually spends all time near a stationary
point q, then this point must be Nash – otherwise, the forces of (LDn) would
drive the orbit away. Finally, convergence to strict equilibria is a consequence of
the fact that they are locally dominant, so the payoff-driven forces (LDn) point in
their direction. However, before making these ideas precise, it will be important
to draw the following parallels between Theorem 5.1 and the standard first order
folk theorem:

Parts I and II of Theorem 5.1 are direct analogues of the corresponding first order
claims; note however that (II) can now be inferred from (III).

Part III is a slightly stronger assertion than the standard statement that Lyapunov
stability implies Nash equilibrium in first order: indeed, Lyapunov stability posits
that all trajectories which start close enough will remain nearby, whereas Theo-
rem 5.1 only asks for one such trajectory. Actually, this last property is all that
is required for the proof of the corresponding part of the first order folk theo-
rem as well, but since there are cases which satisfy the latter property but not
the former,8 we will use this stronger formulation which seems closer to a “bare
minimum” characterization of Nash equilibria (especially in higher orders).

Part IV shows that strict equilibria attract all nearby rest states (x(0), 0, . . . , 0) ∈
Ω, but it is not otherwise tantamount to higher order asymptotic stability – it
would be if W were a neighborhood of V in Ω (or, equivalently, of (q, 0, . . . , 0) in
Ω) instead of V \{(q, 0, . . . , 0)}.9

This difference between first and higher orders is intimately tied to the bias
that higher order initial conditions (such as ẏ(0), ÿ(0), etc.) introduce in the
learning scheme (LDn). More precisely, recall that a nonzero initial score velocity
ẏ(0) skews the learning scheme (LDn) to such an extent that it might end up
converging to an arbitrary pure strategy even in the absence of external stimuli
(viz. in a constant game; cf. the relevant discussion at the end of Section 3.1). This
behavior is highly unreasonable and erratic, so players are more likely to adhere
to an unbiased version of (LDn) with ẏ(0) = ÿ(0) = . . . = 0. In that case however,
Faà di Bruno’s chain rule shows that we will also have ẋ(0) = ẍ(0) = . . . = 0 in
(RDn), so Part IV′ of Theorem 5.1 allows us to recover the first order statement to
the effect that all nearby initial strategy choices are attracted to q. Similarly, if we
consider the mass-action interpretation of (RDn) that we put forth in Section 3.3,
players who are unbiased in the calculation of their aggregate payoffs will also
have ẋ(0) = · · · = 0, so Part IV′ of the theorem essentially boils down to the first
order asymptotic stability result in that case.

8For instance, the equilibrium profile q1 = (1, 0), q2 = (1/2, 1/2) of the simple 2× 2 game with
payoff matrices U1 = I and U2 = 0 is neither Lyapunov stable under the replicator dynamics, nor an
ω-limit of an interior trajectory, but it still satisfies the property asserted in Part III of Theorem 5.1.

9We thank Josef Hofbauer for this remark.
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That said, it is also important to note that this convergence statement remains
true even if the players’ higher order learning bias ẏ(0), ÿ(0), . . . , is nonzero but
(uniformly) not too large. To wit, assume without loss of generality that the
strict equilibrium q under scrutiny corresponds to everyone playing their “0”-th
strategy, and consider the associated relative score variables

zkµ = ykµ − yk,0, µ ∈ A∗k ≡ Ak \{0}. (5.1)

As can be easily seen, these score differences are mapped to strategies x ∈ X via
the reduced Gibbs map G∗k : RA∗k → Xk, with zk ∈ RA∗k 7→ G∗k (zk) ∈ Xk as follows:

G∗k,0(z) =
(

1 + ∑k
ν ezkν

)−1
, G∗kµ(z) = ezkµ

(
1 + ∑k

ν ezkν

)−1
. (GM∗)

More specifically, if the relative scores zkµ are given by (5.1), we will have G∗k (zk) =
Gk(yk), so the learning scheme (LDn) will be equivalent to the relative score dynam-
ics

z(n)kµ = ukµ(x)− uk,0(x), (ZDn)

with (reduced) logit choice xk = G∗k (z). In this formulation, the proof of Theorem
5.1 shows that if players start with sufficiently negative zkµ(0) and their learning
bias żkµ(0), z̈kµ(0), . . . , does not exceed some uniform M > 0, then the relative
scores zkµ will escape to −∞. In other words, we will have x(t) → q whenever
x(0) is sufficiently close to q and the players’ initial learning bias (which is what
players use to update (LDn) anyway) is uniformly small.10

Remark. Using the extended real arithmetic operations for −∞, the reduced Gibbs
map (GM∗) maps (−∞, . . . ,−∞) to q. Interestingly, by adjoining (−∞, . . . ,−∞) to
∏k RA∗k in a topology which preserves the continuity of G∗k , the statement above
implies that this “point at negative infinity” is asymptotically stable in (ZDn) –
for a detailed statement and proof, see A.

To prove Theorem 5.1, we begin with a quick technical lemma:

Lemma 5.2. The reduced Gibbs map G∗k : RA∗k → Xk of (GM∗) is a diffeomorphism
onto its image.

Proof. It is easy to check that the expressions zkµ = log(xkµ/xk,0) provide an
inverse to G∗k for xk ∈ rel int(Xk); the claim then follows by noting that all expres-
sions involved are smooth. �

Proof of Theorem 5.1. We will begin with stationarity of restricted equilibria. Since
the payoff term of (RDn) does not contain any higher order derivatives, it will

10The reason that this reasoning does not apply to nonzero initial strategy growth rates ẋ(0) etc.
may be seen in a simple 2-strategy context as follows: by (3.9) we will have ẋ = x(1− x)ż, so a uniform
bound on ẋ does not correspond to a uniform bound on z. In particular, if players start with a finite
initial score velocity ż(0) near the boundary of X, then this will correspond to a vanishingly small
initial strategy growth rate ẋ(0); conversely, nonzero ẋ(0) with x(0) arbitrarily near bd(X) implies an
arbitrarily large initial learning bias ż(0).

Similar conclusions apply to the revision formulation (3.25) of the higher order replicator dynamics
with offset aggregate payoffs Ukα(t) = Ukα(0) +

∫ t
0 ukα(x(s)) ds. Indeed, if the initial offsets Ukα(0)

are uniformly small in (3.25), then the corresponding initial conditions ẋkα(0) will scale with xkα(0);
it thus makes little evolutionary sense to ask for convergence under a uniform bound on the players’
initial velocities ẋkα(0) when xkα(0) is itsellf small.
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Figure 3. Second order replicator trajectories in a 2× 2 coordination game
with payoff matrices U1 = U2 = I. Fig. 3(a) shows the phase portraits for the
first and second order replicator dynamics, while Fig. 3(b) shows the restriction
of the game’s phase space to the symmetric invariant manifold X0 which joins the
game’s equilibria. For every symmetric initial point (x, x) near q = (0, 0), there
exists a neighborhood of initial states Vx (gray) such that all orbits starting in Vx
stay close and eventually converge to q. The union W of these neighborhoods
(light blue) is not itself a neighborhood of q in Ω0 ≡ Ω(X0), so q is not asymp-
totically stable in (RDn); however, in terms of the score variables z = log x

1−x ,
ż = ẋ

/
x(1− x), the corresponding point at negative infinity (−∞, . . . ,−∞) at-

tracts all nearby initial states (inlay).

vanish at q ∈ X if and only if ukα(q) = uk(q) for all α ∈ supp(q), implying that q is
a restricted equilibrium. Conversely, let q be a Nash equilibrium in the restriction
G′ ≡ G(N, X′, uk|X′) of G with A′k = supp(qk). Then, with ukα(q) = ukβ(q) for
all α, β ∈ A′k, the updating scheme (LDn) constrained to G′ and starting at q also

gives y(n)kα (0) = y(n)kβ (0) for all α, β ∈ A′k. So, if (RDn) starts at q with initial motion
rates ẋ(0) = ẍ(0) = · · · = 0, we will have ykα(t) − ykα(0) = ykβ(t) − ykβ(0)
for all α, β ∈ A′k, and, by the homogeneity of the Gibbs map (G(y1 + c, y2 +
c, . . . ) = G(y1, y2, . . . ) for all c ∈ R), we readily obtain x(t) = q for all t, i.e. q is
stationary.11

We now turn to Part (III) of the theorem – which will also prove Part (II). To that
end, suppose that every neighborhood U of q in X admits an interior orbit x(t)
that stays in U for all t ≥ 0; we then claim that q is Nash. Indeed, assume instead
that for some k ∈ N, there exists β ∈ Ak and α ∈ supp(qk) with ukα(q) < ukβ(q).
Then, pick ε > 0 and a neighborhood U of q such that xkα > qkα/2 > 0 and
ukβ(x) ≥ ukα(x) + ε for all x ∈ U. By assumption, there exists an interior orbit
x(t) which stays in U for all time, so, for the associated score variables y(t), we
will have:

y(n)kβ (t)− y(n)kα (t) = ukβ(x(t))− ukα(x(t)) ≥ ε > 0.

11Importantly, Nash equilibria are not stationary in (LDn): orbits that are parallel to the line
(t, . . . , t) in RA are stationary in (RDn).
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This last inequality immediately implies that log
(
xkβ(t)/xkα(t)

)
→ +∞, contra-

dicting the fact that xkα(t) > qkα/2 for all t ≥ 0.

With regards to Part (IV), let q = (e1,0, . . . , eN,0) be a strict equilibrium of G, and
consider the relative scores zkµ = ykµ − yk,0, µ ∈ A∗k ≡ Ak \{0} of (5.1). Since the
reduced Gibbs map G∗k : RA∗k → Xk of (GM∗) is a diffeomorphism onto its image
by Lemma 5.2, the same will hold for the direct sum G∗ ≡ ⊕

k G∗k : ∏k RA∗k →
X as well. Accordingly, if we take a neighborhood Uε of q in X of the form
Uε = {x ∈ int(X) : xk,0 > 1− ε, k ∈ N}, its preimage under G∗ will be the set
Vh = {z : Zk,0 < h, k ∈ N} where Zk,0 = ∑k

ν exp(zkν) and h = (1− ε)−1 − 1 (≈ ε
for small ε). We will show that if h is chosen small enough, then there exists δ > 0
such that whenever a solution z(t) of (ZDn) starts at z(0) ∈ Vh with ‖z(r)(0)‖ < δ
for r = 1, . . . , n− 1, we will have z(t) ∈ V2h for all t ≥ 0 and zkµ(t) → −∞ for
all µ ∈ A∗k , k ∈ N. Since G∗ is a diffeomorphism onto its image and x → q iff
zkµ → −∞ for all µ ∈ A∗k , k ∈ N, this will establish the “if” direction of our
claim.12

Indeed, let z(t) be a solution of (ZDn) starting in Vh and let τ2h = inf{t :
z(t) /∈ V2h} be the time it takes z(t) to escape from V2h (with the usual convention
inf(∅) = ∞). Then, if h is taken small enough, there will be some constant M > 0
such that uk,0(x)− uk,µ(x) ≥ M > 0 for all x ∈ G∗(V2h) (recall that q is a strict
equilibrium). In this way, for t ≤ τ2h, Taylor’s theorem with Lagrange remainder
applied to (ZDn) readily gives:

zkµ(t) ≤ zkµ(0) + ∑n−1
r=1 z(r)kµ (0) tr/r!−Mtn/n!. (5.2)

Hence, pick δ > 0 such that the maximum of the polynomial ∑n−1
r=1 z(r)kµ (0) tr/r!−

Mtn/n! for t ≥ 0 is strictly smaller than log 2 whenever |z(r)kµ (0)| < δ for µ ∈ A∗k ,

k ∈ N, and r = 1, . . . n − 1. This readily yields Zk,0(τ2h) < ∑k
µ exp

(
zkµ(0) +

log 2
)
= 2Zk,0(0) < 2h, i.e. z(τ2h) ∈ V2h, a conclusion which cannot hold unless

τ2h = ∞. We thus obtain z(t) ∈ V2h for all t ≥ 0, so the limit of (5.2) as t → ∞
gives zkµ(t)→ −∞.

For the converse implication, it is easy to show that any vertex q of X which
attracts an open neighborhood of initial rest states must also be a strict Nash
equilibrium: extending the reasoning of Ritzberger and Weibull (1995, Thm. 1) to
our higher order setting, it suffices to consider the evolution of the dynamics in
the edge which joins q = (αk; α−k) to a vertex q′ = (α′k; α−k) with uk(q′) ≥ uk(q).
However, Theorem 5.5 shows that only a vertex q ∈ X can attract an open set
of initial states ω ∈ Ω containing a punctured neighborhood of q in X, so our
assertion follows. �

Now, with regards to the equilibration speed of the higher order dynamics, it
can be shown that the rate of convergence to a strict equilibrium in the n-th order
dynamics (RDn) is n orders as fast as in the first order regime. More specifically,
we have:

12Non-interior trajectories can be handled similarly by looking at an appropriate restriction G′ of
G.
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Proposition 5.3. Let q = (e1,0, . . . , eN,0) be a strict Nash equilibrium of the finite game
G, and let x(t) be a solution orbit of the replicator dynamics (RDn) which starts at rest
and close enough to q. Then, there exists a positive constant c > 0 such that:

xk,0(t) ∼ 1− exp
(
− ctn/n! +O(tn−1)

)
. (5.3)

Proof. If we choose a sufficiently small neighborhood of initial positions, Theorem
5.1 shows that the payoff differences uk,0(x(t))− uk,µ(x(t)) will be bounded away
from 0 by some positive constant c > 0 for all µ ∈ A∗k , k ∈ N and for all t ≥ 0.

Hence, with z(n)kµ ≤ −c < 0 by (ZDn), our assertion follows from an (n− 1)-fold
application of the mean value theorem. �

5.2. Dynamic instability of mixed equilibria. Theorem 5.1 and Proposition 5.3
above characterize the behavior of the n-th order replicator dynamics near strict
equilibria from both a qualitative and a quantitative viewpoint; on the flip side,
they do not address mixed equilibria. To study this issue, recall first that the
standard asymmetric replicator dynamics preserve a certain volume form in the
interior of X, so mixed equilibria cannot be attracting in first order. Ritzberger
and Weibull (1995) establish this “incompressibility” property of the replicator
dynamics by taking an ingenious extrinsic reparametrization which makes the
replicator dynamics divergence-free in the interior of X (see also Ritzberger and
Vogelsberger, 1990). On the other hand, by exploiting the interplay between the
natural logarithm and the Gibbs map (GM), Hofbauer (1996) essentially showed
that the replicator dynamics are incompressible in the space of the score variables
ykα. In the same spirit, we have:

Proposition 5.4. The flow of the higher order learning dynamics (LDn) preserves volume
in the usual Euclidean geometry of RA for all n ≥ 1; the same holds for (RDn) w.r.t. a
non-Euclidean volume form on the system’s phase space Ω.

Proof. Rewriting (3.14) in continuous time, (LDn) is equivalent to the first order
system:

ẏn−1
kα (t) = ukα(x(t)),

· · · (5.4)

ẏ0
kα(t) = y1

kα(t).

Thus, given that yr
kα does not appear in the equation for ẏr

kα for r = 0, . . . , n− 1,
it follows that the flow of (LDn) will be incompressible in the standard Euclidean
metric of RA. Using the relative scores z of (5.1), the same argument applies to
the dynamics (ZDn), and since G∗ is a diffeomorphism onto its image by Lemma
5.2, the result carries over to (RDn) as well. �

Thanks to this incompressibility property of (LDn) and (RDn), we have:

Theorem 5.5. In the higher order replicator dynamics (RDn), interior points cannot
attract open sets of initial states; only vertices of X can be attracting. More generally, a
non-pure point q ∈ X can only attract relatively open sets of initial states whose support
in X properly contains that of q.

Proof. We will prove that if q ∈ int(X), then there is no open set of initial condi-
tions in Ω that converges to q. The result for general non-pure q ∈ X will then
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follow by focusing on the face X′ of X which is spanned by the support of q, i.e.
X′ = ∏k ∆(A′k) with A′k = supp(qk); since the dynamics (RDn) preserve the faces
of X, the assertion follows by noting that the intersection of X′ with an open set
in X is open in X′ by definition.

Working with the variables z of (5.1) and recalling that the map G∗ : z 7→ x is
a diffeomorphism onto its image by Lemma 5.2, Proposition 5.4 shows that open
sets of initial states in Ω cannot converge to the interior state ((G∗)−1(q), 0, . . . , 0).
Thus, to establish the theorem’s claim that z(t) cannot converge to the interior
point z∗ ≡ (G∗)−1(q), it suffices to show that if z(t) → z∗, then we would also
have limt→∞ ż(t) = limt→∞ z̈(t) = · · · = 0.

For notational simplicity, we will only prove the case n = 2. To that end,
assume for the purposes of establishing a contradiction that zkµ(t) → z∗kµ for
some µ ∈ A∗k , k ∈ N, but that żkµ(t) 9 0. Then, without loss of generality, there
exists ε > 0 and an increasing sequence of times tn → ∞ such that żkµ(tn) ≥ ε
for all n. Hence, let Jn be the largest open interval which contains tn and which
is such that żkµ > ε/2 in Jn; we then claim that the length δn = m(Jn) of Jn
vanishes as n → ∞. Indeed, by passing to a subsequence of tn if necessary,
assume that δn always exceeded some positive δ > 0; then, with żkµ > ε/2 in Jn,
it follows that zkµ(t) would grow by at least εδ/2 over Jn for all n, but since zkµ(t)
converges, every subsequence of zkµ(t) must also be Cauchy, a contradiction.
Then, by the definition of Jn, we will have żkµ > ε at some interior point of Jn and
żkµ = ε/2 at its endpoints; thus, by the mean value theorem, there exists some
ξn ∈ Jn with z̈kµ(ξn) ≥ ε

/
2δn, and hence, z̈kµ(ξn) → +∞. However, since z∗kµ

must also be a rest point of (ZDn), the dynamics (ZDn) give z̈kµ(t)→ 0 as t→ ∞,
a contradiction. �

The property that only vertices of X can be attracting in the higher order repli-
cator dynamics (RDn) directly mirrors the first order case. In the following sec-
tion however, we will show that this is a property of a much more general class
of higher order dynamics, so higher order considerations actually sharpen the
instability of non-pure equilibria.

6. Extensions: imitative and payoff-monotonic dynamics.

In this section, our aim is to provide several extensions of the higher order dy-
namics (LDn) and (RDn) and to show how the rationality analysis of the previous
sections applies to this more general setting. To that end, if players do not base
the updating (LDn) of their performance scores on the payoffs ukα(x) of the game
but on a different set of “payoff observables” wkα : X → R (assumed continuous),
then we obtain the generalized reinforcement scheme

y(n)kα = wkα(x), (GLDn)

which, coupled with the logit choice model (GM), yields the generalized n-th
order dynamics:

x(n)kα = λkxkα

(
wkα(x)−∑k

β
xkβwk(x)

)
− xkα

(
Rn−1

kα −∑k
β

xkβRn−1
kβ

)
. (GDn)

The dynamics (GDn) are characterized by the property that if x(0) lies in a
subface X′ of X, then x(t) will remain in X′ for all time: in other words, if the
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strategy share xkα of a pure strategy α ∈ Ak is initially zero, then it remains zero
for all time (see also Remark 3 at the end of Section 3.2). This invariance property
is known as “imitation” (Weibull, 1995), so the dynamics (GDn) may be seen
as a higher order extension of the class of imitative game dynamics introduced by
Björnerstedt and Weibull (1996): in particular, (GDn) is the higher order extension
of the general imitative equation ẋkα = xkα(wkα−∑k

β xkβwkβ) in the same way that
(RDn) extends the standard replicator dynamics (RD1) to an n-th order setting.

Of course, if the payoff observables wkα are not correlated with the game’s
payoffs ukα, the dynamics (GDn) will not lead to any sort of rational play over
time. To account for this, Samuelson and Zhang (1992) considered the aggregate-
monotonicity criterion

wk(q′k; x−k) > wk(qk; x−k) if and only if uk(q′k; x−k) > uk(qk; x−k), (AM)

with x−k ∈ X−k ≡ ∏` 6=k X` and qk, q′k ∈ Xk. Accordingly, following Hofbauer and
Weibull (1996), we will say that the higher order dynamics (GDn) are:

• aggregate-monotonic if (AM) holds for all qk, q′k ∈ Xk.
• convex-monotonic when the “if” direction of (AM) holds for all pure q′k.
• concave-monotonic when the “if” direction of (AM) holds for all pure qk.
• payoff-monotonic if (AM) holds for qk and q′k that are both pure.

In the first order regime, Samuelson and Zhang (1992) showed that payoff-mo-
notonic (resp. aggregate-monotonic) dynamics eliminate all pure (resp. mixed)
dominated strategies. This result was extended by Hofbauer and Weibull (1996)
to pure strategies which are dominated by mixed ones in convex-monotonic dy-
namics, while Viossat (2011) recently established the dual result for concave dy-
namics. In the same spirit, the rationality analysis of Sections 4 and 5 yields:

Proposition 6.1. For any interior initial condition, we have:
• Aggregate-monotonic n-th order dynamics eliminate all dominated strategies.
• Convex (resp. concave) monotonic n-th order dynamics eliminate all pure (resp.

mixed) strategies that are dominated by mixed (resp. pure) strategies.
• Payoff-monotonic n-th order dynamics eliminate all pure strategies that are dom-

inated by pure strategies.
If, in addition, players start at rest (ẋ(0) = . . . = x(n−1)(0) = 0), then the above
conclusions hold with the characterization “dominated” replaced by “weakly dominated”.
Finally, the rate of extinction is exponential in tn (or tn−1 for weakly dominated strategies)
in the sense of (4.2)/(4.10).

Proof. The crucial point in the proof of Theorems 4.1 (resp. Theorem 4.3) is the
lower bound for the n-th (resp. (n− 1)-th) derivative of the difference Vk(x) =
DKL(qk ‖ xk)−DKL(q′k ‖ xk) which determines the rate of extinction of dominated
(resp. weakly dominated) strategies. Thus, by replacing u by w in (4.5) (resp.
(4.12)), and using the appropriate monotonicity condition for each case of dom-
inance (pure/mixed by pure/mixed), our assertion follows along the same lines
as Theorem 4.1 (resp. Theorem 4.3). �

In the same spirit, we obtain the following counterpart to the higher order folk
theorem for higher order payoff-monotonic dynamics:

Proposition 6.2. The conclusions of Theorem 5.1 hold for all higher order (n ≥ 2)
payoff-monotonic dynamics.
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This proposition follows by replacing u with w in the proof of Theorem 5.1
and using the payoff-monotonicity condition (AM), so there are no qualitative
differences between first and higher order payoff-monotonic dynamics. On the
other hand, Proposition 5.4 and Theorem 5.5 hold for a much wider class of
higher order dynamics:

Proposition 6.3. The flow of the generalized learning dynamics (GLDn), n ≥ 2, is
volume-preserving; moreover, the same holds for (GDn) w.r.t. a non-Euclidean volume
form on X. Consequently, the conclusions of Theorem 5.5 hold for all higher order imita-
tive dynamics of the form (GDn).

Proof. Since the payoff observables wkα do not depend on ẋ and other higher or-
der derivates, incompressibility stems from the equivalent first order formulation
(5.4) of (GLDn) with u replaced by w; the conclusions of Theorem 5.5 are then
proved in the same way. �

Interestingly, if n = 1 and the payoff observables wkα do not depend on xkα,
then the system (3.14) remains divergence-free and the conclusions of Proposition
6.3 continue to apply. For instance, this explains why the asymmetric replicator
equation is divergence-free whereas its symmetric counterpart isn’t: in the case
of the former, we have wkα(x) = ukα(x) = uk(α; x−k), a quantity which is inde-
pendent of xkα; in the symmetric case however, if U denotes the payoff matrix
of the game being played, then we would have wα(x) = uα(x) = u(α; x) =
∑β Uαβxβ, showing that, in general, the symmetrized replicator dynamics are not
divergence-free.

In view of the above, Proposition 6.3 clashes quite strongly with the first or-
der regime. For instance, if we take Maynard Smith’s payoff-adjusted variant of
the replicator dynamics (whereby players divide (RD1) by their average payoffs),
then there exist games with asymptotically stable interior equilibria (for instance,
see the Matching Pennies example of Weibull, 1995). In higher orders however,
Proposition 6.3 shows that this can no longer be the case: the learning dynamics
(GLDn) endow orbits with a tangential acceleration component, and this acceler-
ation carries them away from interior equilibria and towards the boundary of X.
As a result, only vertices of X can be attracting in higher order dynamics of the
general class (GDn).

7. Concluding remarks.

The results in the present paper suggest that higher order considerations open
the door to some intriguing new questions and directions in the study of learning
and evolution in games. For one, the elimination of weakly dominated strategies
is a key feature of higher order dynamics which puts them firmly apart from
all their first order siblings; coupled with the survival of iteratively weakly dom-
inated strategies, this provides a dynamic justification of the well-known S∞W
rationalizability process of Dekel and Fudenberg (1990) which cannot otherwise
arise from first order considerations. Furthermore, the population interpretation
of our higher order dynamics by means of “long-term” variants of existing revi-
sion protocols paves the way to a wide array of new classes of dynamics where
the impossibility theorem of Hart and Mas-Colell (2003) no longer bars the way
– a point also made by Shamma and Arslan (2005) in the context of derivative
action fictitious play algorithms.
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Nevertheless, even before considering other classes of higher order dynamics,
several important questions remain: For instance, are the higher order replicator
dynamics consistent (e.g. as in Sorin, 2009)? What can we expect in symmetric,
single-population environments (where payoffs are no longer multilinear) or with
respect to setwise solution concepts – such as sets that are closed under better
replies (Ritzberger and Weibull, 1995)? Finally, from the point of view of learning,
our approach has been focused on continuous time with players being able to
observe (or otherwise calculate) the payoffs associated to their mixed strategies.
This last assumption is relatively harmless in a nonatomic population setting,
but crucial from an atomic point of view; in particular, it is only natural to ask
whether our results continue to apply in discrete-time environments with a finite
number of players only being able to observe their in-game payoffs.
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Appendix A. Asymptotic stability in terms of relative scores.

Our aim in this appendix will be to make precise sense of the asymptotic
stability statement for the dynamics (ZDn) in Section 5; also, to simplify notation,
we will drop the index k and rely on context to resolve any ambiguities.

To begin with, let R′ = R ∪ {−∞} denote the real number line extended to
one end by adjoining −∞. Formally, we will use all extended real number op-
erations for −∞, and R′ will be made into a topological space by defining the
basic neighborhoods of −∞ to be all sets of the form Ua = {x ∈ R′ : x < a}; by
taking the product topology, we will then form the extended product space Z =

RA∗ ∪ {−∞} by adjoining the “point at negative infinity” −∞ ≡ (−∞, . . . ,−∞)

to RA∗ . In this way, the reduced Gibbs map (GM∗) may be extended to Z by
mapping −∞ to q ∈ X, and, by the topology of Z, this extension will be continu-
ous.

To incorporate initial conditions at negative infinity for (ZDn), we will work
with the extended configuration space Z and the similarly extended phase space
Ω′ = Ω ∪ ({−∞} × Z× · · · × Z), where Ω denotes the original phase space of
(ZDn). To extend the flow of (ZDn) to all of Ω′, we will define trajectories starting
at −∞ to have z(t) = −∞ for all t ≥ 0; then, using the extended real number
operations for −∞ if needed, we will have zµ(t) = zµ(0) + żµ(0) + 1

2 z̈µ(0)t2 +
· · ·+

∫
· · ·
∫

∆uµ(x(t1)) dt1 · · · dtn for all tn ≡ t > 0 and for all (z(0), ż(0), . . . ) ∈
Ω′, where x(s) = G∗(z(s)). As a consequence of the above, it is then easy to see
that the above collection of trajectories indeed defines a continuous flow on Ω′

which reduces to the flow of (ZDn) on Ω.
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With regards to asymptotic stability, Theorem 5.1 shows that if all initial con-
ditions zkµ(0), żkµ(0) are uniformly small (say, less than some a ∈ R), then we
will have zµ(t)→ −∞; moreover, an easy adaptation of the proof of Theorem 5.1
shows that the same will hold for all derivates żµ(t), z̈µ(t), . . . of z(t) as well. This
shows that if z(t) starts at a neighborhood of {−∞} × {−∞} × · · · in Ω′, then
it will converge there; completing the argument for Lyapunov stability as in the
proof of Theorem 5.1, we thus obtain:

Proposition. With respect to the extended real number topology defined above, the state
{−∞} × {−∞} × · · · which corresponds to the strict equilibrium q is asymptotically
stable in (ZDn).
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