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Abstract—We propose an online power allocation algorithm
for optimizing energy efficiency (throughput per unit of transmit
power) in multi-user, multi-carrier systems that evolve dynami-
cally over time (e.g. due to changes in the wireless environment
or the users’ load). Contrary to the static/ergodic regime, a fixed
optimal power allocation profile (either static or in the mean)
does not exist, so we draw on exponential learning techniques to
design an algorithm that is able to adapt to system changes “on the
fly”. Specifically, the proposed transmit policy leads to no regret,
i.e., it is asymptotically optimal in hindsight, irrespective of the
system’s evolution over time. Importantly, despite the algorithm’s
simplicity and distributed nature, users are able to track their
individually optimum transmit profiles as they vary with time,
even under rapidly changing network conditions.

Index Terms—energy efficiency, multi-carrier systems, no re-
gret, online optimization.

I. Introduction

The wildfire spread of Internet-enabled mobile devices and
the exponential growth of bandwidth-hungry applications is
putting existing wireless networks under enormous strain and is
steering the transition to fifth generation (5G) mobile networks.
In this context, one of the most pressing challenges faced
by the wireless industry is the development of cost-efficient
and environment-friendly communication schemes that ensure
fiber-like data rates under a tight energy budget. Undoubtedly,
meeting this formidable challenge calls for significant advances
in wireless technology and hardware system design, but the
inherent limitations in upgrading an ageing wireless infrastruc-
ture also heighten the need for distributed resource allocation
policies that are provably energy-efficient – i.e. that maximize
the users’ achieved rate per unit of transmit power.

Prior work on energy efficiency [1–4] has focused on the
static regime where there are no changes to the wireless net-
work over time. In this setting, optimizing the users’ energy
efficiency amounts to solving a static optimization problem (or
game) whose control variables depend on the system model un-
der study. However, given the dynamic spectrum landscape of
current and emerging wireless systems, flexible next-generation
multi-user networks must be capable of “on-the-fly” adaptation
to a time-varying environment – often with very limited (and
potentially obsolete) information at the device end. Accord-
ingly, we focus here on dynamic multi-carrier networks that
evolve in an arbitrary, unpredictable fashion (e.g. due to fading,
user mobility or fluctuations in the users’ load), and we employ

techniques and ideas from online optimization to quantify how
well users adapt to changes in the wireless medium.

In this dynamic framework, static solution concepts (such as
Nash/Debreu equilibria etc.) are no longer relevant, so we focus
on the criterion of regret minimization, a seminal concept which
was first introduced in game theory by Hannan [5], and which
has since given rise to a vigorous literature at the interface of
machine learning, optimization, statistics and game theory – for
a recent survey, see [6, 7]. In game-theoretic parlance, the no-
tion of regret compares a user’s cumulative payoff over a given
time horizon to the cumulative payoff that the user would have
obtained by employing the a posteriori best possible action
over the time horizon in question. As such, in the context of
energy efficiency, regret minimization corresponds to dynamic
transmit policies that are asymptotically optimal in hindsight,
irrespective of how the user’s environment evolves over time.

In this paper, we focus on multi-user orthogonal frequency-
division multiple access (OFDMA) systems that evolve ar-
bitrarily over time (for instance, due to fading, intermittent
user connectivity, etc.), and we seek to provide an adaptive
power allocation scheme that allows users to optimize their
energy efficiency ratio “on the fly”, based only on locally
available channel state information (CSI). To that end, drawing
on fractional programming techniques [4] and the method of
exponential learning [8], we derive an online power allocation
policy that is:
a) Distributed: each user updates his individual power vari-

ables based on local CSI.
b) Asynchronous: there is no need for a global update timer.
c) Stateless: users do not need to know the global state of the

network or its topology.
The proposed online power allocation algorithm leads to

no regret independently of the system’s evolution; moreover,
our numerical results show that users track the system’s most
energy-efficient state under realistic fading conditions and
rapidly changing channels.

II. SystemModel and Problem Formulation
Consider a wireless communication system consisting of

several interfering wireless connections u ∈ {1, . . . ,U}, each
one associated with a transmit-receive pair of users sharing a
common set of orthogonal subcarriers k ∈ K = {1, . . . ,K}.
Then, if xu

k ∈ � and yu
k ∈ � denote respectively the signals



transmitted and received over connection u on subcarrier k, we
obtain the familiar signal model:

yu
k = huu

k xu
k +

∑
v,u

hvu
k xv

k + zu
k , (1)

where zu
k ∈ � denotes the ambient noise over subcarrier k and

hvu
k ∈ � denotes the channel transfer coefficient between the

transmitter of the v-th connection and the receiver of the u-th
connection. In view of the above, given that the received signal
yu

k is affected by the ambient noise and interference due to all
other connections on subcarrier k, we will write

wu
k =

∑
v,u

hvu
k xv

k + zu
k (2)

for the multi-user interference-plus-noise (MUI) at the receiver
of connection u. Thus, if we focus on a specific connection u
and drop the index u for clarity, the signal model (1) can be
written in more concise form as:

yk = hk xk + wk. (3)

In this context, assuming Gaussian input and noise and single
user decoding (SUD) at the receiver (i.e. the MUI from all other
users is treated as additive noise), the transmission rate of the
focal connection will be:

R(p) =
∑

k∈K
log (1 + gk(t)pk) , (4)

where pk = �[|xk |
2] denotes the focal user’s transmit power

on subcarrier k, gk = |hk |
2 /
�[|wk |

2] denotes the focal user’s
effective channel gain over subcarrier k and the expectations
are taken over the users’ (Gaussian) codebooks. Obviously,
under dynamic network conditions, the effective channel gain
coefficient gk will vary with time, both due to changes in the
wireless medium (fading, mobility, etc.), but also due to the
behavior of the other users in the network. Accordingly, if
gk(t) denotes the effective channel gain of the focal user over
subcarrier k at time t, his energy efficiency function will be
given by the expression:

u(p; t) =
R(p)

pc +
∑

k pk
=

∑
k log(1 + pkgk(t))

pc +
∑

k pk
, (5)

where pc > 0 represents the circuit power consumption of the
user’s wireless device.

The above considerations lead to the following online opti-
mization problem for maximizing energy efficiency in dynamic
multi-carrier networks:

maximize u(p; t),
subject to p ∈ P.

(6)

where
P ≡

{
p : pk ≥ 0 and

∑
k

pk ≤ Pmax

}
, (7)

denotes the prolbem’s state space (i.e. the space of admissi-
ble radiated power profiles) and Pmax is the user’s maximum
transmit power. Specifically, given that the user has no control
over his effective channels gk(t), the sequence of events that we
envision is as follows:

1) At each discrete time instance t = 1, 2, . . . , the user selects
a transmit power profile p(t) ∈ P.

2) The user’s energy efficiency u(p(t); t) is determined by the
state of the network and the behavior of all other users via
the effective channel gain coefficients gk(t).

3) The user selects a new transmit power profile p(t + 1) ∈ P
at stage t + 1 seeking to maximize the (a priori unknown)
objective u(p; t + 1), and the process repeats.

In this dynamic framework, the key challenge lies in the
user’s inability to predict the effective channels that he will
face so as to choose an optimal power profile. As a result,
static solution concepts (such as Nash, Debreu, or correlated
equilibria) are no longer relevant because, in general, there is
no fixed optimum system state to target – either static or in
the mean. On that account, given a dynamic transmit policy
p(t) ∈ P, we will compare the user’s cumulative “payoff”∑T

t=1 u(p(t); t) up to time T to what the user would have obtained
if he had chosen best possible transmit profile in hindsight – i.e.
had he been able to predict in advance the channel conditions
for the entire communication horizon. Following [5, 7], we thus
define the user’s regret as:

Reg(T ) = max
p′∈P

∑T

t=1

[
u(p′; t) − u(p(t); t)

]
. (8)

and, in what follows, our aim will be to derive a policy that
leads to no regret, i.e.

lim supT→∞ Reg(T )/T ≤ 0, (9)

irrespective of the system’s evolution over time.
Intuitively, positive regret implies that the focal user would

have gained more in terms of energy efficiency by employing
a transmit power profile p∗ which is optimal in hindsight –
i.e. that maximizes the user’s aggregate utility

∑T
t=1 u(p(t); t)

over the time horizon in question. Of course, such a profile
is a purely theoretical contraption because it requires perfect
forecasting of global state information (for the entire transmis-
sion horizon), which is impossible to obtain in an evolving,
decentralized environment. Instead, by being “asymptotically
optimal in hindsight”, an adaptive no-regret policy provides the
best possible practical approximation to this theoretical target
[6, 7].

III. Energy Efficiency via Exponential Learning

To derive a no-regret policy for the online problem (6), we
begin by exploiting the concavity of the Shannon throughput
function and the so called Charnes–Cooper transform for re-
casting the fractional objective of (6) as a concave one [9] – for
a similar approach in the static channel regime, see [4]. More
precisely, we introduce the auxiliary variables:

λ = pc/(pc +
∑

k
pk) and x = λp/pc, (10)

so the problem’s state space becomes

X ≡

{
(λ, x) : λ ≥ λc, xk ≥ 0, and λ +

∑
k

xk = 1
}

(11)

where λc = pc/(pc + Pmax). The focal user’s energy efficiency
function may then be rewritten as:

ũ(λ, x; t) = (λ/pc) ·
∑

k
log

[
1 + pcgk(t)xk/λ

]
, (12)



an expression which is jointly concave in λ and x owing to the
concavity of R(p) and the properties of the perspective map [4].

Our dynamic transmit policy is based on the following two
steps for updating λ(t) and x(t): a) we track the gradient of the
concave function ũ in a dual, unconstrained space; and b) we
map the resulting iterates back to the problem’s state space X

via an exponential regularization step. Specifically, we have:
Step 1. Track the gradient:

γ ← γ +
∂

∂λ
ũ(λ, x; t), (13a)

yk ← yk +
∂

∂xk
ũ(λ, x; t), (13b)

where, after a quick calculation:

∂

∂λ
ũ(λ, x; t) =

R(p)
pc
−

1
λ

∑
k

gk(t)xk

λ + pcgk(t)xk
(14a)

∂

∂xk
ũ(λ, x; t) =

λgk(t)
λ + pcgk(t)xk

(14b)

Step 2. Return to the problem’s feasible space:

λ← λc + (1 − λc) · eηγ
/(

eηγ +
∑

k eηyk
)
, (15a)

xk ← (1 − λc) · eηyk
/(

eηγ +
∑

k eηyk
)
, (15b)

where η ≡ η(t) > 0 is a learning sensitivity parameter that can
be tuned freely by the user.

With this two-step update process at hand, the user can set
his transmit power profile to p(t) = pcx(t)/λ(t) ∈ P (for an
algorithmic implementation, see Alg. 1). Moreover, as can be
seen by (14), the gradient tracking step (13) can be calculated
based only on locally available information at the transmitter,
so the proposed online power allocation algorithm has the
following desirable properties:
(P1) It is distributed: each transmitter updates his own power

profile based on local CSI.
(P2) It is asynchronous: updates do not require user coordina-

tion or a global update timer.
(P3) It is stateless: users do not need to know the global state

(or the topology) of the network.
In this context, our main theoretical result is as follows:

Theorem 1. The online power allocation policy induced by
Algorithm 1 with η(t) = η0/

√
t leads to no regret; specifically:

Reg(T )/T = O
(
T−1/2 log(1 + K)

)
. (16)

This result relies on two important components of the prob-
lem (6): a) the concavity of the transformed energy efficiency
function (12) (which provides an intuitive explanation of why
tracking the gradient (13) is a reasonable policy); and b) the
properties of the exponential mapping (15) which maps the
gradient tracking process back to the problem’s (primal) state
space X. The proof of this result proceeds in two steps. First,
assuming that the updates in Algorithm 1 are performed in
continuous time, we show that the proposed policy leads to
vanishing regret. Then, the passage from continuous to dis-
crete updates is proved by employing the methods introduced
recently in [10]. More details can be found in the Appendix.

Algorithm 1 Exponential learning for energy efficiency.

Parameter: η0 > 0.
Initialize: t ← 1; γ ← 0; y← 0
Repeat

t ← t + 1;
{ Pre-transmission phase: set transmit powers }

foreach subcarrier k ∈ K do
calculate auxiliary variables λ and xk using (15);
set transmit power pk ← pcxk/λ;

transmit;
{ Post-transmission phase: receive feedback }

foreach subcarrier k ∈ K do
measure gk(t);
update score variables γ and yk using (13);

until transmission ends.

IV. Numerical Simulations

To validate the theoretical analysis of Section III, we con-
ducted extensive numerical simulations over a wide range of de-
sign parameters and specifications; in what follows, we present
a representative sample of these results.

Our simulations focus on a typical cellular OFDMA network
occupying a 10 MHz band divided into 1024 subcarriers around
a central frequency fc = 2 GHz. Subcarriers in each cell are
allocated to each user in a random fashion, and we focus on
U = 7 users that are located at different, neighboring cells, and
that have been allocated the same set of K = 8 subcarriers. We
focus on the uplink, so receivers (base-stations) are assumed
stationary while transmitters are assumed mobile. Communica-
tion occurs over a time-division duplexing (TDD) scheme with
frame duration T f = 5 ms and the users’ channels were modeled
following the well-known Jakes model for Rayleigh fading [11]
and the extended pedestrian A (EPA) and extended vehicular
A (EVA) models for pedestrian (v = 5 km/h) and high-speed
vehicular movement (v = 130 km/h) [12, 13].

In this dynamic setting, the main challenge for the wireless
users is to track the transmit power profile that optimizes
their energy efficiency ratio over time. Thus, to evaluate the
performance of the proposed algorithm in tracking the instan-
taneous optimum power profile, we plot in Fig. 1 the users’
instantaneous energy efficiency under Algorithm 1 against its
(evolving) optimum; for comparison purposes, we also plot the
energy efficiency achieved by uniform beamforming. Remark-
ably, even under rapidly varying channels (with a coherence
time of the order of a few ms), the wireless users track their
optimum transmit profiles very closely (the tracking time is
often within a single transmit frame), and the proposed policy
consistently outperforms uniform beamforming by a factor of
100% (and often reaching gains up to 500% or more).
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Fig. 1: Achieved energy efficiency (long-dashed green line) under Algorithm 1. We simulated a multi-carrier system with K = 8
subcarriers per user operating at a base frequency f = 2 GHz (user power characteristics: Pmax = 40 dBm, pc = 20 dBm);
for comparison purposes, we considered both pedestrian mobility (v = 5 km/h, Fig. 1(a)) and high-speed vehicular mobility
(v = 130 km/h, Fig. 1(b)). Despite the channel variability, users are able to track the most energy-efficient transmit power profile
as it evolves over time (solid red line), gaining a significant advantage over e.g. a uniform beamforming policy (dashed blue line).

V. Conclusions

No regret learning algorithms and online optimization seem
very promising and powerful tools to design energy efficient
communications in dynamic multi-user networks, in which
classical optimization and game theoretic tools are no longer
applicable. Indeed, if by the time the users converge to the
temporary optimum or Nash equilibrium resource allocation
policy, the communication environment has changed (in the
network topology, channel conditions, etc.), these classical
algorithms become obsolete. For such dynamic networks, we
propose an exponential learning policy that leads to no regret,
i.e., that is on average as energy efficient as the best power
allocation policy in an ideal case in which complete network
and channel information is perfectly known in advance (and
for the entire communication horizon). Moreover, the dynamic
policy we propose is simple, distributed, asynchronous and
requires only local network and channel state information. Our
numerical results illustrate that users are able to remarkably
track their instantaneous energy efficient allocation policies.
The properties of the proposed algorithm offers a huge poten-
tial in a wide palette of dynamic and decentralized systems:
small cell networks, cognitive opportunistic communications,
machine-to-machine communications etc.

Appendix
Proof of Theorem 1

We start by proving that the continuous-time analogue of
Algorithm 1 leads to no regret.

Theorem 2. The online power allocation policy p(t) =

pcx(t)/λ(t) induced by the recursion (13)–(15) with η(t) =

η0/
√

t leads to no regret; specifically:

Reg(t)
t
≤

1

η0
√

t

Pmax

Pmax + pc

(
log(1 + K) + log

Pmax + pc

Pmax

)
.

For the continuous-time dynamics, the regret is defined as:

Reg(t) =

∫ t

0

[
u(p∗; s) − u(p(s); s)

]
ds,

where p∗ denotes the optimal fixed policy in hindsight:

p∗ = arg max
q∈P

∫ t

0
u(q; s) ds.

First, using the variables introduced in (10) and given the
joint concavity of the utility function (12), we can upper-bound
the regret as follows:

Reg(t) ≤
∫ t

0
∂λũ(λ, x; s)(λ∗ − λ(s)) ds

+

∫ t

0
∇xũT (λ, x; s)(x∗ − x(s)) ds

=

∫ t

0
γ̇(s)(λ∗ − λ(s)) + ẏ(s)T (x∗ − x(s)) ds

= λ∗γ(s) + x∗T y(s) −
∫ t

0
γ̇(s)λ(s) + ẏ(s)T x(s) ds (17)

where the first equality follows from the updating rules (13). By
using the chain rule, the above integral term writes as:

A ,

∫ t

0
γ̇(s)λ(s) + ẏ(s)T x(s) ds

=

∫ t

0

1
η

d(γη)
ds

λ +
1
η

d(ηy)T

ds
x ds −∫ t

0

η̇

η
(γλ + yT x) ds

We define the following function g : �K+1 → �:

g(ηγ, ηy) = λcηγ + (1 − λc) log

eηγ +

K∑
i=1

eηyi

 . (18)



Using the time derivative of this function and the mapping onto
the feasible space (15), we can rewrite the expression A as
follows:

A =

∫ t

0

1
η

dg
ds

(ηγ, ηy) ds −
∫ t

0

η̇

η
(γλ + yT x) ds

=
1
η

g(ηγ, ηy) −
1
η(0)

g(η(0)γ(0), η(0)y(0)) +∫ t

0

η̇

η2

(
g(ηγ, ηy) − ηγλ − ηyT x

)
ds.

By replacing back the term A in (17), the bound on the regret
becomes:

Reg(t) ≤ λ∗γ(s) + x∗T y(s) −
1
η

g(ηγ, ηy) +

1
η(0)

g(η(0)γ(0), η(0)y(0)) −∫ t

0

η̇

η2

(
g(ηγ, ηy) − ηγλ − ηyT x

)
ds (19)

Notice that η(t) ≥ 0 and η̇(t) ≤ 0 which implies −η̇/η ≥ 0.
The last term in (19) can be bounded using the following

proposition.

Proposition 1. The maximum value of the function h : �n → �

defined by

h(x) = log
(∑n

i=1
exi

)
−

∑n
i=1 xiexi∑n

j=1 ex j
(20)

equals h∗ = log(n).

The proof of this result relies on the variable change: v j =

ex j/
∑n

i=1 exi , ∀ j and on the fact that maximum entropy is
achieved by a uniform probability distribution (which gives the
optimal point v∗j = 1/n, ∀ j).

Replacing λ and x in (19) by the updates (15) and using
Proposition 1, we further obtain:

Reg(t) ≤ λ∗γ(s) + x∗T y(s) −
1
η

g(ηλ, ηy) +

1
η(0)

g(η(0)λ(0), η(0)y(0)) −

(1 − λc)
∫ t

0

η̇

η2 log(1 + K) ds.

Assuming that λ(0) = 0, y(0) = 0 and η(0) < +∞, we obtain:

Reg(t) ≤
1 − λc

η
log(1 + K) +

1
η

[
(λ∗ − λc)ηγ + ηx∗T y−

(1 − λc) log
(
eηγ +

∑K

i=1
eηyi

)]
.

The first term depends only on the parameters of the system.
The second term can be upper-bounded using the following
variable change:

δ = λc + (1 − λc)
eηγ

eηγ +
∑

i eηyi

uk = (1 − λc)
eηyk

eηγ +
∑

i eηyi
,

and is written as

B , (λ∗ − λc)ηγ + ηx∗T y − (1 − λc) log
(
eηγ +

∑K

i=1
eηyi

)
= log

eηγ +
∑K

i=1 eηyi

1 − λc

 [λ∗ − λc +
∑

j
x∗j − (1 − λc)

]
+

(λ∗ − λc) log(δ − λc)

+
∑

j

x∗j log(u j) − (1 − λc) log(1 − λc)

≤ −(1 − λc) log(1 − λc). (21)

The last inequality follows from the fact that λ∗ +
∑

j x∗j = 1,
log(δ − λc) ≤ 0 and log(u j) ≤ 0. Theorem 2 follows simply by
replacing λc = pc/(pc + Pmax).

The remaining step to prove Theorem 1 is the passage from
continuous to discrete updates which will be detailed in an
extended version of this paper and follows via the framework
developed in [10].
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