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Abstract—To this day, the Internet of Things (IoT) continues
its explosive growth. Nevertheless, with the exceptional evolution
of traffic demand, existing infrastructures are struggling to
resist. In this context, Fog computing is shaping the future of
IoT applications. It offers nearby computational, networking
and storage resources to respond to the stringent requirements
of these applications. However, despite its several advantages,
Fog computing raises new challenges which slow its adoption
down. Hence, there is a lack of practical solutions to enable the
exploitation of this novel concept. To deal with this shortcoming,
we propose FITOR, an orchestration system for IoT applications
in the Fog environment. This solution builds a realistic Fog
environment while offering efficient orchestration mechanisms.
In order to optimize the provisioning of Fog-Enabled IoT
applications, FITOR relies on O-FSP, an optimized fog service
provisioning strategy which aims to minimize the provisioning
cost of IoT applications, while meeting their requirements. Based
on extensive experiments, the results obtained show that O-FSP
optimizes the placement of IoT applications and outperforms
the related strategies in terms of i) provisioning cost ii) resource
usage and iii) acceptance rate.

Keywords: Fog Computing, IoT, application placement,
service provisioning

I. INTRODUCTION

The Internet of Things (IoT) is an emerging concept that
promises to revolutionize our daily lives and the way we
interact with our surrounding. It refers to the interconnection
of heterogeneous end devices, especially everyday life objects,
that are addressable and controllable via Internet. The number
of such devices is expected to reach 75 billion(s) by 20251,
an explosion in size which will be inevitably the catalyst for
the transformation of Cloud infrastructures. Being established
too far away, traditional data centers struggle to meet stringent
bandwidth and latency requirements of IoT systems. This is
why the deployment of a new generation of infrastructure is
crucial to deal with the huge amount of data transmitted by
sensors and connected devices.

In this context, Fog Computing [1] is shaping the future of
IoT solutions. To deal with the prolific growth of the generated
traffic, the Cloud infrastructure is expanded to handle the
processing in the surrounds of end devices. This augmented
architecture provides nearby resources, performing analytics
tasks and data storage. The so-called Fog nodes can be whether
physical or virtualized. They are deployed between end devices
and centralized services hosted by the Cloud. Note that a
subset of Fog nodes are more specialized, dedicated and hence
can be placed even closer to the end devices than the more
powerful Fog nodes. They are called Mist nodes [2]. In doing
so, a decentralized processing will be supported while taking
advantage of the Cloud utilities and virtualization technology.
It is straightforward to see that, the establishment of such a
decentralized processing will ensure enhanced network perfor-
mance, lower operational costs, alleviated network congestion
and improved survivability.

However, such a design raises new challenges in terms of
resource management and application orchestration. In this
context, the orchestration is a keystone of Fog PaaS (Platform
as a Service): It corresponds to designing, creating, and
delivering one or more service components that, put together,

1Statista. Available at: https://www.statista.com/statistics

offer an end-to-end service. Nevertheless, the heterogeneity,
the dynamic nature and the large-scale deployment of the Fog
environment make existing orchestration solutions, such as
Kubernetes2 and Docker Swarm3, even mature, ill-adapted.

Recently, several researches [3]–[5] have proposed con-
ceptual Fog frameworks for IoT service orchestration. How-
ever, most of them do not address the problematic in a
practical and concrete manner. In this paper, we propose
a Fog computing based framework, referred to as FITOR:
Fog-IoT ORchestrator which integrates end devices and Fog
nodes in the Cloud ecosystem to create a Fog environment.
FITOR provides various functionalities, which deal with the
provisioning of IoT applications in a Fog infrastructure while
meeting non-functional requirements in terms of network
performances (e.g., latency, throughput) and IT resources (e.g.,
CPU, memory).

The contribution of this paper is twofold: first, we design
and implement FITOR, an orchestration framework for the au-
tomation of the deployment, the scalability management, and
migration of micro-service based IoT applications. Second, we
propose a provisioning solution for IoT applications that opti-
mizes the placement and the composition of IoT components,
while dealing with the heterogeneity of the underlying Fog
infrastructure.

In order to optimize the placement of micro-service based
IoT components and their composition, we formulate the
problem as an Integer Linear Problem. Since this problem is
computationally intractable, the optimal solution could only
be generated in small-sized instances of IoT applications and
Fog infrastructures. We, therefore, propose an Optimized Fog
Service Provisioning strategy named O-FSP which adopts a
divide and conquer approach. Its main objective is to minimize
the cost of Fog-enabled IoT applications’ provisioning while
responding to their requirements in terms of resources and
network performance. To do so, O-FSP exploits the gathered
information about the current state of the sensors, actuators,
Fog nodes, and the condition of IT and network resources to
select the best placement of micro-services on Fog resources.

The performance of O-FSP is validated by robust exper-
iments within the proposed FITOR platform and compared
with several classical approaches: Uniform, Best-Fit and
Min-latency. The results obtained highlight the strength of
our strategy in terms of i) acceptance rate of IoT applications,
ii) provisioning cost, and iii) CPU usage.

The remainder of this paper is organized as follows. In
Section II, we will summarize the related work dealing
with this problematic. In Section III we describe FITOR, a
Fog based framework for IoT applications orchestration. In
Section IV, we will formulate the IoT service provisioning
problem. Then, our proposal O-FSP will be described in
Section V. Performance evaluation based on experimentation
will be detailed in Section VI.

II. RELATED WORK

Several Fog architectures have been put forward in the
literature. In this respect, in [3], the authors propose a pro-

2Kubernetes. Available at: https://kubernetes.io/.
3Docker Swarm. Available at: https://docs.docker.com/engine/swarm/.



totype framework for Fog computing, named Enorm. The
latter centralizes the management of applications and edge
nodes in the Cloud, while offloading the workload to the
edge nodes closer to the end user. In addition, an auto-scaling
mechanism is implemented to scale up/down the resources
based on the network latency and the tasks’ execution time.
In [4], Inspired by ETSI NFV MANO reference architecture,
the authors develop a service orchestration system for Fog
computing. The architecture relies on two main components: i)
a Fog Orchestration Agent (FOA) which runs in the Fog node
and locally manages the services, and ii) a Fog orchestrator
(FO) which makes use of a centralized view to manage the
services and Fog nodes. In [6], a set of extensions to the
Cloud Foundry architecture are proposed to cope with the
Fog environment. These extensions include new modules to:
i) develop applications, ii) deploy the components either in the
Cloud or Fog using containers, and iii) manage the application
during its execution. [7] proposes an SDN-based orchestration
solution for Fog environments. To do so, the environment is
split into several Fog regions managed by an SDN controller.
The latter is responsible for keeping an updated view of
the Fog nodes, collecting information about their capabilities
(CPU, RAM, network, etc.), and orchestrating IoT applications
while taking into consideration the business policies defined by
applications. [8] proposes a Foglet programming infrastructure
for Fog environments. Foglet provides a programming inter-
face to be used by developers and a runtime system to manage
the application execution.

Although the Fog computing concept has been relatively
well investigated, the provisioning of IoT applications in the
Fog environment remains an open issue. This is due to the
distributed nature of Fog nodes and the uncertainty induced by
multiple factors, such as end device volatility, peak resource
demands and utilization gaps. It is worth noting that service
provisioning in Cloud computing is mature [9] [10] and may
offer interesting insights. However, there are key differences
between Cloud services and Fog services that prevent the use
of these methods in Fog context. Indeed, the type and size
of Cloud resources are very different from Fog resources. In
this respect, Cloud resources are usually homogeneous and
centralized in data centers, while their counterparts in Fog
computing are heterogeneous and distributed in a large area.
In addition, Cloud applications are less challenging than IoT
services running in the Fog. The latter are generally latency-
sensitive. They require location-awareness, mobility support
and a distributed coordination between geo-distributed end
devices.

To the best of our knowledge, very few works have
been carried out to specifically deal with the Fog service
provisioning problem. In [11], the authors put forward the
concept of Fog colonies to address the Fog service placement
problem (FSPP), while taking into account Quality of Service
constraints. In [12], two heuristics are proposed to efficiently
deal with the FSPP while reducing the cost. In [13], the authors
formulate an optimization problem to deal with the placement
of IoT applications over Fog resources, while considering
the heterogeneity of the resources and applications. Then, a
greedy first fit heuristic and a genetic algorithm are proposed to
solve the proposed optimization problem. In [14], the authors
formulate the FSPP problem with an objective function that
aims to minimize applications’ average response time. The
problem is addressed using two placement algorithms and
two combinable heuristics to accelerate the placement decision
making process.

A key underlying limitation of the aforementioned Fog
service provisioning solutions [11]–[14], which serve as the
main motivation of our work, is that none of them have
been implemented nor do they tackle the issue of orchestrat-
ing heterogeneous Fog resources in a practical and concrete
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Fig. 1: Fog-IoT Orchestrator Architecture

manner. Our work aims at complementing this, by offering
a general centralized framework for holistic Fog resource
orchestration. Our solution provides high level abstractions
of the interactions between software components and end
devices, which enable flexible deployment of management
approaches. To gauge the efficiency of our FITOR archi-
tecture, we design and implement an efficient provisioning
approach which exploits the gathered statistics, to optimize the
allocation of IoT application components while considering
their requirements.

III. FOG-IOT ORCHESTRATOR ARCHITECTURE

Fig. 1 provides an overview of the FITOR architecture.
Our proposed solution is device-aware, and hence, handles
the heterogeneity of the Fog environment. Application com-
ponents can be easily deployed on end devices and Fog nodes.
It is worth noting that FITOR works across two main layers:
1) Fog layer: can be subdivided into two sublayers: i) High
Fog layer composed of distributed Fog nodes providing nearby
computational and storage resources and ii) Lightweight Fog
Layer (Mist) encompassing more specialized, dedicated nodes
that provide low computational resources. The so-called Mist
nodes are placed closer to the end devices, and 2) End
devices: includes the sensors, which collect information about
the environment, and the actuators which have an effect on it.

In our context, an IoT application deployed in a Fog
environment is composed of a set of micro-services which are
containerized and running on the nodes of the infrastructure.
We adopt an actor-based model to develop our IoT applica-
tions, where each micro-service is modelled as a set of actors
and communicates, with other micro-services, through flows.
An actor is characterized by a private internal state and a set
of communication ports through which tokens are transmitted.
FITOR supports various orchestration mechanisms to deal

with the stringent requirements of such applications. The
global architecture for the proposed orchestration framework
is depicted in Fig. 1 showing its components and their roles:
1) The Service Descriptor
This component aims to describe the IoT application, its build-
ing components and its requirements. Indeed, the developer
needs to describe the actors, their requirements in terms of
both location and computational effort, and how data should
circulate between them. It is worth noting that, in order to



ensure a guaranteed QoS, network related requirements could
be specified during the description of links between the actors.
Specifically, CPU/RAM affinity and capacity can be specified
for the actors, while latency and bandwidth can be defined for
the links.
2) The Service Deployer
Once the description is submitted, this component handles
the mapping between the application components (i.e., actors,
communications) and the nodes hosting the latter. Its main
objective consists in optimizing the placement of actors and
their links while considering their location, computational and
network requirements.
3) The Service Manager
A running application is exposed to the uncertainty of the
Fog environment. In addition, its components may change in
response to the variation of data sources or internal transforma-
tion. To deal with this dynamicity, the applications containers
are continually monitored in order to be managed while
considering, in real-time, the environment evolution. To do so,
scale out/in actions can be triggered to allocate or de-allocate
resources. Besides, migration actions could be triggered when
necessary.
4) The Infrastructure Monitor
This is responsible for sketching out the telemetry information
by extracting several resource metrics from the Fog nodes
and links. To do so, it makes use of various probes to
get real-time information about both physical resources and
their running containers. In our context, we consider two
main categories of metrics to observe: i) Host-related metrics,
concerning all information about the host and container in
which the application is running. This includes: CPU, RAM,
disk, etc. ii) Network related metrics, corresponding to the
end-to-end latency and bandwidth, which are crucial and thus,
mandatory to be collected during the application execution.
It is straightforward to see that two views of resources are
provided: i) reserved resources, which concerns the allocated
capacities in terms of compute, storage and RAM, ii) the real
resource capacities consumed by containers.
5) The Fog Node
This can be hosted by a server, a network equipment, or
even an end device. High Fog nodes are capable of running
containerized (e.g., docker) micro-services while Mist nodes
are used as a bare-metal equipment. The so-called runtimes are
responsible for the execution of actors. They may handle, for
example, the actor scheduling and the data transport message
parsing. It is worth noting that one runtime may concurrently
run multiple actor instances belonging to different applica-
tions. A runtime is characterized by a set of capabilities (e.g.,
access to a camera, access to a disk, etc.) and performances
metrics (e.g., CPU, memory) which are monitored by a set
of tools. These tools collect, aggregate, process and export
information about all components in the Fog node, including
the physical host, running containers and network bandwidth
and latency.

IV. PROBLEM STATEMENT

A. Infrastructure and application models
We model our Fog infrastructure P as an undirected graph

denoted by GP = (VP , EP ), where VP and EP are respec-
tively the sets of physical equipment and their connected links.
Note that VP = (FP ∪ SP), where FP corresponds to the set
of Fog nodes, while SP encompasses the sensors and actuators
in the end device layer.

Each physical node v ∈ VP is characterized by its i) residual
processing power W (v), ii) residual memory M(v), and iii)
kind K(v) and iv) geographic location G(v). 4 We consider

4It is worth noting that kind K(v) specifies the hardware properties of the
physical resource.

two types of resources: edge sensor/actuator (end device)
and Mist/Fog node. Likewise, each physical link l ∈ EP is
characterized by its bandwidth capacity B(l) and its latency
L(l).

Similarly, a Fog-Enabled IoT application A consists of
multiple interconnected components (i.e., micro-services). It is
modelled as a directed acyclic graph (DAG) GA = (VA, EA),
where VA and EA are respectively the sets of services and
their logical links. Within the IoT application A, each service
a ∈ VA is associated with the required processing power W (a)
and memory M(a), its kind K(a), and geographic location
G(a). We also define Trate(a) and Tsize(a) as the number
of tokens per second sent by service a and its token size,
respectively. We recall that the kind specifies the requirement
of a service to be executed on a specific category of resource.
Finally, each link e ∈ EA is characterized by a data rate B(e),
in terms of bandwidth, and L(e), in terms of latency.

B. Problem formulation

In this section, we formulate the provisioning problem of
a Fog-enabled IoT application A (i.e., Fog service), modelled
by the graph GA, in the Fog infrastructure P , denoted by the
graph GP . First, we take into consideration the fact that all
the physical nodes and link capacities (i.e. processing, memory
and bandwidth) in P are limited. In fact, P is able to host a
limited number of A while responding to the requested QoS.
Consequently, an optimized GA provisioning in GP is crucial
in order to maximize the acceptance rate while minimizing the
cost of resources.

In what follows, we will use the following notation:
• αav is a binary variable indicating whether the service,
a ∈ VA, is assigned to the physical node, v ∈ VP , or not.

• Nvx denotes the set of admissible physical paths from v
to x, (v, x) ∈ V 2

P . Note that k2 denotes the family of all
ordered pairs of elements within set k (i.e. k = {(v, x) ∈
V 2
P : v 6= x}).

• N denotes the set of all admissible paths. Formally, N =⋃
{v,x}∈V 2

P
Nvx.

• βen is a binary variable indicating whether a logical link
e ∈ EA is hosted in the physical path n ∈ N .

• (as(e), ad(e)) ∈ V 2
A denotes the starting (source) and

terminating (destination) component of the logical link
e ∈ EA.

• ∆ln is a binary coefficient determining whether the
physical link l ∈ EP belongs to the path n ∈ N or
not.

• B(e) = Trate(as(e)) × Tsize(ad(e)) corresponds to the
exchanged data rate in link e, from as(e) to ad(e). We
recall that Trate is the number of tokens sent per second
by as(e) and Tsize is the size of each token.

The provisioning of services is constrained so that for each
IoT application A, a service must be hosted in one physical
node. Formally, ∑

v∈VP

αav = 1, ∀a ∈ VA (IV.1)

A service a ∈ VA can be hosted in the physical node v ∈
VP , if i) the available residual resources (i.e. W (v) and M(v))
are at least equal to those required (i.e. W (a), M(a)) and ii)
a has the same kind and geographical location as v. Formally,

∀v ∈ VP
{ ∑

a∈VA
W (a)αav ≤W (v)∑

a∈VA
M(a)αav ≤M(v) (IV.2)

(K(v)−K(a))αav = 0,∀v ∈ VP ,∀a ∈ VA (IV.3)

(G(v)−G(a))αav = 0,∀v ∈ VP ,∀a ∈ VA (IV.4)



We assume that a logical link e ∈ EA between a service
as(e) and a service ad(e) is embedded in a physical path
n ∈ N between v and x. Formally,∑

n∈N
βen = 1, ∀e ∈ EA (IV.5)

A logical link e ∈ EA must be embedded in a single path
n ∈ Nvx. Such as as(e) ∈ VA is hosted in physical node
v ∈ VP and ad(e) ∈ VA is hosted in physical node x ∈ VP .
Formally,

∀e ∈ EA, n ∈ Nvx

{
βen ≤ αas(e)v

βen ≤ αad(e)x
(IV.6)

Each physical link l ∈ EP is characterized by the used
bandwidth Bused(l) by the IoT application A. Formally,

Bused(l) =
∑
e∈EA

B(e)
∑
n∈N

∆lnβen,∀l ∈ EP (IV.7)

Moreover, each physical link l ∈ EP cannot host more than
its capacity. Formally,

Bused(l) ≤ B(l),∀l ∈ EP (IV.8)
Each physical path n ∈ N is characterized by an end-to-

end delay, L(n). The latter corresponds to the sum of delays
of its forming l ∈ EP . Formally,

L(n) =
∑
l∈EP

∆lnL(l),∀n ∈ N (IV.9)

Finally, a logical link e ∈ EA must be be hosted in a path
n, ensuring an end-to-end delay lower than that required by
itself. ∑

n∈N
L(n)βen ≤ L(e), ∀e ∈ EA (IV.10)

Our objective is to generate, for each application A, the best
possible provisioning solution while minimizing the placement
cost in terms of allocated resources within P . For this reason,
we define our objective function as follows,

min
∀v∈VP ,∀l∈EP

(Ctot
W + Ctot

M + Ctot
B ) (IV.11)

The Ctot
W represents the processing cost of the application’

components in the infrastructure. Ctot
M is related to the cost

of the memory required by the components. Finally, Ctot
B

corresponds the total communication cost for data transfer
between applications components. Also, we define the costs
associated to the physical infrastructure as i) a cost for
processing CW (v), ii) a cost for memory CM (v), and iii) a
cost for data transfer CB(l). Formally,

Ctot
W =

∑
v∈VP

∑
a∈VA

CW (v)W (a)αav (IV.12)

Ctot
M =

∑
v∈VP

∑
a∈VA

CM (v)M(a)αav (IV.13)

Ctot
B =

∑
l∈EP

CB(l)Bused(l) (IV.14)

V. PROPOSAL: O-FSP
In this section, we will detail our proposal named Op-

timized Fog Service Provisioning (O-FSP) to resolve the
formulated problem in the previous section. Our strategy is
a greedy approach which aims to incrementally construct an
optimized Fog service provisioning solution. To achieve its
objective, O-FSP proceeds as follows. First, the problem is
split into a set of solution components that are sorted: solving
a solution component corresponds to building a small part of
the final solution. Then, each solution component is greedily
placed while considering its requirements. Finally, the process
is repeated until all solution components are provisioned. It is
worth noting that O-FSP rejects a Fog service A as soon as
it fails to find a placement to one of its component. O-FSP
is summarized in pseudo-code form in algorithm 1. In the
following, we will detail each stage.

Algorithm 1: O-FSP pseudo-algorithm
1 Input: GA, GP , Nmax
2 Output: Sbest
3 Sbest ← ∅
4 {Si}1≤i≤Nmax

← ∅
5 {Ci}1≤i≤k ← FogServiceDecomposition (GA)
6 Ã ← A
7 /* Find Nmax placements of end devices */
8 for (a ∈ VA and K(a) = 0) do
9 {Cia}1≤i≤Nmax

← FindProvisioning (Ca)
10 for i = 1 to Nmax do
11 Si ← Si ∪ {Cia}
12 Ã ← Ã / Ca
13 Stop← false
14 while (Ã ! = ∅) and (Stop = false) do
15 Select a ∈ VÃ having the highest number of

orphan links
16 Ca ← a and all its in/out orphan links
17 {Cia}1≤i≤Nmax ← FindProvisioning (Ca)
18 if ({Cia} ! = ∅) then
19 for i = 1 to Nmax do
20 Si ← Si ∪ {Cia}
21 Ã ← Ã / Ca
22 else
23 Sbest ← ∅
24 Stop← true

25 Sbest ← SelectBestSolution ({Si}1≤i≤Nmax )

A. Fog service decomposition stage

The Fog-enabled IoT application (i.e., Fog service), A, is
subdivided into a set of k components according to |VA|
and |EA|. The aforementioned subsets are called solution
components and are denoted by {Ci}1≤i≤k. In order to do this,
O-FSP selects first the subset of sensor/actuator nodes and
their corresponding incoming/outgoing links. The latter are,
then retrieved from the graph. The remaining A’s topology,
devoid of the aforementioned solution components, is called
Ã. It is straightforward to see that Ã may hold several nodes
lacking their incoming links. We refer to these links as orphan
links. Ci encompasses i) a central node vi, and ii) its orphan
incoming/outgoing links. {Ci}1≤i≤k is iteratively built on the
basis of the number of their orphan links. Indeed, the nodes
with the highest number of orphans links are selected first.
The process is repeated until Ã becomes empty (i.e., Ã = ∅).

B. Solution component’s provisioning stage

During the first iteration, O-FSP finds the Nmax best
placements of end device solution components {Ci}1≤i≤k1

| k1 ≤ k. Then, O-FSP incrementally constructs the Fog
service provisioning solution. Hence, during each iteration,
the Nmax best (partial) placements, {Si}1≤i≤Nmax

, maximiz-
ing the objective function defined by equation (IV.11) are
generated (FindProvisioning in algorithm 1). To do so,
Nmax physical nodes are selected for hosting the considered
Ci. The latter has sufficient resources (i.e. CPU, memory),
and it is connected to one {Cj}1≤j≤i−1’s placement solution
through a shortest path ensuring the required bandwidth and
latency. We recall that Nmax solutions {Cij}1≤i≤Nmax have
already been generated for the placement of Cj during the
previous iterations. In doing so, we generate the best pos-
sible solution while avoiding the exploration of all possible
combinations that would make the resolution impractical.
Finally, the best solution Sbest, which corresponds to the



placement that maximizes the objective function, is selected
(SelectBestSolution in algorithm 1).

VI. PERFORMANCE EVALUATION

In this section, we will assess the feasibility of the FITOR
framework and evaluate the performance of the proposed op-
timized Fog Service Provisioning strategy O-FSP. To achieve
this, we first describe the technical details of the FITOR
prototype. We then define the performance metrics to evaluate
our proposal, and finally, we analyze the results and discuss the
effectiveness of O-FSP compared with three main heuristics:
i) Uniform which uniformly distributes service components
a ∈ VA in available node v ∈ VP in the infrastructure, while
respecting the requirements of the application, ii) Best-fit
which favors the physical nodes and physical links with the
smallest residual resources, and iii) Min-latency which
minimizes the sum of delays between nodes hosting the
applications components.

As depicted in Fig. 1, a prototype of FITOR is implemented
based on a customized version of Calvin [15]. Calvin is
a project led by Ericsson which proposes a framework for
the development of IoT applications. First, we have extended
Calvin’s application descriptor to support dynamic metrics,
such as available CPU and RAM, network latency and band-
width. In doing so, we are able to consider the stringent
requirements of IoT applications. Then, a custom implemen-
tation of ”Service Deployer” was developed to optimize the
placement of Fog service components while considering the
specified requirements. To ensure a holistic monitoring, we
make use of Prometheus5 to collect metrics about our Fog
platform behavior during tests. Prometheus relies on monitor-
ing tools, such as netdata, cadvisor and blackbox exporter to
generate the metrics.

To experiment our orchestration solution, we make use of
both FIT/IoT-LAB [16] and Grid5000 [17] infrastructures.
FIT/IoT-LAB is a large scale open platform to perform IoT
experiments. It provides more than 2000 heterogeneous sen-
sor nodes spread in 6 different sites in France. In contrast,
Grid5000 focus is on parallel and distributed computing, such
as Cloud and Big Data. Grid5000 contains a large amount of
powerful resources, grouped in homogeneous clusters. Similar
to the FIT/IoT-LAB platform, nodes are also spread in different
locations in France. Both platforms are highly configurable and
accessible remotely, leveraging experiments in different areas.

Our main objective is to set up a realistic Fog environment,
enabling the deployment of IoT applications and hence, their
orchestration. To do so, we use M3 and A8 boards to set up
the end device layer and the Mist sublayer, encompassing the
sensors and Mist nodes. Each M3 board is composed of an
ARM micro-controller, 64KB of RAM, various sensors (e.g.,
ambient sensor light, atmospheric pressure and temperature,
etc.) and an IEEE 802.15.4 radio interface. On the other
hand, A8 nodes are more potent. Thanks to its ARM A8
microprocessor and 256MB of RAM, it is capable of running
user’s applications and hence, can be considered as a Mist
node. We then make use of some Grid5000 servers to emulate
more powerful Fog nodes. To connect both infrastructures, we
create L3 VPNs between the A8 nodes and Grid5000. Also,
we use public IPv6 addresses to connect the M3 sensors in
the network, as detailed in the tutorials available at FIT-IoT
platform. Each node of our Fog infrastructure hosts:
• Docker engine to cope with hardware and software

heterogeneity. Docker containers are used to create an
image which encapsulates the software necessary in our
setup, namely Calvin, Blackbox exporter and Netdata.

• Cadvisor to ensure the monitoring of Docker containers
performance. Some of the collected metrics are CPU and
RAM utilization.

5Prometheus. Available at: https://prometheus.io/.

• Blackbox exporter to measure the latency between the
node and all other nodes of the infrastructure if needed.

• Netdata and FireQoS to monitor the bandwidth uti-
lization without the support of network equipment. In
our setup, we use these tools to measure the bandwidth
utilization of each Calvins flow. Note that the flow is char-
acterized by a TCP connection between two nodes. Using
FireQoS, we configure the Traffic Control module in the
Linux kernel to identify each flow and to keep statistics
about them. Then, Netdata collects the information and
sends it to our infrastructure monitor.

A. Environment setup

Our Fog infrastructure P relies on elements from Grid5000
and FIT/IoT-LAB platforms. The Fog layer is composed of 20
servers from Grid5000 which are part of the genepi cluster.
They are characterized by 2 CPUs Intel Xeon E5420, with 4
cores per CPU and 8 GB of RAM. Their CPU cost CW and
memory cost CM are arbitrarily set to 0.1. It is worth noting
that the runtimes are hosted by containers.

The Mist layer is composed of 50 A8 nodes. These nodes
run FITOR’s processes and may execute application compo-
nents. Besides, CW and CM are set to 0.9. The cost of links
CB is fixed to 0.1.

On the other hand, IoT applications are characterized by
three types of components: i) trigger service which periodi-
cally sends tokens of a fixed size, Tsize, equals to 1024 byte at
a given rate, Trate, taking values in [1, 10] tokens per second.
These tokens transport the collected measurements related
to the end devices’ surrounding environment, ii) processing
service which emulates the performed application treatment.
It consumes a certain amount of million instructions (MI) per
token, and iii) storage service which stores the received tokens
in memory for further processing (if necessary).

The arrival rate of applications is fixed to 1 application
every 2 minutes. For each application, we set the number of
components according to a discrete uniform distribution. In
this respect, we fix the number of trigger services to 1, while
we vary the number of processing services and storage services
in [1, 4] and [1, 2], respectively. The trigger service requires
a memory M(a) equals to 100 bytes and an amount of CPU
W (a) proportional to its Trate, in the range [300, 1000] MIPS.
For the processing service, we consider that the processing
of one token varies in [100, 1500] MI. Consequently, the
CPU request is proportional to the processing effort per
token, Wtoken, i.e., W (a) = Trate × Wtoken. On the other
hand, M(a) is fixed to 100Kb. Finally, we assume that the
storage service requests a W (a) equals to 500 MIPS and
a M(a) proportional to the token size and rate, such as
M(a) = Trate × Tsize.

Evaluation results are always presented with confidence
intervals corresponding to a confidence level of 95%. Tiny
confidence intervals are not shown in the following figures.

B. Performance metrics
To evaluate the performance of O-FSP compared with the

classical approaches, we consider the following metrics:
• A: is the acceptance rate of IoT applications.
• T: is the total number of processed tokens per second

within the infrastructure.
• W: is the average CPU utilization (expressed in percent-

age) of physical nodes in Grid5000 and FIT/IoT-LAB.
• Ctot: is the total provisioning cost related to the con-

sumed resources, as measured by the monitoring tools.

C. Evaluation results
First, we evaluate the proposed strategy O-FSP regarding

its acceptance rate and in comparison with the alternative
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Fig. 2: Performance results

TABLE I: A - Acceptance rate
Provisioning Approach Acceptance Rate (%)
O-FSP 77.8 ± 5.5
Min-latency 65.6 ± 1.9
Best-fit 69.4 ± 3.4
Uniform 65.2 ± 2.9

approaches, Best-fit, Uniform and Min-latency. Ta-
ble I compares the percentage of accepted IoT applications. We
notice that O-FSP achieves 77.8% and hence, outperforms the
classical strategies. This is due to the fact that the proposed
approach aims to minimize the provisioning cost. In doing
so, higher residual resources, specifically network bandwidth,
are maintained. It is worth noting that Best-fit achieves
good results since it favours the selection of less powerful
nodes which will lead to a higher number of available powerful
nodes.

Fig. 2 (a) depicts the rate of processed tokens when increas-
ing the number of provisioned applications. It is straightfor-
ward to see that our scheme O-FSP outperforms the classical
strategies thanks to its capability to accept IoT applications
while meeting their requirements. It is worth noting that the
gap between the different approaches is insignificant for low
number of provisioned applications. This is due to the fact
that initially, all provisioning strategies are capable of placing
the applications. However, the gap gets wider as soon as the
number of applications increases. Such a result proves that
O-FSP efficiently places the application components which
corroborates the results related to the acceptance rate.

Fig. 2 (b) illustrates the provisioning cost of accepted
IoT applications. It notably shows that O-FSP achieves a
lower cost compared with the classical strategies and does so
throughout the experiment. In fact, at the end of the experi-
ment, the provisioning cost of O-FSP is ≈ 13% lower than the
one of the second strategy, Min-latency (33, 033± 1, 289
vs 37, 998±2, 078). Such results are predictable since the pro-
posed approach favours high fog physical nodes as long as the
application requirements are satisfied. It worth noting that end
devices and mist nodes have limited capacity. Consequently,
they incur a high cost compared with fog nodes which are
characterized by higher capacities.

In order to gauge the efficiency of O-FSP in terms of
resource consumption, we evaluate the CPU usage of both
end device/mist and fog nodes. Fig. 2 (c) and Fig. 2 (d) prove
that our proposed strategy favours the fog nodes whenever
they meet the application requirements. In fact, it achieves
90% of CPU usage which is 10% higher than the second
method Min-latency. In doing so, end devices and mist
nodes are kept available and used only when it is necessary.
We recall that the latter are less powerful and more expensive
than Commercial-Off-The-Shelf (COTS) servers. It is worth
noting that all strategies reach, at the end of the experiment,

a high level of CPU usage on both end device/mist and fog
layers. This is due to the system saturation.

VII. CONCLUSION

In this paper, we tackled the problem of Fog-Enabled IoT
application orchestration. To do so, we proposed FITOR, a
new orchestration solution for IoT applications in the Fog
environment. To deal with the service provisioning issue, we
put forward a novel strategy, O-FSP, which optimizes the
placement of IoT application components while meeting their
non-functional requirements. In order to gauge the effective-
ness of our solution, we implemented FITOR and O-FSP
which make use of an extended version of Calvin, Grid5000
and FIT/IoT-LAB platforms. Extensive experiments show that
the O-FSP strategy makes the provisioning more effective and
outperforms classical strategies in terms of: i) acceptance rate,
ii) provisioning cost, and iii) resource usage.
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