
Energy-Aware Competitive Link Adaptation in

Small-Cell Networks
(Invited Paper)

Giacomo Bacci,∗‖ E. Veronica Belmega,† Panayotis Mertikopoulos,‡§ and Luca Sanguinetti∗¶

∗ Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy, and CNIT, Parma, Italy
† ETIS / ENSEA - UCP - French National Center for Scientific Research (CNRS), Cergy-Pontoise, France

‡ French National Center for Scientific Research (CNRS), LIG F-38000 Grenoble, France
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Abstract—This work proposes a distributed power allocation
scheme for maximizing the energy efficiency in the uplink of non-
cooperative small-cell networks based on orthogonal frequency-
division multiple-access technology. This is achieved by modeling
user terminals as rational agents that engage in a non-cooperative
game in which every terminal selects the power loading so as
to maximize its own utility (the user’s throughput per Watt
of transmit power) while satisfying minimum rate constraints.
In this framework, we prove the existence of a Debreu equi-
librium (also known as generalized Nash equilibrium) and we
characterize the structure of the corresponding power allocation
profile using techniques drawn from fractional programming. To
attain the equilibrium in a distributed fashion, we also propose a
method based on an iterative water-filling best response process.
Numerical simulations are then used to assess the convergence
of the proposed algorithm and the performance of its end-state
as a function of the system parameters.

I. INTRODUCTION

Small-cell networks are nowadays considered as one of the

most promising solutions to address the seemingly contradic-

tory future requirements of the Information and Communi-

cation Technology industry: more cellular network capacity,

and less energy consumption [1]. In a nutshell, the small-

cell network concept amounts to a very dense deployment

of operator-installed low-cost and low-power base stations

equipped with advanced self-organization capabilities. This

paradigm shift from carefully planned cellular networks to ir-

regularly deployed self-optimizing base stations with different

coverage makes the cellular architecture increasingly complex

and heterogeneous, and poses many challenging issues to

efficient network operation.

One of the key technical challenges in the deployment of

small-cell networks is the involved network interference. A

promising solution to this problem is commonly referred to as

distributed cooperation [1], and aims at finding algorithmic
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solutions that approach the ideal cooperative gains while

exploiting mostly local information and requiring limited

interactions.

Motivated by all this, in this paper, we analyze the up-

link component of an orthogonal frequency-division multiple-

access (OFDMA)-based small cell network. In particular, we

propose a game-theoretic framework to examine the optimal

power allocation over the available subcarriers at each trans-

mitter, designed to maximize each link’s individual energy-

aware utility. Specifically, the utility of each transmitter is

defined as the achieved throughput per unit of power, ac-

counting for both the power required for data transmission and

that required by the circuit components of the wireless device

(such as amplifiers, mixer, oscillator, and filters) [2]–[4]. In

addition to the above, if the users also have a minimum rate

requirement that must be achieved, the resulting game departs

from the classical framework put forth by Nash [5], and

becomes a Debreu-type game in which the actions available

to each user depend on the power profile of all other users

[6]. In this setting, the relevant solution concept is that of

a Debreu equilibrium (which is also commonly known as a

generalized Nash equilibrium); the existence of this state is

then proved by suitably extending the results of [6] to a game

with non-compact action sets, and its structure is characterized

using techniques from fractional programming [7]. As we shall

see, Debreu equilibria correspond to the fixed points of a

water-filling best response operator where the water level is

a function of the minimum rate constraints and each user’s

power envelope [4]. The theoretical analysis is then adopted to

derive an iterative and distributed power allocation algorithm

whose convergence and performance are assessed by means

of numerical results.

The most relevant works in the above context are [8]

and [9]. In [8], the authors examine a similar distributed

energy-aware resource allocation problem but the users are

not assumed to have any hard minimum rate requirements,

so the resulting non-cooperative game is a classical Nash

game with continuous action sets. The added quality-of-service

(QoS) requirement complicates the analysis of the game

considerably: to prove the equilibrium existence, one must



go beyond standard Nash equilibrium results, since a user’s

admissible power allocation profile depends on the power

profile of all other users; also, the question of the uniqueness

of an equilibrium, in our case, seems to be a very difficult

issue, which is left as a future work. Much closer in spirit is

the very recent companion paper [9], whose system model is

essentially equivalent to the one that we study in this paper

(including the minimum QoS constraint at the user level). That

said, by taking an approach based on fractional programming,

we are able to chart out here the convergence properties of the

proposed water-filling best response algorithm, and we are also

able to provide a rigorous proof of the existence of a Debreu

equilibrium by extending the results of [6] to a non-compact

setting (by contrast, in [9] this result is announced but not

proven).

Paper outline: In Sect. II, we introduce the small-cell

network model, which is then formulated as a Nash/Debreu

energy-aware power allocation game in Sect. III (where we

prove the existence of a Debreu equilibrium and characterize

its structure). In Sect. IV, we propose a distributed algorithm,

which allows the users to converge to the game’s equilibrium

in a distributed fashion. The convergence of the proposed

distributed algorithm and the energy-efficiency of the algo-

rithm’s end state are then evaluated via numerical simulations

in Sect. V, and Sect. VI concludes the paper.

Notational conventions: Matrices and vectors are denoted

by bold letters, IL, 0L, and 1L are the L × L identity

matrix, the L × 1 all-zero column vector, and the L × 1 all-

one column vector, respectively, and ‖ · ‖2, (·)T and (·)H
denote Euclidean norm of the enclosed vector, transposition

and Hermitian transposition respectively. The notation (x)+

stands for max(0, x) whereas W (·) denotes the Lambert W
function [10], defined to be the multivalued inverse of the

function z = W (z) eW(z) for any z ∈ C. Finally, if Ak,

k = 1, . . . ,K is a finite family of sets, and ak ∈ Ak , we

will use the notation (ak; a−k) ∈
∏

k Ak as shorthand for the

profile (a1, . . . , ak, . . . , aK).

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the uplink of a network composed by S small

cells operating in an OFDMA-based open-access licensed

spectrum. The sth small cell uses a set of orthogonal sub-

carriers to serve the Ks user equipments (UEs) falling within

its coverage radius ρs. For simplicity, we assume that the same

set of subcarriers N = {1, . . . , N} is used by all small cells.

The latter is assigned by the macrocell network and does not

represent a parameter of our problem. To exploit the frequency

diversity, we assume that the subcarrier spacing is larger than

the coherence bandwidth Bc experienced by each user. Each

small-cell access point (SAP) is equipped with M receiving

antennas while a single antenna is employed at the UEs to

keep the complexity of the front-end limited.

Let hkj,n ∈ CM×1 denote the uplink channel vector whose

entries [hkj,n]m represent the (frequency) channel gains over

subcarrier n from the jth UE to the mth receive antenna of

user kth serving SAP, i.e., the sth SAP whose distance from

user k is smaller than ρs with k, j ∈ K = {1, . . . ,K} and

K =
∑S

s=1 Ks. The vector xk,n ∈ CM×1 collecting the

samples received at the UE k’s serving SAP over the nth

subcarrier can be written as

xk,n =

K
∑

j=1

hkj,n
√
pj,nzj,n +wk,n (1)

where wk,n ∈ CM×1 is a Gaussian vector with zero mean

and covariance matrix σ2IM accounting for background noise,

whereas pj,n and zj,n denote UE j’s transmit power and

data symbol over subcarrier n, respectively. To keep the

complexity of the SAP at a tolerable level, a simple linear

detection scheme is employed for data detection. This means

that the entries of xk,n are linearly combined to form yk,n =
gH
k,nxk,n, where gk,n is the vector employed for recovering

the data transmitted by user k over subcarrier n. The signal-

to-interference-plus-noise ratio (SINR) achieved by user k at

its serving SAP over subcarrier n takes the form

γk,n = µk,n(p−k,n)pk,n (2)

with

µk,n(p−k,n) =
|gH

k,nhkk,n|2
‖gk,n‖2σ2 +

∑

j 6=k |gH
k,nhkj,n|2pj,n

(3)

where we have explicitly reported the dependence on p−k,n =
[p1,n, . . . , pk−1,n, pk+1,n, . . . , pK,n]

T , which is the vector col-

lecting all powers transmitted over subcarrier n except user

k’s one. Using (2), the achievable rate (normalized to the

subcarrier bandwidth, and thus measured in b/s/Hz) of the kth

user is given by

rk (p) =

N
∑

n=1

log2 (1 + γk,n/Γ) (4)

where Γ is the SINR gap with respect to the Shannon capacity

[11], and p = [pT
1 , . . . ,p

T
K ]T ∈ R

K×N
+ collects the transmit

powers by all users over all subcarriers, where the (row)

vector pk = [pk,1, . . . , pk,N ]T denotes user k’s powers over

all subcarriers, with pk,n ≥ 0 (if pk,n = 0, user k is not

transmitting over subcarrier n). Note that user k’s multiple

access interference (MAI), measured by the summation at the

denominator of (3), comes from both intra-cell interference

(generated by other UEs being served by the same SAP) and

inter-cell interference (from UEs served by all other S − 1
SAPs), whereas macro-cell users are assumed to be orthogonal

thanks to a proper frequency resource planning operated by the

macro-cell network (if needed, macro-cell interference can be

included into σ2). To simplify notations, the dependence of

µk,n and rk is not made explicit from now on.

As mentioned in Sect. I, an energy-efficient design of the

network, which is of primary importance when dealing with

mobile, battery-power UEs, must properly take into account

the energy consumption incurred by each UE. To this aim,

it is worth noting that, beside the radiative powers pk at the

output of the radio-frequency front-end, each terminal k also

incurs circuit power consumption during transmission, mostly



due to the power dissipated in the power amplifier [2], [4].

The overall power consumption PT,k of the kth UE is thus

given by

PT,k = pc + Pk = pc +

N
∑

n=1

pk,n (5)

where
∑N

n=1 pk,n = pT
k 1N is the radiative power consumed

by user k over the whole spectrum, and pc represents the

average current power consumed by the device electronics,

which is assumed to be independent of the transmission

state and equal for all UEs. Following [4], [12], the energy

efficiency of the link can be measured (in b/J/Hz) by the utility

function

uk(p) =
rk
PT,k

=

∑N
n=1 log2 (1 + µk,npk,n/Γ)

pc +
∑N

n=1 pk,n
(6)

where the dependence of all others’ transmit powers over all

subcarriers is collected by the gains {µk,n}Nn=1. Observe that,

in data-oriented wireless networks, users are usually required

to satisfy QoS requirements in terms of minimum achieved

rates θk ≥ 0, i.e., rk ≥ θk.

To summarize, the design of an energy-efficient resource

allocation scheme, that encompasses both subcarrier allocation

and power control (by setting, for each UE k, pk,n = 0 on

unused subcarriers, and pk,n > 0 on used subcarriers), requires

to solve, for each UE k, the following optimization problem:

p⋆
k = arg max

pk∈R
N
+

∑N
n=1 log2 (1 + µk,npk,n/Γ)

pc +
∑N

n=1 pk,n
(7)

subject to pk,n ≥ 0 ∀n = 1, . . . , N (8)
∑N

n=1 log2 (1 + µk,npk,n/Γ) ≥ θk (9)

where the constraint (8) ensures each transmit power to be

positive, whereas (9) forces each user to fulfill a requirement

on the minimum normalized rate θk. Note that, unlike other

formulations in the field of OFDMA resource allocation (see

for example [13], [14]), here the subcarrier selection and power

loading problems are tackled in a joint manner. Furthermore,

the interplay among the UEs in K makes (7) a multidimen-

sional optimization problem in which each UE k ∈ K aims at

unilaterally choosing its own transmit power allocations pk so

as to optimize its own link energy efficiency uk(p). In doing

this, each UE affect the choice of all other UEs as well.

III. GAME-THEORETIC RESOURCE ALLOCATION

A natural framework for studying the strategic inter-user

interactions that arise from the system model of the previous

section is offered by the theory of non-cooperative games

with continuous (and action-dependent) action sets. Following

Debreu [6] (see also [15]), we will thus consider a non-

cooperative game G ≡ G(K,P , u) defined as follows:

a) The players of G will comprise the set K of UEs.

b) The total action set of player k representing all transmit

power profiles (including possibly unfeasible ones) will be:

P
nc
k = {pk ∈ R

N : pk,n ≥ 0 for all n = 1, . . . , N}.
(10)

Otherwise, in the presence of the rate constraints (9), the

feasible action set of player k given a power allocation

profile p−k ∈ P
nc
−k ≡∏ℓ 6=k P

nc
ℓ of other users will be:

Pk(p−k) = {pk ∈ P
nc
k : rk(p) ≥ θk} . (11)

c) The utility function of player k will be given by (6).

A first question that arises is whether this game is feasible

in the sense that there exists a power allocation profile p =
(p1, . . . ,pK) ∈ ∏k P

nc
k such that

pk ∈ Pk(p−k) for all k ∈ K. (12)

The feasibility of the game depends non-trivially on the

users’ channels and rate constraints [9], and it is easy to

construct examples where there are no feasible profiles with

finite power.1 Albeit important in its own right, this feasibility

question will not be addressed here; instead, assuming that the

problem is feasible, we will focus on power allocation profiles

that are unilaterally stable for all users – and thus provide a

sense of system-wide stability as well.

In this framework, the most widely used solution concept

is a generalization of the notion of Nash equilibrium, known

as Debreu equilibrium [6] (and sometimes also referred to as

a generalized Nash equilibrium [15]). Formally:

Definition 1: A transmit power profile p⋆ is a Debreu

equilibrium of G(K,P , u) if, for all players k ∈ K, we have

p⋆
k ∈ Pk(p

⋆
−k) and

uk(p
⋆) ≥ uk(pk;p

⋆
−k) (13)

for all pk ∈ Pk(p
⋆
−k). �

Debreu equilibria are of particular interest in the context of

distributed systems because they offer a stable solution of the

game in which every player (in this case, the small-cell UE) is

satisfied with its action choices and does not wish to deviate

from (and thus destabilize the system) if other players stick to

their chosen actions. Accordingly, in the rest of this section,

we will treat the problem of equilibrium existence in the power

allocation game G, leaving the question of convergence to such

state to Sect. IV.

Debreu’s original paper [6] provides a general existence

result for games of this kind under the assumptions that:

1) the players’ constrained action sets Pk(p−k) are com-

pact, convex and nonempty for all p−k ∈ P−k;

2) Pk(p−k) varies continuously with p−k (in the sense

that the graph of the set-valued correspondence p−k 7→
Pk(p−k) is closed); and

3) each player’s utility function is quasi-concave over the

player’s individual actions.

In our setting, the Shannon rate function rk(pk;p−k) (4)

is concave in pk and unbounded from above, so Pk(p−k)
is convex and nonempty for all p−k ∈ P

nc
−k; moreover,

Pk(p−k) varies continuously with p−k since constraints (9)

are themselves continuous in p−k. Finally, it can be easily

1From a mathematical viewpoint, a compactification argument can be used
to show that the game always admits a feasible point if infinite powers and
finite rates are allowed, but, of course, this has little practical relevance.



shown that uk(pk;p−k) is quasi-concave in pk since, for any

ξ ∈ R, uk(pk;p−k) ≥ ξ if and only if

rk(pk;p−k)− ξ
(

pc +
∑N

n=1 pk,n

)

≥ 0, (14)

and since the set defined by this inequality is convex for every

p−k ∈ P−k (recall that rk(pk;p−k) is concave in pk), our

claim follows.

Unfortunately however, the sets Pk(p−k) are not com-

pact, so Debreu’s equilibrium existence result does not apply.

Nonetheless, an extension of the reasoning of [6] leads to the

following result:

Prop. 1: If the game G ≡ G(K,P , u) is feasible, then it

admits a Debreu equilibrium.

To prove the above, we will need the following lemma:

Lemma 1: Let an > 0, n = 1, . . . , N , be positive constants,

and let b > 0. Then, the solution set of the problem

maximize f(p) =

∑N

n=1 log (1 + anpn)

b +
∑n

n=1 pn

subject to pn ≥ 0

(15)

is compact.

Proof: If the maximum set Ωf of f is not compact, there

will exist an unbounded sequence pm ∈ Ωf ; by descending

to a subsequence of pm if necessary, we may then assume

that pn,m → ∞ for some n. However, since limp→∞ log(1 +
ap)/p = 0 for all a > 0, this implies that the maximum value

of f will be 0, a contradiction.

Proof of Proposition 1: Fix some power vector pk ∈
P

nc
−k, and let P

⋆
k(p−k) ≡ arg max{uk(pk;p−k) : pk ∈

Pk(p−k)} be the set of best responses of player k to the power

profile p−k of the other players. By the quasi-concavity of uk

and Lemma 1, it follows that P⋆
k is compact; as a result, letting

Mk(p−k) denote the maximum value of uk over Pk(p−k), it

follows that the set

P
′
k(p−k) ≡ {pk ∈ P

nc
k : uk(pk;p−k) ≥ (1− ε)Mk(p−k)}

(16)

will also be compact if ε is chosen to be sufficiently small.

Define now the restricted game G
′ ≡ G

′(K,P ′, u) with the

same data as G except for the fact that the players’ constrained

action sets are now given by (16). Seeing as the sets P ′
k(p−k)

are compact (by construction) and vary continuously with p−k

(simply note that all the functions involved in the definition of

P
′
k(p−k) are themselves continuous),2 G′ will admit a Debreu

equilibrium by Theorem 1 in [6]. On the other hand, given that

the best response set P⋆
k(p−k) of player k against p−k in G is

contained in P
′
k(p−k) for all p−k ∈ P

nc
−k and for all k ∈ K,

it follows that any equilibrium of the restricted game G
′ will

also be an equilibrium of G, and our proof is complete.

2Importantly, given that the arg max operator is not continuous, this
continuity property might fail if we had taken P

′

k(p−k) ≡ P
⋆
k(p−k). By

artificially enlarging the players’ best-response set, continuity is guaranteed.

Having established the existence of a Debreu equilibrium,

we now turn to its structure. To that end, if we let

αk =
1

N

(

pc −
N
∑

n=1

Γ/µk,n

)

(17)

βk =
1

N

N
∑

n=1

ln (µk,n/Γ) (18)

the paradigm of fractional programming leads to the following

characterization:

Prop. 2: At the Debreu equilibrium of G, the elements p⋆k,n
of the optimal transmit power profile p⋆ are the solutions to

the following fixed-point system of equations:

p⋆k,n =

(

1

λ⋆
k

− Γ

µk,n

)+

(19)

where

λ⋆
k = min

(

λk, λk

)

(20)

with

λk = e(βk−1)−W(αk·e
βk−1) (21)

being the water level of the water-filling operator (19) when

the problem (7) is solved without the minimum-rate constraints

(9) (or equivalently, θk = 0 ∀k), where W (·) denotes the

Lambert W function [10], and3

λk =
1

Γ
N

√

1

2θk

∏N

n=1 µk,n (22)

is the water level of (19) when all minimum-rate constraints

(9) are simultaneously met with equality (i.e., (7) reduces to

a power minimization given rate constraints rk = θk).

Proof: Note first that (7) can be expressed in the language

of fractional programming as:

p⋆
k = arg max

pk∈Pk(p−k)

ϕ(pk)

χ(pk)
(23)

where Pk(p−k) is defined as in (11), and

ϕ(pk) =

N
∑

n=1

ln(1 + µk,npk,n/Γ), (24)

χ(pk) = pc +

N
∑

n=1

pk,n. (25)

Using [4, Sect. II.A] we can see that solving problem (23)

is equivalent to finding the root of the following nonlinear

function:

Φ(λk) = max
pk∈Pk(p−k)

ϕ(pk)− λkχ(pk) (26)

where λk ∈ R. To compute the solution of (23), let us first

use (24)-(25), but without the constraint (9), so that pk ∈ RN
+

3The closed-form expressions (21) and (22) apply only when all subcarriers
N are active, i.e., pk,n > 0 for all n ∈ N . Please refer to Sect. IV for a

practical method to compute λk and λk in the general case pk,n ≥ 0.



Algorithm 1 Iterative algorithm to solve problem (7).

set t = 0.

initialize pk[t] = 0N for all users k ∈ K
repeat

for k = 1 to K do

{loop over the users}
receive {γk,n[t]}Nn=1 from the serving SAP

compute λk using Algorithm 2 and λk using inverse

water-filling

set λ⋆
k = min

(

λk, λk

)

for n = 1 to N do

{loop over the carriers}
update pk,n[t+ 1] = max

(

0, 1
λ⋆
k

− Γ·pk,n[t]
γk,n[t]

)

end for

end for

update t = t+ 1
until pk[t] = pk[t− 1] for all k ∈ K

(i.e., only nonnegative powers are considered). The stationarity

condition given by

∂ϕ(pk)

∂pk,n

∣

∣

∣

∣

pk,n=p⋆
k,n

− λk

∂χ(pk)

∂pk,n

∣

∣

∣

∣

pk,n=p⋆
k,n

= 0 (27)

for all n = 1, . . . , N using (24) and (25) becomes

µk,n/Γ

1 + µk,np⋆k,n/Γ
− λk = 0 n = 1, . . . , N. (28)

Hence, considering p⋆k,n ≥ 0, the optimal power allocation

becomes the waterfilling criterion (19), in which the water

level λ⋆
k is replaced by λk . By plugging (28) back into (26),

we can finally compute the optimal power level λk:

− lnλk + (βk − 1) = αkλk (29)

where the functions αk and βk are defined as in (17) and (18),

respectively. To provide a better insight on (29), let us try to

write it in a closed form. To this aim, let us define

νk = − lnλk + (βk − 1) (30)

so that (29) can be rewritten as

νk · eνk = αk · eβk−1. (31)

Using the Lambert function W (·), and inverting (30), after

straightforward manipulation we get λk as in (21).

When introducing back the constraint (9), we are placing

a lower bound on ϕ(pk): ϕ(pk) ≥ θk. Following [4], this is

equivalent to placing an upper bound λk on λk, that comes

out of the inverse waterfilling criterion that minimizes χ(pk)
given ϕ(pk) = θk, and is equal to (22). Hence, the solution

to (7) is given by (19), with λ⋆
k computed as in (20).

IV. DISTRIBUTED IMPLEMENTATION

To derive a practical criterion to let each small-cell UE

k ∈ K reach the Debreu equilibrium of G in a distributed

fashion, we start by assuming that the UEs with indices j 6= k

Algorithm 2 Iterative algorithm to compute λk as in (21).

set a tolerance ε ≪ 1
{}Initialization of the Dinkelbach method:

repeat

select a random λk ∈ R

for n = 1 to N do

set pk,n = (1/λk − Γ · pk,n[t]/γk,n[t])+
end for

compute ϕ(pk) using (24) and χ(pk) using (25)

set Φ(λk) = ϕ(pk)− λk · χ(pk)
until Φ(λk) ≥ 0
{}Dinkelbach method:

while Φ(λk) ≥ ε do

set λk = ϕ(pk)/χ(pk)
for n = 1 to N do

set pk,n = (1/λk − Γ · pk,n[t]/γk,n[t])+
end for

update ϕ(pk) using (24) and χ(pk) using (25)

set Φ(λk) = ϕ(pk)− λk · χ(pk)
end while

have already chosen their optimal transmit powers (i.e., in an

asynchronous resource allocation scenario). This amounts to

assuming p−k = p⋆
−k. Hence, from (3), we have that the gains

µk,n(p
⋆
−k,n) needed to implement (19) can be obtained by

µk,n(p
⋆
−k,n) =

γk,n
pk,n

(32)

for all n ∈ N . This means that the only information that is

not locally available at the kth UE to compute the optimal

powers {p⋆k,n} is the set of SINRs {γk,n} measured at UE k’s

serving SAP, that can be fed back with a modest feedback rate

requirement on the return channel (a discussion on the impact

of a limited feedback can be adapted to this specific scenario

from [16]).

Based on the above considerations, we can derive an it-

erative and fully decentralized algorithm to be adopted by

each UE k at each time step t to solve the fixed-point

system of equations (19) with a low-complexity, scalable and

adaptive procedure. The pseudo-code for the whole network

is summarized in Algorithm 1. Note that, in practice, each

UE k needs only to implement the steps enclosed in the inner

cycle, and this algorithm is thus suitable for an asynchronous

implementation and a dynamic network configuration, since

each UE only requires the SINRs fed back by the serving

SAP, without any further information on the network and/or

small-cell status.

For the sake of clarity, the algorithm to compute λk as

in (21) is reported in Algorithm 2, whereas λk can easily

be computed using standard water-filling algorithms (e.g., see

[7]). Note that, although (21) is derived analytically in a closed

form, it is attractive to use the iterative method outlined in

Algorithm 2, that takes advantage of the Dinkelbach method

[17], a numerical method based on the application of Newton’s

method that significantly reduces the computational complex-
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Fig. 1. Average normalized rate at the equilibrium as a function of the
normalized distance from the SAP.

ity compared to the evaluation of the Lambert W function.

For the sake of brevity, Algorithm 2 makes use of some

functions introduced in the proof of Proposition 2. Throughout

the simulations reported in Sect. V, the tolerance is set to

ε = 10−5.

The convergence of Algorithm 1 to the equilibrium point is

assessed numerically in the next section by means of extensive

simulations. A formal proof of the convergence is beyond the

scope of this work, and it is currently under investigation. A

possible solution in this direction comes from the observation

that the power allocation pk,n[t+1] in Algorithm 1 is updated

according to a water-filling strategy, in which the water

level λ⋆
k is computed as λ⋆

k = min
(

λk, λk

)

. Studying the

contraction properties of this water-filling operator is likely to

represent the right way to prove the convergence towards the

equilibrium (e.g., see [18] for more details).

V. SIMULATION RESULTS

In this section, we illustrate some numerical results to eval-

uate the performance of the proposed algorithm for different

working conditions. Throughout the simulations, we adopt

the following parameters (see [2] and references therein). We

consider a 200m× 200m area populated by S = 8 randomly

distributed small cells, each having a radius ρs = ρ = 20m

and a forbidden area with radius 0.2m. The set of available

subcarriers is composed by N = 32 subcarriers, each having a

bandwidth B ≅ 11 kHz and spaced by 350 kHz, whereas each

UEs coherence bandwidth is assumed to be Bc ≅ 90 kHz,

using a 24-tap channel model to reproduce multipath effects.

To include the effects of fading and shadowing into our model,

we use a path-loss exponent equal to ς = 4. For simplicity,

we assume perfect channel estimation at the receiver side, and

we consider the maximum ratio combining (MRC) technique,

which amounts to setting gk,n = hkk,n for all k ∈ K and

n ∈ N . We also assume an SINR gap equal to Γ = 1 = 0 dB

and an AWGN per-subcarrier power equal to σ2 = 0.137 fW.
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Fig. 2. Average transmit power at the equilibrium as a function of the
normalized distance from the SAP.

Without loss of generality, we will measure the performance

for a specific user (say user 1) within a small cell, by averaging

over all possible positions of the users, uniformly randomizing

their minimum-rate constraints θk in [0, 20] [b/s/Hz] for k 6= 1.

Unless otherwise specified, we assume each SAP s to be

equipped with M = 2 received antennas, the number of users

per small cell to be Ks = 8, the nonradiative power to be

pc = 100mW, and the rate constraint for the user of interest

to be θ1 = 10 b/s/Hz.

Figs. 1 and 2 depict the average total transmit powers and

the achievable (normalized) rates at the equilibrium as func-

tions of the (normalized) distance between the observed user

and its SAP, respectively, averaged over 10, 000 independent

network realizations. Red lines represent the case without rate

constraints θ1 = 0 b/s/Hz, whereas blue and green lines report

the cases θ1 = 10 b/s/Hz and θ1 = 20 b/s/Hz, respectively.

As can be seen, when the UE is close to the serving SAP

d1/ρ ≤ 0.3, the equilibrium point in the three cases is exactly

the same, as the energy-efficient formulation lets the user

achieve an equilibrium rate which is significantly larger than

the minimum one. When on the contrary the reference user

is close to the cell edge (say d1/ρ ≥ 0.8), the MAI becomes

significant, and thus the equilibrium rate given by the energy

efficient formulation approaches the minimum one. This is

particularly apparent in Fig. 1, and is reflected in the average

total power consumption reported in Fig. 2. This behavior,

although dependent from the particular network settings, is

true in general. Note that the critical normalized distance,

at which r1(p
⋆) ≅ θ1, decreases as either the constraint

θ1 increases, or the degrees of freedom N · M , that is

directly connected to the number of available resources in

the network, decreases with respect to the number of users

K =
∑

s Ns = 64.4 Interestingly, as confirmed by numerical

4A rule of thumb to properly drive the network is to have N · M ≥ K .
In this case, we have on purpose reported a borderline scenario, in which
N = 32, M = 2, and K = 64 = N ·M .
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Fig. 3. Average power at the equilibrium as a function of the circuit power.

results not reported here for brevity, which are also in line with

[9], the energy efficiency (in terms of the utility (6) achieved

at the equilibrium) is weakly dependent on the constraint

θ1: although it decreases as θ1 increases, the variation is

negligible, thus introducing fairness into the network.

To evaluate the impact of the circuit power pc on the energy

efficiency of the system, in Figs. 3 and 4 we report the

performance of the proposed algorithm as a function of pc,
averaged over 100, 000 independent network realizations. Note

that, for all selected nonradiative powers pc ∈ [1, 100]mW, the

hypothesis pc ≫ σ2 holds, which is in line with the state of

the art for radio-frequency and baseband transceiver modeling

[2]. As can be seen in Fig. 3, the total power consumption

at the equilibrium P1(p
⋆) is directly proportional to pc. Oth-

erwise stated, the energy-efficient equilibrium point is highly

impacted by the nonradiative power, and bit-per-Joule metric

tells us to use a radiative power which is comparable with

the nonradiative one. Interestingly, the (normalized) achiev-

able rates at the equilibrium point are r1(p
⋆) ≅ 20 b/s/Hz

irrespectively of pc. This justifies the behavior of the achieved

utilities at the equilibrium, reported in Fig. 4, and confirms a

result which is well-known in the literature (e.g., see [4], [19]):

the energy efficiency increases as the circuit (nonradiative)

power decreases. Hence, reducing pc can achieve a two-fold

goal, thus further boosting the research in this field: not only

is it expedient to reduce the constant power consumption

(from an electronics point of view), but also it leads energy-

aware terminals to reduce their radiative power when they

aim at maximizing their bit-per-Joule performance (from an

information-theoretic and resource-allocation perspective).

Finally, Figs. 5 and 6 report the performance of the proposed

resource allocation scheme as a function of the number of

users per cell Ks for three different receive architectures:

M = 1 (red lines), M = 2 (blue lines), and M = 3 (green

lines) antennas, respectively. As can easily be guessed, the

degrees of freedom N ·M impact on the occurrence of feasible
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Fig. 4. Average utility at the equilibrium as a function of the circuit power.

scenarios: as confirmed by simulations, when the total number

of users K = 8Ns is larger than N ·M = 32M , the resources

available in the network are scarce to accommodate all the rate

requests θk. To provide significant performance results, we

plot only network configurations that yield feasible scenarios

with an occurrence larger than 70% of the times. This is the

reason why only Ks ≤ 5 is reported for the case M = 1,

whereas M = {2, 3} are able to accommodate a larger popu-

lation of users without impacting on the required minimum

performance θk. As can be seen in Fig. 5, increasing the

number of users Ks increases the contribution from both intra-

cell and inter-cell MAI, which in turn decreases the average

normalized achievable rate at the equilibrium. However, note

that increasing M yields a larger r1(p
⋆), since the SAP can

better separate the users due to a larger space diversity given

by the single-input-multiple-output (SIMO) configuration (and

thus a larger number of degrees of freedom).

This behavior is confirmed by Fig. 6, that measured the

utility (6) as a function of the same parameters. As expected,

in all network configurations increasing Ks decreases u1(p
⋆),

due to increasing the MAI. However, note that the difference is

not significant for all receiver configurations. This means that,

if the only concern is the energy efficiency of the system, then

increasing the number of antennas does not yield significant

advantages. On the contrary, if also the spectral efficiency is

critical (i.e., if larger θk’s are needed), then increasing M is

a viable solution to achieve a proper resource allocation, as

witnessed by larger achievable rates at the equilibrium (see

Fig. 5). It is worth noting that these considerations hold true

due to adopting a MRC technique, which is suboptimal for a

proper MAI management. Other schemes, such as zero-forcing

(ZF) or minimum mean-square error (MMSE) approaches,

which are out-of-scope of the present contribution, might

lead to exploiting better the spatial diversity of the MISO

configurations, and thus larger differences in the achieved

energy efficiency. Finally, note that, throughout all simulated
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scenarios, the algorithm proposed here requires on average

at most 30 steps to converge. This figure applies for the most

demanding configurations (e.g., user positions close to the cell

edge and/or larger number of users), while it is considerably

lower in more favorable situations (e.g., when N ·M ≫ K).

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed a distributed power allocation

scheme for energy-aware, non-cooperative wireless users with

minimum rate constraints in an uplink multicarrier small-

cell network. By modeling this scenario as a non-cooperative

game in the sense of Debreu, we proved the existence of an

equilibrium state and we characterized it as the fixed point

of a water-filling operator using techniques borrowed from

fractional programming. To attain this equilibrium in a dis-

tributed fashion, we also proposed an iterative solution method

based on an iterative water-filling best response process, whose

convergence and performance was assessed by numerical

simulations. Performance results show that reducing the non-

radiative power consumed by the user device electronics is

particularly critical to improve the performance of mobile

terminals in terms of energy efficiency.

Challenging open issues for further work include: i) assess-

ing the feasibility of the problem given a particular network

realization; ii) analytically proving the convergence of the

iterative algorithm to the equilibrium point; iii) assessing

its complexity as a function of the system parameters; and

iv) evaluating the impact of different receiver architectures on

the spectral and energy efficiency of the network.
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