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Abstract—In this paper, we examine the problem of cost/energy-
efficient power allocation in uplink multi-carrier orthogonal
frequency-division multiple access (OFDMA) wireless networks.
In particular, we consider a set of wireless users who seek to
maximize their transmission rate subject to pricing limitations and
we show that the resulting non-cooperative game admits a unique
equilibrium for almost every realization of the system’s channels.
We also propose a distributed exponential learning scheme which
allows users to converge to the game’s equilibrium exponentially
fast by using only local channel state information (CSI) and signal
to interference-plus-noise ratio (SINR) measurements. Given that
such measurements are often imperfect in practical scenarios, a
major challenge occurs when the users’ information is subject
to random perturbations. In this case, by using tools and ideas
from stochastic convex programming, we show that the proposed
learning scheme retains its convergence properties irrespective of
the magnitude of the observational errors.

I. Introduction

Ever since the early development stages of legacy wireless
networks, power control has been an essential component of
network design and operation, especially in decentralized en-
vironments where only local information is available at each
mobile terminal [1]. As such, the introduction of fast and
distributed power control algorithms (both closed- and open-
loop) was one of the main improvements that were brought
about in third generation CDMA-based cellular networks, in
both single- and multi-carrier settings.

Controlling the transmitted power has two important pur-
poses. The first is to minimize the interference of a given
node to neighboring receivers, an issue of critical importance
in future and emerging wireless network paradigms where cells
are deployed at a massive scale – for instance, as in the case
of femto-cell networks [2]. Due to their close proximity, neigh-
boring users may create significant interference to one another,
so care must be taken to choose a power allocation profile
that maximizes the users’ transmission rate while limiting their
overall transmit power – otherwise, the situation could rapidly
degenerate to a cascade of power increases.
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Second, power control reduces the users’ overall transmitted
power. Mobile terminals are generally energy-constrained (e.g.
due to the limitations of their power source or because of the
cost of power consumption), so inefficient power allocation can
bring about unnecessary losses in performance. As a result, the
problem that arises is to derive distributed power allocation
policies that maximize the users’ transmission rate in energy-
aware scenarios where transmission power also carries a com-
mensurate cost. This objective is made more complicated by
the fact that wireless users typically have conflicting interests
and cannot be assumed to cooperate with each other for their
collective benefit (in decentralized environments at least).

In view of the above, non-cooperative game theory has
become an important tool to analyze the interactions between
mobile users in wireless network scenarios where energy-
efficient rate maximization is an issue – see e.g. [3–6] for
applications to power control and [7–9] for power allocation
problems. In this framework, the primary objective has been to
develop policies and algorithms that wireless users can use to
optimize their resources (power, bandwidth, etc.), so the main
questions that arise are a) whether there exist “equilibrial”
power allocation policies which are stable against unilateral
deviations; b) whether these (Nash) equilibria are unique (and
thus offer some predictive power with regard to the analysis
of the system); and c) whether the system’s users can reach
such a state by means of distributed, adaptive methods that only
require local (and readily available) information.

Optimizing power allocation in such a way has been inves-
tigated in both single- [4, 5, 10] and multi-carrier scenarios
[6, 11, 12]. In particular, the authors of [3, 4, 10] investigated
the role of pricing as an effective mechanism to measure the
cost of power consumption, thus leading to an energy-efficient
formulation where users seek to maximize their transmission
rate while keeping their transmit power in check (see also
the very recent paper [12] where the authors consider the
problem of maximizing the users’ transmission rate per unit
of transmitted power subject to minimum rate requirements).
Then, to reach an equilibrium state in such a setting, several
distributed approaches have been proposed in the existing liter-
ature based on reaction functions [4], Gauss-Seidel and Jacobi
update algorithms [3] or replicator-based learning [11].



In this paper, we consider the problem of cost/energy-
efficient power allocation in uplink multi-carrier orthogonal
frequency-division multiplexing (OFDM) networks, thus fusing
and extending the cost-driven treatment of [4] for single-carrier
systems with the analysis of [11] for multi-carrier systems in the
absence of power consumption considerations. One straight-
forward scenario where power consumed by the transmitter
needs to be priced in some way is related to the modern use
of smartphones and other multi-purpose mobile devices. In
such devices, the power available for wireless transmission is
restricted by the usage of other time-dependent applications
of varying priority, so one way to model this scenario is to
add a priority-dependent penalty to the available power of the
wireless transmission in each user.

To that end, we provide a game-theoretic formulation for
the problem of unilateral rate maximization subject to pricing
limitations of a general form and we show that the resulting
game admits a unique equilibrium for almost every realization
of the system’s channels. We then propose a distributed expo-
nential learning scheme which converges to equilibrium very
rapidly using only local channel state information (CSI) and
signal to interference-plus-noise ratio (SINR) measurements.
Importantly, by using powerful tools from stochastic convex
programming [13], we are able to show that the algorithm
retains its convergence properties even in the presence of im-
perfect measurements – and irrespective of the magnitude of
the observational errors.

Paper Outline: Our paper is structured as follows: in
Section II, we present our system model and prove that the
associated non-cooperative game admits a unique equilibrium
almost surely. In Sections III and IV we propose a distributed
learning algorithm which allows users to converge to the
game’s equilibrium, even in the presence of (arbitrarily large)
observational errors. Finally, our analysis is supplemented in
Section V by extensive numerical simulations which validate
the convergence results of the previous section and characterize
the performance envelope of the system at its end-state (the effi-
ciency of the game’s equilibria in terms of power consumption
and achieved transmission rate, etc.).

II. SystemModel
The network model that we will focus on consists of a set

K = {1, . . . ,K} of non-cooperative wireless (single-antenna)
transmitters who communicate with a common receiver over
a set M = {1, . . . ,M} of non-interfering subcarriers (typically
in the frequency domain if an OFDM scheme is employed).
Focusing on the uplink case, the aggregate received signal yµ
over the µ-th subcarrier is then given by the familiar signal
model:

yµ =
∑

k∈K
hkµxkµ + zµ, (1)

where xkµ ∈ C denotes the transmitted signal of user k over
subcarrier µ, hkµ ∈ C is the corresponding transfer coefficient
(assumed fixed for the duration of the transmission) and zµ ∈ C
is the noise in the channel, including thermal, atmospheric and
other ambient effects – and modeled as a zero-mean Gaussian
vector zµ ∼ CN(0, σ2

µ) with non-singular covariance.

In this context, the average transmit power of user k on
subcarrier µ is

pkµ = E
[
|xkµ|

2], (2)

and we will be assuming that each user’s total transmit power
pk = E[x†kxk] =

∑
µ pkµ satisfies the constraint:

pk =
∑

µ∈M
pkµ 6 Pk, (3)

where Pk denotes the maximum transmit power of user k ∈ K.
Accordingly, the set of admissible power allocation vectors for
user k will be

Xk =
{
pk ∈ RM : pkµ > 0 and

∑
µ∈M pkµ 6 Pk

}
, (4)

and the system’s state space – viz. the space of all admissible
power allocation profiles p = (p1, . . . ,pK) – will be denoted by
X =

∏
k Xk.

On that account, each user’s achievable transmission rate will
depend on his individual SINR

sinrkµ(p) =
gkµpkµ

σ2
µ +

∑
`,k g`µp`µ

, (5)

where gkµ = |hkµ|
2 denotes the channel gain coefficient for user

k over the µ-th subcarrier. Thus, in the single user decoding
(SUD) regime – where interference by other users is treated as
(possibly colored) noise – the maximum information transmis-
sion rate (achievable with random Gaussian codes) will be:

rk(p) =
∑

µ∈M
log

(
1 + sinrkµ(p)

)
. (6)

Given the form of this objective, each user will saturate the
power constraint (3) and transmit with maximum possible
power in order to maximize his throughput. In practical scenar-
ios however, power consumption carries a commensurate cost,
so we will instead consider the energy-aware utility model

uk(p) = rk(p) − ck(pk), (7)

where pk = E[x†kxk] =
∑
µ∈M pkµ denotes the user’s total

transmit power and ck : [0, Pk] → R+ is a user-specific cost
function measuring the impact of power consumption.

The utility/cost model above admits several interpretations,
depending on one’s point of view. Perhaps the most straightfor-
ward one is that of ck representing the effective monetary cost
of power consumption (whether the cost is paid up front or post-
poned to the moment where the battery of the wireless device
will need to be recharged). Alternatively, from the viewpoint of
energy efficiency, the cost function ck could represent the user’s
adversity to transmit with higher power when not absolutely
necessary. To keep things as general as possible, we will only
consider ck as a generic “price” function and assume that it is
convex and increasing in pk (in tune with standard economic
assumptions).

With all this in mind, unilateral utility maximization leads
to a non-cooperative game G ≡ G(K,M, u) for cost-efficient
power allocation defined as follows:

1) The set of players of G comprises the set of wireless
transmitters K = {1, . . . ,K}.



2) Each player’s set of actions consists of the corresponding
feasible power allocation profiles pk ∈ Xk = {pk ∈ RM :
pkµ > 0 and

∑
µ∈M pkµ 6 Pk}.

3) Each player’s utility uk : X→ R is given by (7).
We will thus say that a power allocation profile p ∈ X is a Nash
equilibrium of G when

uk(pk; p−k) > uk(p′k; p−k), (8)

for all p′k ∈ Xk and for all p−k ∈ X−k ≡
∏

`,k X`.
As the next lemma shows, an important property of the game

G is that the players’ objectives are aligned along a (concave)
potential function (in the sense of [14]):

Lemma 1. The (concave) function

Ψ(p) =
∑

µ∈M
log

(
1 +

∑
k

gkµpkµ
/
σ2
µ

)
−

∑
k∈K

ck(pk) (9)

is a potential function for G; more precisely:

uk(pk; p−k) − uk(p′k; p−k) = Ψ(pk; p−k) − Ψ(p′k; p−k), (10)

for all pk ∈ Xk, p−k ∈ X−k, and for all k ∈ K.

Sketch of proof: The claim follows by carrying out the
calculation at the right-hand side of (10).

By exploiting the game’s potential property, it is easy to
see that the game’s set of equilibria coincides with the set of
maximizers of Ψ [15]; as such, we are led to the (nonlinear)
concave maximization problem:

maximize Ψ(p1, . . . ,pk),

subject to pkµ > 0 and
∑

µ∈M
pkµ 6 Pk.

(11)

Remark 1. The first term of the potential function Ψ is simply
the system’s sum rate under successive interference cancella-
tion (SIC). As a result, maximizing Ψ over the set of feasible
power allocation profiles p ∈ X is equivalent to maximizing
the users’ aggregate utility (sum rate minus aggregate cost) in
a centralized environment where one can apply more sophisti-
cated successive interference cancellation (SIC) techniques.

With Lemma 1 at hand, establishing the existence of Nash
equilibria for G is trivial; in fact, since the game’s potential is
concave, it follows that the set of Nash equilibria of the game is
a convex subset of X∗ [15, 16]. As it turns out, this convex set
is almost surely a singleton:

Proposition 1. The cost-efficient power allocation game G
admits a unique Nash equilibrium for almost every realization
of the channel coefficients hkµ.

Sketch of proof: Due to lack of space, we will only
sketch the basic elements of the proof following a technique
introduced in [11]. First, note that Ψ is not strictly concave:
Ψ(p) = Ψ(p′) whenever

∑
k gkµpkµ

/
σ2
µ =

∑
k gkµp′kµ

/
σ2
µ and

pk = p′k. These liner relations define a convex subset of
maximizers of Ψ which lie at the intersection of X with an affine
space of “degenerate” directions along which Ψ is constant.
By employing the approach of [17] to represent the game as
a (multi)graph, it can then be shown that, generically, this
subspace can only intersect X at a single point, as claimed.

III. Distributed LearningMethods

The fact that the cost-efficient power allocation game G ad-
mits a unique equilibrium for almost every channel realization
is significant from the point of view of managing the system
because it guarantees a unique stable solution. That said, it is
far from clear how the system’s users could actually reach this
equilibrium state, so our goal in this section will be to provide a
distributed, adaptive learning mechanism that can be employed
by the system’s users in order to reach this stable state.

In the absence of power considerations, [11] examined this
problem by means of a continuous-time learning scheme based
on the replicator dynamics of evolutionary game theory [18]
driven by the users’ so-called marginal utility functions ∂rk

∂pkµ
.

Unfortunately however, this approach cannot be applied in our
case because replicator-driven techniques require the problem’s
state space to be a product of simplices – which, in our case,
would amount to players saturating the total power constraint
(7) by default.

To overcome this issue, let pk,0 denote the unused power of
user k, i.e.

pk,0 = Pk − pk = Pk −
∑

µ∈M
pkµ, (12)

so that ∑M

α=0
pkα = Pk, (13)

for all k ∈ K. Accordingly, letting the index “0” denote
a virtual, “unused” channel and writing M0 = M

⋃
{0} =

{0, 1, . . . ,M} for the system’s artificially augmented channel
set, the concave problem (11) may be reformulated as:

maximize Ψ0(p1, . . . ,pK),

subject to pk ∈ ∆k ≡
{
pk ∈ RM0 :

pkα > 0 and
∑
α∈M0

pkα = Pk
}
,

(14)

where now pk = (pk,0, pk,1, . . . , pk,M) and

Ψ0(p1, . . . ,pM) =
∑M

µ=1
log

(
1 +

∑
k∈K

gkµpkµ
/
σ2
µ

)
−

∑
k∈K

ck(Pk − pk,0), (15)

Hence, drawing on the analysis of [11] for power allocation
problems with fixed transmit power pk, we will consider here
the marginal utilities:

vkα =
∂uk

∂pkα
=

c′k(Pk − pk,0) if α = 0,
gkµ

/(
σ2
µ +

∑
` g`µp`µ

)
otherwise.

(16)

Importantly, these marginal utilities can be calculated by
each user with only local information at hand (such as SINR
measurements). Indeed, vk,0 only depends on the user’s total
transmit power pk = Pk − pk,0 so the same applies to the user’s
cost function ck; furthermore, for µ = 1, . . . ,M, some easy
algebra yields

vkµ =
1

pkµ

sinrkµ

1 + sinrkµ
, (17)

so any learning scheme that relies on these marginal utilities
may be implemented in a completely distributed fashion.



Remark 2. A case of particular interest is when the users’ cost
functions are linear, viz. ck = λk pk where λk denotes the cost
incurred by the user (monetary or otherwise) per Watt. In this
context, the user’s marginal cost vk,0 will be:

vk,0 = λk, (18)

so a higher price per Watt increases the user’s tendency to
allocate power to the “unused” channel.

In view of the above, we will consider the following expo-
nential learning process in continuous time:

ẏkα = vkα,

pkα = Pk
exp(ykα)∑

β∈M0
exp(ykβ)

.
(XL0)

Of course, in the above formulation, “power” allocated to the
virtual, “unused” channel 0 means “power unused due to cost
considerations”; accordingly, by exploiting the properties of the
exponential map, we may reformulate this learning scheme as:

żkµ = vkµ − vk,0,

pkµ = Pk
exp(zkµ)

1 +
∑
ν∈M exp(zkν)

.
(XL)

This last process admits the following reinforcement interpre-
tation: each (actual) channel µ ∈ M is scored by aggregating
the difference between its marginal utility vkµ and the marginal
power consumption cost vk,0, and power is allocated with expo-
nential sensitivity to these cumulative performance scores.

The first thing that can be verified with respect to the expo-
nential learning scheme (XL) is that it respects the constraints
imposed by the users’ power considerations: indeed, pkµ > 0 by
definition and

∑
µ pkµ = Pk

∑
µ exp(zkµ)

/(
1 +

∑
ν exp(zkν)

)
6 Pk

for any possible value of the performance scores zkµ. More
importantly, as the next proposition shows, the learning scheme
(XL) guarantees that users converge to a Nash equilibrium of
the energy-efficient power allocation game G:

Proposition 2. Let p(t) be the adaptive power allocation policy
induced by the continuous-time learning scheme (XL) for some
initialization zkµ(0) of the channels’ performance scores. Then,
for almost every realization of the system’s channel coefficients
hkµ, we will have limt→∞ p(t) = p∗ where p∗ denotes the game’s
(unique) Nash equilibrium.

Moreover, p(t) converges to p∗ exponentially fast:

DKL(p∗ ‖p(t)) = O(e−ct), (19)

where c > 0 and DKL(p∗,p) =
∑

k,µ p∗kµ log
(
p∗kµ

/
pkµ

)
denotes

the Kullback-Leibler divergence between p∗ and p.

Sketch of proof: By decoupling the exponential learning
scheme (XL), it can be shown that its solution trajectories
p(t) satisfy an augmented version of the replicator equation of
[11] with an extra strategy to account for the “unused power”
channel 0 ∈M0. Our claim may then be proved by adapting the
proof of Theorem 6 in [11].

IV. Algorithmic Implementation and Robustness
Despite its appealing convergence properties, (XL) is a dy-

namical system that evolves in continuous time, so it is not
clear if it can be implemented as a bona fide, discrete-time
learning algorithm. In this regard, there are two key challenges
to overcome: a) to establish a properly discretized version of
(XL) which retains its convergence in discrete time; and b) to
ensure the algorithm’s robustness in the presence of impefect
CSI and noisy SINR observations.

To that end, we will work here with the following stochastic
diminishing-step discretization of (XL):

zkµ(n) = zkµ(n − 1) + γn
[
v̂kµ(n) − v̂k,0(n)

]
,

pkµ(n + 1) = Pk
exp(zkµ(n))

1 +
∑
ν exp(zkν(n))

,
(20)

where n = 1, 2, . . . , is the iteration counter of the process, γn

is a variable step size whose role will be discussed below and
v̂kα represents a perturbed version of the user’s marginal utility
at the n-th update period. In particular, to account for as wide a
range of measurement errors as possible, we will assume that

v̂kµ(n) = vkµ(n) + ξkµ(n) (21)

where the observational error ξkµ is a bounded martingale
difference (not necessarily i.i.d.), i.e. ‖ξkµ‖ 6 Σ for some Σ > 0
and E

[
ξkµ(n) | ξkµ(n − 1), . . . , ξkµ(1)

]
= 0.

In this way, we obtain the following adaptive algorithm for
cost-efficient power allocation in multicarrier systems:

Algorithm 1 Exponentially-Driven Power Allocation
Parameter: step size γn (default: γn = 1/n).
Initialize: n← 0; scores zkµ ← 0 for all k ∈ K, µ ∈M.
Repeat

n← n + 1;
for each user k ∈ K do simultaneously

set transmit power pkµ ← Pk
exp(zkµ)

1 +
∑
ν exp(zkν)

;

measure sinrkµ;

update marginal utilities: vkµ ←
1

pkµ

sinrkµ

1 + sinrkµ
;

update marginal power cost: vk,0 ← c′k(Pk − pk);
update scores: zkµ ← zkµ + γn

[
vkµ − vk,0

]
;

until termination criterion is reached.

By employing the stochastic optimization techniques of [13],
it is then possible to show:

Proposition 3. Let γn be a variable step size sequence such
that

∑
n γn → +∞ and

∑
n γ

2
n < +∞. Then, for almost every

realization of the system’s channel coefficients hkµ, the iterates
of Algorithm 1 with imperfect measurements given by (21)
converge to the game’s (unique) Nash equilibrium.

Sketch of proof: Algorithm 1 can be seen as a greedy
mirror descent method [13] for Ψ with respect to the L1 norm
on X and with the Shannon–Gibbs entropy as a “distance-
generating function” in the sense of [13]. With this in mind, the



analysis of [13] can be used to show that E[Ψ0(p(n))−Ψ0(p∗)] =

O
(∑n

m=1 γ
2
m
/∑n

m=1 γm

)
, where p∗ is the game’s unique equilib-

rium. In turn, this implies that p(n) → p∗ and establishes our
claim.

V. Numerical Results

To validate the predictions of Section IV for the performance
of Algorithm 1 in multicarrier wireless systems where power
consumption carries a non-negligible cost, we conducted ex-
tensive numerical simulations from which we illustrate here a
selection of the most representative scenarios.

Throughout this section, and unless explicitly stated oth-
erwise, we will assume a population of K = 10 users and
M = 20 subcarriers, while the channel gain coefficients hkµ will
be drawn randomly from [0, 1]. For simplicity, we also assume
symmetric channels and users, i.e. σµ = 1 for all µ ∈ M and
Pk = 1 W for all k ∈ K.

With regards to the cost function ck of the utility model (7),
we will consider three distinct cases: no pricing (NP), linear
pricing (LP), and nonlinear pricing (NLP). Specifically:

1) The NP model is defined trivially as cNP(p) = 0.
2) The LP model is defined as cLP(p) = λp for some λ > 0.
3) The NLP model is defined as cNLP(p) = λ

(
ep/P − 1

)
.1.

To develop some intuition, we first provide some general
results on the evolution of the cost-aware power allocation
game G for K = 2 non-cooperative users that split their
transmitting power over M = 4 channels, using only local
SINR measurements. Specifically, in Figs. 1, we plotted the
total allocated power (3) and achieved transmitted rate (6) for
User 1 (solid lines) and User 2 (dashed lines), with channel
gains h1µ and h2µ respectively. Without loss in generality, we
took h1µ > h2µ, that is, the channel quality for User 1 is better
that the one experienced by User 2.

In Fig. 1 we show how the users converge to the game’s
Nash equilibrium by means of the distributed exponential
learning scheme (XL). As can be seen, User 1 achieves a
higher transmission rate than User 2 due to the better channel
status experienced by User 1 (which, correspondingly, requires
User 1 to spend more power than User 2). Moreover, we also
investigate the implication of pricing on game’s outcome for
different values of the pricing parameter λ. As can be seen, in
the NP scenario, each user saturates his total allocated power
as predicted by the form of the rate function (6); otherwise, in
both the LP and NLP schemes, the cost of power consumption
causes users to transmit at lower powers and the exponential
learning algorithm (XL) converges to a more cost-efficient
power allocation (depending on both the channel quality and
the considered pricing model). As expected, the LP scheme
allows higher rates than the NLP one, while higher values of the
pricing parameter λ force users to allocate less power on each
channel – thus reducing their individual transmission rates.

Fig. 2 shows how the users’ average transmit power, achieved
transmission rate and sum-rate evolve at each iteration of the

1Note that the constant term in cNLP(p) does not affect the equilibrium of the
game as it represents a flat power rate for each user.
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Fig. 1. Total allocated power and transmission rate of User 1 (solid line) and
User 2 (dashed line) as a function of different pricing models and values of the
pricing parameter λ.
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Fig. 2. Evolution of the average allocated power, sum-rate and average
transmission rate for the LP (solid line) and NLP (dashed line) models for
different network configurations.

learning algorithm (XL). As expected, the end-state of the
algorithm depends quite strongly on the number of users and
available channels: as could be expected, best performance
is achieved in the uncontested regime where the number of
available channels is higher than the number of users trying to
access them, i.e. K/M < 1. Fig. 2 also shows how the NLP
model affects the power allocation process; in fact, since NLP
leads to a sharp increase of the transmission cost for higher
powers, it follows that the corresponding loss in transmission
rate is not negligible compared to the LP scheme.

In Fig. 3 we plot the sum-rate, average allocated power and
its respective cost as a function of different pricing models
and values of the pricing parameter λ for different network
configurations. The most interesting result is that three distinct
regions can be identified: a) For λ below a certain threshold λl,
the transmission cost in negligible compared to the contribution
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Fig. 3. Sum-rate, average allocated power and respective cost as a function of
the pricing parameter λ for different channel configurations.

of the transmission rate in the utility function, so pricing does
not impact the system’s performance at equilibrium; b) in the
second region, say λl < λ < λu, the average allocated power and
the sum-rate decrease with λ, thus leading to a nontrivial trade-
off between achievable transmission rate and the cost of power
consumption; finally, for large λ > λu the transmission cost is
so high that it ends up dominating each user’s utility function,
so users remain relatively quiet due to the high cost of power
consumption. An important result is that the average cost paid
by users for each transmission is maximized at λ = λl (recall
that for λ 6 λl the exact value of λ does not affect network per-
formance and users don’t mind paying a small cost in order to
maximize their throughput). This result could be interesting and
useful in all of those scenarios where the receiver of the uplink
channel, e.g., the network operator which sells its channels by
applying a pricing model, wants to maximize its revenues while
maintaining high network performance.2 Fig. 3 also shows that
LP performs better than NLP in terms of the users’ transmission
rate, precisely because users incur a higher cost under the NLP
model (so users will allocate less power on each available
channel thus decreasing their achievable transmission rates).

We also investigated the impact of different values of the ratio
between the number of channels M and the number of users K
on the system’s overall performance. As shown in Fig. 3, the
congested regime K > M leads to worse aggregate throughput
values, as expected; in fact, an increase in the number of
users reduces the SINR of each user transmitting on the same
channel. On the other hand, if K 6 M there is a reduction in
the multiuser interference, so higher transmission rates can be
achieved for all users.

Finally, to assess the algorithm’s convergence speed, we plot-
ted the system’s equilibration level (EQL), defined as follows:

EQL(n) =
Ψ0(p(n)) − Ψ0,min

Ψ0,max − Ψ0,min
(22)

2Note that the revenue/profit maximization occurs when λ = λl but, this
problem lies beyond the scope of the current paper.
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Fig. 4. Evolution of the equilibration rate for different pricing models and
values of the step-size γn.

where p(n) is the users’ power profile at the n-th iteration of
the exponential learning (XL) and Ψ0,min (resp. Ψ0,min) denotes
the maximum (resp. minimum) value of the game’s potential
Ψ0 [11]. In Fig. 4 we plot the equilibration rate of (XL) for
different pricing models and values of the step-size parameter
γn. In the case of a diminishing step size, our exponential
learning scheme converges to equilibrium more slowly than if
a constant step size is used, and the algorithm’s convergence
speed increases with γn. In Fig. 4 we further investigate the
impact of different pricing strategies in the game. When power
consumption carries no cost (the NP regime), the algorithm
converges very fast to an equilibrium point which saturates the
users’ power constraint; otherwise, the algorithm’s convergence
to equilibrium is slower in the LP than in the NLP case, a
phenomenon which implies that the optimal choice of step
size for the algorithm depends delicately on the users’ pricing
scheme.3

In Fig. 5 we plot the game’s equilibration level (EQL) under
the linear pricing model for γn = 1.25, 2.5 and different values
of M and K: as expected, the convergence rate with γn = 2.5
is faster compared to the one achieved for γn = 1.25. The most
interesting result concerns the scalability of the algorithm: as a
matter of fact, the algorithm converges to equilibrium within a
number of iterations that is roughly independent of the underly-
ing network configuration. To better understand the algorithm’s
scalability, we plotted in Fig. 6 the number of iterations needed
to reach the equilibrium for different network configurations
as a function of the step-size parameter. Specifically, we con-
sidered K/M = 0.5 and varied M to study the impact of the
number of users on the algorithm’s convergence rate: Fig. 6
shows that the proposed distributed algorithm scales well with
the number of users, especially if higher values of the step-size

3Importantly, the convergence of Algorithm 1 with a variable step-size γn =
1/n is guaranteed by Proposition 3; this result does not apply to the constant
step-size case, but, nonetheless, the algorithm converged to the game’s (unique)
Nash equilibrium in all our simulations.
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Fig. 6. Evolution of the equilibration rate for different pricing models and
network configurations as a function of the step-size γn.

γn are used in the learning process. More precisely, even for a
large number of users, the algorithm converges to the game’s
equilibrium within a few iterations, and this convergence rate is
approximately independent of the exact number of users.

VI. Conclusions

In this paper we examined the problem of transmit power al-
location in energy constrained in uplink multi-carrier networks.
Assuming that mobile terminals can split their power over sev-
eral non-interfering channels, we investigated the implication
of energy-driven limitations in multi-carrier power allocation
scenarios (reflecting e.g. the cost of power consumption, limited
battery life, or the use of high-priority power-hungry applica-
tions in a fixed power device). In the case where the effective
cost of power is given by a general convex pricing function,
the resulting non-cooperative power allocation game admits
a unique equilibrium for almost every channel realization.

Furthermore, we also proposed a distributed dynamic transmit
policy based on exponentially learning which allows users to
reach the game’s equilibrium exponentially fast, even with
(arbitrarily) imperfect CSI; in practice, our numerical analysis
shows that users reach an equilibrium within a few iterations
of the algorithm. In future work, we plan to extend this result
to the study of temporally fluctuating price constraints so as to
account for fading, user mobility and other variability phenom-
ena.
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