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Abstract—This paper examines the convergence of a broad class
of distributed learning dynamics for games with continuous action
sets. The dynamics under study comprise a multi-agent general-
ization of Nesterov’s dual averaging (DA) method, a primal-dual
mirror descent method that has recently seen a major resurgence
in the field of large-scale optimization and machine learning. To
account for settings with high temporal variability and uncer-
tainty, we adopt a continuous-time formulation of dual averaging
and we investigate the dynamics’ long-run behavior when players
have either noiseless or noisy information on their payoff gradi-
ents. In both the deterministic and stochastic regimes, we establish
sublinear rates of convergence of actual and averaged trajectories
to Nash equilibrium under a variational stability condition.

I. Introduction

In this paper, we consider online decision processes in-
volving several optimizing agents who interact in continuous
time and whose collective actions determine their rewards at
each instance. Situations of this type arise naturally in wireless
communications, data networks, and many other fields where
decisions are taken in real time and carry an immediate impact
on the agents’ welfare. Due to the real-time character of these
interactions, the feedback available to the agents is often subject
to estimation errors, measurement noise and/or other stochastic
disturbances. As a result, every agent has to contend not only
with the endogenous variability caused by other agents, but also
with the exogenous uncertainty surrounding the feedback to
their decision process.

Regarding the agents’ interaction model, we focus on a
general class of non-cooperative games with a finite number of
players and continuous action sets. At each instance, players are
assumed to pick an action following a continuous-time variant
of Nesterov’s well-known “dual averaging” method [1], itself
a primal-dual extension of the universal mirror descent scheme
of [2]. This method is widely used in (offline) continuous opti-
mization and control because it is optimal from the viewpoint of
worst-case black-box complexity bounds [2]. Furthermore, in
the context of a single player facing a time-varying environment
(sometimes referred to as a “game against nature”), it is also
known that dual averaging leads to “no regret”, i.e. the player’s
average payoff over time matches asymptotically that of the
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best fixed action in hindsight [3, 4]. As such, online control
processes based on dual averaging comprise natural candidates
for learning in games with continuous action sets.

In this framework, the players’ individual payoff functions
are determined at each instance by the actions of all other
players via the underlying one-shot game. The game itself may
be opaque to the players (who might not even know that they
are playing a game), but the additional structure it provides
means that finer convergence criteria apply, chief among them
being that of convergence to a Nash equilibrium (NE). Thus,
given the desirable properties of dual averaging in single-agent
optimization problems (both offline and online), our paper
focuses on the following question: if all players employ a no-
regret control policy based on dual averaging, do their actions
converge to a Nash equilibrium of the underlying game?

A. Outline of results

We begin our discussion in Section II with the notion of
variational stability (VS), an analogue of evolutionary stability
(ES) for population games [5] which was recently introduced in
[6]. In a certain sense (made precise below), variational stability
is to games with a finite number of players and continuous
action spaces what evolutionary stability is to games with a
continuum of players and a finite number of actions.

The class of learning schemes under study is introduced in
Section III. Based on a Lyapunov analysis we show that the
resulting (deterministic) dynamics converge to stable equilibria
from any initial condition. On the other hand, a major challenge
arises if the players’ gradient feedback is contaminated by noise
and/or other exogenous disturbances: in this case, the conver-
gence of dual averaging is destroyed, even in simple games with
a single player and one-dimensional action sets. This leads to
the second question that we seek to address in this paper: is it
possible to recover the equilibrium convergence properties of
dual averaging in the presence of noise and uncertainty?

We provide a positive answer to this question in Section IV
where we prove (a.s) trajectory convergence in an ergodic
sense, and we also estimate the rate of convergence.

B. Related work

This paper connects learning dynamics in concave games
with advanced tools from mathematical programming [1, 2, 7].
The underlying mirror descent dynamics comprise a “univer-
sal” method [7, 8] for finding approximate solutions in large-
scale optimization problems relying on first-order information



only. Motivated by applications to adaptive control and net-
work optimization, a recent stream of literature has focused
on continuous-time versions of noisy mirror descent schemes
formulated as stochastic differential equations [9]. We extend
this literature by providing first results on the long-run behavior
of dual averaging and mirror descent for distributed learning in
continuous time subject to random perturbations. Our method
also connects to recent investigations on mirror-prox algorithms
for monotone variational inequalities [1, 7, 10]. The main
focus in these papers is to estimate the rate of convergence
of averaged trajectories to the set of solutions to the montone
variational inequalities problem. We extend these results to a
continuous-time setting with unbounded random perturbations
taking the form of a Brownian motion, and we show that similar
guarantees can be established in our framework.

II. Preliminaries

Throughout this paper, we focus on games played by a finite
set of players i ∈ N = {1, . . . ,N}. During play, each player
selects an action xi from a closed convex subset Xi of an ni-
dimensional normed space Vi, and their reward is determined
by their individual objective and the profile x = (x1, . . . , xN) ≡
(xi; x−i) of all players’ actions. Specifically, writing X ≡

∏
i Xi

for the game’s action space, each player’s payoff is determined
by an associated payoff function ui : X → �. In terms of
regularity, we assume that ui is differentiable in xi and we write

vi(x) ≡ ∇xi ui(xi; x−i) (1)

for the individual gradient of ui at x; we also assume that ui

and vi are both Lipschitz continuous in x and we write v(x) =

(vi(x))i∈N for the ensemble thereof. A continuous game is then
defined as a tuple G ≡ G(N ,X , u) with players, action sets and
payoffs defined as above.

An important class of such games is when the players’ payoff

functions are individually concave, viz.

ui(xi; x−i) is concave in xi for all x−i ∈
∏

j,i X j, i ∈ N . (2)

Following Rosen [11], we say that G is itself concave in this
case. We present a motivating example below:

Example 1 (Contention-based medium access). Consider a set
of wireless users N = {1, . . . ,N} accessing a shared wireless
channel. Successful communication occurs when a user is alone
in the channel and a collision occurs otherwise. If each user
i ∈ N accesses the channel with probability xi, the contention
measure of user i is defined as qi(x−i) = 1−

∏
j,i(1−x j), i.e. it is

the probability of user i colliding with another user. In the well
known contention-based medium access framework of [12], the
payoff of user i is then given by

ui(x) = Ri(xi) − 1
N xiqi(x−i), (3)

where Ri(xi) is a concave, nondecreasing function that repre-
sents the utility of user i when there are no other users in the
channel. The resulting random access game G ≡ G(N ,X , u) is
then easily seen to be concave in the sense of (2).

The fundamental solution concept in non-cooperative games
is that of a Nash equilibrium (NE). Formally, x∗ ∈ X is a Nash
equilibrium of G if

ui(x∗i ; x∗−i) ≥ ui(xi; x∗−i) for all xi ∈ Xi, i ∈ N . (NE)

Importantly, if x∗ is a Nash equilibrium, we have the following
concise characterization [6, 13]:

Proposition 1. If x∗ ∈ X is a Nash equilibrium of G, then

〈v(x∗), x − x∗〉 ≤ 0 for all x ∈ X . (4)

The converse also holds if the game is concave.

By Proposition 1, if the game is concave, existence of Nash
equilibria follows from standard results [14]. Using a similar
variational characterization, Rosen [11] established the follow-
ing sufficient condition for equilibrium uniqueness:

Proposition 2 ([11]). Assume that G ≡ G(N ,X , u) satisfies the
payoff monotonicity condition

〈v(x′) − v(x), x′ − x〉 ≤ 0 for all x, x′ ∈ X , (MC)

with equality if and only if x = x′. Then, G admits a unique
Nash equilibrium.

Games satisfying (MC) are called (strictly) monotone and
they enjoy properties similar to those of (strictly) concave
functions [10]. Combining Proposition 1 and (MC), it follows
that the (necessarily unique) Nash equilibrium of a monotone
game satisfies the inequality

〈v(x), x − x∗〉 ≤ 〈v(x∗), x − x∗〉 ≤ 0 for all x ∈ X . (5)

Motivated by this, we introduce below the following stability
notion:

Definition 1. We say that x∗ ∈ X is variationally stable (or
simply stable) if

〈v(x), x − x∗〉 ≤ 0 for all x ∈ X , (VS)

with equality if and only if x = x∗.

As we remarked in the introduction, variational stability is
formally similar to the notion of evolutionary stability [15, 16]
for population games (i.e. games with a continuum of players
and a common, finite set of actions A). In this sense, variational
stability plays the same role for learning in games with contin-
uous action spaces as evolutionary stability plays for evolution
in games with a continuum of players.

We should also note here that variational stability does not
presuppose that x∗ is Nash equilibrium of G. Nonetheless, as
shown in [6], this is indeed the case:

Proposition 3. If x∗ is variationally stable, it is the game’s
unique Nash equilibrium.

As an example, it is easy to verify that the random access
game G of Example 1 admits a unique NE which is varia-
tionally stable in the case of “diminishing returns”, i.e. when
R′′i (xi) < −1 [12]. It is also easy to verify that (VS) is satisfied
in concave potential games, so variational stability has a wide
range of applications in game theory.



III. Dual averaging with perfect information

A. Preliminaries on dual averaging

Motivated by Nesterov’s original approach for solving offline
optimization problems and variational inequalities [1], we focus
on the following multi-agent online learning scheme: At each
instance t ≥ 0, every player takes an infinitesimal step along
the individual gradient of their objective function; the output
is then “mirrored” on each player’s feasible region Xi and the
process of play continues. Formally, this process boils down to
the continuous-time dynamics

ẏi = vi(x),
xi = Qi(ηiyi),

(DA)

where:
1. vi(x) is the individual payoff gradient of player i.
2. yi is a “dual” variable that aggregates gradient steps.
3. Qi(yi) denotes the mirror (or choice) map that outpus the

i-th player’s action as a function of the dual vector yi.
4. ηi > 0 is a player-specific sensitivity parameter.
Given that the dual variables yi aggregate individual gradient

steps, a first choice for Qi would be the arg max correspondence
yi 7→ arg maxxi∈Xi

〈yi, xi〉 whose output is most closely aligned
with yi. However, this assignment generically selects only
extreme points of Xi, so it is ill-suited for general, nonlinear
problems. On that account, (DA) is typically run with “regular-
ized” mirror maps of the form yi 7→ arg maxxi∈Xi

{〈yi, xi〉−hi(xi)}
where the regularization term hi(xi) satisfies the following:

Definition 2. A continuous function hi : Xi → � is a regular-
izer on Xi if it is strongly convex, i.e.

hi(λxi +(1−λ)x′i ) ≤ λhi(xi)+(1−λ)hi(x′i )−
1
2 Kiλ(1−λ)‖x′i−xi‖

2,
(6)

for some Ki > 0 and all xi, x′i ∈ Xi, λ ∈ [0, 1]. The mirror map
induced by hi is then given by

Qi(yi) = arg max
xi∈Xi

{〈yi, xi〉 − hi(xi)}. (7)

The archetypal mirror map is the Euclidean projector

Πi(yi) = arg max
xi∈Xi

{〈yi, xi〉 −
1
2 xi

2} = arg min
xi∈Xi

‖yi − xi‖
2. (8)

For more examples (such as logit choice in the case of simplex-
like action sets), the reader is referred to [1, 6, 7, 17].

Concerning the parameter η, we see that the “deflated” mirror
map Qi(ηiyi) selects points that are closer to the “prox-center”
pi ≡ arg min hi of Xi as ηi → 0. Therefore, for small ηi, the
generated sequence of play becomes less susceptible to changes
in the scoring variables yi – hence the name “sensitivity”.

B. Convergence analysis

Our analysis of (DA) will be based on the so-called Fenchel
coupling [6], defined here as

Fη(p, y) =
∑
i∈N

1
ηi

[
hi(pi) + h∗i (ηiyi) − 〈ηiyi, xi〉

]
, (9)

where p is a basepoint in X and

h∗i (yi) = max
xi∈Xi

{〈yi, xi〉 − hi(xi)} (10)

denotes the convex conjugate of hi [18]. This “primal-dual”
coupling collects all terms of Fenchel’s inequality [18], so we
have Fη(p, y) ≥ 0 with equality if and only if pi = Qi(ηiyi).
Moreover, F(p, y) enjoys the key comparison property [6,
Prop. 4.3]

Fη(p, y) ≥
∑
i∈N

Ki

2ηi
‖Q(ηiyi) − pi‖

2, (11)

so x(t) → p whenever F(p, y(t)) → 0. Because of this key
property, convergence to a target point p ∈ X can be checked
by showing that Fη(p, y(t))→ 0.

To state our deterministic convergence result for (DA), it will
be convenient to introduce the equilibrium gap

ε(x) = 〈v(x), x∗ − x〉. (12)

Obviously, if x∗ is stable, we have ε(x) ≥ 0 with equality if and
only if x = x∗; as such, ε(x) can be seen as a (game-dependent)
measure of the distance between x and x∗. We then have:

Theorem 1. If G admits a variationally stable state x∗, every
solution x(t) of (DA) converges to x∗. Moreover, the average
equilibrium gap ε̄(t) = t−1

∫ t
0 ε(x(s)) ds of x(t) vanishes as

ε̄(t) ≤ V0/t, (13)

where V0 ≥ 0 depends only on the initialization of (DA).

Theorem 1 is a strong convergence result guaranteeing global
trajectory convergence to Nash equilibrium and an O(1/t) de-
cay rate for the merit function ε̄(t). Our proof (cf. Appendix A)
relies on the fact that the Fenchel coupling Fη(x∗, y) is a
strict Lyapunov function for (DA), i.e. Fη(x∗, y(t)) is decreasing
whenever x(t) , x∗. Building on this, our aim in the rest of
this paper will be to explore how the strong guarantees of (DA)
are affected if the players’ gradient input is contaminated by
observation noise and/or other stochastic disturbances.

IV. Learning under uncertainty

To account for errors in the players’ feedback process, we
will focus on the disturbance model

dYi = vi(X) dt + dZi,

Xi = Qi(ηiYi),
(SDA)

where Zi(t) is a continuous Itô martingale of the general form

dZi,k(t) =

mi∑
`=1

σi,k`(X(t), t) dWi,`(t), k = 1, . . . , ni, (14)

and:
1) Wi = (Wi,`)

mi
`=1 is an mi-dimensional Wiener process with

respect to some stochastic basis (Ω,F , {Ft}t≥0,�).1

2) The ni ×mi volatility matrix σi : Xi ×�+ → �
ni×mi of Zi(t)

is measurable, bounded, and Lipschitz continuous in the

1In particular, we do not assume here that mi = ni; more on this below.



first argument. Specifically, we make the following noise
regularity assumption:

supx,t‖σi(x, t)‖ < ∞,
‖σi(x′, t) − σi(x, t)‖ = O(‖x′ − x‖).

(NR)

for all x, x′ ∈ X and all t ≥ 0.
Clearly, the noise in (SDA) may depend on t and X(t) in a

fairly general way: for instance, the increments of Zi(t) need not
be i.i.d. and different components of Zi need not be independent
either. Such correlations can be captured by the quadratic
covariation [Zi,Zi] of Zi, given here by

d[Zi,k,Zi,`] =

mi∑
r,s=1

σi,krσi,`s dWi,r · dWi,s = Σi,k` dt, (15)

where Σi = σiσ
>
i [19]. As a consequence of (NR), we then have

‖σ(x, t)‖2F ≡ tr[Σ(x, t)] ≤ σ2
∗ for some σ∗ > 0. (16)

The bound σ∗ essentially captures the intensity of the noise
affecting the players’ observations in (SDA); obviously, when
σ∗ = 0, we recover the noiseless dynamics (DA).

A first observation regarding (SDA) is that the induced
sequence of play Xi(t) = Qi(ηi(t)Yi(t)) may fail to converge with
probability 1. A simple example of this behavior is as follows:
consider a single player with action space X = [−1, 1] and
payoff function u(x) = 1 − x2/2. Then, v(x) = ∇u(x) = −x
for all x ∈ [−1, 1], so (SDA) takes the form

dY = −X dt + σ dW,

X = [Y]1
−1,

(17)

where, for simplicity, we took η = 1, σ constant, and we used
the shorthand [x]b

a for x if x ∈ [a, b], a if x ≤ a, and b if x ≥ b.
In this case, the game’s unique Nash equilibrium obviously

corresponds to X = Y = 0. However, the dynamics (17)
describe a truncated Ornstein–Uhlenbeck (OU) process [19],
leading to the explicit solution formula

Y(t) = Ct0 e−t + σ

∫ t

t0
e−(t−s) dW(s) for some Ct0 ∈ �, (18)

valid whenever Y(s) ∈ [−1, 1] for s ∈ [t0, t]. Thanks to this
expression, we conclude that (SDA) cannot converge to Nash
equilibrium with positive probability in the presence of noise.

Despite the nonconvergence of (17) in general games, the
induced sequence of play roughly stays within O(σ) of the
game’s Nash equilibrium for most of the time (and with high
probability). Hence, it stands to reason that if the players
employed a sufficiently small sensitivity parameter η, the primal
process X(t) = Q(ηY(t)) would be concentrated even more
closely around 0. This observation suggests that using a van-
ishing sensitivity parameter ηi ≡ ηi(t) which decreases to 0 as
t → ∞ could be more beneficial in the face of uncertainty. With
this in mind, we make the following assumption:

ηi(t) is Lipschitz, nonincreasing, and lim
t→∞

tηi(t) = ∞. (19)

Under this assumption, we have:
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Fig. 1: Convergence to Nash equilibrium in the game of Example 1.
When (DA) is run with a fixed sensitivity, neither the actual trajectory
X(t) (blue line) nor its time-average X̄(t) = t−1

∫ t

0
X(s) ds converge

(blue line with circles). If run with a t−1/2 sensitivity schedule, X(t)
gets closer to the optimum (dashed green line) and its time-average
converges following a power law (dashed green line with squares).

Theorem 2. Suppose that G admits a variationally stable
equilibrium x∗. Then, the long-term average equilibrium gap
ε̄(t) = t−1

∫ t
0 ε(X(s)) ds vanishes as

ε̄(t) ≤
∑
i∈N

[
Ωi

tηi(t)
+

σ2
∗

2Kit

∫ t

0
ηi(s) ds

]
+O(t−1/2 log log t), (20)

and enjoys the mean bound

�[ε̄(t)] ≤
∑
i∈N

[
Ωi

tηi(t)
+

σ2
∗

2Kit

∫ t

0
ηi(s) ds

]
, (21)

where Ωi = max hi −min hi is a positive constant.

Corollary 1. If limt→∞ ηi(t) = 0 and G is monotone (in par-
ticular, if G admits a concave potential), the long-run average
X̄(t) = t−1

∫ t
0 X(s) ds of X(t) converges to x∗ (a.s.).

Corollary 2. If ηi(t) ∝ t−β for sufficiently large t, we have

�[ε̄(t)] =


O(t−β) if 0 < β < 1

2 ,

O(t−1/2) if β = 1
2 ,

O(tβ−1) if 1
2 < β < 1,

(22)

In fact, if the growth of v(x) near a stable state x∗ ∈ X is
suitably bounded, we can obtain even finer results for the rate
of convergence of (DA). Specifically, if G grows as

〈v(x), x∗ − x〉 ≥ B‖x∗ − x‖γ for some B > 0, γ ≥ 1, (23)

we have:

Proposition 4. Suppose that (23) holds and (SDA) is run with
ηi(t) ∝ t−1/2. Then, the long-run average X̄(t) = t−1

∫ t
0 X(s) ds

of X(t) enjoys the (a.s.) convergence rate

‖X̄(t) − x∗‖ = Õ
(
t−1/2γ). (24)

Proof: Jensen’s inequality and (23) readily yield

‖X̄(t) − x∗‖γ ≤
1
t

∫ t

0
‖X(s) − x∗‖γ ds ≤ B−1ε̄(t), (25)



so our claim follows from Theorem 2.
With this result, we are able to explicitly control the distance

of the averaged trajectory to the underlying Nash equilibrium
of the game. The precise rate of convergence is then obtained
by exploiting the fine details of the game’s payoff functions. We
are not aware of similar results in the discrete-time literature.

V. Conclusions and perspectives

In this paper, we investigated the convergence of a class of
distributed dual averaging schemes for games with continuous
action sets. When players have access to perfect gradient infor-
mation, dual averaging converges to variationally stable Nash
equilibria from any initial condition. On the other hand, in the
presence of feedback noise and uncertainty, trajectory conver-
gence is destroyed. To rectify this, we introduced a variable
sensitivity parameter which allows us to recover convergence to
stable Nash equilibria in an ergodic sense, as well as providing
an estimate of the rate of convergence to such states.

Two questions that arise are whether it is possible to obtain
stronger convergence results (i) when the noise in the players’
feedback vanishes over time (corresponding to the case where
the players’ feedback becomes more accurate as measurements
accrue over time); and (ii) when the Nash equilibrium has a
special structure (for instance, if it is interior or a corner point
of X ). We leave these questions for future work.

Appendix A
Deterministic analysis

We begin with some basic properties of the Fenchel coupling
(9) that will also be used in Appendix B. To that end, by the
basic properties of convex conjugation and the fact that hi is Ki-
strongly convex, it follows (see e.g. [18, Theorem 23.5] or [6,
Proposition 3.2] ) that h∗i is continuously differentiable and

Qi(yi) = ∇h∗i (yi) (26)

is 1
Ki

-Lipschitz under the dual norm ‖y‖∗ = supx:‖x‖≤1〈y, x〉 [3,
Chap. 2]. Using this relation between h∗ and Q, we obtain the
following Lyapunov-like property of the Fenchel coupling:

Lemma 1. Let V(t) = Fη(x∗, y(t)). Then, under (DA), we have

V̇(t) = 〈v(x(t)), x(t) − x∗〉. (27)

Proof: By Eq. (9) we get:

dV
dt

=
∑
i∈N

1
ηi

[〈ηiẏi,∇h∗i (ηiyi)〉 − 〈ηiẏi, x∗i 〉]

=
∑
i∈N
〈ẏi,Qi(ηiyi) − x∗i 〉 = 〈v(x), x − x∗〉, (28)

as claimed.
Proof of Theorem 1: To begin with, (27) and (VS) yield

V(y(t)) − V(y(0)) =

∫ t

0
〈v(x(s)), x(s) − x∗〉 ds = −tε̄(t), (29)

and hence, letting V0 ≡ V(y(t)), we have:

ε̄(t) =
V(y(0)) − V(y(t))

t
≤

V0

t
. (30)

For the second part, let x̂ be anω-limit of x(t) and assume that
x̂ , x∗. Then, by continuity, there exists a neighborhood U of x̂
in X such that 〈v(x), x− x∗〉 ≤ −a for some a > 0. Furthermore,
since x̂ is an ω-limit of x(t), there exists an increasing sequence
of times tk ↑ ∞ such that x(tk) ∈ U for all k. Then, by the
definition of Q, we have

‖xi(tk + τ) − xi(tk)‖ = ‖Qi(ηiyi(tk + τ)) − Qi(ηiyi(tk))‖

≤
ηi

Ki
‖yi(tk + τ) − yi(tk)‖∗

≤
ηi

Ki

∫ tk+τ

tk
‖vi(x(s))‖∗ ds ≤

ητ

Ki
max
xi∈Xi

‖vi(x)‖∗.

(31)

Since (31) does not depend on k, there exists some sufficiently
small δ > 0 such that x(tk + τ) ∈ U for all τ ∈ [0, δ], k ∈ � (so
we also have 〈v(x(tk + τ)), x(tk + τ)− x∗〉 ≤ −a). Combining this
with the fact that 〈v(x), x − x∗〉 ≤ 0 for all x ∈ X , we get

V(y(tk + δ)) ≤ V(y(0)) +

k∑
`=1

∫ t`+δ

t`
〈v(x(s)), x(s) − x∗〉 ds

≤ V(y(0)) − akδ, (32)

showing that lim inft→∞ V(y(t)) = −∞, a contradiction. Since
x(t) admits at least one ω-limit in X , we get x(t)→ x∗.

Appendix B
Stochastic analysis

We first show that the Fenchel coupling V = Fη(x∗,Y(t))
satisfies a noisy version of Lemma 1:

Lemma 2. Let x∗ ∈ X . Then, for all t ≥ 0, we have

V(Y(t)) ≤ V(Y(0))

+

∫ t

0
〈v(X(s)), X(s) − x∗〉 ds (33a)

−
∑
i∈N

∫ t

0

η̇i(s)
ηi(s)2 [hi(x∗i ) − hi(Xi(s))] ds (33b)

+
∑
i∈N

1
2Ki

∫ t

0
ηi(s) tr[Σi(X(s), s)]∗ ds (33c)

+
∑
i∈N

ni∑
k=1

∫ t

0
(Xi,k(s) − x∗i,k) dZi,k(s). (33d)

Proof: The proof of the lemma follows from the (weak)
Itô’s lemma proved in [20, Lemma C.2].

Our final result is a growth estimate for Itô martingales with
bounded volatility, proved in [21]:

Lemma 3. Let W(t) be a Wiener process in �m and let ζ(t) be
a bounded, continuous process in �m. Then, for every function
f : [0,∞)→ (0,∞), we have

f (t) +

∫ t

0
ζ(s) · dW(s) ∼ f (t) as t → ∞ (a.s.), (34)

whenever limt→∞
(
t log log t

)−1/2 f (t) = +∞.

With all this at hand, we are finally in a position to prove
Theorem 2:



Proof of Theorem 2: After rearranging, Lemma 2 yields∫ t

0
〈v(X(s)), x∗ − X(s)〉 ds (35a)

≤ V(0) − V(t) (35b)

−
∑
i∈N

∫ t

0

η̇i(s)
η2

i (s)
[
hi(x∗i ) − hi(Xi(s))

]
ds (35c)

+
∑
i∈N

1
2Ki

∫ t

0
ηi(s) tr[Σi(X(s), s)] ds (35d)

+
∑
i∈N

ni∑
k=1

∫ t

0
(Xi,k(s) − x∗i,k) dZi,k(s) (35e)

We now proceed to bound each term of (35):
a) Since V ≥ 0 for all t, (35b) is bounded from above by V0.
b) For (35c), let Ωi = maxXi hi − minXi hi. Then, we have

hi(x∗i ) − hi(Xi(s)) ≤ Ωi, so, with ηi nonincreasing, we get

(35c) ≤ −
∑
i∈N

Ωi

∫ t

0

η̇i(s)
η2

i (s)
ds =

∑
i∈N

[
Ωi

ηi(t)
−

Ωi

ηi(0)

]
(36)

because limt→∞ tη(t) = ∞ by assumption (recall also that
η̇ ≤ 0).

c) For (35d), the definition of σ2
∗ gives immediately

(35d) ≤
∑
i∈N

σ2
∗

2Ki

∫ t

0
ηi(s) ds. (37)

d) Finally, for (35e), let ψi(t) =
∫ t

0

∑ni
k=1(Xi,k(s) − x∗i,k) dZi,k(s)

and set ρi = [ψi, ψi] for the quadratic variation of ψi. Then:

d[ψi, ψi] = dψi · dψi =

ni∑
k,`=1

Σi,k`(Xi,k − x∗i,`)(Xi,` − x∗i,`) dt

≤ σ2
∗ ‖Xi(s) − x∗i ‖

2 dt, (38)

so ρi(t) ≤ Rσ2
∗ ‖Xi‖

2t for some norm-dependent constant
R > 0. Then, by a standard time-change argument [19,
Problem 3.4.7], there exists a one-dimensional Wiener pro-
cess W̃i(t) with induced filtration F̃s = Fτρi (s) and such that
W̃i(ρi(t)) = ψi(t) for all t ≥ 0. By the law of the iterated
logarithm [19], we then obtain

lim sup
t→∞

W̃i(ρi(t))√
2Mt log log(Mt)

≤ lim sup
t→∞

W̃i(ρi(t))√
2ρi(t) log log ρi(t)

= 1 (a.s.), (39)

where M = σ2
∗ R

∑
i∈N ‖Xi‖

2. Thus, with probability 1, we
have ψi(t) = O(

√
t log log t).

Combining all of the above and dividing by t, we then get

ε̄(t) =
1
t

∫ t

0
〈v(X(s)), x∗ − X(s)〉 ds

≤
∑
i∈N

[
Ωi

tηi(t)
+

σ2
∗

2tKi

∫ t

0
ηi(s) ds

]
+ O(t−1/2

√
log log t),

where we have absorbed all O(1/t) terms in the logarithmic
term O(

√
t−1 log log t).
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