
A Novel Dynamic Network Architecture Model
Based on Stochastic Geometry and Game Theory

Alireza Shams Shafigh†, Panayotis Mertikopoulos‡ and Savo Glisic†
†Centre for Wireless Communications, University of Oulu

‡French National Center for Scientific Research, University of Grenoble Alpes,
†P.O. Box 4500, 90014 University of Oulu, Finland
‡Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

Email: {ashamssh, savo.glisic}@ee.oulu.fi, panayotis.mertikopoulos@imag.fr

Abstract—In this paper, a novel paradigm of user-provided
connectivity in wireless networks is introduced using certain class
of wireless terminals that can be turned temporarily into access
points at any time while connected to the Internet. We show
that a DNA (Dynamic Network Architecture) model improves the
connectivity and capacity of ultra-dense wireless access networks
without need to reconfigure the network infrastructure. The
DNA operators motivate terminals to participate in this concept
by providing incentives. An example is to allow terminals to
transmit additional free traffic volume if they share their free
bandwidth by acting as access points. The DNA operators manage
the dynamic network in order to maximize their own profit by
adjusting jointly their price and incentive rate. In addition, we
model the joint problem of operator pricing and user resource
sharing as a non-cooperative game and the resulting game admits
a unique Nash equilibrium solution. Simulation results show high
gains in such networks for terminals acting as access points and
operators.
Keywords. Stochastic geometry, dynamic network architec-
ture, ultra-dense wireless networks, microeconomics, game
theory.

I. INTRODUCTION

Small Cell Networks (SCN) are able to efficiently support
the performance requirements of future wireless access net-
works such as high peak transmission rates, high spectrum
utilization, and high energy efficiency [1], [2]. Unfortunately
the problem of where and when to deploy these small cells
still remains a challenging issue [3], [4], [5] because a pre-
established scenario is expensive for the network operators.
In the case of dynamic spatial traffic distribution, most of the
time fixed pre-deployed network infrastructure is not used. In
[6], [7], [8], and [9] new User-Provided Connectivity (UPC)
paradigms for a low-cost ubiquitous connectivity are presented
to solve the small cell deployment problem. Here, we further
extend this concept to make the network more flexible and
self-adjustable to traffic density variations.

In this paper, a new paradigm in wireless access network is
considered where certain classes of wireless terminals can be
turned into access points at any time while connected to the
Internet. This would create a Dynamic Network Architecture
(DNA) model [6] where the number and location of these
access points vary in time. This ultra-dense DNA can be also
thought of as a Dynamic Small Cell (DSC) network where

new small cells can be temporally activated anywhere without
an additional cost for reconfiguring the network infrastructure.

The main contributions of our paper are as follows:
– A new dynamic networking model is introduced as DNA

to improve overall network coverage and connectivity.
In this kind of network model operators motivate users
to share their resources instead of installing costly hard-
ware/software infrastructure equipment everywhere.

– New microeconomics of ultra-dense DNA wireless net-
work is introduced where the operators motivate users
to act as an access point by offering free traffic volume
depending on the extent of their cooperation.

– A game-theoretic model is developed for the non-
cooperative behavior of the players (access points and
operators) and we show that the resulting game admits a
unique unilaterally stable state (i.e. a Nash equilibrium).

The rest of the paper is organized as follows. Section II
provides a related work for Dynamic Architecture Networks.
In Section III, the network model is presented, while section
IV provides the system performance analysis. Section V
presents the numerical results and finally, Section VI concludes
the paper.

II. RELATED WORK

In the last decade, the mixture of wired and wireless connec-
tivity has transformed the way of accessing the Internet. This
heterogeneous connectivity promises to provide a high level
of ubiquitous broadband access. As a result, we are witnessing
the emergence of wireless hotspots characterized by the high-
density deployment of WLAN access points (APs) [10], [11]
and [4]. An important feature of the high-density deployment
is that users can find multiple APs in its vicinity, from the same
or different service providers. Due to the limited number of
channels, multiple APs may operate over the same channels.
Thus, the effective management of these APs to optimize
the users’ throughput becomes an important challenge [6].
Dynamic Multi-hop cellular networks (MCN) [12], in which
the traffic of a UE is relayed to a cellular infrastructure node by
means of intermediate mobile nodes, have received significant
interest in recent years as a means to enhance the capacity,
data rates and coverage of cellular networks. For example,



architectural aspects and routing protocols were studied in
[13], [14]. Recently, one promising networking model has
been proposed which allow users of MVNOs to share their
unused bandwidth with other users [6], [15]. When the End
User(EU) becomes a spectrum provider and shares wireless
opportunities based on incentive [16] in order to provide
a radio communication channel available for the neighbor
EUs. Incentive mechanisms are fundamental for UPN/ DNA
networking models, because their operators motivate EUs to
cooperate by sharing their unused resources e.g bandwidth.
These new networking models depend on the EU’s willingness
to share their wireless connectivity, storage capabilities, and
energy resources. UPN/DNA [17], [18] can enable widespread
communications without depending upon traditional ISP.

III. NETWORK MODEL

We consider a global wireless network where the users’
location is distributed according to a homogeneous PPP (Pois-
son Point Process) Φu with density λu. Every potential user
is able to work in two different state modes: access point
or terminal. It is assumed that λTr = (1 − Pc)λu and
λA = Pcλu are the densities of terminals and access points
where Pc is the probability that a user acts as an access
point. Every user has a maximum transmission range and each
terminal is served by its nearest access point. This means
that the covered area of each access point forms a Voronoi
tessellation [19]. According to [20], the probability that a
randomly chosen access point does not have any terminal
to serve is Pidle = (1 + λTr

3.5λA
)−3.5 = (1 + 1−Pc

3.5Pc
)−3.5.

Therefore, the probability that an access point is active is
Pac = Pc(1−Pidle) and the density of active access points is
λac = Pacλu = Pc(1− Pidle)λu .

In DNA networks every user operates either as a terminal
consuming network resources or as an access point augment-
ing network resources. In the former case, the terminal must
pay to the network an amount proportional to its resource
consumption while in the latter case the network reimburses
the user proportionally to its contribution to the overall aug-
mentation of the network resources. This payment can be
in the form of credit to freely transmit a certain amount of
traffic volume. Hence, a potential user chooses its sharing
rate α ∈ [0, 1] and decides on the probability Pc to work
as an access point while the operator controls the process by
adjusting its incentive rate θ and price ϑ.

IV. PERFORMANCE ANALYSIS

A. Network Throughput

In order to support the DNA communication paradigm a
minimum SINR has to be supported by the network operator
for all simultaneous active transmissions. Fig.1 presents one
snapshot of the interference model on downlink transmission
in a DNA network. Besides the base station the interferers are
also active in downlink. In Fig.1, d is the distance between
the base station and a typical access point while its distance to
the nearest interfering access point is represented by a random
variable X . Parameters r and D represent the distances from
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Fig. 1. Interference Model.

a typical terminal to the access point and the base station,
respectively. The access point chooses its sharing rate α in
order to provide a DNA access link for the typical terminal
with a maximum download rate αW where W is the maximum
download rate of a given access point from the base station.

In a DNA network, we assume that the parameter Θ2 =
Pbsgd

−2

N0+
∑
i∈Φac

Papg|Xi|−2 represents the signal to interference
ratio of link bs-ap (base station-access point) where interferers
are the activated access points, Pap and Pbs are the transmitter
powers of ap and bs, respectively, N0 represents noise power
(for interference limited scenario we discard this parameter in
our analysis) and g is the channel gain.

Similarity let Θ1 =
Papgr

−2

N0+
∑
i∈Φac

Papg|Xi|−2+PbsgD−2 denotes
the signal to interference ratio of link ap-tr (access point-
terminal) where the interferers are the activated access point
and the base station. According to [20] and [21], the outage
probability for link ap-tr with the propagation loss factor 2 is
given as

O1 = Pr(Θ1 ≤ γ1) = 1− e(− Psλacπγ1
r−2−ψ−1D−2γ1

) (1)

where ψ =
Pap
Pbs

, and Ps represents the competetive/uniform
selection probability of access point by terminals. The other
parameters are indicated in Fig.1. In (1), γ1 is the minimum
SINR level of link ap-tr. Likewise, the outage probability of
link bs-ap is given as

O2 = Pr(Θ2 ≤ γ2) = 1− e(−Psλacπd2ψγ2) (2)

where γ2 is the minimum SINR level of link bs-ap. By
considering the outage probability for both links, downlink
throughput between the base station and a typical terminal in
a DNA network is given by CDNA = min((1 − O1)log(1 +
γ1), α(1−O2)log(1 + γ2)).

Terminals can choose the best access point from the avail-
able access point list. So, every access point can affect the
terminal choices by offering a higher-capacity link according
to its sharing rate α. In addition to the sharing rate α, the
aggregated interference from the nearest active access points
can influence the offered capacity by the access point. For this
reason, every access point whose nearest interferers are further



has more chance to be selected by incident terminals because
it can offer more capacity to terminals. This condition provides
a competitive environment for the access points trying to be
selected by terminals. We assume that the sharing rates follows
a normal distribution which depends on the traffic pattern of
each access point. Therefore, the average competitive selection
probability of a typical access point api with αi, which is
inside the area A (Maximum coverage area of a given terminal)
surrounding the tagged terminal is given by

Si =

∞∑
m=1

αi
(m+ 1)µα

(1− exp(−λacπIi2))
ρmexp(−ρ)

m!
(3)

where m represents the number of active DNA access points in
the area A, the term αi

(m+1)µα
is the relative sharing rate of api

in comparison to other available access points, Ii represents
the expected distance from api to its nearest interferer, and
ρ = λuPc|A| is the access point density for the area A. In
equation (3), the quantity ρmexp(−ρ)

m! is a Poisson distribution
with mean ρ representing the probability of having m access
point inside the area A . Also, the term 1 − exp(−λacπIi2)
is the PDF (probability distribution function) of the distance
between api and its nearest interferer. Notice that when there is
no competition between the access points, they can be selected
uniformly by the same probability 1

m̄ where m̄ represents the
average number of access point inside the area A. Thus, in
(1), Ps = 1

m̄ if terminals uniformly select access points and
Ps = Si if access points compete to encourage terminals to
select them by increasing their sharing rates.

B. Utility Functions

In the proposed model, every user decides about its working
mode and sharing rate α. On the other hand, the operator
controls the DNA network by adjusting the price ϑ and the
incentive rate θ. Therefore, every user tunes the parameters
(Pc, α) to optimize its individual optimum utility while the
operator optimizes its own profit by adjusting (ϑ, θ). The
utility of each user includes the gains of both terminal and
access point modes. In the terminal mode, the user sends only
its own traffic while in the access point mode the user benefits
from the base station proportionally to its sharing rate. In view
of all these, the utility function of a user can be modeled as

u1(Pc, α) = (1− Pc)fT (R) + PcPs{fAP (K1αR)−
ϑ((1− α)R−K2θCDNA)−(ζr + ζs)R}

(4)

where fT (.) and fAP (.) are concave functions representing
the perceived utility of the user from not sharing(terminal
mode) and sharing bandwidth (access point mode), K1 and
K2 are positive constants, the parameters ζs and ζr are
proportional to energy consumption rates in send and receive
modes, and R = W (1−O2)log(1+γ2) is data rate, where W
is the available bandwidth. In (4), the first term represents the
revenue in the terminal mode and the second part represents
cost and gains for the access point mode. The term K2θCDNA

is the traffic volume delivered to terminals by the access point,
(1−α)R as the downloaded traffic volume by the access point
for itself, and ϑ((1−α)R−K2θCDNA) is the cost that must be

paid to the operator by the access point when it uses (1−α)R
for itself and CDNA for incident terminals. On the other hand,
the revenue of operator from a typical DNA user is given as

u2(ϑ, θ) = (1− Pc){R(ϑ− ϑ̄)}
+ PcPs{ϑ((1− α)R−K2θCDNA) + ϑCDNA−
ϑ̄((1− α)R+ CDNA)}

(5)

where ϑ̄ represents the basic cost for operator to provide
services, the access point pays ϑ((1 − α)R −K2θCDNA) to
the operator, ϑCDNA is paid by the terminal that uses the
access point, and ϑ̄((1−α)R+CDNA) is the cost to provide
service for the access point and the terminal. We can identify
λacu2 as spatial revenue of DNA network.

C. System Optimization

To analyze the interactions between the user and the opera-
tor who seek to optimize the objectives (4) and (5) respectively,
we first model the scenario where both access point and
operator adjust only one of their parameters as a two player
game. The first player (access point) adjusts its sharing rate
in accordance with the price of operator and the second
player (operator) adjusts its price. Here, it is assumed that
Pc and θ are constants. In the next subsection, a general
game model is proposed where players can adjust all these
parameters concurrently. We propose the following game-
theoretic formulation:

– The set of players (decision-makers) of the game is N =
{1, 2}, with the index “1” referring to the user which can
act as terminal/access point and “2” to the operator/ base
station.

– The user’s control variables is the bandwidth sharing rate
α ∈ [0, 1]. For notational convenience, we denote α by
x1 , and by X1 ≡ [0, 1] the user’s action space.

– The operator’s control variables is the price ϑ. Again,
for convenience, we replace ϑ by x2 = ϑ/ϑmax, and use
X2 = [0, 1] to denote the operator’s action space.

– The utility function of player 1 is given by (4) and
denoted by u1 ≡ u1(x1, x2); likewise, the utility function
of player 2 is given by (5) and denoted by u2(x1, x2).

In this context, we say that the network is at Nash equi-
librium (NE) when the user and operator have no incentive
to change their control variables. Formally, we say that the
action profile x∗ = (x∗1, x

∗
2) is at Nash equilibrium when

uk(x∗) ≥ uk(xk;x∗−k), for all k ∈ N and for all xk ∈ Xk,
x−k ∈ X−k (In the above and in what follows, “−k” denotes
the opponent of player k). With this in mind, a natural question
that arises is whether the game defined above admits a Nash
equilibrium x∗. Otherwise, if this is not the case, the user
and operator could be constantly changing their sharing rate
and price, leading the system to instability. To answer this
question, note first that (4) is a concave function of α and
continuous in its other arguments. Likewise, (5) is linear in
ϑ and continuous in its other arguments. In particular, this
implies that the game’s payoff functions uk(xk;x−k) are
continuous and individually concave in each player’s action
variable xk. Hence, given that the player’s action spaces Xk



are compact and convex, the existence of an equilibrium is
guaranteed by Debreu’s theorem [22].

To examine the uniqueness of the game’s Nash equilibria,
we focus on the players’marginal utilities Vk(x) = ∂uk

∂xk
, k ∈

{1, 2}. Clearly, the players’ marginal utilities represent each
player’s individual direction of steepest payoff ascent; hence,
it is reasonable to expect that tracking them may lead the
system to equilibrium. To that end, we propose the following
adjustment scheme as a learning mechanism for the game’s
players:

xk(n+ 1) = xk(n) + δnxk(n)(1− xk(n))Vk(x(n)),
(AS)

where:

– n = 0, 1, . . . , is the stage of the players’ learning process.
– xk(n) is the action of player k ∈ {1, 2} at stage n.
– δn is a non-increasing step-size sequence (typically of

the form δn = 1/np for some p ∈ [0, 1]).

Intuitively, the adaptive scheme (AS) means that player k
follows the direction indicated by his marginal utility Vk(x): in
particular, the player increases xk when doing so would lead
to a unilateral increase in payoff, and decreases xk otherwise.
The adjustment factor xk(1 − xk) is then included to ensure
that the process remains well-defined – i.e. that the feasibility
constraints xk ∈ Xk = [0, 1] are not violated.

In this non-cooperative game, a Nash equilibrium represents
a state where each player’s marginal utility vanishes or a
boundary point of the game’s state space X = X1 × X2.
As a result, every stationary point x∗ of (AS) also is a Nash
equilibrium of the game. However, since the game may admit
several equilibria, it is not clear where the learning dynamics
(AS) may end up converging – if at all. On the other hand, if
the game admits a unique equilibrium, it is to be hoped that
the dynamics (AS) converge to it from every initialization.

To study whether the game admits a unique equilibrium, we
follow the approach of [23] and consider the game’s “weighted
Hessian” matrix Hij = ai

∂Vi
∂xj

+ aj
∂Vj
∂xi

, i, j ∈ {1, 2}, where
ai > 0, i ∈ {1, 2}, are positive constants that represent the
Hessian’s weighing. Then, to have a unique equilibrium, the
following constraints should hold (implying that H is negative-
definite):

%1 =
M ±

√
M2 + 4N1

2

2
< 0, x1 ≤

A

B

%2 =
M ±

√
M2 + 4N2

2

2
< 0, x1 >

A

B

(6)

where %1 and %2 are eigenvalues of the Hessian matrix,
M = 2a1PcPsf

′′
AP (K1x1R), f ′′AP (K1x1R) is the second order

derivative of fAP (K1x1R), N1 = PcPsϑmax{a1R + a1K2θB −
a2R − a2K2θB + a2B}, N2 = PcPsϑmaxR{a1 − a2} , A =

(1 − O1)log(1 + γ1) and B = (1 − O2)log(1 + γ2). These
constraints ensure that there are two negative eigenvalues for
the Hessian matrix. In (6), concavity of function fAP (K1x1R)
grantees that there are two negative eigenvalues. This matrix
measures the impact of one player’s actions on the payoff
of the other player, so it plays a crucial role in determining

whether the game admits a unique equilibrium. In particular,
we obtain the following theorem:

Theorem 1. Let G denote the game between user and oper-
ator defined above. Then, every Nash equilibrium of G is a
stationary point of the adjustment scheme (AS). Furthermore,
if Condition (6) holds, the game admits a unique Nash equi-
librium x∗ ∈ X and the adjustment scheme (AS) converges
to x∗ from every initialization x(0) ∈ X , provided that δn is
chosen small enough and

∑∞
n=1 δ

2
n <

∑∞
n=1 δn =∞.

Proof: For the first claim of our theorem, assume initially
that x∗ is an interior Nash equilibrium of G. Then, by
assumption, we have Vk(x∗) = 0 for all k ∈ N , i.e. x∗ is
stationary under (AS). Otherwise, if x∗ is not interior, we can
only have Vk(x∗) = 0 if x∗k = 0 or x∗k = 1 (i.e. x∗k is an
extreme point of Xk). In that case however, the update step
of (AS) again yields xk(n + 1) = xk(n), so x∗ is stationary
under (AS), as claimed.

Assume now that (6) also holds and x∗ is a Nash equilib-
rium of G. The fact that x∗ is the unique Nash equilibrium of G
follows from Theorems 2 and 6 of [23]. As for the convergence
of (AS) to x∗, we proceed in two steps: first, we consider
a dynamical system in continuous time that represents the
“mean field” of (AS) and we show that this dynamical system
converges to x∗; then, we show that the trajectories of (AS)
are asymptotically close to these “mean trajectories”, so they
also converge to x∗.

To make all this precise, consider first the mean dynamics

ẋk = xk(1− xk)Vk(x). (7)

We then claim that the function

V (x) =
∑
k=1,2

ak

[
x∗k log

x∗k
xk

+ (1− x∗k) log
1− x∗k
1− xk

]
(8)

is a strict Lyapunov function for (7), i.e. V (x(t)) is strictly
decreasing for every solution trajectory of (7) unless x(t) = x∗

for all t ≥ 0. Indeed, by differentiating with respect to t, we
obtain:

V̇ (x) =
∑
k=1,2

ak

[
−x∗k

ẋk
xk

+ (1− x∗k)
ẋk

1− xk

]
= −

∑
k=1,2

ak(xk − x∗k)Vk(x). (9)

By condition (6) (cf. Theorem 6 in [23]), this last expression
is strictly negative unless x(t) = x∗. It follows that V (x(t))
is strictly decreasing for every non-stationary solution orbit
of (7), so V (x(t)) → minx∈X V (x) = 0. Since the global
minimizer of V (x) is x∗, we conclude that limt→∞ x(t) = x∗,
as claimed.

For the convergence of the actual adaptive scheme (AS),
note first that the iterates x(n) of (AS) comprise an asymptotic
pseudo-trajectory (APT) of (7) in the sense of [24]. To
proceed, let

Dn = V (x(n))

=
∑
k=1,2

ak

[
x∗k log

x∗k
xk(n)

+ (1− x∗k) log
1− x∗k

1− xk(n)

]
(10)

A Taylor expansion of V then yields:



Dn+1 ≤ Dn + δn
∑
k=1,2

ak(xk(n)− x∗k)Vk(x(n))

+
1

2
δ2nC

∑
k=1,2

‖Vk(x(n))‖2
(11)

where we have used the last line of (9) in the derivation of
the second term and C > 0 is a positive constant. Assume
now that x(n) always stays a bounded distance away from x∗

so
∑
k=1,2 ak(xk(n) − x∗k)Vk(x(n)) ≤ −q for some q > 0

and for all n by Eq. (6). Thus, telescoping (10), we obtain
Dn+1 ≤ D0 − q

∑n
j=1 δj + 1

2CV
2
∑n
j=1 δ

2
j , where V =

maxk=1,2 maxx∈X Vk(x). Since
∑n
j=1 δ

2
j <

∑n
j=1 δj = ∞,

we have Dn < 0 for sufficiently large n, a contradiction.
From the above, we conclude that x(n) must visit every

neighborhood of x∗ infinitely often. Since x(n) is an asymp-
totic pseudo-trajectory (APT) of the mean dynamics (7) and
the latter are globally attracted to x∗, Theorem 6.10 in [24]
shows that x(n)→ x∗, as claimed.

D. Additional user and operator control variables

In the game-theoretic formulation above, the probability
Pc that the user acts as an access point has been treated as
a parameter of the game under study and likewise for the
operator’s incentive rate θ. In a setting where the user-operator
interactions span a longer time horizon, these parameters
could also be adjusted during communication, so they can
be considered as additional control variables, to be optimized
separately.

To account for the above considerations, the game-theoretic
formulation of the previous section should be modified as
follows:

– The possible actions of the user are of the form x1 =
(α, Pc) with α ∈ [0, 1] denotes the user’s bandwidth
sharing rate and Pc ∈ [0, 1] the probability of acting as
an access point. Accordingly, the action space of Player
1 is X1 = [0, 1]× [0, 1].

– The possible actions of the operator are of the form
x2 = (ϑ/ϑmax, θ) with ϑ ∈ [0, ϑmax] denotes the price
set by the operator and θ ∈ [0, 1] denotes the associated
incentive rate. As such, the action space of Player 2 is
X2 = [0, 1]× [0, 1].

– Each player’s utility function uk : X1×X2 → IR is given
by Eqs. (4) and (5) above.

A key difference between this extended formulation and that
of the previous section is that the players’ utility functions in
general are no longer individually concave – note for instance
the very complicated dependence of u1 on the probability Pc.
As a result, the existence (resp. uniqueness) of a NE cannot
be established by Debreu’s (resp. Rosen’s) theorem as in the
previous section.

Nevertheless, we provide below an adaptive learning scheme
which directly extends (AS) and which has the property of
unilaterally increasing each player’s utility:

ẋks = xks(1− xks)Vks(x), k ∈ {1, 2}, s ∈ {1, 2}, (12)

where the index tuple (k, s) marks the s-th component of the
action xk ∈ X of the k-th player and Vks(x) = ∂uk

∂xks
denotes

the player’s marginal utility with respect to said component.
The payoff-increasing properties of (12) can be understood

by noting that

d

dt
uk(xk(t);x−k) =

2∑
s=1

ẋksVks =

2∑
s=1

xks(1−xks)V 2
ks ≥ 0, (13)

i.e. the payoff of player k increases under (AS) for every fixed
action x−k of his opponent. Of course, when both players’
action profiles evolve under (AS), there is no guarantee that
either player’s payoff increase because of the impact of each
player’s actions on the payoff of his opponent. However, if
(AS) converges, the above reasoning shows that this limit point
must also be a Nash equilibrium of the game.

V. NUMERICAL RESULTS

In this section, the performance of the network is evaluated
by numerical analysis using MATLAB. We assume that in
typical ultra-dense network terminals and access points are
randomly placed in an area of 1Km2. DNA network is
simulated to find how attractive for wireless operators is to
establish DNA networks. We also show that participation in
a DNA network can provide more benefit for wireless users
too. Table I includes parameters used in the simulations.

TABLE I
PARAMETER VALUE USED IN THE NUMERICAL ANALYSIS.

Parameter Value
α 0 ≤ α ≤ 1
µ 0 ≤ µ ≤ 1
γ1 1
γ2 1
θ 0≤ θ ≤ 1
λu 10−3 node/m2

Pc [0.00005-0.0005]
ζs 10
ζr 1
r [1− 20]
Ii [1-10]

K1,K2 1
ϑ̄ 1
W 1MHz

Fig.2 shows the spatial throughput given as SPi =
Siλac(1−O1)log(1+γ1) for a DNA access point when consid-
ering only the impact of the nearest interferer. As expected,
the closer interferer is it degrades more the performance of
link quality and the selection probability of access points.
Therefore, terminals would select more likely those access
points which are far from other interfering access points and
meanwhile they offer the higher bandwidth links. The graph
shows that there is a significant fall in spatial throughput when
the average distances of interferers (Ii) are reduced. In this
simulation (Fig.2), αi = 0.5 and µα = 0.2. While these results
were expected Fig.2 quantifies the impacts of Ii on the system
performance.

In Fig.3, we plot the spatial selection probability of a given
access point versus the average sharing rates of competing
APs. In other words, in a DNA network, APs have to compete
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Fig. 2. Spatial throughput (SPi = Siλac(1 − O1)log(1 + γ1)) of api
versus the average distance (r) to the nearest access point, Ii is the average
distance of api to its nearest interferer.
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Fig. 3. Spatial Selection probability (equation (3)) of api by terminals versus
the average sharing rates of competing access points.

to become the first choice of terminals for downloading data.
Access points may manage this process only by adjusting
their sharing rates because they can not change position of the
nearest interferer. Fig.3 show that access points can compete to
win by adjusting their sharing rates. If they are far from other
interferers, they more likely win (be selected by terminals) by
offering a better download link for terminals.

In the next two figures, we present the results of our game-
theoretic model. In Fig.4, spatial revenue of a DNA operator
is presented versus cooperation rate of users (Pc). One can see
that the operator can achieve more profit by offering the higher
incentive rate (θ). As mentioned before, high participation rate
of users as APs can bring more revenue to the DNA network
operators. Fig.4 shows that the revenue has a upper bound and
after that bound operator can not achieve to more revenue even
with increase of its incentive rate. In Fig.4, the upper bound
of spatial revenue is around 0.35. In Fig.5, revenue of one
DNA operator is presented for different value of user density.
DNA network model offers more benefit in very dense network
because there are more users that like to act as access point
without extra cost for infrastructure.

VI. CONCLUSION

This paper provided a framework for the analysis of the
DNA model for ultra-dense networks. In this model, every user
can work as an access point and extend the coverage of the
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Fig. 4. The Spatial Revenue (λacu2 ) of operator for different incentive
rates θ versus Pc.
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Fig. 5. The Spatial Revenue (λacu2) of operator for different node density
λu versus Pc.

main network without need to reconfigure hardware/software
equipments. A key contribution of our paper is a game
theoretic model for DNA including terminals, access point
and operators. For such a model we have developed an opti-
mization algorithm and provided the prove of its convergency.
Overall, the results of this paper indicate that DNA is an
attractive network model for users and access points to extend
dynamically current networks without any extra cost. As
possible extensions of this work we are planning to consider
terminals equipped with multiple antennas and develop beam
forming schemes to select the most appropriate APs that
satisfy the QoS requirements and maximize throughput. We
expect that beam-forming will reduce the interference and so
further improve the efficiency of these network
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