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Abstract. Motivated by the recent applications of game-theoretical learning

techniques to the design of distributed control systems, we study a class of
control problems that can be formulated as potential games with continuous

action sets, and we propose an actor-critic reinforcement learning algorithm

that provably converges to equilibrium in this class of problems. The method
employed is to analyse the learning process under study through a mean-

field dynamical system that evolves in an infinite-dimensional function space

(the space of probability distributions over the players’ continuous controls).
To do so, we extend the theory of finite-dimensional two-timescale stochastic

approximation to an infinite-dimensional, Banach space setting, and we prove

that the continuous dynamics of the process converge to equilibrium in the
case of potential games. These results combine to give a provably-convergent

learning algorithm in which players do not need to keep track of the controls
selected by the other agents.
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1. Introduction

There has been much recent activity in using techniques of learning in games to
design distributed control systems. This research traverses from utility function de-
sign [1–3], through analysis of potential suboptimalities due to the use of distributed
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selfish controllers [4] to the design and analysis of game-theoretical learning algo-
rithms with specific control-inspired objectives (reaching a global optimum, fast
convergence, etc.) [5, 6].

In this context, considerable interest has arisen from the approach of [1, 2] in
which the independent controls available to a system are distributed among a set
of agents, henceforth called “players”. To complete the game-theoretical analogy,
the controls available to a player are called “actions”, and each player is assigned
a utility function which depends on the actions of all players (as does the global
system-level utility). As such, a player’s utility in a particular play of the game
could be set to be the global utility of the joint action selected by all players.
However, a more learnable choice is the so-called Wonderful Life Utility (WLU)
[1, 2], in which the utility of any particular player is given by how much better
the system is doing as a result of that player’s action (compared to the situation
where no other player changes their action but the focal player uses a baseline
action instead). A fundamental result in this domain is that setting the players’
utilities using WLUs results in a potential game [7] (see Section 2 below). There
are alternative methods for converting a system-level utility function into individual
utilities, such as Shapley value utility [8]; however, most of these also boil down to
a potential game (possibly in the extended sense of [3]) where the optimal system
control is a Nash equilibrium of the game. Thus, by representing a control problem
as a potential game, the controllers’ main objective amounts to reaching a Nash
equilibrium of the resulting game.

On the other hand, like much of the economic literature on learning in games
[9, 10], the vast majority of this corpus of research has focused almost exclusively
on situations where each player’s controls comprise a finite set. This allows results
from the theory of learning in games to be applied directly, resulting in learn-
ing algorithms that converge to the set of equilibria – and hence system optima.
However, the assumption of discrete action sets is frequently anomalous in control,
engineering and economics: after all, prices are not discrete, and neither are the
controls in a large number of engineering systems. For instance, in massively paral-
lel grid computing networks (such as the Berkeley Open Infrastructure for Network
Computing – BOINC) [11], the decision granularity of “bag-of-tasks” application
scheduling gives rise to a potential game with continuous action sets [7]. A simi-
lar situation is encountered in the case of energy-efficient power control and power
allocation in large wireless networks [12, 13]: mobile wireless users can transmit
at different power levels (or split their power across different subcarriers [14]), and
their throughput is a continuous function of their chosen transmit power profiles
(which have to be optimized unilaterally and without recourse to user coordination
or cooperation). Finally, decision-making in the emerging “smart grid” paradigm
for power generation and management in electricity grids also revolves around con-
tinuous variables (such as the amount of power to generate, or when to power
down during the day), leading again to game-theoretical model formulations with
continuous action sets [15].

In this paper, we focus squarely on control problems (presented as potential
games) with continuous action sets and we propose an actor-critic reinforcement
learning algorithm that provably converges to equilibrium. To address this problem
in an economic setting, very recent work by Perkins and Leslie [16] extended the
theory of learning in games to zero-sum games with continuous action sets (see
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also [17, 18]); however, from a control-theoretical point of view, zero-sum games
are of limited practical relevance because they only capture adversarial interactions
between two players. Owing to this fundamental difference between zero-sum and
potential games, the two-player analysis of [16] no longer applies to our case, so a
completely different approach is required to obtain convergence in the context of
many-player potential games.

To accomplish this, our analysis relies on two theoretical contributions of inde-
pendent interest. The first is the extension of stochastic approximation techniques
for Banach spaces (otherwise known as “abstract stochastic approximation” [19–
24]) to the so-called “two-timescales” framework originally introduced in standard
(finite-dimensional space) stochastic approximation by [25]. This allows us to con-
sider interdependent strategies and value functions evolving as a stochastic process
in a Banach space (the space of signed measures over the players’ continuous ac-
tion sets and the space of continuous functions from action space to R respectively,
both endowed with appropriate norms). Our second contribution is the asymptotic
analysis of the mean field dynamics of this process on the space of probability mea-
sures on the action space; our analysis reveals that the dynamics’ rest points in
potential games are globally attracting, so, combined with our stochastic approxi-
mation results, we obtain the convergence of our actor-critic reinforcement learning
algorithm to equilibrium.

In Section 2 we introduce the framework and notation, and introduce our actor–
critic learning algorithm. Following that, in Section 3 we introduce two-timescales
stochastic approximation in Banach spaces, and prove our general result. Section 4
applies the stochastic approximation theory to the actor–critic algorithm to show
that it can be studied via a mean field dynamical system. Section 5 then analyses
the convergence of the mean field dynamical system in potential games, a result
which allows us to prove the convergence of the actor–critic process in this context.

2. Actor–critic learning with continuous action spaces

Throughout this paper, we will focus on control problems presented as potential
games with finitely many players and continuous action spaces. Such a game com-
prises a finite set of players labelled i ∈ {1, . . . , N}. For each i there exists an action
set Ai ⊂ R which is a compact interval;1 when each player selects an action ai ∈ Ai,
this results in a joint action a = (a1, . . . , aN ) ∈ A =

∏N
i=1A

i. We will frequently
use the notation (ai, a−i) to refer to the joint action a in which Player i uses ac-
tion ai and all other players use the joint action a−i = (a1, . . . , ai−1, ai+1, . . . , aN ).
Each player i is also associated with a bounded and continuous utility function
ui : A → R. For the game to be a potential game, there must exist a potential
function φ : A→ R such that

ui(ai, a−i)− ui(ãi, a−i) = φ(ai, a−i)− φ(ãi, a−i)

for all i ∈ {1, . . . , N}, for all a−i and for all ai, ãi. Thus if any player changes their
action while the others do not, the change in utility for the player that changes their
action is equal to the change in value of the potential function of the game. Methods
for constructing potential games from system utility functions [1–3] usually ensure

1We are only making this assumption for convenience; our analysis carries through to higher-
dimensional convex bodies with minimal hassle.



4 S. PERKINS, P. MERTIKOPOULOS, AND D. S. LESLIE

that the potential corresponds to the system utility, so maximising the potential
function corresponds to maximising the system utility.

Game-theoretical analyses usually focus on mixed strategies where a player se-
lects an action to play randomly. A mixed strategy for Player i is defined to be a
probability distribution over the action space Ai. This is a simple concept when Ai

is finite, but for the continuous action spaces Ai considered in this paper more care
is required. Specifically, let Bi be the Borel sigma-algebra on Ai and let P(Ai,Bi)
denote the set of all probability measures on Ai. Throughout this article we endow
P(Ai,Bi) with the weak topology, metrized by the bounded Lipschitz norm (see
Section 4; also [16, 26, 27]). A mixed strategy is then an element πi ∈ P(Ai,Bi);
for Bi ∈ Bi we have that πi(Bi) is the probability that Player i selects an action in
the Borel set Bi. Note that a mixed strategy under this definition need not admit a
density with respect to Lebesgue measure, and in particular may contain an atom
at a particular action ai.

Returning to our game-theoretical considerations, we extend the definition of

utilities to the space ∆ =
∏N
i=1 P(Ai,Bi) of mixed strategy profiles. In particular,

let π ∈ ∆ be a mixed strategy profile, and define

ui(π) =

∫
A1

· · ·
∫
AN

ui(a)π1(da1) · · ·πN (daN ).

As before we use the notation (πi, π−i) to refer to the mixed strategy profile π in
which Player i uses πi and all other players use π−i = (π1, . . . , πi−1, πi+1, . . . , πN ).
In further abuse of notation, we write (ai, π−i) for the mixed strategy profile
(δai , π

−i), where δai is the Dirac measure at ai (meaning that Player i selects action
ai with probability 1). Hence ui(ai, π−i) is the utility to Player i for selecting ai

when all other players use strategy π−i.
A central concept in game theory is the best response correspondence of Player

i, i.e. the set of mixed strategies that maximise Player i’s utility given any par-
ticular opponent mixed strategy π−i. A Nash equilibrium is a fixed point of this
correspondence, in which all players are playing a best response to all other play-
ers. In a learning context however, the discontinuities that appear in best response
correspondences can cause great difficulties [28]. We focus instead on a smoothing
of the best response. For a fixed η > 0, the logit best response with noise level η of
Player i to strategy π−i is defined to be the mixed strategy Liη(π−i) ∈ P(Ai,Bi)
such that

Liη(π−i)(Bi) =

∫
Bi

exp
{
η−1ui(ai, π−i)

}
dai∫

Ai
exp {η−1ui(bi, π−i)} dbi

(1)

for each Bi ∈ Bi. In [18] it is shown that Liη(π−i) ∈ P(Ai,Bi) is absolutely
continuous (with respect to Lebesgue measure), with density given by

liη(π−i)(ai) =
exp

{
η−1ui(ai, π−i)

}∫
Ai

exp {η−1ui(bi, π−i)} dbi
. (2)

To ease notation in what follows, we let Lη(π) =
(
L1
η(π−1), . . . , LNη (π−N )

)
.

The existence of fixed points of Lη is shown in [18] and [16]; such a fixed point
is a joint strategy π such that πi = Liη(π−i) for each i, and so is a mixed strategy
profile such that every player is playing a smooth best response to the strategies of
the other players. Such profiles π are called logit equilibria and the set of all such
fixed points will be denoted by LEη. A logit equilibrium is thus an approximation
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of a local maximizer of the potential function of the game in the sense that for
small η a logit equilibrium places most of the probability mass in areas where the
joint action results in a high potential function value; in particular, logit equilibria
approximate Nash equilibria when the noise level is sufficiently small.2

Smooth best responses also play an important part in discrete action games,
particularly when learning is considered. In this domain they were introduced in
stochastic fictitious play by [30], and later studied by, among others, [31–33] to
ensure the played mixed strategies in a fictitious play process converge to logit
equilibrium. This is in contrast to classical fictitious play in which the beliefs of
players converge, but the played strategies are (almost) always pure. The technique
was also required by [34–36] to allow simple reinforcement learners to converge to
logit equilibria: as discussed in [34], players whose strategies are a function of the
expected value of their actions cannot converge to a Nash equilibrium because,
at equilibrium, all actions in the support of the equilibrium mixed strategies will
receive the same expected reward.

Recently [18] developed the dynamical systems tools necessary to consider whether
the smooth best response dynamics converge to logit equilibria in the infinite-
dimensional setting. This was extended to learning systems in [16], where it was
shown that stochastic fictitious play converges to logit equilibrium in two-player
zero-sum games with compact continuous action sets.

One of the main requirements for efficient learning in a control setting is that
the full utility functions of the game need not be known in advance, and players
may not be able to observe the actions of all other players. Using fictitious play
(or, indeed, many of the other standard game-theoretical tools) does not satisfy
this requirement because they assume full knowledge and observability of payoff
functions and opponent actions. This is what motivates the simple reinforcement
learning approaches discussed previously [34–36], and also the actor-critic reinforce-
ment learning approach of [37], which we extend in this article to the continuous
action space setting. The idea is to learn both a value function Qi : Ai → R that
estimates the function ui(ai, π−i) for the current value of π−i, while also maintain-
ing a separate mixed strategy πi ∈ P(Ai,Bi). The critic, Qi, informs the update
of the actor, πi. In turn the observed utilities received by the actor, πi, inform the
update of the critic Qi.

In the continuous action space setting of this paper, we implement the actor-critic
algorithm as the following iterative process (for a pseudo-code implementation, see
Algorithm 1):

(1) At the n-th stage of the process, each player i = 1, . . . , N selects an action
ain by sampling from the distribution πin and uses ain to play the game.

(2) Players update their critics using the update equation

Qin+1 = Qin + γn ·
(
ui(·, a−in )−Qin

)
(3a)

(3) Each player samples bin ∼ Liη(Qin) and updates their actor using the update
equation

πin+1 = πin + αn ·
(
δbin − π

i
n

)
. (3b)

The algorithm above is the main focus of our paper, so some remarks are in
order:

2We note here that the notion of a logit equilibrium is a special case of the more general
concept of quantal response equilibrium introduced in [29].



6 S. PERKINS, P. MERTIKOPOULOS, AND D. S. LESLIE

Algorithm 1 Actor-critic Reinforcement Learning Based on Logit Best Responses

Parameters: step-size sequences αn, γn.

Initialize critics Qi, actors πi; n← 0.

Repeat
n← n+ 1;

foreach player i = 1, . . . , N do
select action ai based on actor πi; #play the game

update critic: Qi ← Qi + γn(u
i(a1, . . . , aN )−Qi); #update payoff estimates

draw sample bi ∼ Liη(Qi); #sample logit best response

update actor: πi ← πi + αn(δbi − πi); #update mixed strategies

until termination criterion is reached.

Remark 1. In (3a), it is assumed that a player can access ui(·, a−in ), so they can
calculate how much they would have received for each of their actions in response to
the joint action that was selected by the other players. Even though this assumption
restricts the applicability of our method somewhat, it is relatively harmless in many
settings — for instance, in congestion games such estimates can be calculated simply
by observing the utilization level of the system’s facilities. Note further that to
implement this algorithm an individual need not actually observe the action profile
a−in , needing only the utility ui(·, a−in ). This means that a player need know nothing
at all about the players who don’t directly affect her utility function, which allows a
degree of separation and modularisation in large systems, as demonstrated in [38].

Remark 2. The logit response Liη used to sample the bin used in (3b) is now pa-

rameterised by Qin instead of π−i. This is a trivial change in which we use Qi(·) in
place of ui(·, π−i) in (1), which represents the fact that now players select smooth
best responses to their critic Qi instead of directly to the estimated mixed strategy
of the other players.

Remark 3. Also in (3b), the players update towards a sampled bin instead of toward
the full function Liη(Qin). This is so that the critic πin can be represented as a
collection of weighted atoms, instead of as a complicated and continuous probability
measure. Representing πin as a collection of atoms means that sampling ain ∼ πin is
particularly easy.

On the other hand, sampling bin ∼ Liη(Qin) could be extremely difficult for general

Qin. The gradual evolution of the Qin however implies that a sequential Monte
Carlo sampler [39] could be used to produce samples according to Liη(Qin). The

representation of Qin is also potentially troublesome and we do not address it fully
here. However one could assume that each ui(ain) can be represented as a finite
linear combination of basis functions such as a spline, Fourier or wavelet basis.
Another option would be to slowly increase the size of a Fourier or wavelet basis as
n gets large, resulting in vanishing bias terms which can be easily incorporated in
the stochastic approximation framework.

Remark 4. Finally, we note that the updates (3a) and (3b) use different step size
parameters αn and γn. This separation is what allows the algorithm to be a two-
timescales procedure, and is discussed at the start of Section 3.

The remainder of this article works to prove the following theorem, while also
providing several auxiliary results of independent interest along the way:
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Theorem 1. In a continuous-action-set potential game with bounded Lipschitz re-
wards and isolated equilibrium components, the actor–critic algorithm (3) converges
strongly to a component of the equilibrium set LEη (a.s.).

Remark. We recall here that the notion of strong convergence of probability mea-
sures πn → π∗ is defined by asking that πn(A)→ π∗(A) for every measurable A. As
such, this notion of convergence is even stronger than the notion of “convergence
in probability” (vague convergence) used in the central limit theorem and other
weak-convergence results.

3. Two-timescales stochastic approximation in Banach spaces

The analysis of systems such as Algorithm 1 is enabled by the use of two-
timescales stochastic approximation techniques [25]. By allowing αn/γn → 0 as
n→∞, the system can be analysed as if the ‘fast’ update (3a), with higher learn-
ing parameter γn, has fully converged to the current value of the ‘slow’ system (3b),
with lower learning parameter αn. Note that it is not the case that we have an
outer and inner loop, in which (3a) is run to convergence for every update of (3b):
both the actor Qn and the critic πn are updated on every iteration. It is simply
that the two-timescales technique allows us to analyse the system as if there were
an inner loop.

That being said, the results of [25] are only cast in the framework of finite-
dimensional spaces. We have already observed that with continuous action spaces
Ai, the mixed strategies πi are probability measures in the space P(Ai,Bi), and
the critics Qi are L2 functions. Placing appropriate norms on these spaces results
in Banach spaces, and in this section we combine the two-timescales results of [25]
with the Banach space stochastic approximation framework of [16] to develop the
tool necessary to analyse the recursion (3).

To that end, consider the general two-timescales stochastic approximation system

xn+1 = xn + αn+1 [F (xn, yn) + Un+1 + cn+1] , (4a)

yn+1 = yn + γn+1 [G(xn, yn) + Vn+1 + dn+1] , (4b)

where

• xn and yn are sequences in the Banach spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y )
respectively.
• {αn} and {γn} are the learning rate sequences of the process.
• F : X×Y → X and G : X×Y → Y comprise the mean field of the process.
• {Un} and {Vn} are stochastic processes in X and Y respectively. (For a

detailed exposition of Banach-valued random variables, see [40].)
• cn ∈ X and dn ∈ Y are bias terms that converge almost surely to 0.

We will study this system using the asymptotic pseudotrajectory approach of [41],
which is already cast in the language of metric spaces; since Banach spaces are
metric, the framework of [41] still applies to our scenario. This modernises the
approach of [22] while also introducing the two-timescales technique to ‘abstract
stochastic approximation’.

To proceed, recall that a semiflow Φ on a metric space, M , is a continuous map
Φ : R+ ×M →M , (t, x) 7→ Φt(x), such that, Φ0(x) = x and Φt+s(x) = Φt

(
Φs(x)

)
for all t, s ≥ 0. As in simple Euclidean spaces, well-posed differential equations on
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Banach spaces induce a semiflow [42]. A continuous function z : R+ → M is an
asymptotic pseudo-trajectory for Φ if for any T > 0,

lim
t→∞

sup
0≤s≤T

d
(
z(t+ s),Φs

(
x(t)

))
= 0.

Properties of asymptotic pseudo-trajectories are discussed in detail in [41].
We will prove that interpolations of the stochastic approximation process (4)

result in asymptotic pseudotrajectories to flows induced by dynamical systems on
X and Y governed by F and G respectively. To do so, and to allow us to state
necessary assumptions on the processes, we define timescales on which we will
interpolate the stochastic approximation process. In particular, let ταn =

∑n
j=1 αj

(with τα0 = 0), and for t ∈ R+ let mα(t) = sup{k ≥ 0; ταk ≤ t}. Similarly let
τγn =

∑n
j=1 γj (with τγ0 = 0), and for t ∈ R+ let mγ(t) = sup{k ≥ 0; τγk ≤ t}.

With these timescales we define interpolations of the stochastic approximation
processes (4). On the slow (α) timescale we define a continuous-time interpolation
x̄α : R+ → X of {xn}n∈N by letting

x̄α(ταn + s) = xn + s
xn+1 − xn
αn+1

(5)

for s ∈ [0, αn+1). On the fast (γ) timescale we consider zn = (xn, yn) ∈ X×Y , and
define the continuous time interpolation z̄γ : R+ → X × Y of {zn}n∈N by letting

z̄γ(τγn + s) = zn + s
zn+1 − zn
γn+1

(6)

for s ∈ [0, γn+1).
Our assumptions, which are simple extensions to those of [25] and [41], can now

be stated as follows:

A1) Noise control.
(a) For all T > 0,

lim
n→∞

sup
k∈{n+1,...,mα(ταn+T )}


∥∥∥∥∥∥
k−1∑
j=n

αj+1Uj+1

∥∥∥∥∥∥
X

 = 0,

lim
n→∞

sup
k∈{n+1,...,mγ(τγn+T )}


∥∥∥∥∥∥
k−1∑
j=n

γj+1Vj+1

∥∥∥∥∥∥
Y

 = 0.

(b) {cn}n∈N and {dn}n∈N are bounded sequences such that ‖cn‖X → 0
and ‖dn‖Y → 0 as n→∞.

A2) Boundedness and continuity.
(a) There exist compact sets C ⊂ X and D ⊂ Y such that xn ∈ C and

yn ∈ D for all n ∈ N.
(b) F and G are bounded and uniformly continuous on C ×D.

A3) Learning rates.
(a)

∑∞
n=1 αn =∞ and

∑∞
n=1 γn =∞ with αn → 0 and γn → 0 as n→∞.

(b) αn/γn → 0 as n→∞.
A4) Mean field behaviour.

(a) For any fixed x̃ ∈ C the differential equation

dy

dt
= G(x̃, y) (7)
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has unique solution trajectories that remain in D for any initial value
y0 ∈ D. Furthermore the differential equation (7) has a unique globally
attracting fixed point y∗(x̃), and the function y∗ : C → D is Lipschitz
continuous.

(b) The differential equation

dx

dt
= F (x, y∗(x)) (8)

has unique solution trajectories that remain in C for any initial value
x0 ∈ C.

Assumption A1 is the standard assumption for noise control in stochastic approx-
imation. It has traditionally caused difficulty in abstract stochastic approximation,
but recent solutions are discussed in the following paragraph. Assumption A2 is
simply a boundedness and continuity assumption, but can cause difficulty with some
norms in function spaces. Assumption A3 provides the two-timescales nature of the
scheme, with both learning rate sequences converging to 0, but αn becoming much
smaller than γn. Finally Assumption A4 provides both the existence of unique
solutions of the relevant mean field differential equations, and the useful separation
of timescales in continuous time which is directly analogous to Assumption (A1) of
[25]. Note that we do not make the stronger assumption that there exists a unique
globally asymptotically stable fixed point in the slow timescale dynamics (8) [25,
Assumption A2]; this assumption is not necessary for the theory presented here,
and would unnecessarily restrict the applicability of the results.

Note that the noise assumption A1(a) has traditionally caused difficulty for sto-
chastic approximation on Banach spaces: [23] considers the simple case where the
stochastic terms are independent and identically distributed, whilst [22] prove a
very weak convergence result for a particular process which again uses independent
noise. However [16] provide criteria analogous to the martingale noise assumptions
in RK which guarantee that the noise condition 1(a) holds in useful Banach spaces.
In particular, if {Un} is a sequence of martingale differences in Banach space X,
then

lim
n→∞

sup
k∈{n+1,...,mα(ταn+T )}


∥∥∥∥∥∥
k−1∑
j=n

αj+1Uj+1

∥∥∥∥∥∥
X

 = 0

with probability 1 if X is:

• the space of Lp functions for p ≥ 2, {αn}n∈N is deterministic with
∑
n∈N α

1+q/2
n <

∞, {Un}n∈N is a martingale difference sequence with respect to some fil-
tration {Fn}n∈N, and supn∈N E [‖Un‖qLp ] < ∞ (cf. the remark following
Proposition A.1 of [16]);
• the space of L1 functions on bounded spaces (see [43]); or
• the space of finite signed measures on a compact interval of R with the

bounded Lipschitz norm (see [16, 26, 27] or Section 4 below) {αn}n∈N is
deterministic with

∑
n∈N α

2
n < ∞, Un = δxn+1

− Pn where there exists a
filtration {Fn}n∈N such that Un is measurable with respect to Fn, Pn is
a bounded absolutely continuous probability measure which is measurable
with respect to Fn and has density pn, and xn+1 is sampled from the
probability distribution Pn (Proposition 3.6 of [16]);

Clearly, if similar conditions also hold for Y then Assumption A1(a) holds.
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Our first lemma demonstrates that we can analyse the system as if the fast
system {yn} is fully calibrated to the slow system {xn}. By this we mean that, for
sufficiently large n, yn is close to the value it would converge to if xn were fixed
and yn allowed to fully converge.

Lemma 2. Under Assumptions A1–A4,

‖yn − y∗(xn)‖Y → 0 as n→∞.

Proof. Let Z = X × Y , with ‖ · ‖Z the induced product norm from the topologies
of X and Y . Under this topology, Z is a Banach space, and C×D is compact. The
updates (4) can be expressed as

zn+1 = zn + γn+1

[
H(zn) +Wn+1 + κn+1

]
, (9)

where H : Z → Z is such that H(zn) = (0, G(zn)), for 0 ∈ X, and

Wn =

(
αn
γn
Un, Vn

)
,

κn+1 =

(
αn+1

γn+1

[
F (zn) + dn+1

]
, en+1

)
.

Assumptions A1–A4 imply the assumptions of Theorem 3.3 of [16]. Most are direct
translations, but the noise must be carefully considered. For any n ∈ N, any T > 0,
and any k ∈ {n+ 1, . . . ,mγ(τγn + T )},∥∥∥∥∥∥

k−1∑
j=n

γj+1(Wn+1 + κn+1)

∥∥∥∥∥∥
Z

≤

∥∥∥∥∥∥
k−1∑
j=n

γj+1Wn+1

∥∥∥∥∥∥
Z

+

∥∥∥∥∥∥
k−1∑
j=n

γj+1κn+1

∥∥∥∥∥∥
Z

≤

∥∥∥∥∥∥
k−1∑
j=n

γj+1Wn+1

∥∥∥∥∥∥
Z

+

(
sup

k′∈{n+1,...,k}
‖κk′‖Z

)
k−1∑
j=n

γj+1

≤

∥∥∥∥∥∥
k−1∑
j=n

γj+1Wn+1

∥∥∥∥∥∥
Z

+

(
sup

k′∈{n+1,...,mγ(τγn+T )}
‖κk′‖Z

)mγ(τγn+T )−1∑
j=n

γj+1

≤

∥∥∥∥∥∥
k−1∑
j=n

γj+1Wn+1

∥∥∥∥∥∥
Z

+

(
sup

k′≥n+1
‖κk′‖Z

)
T

Since κn → 0, the second term converges to 0 as n→∞. Hence, using assumption
A1 to control the first term,

lim
n→∞

sup
k∈{n+1,...,mγ(τγn+T )}

∥∥∥∥∥∥
k−1∑
j=n

γj+1(Wn+1 + κn+1)

∥∥∥∥∥∥
Z

= 0.
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Therefore z̄γ(·) : R+ → X × Y , defined in (6), is an asymptotic pseudotrajectory
of the flow defined by

dz

dt
= H

(
z(t)

)
. (10)

Assumption A4(a) implies that {(x, y∗(x)) : x ∈ C} is globally attracting for (10).
Hence Theorem 6.10 of [41] gives that zn → {(x, y∗(x)) : x ∈ C}. The result
follows by the continuity of y∗ assumed in A4(a). �

We use this fact to consider the evolution of xn on the slow timescale.

Theorem 3. Under Assumptions A1–A4, the interpolation x̄α(·) : R+ → X, de-
fined in (5), is an asymptotic pseudo-trajectory to the flow induced by the differential
equation (8).

Proof. Rewrite (4a) as

xn+1 = xn + αn+1

[
F
(
xn, y

∗(xn)
)

+ Un+1 + c̃n+1

]
, (11)

where c̃n+1 = F (xn, yn) − F (xn, y
∗(xn)) + cn+1. We will show that this is a well-

behaved stochastic approximation process. In particular, we need to show that c̃n
can be absorbed into Un in such a way that the equivalent Assumption A1 of [16]
can be applied to Un + c̃n.

By Lemma 2 we have that ‖yn − y∗(xn)‖Y → 0. Hence we can define

δn = inf{δ > 0 : ∀m ≥ n, ‖ym − y∗(xm)‖Y < δ}

with δn → 0 as n→∞. By the uniform continuity of F , it follows that we can define
a sequence εn → 0 such that for all m ≥ n, ‖F (xm, ym)− F (xm, y

∗(xm))‖X < εn.
From this construction, for any n ≥ 0 and for any k ∈ {n+ 1, . . . ,mα(ταn + T )},∥∥∥∥∥∥

k−1∑
j=n

αj+1

[
F
(
xn, yn

)
− F

(
xn, y

∗(xn)
)]∥∥∥∥∥∥

X

≤

∥∥∥∥∥∥
k−1∑
j=n

αj+1εn

∥∥∥∥∥∥
X

≤ Tεn.

As in the proof of Lemma 2, similar arguments can be used for {cn}n∈N under
assumption (A1)(b). Hence for all T > 0,

lim
n→∞

sup
k∈{n+1,...,mα(ταn+T )}


∥∥∥∥∥∥
k−1∑
j=n

αj+1c̃j+1

∥∥∥∥∥∥
X

 = 0.

Once again it is straightforward to show that, under (A1)-(A4), the slow timescale
stochastic approximation (11) satisfies the assumptions of Theorem 3.3 of [16], and
therefore x̄(·) : R+ → X is an asymptotic pseudo-trajectory to the flow induced by
the differential equation (8). �

While [41] provides several results that can be combined with Theorem 3, we
summarise the result used in this paper with the following corollary:
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Corollary 4. Suppose that Assumptions A1–A4 hold. Then xn converges to an
internally chain transitive set of the flow induced by the mean field differential
equation (8).

Proof. This is an immediate consequence of Theorem 5 above and Theorem 5.7 of
[41], where the definition of internally chain transitive sets can be found. �

4. Stochastic approximation of the actor–critic algorithm

In this section we demonstrate that the actor–critic algorithm (3) can be analysed
using the two-timescales stochastic approximation framework of Section 3. Our first
task is to define the Banach spaces in which the algorithm evolves.

Note that the set P(Ai,Bi) of probability distributions on Ai is a subset of the
space M(Ai,Bi) of finite signed measures on (Ai,Bi). To turn this space into a
Banach space, the most convenient norm for our purposes is the bounded Lipschitz
(BL) norm.3 To define the BL norm, let

Gi = {g : Ai → R : sup
a∈Ai

|g(a)|+ sup
a,b∈Ai,a 6=b

|g(a)− g(b)|
|a− b|

≤ 1}.

Then, for µ ∈M(Ai,Bi) we define

‖µ‖BLi = sup
g∈Gi

∣∣∣∣∫
Ai
g(dµ)

∣∣∣∣ .
M(Ai,Bi) with norm ‖ ·‖BLi is a Banach space [27], and convergence of a sequence
of probability measures under ‖ · ‖BLi corresponds to weak convergence of the
measures [26]. Under the BL norm, P(Ai,Bi) is a compact subset of M(Ai,Bi)
(see Proposition 4.6 of [16]), allowing Assumption A2 to be easily verified.

We consider mixed strategy profiles as existing in the subset ∆ of the product
space Σ = M(A1,B1) × · · · × M(AN ,BN ). We use the max norm to induce the
product topology, so that if µ = (µ1, . . . , µN ) ∈ Σ we define

‖µ‖BL = max
i=1,...,N

‖µi‖BLi . (12)

Suppose also that utility functions ui are bounded and Lipschitz continuous.
Since their domain is a bounded interval of R we can assume that the estimates Qin
are in the Banach space L2(Ai) of functions Ai → R with a finite L2 norm, under
the L2 norm. Hence we consider the vectors Q

n
= (Q1

n, . . . , Q
N
n ) as elements of the

Banach space Y = ×Ni=1L
2(Ai) with ‖Q‖Y = maxi=1,...,N ‖Qi‖L2 .

Theorem 5. Consider the actor–critic algorithm (3). Suppose that for each i the
action space Ai is a compact interval of R, and the utility function ui is bounded
and uniformly Lipschitz continuous. Suppose also that {αn}n∈N and {γn}n∈N are
chosen to satisfy Assumption A3 as well as

∑
n∈N α

2
n < ∞ and

∑
n∈N γ

2
n < ∞.

Then, under the bounded Lipschitz norm, {πn}n∈N converges with probability 1
to an internally chain transitive set of the flow defined by the N -player logit best
response dynamics

dπ

dt
= Lη(π)− π. (13)

3For a discussion regarding the appropriateness of this norm for game-theoretical considera-
tions, see [18, 26, 27], and, for stochastic approximation, especially [16].
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Proof. We take (X, ‖ · ‖X) = (Σ, ‖ · ‖BL), and (Y, ‖ · ‖Y ) as above. This allows a
direct mapping of the actor–critic algorithm (3) to the stochastic approximation
framework (4) by taking

xn = πn,

F (π,Q) = Lη(Q)− π,
Un+1 = (δb1n , . . . , δbNn )− Lη(Q),

cn = 0

and

yn = Q
n
,

G(π,Q) = (G1(π,Q), . . . , GN (π,Q)),

Gi(π,Q) = ui(·, π−i)−Qi,
Vn+1 = (V 1

n+1, . . . , V
N
n+1),

V in+1 = ui(·, a−in )− ui(·, π−in ),

dn = 0.

By Corollary 4 we therefore only need to verify Assumptions A1–A4.

A1: Un is of exactly the form studied by [16] and therefore Proposition
3.6 of that paper suffices to prove the condition on the tail behaviour of∑
j αj+1Uj+1 holds with probability 1. The Vn+1 are martingale difference

sequences, since E(ui(·, a−in ) | Fn) = ui(·, π−in ), and the Qn+1 are L2 func-
tions. Hence Proposition A.1 of [16] suffices to prove the condition on the
tail behaviour of

∑
j γj+1Vj+1 holds with probability 1 under the L2 norm.

Since cn and dn are identically zero, we have shown that A1 holds.
A2: ∆ is a compact subset of Σ under the bounded Lipschitz norm, so taking
C = ∆ suffices. Furthermore, with bounded continuous reward functions
ui it follows that the Qin are uniformly bounded and equicontinuous and
therefore remain in a compact set D. G is clearly uniformly continuous on
the compact set C ×D. The continuity of Lη, and therefore F , is shown in
Lemma C.2 of [16].

A3: The learning rates are chosen to satisfy this assumption.
A4: For fixed π̃, the differential equations

Q̇i = ui(·, π̃−i)−Qi

converge exponentially quickly to Qi = ui(·, π̃−i). Furthermore ui(·, π−i)
is Lipschitz continuous in π−i, so part (a) is satisfied. Equation (8) then
becomes

π̇i = Liη(ui(·, π−i))− πi, for i = 1, . . . , N .

Since we re-wrote Liη to depend on the utility functions instead of directly on

π−i, we find that we have recovered the logit best response dynamics of [18]
and [16], which those authors show to have unique solution trajectories. �
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5. Convergence of the logit best response dynamics

We have shown in Theorem 5 that the actor–critic algorithm (3) results in joint
strategies {πn}n∈N that converge to an internally chain transitive set of the flow
defined by the logit best response dynamics (13) under the bounded Lipschitz norm.
It is demonstrated in [16] that in two-player zero-sum continuous action games the
set LEη of logit equilibria (the fixed points of the logit best response Lη) is a global
attractor of the flow. Hence, by Corollary 5.4 of [41] we instantly obtain the result
that any internally chain transitive set is contained in LEη.

However two-player zero-sum games are not particularly relevant for control
systems: multiplayer potential games are much more important. The logit best
responses in a potential game are identical to the logit best responses in the identical
interest game in which the potential function is the global utility function. Hence
evolution of strategies under the logit best response dynamics in a potential game
is identical to that in the identical interest game in which the potential acts as the
global utility. We therefore carry out our convergence analysis for the logit best
response dynamics (13) in N -player identical interest games with continuous action
spaces. See [44] for related issues.

For the remainder of this section we work to prove the following theorem:

Theorem 6. In a potential game with continuous bounded rewards, in which the
connected components of the set LEη of logit equilibria of the game are isolated,
any internally chain transitive set of the flow induced by the smooth best response
dynamics (13) is contained in a connected component of LEη.

Define

∆D =

π ∈ ∆ :

∀i = 1, . . . , N , πi is absolutely contin-
uous with density pi such that D−1 ≤
pi(xi) ≤ D for all xi ∈ Ai and pi is
Lipschitz continuous with constant D

 .

Appendix C of [16] shows that if the utility functions ui are bounded and Lipschitz
continuous then, for any η > 0, there exists a D such that Lη(π) ∈ ∆D for all
π ∈ ∆, and that ∆D is forward invariant under the logit best response dynamics.
For the remainder of this article, D is taken to be sufficiently large for this to be
the case.

Our method first demonstrates that the set ∆D is globally attracting for the
flow, so any internally chain transitive set of the flow is contained in ∆D. The nice
properties of ∆D then allow the use of a Lyapunov function argument to show that
any internally chain transitive set in ∆D is a connected set of logit equilibria.

Lemma 7. Let Λ ⊂ ∆ be an internally chain-transitive set. Then Λ ⊂ ∆D .

Proof. Consider the trajectory of (13) starting at an arbitrary π(0) ∈ ∆. We can
write π(t) as

π(t) = e−tπ(0) +

∫ t

0

es−tLη(π(s)) ds.

Defining

σ(t) =

∫ t
0

es−tLη(π(s)) ds

1− e−t
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it is immediate both that σ(t) ∈ ∆D and

‖π(t)− σ(t)‖BL < 2e−t. (14)

Thus π(t) approaches ∆D at an exponential rate, uniformly in π(0). Hence ∆D is
uniformly globally attracting.

We would like to invoke Corollary 5.4 of [41], but since ∆D may not be invariant it
is not an attractor in the terminology of [41] either. We therefore prove directly that
Λ ⊂ ∆D. Suppose not, so there exists a point p ∈ Λ\∆D and by the compactness of
internally chain transitive sets there exists a δ > 0 such that infπ∈∆D

‖p−π‖ = 2δ.
There exists a T > 0 such that for the trajectory p(t) with p(0) = p, infπ∈∆D

‖p(T )−
π‖ < δ, and so ‖p(T )− p‖ > δ. Hence, as in the proof of Proposition 5.3 of [41], p
cannot be part of an internally chain recurrent set (see [41]). Since internally chain
transitive sets are internally chain recurrent sets [41, Proposition 5.3] we have a
contradiction. Hence Λ ⊂ ∆D. �

We are now left to find the internally chain transitive sets of the flow restricted to
∆D. Since all elements of ∆D admit densities, we can define a Lyapunov function
based on the densities of the mixed strategies. For an absolutely continuous mixed
strategy πi with density function pi, we define the entropy

νi(πi) = −
∫
Ai
p(xi) log p(xi) dxi.

The Lyapunov function to be considered is

Vη(π) = −

[
u(π) + η

N∑
i=1

νi(πi)

]
(15)

where ui(π) = u(π) for all i. For Vη to be a useful Lyapunov function, it must be
continuous with respect to the bounded Lipschitz norm that we use on strategy
space.

Lemma 8. Vη : ∆D → R is continuous with respect to the bounded Lipschitz norm.

Proof. Note that u is multilinear and therefore continuous. Therefore it suffices to
show that the entropy ν(πi) is continuous in πi.

Consider two densities p and q corresponding to distributions P and Q on a finite
interval A ⊂ R, and assume that p(x), q(x) ∈ [D−1, D] for all x ∈ A, and both p
and q are Lipschitz continuous with constant D. We calculate that

|ν(P )− ν(Q)| =
∣∣∣∣∫
A

p(x) log(p(x))− q(x) log(q(x)) dx

∣∣∣∣
≤
∫
A

|p(x)− q(x)|| log(p(x))|dx

+

∫
A

q(x)| log(p(x))− log(q(x))|dx

≤ log(D)

∫
A

|p(x)− q(x)|dx

+D

∫
A

| log(p(x))− log(q(x))|dx,
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since both p(x) and q(x) are uniformly bounded above by D. Furthermore, since log
is Lipschitz on [D−1, D] with constant D, | log(p(x))− log(q(x))| ≤ D|p(x)− q(x)|.
We therefore see that

|ν(P )− ν(Q)| ≤ (logD +D2)

∫
A

|p(x)− q(x)|dx.

It remains to show that this integral is arbitrarily small for sufficiently close P and
Q under the bounded Lipschitz norm. Note that this is not the case for arbitrary
P and Q, but the Lipschitz continuity of p and q ensure that we can complete the
result. In particular, suppose that there exists an x∗ such that p(x∗) − q(x∗) > ε.
To reduce the notational effort assume that x∗ ± ε/(4D) ∈ A to avoid boundary
effects (which can be accommodated simply but with more notation). For x ∈
[x∗ − ε/(4D), x∗ + ε/(4D)] we have that p(x) > q(x) + ε/2. Define a test function
g(x) = max(0, ε/(8D)− |x− x∗|/2). We have that

‖P −Q‖BL ≥
∣∣∣∣∫
A

(p(x)− q(x))g(x) dx

∣∣∣∣
=

∫ x∗+ε/(4D)

x∗−ε/(4D)

(p(x)− q(x))g(x) dx

≥
∫ x∗+ε/(4D)

x∗−ε/(4D)

ε

2
g(x) dx

=
ε3

64D
.

So by taking ‖P −Q‖BL small, we can force p(x)− q(x) to be uniformly small, and
hence

∫
A
|p(x)− q(x)|dx to be small, giving the result.

�

Lemma 9. The function Vη is strictly decreasing for any trajectory in ∆D whenever
π /∈ LEη.

Proof. Using the Gateaux derivative,

V̇η(π) = dVη(π, π̇)

= −

[
du(π, π̇) + η

N∑
i=1

dνi(πi, π̇i)

]

= −
N∑
i=1

[
du((πi, π−i), π̇i) + ηdνi(πi, π̇i))

]
.

It follows directly from the definition of the derivatives that du((πi, π−i), π̇i) =∫
Ai
u(ai, π−i))π̇i(dai). Re-arranging the definition of liη(π−i) from (2) gives

u(ai, π−i) = η log(liη(π−i)(ai))

+ η log

[∫
Ai

exp{η−1u(ãi, π−i)}dãi
]
.

So, noting that
∫
Ai
π̇i(dai) = 0,∫

Ai
u(ai, π−i)π̇i(dai) = η

∫
Ai

log(liη(π−i)(ai))π̇i(dai).
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It is shown in [16, equation (D.3)] that dνi(πi, π̇i) = −
∫
Ai

log(pi(ai))π̇i(dai). Hence

V̇η(π) = −η
N∑
i=1

∫
Ai

[
log(liη(π−i)(ai))− log(pi(ai))

]
π̇i(dai)

= −η
N∑
i=1

∫
Ai

[
log(liη(π−i)(ai))− log(pi(ai))

]
×
[
liη(π−i)(ai)− pi(ai)

]
dai

= −η
N∑
i=1

{
KL(liη(π−i) ‖ pi) +KL(pi ‖ liη(π−i))

}
where KL(· ‖ ·) is the Kullback–Leibler divergence, which is non-negative and zero
only when the two arguments are equal. Therefore Vη is strictly decreasing unless
pi = liη(π−i) for all i, which is exactly the condition that π ∈ LEη. �

We thus have a continuous function which is decreasing whenever π /∈ LEη.
However, as demonstrated by [41], this is insufficient to prove that all internally
chain transitive sets are contained in LEη. We could use a further result, that the
set of values Vη takes at points π ∈ LEη is a measure zero set. This is usually
achieved by using Sard’s theorem (see [44] for example), but Smale’s generalisation
of Sard’s theorem to Banach spaces does not apply in our case. We therefore prove
a new result directly, using the provided condition that the connected components
of the set of logit equilibria LEη are isolated.

Lemma 10. Let V : M → R be a strict Lyapunov function for some flow Φ on a
metric space M . If the connected equilibrium components of Φ are isolated, and V is
constant on each component, every internally chain transitive set of Φ is contained
in such a component.

Proof. Recall first that an internally chain transitive set Λ is a compact, connected,
invariant and attractor-free set. Let Λ0 = argmin{V (x) : x ∈ Λ}, and V0 =
min{V (x) : x ∈ Λ}. It then follows that Λ0 only consists of equilibria of V :
otherwise, if x ∈ Λ0 is not an equilibrium, we would have V (Φ(x, t)) < V (x) for
all t > 0, contradicting the fact that Λ is forward invariant and V (x) ≥ V0 for all
x ∈ Λ.

Now, assume there exists some x ∈ Λ with V (x) > V0. Then, take ε > 0 small
enough so that the closed set Λε = {x ∈ Λ : V (x) ≤ V0 + ε} contains no other
equilibria of Φ except those in Λ0 (that this is possible follows from the fact that
V is constant on equilibrium components and that these components are isolated).
Since V is a strict Lyapunov function for Φ we will also have Φ(Λε, t) ⊆ int(Λε)
for all t > 0 (recall that Λ0 is contained in the interior of Λε and Λε has no other
equilibria), so Λε contains an attractor of Φ for all ε > 0 [41, Lemma 5.2]. This
contradicts the fact that Λ is attractor-free, so we must have V (x) = V0 for all
x ∈ Λ, i.e. Λ = Λ0. �

We are now in a position to prove Theorem 6 and – finally – Theorem 1.

Proof of Theorem 6. Vη is necessarily constant on connected components of LEη,
so the conditions of Lemma 10 are met. Therefore any internally chain transitive
(under bounded Lipschitz norm) set of the flow defined by (13) is contained in a
connected component of the set LEη. This is precisely Theorem 6. �
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Proof of Theorem 1. Theorem 5 shows that {πn}n∈N converges under the bounded
Lipschitz norm to an internally chain transitive set of the flow defined by the logit
best response dynamics. Theorem 6 shows that any internally chain transitive set
of these dynamics is contained in LEη. It thus follows that πn converges to LEη
weakly.

To establish our strong convergence claim, recall first that every probability
measure in LEη is nonatomic and absolutely continuous with respect to Lebesgue
measure on R. On the other hand, if π∗ is a (weak) limit point of πn, we will have
πn(A) → π∗(A) for every continuity set A of π∗ (i.e. for every measurable set A
such that π(∂A) = 0). Since every weak limit point of πn is contained in LEη and
Borel sets are also continuity sets for absolutely continuous measures, our assertion
follows. �

6. Discussion

In this paper, we introduced an actor-critic reinforcement learning algorithm for
potential games with continuous action sets. By utilizing two different timescales
for the actor and critic updates (fast and slow respectively), we showed that the
algorithm converges strongly to the game’s set of logit equilibria with minimal
information requirements – in particular, players are not assumed to observe their
opponents’ actions or to have full knowledge of their individual payoff functions.

From a practical point of view, this provides an attractive algorithmic framework
for distributed control and optimization in complex systems with sparse feedback
– such as rate control and power allocation in large-scale, decentralized wireless
networks. In addition, from a theoretical point of view, our approach provided
a nontrivial extension of several finite-dimensional stochastic approximation tech-
niques to infinite-dimensional Banach spaces. In this way, the proposed framework
can be applied and extended to different scenarios of high practical relevance (espe-
cially in the context of wireless networks) such as the case of noisy/imperfect payoff
observations, asynchronous and/or delayed player updates, etc. These research di-
rections lie beyond the scope of the current work, but we intend to pursue them in
a future paper.
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