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Abstract— In this paper, we examine the equilibrium tracking
and convergence properties of no-regret learning algorithms in
continuous games that evolve over time. Specifically, we focus
on learning via “mirror descent”, a widely used class of no-
regret learning schemes where players take small steps along
their individual payoff gradients and then “mirror” the output
back to their action sets. In this general context, we show that the
induced sequence of play stays asymptotically close to the evolving
equilibrium of the sequence of stage games (assuming they are
strongly monotone), and converges to it if the game stabilizes to a
strictly monotone limit. Our results apply to both gradient- and
payoff-based feedback, i.e., the “bandit” case where players only
observe the payoffs of their chosen actions.

I. Introduction

Consider the following multi-agent learning framework:

1) At each stage t = 1, 2, . . . of a repeated decision process,
every participating agent selects an action from some
continuous set.

2) Each agent receives a reward based on their chosen action
and the actions of all other players. These rewards are
determined by a normal form game Gt that evolves over
time and is a priori unknown to the players.

3) Based on the reward that they received and any other
observed information, the players update their actions and
the process repeats.

In this general setting, the main questions that we seek to
address are as follows: Are there online learning policies
that allow players to track a Nash equilibrium over time (or
converge to one if the stage games stabilize)? What is the
impact of the information available to the players and the
variability of the stage game sequence?

In this regard, one of the most widely used policies for online
learning is the mirror descent (MD) family of algorithms,
cf. [1], [2], and references therein. This first-order scheme
has a long history in optimization and contains as special
cases the online gradient descent (OGD) policy of [3], the
entropic/exponentiated gradient descent method of [4], and
the “Hedge” (or exponential/multiplicative weights) algorithm
for mixed-strategy learning in multi-armed bandits and finite
games [5]–[7]. Importantly, when the payoff functions en-
countered by the learner are concave, MD methods guarantee
an O(

√
T ) static regret bound which is well known to be

order-optimal [8]; moreover, if the problem has a favorable
geometry (e.g., when the learner’s action set is a simplex or a

? Univ. Grenoble Alpes, CNRS, Inria, LIG, 38000, Grenoble, France.
‡ Criteo AI Lab.
�Maastricht University, Department of Data Science and Knowledge

Engineering, P.O. Box 616, NL–6200 MD Maastricht, The Netherlands

spectrahedron), these bounds are “almost” dimension-free, a
fact which is of crucial importance in practical applications.

In view of these desirable guarantees, methods based on
mirror descent are also natural candidates for learning in multi-
agent, game-theoretic environments [9]–[11]. However, the
multi-agent case is considerably more involved because, in
addition to the exogenous variability of the stage game Gt,
the individual payoff function of any given player also varies
endogenously as a function of the actions chosen by all other
players at time t. Moreover, in addition to this extra dimension
of the problem, the standard figure of merit in game theory is
that of a Nash equilibrium – not the players’ regret. Thus, even
though the learning algorithms under study remain essentially
unchanged in single- and multi-agent settings, the type of
results obtained in the literature are quite different.

Related work: Most of the literature on game-theoretic
learning has focused on the case where the players encounter
the same game at each stage – i.e., when there are no exogenous
variations in the players’ individual payoff functions. Starting
with mixed-strategy learning in finite games, a “folk” result
in the field states that the empirical frequency of play under
concurrent no-regret play converges to the game’s Hannan
set (also known as the set of coarse correlated equilibria).
However, as was shown by [12], the Hannan set of a game
may contain strategies that assign positive weight only to
dominated strategies – which, of course, cannot be supported
in a Nash equilibrium. More to the point, the impossibility
result of [13] shows that there are no uncoupled dynamics
leading to Nash equilibrium in all games: since no-regret
dynamics are uncoupled by construction, it is not possible
to establish a blanket causal link between regret minimization
and convergence to Nash equilibrium.

The work that is most relevant for our purposes is the recent
paper [9] that focused on a class of continuous games satisfying
the so-called diagonal strict concavity (DSC) condition of [14].
Using similar stochastic approximation techniques as above,
[9] showed that the sequence of play generated by a class
of mirror-based policies converges to Nash equilibrium with
probability 1, even with imperfect gradient information on the
players’ side. Finally, in a very recent paper, [15] established
the convergence of a mirror-like, dampened gradient approx-
imation (DGA) scheme in two classes of one-dimensional
concave games: games with strategic complements, and ordinal
potential games with isolated equilibria. Interestingly, the
continuous-time limit of both methods is the same; however,
the method of [15] has the significant advantage that it
requires only payoff-based feedback (which is in turn used
to reconstruct individual payoff gradients by means of a two-



point estimation process).

Our contributions: In contrast to the works discussed above,
our paper seeks to tackle problems where the sequence of
games encountered by the players also evolves exogenously
over time – i.e., players encounter a time-varying game. Given
their popularity, we focus throughout on a class of generalized
mirror descent (GMD) policies and we consider two distinct
regimes: (a) when the sequence of stage games converges
to some well-defined limit (in our case, a strictly monotone
game); and (b) when Gt evolves over time without converging.

In terms of feedback, we consider an agnostic oracle model
which provides noisy payoff gradient estimates to the players
based on the actions that they chose at each stage of the
process. We then show that, if the sequence of stage games
stabilizes to some well-defined limit, the induced sequence
of play converges to a Nash equilibrium of the limit game
with probability 1, irrespective of the magnitude of the noise
entering the players’ gradient signals. On the other hand, if
the stage games do not stabilize, there is no equilibrium state
to converge to (either static or in the mean); in this case, we
focus instead on the players’ ability to track the equilibrium
of Gt as it evolves over time. More precisely, we show that the
average distance from equilibrium at each stage vanishes over
time, and we provide an explicit estimate for this “tracking
error” in terms of the variation of the sequence of stage games
(assuming they are strongly monotone).

Finally, to account for environments where gradient infor-
mation is not available to the players, we also consider the case
of learning with payoff-based feedback. By considering a one-
shot gradient estimation process based on single-point stochas-
tic approximation techniques [16]–[18], we map the problem
of payoff-based learning to our generic gradient oracle model,
and we show that our convergence and equilibrium tracking
results still apply in this case (though the corresponding rates
are reduced as a consequence of the players’ having even less
information at their disposal).

II. Preliminaries

A. Notation

Let X be an n-dimensional real space with norm ‖·‖, and let
K be a compact convex subset of X . Throughout the sequel,
we will write Y = X ∗ for the dual of X , 〈y, x〉 for the duality
pairing between y ∈ Y and x ∈ X , and ‖y‖∗ = sup{〈y, x〉 :
‖x‖ ≤ 1} for the dual norm of y ∈ Y . We will also write
ri(K) for the relative interior of K, bd(K) for its boundary, and
diam(K) = sup{‖x′−x‖ : x, x′ ∈ K} for its diameter. Finally, for
concision, we write [a . . b] = {a, a + 1, . . . , b} for the interval
of positive integers spanned by a, b ∈ �.

B. Concave games

Throughout this paper, we will focus on games with a finite
number of players and continuous action sets. Specifically,
every player i ∈ N = {1, . . . ,N} is assumed to select an action
xi from a compact convex subset Ki of a finite-dimensional
normed space Xi. Subsequently, based on each player’s individ-
ual objective and the action profile x = (xi; x−i) ≡ (x1, . . . , xN)

of all players’ actions, every player receives a reward, and the
process repeats.

In more detail, writing K B
∏

i∈N Ki for the game’s action
space and X B

∏
i∈N Xi for its corresponding ambient space,

we assume that each player’s reward is determined by an
associated payoff (or utility) function ui : K → �. We will
denote this tuple as G ≡ G(N ,K, u).

Since players are not assumed to “know the game” (or
even that they are involved in one) these payoff functions
may be unknown to the players, especially with respect to the
dependence on the actions of other players. Throughout the
sequel, we will only make the following blanket assumption:

Assumption 1. The players’ payoff functions are continuously
differentiable and individually concave, i.e.,

ui(xi; x−i) is concave in xi (1)

for all x−i ∈ K−i and all i ∈ N .

C. Solution concepts and Nash equilibrium

The most prevalent solution concept in game theory is that
of a Nash equilibrium (NE), defined here as an action profile
x∗ ∈ K that is resilient to unilateral deviations, i.e.,

ui(x∗i ; x∗−i) ≥ ui(xi; x∗−i) for all xi ∈ Ki and all i ∈ N . (NE)

The set of Nash equilibria of G will be denoted throughout as
K∗ B NE(G).

By the individual concavity of the game’s payoff functions,
Nash equilibria can also be characterized via the first-order
optimality condition

〈vi(x∗), xi − x∗i 〉 ≤ 0 for all xi ∈ Ki, i ∈ N , (2)

where vi(x) denotes the individual payoff gradient of the i-th
player, i.e.,

vi(x) = ∇xi ui(xi; x−i). (3)

Geometrically, this variational characterization of Nash equi-
libria simply means that vi(x∗) forms an obtuse angle with any
displacement vector of the form zi = xi − x∗i , xi ∈ Ki. We will
use this geometric intuition freely in what follows.

Starting with the seminal work of [14], much of the literature
on continuous games has focused on problems where the
vector field v(x) of individual payoff gradients satisfies the
monotonicity condition

〈v(x′) − v(x), x′ − x〉 ≤ 0 for all x, x′ ∈ K. (MC)

Owing to the link between (MC) and the theory of monotone
operators in optimization, games that satisfy (MC) are com-
monly referred to as monotone games. In particular, mirroring
the corresponding terminology from operator theory, we will
say that a game is:

1) Strictly monotone if (MC) holds as a strict inequality
when x′ , x.

2) Strongly monotone if there exists a positive constant α > 0
such that

〈v(x′)−v(x), x′−x〉 ≤ −α‖x′−x‖2 for all x, x′ ∈ K. (4)



The set of Nash equilibria of a monotone game is itself
convex and compact; in particular, if the game is strictly or
strongly monotone, its Nash set is a singleton. Moreover, Nash
equilibria of monotone games can also be characterized via the
Minty variational inequality [9], [19]

〈v(x), x − x∗〉 ≤ 0 for all x ∈ K. (MVI)

This property of Nash equilibria of monotone games will play
a crucial role in our analysis and we will use it freely in the
sequel; for a detailed discussion, see [9], [19], [20].

III. Problem setup
We now turn to a detailed description of our model for time-

varying games. From the viewpoint of a single agent, this can
be captured by the following sequence of events:

Time-varying games: sequence of events
Require: players i ∈ N, action spaces Ki ⊆ �

ni

1: for t = 1, 2, . . . , i = 1, . . . ,N do
2: choose Xi,t ∈ Ki # select pivot point
3: each player receives ui,t(Xi,t) # collect reward
4: each player gets signal Vi,t # receive feedback
5: end for

The core ingredients of the above framework are (a) the way
that the players’ payoff functions are determined by a sequence
of games Gt, t = 1, 2, . . . ; and (b) the sequence of feedback
signals Vt received by the players. We discuss these elements
in detail below.

First, in terms of regularity, we will be assuming through-
out that the players’ individual payoff gradients satisfy the
following regularity conditions:

Assumption 2. Let vt(x) = (vi,t(x))i∈N denote the players’
individual gradient profile for the game Gt. Then there exist
constants G, L > 0 such that

‖vt(x)‖∗ ≤ G (5a)
‖vt(x′) − vt(x)‖∗ ≤ L‖x′ − x‖ (5b)

for all t = 1, 2, . . . , and all x, x′ ∈ K.

Second, the feedback model that we will employ is that of a
stochastic first-order oracle (SFO), i.e., a “black-box” mecha-
nism that outputs a (possibly imperfect) measurement of each
player’s individual payoff gradient at the point where it was
queried. More precisely, when called at Xt = (X1,t, . . . , XN,t) ∈
K, an SFO returns a gradient signal Vt = (V1,t, . . . ,VN,t) of the
form

Vt = vt(Xt) + Zt (SFO)

where the “observational error” Zt captures all sources of
uncertainty in the oracle.

In more detail, to differentiate between “random” (zero-
mean) and “systematic” (non-zero-mean) errors in Vt, it will
be convenient to decompose the error process Zt as

Zt = Ut + bt (6)

where Ut is zero-mean and bt denotes the mean of Zt. To define
all this formally, we will subsume all sources of randomness

in Vt in an abstract probability law �. Since this randomness
is generated after players select their actions, the process Zt

is, in general, not adapted to the history of Xt. More explicitly,
writing Ft = σ(X1, . . . , Xt) for the natural filtration of Xt, we
set

bt = �[Zt | Ft] and Ut = Zt − bt (7)

so, by definition, �[Ut | Ft] = 0.
In view of all this, the oracle feedback received by the

players can be classified according to the following statistics:

1) Bias:
‖bt‖∗ ≤ Bt. (8a)

2) Variance:
�[‖Ut‖

2
∗ | Ft] ≤ σ2

t . (8b)

3) Second moment:

�[‖Vt‖
2
∗ | Ft] ≤ M2

t . (8c)

Finally, to simplify notation later on, we will also consider the
“signal plus noise” error bound

S 2
t = M2

t + σ2
t . (8d)

To streamline our presentation, we will first present our
results in an abstract, model-agnostic manner, i.e., without
specifying the origins of the oracle model (SFO); subsequently,
in Section VI, we provide an explicit construction of such an
oracle from payoff-based observations, and we discuss in detail
what this entails for our analysis and results.

IV. Learning via mirror descent

The most widely used method for no-regret learning is the
family of algorithms known as online mirror descent (OMD).
Viewed abstractly, the basic idea of the method is as follows:
each player i ∈ N plays an action xi ∈ Ki and receives a
gradient signal vi ∈ Yi; subsequently, each player takes an
“approximate gradient” step from xi along vi to generate a new
action x+

i , and the process repeats. Formally, this can be written
in recursive form as

x+
i = Pi(xi, γvi) (9)

where:

1) Pi denotes the “prox-mapping” of player i (discussed in
detail below).

2) γ is a step-size parameter controlling the weight attributed
to the signal vi.

The “prox-scheme” (9) will be our main focus in the sequel so
some remarks are in order:

To get some intuition about the method, the archetypal
example of a prox-mapping is the Euclidean projector

P(x, y) = Π(x + y) = arg min
x′∈C

{
〈y, x − x′〉 + 1

2‖x
′ − x‖22

}
(10)

i.e., the closest-point projection of x + y onto a given convex C.
Going beyond this familiar example, the key novelty of mirror



descent is to replace the quadratic term in (10) by the so-called
Bregman divergence

D(x′, x) = h(x′) − h(x) − 〈∇h(x), x′ − x〉, (11)

induced by a “distance-generating function” h on C. More
precisely, in the spirit of [21], we have the following definition:

Definition 1. Let C be a compact convex subset of X � �n.
We say that h : X → �∪ {∞} is a distance-generating function
(DGF) on C if

1) h is proper, lower semi-continuous (l.s.c.) and convex.
2) The effective domain of h is dom h B {x ∈ X : h(x) <
∞} = C.

3) The subdifferential of h admits a continuous selection:
specifically, writing

C◦ B dom ∂h = {x ∈ C : ∂h(x) , ∅} (12)

for the domain of ∂h, there exists a continuous mapping
∇h : C◦ → Y such that ∇h(x) ∈ ∂h(x) for all x ∈ C◦.

4) h is K-strongly convex relative to ‖·‖, i.e.,

h(x′) ≥ h(x) + 〈∇h(x), x′ − x〉 + K
2 ‖x

′ − x‖2 (13)

for all x ∈ C◦ and all x′ ∈ C.

Given a DGF h on C, the Bregman divergence D : C◦ × C → �
induced by h is given by (11), and the associated prox-mapping
P : C◦ × Y → C◦ is defined as

P(x, y) = arg min
x′∈C

{
〈y, x − x′〉 + D(x′, x)

}
(14)

Finally, we say that h is Lipschitz if supx∈C◦‖∇h(x)‖∗ < ∞.

Going back to our multi-agent setting, let Gt ≡ Gt(N ,K, ut)
be a sequence of stage games, and assume each player i ∈
N is endowed with an individual DGF hi : Ki → � and
corresponding prox-mapping Pi : K◦i × Yi → K◦i , where
K◦i B dom ∂hi and Yi B Yi. We then obtain the general class
of prox-learning methods

Xi,t+1 = Pi(Xi,t, γtVi,t), (PLi)

or, in more compact notation

Xt+1 = P(Xt, γtVt) (PL)

where:

1. t = 1, 2, . . . denotes the stage of the process.

2. Xt = (Xi,t)i∈N denotes the players’ action profile at time t.

3. Vt = (Vi,t)i∈N denotes the signals received by the players
at stage t, assumed throughout to be provided by an oracle
of the general form (SFO).

4. γt > 0 is a (nonincreasing) step-size sequence.

5. The collective (or aggregate) prox-mapping P B∏
i Pi : K◦ × Y → K◦ is defined as P(x, y) =

(Pi(xi, yi))i∈N for all x ∈ K◦ B
∏

i K◦i and all y ∈ Y B∏
i Yi.

Unless explicitly mentioned otherwise, all learning policies
described in the sequel will be of the form above.

Algorithm 1: Prox-learning [player indices suppressed]

Require: sequence of stage games Gt, prox-mapping P,
step-size γt > 0

1: initialize X1 ← arg min h # initialization
2: for t = 1, 2, . . . do
3: play Xt ∈ K # select action
4: get gradient signal Vt # oracle feedback
5: set Xt+1 ← P(Xt, γtVt) # update action
6: end for

V. Equilibrium tracking and convergence analysis

In this section, we return to the multi-agent viewpoint and
we examine the players’ long-run behavior in two distinct
regimes: a) when the sequence of stage games Gt converges to
some limit game G ≡ G∞; and b) when Gt evolves over time
without converging. In both cases, we will treat the process
defining the time-varying game as a “black box” and we will
not scruitinize its origins in detail; we do so in order to focus
on the interplay between the fluctuations of the sequence of
stage games and the induced sequence of play.

A. Stabilization and convergence

We begin with the case where the sequence of games
encountered stabilizes to some limit game G ≡ G(N ,K, u).
Formally, it will be convenient to characterize this convergence
in terms of the quantity

Ri,t = max
x∈K
‖vi,t(x) − vi(x)‖∗, (15)

i.e., via the maximum difference in the (unilateral) gradient
field of the stage game Gt and the limit game G. We then say
that the sequence of games Gt converges to G if

Rt B
∑
i∈N

Ri,t → 0 as t → 0. (16)

The reason for defining the convergence of a sequence of
games in terms of payoff gradients instead of payoff functions
is twofold: First, if the payoff functions of a game are perturbed
by arbitrary, player-specific constants, the game’s equilibrium
points will remain unchanged, but the corresponding payoff

differences may be large (so ‖ui,t − ui‖ may fail to converge to
0 as t → ∞). Second, the first-order optimality condition (2)
shows that a Nash equilibrium of a (concave) game can be seen
as a solution of a variational inequality that only involves the
players’ individual payoff gradients – not their payoff functions
per se. As such, characterizing the convergence of a sequence
of stage games in terms of payoff gradients is closer to the true
primitives that define the players’ equilibrium behavior.

As in the previous section, we will focus on learning
processes adhering to the basic template of Algorithm 1.
However, since we are now interested in the convergence of
the generated sequence of play to a specific point in K, we
will assume in what follows that the Bregman divergence (11)
satisfies the Bregman reciprocity condition

xk → p whenever D(p, xk)→ 0, (BR)

for every sequence of actions xk ∈ K◦. This requirement is
fairly standard in the “last iterate” analysis of mirror descent



algorithms – see e.g., [22], [9], and references therein. In
particular, if h is Lipschitz, we have

D(p, xk) ≤ h(p)−h(xk)+‖∇h(xk)‖∗‖xk−p‖ = O(‖xk−p‖) (17)

so (BR) always holds in that case. The converse to this
condition holds automatically by the strong convexity of h;
thus, taken together, strong convexity and Bregman reciprocity
guarantee that xk → p if and only if D(p, xk)→ 0.

With all this in hand, we have the following equilibrium
convergence result:

Theorem 1. Let Gt be a time-varying game converging to a
strictly monotone game G. Assume further that each player
runs Algorithm 1 with a distance-generating function satisfying
(BR), feedback of the form (SFO), and a step-size sequence γt

such that
∞∑

t=1

γt = ∞,

∞∑
t=1

γt(Rt+Bt) < ∞ and
∞∑

t=1

γ2
t σ

2
t < ∞ (a.s.).

(18)
Then, with probability 1, the sequence of realized actions Xt

converges to the (necessarily unique) Nash equilibrium x∗ of
G.

Corollary 1. Suppose that Gt stabilizes at a rate Rt = O(1/tr)
and the feedback received by the players has bias Bt = O(1/tb)
and variance σ2

t = O(t2s) for some r, b, s ≥ 0. If Algorithm 1
is run with γt ∝ t−p, 1 ≥ p > max{1 − r, 1 − b, 1/2 + s}, the
induced sequence of play Xt converges to Nash equilibrium
(a.s.).

Corollary 2. If Algorithm 1 is run with perfect oracle feedback
and assumptions as above, taking p ∈ (1 − r, 1] guarantees
that Xt converges to Nash equilibrium with probability 1.

Before discussing the proof of Theorem 1, some remarks
are in order. First, the players of the game are not required to
know the rate of convergence of Gt to G:

focusing for simplicity on the case of an unbiased oracle
with bounded variance, Corollary 1 shows that the Robbins-
Monro step-size policy γt = 1/t guarantees convergence to
equilibrium as long as the game stabilizes at a sub-polynomial
rate (i.e., Rt = O(1/tr) for some r > 0). In fact, by including
a logarithmic “failsafe” and running the algorithm with the
slightly more conservative step-size policy γt = 1/(t log t),
convergence is guaranteed even if the game stabilizes at a
much slower, sub-logarithmic rate Rt = O(1/(log t)ε) for some
ε > 0.

This observation highlights an important difference between
regret minimization and convergence to equilibrium. On the
one hand, a rapidly-decaying step-size policy is more robust in
terms of convergence, as it guarantees convergence under the
slowest possible stabilization rate of Gt. On the other hand, a
rapidly vanishing step-size may be suboptimal from the point
of view of regret minimization, because it may incur higher
regret. This disparity is due to the fact that a sequence of games
that converges fast to a limit game is very different relative to
a sequence of games that oscillates without converging at the
same time-scale; this can be seen more clearly in Theorem 2
below.

Our proof strategy for Theorem 1 will be based on a two-
pronged approach in the spirit of [18]: First, we show that the
sequence of generated actions converges (a.s.) to a level set of
the Bregman divergence D(x∗, ·) relative to x∗; subsequently,
we show that Xt cannot remain at uniformly positive distance
away from x∗ for all sufficiently large t. Combining these
results will show that Xt can only converge to the zero-level
set of the Bregman divergence, i.e., limt→∞ Xt = x∗.

We begin by establishing the convergence of the Bregman
divergence of Xt:

Proposition 1. With probability 1, the Bregman divergence
D(x∗, Xt) converges (a.s.) to a random variable D∞ with
�[D∞] < ∞.

Proof. Let Dt B D(x∗, Xt) and decompose the oracle signal
received by the players as

Vt = vt(Xt) + bt + Ut = v(Xt) + rt + bt + Ut, (19)

where rt = vt(Xt)−v(Xt). Then, by a straightforward calculation,
we get:

Dt+1 ≤ Dt + γt〈Vt, Xt − x∗〉 +
γ2

t

2K
‖Vt‖

2
∗

≤ Dt + γtρt + γtβt + γtψt +
γ2

t

2K
‖Vt‖

2
∗ (20)

where we used the fact that 〈v(Xt), Xt − x∗〉 ≤ 0 (since x∗ is a
Nash equilibrium of the limit game G), and we set respectively

ρt = 〈rt, Xt − x∗〉, (21a)
βt = 〈bt, Xt − x∗〉, (21b)
ψt = 〈Ut, Xt − x∗〉. (21c)

Now, by the definition (15) of Rt, we have

ρt = 〈rt, Xt − x∗〉 ≤ ‖Xt − x∗‖ · ‖rt‖∗ ≤ diam(K)Rt (22)

and, similarly, βt ≤ diam(K)Bt. Therefore, conditioning on
the history Ft of Xt up to stage t (inclusive) and taking
expectations, we get:

�[Dt+1 | Ft] ≤ �
[
Dt + γtρt + γtβt + γtψt +

γ2
t

2K
‖Vt‖

2
∗

∣∣∣∣∣∣ Ft

]
≤ Dt + γt diam(K) · (Rt + Bt) +

2γ2
t

K
A2

t (23)

where A2
t = ‖v(Xt)‖2∗ + R2

t + B2
t + σ2

t . To proceed, rewrite (23)
in more compact form as

�[Dt+1 | Ft] ≤ Dt + εt (24)

where εt collects all terms other than Dt in the RHS of (23).
Since K is compact, v is bounded, so supt‖v(Xt)‖∗ < ∞ surely.
Hence, by the stated assumptions for γt, Rt, Bt and σt, we get

∞∑
t=1

εt =

∞∑
t=1

O(γt(Rt + Bt) + γ2
t + γ2

t σ
2
t ) < ∞. (25)

Consider now the auxiliary process ζt = Dt+1 +
∑∞

s=t+1 εs. By
Doob’s (sub)martingale convergence theorem [23], it follows
that ζt converges almost surely to some random variable ζ



that is itself finite (almost surely and in L1). Since Dt = ζt−1 −∑∞
s=t εs and limt→∞

∑∞
s=t εs = 0, we conclude that Dt converges

(a.s.) to ζ, as was to be shown. �

Moving on, our next result shows that we can extract a
subsequence of Xt that converges to a Nash equilibrium of G:

Proposition 2. With probability 1, there exists a (random)
subsequence Xtk of Xt which converges to x∗.

The proof of Proposition 2 follows the same line of rea-
soning as a similar result in [9], so we omit the detailed
proof. Instead, we proceed to state and prove our main Nash
equilibrium convergence result:

Proof of Theorem 1. With probability 1, Proposition 2 shows
that there exists a (possibly random) subsequence tk such
that Xtk → x∗. By the reciprocity condition (BR), this
implies that lim inft→∞ D(x∗, Xt) = 0 (a.s.). However, since
limt→∞ D(x∗, Xt) exists by Proposition 1 (also with probability
1), it follows that

lim
t→∞

D(x∗, Xt) = lim inf
t→∞

D(x∗, Xt) = 0 (26)

i.e., Xt converges to x∗. �

B. Nash equilibrium tracking

We now turn to time-varying games that evolve without
converging. In this case, any notion of convergence for Xt is
meaningless: there is no equilibrium state to converge to, either
static or in the mean. As a result, we will focus instead on
whether Xt is capable of “tracking” the game’s equilibria as
they evolve over time.

To that end, consider the equilibrium tracking error

err(T ) B
∑
t∈T
‖Xt − x∗t ‖

2 =
∑
t∈T

∑
i∈N
‖Xi,t − x∗i,t‖

2 (27)

where x∗t ∈ K∗t B NE(Gt) denotes a Nash equilibrium of Gt and
T = [τ . . T ], τ,T ∈ �, denotes the window of play.1 As before,
if T is of the form T = [1 . .T ], we will simply write err(T )
instead of err(T ); by construction, if err(T ) is small relative
to T , the sequence of play Xt will be close to equilibrium for
most of the horizon of play.

Clearly, if the variability of the stage games (and, in
particular, of x∗t ) is too high, it is not possible to achieve a
sublinear tracking error, even in the single-player case. To
quantify this, we define below the game’s equilibrium variation
as

V(T ) B
T∑

t=1

‖x∗t+1 − x∗t ‖, (28)

where x∗t ∈ K∗t B NE(Gt) denotes a Nash equilibrium of Gt

and, as before, T denotes the horizon of play.1 We will then
say that the equilibrium variation of Gt is tame if

V(T ) = o(T ) as T → ∞. (29)

1 There is a certain ambiguity here involved in the choice of x∗t ∈ K∗t ; this
will not play a role in the sequel because we will focus on games with a unique
equilibrium.

Remarkably, under this tame variability assumption, the
prox-learning methods under study enjoy the following equi-
librium tracking guarantee:

Theorem 2. Let Gt be a sequence of strongly monotone games
satisfying Assumptions 1 and 2. Assume further that each
player runs Algorithm 1 with step-size γt ∝ t−p, p ∈ (0, 1),
a Lipschitz distance-generating function, and feedback of the
form (SFO) with Bt = O(1/tb) and S 2

t = O(t2s) for some
b, s ≥ 0. Then the players’ tracking error is bounded as

�[err(T )] = O
(
T 1+2s−p + T 1−b + T 2p−2s V(T )

)
. (30)

Corollary 3. Suppose that the players’ oracle feedback is
unbiased and bounded in mean square (formally, b = ∞, s = 0).
If the equilibrium variation of the game is V(T ) = O(T r) for
some r > 0, we have

�[err(T )] = O
(
T 1−p + T 2p+r). (31)

In particular, if Algorithm 1 is run with γt ∝ t−(1−r)/3, the
players enjoy the bound

�[err(T )] = O
(
T

2+r
3
)
. (32)

Proof. Our proof strategy will be to leverage the gap min-
imization guarantees of Algorithm 1 together with a batch
comparison idea due to [24]. Specifically, for the sake of the
analysis (and only the analysis), we will first partition the
horizon of play T = [1 . .T ] in m contiguous batches Tk, k =

1, . . . ,m, each of length ∆ (except possibly the m-th one, which
might be smaller). Then, we will proceed to establish the error
bound (30) by linking err(Tk) to Gap(Tk) B

∑
i∈N Gapi(Tk) for

all k = 1, . . . ,m = dT/∆e.
More explicitly, take the batch length to be of the form

∆ = dT qe for some constant q ∈ [0, 1] to be determined later. In
this way, the number of batches is m = dT/∆e = Θ(T 1−q) and
the k-th batch will be of the form Tk = [(k−1)∆+1 . . k∆] for all
k = 1, . . . ,m− 1 (the value k = m is excluded as the m-th batch
might be smaller). Then, to bound the players’ equilibrium
tracking error within Tk, note that, by the strong monotonicity
property (4) for Gt, we have

α‖Xt − x∗t ‖
2 ≤ 〈vt(Xt), x∗t − Xt〉

= 〈vt(Xt), x̂ − Xt〉 + 〈vt(Xt), x∗t − x̂〉 (33)

for every reference action profile x̂ ∈ K and all t ∈ T . We thus
obtain the batch bound

α err(Tk) = α
∑
t∈Tk

‖Xt − x∗t ‖
2 ≤

∑
t∈Tk

〈vt(Xt), x∗t − Xt〉

=
∑
t∈Tk

〈vt(Xt), x̂ − Xt〉 +
∑
t∈Tk

〈vt(Xt), x∗t − x̂〉

≤ Gap(Tk) +
∑
t∈Tk

〈vt(Xt), x∗t − x̂〉, (34)

where, as a reminder, we set Gap(Tk) B
∑

i∈N Gapi(Tk).
To proceed, pick a batch-specific reference action x̂k ∈ K

for each k = 1, . . . ,m, and replace x̂ by x̂k to get

Ck =
∑
t∈Tk

〈vt(Xt), x∗t − x̂k〉, (35)



for the last term of (34). A meaningful bound for Ck can then be
obtained by taking x̂k to be the (unique) Nash equilibrium of the
first game encountered in the batch Tk, i.e., setting x̂k = x∗minTk

.
Doing this, we obtain the series of estimates:

Ck ≤
∑
t∈Tk

‖vt(Xt)‖∗ · ‖x∗t − x̂k‖ {by Cauchy-Schwarz}

≤
∑
t∈Tk

G‖x∗t − x̂k‖ {by Assumption 2}

≤ G∆ max
t∈Tk

‖x∗t − x̂k‖ {term-by-term bound}

≤ G∆
∑
t∈Tk

‖x∗t+1 − x∗t ‖ {by definition of x̂k}

= G∆ V(Tk). (36)

Thus, plugging everything back in (34) and summing over all
batches k = 1, . . . ,m, we get the total bound

�[err(T )] ≤
1
α
�[Gap(T )] +

G∆

α
V(T ). (37)

With this estimate in hand, let DK B supx,x′ D(x, x′). Then,
with γt decreasing, a straightforward regret calculation (that
we omit for reasons of space) yields

m∑
k=1

�[Gap(Tk)] ≤
m∑

k=1

2DK

γk∆

+ 2 diam(K)
T∑

t=1

Bt +
1

2K

T∑
t=1

γtS 2
t

= O
∆p

m∑
k=1

kp +

T∑
t=1

t−b +

T∑
t=1

t2s−p


= O

(
∆pm1+p + T 1−b + T 1+2s−p

)
. (38)

Since ∆ = O(T q) and m = O(T/∆) = O(T 1−q), we get

∆pm1+p = O((m∆)p m) = O(T qpT (1−q)(1+p)) = O(T 1+p−q).
(39)

In turn, this yields the error bound

�[err(T )] = O
(
T 1+p−q + T 1−b + T 1+2s−p + T 2p−2s V(T )

)
.

(40)
The guarantee (30) then follows by tuning the batch size
exponent q so as to balance the first and third terms in the
above expression, i.e., by taking q = 2p − 2s. �

VI. Learning with payoff-based information
In this section, we proceed to examine a “payoff-based”

learning scheme, i.e., a method that relies only on observations
of the players’ realized, in-game payoffs – the so-called “bandit
setting” [1], [2]. The first step will be to introduce a payoff-
based stochastic first-order oracle in the spirit of [18]; in our
game-theoretic framework, this process can be implemented
as follows:

1) At each stage t = 1, 2, . . . , every player decides on a
candidate action Xi,t ∈ Ki; this action is not played, but it
is momentarily kept in memory.

2) Instead of playing Xi,t, each player draws a random
perturbation direction Ei,t ∈ Ei ≡ {±e1, . . . ,±eni } and
plays the nearby action X̂i,t defined as

X̂i,t = (1 − δt/ri)Xi,t + (δt/ri)(pi + ri Ei,t). (41)

Algorithm 2: Payoff-based prox-learning
Require: step-size γt > 0; sampling radius δt > 0; safety

parameters ri > 0, pi ∈ int(Ki)
1: initial candidate X1 ← arg min h # initialization
2: for t = 1, 2, . . . do simultaneously for all i = 1, . . . ,N
3: draw Ei,t uniformly from {±e1, . . . ,±eni } # query

direction

4: play X̂i,t = (1 − δt/ri)Xi,t + (δt/ri)(pi + riEi,t) # select
action

5: receive ûi,t ≡ ui,t(X̂i,t; X̂−i,t) # get payoff

6: set Vi,t = (ni/δt) ûi,tEi,t # estimate gradient

7: set Xt+1 ← P(Xt, γtVt) # update candidate action
8: end for

3) Players receive their corresponding payoffs ûi,t =

ui,t(X̂i,t; X̂−i,t).
4) Each player estimates their individual payoff gradient as

Vi,t =
ni

δt
ûi,t Ei,t, (42)

where δt > 0 is a variable “sampling radius” parameter
and ni is the dimensionality of the i-th player’s action
space.

In this way, the estimate Vt = (Vi,t)i=1,...,N can be seen as a
payoff-generated stochastic first-order oracle which can be
coupled with Algorithm 1 to generate a new candidate action
Xt+1. For a pseudocode implementation of the resulting policy,
see Algorithm 2 above.
Remark VI.1. Throughout this section, we tacitly assume that
the players’ action spaces are convex bodies, i.e., they have
nonempty topological interior. This assumption is only made
for convenience: if this is not the case, it suffices to replace
the basis vectors {±ek} with a basis of the affine hull of each
player’s action space and proceed in the same way. §

The first step in our analysis of Algorithm 2 consists of
quantifying the statistics of the players’ gradient estimation
process:

Lemma 1. The single-point stochastic approximation (SPSA)
estimator (42) satisfies:

‖�[Vt | Ft] − vt(Xt)‖∗ = O(δt), (43a)
and

�[‖Vt‖
2
∗ | Ft] = O(1/δ2

t ). (43b)

The estimation arguments used in the proof of Lemma 1 are
relatively straightforward, so we omit them here. Instead, we
proceed to state our main result for the payoff-based learning
policy outlined in Algorithm 2:

Theorem 3. Let Gt be a time-varying game satisfying As-
sumptions 1 and 2. Suppose further that each player follows
Algorithm 2 with a Lipschitz distance-generating function,
variable step-size γt ∝ t−p, and sampling radius δt ∝ t−q

for some p, q ∈ (0, 1]. Then:

1) If Gt stabilizes to a strictly monotone game G at a rate
Rt = O(1/tr) and p > max{1−r, 1−q, 1/2+q}, the induced



sequence of play X̂t converges to the Nash equilibrium of
G with probability 1.

2) If Gt is strongly monotone and its drift is bounded as
V(T ) = O(T r) for some r < 1, the induced sequence of
play X̂t tracks the game’s evolving equilibrium x∗t as

�

∑
t∈T
‖X̂t − x∗t ‖

2

 = O
(
T 1+2q−p + T 1−q + T 2p−2q+r

)
.

(44)
In particular, for p = 3(1− r)/5, q = (1− r)/5, we get the
optimized bound:

�

∑
t∈T
‖X̂t − x∗t ‖

2

 = O
(
T

4+r
5

)
. (45)

Theorem 3 combines two regimes: Part 1 treats time-varying
games that stabilize to a well-defined limit, while Part 2
concerns the case where the game evolves without converging.
This is in direct analogy to Theorems 1 and 2 for the case of
generic SFO feedback.

Due to space constraints, we omit the detailed proof here. We
only note that Part 1 of Theorem 3 implies that the sequence of
play induced by Algorithm 2 in a fixed strictly monotone game
Gt ≡ G converges to Nash equilibrium with probability 1 as
long as p > max{1−q, 1/2+q}. In this way, we recover a recent
result by [18] who used a different form of the SPSA estimator
(42) to establish the convergence of payoff-based no-regret
learning in constant, monotone games. It is also possible to
undertake a finer analysis for the method’s rate of convergence
in the case where the limit game G is strongly monotone, but
this lies beyond the scope of this work.

VII. Concluding remarks
Our equilibrium tracking and convergence results comprise

a first step towards understanding the behavior of utility-
maximizing agents in unknown, online environments where
the top-down, “rationalistic” viewpoint of dynamic/stochastic
games does not apply. Specifically, even though the standard
rationality postulates do not hold in our setting (knowledge
of the game being played, common knowledge of rationality,
etc.), our analysis shows that learning based on mirror descent
can still lead to equilibrium in dynamic environments. We find
this property particularly appealing, as it provides an important
link between online learning and the emergence of rational
behavior in strategic environments that evolve over time.

There are many interesting points for future research. A
particularly promising one is to bridge the gap between
the step-size policies that guarantee an optimal equilibrium
tracking error and the policies that guarantee convergence
to a Nash equilibrium in the case where Gt stabilizes to
a well-defined limit. Heuristically, these considerations are
incompatible: when the rules of the game fluctuate constantly,
players are better off using a slowly-varying step-size in order
to adapt to the changing landscape; by contrast, when the
game stabilizes, a rapidly decaying step-size is best suited to
guarantee convergence to Nash equilibrium. Balancing these
two objectives in an adaptive, context-agnostic manner is a
rich and promising direction for future research.
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