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Correlated Anarchy
in Overlapping Wireless Networks
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Abstract—We investigate the behavior of a large number of
selfish users that are able to switch dynamically between multiple
wireless access-points (possibly belonging to different standards)
by introducing an iterated non-cooperative game. Users start
out completely uneducated and näıve but, by using a fixed set of
strategies to process a broadcasted training signal, they quickly
evolve and converge to an evolutionarily stable equilibrium. Then,
in order to measure efficiency in this steady state, we adapt the
notion of the price of anarchy to our setting and we obtain an
explicit analytic estimate for it by using methods from statistical
physics (namely the theory of replicas). Surprisingly, we find
that the price of anarchy does not depend on the specifics of the
wireless nodes (e.g. spectral efficiency) but only on the number of
strategies per user and a particular combination of the number
of nodes, the number of users and the size of the training signal.
Finally, we map this game to the well-studiedminority game,
generalizing its analysis to an arbitrary number of choices.

Index Terms—Wireless networks, Nash equilibrium, correlated
equilibrium, price of anarchy, evolutionary game, replicas

I. Introduction

A S a result of the massive deployment of IEEE 802.11
wireless networks, and in the presence of large-scale mo-

bile third-generation systems, mobile users often have several
choices of overlapping networks to connect to. In fact, devices
that support multiple standards already exist and, additionally,
significant progress has been made towards creating flexible
radio devices capable of connecting toany existing standard
[1]. It is thus reasonable to expect that, in the near future,users
will be able to switch dynamically between different networks.

In such a setting, even though users have several choices to
connect to, they still have to compete against each other forthe
finite resources of the combined network. Hence, this situation
can be modelled using non-cooperative game theory, a practice
that is rapidly becoming one of the main tools in the analysis
of wireless networks. For example, game-theoretic techniques
were used to optimize transmission probabilities in [2] andto
calculate the optimal power allocation [3]–[6] or the optimal
transmitting carrier in [7]. The authors of [8] and [9] studied
the possibility of connecting to several access points using a
single WLAN card; the selfish behavior of service providers
was analyzed in [10]–[12] and, recently, even the effects of
pricing were examined in [13]–[16] using game theory.
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The scenario that we consider is an unregulated network
where a large number ofN heterogeneoususers (e.g. mobile
devices) connect wirelessly to one ofB nodes (perhaps with
different standards). All users wish to maximize their individ-
ual downlink throughput but each has a different approach:
e.g. users may have different tolerance for delay, or may wish
to employ different “betting” schemes to download data at the
lowest price. So, in general, users have different strategies,
fixed at the outset of the game, and unknown to the rest.

Now, given the users’ competition for the nodes’ limited
resources, it is not clear how they can reach an organized state
in the absence of a central coordinating entity. One possible
way to overcome this hurdle is if users base their decisions on
a “training” signal, e.g. a random signal that is synchronously
broadcasted by the nodes and received by all the users. Then,
as this affair is iterated, one might hope that sophisticated users
develop an insight into how other users respond to the same
stimulus and, eventually, learn to coordinate their actions. This
was precisely the seminal idea behind Aumann’s work in [17]:
players base their decisions on their observations of the “states
of the world” and reach acorrelated equilibrium.

Similar games have also been studied in econophysics,
particularly after the introduction of theEl Farol problem in
[18] and the development of theminority gamein [19]. In
both these games, players “buy” or “sell” and are rewarded
when they land in the minority. Again, the key idea is that
in order to decide what to do, players record and process the
game’s history with the aid of some predetermined strategies.
Then, by employing more often the strategies that perform
better, they quickly converge to an equilibrium which (in an
unexpected twist) turns out to be oblivious to the source of the
players’ observations [20]. In fact, it was shown in [21] that
what matters is simply theamountof feedback that players
receive and the number of strategies they use to process it.

As in [22], our scenario stands to gain a lot from such
an approach. Hence, our main goal will be to expound this
scheme in a way appropriate for selfish users in an unregulated
wireless network. The first step towards this is to generalize
and adapt the minority game of [21] to our setting: this is
done in section II where we introduce theSimplex Game.
Next, in section III, we characterize the game’s equilibria
and compare them to the socially optimal state. From this
comparison emerges the game’sprice of anarchy, a notion first
described in [23] and which measures the distance between
anarchy (equilibria) and efficiency (optimal states).

Our first important result is obtained in section IV: by iterat-
ing the game based on the scheme of exponential learning, we
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find thatplayers converge to an evolutionarily stable equilib-
rium (theorem 11). Then, having established convergence, we
proceed in section V to harvest the game’s price of anarchy.
Quite unexpectedly, we find thatthe price of anarchy is unaf-
fected by disparities in the nodes’ characteristics(theorem 14).
Moreover, we also derive an analytic expression for the price
of anarchy based on the method of replicas from statistical
physics. This allows us to study the effect of the various
parameters on the network’s performance, an analysis which
we supplement with numerical experiments. As a byproduct,
this generalizes the results of the traditional (binary) minority
game to an arbitrary number of choices.

Some calculational details that would detract one’s focus
from the main discussion have been deferred to the appendices
at the end. Finally, as far as notational conventions go, we
will denote the standard (n−1)-dimensional simplex ofRn by
∆n = {x ∈ Rn : xi ≥ 0 and

∑
i xi = 1}; also, we will employ

the game-theoretic shorthand: (x−i ; y) = (x1 . . .y . . . xn).

II. The Simplex Game

To model the scenario that we described in the introduction,
we considerN users that may choose one ofB nodes, each
characterized by a single user spectral efficiency cr . In this
case, ifNr users connect to noder, their throughput will be:

Tr =
cr
Nr

(1)

(for simplicity we assume that users have the same transmis-
sion characteristics).

Despite the simplicity of this throughput model, it has been
shown to be of the correct form for TCP and UDP protocols
in IEEE 802.11b systems, if we limit ourselves to a single
class of users [9]. Furthermore, in the case of third-generation
best-effort systems, the realistic total cell-service throughput is
approximately constant beyond a certain number of connected
users [24]. Thus, (1) is a reasonable approximation for the
user throughput of single-class mobiles.

In fact, equation (1) is flexible enough to account for
parameters that affect a user’s bias towards a node; e.g. we
can incorporate pricing by modifyingcr to cr (1 − pr ) where
pr reflects the price per bit. So, we may renormalize (1) to:

ûr =
yr N
Nr

(2)

where the coefficientsyr are normalized to unity (
∑B

r=1 yr = 1)
and represent the “effective strength” of noder in terms of its
attributes and characteristics. Clearly, nodes can modifythis
“strength” score, in order to maximize their gain; however,
this is assumed to take place at slower time-scales and, hence,
these strengths can be assumed to remain constant.1

We may now note that the core constituents of a congestion
game are all present:N players(users) are asked to choose
one ofB facilities(nodes), their payoff given by the throughput
(2). From this standpoint, the “fairest” user distributionis the
Nash allocation ofyr N users to noder: when distributed this
way, users receive a payoff of û0 = 1 and no one could hope
to earn more from a unilateral deviation (comparably to the

1Obviously, nodes of zero strength (e.g. negligible spectral efficiency) will
not appeal to any reasonable user and can be dropped from the analysis.

“water-filling” of e.g. [25]). As a result, the users’ discomfort
can be gauged by contrasting their payoff to the Nash value:

ûr − û0 =
yr N

yr N+Nr−yr N
− 1 = yr N−Nr

yr N
+ O(1/N) (3)

So, if we focus on the leading term of (3) and introduce:

ur = 1− Nr
yr N

(4)

we may easily that the Nash equilibria of the game remain
invariant under this linearization. In other words, the payoffs
(2) and (4) will be equivalent in terms of social fairness.2

Thanks to this linearization, we may express a user’s payoff

in a particularly revealing form. However, to accomplish this,
we first need to introduce a collection ofB vectors inRB−1

with which to model the nodes:
Definition 1: Let y = (y1 . . . yB) ∈ Int(∆B) be a strength dis-

tribution for B nodes.3 A y-simplex(or y-appropriate simplex)
is a collectionB = {qr }Br=1 ⊆ RB−1 such that, forr, l = 1 . . .B:

qr ·ql = −1+ δrl√
yr yl

(5)

Admittedly, this definition is rather opaque4 but, fortunately,
the geometric picture is much clearer:

Lemma 2:Let B = {qr }Br=1 be ay-appropriate simplex for
somey ∈ Int(∆B). Then:

∑
r yrqr = 0; also:

∑
r yrq2

r = B− 1.

Proof: To establish the first part, note that:
(∑B

r=1 yrqr

)2
=

∑B
r,l=1 yryl qr ·ql =

∑B
r,l=1 yryl

(
−1+ δrl

/√
yryl

)
= 0. As for the

second part, it is just a straightforward application of (5).
In other words, ay-simplex is just like a standard simplex

with vertices “weighted” by the strengthsyr .5 So, if Nr players
chooseqr , we may consider theaggregate betq =

∑B
l=1 Nl ql

and obtain by (5):qr ·q =
∑B

l=1 Nl qr ·ql = −N
(
1− Nr

yr N

)
. We

then get the very useful expression for the payoff (4):

ur = 1− Nr
yr N
= − 1

N qr ·q = − 1
N qr ·

∑N
i=1 qr i (6)

wherer i indicates the choice of playeri. In this way, lemma
2 shows that Nash equilibria will be characterized by:

q =
∑N

i=1 qr i =
∑B

r=1 yr N qr = 0 (7)

i.e. the game will be at equilibrium when the players’ choices
balance out the weights yr at the vertices of the simplex.

Unfortunately, it remains unclear how this Nash allocation
can be achieved in an unregulated network. For this reason,
we will introduce a coordination mechanism akin to the one
proposed by Aumann in his seminal paper [17]. In a nutshell,
Aumann’s scheme is that players observe the random events
γ that transpire in some sample spaceΓ (the “states of the
world”) and then place their bets based on these observations.
In other words, players’ decisions are ordained by their (cor-
related)strategies fi , i.e. functions onΓ that convert events
(“states”)γ ∈ Γ to actions(betting suggestions)fi(γ).

2This is also verified by our numerical experiments (see figure1).
3To clear up any confusion: Int(∆B) = {y ∈ RB : yr > 0 and

∑
r yr = 1}.

4In fact, it is not even clear that the definition is not vacuous. This is shown
in appendix A:y-simplices are pretty easy to construct for anyy ∈ Int(∆B).

5One could also ask here why we insist thaty-simplices be embedded in
R

B−1 instead ofRB. The reason for this is quite subtle and hinges on the fact
that we needB to span the space it is embedded in, so that we may apply
the Hubbard-Stratonovich transformation (see appendix B).
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Inspired by [17] (and also [21]), we propose that a broad-
cast beacon transmit atraining signal m, drawn from some
(discrete) sample spaceM . For example, the nodes could be
synchronously broadcasting the same integerm ∈ {1 . . .M},
drawn from a uniform random sequence that is arbitrated e.g.
by a government agency such as the FCC in the US. To
process this signal, useri has at his disposalS B-valued
random variablescis : M → B (s = 1 . . .S):6 these are
the ith user’s strategies, used to convert the signalm to an
action cis(m) ≡ cm

is ∈ B. So, if user i employs strategysi ,
the collection of maps

{
cisi :M → B

}N
i=1 will be a correlated

strategy in the sense of [17] (contrast with{ fi}Ni=1 above).
However, unlike [17], we cannot assume that users develop

their strategies after careful contemplation on the “states of
the world”. After all, it is quite unlikely that a user will
have much time to think in the fast-paced realm of wireless
networks. Consequently, when the game begins, we envision
that each user randomly “preprograms”S strategies, drawn
randomly from all the possibleBM mapsM→B. Of course,
since we assume users to beheterogeneous, they will program
their strategies in wildly different ways and independently of
one another. Still, rational users will exhibit a predisposition
towards stronger nodes; to account for this, we will posit that:

P(cm
is = qr ) = yr (8)

i.e. the probability that useri programsnodeqr as response to
the signalm is just the node’s strengthyr . In effect, strategies
are picked inanticipation of competition with other users:
specifically, if each user were expecting to play alone, he
would have picked strategies that lead to the strongest node.

We may now summarize the above in a formal definition:
Definition 3: Let y ∈ Int(∆B) be a strength distribution for

B nodes. Then, ay-appropriate simplex gameG consists of:

1) the set ofplayers: N = {1 . . .N};
2) the set ofnodes: B = {qr }Br=1, whereB is a y-simplex;
3) the set ofsignals: M = {1 . . .M}, endowed with the

uniform measure̺ 0(m) = 1
M ; the ratioλ = M

N will be
called thetraining parameterof the game;

4) the set ofstrategy choices: S = {1 . . .S}; also, for each
player i ∈ N , a probability measurepi(s) ≡ pis on S

(
∑S

s=1 pis = 1): these are the players’mixed strategies;
5) astrategy matrixc : N ×S ×M → B wherec(i, s,m) ≡

cm
is ∈ B is the node that thesth strategy of useri indicates

as response to the signalm ∈ M ; the entries ofc are
drawn randomly based on: P(cm

is = qr ) = yr .

Moreover, we endowΩ = M × S N with the product
measure̺ 0 ×

∏N
i=1 pi and define the following:

6) an instanceof G is an eventω = (m, s1, . . . sN) of Ω;
7) the bet of player i is the B-valued random variable:

bi(ω) = c(i, si ,m); also, theaggregate betis: b =
∑N

i=1 bi ;
8) thepayoff for player i is the r.v.:ui = − 1

N bi · b.

Thus, similarly to the minority game of [19] and [21], the
sequence of events that we intuitively envision is:7

6We are assuming thatS is the same for all users for the sake of simplicity.
7It is important to note here that, for 2 identical nodes (B = {−1, 1}), the

simplex game reduces exactly to the original minority game of [21].

• in the “initialization” phase (steps 1-5), players program
their strategies by drawing the strategy matrixc;

• in step 6, the signalm is broadcasted and, based onpi ,
players pick a strategys ∈ S to process it with:pis is
the probability that useri employs hissth strategy;

• in steps 7-8, players connect to the nodes that their strate-
gies indicate (bi(m, s1 . . . sN) = cm

isi
) and receive the linear

payoff (4): by eq. (6), each of theNr users that end up
connecting to nodeqr receives:− 1

N qr ·
∑

l Nlql = 1− Nr
yr N

;
• the game is iterated by repeating steps 6-8.
As usual, the payoff that corresponds to the (mixed) strategy

profile p = (p1 . . . pN) will be the multilinear extension:
ui(m, p) =

∑
{s} p1s1 . . . pNsN ui(m, s1 . . . sN). To avoid carrying

cumbersome sums like this, we will follow the notation of [21]
and use〈·〉 to indicate expectations over a particular player’s
mixed strategy:〈υi〉 =

∑
s pisυis; also, we will use an overline to

denote averaging over the training signals, as in:a = 1
M

∑
m am.

III. Selfishness and Efficiency

Clearly, the only way that selfish users who seek to max-
imize their individual throughput can come to an unmedi-
ated understanding is by reaching an equilibrial state that
discourages unilateral deviation. But, since there is a palpable
difference between the users’strategic decisions(s ∈ S ) and
the tactical actionsthey take based on them (cm

is ∈ B), one
would naturally expect the situation to be somewhat involved.

A. Notions of Equilibrium

Indeed, it should not come as a surprise that this dichotomy
between strategies and actions is reflected on the game’s
equilibria. On the one hand, we have already encountered the
game’s tactical equilibrium: it corresponds to the Nash alloca-
tion of yr N users to noder. On the other hand, given that users
only control their strategic choices, we should also examine
Aumann’s strategic notion of acorrelated equilibrium.

To that end, recall that a correlated strategy is a collection
f ≡ { fi }Ni=1 of maps fi : M → B (one for each player) that
convert the signalm to a betting suggestionfi(m) ∈B. We will
then say that a (pure) correlated strategyf is atequilibrium for
player i when, for all perturbations (f−i ; gi) = ( f1 . . .gi . . . fN)
of f , player i gains more (on average) by sticking tofi , i.e.
ui( f ) ≥ ui( f−i ; gi). When this is true for all playersi ∈ N , f
will be called acorrelated equilibrium.

As we saw before, if useri picks hissth
i strategy, the collec-

tion
{
cisi :M → B

}N
i=1 is a correlated strategy, but the converse

need not hold: in general, not every correlated strategy canbe
recovered from the limited number of preprogrammed strategic
choices.8 Thus, users will no longer be able to considerall
perturbations of a given strategy, and we are led to:

Definition 4: In the setting of definition 3, a strategy profile
p = (p1 . . . pN) is a constrainedcorrelated equilibrium when,
for all strategy choicess ∈ S and for all playersi ∈ N :

1
M

∑
m ui(m, p) ≥ 1

M

∑
m ui(m, p−i; s). (9)

8There is a total ofBMN correlated strategies but users can recover at most
SN of them. In fact, this is why preprogramming is so useful: it would be
highly unreasonable to expect a given user to process in a timely fashion the
exponentially growing number ofBM (as compared toS) strategies.
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The set of all such equilibria ofG will be denoted by∆0(G).
In our setting, a (constrained) correlated equilibrium is

what represents anarchy: with no one to manage the users’
selfish desires, the only thing that deters them from unilateral
deviation is their expectation of (average) loss. Conceptually,
this is pretty similar to the notion of a Nash equilibrium, the
main difference being that in a correlated equilibrium we are
averaging the payoff over the training signals. This analogy
will be very useful to us and we will make it precise by
introducing thecorrelated formof the simplex game:

Definition 5: The correlated formof a simplex gameG is
a gameG∗ with the same set of playersN = {1 . . .N}, each
one choosing an action fromS = {1 . . .S} for a payoff of:

u∗i (s1 . . . sN) = 1
M

∑
m ui(m, s1 . . . sN) (10)

In short, the payoff that players receive in the correlated game
is their throughput averaged over a rotation of the training
signals. Then, an important consequence of definition 4 is that
the constrained correlated equilibria of a simplex gameG are
precisely the Nash equilibria of its correlated formG∗.

B. Harvesting the Equilibria

So, our next goal will be to understand the Nash equilibria
of G∗. To begin with, a brief calculation shows that the payoff
u∗i for a mixed profilep = (p1 . . . pN) is:

u∗i (p1 . . . pN) = − 1
N

{
〈ci〉·

∑
j,i

〈
c j

〉
+

〈
c2

i

〉}
(11)

(the averaging notations(·) and 〈·〉 being as in the end of
section II). Thus, given the similarities of our game with
congestion games, it might be hoped that its Nash equilibria
can be harvested by means of apotential function, i.e. a
function that measures the payoff difference between users’
individual strategies [26]. More concretely, a potentialU
satisfies:u∗i (p−i ; s1) − u∗i (p−i; s2) = U(p−i; s1) − U(p−i; s2) for
any mixed profilep = (p1 . . . pS) and any two strategic choices
s1,2 of player i. Obviously then, if a potential function exists,
its local maxima will be Nash equilibria of the game.

But, unfortunately, sinceG∗ does not have an exact conges-
tion structure, it is not clear how to construct such a potential.
Nevertheless, a good candidate is the game’s aggregate payoff

u∗ =
∑

i u∗i . In fact, if playeri chooses strategys, u∗ becomes:

u∗(p−i ; s) = − 1
N


∑

l,k,i
l,k

〈cl〉·〈ck〉 +
∑
k,i

〈
c2

k

〉
+ 2cis·

∑
k,i
〈ck〉 + c2

is

.

So, after some similar algebra foru∗is(p) ≡ u∗i (p−i ; s), we obtain
the following comparison between two strategiess1, s2 ∈ S :

u∗(p−i;s2)−u∗(p−i ;s1) = 2
[
u∗is2

(p) − u∗is1
(p)

]
+

1
N

(
c2

is2
− c2

is1

)
(12)

Now, given the preprogramming (8) ofc, we note that (cm
is)

2

takes on the valueq2
r = −1 + 1

yr
with probability yr . Hence,

the central limit theorem (recall thatM = λN = O(N)) implies

that 1
M

∑M
m=1

(
cm

is

)2
will have mean

∑
r yr ( 1

yr
− 1) = B− 1 and

variance 1
M

∑
r

(
1
yr
− B

)
, the latter being negligible unlessy is

too close to the faces of∆B. More concretely:
Definition 6: A distribution y ∈ Int(∆B) is proper when

1
B−1

∑B
r=1

(
1
yr
− B

)
= o(1); otherwise,y is calleddegenerate.

Henceforward, our working assumption will be that there
are no degenerate nodes: otherwise, we could simply remove
them from the analysis (i.e. reduceB and modifyy accord-
ingly). This reflects the fact that degeneracy in the strength
distribution simply indicates that certain nodes have extremely
low strength scores and all reasonable users shun them.9

With this in mind, the last term of (12) will be on average
0 and with a variance of lesser order than the first term. Thus:

u∗(p−i; s2) − u∗(p−i ; s1) ∼ 2
[
u∗i (p−i ; s2) − u∗i (p−i; s1)

]
(13)

i.e. the aggregate payoff u∗ is indeed apotential functionfor
the gameG∗ (at least asymptotically). We have thus proven:

Lemma 7:Let G be a simplex game forN players. Then,
asN→ ∞, the maxima of the averaged aggregateu∗ =

∑N
i=1 u∗i

will correspond (almost surely) to correlated equilibria of G.

C. Anarchy and Efficiency

Still, one expects quite the gulf between anarchic and
efficient states: after all, selfish players are hardly the ones
to rely upon for social efficiency. In the context of networks,
this contrast is frequently measured by theprice of anarchy,
a notion first introduced in [23] as the (coordination) ratio
between the maximum attainable aggregate payoff and the one
attained at the game’s equilibria. Then, depending on whether
we look at worst or best-case equilibria, we get thepessimistic
or optimisticprice of anarchy respectively.

In our game, the aggregate payoff is equal to:u =
∑N

i=1 ui =

− 1
N

∑N
i=1 bi·

∑N
j=1 b j = − 1

N b2 and attains a maximum ofumax = 0
when b = 0. So, if we recall by (7) that a Nash equilibrium
occurs if and only if b = 0, we see thatNash anarchy
does not impair efficiency. Clearly, neither the users, nor the
agencies that deploy the wireless network could hope for a
better solution!

However, this also shows that the traditional definition of
the price of anarchy is no longer suitable for our purposes.
One reason is thatumax = 0 and, hence, we cannot hope to get
any information from ratios involvingumax.10 What’s more,
the users’ selfishness in our setting is more aptly captured by
the Aumann equilibria of definition 4, so we should be taking
the signal-averagedu∗ instead ofu. As a result, we are led to:

Definition 8: Let G be a simplex game forN players and
B nodes. Then, ifp = (p1 . . . pN) is a mixed strategy profile
of G, we define itsfrustration levelto be:

R(p) = − 1
B−1u∗(p) = 1

N(B−1)
1
M

∑
m b2(p) (14)

that is, the (average) distance from the Nash solutionb = 0.
Also, the game’scorrelated price of anarchy R(G) will be:

R(G) = inf
{
R(p) : p ∈ ∆0(G)

}
(15)

i.e. the minimum value of the frustration level over the set
∆

0(G) of the game’s constrained correlated equilibria.
Some remarks are now in order: first and foremost, we

see that the frustration level of a strategy profile measures

9After all, degenerate nodes cannot serve more thano(
√

N) users.
10This actually highlights a general problem with the coordination ratio: it

does not behave well w.r.t. adding a constant to the payoff functions.
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(in)efficiency by contrasting the average aggregate payoff

to the optimal caseumax = 0 (the normalization 1
B−1 has

been introduced for future convenience). So, with correlated
equilibria representing the anarchic states of the game, we
remain justified in the eyes of [23] by callingR(G) the price
of anarchy. In effect, the only thing that sets us apart is that,
instead of a ratio, we are taking the difference.

Finally, one might wonder why we do not consider the
pessimisticversion by replacing the inf of the above definition
with a sup. The main reason for this is that in the next section,
we will present a scheme with which users will be able to
converge to theirmost efficient equilibrium. Thus, there is no
reason to consider worst-case equilibria as in [23]: we only
need to measure the price ofsophisticatedanarchy.

IV. Evolution and Equilibria

Naturally, as the simplex game is iterated, one may assume
that rational users will want to maximize their payoff by
employing more often the strategies that perform better. The
most obvious way to accomplish this is to keep track of a
strategy’s performance and reward it accordingly:

Definition 9: Let G be a simplex game as in definition 3,
and letω = (m, s1 . . . sN) be an instance ofG. Then, thereward
to the sth strategy of playeri is the random variable:

Wis(ω) = 1
M ui(m, s−i ; s) = − 1

MN cm
is·

[
b(ω) +

(
cm

is − cism
i

)]
(16)

In other words, the rewardWis that playeri awards to hissth

strategy is (a fraction of) the payoff that the strategy would
have garnered for the player in the given instance.11

A seeming problem with the above definition is that, in
order to learn and evolve, users will have to rateall their
strategies, i.e. they must be able to calculate the payoff even
of strategies they did not employ. So, given that the payoff is a
function of the aggregate betb, it would seem that users would
have to be informed of every other user’s bet, a prospect that
downright shatters the unregulated premises of our setting.
However, a more careful consideration of (6) reveals that it
suffices for users to know the distribution of users among the
nodes, something which is small enough to be broadcasted by
the nodes along with the signalm.12

So, let us consider a sequenceω(t) of instances ofG to
model the game’stth iteration (t = 0, 1, 2 . . .). At time t + 1,
players rank their strategies according to theirscores:

Uis(t + 1) = Uis(t) +Wis(ω(t)) (17)

where we setUis(0) = 0 to reflect that there is no a priori
predisposition towards any given strategy. Then, strategies are
selected according to their scores, following the evolutionary
scheme ofexponential learning(see e.g. [18], [27])

pis(t) =
eΓiUis(t)

∑
s′ eΓiUis′ (t)

(18)

whereΓi represents thelearning rateof player i.

11The rescaling factor1M has been introduced because significant rewards
should come only after checking a strategy against at leastO(M) signals.

12Actually, the signal itself could be the user distribution of the previous
stage. This was discussed in [20] where the distinction between real and fake
memory is seen to have a negligible impact on the game’s performance.

As a first step to understand the dynamical system of (18),
we note that players’ evolution actually takes place over the
time scaleτ = t/M: it takes an average ofO(M) iterations
to notice a distinct change in the scores of (16). In this case,
the score of a strategy will have been modified by:δUis =∑τ+M

t=τ Wis(ω(t)) = − 1
MN

∑τ+M
t=τ

(
cm(t)

is ·
∑

j,i cm(t)
js j(t)
+

(
cm(t)

is

)2
)
. But,

by applying the central limit theorem, we may write∑
j,i cm(t)

js j(t)
∼ ∑

j,i

〈
cm(t)

i

〉
and, under some mild ergodic-

ity assumptions, we can also approximate the time average
1
M

∑τ+M
t=τ (·) by the ensemble average1M

∑
m(·). Thus, the change

in a strategy’s score afterM iterations will be:

δUis ∼ − 1
N

[
cis·

∑
j,i

〈
c j

〉
+ c2

is

]
= u∗i (p−i ; s) (19)

A fine point in the above is the implicit assumption thatpis

changes very slowly. This caveat collapses if the learning rates
Γi are too high (i.e. when we approach “hard” best-response
schemes)13 but, if we stay away from this limit, we may pass
to continuous time and differentiate (18) to obtain:

dpis

dτ
= Γi pis

(
u∗i (p) − u∗i (p−i ; s)

)
(20)

since, by (19),dUis

dτ will be given byu∗i (p−i; s).
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Fig. 1. Simulation of a simplex game forN = 50 players that seek to connect
to B = 5 nodes of random stregnths with the help ofM = 2 broadcasts and
S = 2 strategies. The game is iterated based on (18) with a learning rate of
Γi = 20, and we plot the users’ (instantaneous) frustrationRt = − u

B−1 (cf. (14))
versus the number of iterationst: as predicted by theorem 11, players quickly
converge to a steady state of minimal frustration. To justify the linearisation of
(4), we also simulated a game with the nonlinear payoff (1), obtaining virtually
indistinguishable results. As a baseline, we consider unsophisticated users who
simply pick a node randomly, thus experiencing much higher frustration (on
averageR= 1). Finally, we also simulate replicator dynamics (with thesame
learning rate) on the congestion game determined by (1); in that case, although
users eventually reach the Nash solution, they do so at a muchslower rate.

These dynamics are extremely powerful: they are the stan-
dard multi-populationreplicator dynamicsfor the correlated
form G∗ of the game. To be sure, in Weibull’s extremely
comprehensive account [29], it is shown that they exhibit a
striking equivalence: the asymptotically stable states14 of (20)

13See [28] for a detailed discussion on this.
14These are attracting steady states that are also Lyapunov stable.
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are precisely the (strict) Nash equilibria of the underlying
game (in our caseG∗). But, since a strategy profile is a Nash
equilibrium for the correlated gameG∗ if and only if it is a
correlated equilibrium for the original gameG, this proves:

Lemma 10:Let G be a simplex game, iterated under (18).
Then, almost surely asN → ∞, a profile p = (p1 . . . pN) will
be asymptotically stable w.r.t. the dynamics of (18) if and only
if it is a constrained correlated equilibrium ofG.

So, what remains to be seen is whether the learning scheme
of (18) really does lead the game to such a fortuitous state.
To that end, one would expect that, as users evolve, they learn
how to minimize their average frustration level and eventually
settle down to a stable local minimum. Roughly speaking, this
is the content of aLyapunov function, i.e. a functionL ≡ L(p)
with dL

dτ ≤ 0. If such a function exists, Lyapunov’s theorem
will ensure convergence to the steady state and, thankfully,
there is an obvious candidate: the aggregate payoff u∗ which
is also the potential of the correlated gameG∗.

Indeed, if we combine (13) and (20), we can see that:du∗

dτ =∑
i
∑

s
∂u∗

∂pis

dpis

dτ =
1
2

∑
i Γi

∑
s u∗(p−i ; s) pis

(
u∗(p−i ; s)−u∗(p)

) ≥ 0,
the last step owing to Jensen’s inequality (recall thatu∗(p) =∑

s pisu∗(p−i ; s)). In other words, the frustrationR= − 1
B−1u∗ is

a Lyapunov function for the dynamics of (20) and the players
will converge to its global minimum; in effect, this proves:

Theorem 11:If a simplex gameG with a large numberN of
players is iterated under the exponential learning scheme (18),
the players’ mixed strategies will converge almost surely to an
asymptotically stable statep∗ with the following properties:

(i) p∗ is a (strict) constrained correlated equilibrium ofG;
(ii) p∗ is the most efficient equilibrium ofG, in the sense that

it maximizes the aggregate payoff u∗ over allp ∈∏N
i=1∆S;

(iii) p∗ is pure.

Proof: Thanks to the preceding discussion and Lya-
punov’s second theorem, we only need to prove part (iii).
But, sinceu∗ is harmonic in p, it will attain its maximum
value on one of the vertices ofD =

∏N
1 ∆S. Then, seeing as

p∗ maximizesu∗ by part (ii), it must be pure.

V. The Price of Anarchy

So far, we have seen that the dynamics of exponential
learning lead the users to an evolutionarily stable equilibrium
which maximizes (on average) their aggregate payoff (given
their preprogramming). Hence, as far as measuring anarchy is
concerned, we only need to calculate the level of frustration
at this steady state: rather surprisingly, it will turn out that
the price of anarchy isindependentof the distributiony of
the nodes’ strengths. In fact, the analytic expression thatwe
obtain at the end of this section shows that it is a function
only of the numberB of nodes in the network, the training
parameterλ = M

N and the numberS of strategies per user.
To begin with, equation (11) for the frustration levelR at a

mixed strategy profilep can be rewritten as:

R(p) =
1

N(B− 1)

[∑
i

〈
c2

i

〉
+

∑
i, j
i, j

〈
ci

〉
·
〈
c j

〉]
(21)

So, recalling definition 6 and the discussion for the aggregate

payoff (12), the first term of (21) will be: 1
N(B−1)

∑
i

〈
c2

i

〉
∼ 1.

Then, to deal with the second term in (21), note that for a
givenm, the aggregate betb(m, p) =

∑
i

〈
cm

i

〉
gives:b(m, p)2

=

∑
i
∑

s p2
is

(
cm

is

)2
+

∑
i
∑

s,s′ pispis′cm
is·cm

is′ +
∑

i, j
i, j

〈
cm

i

〉
·
〈
cm

j

〉
. Thus,

to leading order inN, this expression has an average of:15

1
M

∑
m

b(m, p)2 ∼
∑

i, j
i, j

〈
ci

〉
·
〈
c j

〉
+ (B− 1)

∑
i

∑
s
p2

is (22)

As a result, equations (21) and (22) may be combined to:

R(p) ∼ 1+ 1
MN(B−1)

∑M

m=1
b(m, p)2 −G(p) (23)

whereG(p) = 1
N

∑
i
∑

s p2
is.

By definition 8, the game’s (optimistic) price of anarchy
R(G) will simply be the minimum ofR(p) over the game’s
equilibria. But, since the minimum ofR is an equilibrium by
theorem 11, we can simply take the minimum overall mixed
profiles:R(G) = min{R(p) : p ∈∏N

i=1∆S}. In this way, we get
a minimization problem of the kind commonly encountered
in statistical physics where one seeks to harvest the ground
states of (similar in form) energy functionals [30].

Motivated by this, we introduce thepartition function:

Z (β, c) =
∫

D

e−βNR(p) dp (24)

whereD =
∏N

1 ∆S and dp =
∏

i,s dpis is Lebesgue measure on
D .16 In this way, we may integrate asymptotically to write:17

R(G) = − 1
N lim
β→∞

1
β

logZ (β, c). (25)

To proceed, we will make the mild (but important) assumption
that, for largeN, it matters little which specific strategy matrix
the users actually picked. More formally:

Assumption 12 (Self-averaging):For any strategy matrixc:

logZ (β, c) ∼ 〈
logZ (β)

〉
all c (26)

almost surely asN → ∞ (the averaging〈·〉 takes place over
all BNS M matricesc, drawn according to (8)).

This is a fundamental assumption in statistical physics and
describes the rarity of configurations which yield notable
differences in macroscopically observable parameters. Under
this light, we are left to calculate

〈
logZ

〉
, a problem which

we will attack with the help ofreplica analysis.18

The starting point of the method is the identity
〈
logZ

〉
=

lim
a→0+

1
a log〈Z a〉 which reduces the problem to powers ofZ :19

R(G) = − 1
N lim
β→∞

lim
a→0+

1
aβ 〈Z

a(β)〉 (27)

These are much more manageable since, forn ∈ N:

Z
n
=

(∫

D

e−βNR(p) dp

)n

=

∫

D

· · ·
∫

D

e−βN
∑
µ R(pµ) ∏

µ dpµ (28)

15See also [21] (pp. 529) for more on this point.
16Z depends on the strategy matrixc through the frustration levelR(p).
17Essentially, this refers to the fact that maxD f = limx→∞

1
x log

∫
D ex f(t) dt

for any measurable functionf on a compact domainD (see e.g. [31]).
18See [30] for a general discussion or [21], [32] for the minority game.
19To prove this identity, writeZ a

= ea logZ and expand.
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i.e. Z n
=

∏n
µ=1 Zµ, whereZµ =

∫
D

exp
(
−NβR(pµ)

)
dpµ is

the partition function for theµth replica pµ = {pisµ} of the
system. Then, thanks to equation (23), we obtain:

〈
Z

n(β)
〉
= An

∫

Dn

〈
e−

β

M(B−1)

∑
µ

∑
m(cm

µ )
2
〉

eNβ
∑
µGµµ(p) ∏

µ dpµ (29)

whereA = e−Nβ; cm
µ = b(m, pµ) =

∑
i
∑

s pisµcm
is is the aggregate

bet for the mixed profilepµ = {pisµ} in the µth replica (given
the signalm); andGµν(p) = 1

N

∑
i
∑

s pisµpisν.
Of course, what we really need is to express〈Z n〉 for real

values ofn in the vicinity of n = 0+; for this, we resort to:
Assumption 13 (Replica Continuity):The expression given

in (29) for
〈
Z n〉 can be continued analytically to all real values

of n in the vicinity of n = 0+.
At first glance, this might appear as a blind leap of faith,

especially since uniqueness criteria (e.g. log-convexity) are
absent. However, such criteria can in some cases be established
(see e.g. [33]) and, moreover, the huge amount of literature
surrounding this assumption and the agreement of our own
analysis with our numerical results (see figures 2–5) makes us
feel justified in employing it.

With the help of the above, and after the lengthy calculations
of appendix B, we are in a position to prove:

Theorem 14 (Irrelevance of Node Strengths):Let y, y′ ∈
Int(∆B) be strength distributions forB nodes and letG,G′

be simplex games fory andy′ respectively. Then, asN→ ∞:

R(G) ∼ R(G′) (30)

In other words, we are (rather unexpectedly!) reduced to
the symmetric case ofB equivalent nodes: ceteris paribus,the
price of anarchy depends only on the number of nodes present
and not on their individual strengths.
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Fig. 2. The price of anarchy (i.e. the steady-state frustration level) as
a function of the training parameterλ = M

N for B = 4 equivalent nodes
contrasted to that of 4 nodes employing standards with different spectral
efficiencies cr : EVDO-Rev.A (1.06 Mbps), HSDPA (3.91 Mbps), 802.11b
(11Mbps) and WiMAX (14.1 Mbps) [34]; we simulatedN = 50 users with
S = 2 strategies and averaged over 25 realizations of the game. As predicted
by theorem 14, different standards do not affect the price of anarchy.

Now, in order to actually determine theeffect of choiceson
the users’ frustration level, we first define thebinary reduction

of a simplex gameG for B nodes. This is just a simplex game
Geff for 2 identical nodes and a training set enlarged byB−1,
i.e. Meff = M(B− 1); everything else remains the same. Then,
under this rescaling, the same train of calculations that isused
to prove theorem 14 also yields:

Theorem 15 (Reduction of Choices):The price of anarchy
for a simplex gameG is asymptotically equal to that of its
binary reductionGeff; in other words, asN→∞:

R(G) ∼ R(Geff) (31)

Thanks to this equivalence, we see that the price of anarchy
depends onM andB only throughM(B−1); so, for example,
if some nodes go offline, we will know exactly how much to
increaseM so as to maintain the same performance level.

However, theorem 15 really tells us much more: it provides
a “dictionary” between the simplex game and the extensively
studied minority game. Indeed, mutatis mutandis, one sees that
the price of anarchyR(G) corresponds to themarket volatility
σ in the minority game [21]. So, if we follow the (replica-
symmetric) calculations of [21], we finally obtain the price of
anarchy in terms of the game’s parametersB, S andλ = M

N :

R(G) ∼ Θ(λ − λc)
(
1−

√
λc

/
λ
)2

(32)

whereΘ is the Heaviside step function andλc = λ(S, B) is the
critical value that marks the emergence of anarchy within the
premises of replica symmetry (see appendix B).20
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Fig. 3. The effect of choices: we plot the price of anarchy as a function
of the training parameterλ = M/N for N = 50 users,S = 2 strategies and
B = 2, 3, 5, 10 nodes (averaging over 25 realizations). We see that efficiency
deterioratesas B increases: more choices actually confuse the users.

This expression is one of our key results since it accurately
captures the impact of the various system parameters on
the network’s performance (see e.g. figures 2–5). So, even
though it follows effortlessly by virtue of theorem 15, for the
sake of completeness (and also to discuss the role ofreplica
symmetry), we carry out the derivation of (32) in appendix B.

20Actually λc =
ζ2(S)
B−1 with ζ(S) = S

/
2S−1√2/π

∫ ∞
−∞ze−z2

erfcS−1(z) dz).
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Fig. 4. The effect of sophistication: we plot the price of anarchy as a function
of the training parameterλ = M/N for N = 50 users,S = 2, 3, 4 strategies and
B = 5 nodes (again averaging over 25 realizations of the game). As expected,
sophisticated users (largerS) are more efficient.
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Fig. 5. The price of anarchy as a function of the training parameterλ = M/N
for different numbers of usersN = 10, 25, 50, 100, withB = 5 nodes andS = 2
strategies; unlike other plots, we are harvesting the priceof anarchy from a
single realization of the game. We see that the number of players does not
seriously impact the price of anarchy (except throughλ).

VI. Conclusions

Our main goal was to analyze an unregulated network of
(a large number of) heterogeneous users that can connect to a
multitude of wireless nodes with different specifications (e.g.
different standards). In such a network, users who selfishly try
to maximize their individual downlink throughput (2) will have
to compete against each other for the nodes’ finite resources.
So, in the pursuit of order (and in the absence of a central
overseer), we advocate the use of a training beacon (such as a
random integer synchronously broadcasted by the nodes) to act
as a coordination stimulus: by processing this stimulus with
the aid of some preprogrammed strategies and choosing a node
accordingly, users should be able to reach an equilibrium.

Indeed, if users keep records of their strategies’ performance
and rank them based on the evolutionary scheme of expo-
nential learning (18), they learn to coordinate their actions
and quickly reach an evolutionarily stable state.21 This state is
alsosociallystable in the sense that unilateral deviation is (on
average) discouraged: it is acorrelated equilibrium. Then, to
measure the efficiency of users in this setting, we examine how
far they are from the optimal distribution that maximizes their
aggregate throughput. In so doing, we see thatexponential
learning leads the users to their most efficient equilibrium.

However, since the users’ rationality is bounded (i.e. they
can only handle a small number of strategies), this equilibrium
will still be at some distance from the optimal state. This
distance is theprice of (correlated) anarchyand we calculate
it with the method of replicas. Interestingly, we find (theorem
14) that the price of anarchy does not depend on the nodes’
characteristics, but only on their number. In fact, we provide a
reduction of our scenario to the minority game [19] (theorem
15) and, as a result, we obtain the analytic expression (32) for
the price of anarchy. This also generalizes the results obtained
for the minority game to an arbitrary number of choices.

Thanks to the above, we derive quantitative predictions
about the degree of anarchy in our scenario. For example (fig.
3), we see that blindly adding more nodes to a network is not a
panacea: anarchy actuallyincreaseswith the number of nodes
because the users are not able to process the added complexity
and do not make efficient use of the extra resources. On the
other hand, if users become more sophisticated and employ
more strategies (fig. 4), anarchy comes at a lesser price (albeit
at a slower convergence to a stable state). Finally, we see that
the number of users really doesn’t have to be quite so large
(fig. 5): these conclusions hold even for the much smaller
numbers of users typically encountered in local service areas.

Appendix A
Properties of y-Simplices

We begin here by showing that definition 1 is not vacuous:

Lemma 16:There exists ay-simplex B = {qr }Br=1 ⊆ RB−1

for any y ∈ Int(∆B).
Proof: Begin by selecting a vectorq1 ∈ RB such that

q2
1 =

1
y1
−1 and chooseqr+1 ∈ RB inductively so that it satisfies

(5) when multiplied byq1 . . .qr . Such a selection is always
possible forr ≤ B − 1 thanks to the dimension ofRB; for a
vector space of lesser dimension, this is no longer the case.22

In this way, we obtainB vectorsqr ∈ RB that satisfy (5);
our construction will be complete once we show thatB is
contained in some (B−1)-subspace ofRB. However, as in the
proof of lemma 2, we can see that

∑B
r=1 yrqr = 0; this means

that B is linearly dependent and completes our proof.
The next lemma is a key property ofy-simplices that plays

a crucial role in the calculations of appendix B:

21In figure 1 we see that convergence occurs within tens of iterations. Thus,
if each iteration is of the order of milliseconds (a reasonable transmission
timescale for wideband wireless networks), this corresponds to equilibration
times of tens of milliseconds.

22Note that 1
yr yl
≥ 1

yr
+

1
yl

for all r, l so thatq2
r ·q2

l ≥ (qr ·ql )2 holds for (5).
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Lemma 17:Let B = {qr }Br=1 ⊆ RB−1 be a y-simplex for
somey ∈ Int(∆B). Then, for allx ∈ RB−1:

∑B
r=1 yr (qr ·x)2

= x2.
Proof: Sincey ∈ Int(∆B), B will span RB−1 and x may

be written as a linear combinationx =
∑B

r=1 xrqr . So, if we
let S =

∑B
r=1 xr and recall that

∑B
r=1 yr = 1, we will have:

x2
=

∑B
l,r=1 xl xr qr ·ql = −S2

+
∑B

r=1 x2
r /yr . Similarly: (qr ·x)2

=

S2 − 2S xr
yr
+

x2
r

y2
r
, and an addition overr yields the lemma.

Appendix B
Measuring the Price of Anarchy

Picking up where we left off in section V, we begin by
calculating the expression for〈Z n〉 in (29). To do this, we will

use the identity:e−
q2

2 =
1

(2π)k/2

∫
Rk eiq·z− z2

2 dz= Ez eiq·z whereEz

denotes expectation over a Gaussian random vectorz with k in-
dependent componentsz1 . . .zk ∼ N(0, 1); this is theHubbard-

Stratonovichtransformation. So, if
{
zm
µ = (zm

µ,1. . . z
m
µ,B−1)

}m=1...M

µ=1...n
are such vectors ofRB−1, we get:

〈
e−

β

M(B−1)

∑
µ

∑
m(cm

µ )
2
〉
= E{zm

µ }

〈
ei

∑
i
∑

s
∑

m xm
is·cm

is

〉
(33)

where: xm
is =

√
2β

M(B−1)

∑
µ pisµzm

µ ∈ RB−1. Then, by the in-
dependence of theci ’s (eq. (8)), we will be able to obtain
the average〈·〉 of (33) over the matricesc by computing the
characteristic function

〈
eix·q

〉
for only one of them. This is

done in the following:
Lemma 18:Let y ∈ Int(∆B) and letB = {qr }Br=1 be a y-

simplex inRB−1. If x ∈ RB−1 and q is a random vector with
distribution P(q = qr ) = yr , then:

〈
eix·q

〉
= e−

x2

2 + O
(
|x|3

)
.

Proof: Expanding the exponential
〈
exp(ix·q)

〉
yields:

〈
eix·q

〉
=

〈
1+ ix·q − 1

2(x·q)2
+ O

(
|x|3

)〉

= 1+ ix·∑r yrqr − 1
2

∑
r yr (qr ·x)2

+ O
(
|x|3

)

= 1− 1
2x2
+ O

(
|x|3

)
= e−

1
2x2
+ O

(
|x|3

)
(34)

where the third equality comes from lemmas 2 and 17.
In our case,|xm

is| = O(M−
1
2 ); so, if we apply the previous

lemma to each of the random vectorscm
is, the average of eq.

(33) will become (to leading order inN):
〈
e

i
∑
i

∑
s

∑
m

xm
is·cm

is
〉
∼ e
− 1

2

∑
i,s,m

(xm
is)

2

= e
− β

λ(B−1)

∑
m

∑
µ,ν

Gµν(p) zm
µ ·zm
ν

(35)

whereλ = M
N is the game’s training parameter.

Now, if we introduce then× n matrix J = I + 2β
λ(B−1)G(p),

and recall that
∫
Rn e−

1
2

∑
µ,ν Jµνwµwν d̃w = | det(J)|− 1

2 ,23 we may
integrate over the auxiliary variableszm

µ to obtain:

Ezm
µ

〈
e−

β

M(B−1)

∑
µ

∑
m(cm

µ )
2
〉
∼

∫

RnM(B−1)
e−

1
2

∑M
m=1

∑B−1
k=1

∑
µ,ν Jµν(p) zm

µ,kz
m
ν,k d̃z

=

(∫

Rn
e−

1
2

∑
µ,ν Jµν(p) wµwν d̃w

)M(B−1)

= e−
M(B−1)

2 log det(J(p)) (36)

So, after these calculations, equation (29) finally becomes:

〈Z n(β)〉
An

∼
∫

Dn
eNβ

[
tr(G(p))− λ(B−1)

2β log det
(
I+ 2β
λ(B−1) G(p)

)] ∏
µ dpµ (37)

23Here, tildes as iñdw denote Lebesgue measure normalized by
√

2π.

Clearly, this last expression is independent of the strength
distribution y, a fact which proves theorem 14. In addition,
we observe that (37) remains invariant when we pass from the
gameG to its binary reductionGeff with the rescaled training
parameterλeff = λ(B− 1), thus proving theorem 15 as well.

Now, to proceed from (37), we will introducen2 δ-functions
in their integral representation so as to isolate the profiles pis:

δ (Q −G(p)) =
(

Nβ
2π

)n2 ∫
eiNβ

∑
µ,ν kµν(Qµν−Gµν(p)) ∏

µ,ν
dkµν. In this

way, the integral of (37) becomes:
∫

e−Nβ
[
λ(B−1)

2β log det
(
I+ 2β
λ(B−1) Q

)
−tr(Q)−i

∑
µ,ν kµν(Qµν−Gµν(p))

]
dσ (38)

where dσ =
∏
µ dpµ×

∏
µ,ν

dkµν×
∏
µ,ν

dQµ,ν is the product measure

on Dn × Rn2 × Rn2
. However,p only appears in the last term

of the (38) and can be integrated separately to yield:

∫

Dn
e
−iNβ

∑
µ,ν

kµνGµν (p)∏
µ dpµ =

N∏
i=1


∫

∆n
S

e
−iβ

∑
µ,ν

kµν
∑

s pisµpisν∏
s,µ

dpisµ



= exp

N log
∫

∆
n
S

e
−iβ

∑
µ,ν

kµν
∑

s psµpsν ∏
s,µ

dpsµ

 (39)

(recall thatGµν(p) = 1
N

∑
i
∑

s pisµpisν andDn
= (∆S)N×n). So,

by descending to the limitN→ ∞, we find:

1
N log〈Z n(β)〉 ∼ −β

[
n+ λ(B−1)

2β log det
(
I + 2β

λ(B−1)Q
)
− tr(Q)−

− i
∑
µ,ν

kµνQµν − 1
β

log
∫

∆n
e
−iβ

∑
µ,ν

kµν
∑
s

psµpsν∏
s,µ

dpsµ

]
≕ −βΛ (40)

whereQ andk extremize the functionΛ within the brackets.
This is where we will invokereplica symmetry(see [30], [32]).

Assumption 19 (Replica Symmetry):The saddle-pointsof
Λ are of the form:

Qµν = q+ (Q− q) δµν; kµν = iλβ B−1
2

(
r + (R− r) δµν

)
(41)

In other words, we seek saddle-point matrices that are sym-
metric in the replica space (the scaling factors are there for
future convenience).24 Under this ansatz, we obtain:

Λ = n+ λ(B−1)
2β log det

(
2β
λ

q
B−1 +

(
1+ 2β

λ

Q−q
B−1

)
δµν

)
− nQ

+ nλβ B−1
2 (QR− qr) + n2λβ B−1

2 qr

− 1
β

log
∫

∆n
eλβ

2 B−1
2

(
(R−r)

∑
µ p2
µ+r(∑µ pµ)2) ∏

s,µ
dpsµ (42)

wherepµ is the generic profile (p1µ . . . pSµ) in theµth replica.
The second term of the above expression can be easily

calculated by noting that det
(
q+ pδµν

)
= pn

(
1+ nq

p

)
: it will

be equal to q
1+χ +

λ
2β (B−1)log(1+ χ)+o(n), whereχ = 2β

λ

Q−q
B−1 .

As for the last term of (42), we will again use the Hubbard-
Stratonovich transformation with a canonical Gaussian vari-
able z of RS to write: erλβ2 B−1

2 (∑µ pµ)2

= Ez e−β
√

rλ(B−1)z·∑µ pµ .
Then, for notational convenience, we also let:

V(z, p) =
√

rλ(B− 1)z·p − λβ B−1
2 (R− r)p2 (43)

24This assumption can actually be dropped; e.g. see [32] wherethe first step
of symmetry breaking(1RSB) is performed. Still, replica symmetry does not
incur a significant error on our calculations while greatly simplifying them.
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and, in this way, the integral of (42) becomes (dp =
∏S

1 dps):

logEz

∫

∆
n
S

e−β
∑
µ V(z,pµ) ∏

s,µ
dpsµ = nEz log

∫

∆S

e−βV(z,p) dp+ o(n)

From (27) and the premises of replica continuity (assump-
tion 13), what we really need to calculate isΛ0 = limn→0

1
nΛ:

Λ0 = 1+ q
1+χ +

λ
2β (B− 1) log(1+ χ) − Q

+ λβ B−1
2 (QR− qr) − 1

β
Ez

[
log

∫

∆S

e−βV(z,p) dp

]
(44)

whereQ, q,R, r have been chosen so as to satisfy thereplica-
symmetricsaddle-point equations:∂Λ0

∂Q = 0, ∂Λ0
∂q = 0, etc.

To that end, it can be shown that bothQ − q and R − r
are of orderO(1/β), i.e. χ remains finite asβ → ∞. So, in
this limit, we will once again perform asymptotic integration
for the integrals of∂Λ0

∂R = 0 and ∂Λ0
∂r = 0. Thus, we are led to

consider the vertexp∗(z) of ∆S which minimizes the harmonic
function V(z, ·) and we obtain:

Q ∼ φ R= r + 1
β

2
λ(B−1)

χ

1+χ (45)

q ∼ φ + 1
β

ζ√
λ(B−1)r

r = 4
λ2(B−1)2

1
(1+χ)2

whereφ = Ez[p2
∗(z)] and ζ = Ez[p∗(z)·z].

Now, if we let β → ∞ and substitute (45) in (44), we get

Λ0 = 1−φ+φ
(
1+ ζ

/√
φλ(B− 1)

)2
where, after a little geome-

try: ζ(S) = Ez[min{z1 . . .zS}] = S
2S−1

√
2
π

∫ ∞
−∞ ze−z2

erfcS−1(z) dz

and φ = 1. Hence, for finiteχ (i.e. for λ ≥ λc =
ζ2(S)
B−1 ), we

finally acquire expression (32) for the game’sprice of anarchy:

R(G) ∼ Λ0 ∼ Θ(λ − λc)
(
1−

√
λc

/
λ

)2

.
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