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Abstract—We analyze the power allocation problem for or-
thogonal multiple access channels by means of a non-cooperative
potential game in which each user distributes his power over the
channels available to him. When the channels are static, we show
that this game possesses a unique equilibrium; moreover, if the
network’s users follow a distributed learning scheme based on
the replicator dynamics of evolutionary game theory, then they
converge to equilibrium exponentially fast. On the other hand,
if the channels fluctuate stochastically over time, the associated
game still admits a unique equilibrium, but the learning process
is not deterministic; just the same, by employing the theory of
stochastic approximation, we find that users still converge to
equilibrium.

Our theoretical analysis hinges on a novel result which is of
independent interest: in finite-player games which admit a (possi-
bly nonlinear) convex potential, the replicator dynamics converge
to an ε-neighborhood of an equilibrium in time O(log(1/ε)).

Index Terms—Nash equilibrium; potential games; parallel
multiple access channel; power allocation; replicator dynamics.

I. Introduction

IN view of the decentralized nature of future and emerg-
ing wireless networks, non-cooperative game theory has

become an important tool to analyze distributed problems
in networks whose nodes cannot be assumed to adhere to
centrally controlled protocols. The main goal has been to
develop policies and algorithms that nodes can use to optimize
their resources (power, bandwidth, etc.) on their own, so,
following [1], the questions that arise are a) whether there
exist “equilibrial” policies which are stable against unilateral
deviations; b) whether these (Nash) equilibria are unique;
and c) whether they can be reached by distributed learning
algorithms that require only local information.
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Accordingly, an important paradigm which has attracted
significant interest in the wireless communications literature
concerns the allocation of power over orthogonal communi-
cation channels [1], [2], [3]. From a centralized viewpoint,
this is a relatively well-studied subject, especially with respect
to optimal power allocation schemes which allow users to
reach the boundary of the rate region assuming full channel
knowledge and central control [4], [5]. On the other hand,
more recent examinations [6], [7], [8] focus on socially stable
power allocation policies because, even if the globally optimal,
capacity-achieving power profile is known and used, it might
be unstable under deviations by selfish users (and thus useless
in a decentralized setting).

In this paper, we consider the problem of uplink commu-
nication in multi-user networks consisting of several receivers
that operate on distinct, non-interfering channels, and we focus
on giving definitive answers to points (a)–(c) above, analyzing
the equilibrial structure of the problem and its convergence
aspects. Despite its apparent simplicity, this parallel multiple
access channel (PMAC) model has several relevant applications
such as, for instance, in 802.11-based wireless local area
networks (WLANs) with non-overlapping channels [9], [10],
distributed soft handoffs in cellular systems [11], distributed
power allocation in digital subscriber lines (DSLs) [12], and,
finally, in throughput-maximizing power control in multi-
carrier code division multiple access (MC-CDMA) systems [13].

Our analysis will focus on the single-user decoding (SUD)
scheme where the transmitted signal of each user is decoded
separately by the receiver(s) who treat the incoming signal of
other users as additive (Gaussian) noise. The main reason for
using SUD instead of successive interference cancellation (SIC)
is that the former is known to have lower decoding complexity
and signalling overhead than the latter – a consequence of SUD
not having to broadcast the decoding order to the transmitters
[14]. As a result, SIC-based schemes suffer from scalability
issues, especially when there are several receivers and/or the
channel is highly time-varying.

In this context, non-cooperative power allocation games for
static Gaussian interference channels (ICs) have been studied
in a series of related papers [7], [8]. There, the existence of a
Nash equilibrium is a consequence of the convexity properties
of the users’ achievable rates and follows from the general
theory of [15]. In fact, under suitable (but stringent) conditions
on the channel matrices, it was shown that this equilibrium is
unique and that iterative water-filling algorithms converge to
it.

Formally, the static PMAC is a special case of this IC frame-
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work, but the conditional analysis of [7], [8] almost always
fails for static PMAC models. Thus, although the (global)
capacity region of this channel is well-understood [4], [5], [2],
the channel’s distributed version remains unresolved. A first
attempt to remedy this was carried out in [11] where it was
shown that an associated power allocation game admits an ex-
act potential function [16] whose minimum corresponds to the
game’s Nash equilibria. However, this potential is not strictly
convex, so Nash equilibrium uniqueness might fail along with
the uniqueness conditions of [7], [8]. Rather surprisingly, it
turns out that this is not the case: even though these conditions
do not hold in the static PMAC context, the Nash equilibrium
of the static PMAC game is unique (Theorem 1).

In itself, uniqueness allows us to characterize the system’s
behavior at equilibrium, but it does not provide a way of
actually getting there. Regarding such convergence issues,
the authors of [6] considered a single channel with pricing
and exhibited power control algorithms which converge to
equilibrium under “mild-interference” conditions. Similarly,
one of the main results of [12] was to show that if the transmit-
ters know the local channel state and the overall inteference-
plus-noise covariance matrix, then, subject to similar “mild-
interference” conditions, iterative water-filling converges to the
equilibrium set of the game (a result which was then enhanced
in [17] by dropping this condition for a modified water-filling
scheme).

Instead of taking a water-filling approach, we present a
simpler learning scheme based on the replicator dynamics of
evolutionary game theory [18] which involves the same (often
less) information from the side of the players, and which does
not require them to solve a nonlinear water-filling problem.
Dynamics of this type have been studied extensively in finite
[19] and continuous population games [20], but, in nonlinear
games (such as the one we have here), their properties are
not as well understood. Nonetheless, by taking a modified
version of the users’ utilities, we show that the replicator
dynamics converge to an ε-neighborhood of the game’s (a.s.)
unique equilibrium exponentially fast, i.e. in time O(log(1/ε))
(Theorem 3).

In the context of fading however, the static game and
the corresponding replicator dynamics lose much of their
relevance because variations due to fading open the door
to stochasticity. To account for this randomness, we study
both fast and block-fading models. Using techniques from
the theory of stochastic approximation [21], we show that by
properly adjusting their learning scheme, users converge to
the (unique) equilibrium of an averaged game whose payoff

functions correspond to the users’ achievable ergodic rates
(Theorems 4 and 5).

Our convergence analysis is based on a novel game-theoretic
result which is of independent interest: in games which admit
a (star-)convex potential function, the replicator dynamics
converge to (the game’s unique) equilibrium at an exponential
rate (Theorem 6). To the best of our knowledge, this is the
fastest convergence rate that has been established for the
replicator dynamics in the current state of the art [20].

Notational Conventions: If RS is the vector space
spanned by the set S = {sα}Sα=1 and {eα}Sα=1 denotes its

canonical basis, we will use α to refer interchangeably to
either sα or eα, and we will identify the set ∆(S) of probability
measures on S with the standard (S−1)-dimensional simplex of
RS: ∆(S) ≡ {x ∈ RS :

∑
α xα = 1 and xα ≥ 0}. Finally, we will

employ Latin indices for players (k, `, . . . ), while reserving
Greek ones (α, β, . . . ) for their (“pure”) strategies; and when
summing over α ∈ Ak, we will simply write

∑k
α ≡

∑
α∈Ak

.

II. SystemModel

Following [11], the basic setup of our model is as follows:
we consider a finite set K = {1, . . . ,K} of wireless single-
antenna transmitters (the players of the game) who wish
to transmit to a group of single-antenna receivers (possibly
clustered as a single receiver). Each of these receivers operates
on a given channel α ∈ A ≡ {1, . . . , A} (assumed to be
orthogonal, typically in the frequency domain), and each user
k ∈ K may transmit over a subset Ak ⊆ A of these channels
(with Ak ≡ card(Ak) ≥ 2).

In particular, if xkα ∼ CN(0, pkα) is the transmitted message
of user k on channel α ∈ Ak and hkα denotes the respective
channel coefficient, then the received signal on channel α
will be yα =

∑
k hkαxkα + zα, where zα ∼ CN(0, σ2

α) denotes
the thermal noise. Accordingly, user k ∈ K can split his
transmitting power among the channels α ∈ Ak subject to the
constraint: ∑k

α pkα ≤ Pk, (1)

where pkα = E
[
|xkα|

2] represents the power with which the
user transmits on channel α, and Pk is his maximum power.
As a result, the power allocation of user k will be given by
the point pk =

∑k
α pkαekα ∈ R

Ak , and, analogously, the power
profile which collects all users’ power allocations will be re-
presented by p = (p1, . . . , pK) ∈

∏
k R

Ak = RQ with Q ≡∑
k Ak.
In this context, our performance metric will be the users’

achievable transmission rates, which depend on their signal to
interference-plus-noise ratio (SINR):

sinrkα(p) =
gkαpkα

σ2
α +

∑
`,k g`αp`α

, (2)

with gkα = |hkα|
2 denoting the channel gain coefficient of user

k in channel α ∈ Ak. Clearly, the users’ achievable rates will
depend on their power allocation policies through their SINR,
but the exact dependence hinges on the time-variability of the
channel gain coefficients gkα.

At one end, we will study static channels, i.e. channels
whose coherence time is much larger than both the self-
decodable block duration and the power updating period. At
the other extreme, we will also consider fast-fading channels
where the coherence time is much shorter than those charac-
teristic times; here, what matters is the ergodic value of the
SINR and the corresponding rate. Finally, we will also analyze
the more interesting intermediate case, where the coherence
time is greater than the block length but comparable to the
update time – hence allowing blocks to be decoded using
the instantaneous channel values in (2), but also introducing
stochasticity in the game.
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A. Static Channels

We will start with the case of static channels employing the
single-user decoding (SUD). In this case, the spectral efficiency
of user k in the power profile p will be given by [11], [6]:

uk(p) =
∑
α bα log

(
1 + sinrkα(p)

)
(3)

where bα > 0 represents the bandwidth of channel α ∈ Ak

and the channel gains gkα are drawn once and for all from
a continuous distribution on [0,∞) at the outset of the game
and remain fixed for the duration of the transmission [7], [11].
Then, to maximize their spectral efficiency (3), users saturate
(1) by transmitting at the highest possible power [11], so we
are led to the static PMAC game G ≡ G

(
K, {∆k}, {uk}

)
where:

1) The players of G are the transmitters K = {1, . . . ,K}.
2) The strategy space of player k is the (scaled) simplex

∆k ≡ Pk ∆(Ak) =
{
pk ∈ R

Ak : pkα ≥ 0 and
∑
α pkα = Pk

}
of power allocation vectors; the game’s space of strategy
profiles p = (p1, . . . , pK) will then be ∆ ≡

∏
k ∆k.

3) The players’ payoffs (or utilities) are given by the spectral
efficiencies uk : ∆→ R of (3).

Of course, the game G defined in this way does not adhere
to the original normal form of Nash in the sense that a) players
are not mixing probabilities over a finite set of possible actions,
and b) even though the players’ strategy spaces are simplices,
their payoffs are not (multi)linear. On the other hand, with uk

being concave in pk, it is easy to see that G is itself concave
in the sense of Rosen [15]. Also, as was shown in [11], G
possesses an exact potential [16], i.e. a function Φ : ∆ → R
such that:

uk(p−k; p′k) − uk(p−k; pk) = Φ(p−k; pk) − Φ(p−k; p′k), (4)

for all users k ∈ K, and for all power allocations pk, p′k ∈ ∆k

of user k and p−k ∈ ∆−k ≡
∏

`,k ∆` of k’s opponents; in fact,
the analysis of [11] also provides the expression:

Φ(p) = −
∑
α bα log

(
1 +

∑
k gkαpkα

/
σ2
α

)
. (5)

B. Fading Channels

As discussed above, the non-static models that we will
examine are block-fading and fast-fading channels.

1) Block-fading channels: In this case, the coefficients
gkα ≡ gkα(t) remain constant over an entire transmission
block, so, assuming the transmitter knows (2) for each block
through feedback, the users’ utilities are still given by (3), with
different gains gkα at each self-decodable block.1 As such, (5)
is still a potential for the (now evolving) game G(t), the only
difference being that Φ will evolve over time following the
channels and the game.

2) Fast-fading channels: In this regime, the coefficients
hkα ≡ hkα(t) evolve ergodically at a rate which is much
faster than the characteristic length of a transmission block, so
the “instantaneous” utilities (3) lose their relevance. Instead,
and assuming for simplicity that users saturate their power

1Note that we do not assume any delay constraints at the receiver [22]; in
this way, reliable information (a la Shannon) can be transmitted over each
block.

constraints, their utilities will be given by the ergodic rates of
[23]:

uk(p) =
∑
α bα Eg

[
log (1 + sinrkα(p))

]
. (6)

We thus obtain the ergodic game G ≡
(
K, {∆k}, {uk}

)
, which

has the same strategic structure as its static counterpart G but
payoffs given by (6) instead of (3).

In fact, as in the static case, G admits the exact potential:

Φ(p) ≡ Eg[Φ(p)] = −
∑
α bα Eg

[
log

(
1 +

∑
k gkαpkα

/
σ2
α

)]
, (7)

whose form depends on the law of the gkα. Thus, with hkα ∼

CN(0,
√
γkα), γkα ≥ 0, the coefficients gkα = |hkα|

2 will be
χ2-distributed, and the calculations of [24, eq. (11)] yield:

Proposition 1. In i.i.d. Gaussian fast-fading channels with
hkα ∼ CN(0,

√
γkα), the ergodic potential Φ is:

Φ(p) = −
∑

k,α
bαζ(r−1

kα )
∏

`,k
(1 − r`α/rkα)−1 (8)

where rkα=γkαpkα
/
σ2
α and ζ(x)≡

∫ ∞
0 (x+t)−1e−t dt=−ex Ei(−x).

This proposition will be crucial in the numerical calculations
of Section V. For posterity, we only note here that (8) implies
that Φ is strictly convex [25], even though, in general, Φ is
not.

III. Equilibrium Analysis
We begin with the notion of Nash equilibrium:

Definition 1. A power profile q ∈ ∆ will be a Nash equilibrium
of the game G (resp. G) when:

uk(q) ≥ uk(q−k; q′k), (resp. uk(q) ≥ uk(q−k; q′k)) (9)

for all k ∈ K and for all q′k ∈ ∆k. In particular, if q satisfies
the strict version of (9) for all q′k , qk, it will be called strict.

Given that G (resp. G) admits a convex potential, its
equilibrium set will coincide with the minimum set of Φ

(resp. Φ) [26]. As such, the existence of an equilibrium is
guaranteed, and this is already important from a practical
point of view because learning protocols would never converge
otherwise. Our goal in this section will be to show that these
equilibria are essentially unique, thus ensuring the system’s
predictability – a crucial feature for performance evaluation,
QoS guarantees, etc.

A. Static Channels

With regards to the static potential Φ, it is easy to see that
two power profiles p, p′ ∈ ∆ will have Φ(p) = Φ(p′) whenever∑

k gkα(p′kα − pkα) = 0 for all α ∈ A. (10)

In that case, Φ will not be strictly convex, so its minimum set
might fail to be a singleton as well. More precisely, if we set
z = p′ − p, we will also have

∑k
α zkα = 0 for all k ∈ K, so,

on account of (10) above, Φ will not be strictly convex if the
following linear system admits a non-zero solution in z:∑

k gkαzkα = 0, α ∈ A;
∑
α zkα = 0, k ∈ K. (11)

Since z ∈ RQ, Q =
∑

k Ak, and the above A + K constraints
are independent (a.s.), we see that if Q − A − K > 0, then Φ
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cannot be strictly convex – see [27] for more details. In fact,
the quantity ind(G) ≡ Q−A−K will be called the degeneracy
index of the game G, and the condition ind(G) > 0 means that
if the number of links Q exceeds the number of channels plus
transmitters A + K, then the game’s potential is not strictly
convex.

In typical uplink scenarios of practical interest (e.g. single-
receiver OFDM), each user can access all channels, so Ak = A
for all k, and, hence Q = AK > A + K (except in small
2 × 2 systems). This implies that degeneracy appears almost
always, so in the absence of strict convexity, a promising
way to determine whether the PMAC game admits a unique
equilibrium would be to use the conditions of [7], [8], [28]
where one constructs a certain matrix S from the channel gain
coefficients and tries to show that said matrix has a spectral
radius ρ(S) < 1. However, as is shown in [27], this spectral
radius exceeds 1 (a.s.), so the results of [7], [8], [28] do not
apply to our problem. Still, we have:

Theorem 1. The static game G admits a unique Nash equi-
librium (a.s.).

Sketch of Proof: Let p ∈ ∆ and consider the (multi)graph
G(p) = (A,E(p)) whose vertices are the network’s receivers
and whose edge set E(p) is the multiset sum E(p) =

⊎
k Ek(pk)

where each Ek(pk) is a star graph on the nodes α ∈ A to which
pk assigns positive power pkα > 0 (i.e. all channels to which
k transmits with positive power are star-connected and these
graphs are superimposed for all k ∈ K). If p is equilibrial,
G(p) has to be acyclic [27], so p must lie in the interior of
an at most (A − 1)-dimensional face of ∆ (a.s.); our assertion
then follows from a dimension-counting argument (see [27]
for details).

B. Fading Channels

1) Block-fading channels: As we discussed in Section II-B,
the time-varying version of (5) which corresponds to block-
fading channels gkα ≡ gkα(t) is a potential for the block-fading
game G(t). Accordingly, Theorem 1 implies:

Corollary 1. At each channel realization, the block-fading
game G(t) admits a unique Nash equilibrium (a.s.).

2) Fast-fading channels: On the other hand, the averaging
effect in the ergodic rates (6) can be used to show that the
ergodic potential Φ is, in fact, strictly convex. This gives:

Theorem 2 ([25]). The ergodic game G admits a unique Nash
equilibrium.

IV. Learning Dynamics and Convergence to Equilibrium
Although Theorems 1 and 2 guarantee equilibrium unique-

ness, it is not at all clear whether users will be able to calculate
this equilibrium in decentralized environments where only
partial/local information is available at the terminal (e.g., as in
distributed or partially distributed cognitive radio networks).
Consequently, our goal in this section will be to present
a simple distributed learning scheme which allows users to
converge to equilibrium, and to determine the speed of this
convergence.

This question has attracted considerable interest from the
point of view of learning, and two of the most well-
studied paradigms are best-response (BR) algorithms and
reinforcement learning (RL) [29], [19], [20]. In standard BR
schemes [20], players are assumed to monitor their opponents’
power allocation policies and respond optimally to them (with
respect to their individual utilities). Unfortunately (and in
addition to the “perfect monitoring” requirement), it is quite
hard to calculate these best responses in large games, so the
applicability of this approach to large decentralized networks
is quite limited. To circumvent these limitations (in static
channels at least), a promising solution lies in the water-filling
approach of [12], [7], [8], [17] where users only need their
local channel and overall noise-plus-interference covariance
matrix. In that case however a) users must solve a non-
convex fixed point problem at each step; and b) convergence
is conditional on the interference being low enough (except
in [17]). In fact, the conditions of [7], [8] do not hold in the
PMAC case [27], while the approach of [12] breaks down for
large numbers of users [30].

On the other hand, RL algorithms (such as regret-matching
[31]) rely on the players knowing their (possibly fictitious)
payoffs. Thanks to this information (which, however, is often
hard to come by), these algorithms enjoy strong convergence
properties in potential games. However, such learning algo-
rithms have been designed for discrete action sets, so it is very
hard to adapt them to games with continuous action spaces
(such as the ones we are considering here).

To overcome these limitations, our starting point will be the
replicator dynamics of evolutionary game theory [18], [19],
[20]. The reinforcement aspect of these dynamics does suffer
from the same drawback as most RL algorithms (i.e. it applies
only to finite action sets), but, by exploiting the simplicial
structure of the game and its potential, we derive a learning
scheme which applies to continuous action spaces and which
allows users to converge to equilibrium unconditionally and
exponentially quickly (Theorems 3 and 5).

A. Static Channels

Since the replicator equation applies to discrete sets (such
as Ak), a reasonable channel-specific utility would be:

ukα(p) = bα log
(
1 + sinrkα(p)

)
(12)

which leads to the replicator equation:

dpkα

dt
= pkα(t)

(
ukα(p(t)) − P−1

k

∑k

β
pkβ(t)ukβ(p(t))

)
, (13)

whose second term ensures that p(t) ∈ ∆ for all t ≥ 0. Unfor-
tunately, the utility uk of eq. (3) is not a convex combination
of the ukα, so (13) is not well-behaved w.r.t. the game G either
– for instance, Nash equilibria are not stationary.

Instead, given that each user invariably seeks to unilaterally
increase his utility, we will consider the marginal utilities:

vkα(p) ≡
∂uk

∂pkα
=

bαgkα

σ2
α +

∑
` g`αp`α

. (14)

Since player k can calculate vkα(p) by means of sinrkα and
gkα alone (the bandwidths bα are assumed fixed and known),
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any dynamics based on the vkα’s will be inherently distributed
(and simpler than solving a water-filling problem to boot). We
will thus consider the replicator equation:

dpkα

dt
= pkα(t)

(
vkα(p(t)) − vk(p(t))

)
, (15)

where vk denotes the user average vk(p) = P−1
k

∑k
β pkβvkβ(p).

Remark 1 (Comparison to other power updating schemes). The
replicator equation (15) is clearly quite unlike the water-filling
schemes of [12], [7], [8], [17]. Closer in spirit to (15) are the
algorithms developed in the 90’s with the goal of minimizing
transmitting power by comparing the instantaneous SINR to a
target value and iteratively updating the power proportionally
to this difference [32], [33], [34]; still, there is little overlap
with these algorithms, both in terms of setup and convergence.

Remark 2. The marginal utilities vkα are similar but not equal
to the SINR (2) of user k at a given channel α ∈ Ak, and
they do not coincide with the popular metric of total rate per
unit power either [13], [3]. These metrics can all be calculated
based on the same feedback (and might appear more appealing
than vkα), but we shall see that it is precisely the (perhaps
unconventional) choice of the marginal utilities vkα that leads
to convergence.

The first important property of (15) is that its rest points
satisfy the (waterfilling) condition vkα(p) = vkβ(p) for all nodes
α, β ∈ supp(pk) to which user k transmits with positive power.
Hence, by the Karush-Kuhn-Tucker (KKT) conditions of [11],
we see that Nash equilibria of G are stationary in (15).

The converse of this statement is not true: every vertex of
∆ is stationary without necessarily being a Nash equilibrium.
Nonetheless, the game’s (unique) Nash equilibrium is the only
attracting state of the dynamics (see Appendix A for the
proof):

Theorem 3. Let q ∈ ∆ be the (a.s.) unique equilibrium of G.
Then, every interior solution orbit of the replicator dynamics
(15) converges to q; moreover, there exists c > 0 such that

DKL (q ‖ p(t)) ≤ DKL (q ‖ p(0)) e−ct for all t ≥ 0, (16)

where DKL is the Kullback-Leibler divergence. In other words,
replicator trajectories converge to an ε-neighborhood of a
Nash equilibrium in time O(log(1/ε)).

Remark 1. To the best of our knowledge, the exponential
convergence rate of Theorem 3 (see also Theorem 6 in App. A
and Fig. 1) is the fastest known estimate for the replicator
dynamics (see [20] for a review of the state of the art).

Remark 2. The Kullback-Leibler divergence is defined as [20]:

DKL(q ‖ p) =
∑

k,α:qkα>0
qkα log

(
qkα

/
pkα

)
. (17)

Clearly, DKL(qk ‖ pk) is finite if and only if pk allocates positive
power pkα > 0 to all channels α ∈ supp(q) which are present
in qk. Thus, in particular, Theorem 3 guarantees that uniform
initial power allocations equilibrate exponentially quickly.

Remark 3. In the evolutionary analysis of [35], the fitness
of a species (the number of descendants in the unit of time)
might be nonlinear, but it is still a convex combination of each

phenotype’s fitness. In this special case, the dynamics of [35]
are formally equivalent to (15), and it is shown therein that
their limit points are Nash equilibria. Theorem 3 (see also
Theorem 6) extends this analysis by demonstrating that the
replicator dynamics really do converge to Nash equilibrium,
and that the rate of this convergence is exponential.

Remark 4. It was shown in [7] that iterative water-filling algo-
rithms converge exponentially when the water-filling operator
is a contraction. However, given that the sufficient conditions
which guarantee the contraction property fail in the PMAC case
[27], the analysis of [7] does not apply here.

Of course, the value of the exponent of (16) is critical be-
cause it controls how fast users converge to equilibrium. Thus,
if we consider the “instantaneous” convergence exponents:

λk(t) ≡ −
1
t

log
DKL(qk ‖ pk(t))
DKL(qk ‖ pk(0))

, (18)

then Theorem 3 simply states that the total equilibration rate
λ(t) ≡ mink{λk(t)} is at least c. For the sake of simplicity, we
will only present here an analytic expression for the value of
c for strict equilibria (for the full analysis including non-strict
equilibria, see Appendix A). In this case, if user k transmits
with full power to channel αk at equilibrium, we will have:

ck ≡ lim inft{λk(t)} = γ−1
k (1 − e−γk ) ∆vk and c = mink{ck}

(19)
where ∆vk = min

{
vk,αk (q) − vkβ(q) : β , αk

}
is k’s minimum

deviation cost and γk = DKL(q ‖ p(0))/Pk. We thus obtain:

Proposition 2. If q =
∑

k Pkek,αk is a strict equilibrium of the
static game G, the power of user k on channel αk grows as:

pk,αk (t) ∼ Pk

(
1 − e−∆vk t

)
. (20)

Proof: From (19), we have ck → ∆vk as γk → 0. However,
since DKL(qk ‖ pk(t))→ 0 as t → ∞ (Theorem 3), we will have
γk → 0 by definition, and our assertion follows.

B. Fading Channels

1) Block-fading channels: In this case, the replicator equa-
tion (15) becomes non-deterministic because the coefficients
gkα evolve stochastically over time. To account for this, we
will rewrite the replicator dynamics (15) in discrete time as:

∆pkα(n+1) = δ(n)pkα(n)
[
vkα(p(n), g(n))−vk(p(n), g(n))

]
, (21)

where ∆pkα(n + 1) ≡ pkα(n + 1)− pkα(n) and the “step” δ(n) is
a (possibly time-dependent) learning parameter.

For simplicity, we will concentrate here on the case where
the temporal variations of the channels are uncorrelated. In this
case, if we set vkα = E[vkα] and ηkα = vkα − vkα, we obtain:

pkα(n + 1) = pkα(n) + δ(n)pkα(n)
(
vkα(p(n)) − vk(p(n))

)
+ δ(n)pkα(n)

(
ηkα(p(n), g(n)) − ηk(p(n), g(n))

)
, (22)

where the vkα are deterministic and the ηkα are zero-mean. In
fact, if we interchange expectation and differentiation, we get:

vkα(p) = E
[
∂uk

∂pkα

]
=

∂

∂pkα
E[uk] =

∂uk

∂pkα
, (23)
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Fig. 1. Convergence to equilibrium in a 2× 2 game with static channels. The dashed contours in Fig. 1(a) are the level sets of the K-L divergence w.r.t. the
game’s equilibrium (red dot), while p1, p2 represent the normalized power allocation of each user. In Fig. 1(b), we plot the spectral efficiency uk of each user
as a function of time for three randomly drawn initial configurations; as can be seen in the inlay, the equilibration rate λ(t) coincides with the value predicted
by Theorem 3 (solid black line).

so the mean utilities of (22) are the gradients of the ergodic
rates (6). Thus, if we remove the noise ηkα from (22), the
general theory of [21] shows that (22) will track the mean-
field equation:

dpkα

dt
= pkα(t)

[
vkα(p(t)) − vk(p(t))

]
, (24)

so the asymptotic properties of (22) will follow those of (24).
We thus see that the asymptotic behavior of the replicator

algorithm (21) for block-fading channels is intimately linked to
the ergodic game G. In itself, this is quite natural because the
ergodic equilibrium of G represents the only reasonable time-
invariant equilibrial notion for the block-fading game G(t) with
temporally uncorrelated channels (see also [36]). More to the
point, we have (see App. B for the proof):

Theorem 4. If the learning parameters δ(n) of (21) satisfy∑∞
n=1 δ(n) = ∞ and

∑∞
n=1 δ

2(n) < ∞, then the algorithm (21)
for temporally uncorrelated block-fading channels converges
(a.s) to the (unique) Nash equilibrium of the ergodic game G.

Remark. The most usual choice for the parameters δ(n) is
δ(n) = 1/n. These variable rates can be interpreted either as
the actual time step of the algorithm, or as a discount that
users apply to their updating scheme at every tick of a timer.
This last interpretation is crucial for practical purposes because
there are hard limits to how fast a device can update its policy.
For constant δ(n) ≡ δ, the dynamics (21) evolve faster, but
convergence to equilibrium is in the distribution sense of [21].

2) Fast-fading channels: As we have already noted in
Section II-B, the users’ (ergodic) rates (6) in the fast-fading
regime depend on the channels’ statistics, so instantaneous
channel information obtained when updating their powers is
of little use. Because of this, the system becomes effectively
deterministic, so, similarly to the static case, users may base
their learning on the (mean) replicator learning dynamics (24)
– i.e. the discrete-time learning scheme (21) without the noise

term and with a constant step δ(n) = δ. We thus obtain (see
App. A):

Theorem 5. The mean dynamics (24) converge to the (unique)
Nash equilibrium of the ergodic game G, and this conver-
gence is exponential: interior orbits ε-equilibrate in time
O(log(1/ε)).

Remark. If the ergodic equilibrium is strict, the convergence
exponent (18) of the mean dynamics (24) is just (App. A):

c = mink {ck} with ck = γ−1
k (1 − e−γk ) ∆vk, (25)

where γk = DKL(q ‖ p(0))/Pk is as in (19), but now ∆vk =

min
{
vk,αk (q) − vkβ(q) : β , αk

}
is the minimum deviation cost

of user k for the mean marginal utilities vkα.

V. Numerical Simulations

In this section, our aim is to validate our theoretical results
by means of numerical simulations. We begin by introducing
the sum-rate efficiency (SRE) of a power profile p:

SRE(p) =

∑
k uk(p)
Csum

, (resp. SRE(p) =

∑
k uk(p)

C sum
for G)

(26)
i.e. the ratio of the sum of achievable rates in the power profile
p over the maximum achievable aggregate sum-rate under SIC
(which is the sum-capacity of the multiple access channel
(MAC)); interestingly, if q is the game’s (unique) equilibrium,
then Csum = −Φ(q) (and similarly for the ergodic case).

In Fig. 2(a), we plot the SRE at Nash equilibrium for
randomly drawn static channels. While the equilibrium SRE
can deviate significantly from its maximum value (unity) for
A < K, in the A ≥ K regime, the SRE is typically close to
100% (and, in fact, equal to 100% with positive probability.
We may attribute this to the fact that for A ≥ K there is a
finite probability that the system’s equilibrium is at a vertex
of ∆ where each user is alone on a single channel, inducing
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Fig. 3. Equilibration (and its efficiency) for different numbers of users and channels. In static channels, the replicator dynamics equilibrate extremely fast,
even for a large number of users; in temporally uncorrelated block-fading channels, the dynamics still converge, but slower – due to the discounting δ(n) = 1/n
in (21).
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system’s coherence time (108 ms and 36 ms respectively).
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optimal performance. Thus, with fair probability (close to 1/2
based on our simulations) the complex SIC scheme yields no
performance benefit over the much simpler SUD approach.
Analogously, in Fig. 2(b), we plot the SRE at equilibrium
for ergodic channels by using Proposition 1 to evaluate the
maximum sum-rate under SIC; in that case, while the SRE is
nearly optimal for small SNR, it deviates strongly from its
maximum value for larger SNR values.

Furthermore, to test the equilibration rate of (21) for dif-
ferent values of K and A, we introduce the equilibration level
(EQL):

EQL(p) = Φ(p)
/
Φ(q), (resp. EQL(p) = Φ(p)

/
Φ(q) for G),

(27)
with q being the equilibrium of G (resp. G) – so an EQL of 1
implies that the system has reached its equilibrium.

Beginning with the static case, in Fig. 3(a) we drew N = 50
channel realizations and ran the discrete-time learning scheme
(21) with constant g(n) and δ(n) for A = 20 channels and
K = 5, 10, 20 and 30 users. Then, by plotting the average
SRE and EQL over time, we see that even for 30 users, the
system equilibrates within a few tens of iterations. On the
other hand, for the ergodic block-fading scenario of Fig. 3(b),
we used A = 10 channels and plotted the system’s EQL over
time for K = 2, 4 and 8 users learning with δ(n) = 1/n.
As predicted by Theorem 4, the system converges to the
game’s ergodic equilibrium – but slower due to the discount-
ing δ(n) = 1/n. Finally, for fast-fading users following the
discrete-time version of (24), the EQL and SRE plots were
virtually identical to the static case (to be expected since
both dynamical systems are deterministic), so they have been
omitted for space considerations.

Finally, to test the convergence rate of the replicator dy-
namics in more realistic (non-ergodic) fading conditions that
do not possess a long-term stationary equilibrium, we also
simulated in Fig. 4 channels that follow the well-known Jakes
model for Rayleigh fading [37]. Specifically, we considered a
2 × 2 game with user velocities v = 5 km/h and 15 km/h
(Figs. 4(a) and 4(b) respectively) transmitting at a carrier
frequency of ν = 2 GHz. We then ran the learning scheme (21)
with a constant update period of δ = 3 ms, and we plotted the
(normalized) power level of a single user against the evolving
equilibrium power level (calculated at each step based on
the instantaneous channel coefficients). Then, to quantify how
well the users follow the system’s evolving equilibrium, we
calculated the cross-correlation of the two processes and the
users’ tracking delay (defined as the point of maximum cross-
correlation).

Remarkably, Fig. 4 shows that the dynamics track the
game’s evolving equilibrium extremely closely. On average,
users equilibrate within 9 ms for 5 km/h fading velocities,
and within 6 ms for 15 km/h – meaning that users converge
within 10-15% of the system’s coherence time (108 ms and
36 ms respectively).

Remark. For larger numbers of users (or channels), the results
observed are similar; for instance, if the users in the previous
game are increased to a few tens (we went up to N = 50), their
tracking delay becomes longer but never exceeds 30-35% of

the channel coherence time. However, due to space limitations,
we opted to present here only the 2 × 2 case for simplicity.

VI. Conclusions and Future Directions

In this paper, we studied the distributed power allocation
problem for orthogonal uplink channels by introducing a game
which admits a convex potential function. For both static and
fading channels, we found that the associated game admits
a unique Nash equilibrium and we showed that a simple
distributed learning scheme based on the replicator dynamics
converges to equilibrium from (almost) any initial condition.
In fact, by proving a general result for convex potential games,
we showed that the speed of this convergence is exponential:
users converge to an ε-neighborhood of an equilibrium in time
which is at most of order O(log(1/ε)).

There is a number of important extensions of this work
which demonstrate the strength of the replicator dynamics in
continuous nonlinear games of this sort. First off, instead of
the achievable rates uk, one could consider energy-efficient
metrics where users do not saturate their power constraints –
e.g., when the price of transmission power might restrain users
from transmitting at maximum power. More importantly, these
techniques can be extended even to non-orthogonal channel
models such as the multiple-input multiple-output (MIMO) MAC
case where the game’s strategy space consists of all positive-
definite precoding matrices with constrained trace. Because
of this nonlinear structure, the form (15) of the replicator
dynamics no longer applies, but one can still write down
a suitably modified matrix-valued replicator equation which
allows users to converge to equilibrium.

Appendix A
Convergence Speed of the Replicator Dynamics

Recall first that the solid tangent cone to ∆ at q is the set of
rays starting at q and intersecting ∆ in at least one other point,
i.e.: T c

q∆ ≡
{
z ∈ RQ : zkα ≥ 0 for all α ∈ Ak with qkα = 0

}
.

With this in mind, we have the following generalization of
convexity:

Definition 2. A function F : ∆→ R will be called star-convex
w.r.t. q ∈ ∆ if f (θ) ≡ F(q + θz) is convex and increasing for
all z ∈ T c

q∆ and for all θ > 0 s.t. q + θz ∈ ∆.

Star-convex functions need not be convex, but strictly con-
vex functions are star-convex w.r.t. their global minimum and
weakly convex functions with a unique minimum are also star-
convex – in particular, both Φ, Φ are star-convex. For games
with star-convex potentials, we then have:

Theorem 6. Let Q ≡ Q (K, {∆k}, {φk}) be a game with a star-
convex potential F. Then, the replicator dynamics (15) for the
marginal utilities φkα =

∂φk
∂pkα

converge to q for any initial con-
dition that starts at finite K-L divergence h0 ≡ DKL(q ‖ p(0))
from q. Moreover, there exists c > 0 such that:

DKL(q ‖ p(t)) ≤ h0 e−ct for all t ≥ 0. (28)

Our proof strategy will be to establish an inequality of the
form d

dt Hq(p(t)) ≤ −cHq(p(t)) and then employ Grönwall’s
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lemma. To that end, we first define the “evolutionary index”:

Lq(p) = −
∑

k,α (pkα − qkα) φkα(p), (29)

so named because q is evolutionarily stable iff Lq(p) > 0 near
q. In fact, if we set Hq(p) = DKL(q ‖ p), an easy calculation
shows that Lq is just (the negative of) the time derivative of Hq

w.r.t. the replicator dynamics (15): d
dt Hq(p(t)) =

∑
k,α

∂Hq

∂pkα
ṗkα =

−Lq(p(t)).
We will therefore begin by showing that Lq(p) > 0 for all

p ∈ ∆ \{q}, implying that Hq is Lyapunov for the replicator
dynamics (15), and proving the convergence part of Theorem
6. Indeed, if we fix some z ∈ T c

q∆, (29) may be rewritten as
f ′(θ) =

∑
k,α

∂F
∂pkα

∣∣∣∣
q+θz

zkα = θ−1Lq(q+θz), for all θ > 0 such that
q + θz ∈ ∆. Then, with f (θ) convex and increasing (Definition
2), we obtain the estimate Lq(p) = θ f ′(θ) ≥ f (θ) − f (0) =

F(p) − F(q), which shows that Lq(p) > 0 for all p , q.
To prove the convergence time estimate (28) we will need to

show that Lq grows linearly along directions which are not sup-
ported in q, and quadratically along those which are supported
in q. To be specific, let Vq = {x ∈ RQ : xkα = 0 if qkα = 0}
be the subspace of directions of RQ, Q =

∑
k Ak, which are

supported in q, and let V⊥q be its orthocomplement in RQ.
Then, by decomposing z ∈ RQ as z = z∥ + z⊥ with z∥ ∈ Vq and
z⊥ ∈ V⊥q , we define the seminorms ‖ · ‖∥ and | · |⊥ as:

‖z‖2∥ ≡ ‖z∥‖
2
2 =

∑∥
k,α z2

kα, |z|⊥ ≡ ‖z⊥‖1 =
∑⊥

k,α |zkα|, (30)

where the notation
∑∥

k,α,
∑⊥

k,α is shorthand for summing over
the directions of Vq and V⊥q respectively. We thus get:

Lemma 1. Let F : ∆→ R be star-convex w.r.t. q ∈ ∆. Then:

Lq(p) ≥ F(p) − F(q) ≥ m |p − q|⊥ + 1
2 r ‖p − q‖2∥, (31)

where m = mink{φkα(q) − φkµ(q) : qkµ = 0, qkα > 0}, and r is
the minimum of the Rayleigh quotient 〈z,M(q + z)z〉/‖z‖2 for
the Hessian M(p) = ∂2F

∂pkα∂p`β
of F, restricted over T c

q∆.

Proof: Since q minimizes F, the KKT conditions give
φkα(q) = − ∂F

∂pkα

∣∣∣∣
q

= −λk for all α ∈ Ak such that qkα > 0 and
φkα(q) < −λk otherwise (where λk denotes the complementary
slackness Lagrange multiplier of F over ∆). Thus, a first order
Taylor estimate with Lagrange remainder readily yields:

f (θ) = f (0) + f ′(0)θ + 1
2 f ′′(ξ)θ2 (32)

for some ξ ∈ (0, θ), so (31) will follow once we properly
estimate the linear and quadratic terms of (32).

As far as the linear term of (32) is concerned, we will
have f ′(0) =

∑
k,α zkα

∂F
∂pkα

∣∣∣∣
q

=
∑∥

k,α zkα
∂F
∂pkα

∣∣∣∣
q
+
∑⊥

k,α zkα
∂F
∂pkα

∣∣∣∣
q

=∑⊥
k,α zkα

(
∂F
∂pkα

∣∣∣∣
q
− λk

)
≥ m |z|⊥, where the last equality holds

because
∑⊥
α zkα = −

∑∥
α zkα (recall that z ∈ T c

q∆) and the last in-
equality is just the definition of m. Similarly, for any ξ ∈ (0, θ)
and z ∈ T c

q∆, we get f ′′(ξ) =
〈
z,M(q + ξz)z

〉
= Rq+ξz(ξz) ‖z‖2,

where Rp(w) =
〈
w,M(p)w

〉
, p ∈ ∆, w ∈ Tp∆, denotes the

Rayleigh quotient of the Hessian M of F. Hence, if r is the
minimum of Rq+w(w) over the set Bq = {w ∈ T c

q∆ : q + w ∈ ∆},
we will also have f ′′(ξ) ≥ r‖z‖2, and (31) follows by plugging
the above into (32) and noting that ‖z‖ ≥ ‖z‖∥.

Obtaining similar estimates for the relative entropy function
Hq is harder (after all, Hq blows up near the boundary of ∆),
so we will need two more auxiliary lemmas:

Lemma 2. For all z ∈ T c
q∆ \{0} and for all a > 1, the equation

Hq(q + θz) = a |z|⊥θ + 1
2 a

∑∥
k,β z2

kβ
/
qkβ θ

2, (33)

admits a unique positive root θa ≡ θa(z). Consequently:

Hq(q + θz) ≤ a |z|⊥θ+ 1
2 a

∑∥
k,β z2

kβ
/
qkβ θ

2 for all θ ≤ θa(z). (34)

Proof: Let h(θ) ≡ Hq(q + θz) be the LHS of (33), and
denote its RHS by ag(θ). Then, if we set w(θ) = h(θ) − ag(θ),
we readily obtain w(0) = 0, w′(0) = |z|⊥(1 − a) ≤ 0, and
w′′(0) =

∑∥
k,β z2

kβ/qkβ(1 − a) < 0, and the result follows by
simple arguments relying on the mean value theorem.

Lemma 3. Let F : ∆ → R be star-convex w.r.t. q ∈ ∆ and let
p(t) be a solution orbit of the replicator dynamics with initial
relative entropy h0 = Hq(p(0)). Then, there exists b > 1 s.t.:

Hq(p(t)) ≤ b |p(t) − q|⊥ + b
2q0
‖p(t) − q‖2∥, (35)

where q0 = mink,α{qkα : qkα > 0}.

Proof: Fix some a > 1. Then, by Lemma 2, we know
that (33) admits a unique positive root θa(z), so let ha(z) =

Hq(q + θa(z)z) and set ha = max{ha(z) : z ∈ S q}, where
S q = {z ∈ T c

q∆ : z + q ∈ ∆ but q + (1 + ε)z < ∆ for any ε > 0}.
Moreover, set hc = max{h0, ha}, let θc(z) be the unique
positive root of the equation Hq(q + θc(z)z) = hc, and define
b(z) = g(θc(z))/hc with g(θ) = |z|⊥θ + 1

2
∑∥

k,β z2
kβ/qkβθ

2 (as
in the proof of Lemma 2). We will then have b(z) ≥ a
since, otherwise, (34) would yield the contradiction hc =

b(z)g(θc(z)) < ag(θc(z)) < h(θc(z)) = hc.
With b(z) > 1, a second application of Lemma 2 yields

Hq(q + θz) ≤ b(z)
(
|z|⊥θ + 1

2
∑∥

k,β z2
kβ/qkβθ

2
)

for all θ ≤ θc(z).
Thus, if we decompose p(t) as p(t) = q + θ(t)z(t) with θ > 0
and z(t) ∈ S q, we will have θ(t) ≤ θc(z(t)); indeed, should
this ever fail, we would have Hq(p(t)) > b(z(t))g(θ(t)) >
b(z(t))g(θc(t)) = hc ≥ h0 which contradicts the fact that Hq

is Lyapunov. Hence, with θ(t) ≤ θc(z(t)) for all t ≥ 0, we get
Hq(p(t)) ≤ b(z(t))

(
|z(t)|⊥θ(t) + 1

2
∑∥

k,β z2
kβ(t)/qkβθ

2(t)
)
, and (35)

follows by taking b = max{b(z) : z ∈ S q}.
Proof of Theorem 6: With notation as in Lemmas 1 and

3, let c = min{m/b, rq0/b}. We then get Lq(p(t)) ≥ m |p(t) −
q|⊥ + 1

2 r ‖p(t) − q‖2∥ ≥ cHq(p(t)) and Grönwall’s lemma yields
Hq(p(t)) ≤ h0e−ct. Since the KKT inequalities for F are strict
along any direction of RQ which is not supported in q, we will
have m > 0 and, consequently, c > 0 as well.

Proof of Theorems 3 and 5: The potentials Φ and Φ are
star-convex, so both theorems follow from Theorem 6.

All that remains is to calculate the value of c when q is
strict. In that case, given that the intersection of Vq with T c

q∆

is trivial, the quadratic term of (31) can be ignored and we get
Lq(p) ≥ 1

2
∑

k ‖pk − qk‖1∆φk, where ∆φk = minµ,αk {φk,αk (q) −
φkµ(q)} > 0. As for (35), we may decompose pk ∈ ∆k \{qk} as
pk = qk + θkzk where zk ∈ T c

qk
∆k has zk,αk = −Pk. Thus, with

pk,αk = Pk(1 − θk), we readily obtain Hq(p) = −
∑

k Pk log(1 −
θk). Now, let θ∗k be defined by the equation h0 = Hqk (qk +θkzk),
i.e., θ∗k = 1 − exp(−h0/Pk), implying that −Pk log(1 − θk) ≤
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h0θk/θ
∗
k iff 0 ≤ θk ≤ θ

∗
k (because of convexity). We then claim

that Hq(p(t)) = −
∑

k Pk log(1 − θk(t)) ≤ h0
∑

k θk(t)/θ∗k , where
θk(t) is defined via the decomposition pk(t) = qk + θk(t)zk(t).

However, if θk(t) > θ∗k for some t ≥ 0, then we would
have Hqk (pk(t)) > h0, and, hence, Hq(p(t)) > Hq(p(0)) as
well, a contradiction – recall that Hq(p(t)) is decreasing. Thus,
combining all the above, we only need pick c such that
Pk ∆φk ≥ ch0/θ

∗
k , and the sharpest such choice is:

c = mink

{
Pk/h0

(
1 − e−h0/Pk

)
∆φk

}
. (36)

Appendix B
Stochastic Approximation of the Replicator Dynamics
Proof of Theorem 4: Note first that ∆ is invariant under

the dynamics (22) if the δ(n) are chosen small enough. To
see this, we will restrict ourselves w.l.o.g. to a game with one
user and two choices, A and B (the general argument being
similar). Thus, if we let pA(n) ≡ p1,A(n) be the power that the
user sends to channel A at the n-th iteration of the dynamics,
we must find δ(n) such that 0 ≤ p(n) ≤ 1 for all n ≥ 0 and all
possible gA,B(n) ≥ 0. So, assuming this holds for some n ≥ 0,
we get:

pA(n + 1) − pA(n) = δ(n) pA(n)(1 − pA(n))

×

 gA(n)
σ2

A + gA(n)pA(n)
−

gB(n)
σ2

B + gB(n)(1 − pA(n))

 . (37)

The first term of the LHS of (37) is positive and the second is
uniformly bounded, say by M, so δ(n) ≤ M yields pA(n + 1) ≥
0. The complementary inequality pA(n + 1) ≤ 1 then follows
similarly, so, with p(n) ∈ ∆ for all n, our theorem follows from
Theorem 2 and Corollary 4 in Chap. 2 of [21].
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in 2007. She obtained the M.Sc. and Ph.D. degrees,
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