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Abstract—Cognitive radio (CR) systems allow opportunistic,
secondary users (SUs) to access portions of the spectrum that are
unused by the network’s licensed primary users (PUs), provided
that the induced interference does not compromise the PU’ per-
formance guarantees. To account for interference constraints of
this type, we consider a flexible spectrum access pricing scheme
that charges SUs based on the interference that they cause to
the system’s PUs (individually, globally, or both), and we examine
how SUs can maximize their achievable transmission rate in this
setting. We show that the resulting non-cooperative game admits
a unique Nash equilibrium under very mild assumptions on the
pricing mechanism employed by the network operator. In addi-
tion, we derive a dynamic power allocation policy that converges
to equilibrium within a few iterations (even for large numbers
of users), and which relies only on local signal-to-interference-
plus-noise ratio (SINR) measurements. Our theoretical analysis is
complemented by extensive numerical simulations which illustrate
the performance and scalability properties of the proposed pricing
scheme under realistic network conditions.

Index Terms—Cognitive radio; multi-carrier systems; interfer-
ence temperature; pricing; exponential learning.

I. Introduction

A key challenge faced by current mobile networks is the pro-
jected spectrum crunch: if not properly managed, the existing
radio spectrum will not be able to accommodate the soaring
demand for wireless broadband and the ever-growing volume
of data traffic [1]. To make matters worse, studies by the US
Federal Communications Commission (FCC) and the National
Telecommunications and Information Administration (NTIA)
have shown that this vital commodity is effectively squandered
through underutilization and inefficient use: for instance, only
15% to 85% of the licensed radio spectrum is used on average,
leaving ample spectral voids that could be exploited via efficient
spectrum management techniques [1, 2]. Accordingly, in this
often unregulated context, the emerging paradigm of cognitive
radio (CR) has attracted considerable interest as a promising
way out of the spectrum gridlock [3–6].

At its most basic level, cognitive radio comprises a two-
level hierarchy between wireless users induced by spectrum
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licencing: the network’s licensed, primary users (PUs) have
purchased spectrum rights from the network operator (often in
the form of contractual quality of service (QoS) guarantees),
but they allow unlicenced secondary users (SUs) to access
the spectrum provided that the induced co-channel interference
(CCI) remains below a certain threshold [3, 5]. Put differently,
by sensing the wireless medium, the network’s cognitive SUs
essentially free-ride on the PUs’ licensed spectrum and they
try to communicate under the constraints imposed by the PUs
(though, of course, without any QoS guarantees). Thus, by
opening up the unused part of the spectrum, overall utilization is
increased without needing to deploy more (and more expensive)
wireless interfaces [4, 7].

In CR systems, PU requirements are often treated as interfer-
ence temperature (IT) [8] constraints that are coupled across the
network’s SUs. The theoretical analysis of the resulting system
then aims to characterize the network’s optimum/equilibrium
states and to provide the means to converge to such states [9–
13]. These constraints are then enforced indirectly via exoge-
nous pricing mechanisms that charge SUs based on the aggre-
gate interference that they cause to the network’s PUs (and, of
course, PUs are reimbursed commensurately). In this context,
the authors of [9] introduced a spectrum-trading mechanism
based on a market-equilibrium approach [14] and they provided
an algorithm allowing SUs to estimate spectrum prices and
adjust their spectrum demands accordingly.

In this paper, we focus on cost-efficient throughput maxi-
mization in multi-carrier CR networks where SUs are charged
based on the interference that they cause to the network’s
PUs (either on an aggregate or a per-user basis). Our system
model is presented in Section II where we consider a general
game-theoretic formulation that is flexible enough to account
for both aggregate (flat-rate), temperature-based, and per-user
pricing schemes. In the case of static channels (Section III), we
show that the resulting game admits a unique Nash equilibrium
almost surely, provided that the SUs’ pricing schemes satisfy
some fairly mild requirements (for instance, that a user’s trans-
mission cost increases with his radiated power).

Moreover, extending the exponential learning techniques of
[15], we also derive a dynamic power allocation policy that
converges to Nash equilibrium in a few iterations, even for large
numbers of users and/or subcarriers per user. In particular, the



proposed algorithm has the following desirable attributes:
1) Distributedness: user updates are based on local informa-

tion and signal measurements.
2) Statelessness: users do not need to know the state (or

topology) of the system.
3) Unilateral reinforcement: each user tends to increase his

own utility; put differently, the algorithm is aligned with
each user’s individual objective.

Our analysis is supplemented in Section IV by extensive nu-
merical simulations where we illustrate the performance gains
of the proposed approach under realistic conditions.

II. SystemModel

Consider a set K = {1, . . . ,K} of (unlicensed) secondary
users (SUs) that seek to connect to a common receiver over
a set S = {1, . . . , S } of non-interfering subcarriers (typically
in the frequency domain if an orthogonal frequency division
multiplexing (OFDM) scheme is employed). Focusing on the
uplink case, the aggregate received signal ys over the s-th
subcarrier will then be:

ys =
∑

k∈K
hksxks + zs, (1)

where
1) xks ∈ � denotes the transmitted signal of user k ∈ K over

the s-th subcarrier.
2) hks ∈ � is the corresponding transfer coefficient.
3) zs ∈ � denotes the aggregate interference-plus-noise re-

ceived from all sources not in K.
In this context, the average transmit power of user k on subcar-
rier s will be

pks = �
[
|xks|

2], (2)

where the expectation is taken over the (Gaussian) codebook
of user k; furthermore, each user’s total transmit power pk =

�[x†kxk] =
∑

s pks will have to satisfy the power constraint

pk =
∑

s∈S
pks ≤ Pk, (3)

where Pk > 0 denotes the maximum transmit power of user k ∈
K. In this way, the set of admissible power allocation vectors
for user k is the S -dimensional polytope

Xk =
{
pk ∈ �

S : pks ≥ 0 and
∑

s∈S pks ≤ Pk

}
, (4)

and the system’s state space will be the product X =
∏

k Xk.
In this multi-carrier (MC) framework, each user’s achiev-

able transmission rate depends on his individual signal-to-
interference-plus-noise ratio (SINR)

sinrks(p) =
gks pks

σ2
s +

∑
`,k g`s p`s

, (5)

where gks = |hks|
2 denotes the channel gain coefficient for user

k over the s-th subcarrier. Thus, in the single user decoding
(SUD) regime (where interference by all other users is treated
as additive noise), the maximum information transmission rate
for user k (achievable with random Gaussian codes) will be:

Rk(p) =
∑

s∈S
log

(
1 + sinrks(p)

)
(6)

where
ws(p) =

∑
k

gks pks, s = 1, . . . , S , (7)

denotes the aggregate SU interference level per subcarrier (for
convenience we will also write w = (w1, . . . ,wS ) for the SUs’
aggregate interference profile over all subcarriers s ∈ S).

In the absence of other considerations, the unilateral objec-
tive of each SU would be the maximization of his individual
transmission rate Rk(p) subject to the total power constraint
(3). In our CR setting however, the network operator needs to
ensure that the system’s PUs meet the QoS guarantees that they
have already paid for – typically in the form of minimum rate
requirements or maximum interference tolerance per subcarrier.
Thus, to achieve this, we will consider a general spectrum
access pricing scheme whereby SUs are charged according to
the individual and aggregate interference that they induce.

Formally, this can be captured by the general cost model:

Ck(p) = π0(w(p)) + πk(pk), (8)

where:
1) π0 : �S

+ → �+ is a flat spectrum access price that is
calculated in terms of the aggregate SU interference level
ws per subcarrier s ∈ S.

2) πk : Xk → �+ is a user-specific price which is charged to
user k ∈ K based on his individual radiated power profile
pk ∈ Xk.

In tune with standard economic considerations on diminishing
returns [14], the only assumptions that we will make for the
price functions π0 and πk are that:
(A1) Each π is non-decreasing in each of its arguments.
(A2) Each π is Lipschitz continuous and convex.

For concreteness, we provide below some typical examples
of pricing models which we explore further in Section IV:
Model 1. Let Imax

s denote the PUs’ interference tolerance on
subcarrier s. Then, in the spirit of [11], we define the
linear pricing (LP) flat-rate model as:

πLP
0 (w) = λ0

∑
s∈S

ws/Imax
s , (LP)

where the pricing parameter λ0 represents the price
paid by the network’s SUs when saturating the PUs’
interference tolerance.

Model 2. With notation as above, the violation pricing (VP)
flat-rate model is defined as:

πVP
0 (w) = λ0

∑
s∈S

[
ws/Imax

s − 1
]
+ (VP)

where λ0 > 0 is a sensitivity parameter and [x]+ ≡

max{x, 0}. In this model, SUs are only charged when
the PUs’ interference tolerance is actually violated,
and the steepness of the sanction is controlled by the
pricing parameter λ0.

In light of all this, the utility of user k is defined as:

uk(p) = Rk(p) −Ck(p), (9)

i.e., uk(p) is simply the user’s achieved transmission rate minus
the cost reimbursed to the network operator in order to achieve



it. In turn, this leads to the cost-efficient throughput maximiza-
tion game G ≡ G(K,X, u), defined as follows:

1) The game’s players are the system’s secondary users k ∈
K = {1, . . . ,K}.

2) The action set of each player/user is the set of feasible
power allocation profiles Xk = {pk ∈ �

S : pks ≥

0 and
∑

s∈S pks ≤ Pk}.
3) Each player’s utility function uk : X ≡

∏
k Xk → � is given

by (9).
In this context, we will say that a power allocation profile p∗ ∈
X is at Nash equilibrium (NE) when

uk(p∗k; p∗−k) ≥ uk(pk; p∗−k) for all pk ∈ Xk and for all k ∈ K,
(NE)

i.e., when each user’s chosen power profile p∗k ∈ Xk is individ-
ually cost-efficient given the power profile of his opponents (so
no user has a unilateral incentive to deviate). Accordingly, our
goal in the rest of the paper will be to characterize the Nash
equilibria of G and to provide distributed optimization methods
allowing selfish (and myopic) SUs to converge to equilibrium in
the absence of centralized medium access control mechanisms.

III. Learning

In this section, we focus on how players can attain an equilib-
rium state by means of a simple, adaptive learning process. Our
proposed algorithm will rely on the users’ marginal utilities:

vk(p) = ∇kuk(p) (10)

where ∇k denotes differentiation with respect to the power
profile pk of user k. In particular, writing vk = (vk,1, . . . , vk,S ),
some easy algebra yields the component-wise expression

vks(p) =
∂uks

∂pks
= gks

(
1

σ2
s + ws

−
∂π0

∂ws

)
−
∂πk

∂pks
, (11)

which shows that vks(p) can be calculated by each individual
user knowing only their SINR per subcarrier (which is mea-
sured locally) and the functional form of the price functions π0
and πk (which are agreed upon by the network’s SUs and the PU
and are thus also known locally). Indeed, Eq. (5) shows that the
aggregate interference level on subcarrier s can be calculated
by user k as:

ws(p) =
∑

k
gks pks = gks pks

1 + sinrks(p)
sinrks(p)

, (12)

i.e., requiring only local SINR measurements and the knowl-
edge of the user’s channel (which can in turn be obtained
through the exchange of pilot signals). As a result, the marginal
utility vectors vk can be calculated in a completely distributed
fashion with locally available information.

By definition, the users’ marginal utility vectors define the
direction of unilaterally steepest utility ascent, i.e., the best
direction that a user could follow in order to increase his utility.
As such, a natural learning process would be for each user to
track this steepest ascent direction with the hopes of converging
to a Nash equilibrium; however, given the problem’s power
and positivity constraints, this method may quickly lead to

inadmissible power profiles that do not lie in X – in which case
convergence is also out of the question.

To account for these constraints, we will employ an interior
point method which increases power on subcarriers that seem
to be performing well, without ever shutting off a particular
channel completely. Formally, consider the exponential regu-
larization map G : �S → �S

+ given by

G(v) =
1

1 +
∑

s exp(vs)
(
exp(v1), . . . , exp(vS )

)
. (13)

This map has the property that it assigns positive weight
(power) to all subcarriers and exponentially more weight to
the subcarriers s ∈ S with the highest marginal utilities vs.
Furthermore, if all marginal utilities are relatively low (indicat-
ing high transmission costs), all assigned weights will also be
low in order to decrease the user’s cost. With this in mind, our
proposed exponential learning algorithm for cost-efficient rate
maximization is as follows:

Algorithm 1 Exponential Learning for Cost-Efficient Rate
Maximization
Parameter: step size γn.
Initialize: n← 0; scores yks ← 0 for all k ∈ K, s ∈ S.
Repeat

n← n + 1;
foreach user k ∈ K do

foreach subcarrier s ∈ S do

set transmit power pks ← Pk
exp(yks)

1 +
∑

r exp(ykr)
;

measure sinrks;

update marginal utilities: vks ←
1

pks

sinrks

1 + sinrks
−
∂Ck

∂pks
;

update scores: yks ← yks + γnvks;

until termination criterion is reached.

We then obtain:

Theorem 1. Let γn be a variable step-size sequence such that∑
n γn = ∞ and

∑n
j=1 γ

2
j
/∑n

j=1 γ j → 0. Then, Algorithm 1
converges to Nash equilibrium in the cost-efficient rate maxi-
mization game G.

Proof: Omitted due to space limitations.

IV. Numerical Results

To evaluate the performance of the proposed cost-efficient
power allocation framework for throughput maximization in
cognitive radio networks, we have performed extensive numeri-
cal simulations over a wide range of system parameters. In what
follows, we provide a selection of the most representative cases.

Throughout this section, and unless explicitly mentioned
otherwise, we consider a population of K = 10 SUs uniformly
distributed over a square area and S = 10 non-interfering
subcarriers with channel gain coefficients gks drawn according
to the path-loss model for Jakes fading proposed in [16]; the
other relevant simulation parameters are summarized in Table
I. For simplicity, we also assume that σs and Pk are equal for



TABLE I
Simulation Setting

Parameter Value
Carrier frequency fc = 2.4 GHz

Channel bandwidth B = 10.93 KHz
Noise spectral density σs = −173 dBm/Hz

Maximum transmitting power of SUs Pk = 21.03 dBm
Edge of the simulated square area L = 200 m

Transmitting power of the PU PPU = 30 dBm
Distance of the PU from the receiver d = 50 m

all s ∈ S and all k ∈ K; finally, we will assume that PUs have
the same interference tolerance level Imax

s over all subcarriers
s ∈ S.

To begin with, Figs. 1(a)–1(c) compare the performance of
the proposed power allocation scheme to the benchmark case
of uniform power allocation – i.e., when SUs transmit at full
power and allocate their power uniformly over the available
subcarriers, irrespective of the PU’s requirements. For some
values of λ0, the SUs’ sum-rate under uniform power allocation
is higher than the one achieved by the proposed approach,
but this comes at the expense of violating the PU’s minimum
QoS requirements (which constitutes a contractual breach from
the PU’s perspective); on the contrary, our approach always
respects the PU’s contractual requirements (since the λ0 pricing
parameter is negotiated with the PU), while guaranteeing high
throughput to the SUs. This is seen in Fig. 1(b): the PU’s
throughput exceeds the throughput achieved when SUs employ
a uniform power allocation policy, except when the PU has
no significant QoS requirements (Imax → ∞), in which case
the SUs exploit all the available spectrum and the PU’s rate is
reduced. Furthermore, in Fig. 1(c) we illustrate the normalized
revenue of the proposed approach w.r.t. the revenues generated
by uniform power allocation policies. Note that the income
generated by the proposed approach is up to 3× higher than the
income generated by SUs that are not cost-/energy-aware and
transmit naïvely at full power, using a uniform power allocation
policy. Thus, by fine-tuning his pricing scheme, the PU not only
achieves his QoS requirements, but also increases his monetary
revenue against cost-aware SUs.

In Figs. 2 and 3, we investigate the length of the system’s
off-equilibrium phase and the convergence rate of the proposed
distributed learning scheme (Algorithm 1). By Theorem 1, the
iterations of Algorithm 1 converge to Nash equilibrium when
using a step-size sequence γn such that

∑n
j=1 γ

2
j
/∑n

j=1 γ j → 0
as n → ∞. As discussed in [17], a rapidly decreasing step-
size sequence slows down the algorithm, so we examine here
the usage of a fixed step size to accelerate convergence. This
choice makes the algorithm run faster; on the other hand, a
fixed step-size may lead to unwanted oscillations around the
equilibrium point, thus interfering with the algorithm’s end-
state. To account for this, we employ a very aggressive schedule
during the first non-oscillating iterations which becomes more
conservative (thus guaranteeing convergence) once oscillations
are noticed.

To assess the method’s efficiency, we plotted the system’s

equilibration level (EQL) [15]; by definition, an EQL value of
1 means that the system is at Nash equilibrium. Accordingly,
in Fig. 2, we show the evolution of the EQL and the system’s
sum-rate at each iteration for different step-size rules and inter-
ference pricing models. As expected, a conservative step-size
of the form γn = n−β, 1/2 < β < 1, leads to relatively slow
convergence (of the order of several tens of iterations or worse).
On the other hand, the use of search-then-converge (STC) and
fixed-step methods greatly accelerates the users’ learning rate:
after only a few STC iterations the system’s EQL exceeds 90%,
and the algorithm’s convergence is accelerated even further by
increasing the constant step-size in the “exploration” phase of
the STC method.

Finally, to investigate the scalability of the proposed learning
scheme, we also examine the algorithm’s convergence speed
for different numbers of SUs. In Fig. 3 we show the number
of iterations needed to reach an EQL of 95%: importantly, by
increasing the value of the algorithm’s step-size, it is possible
to reduce the system’s transient phase to a few iterations, even
for large numbers of users. Moreover, we also note that the
algorithm’s convergence speed in the LP model depends on the
pricing parameter λ0 (it decreases with λ0), whereas this is no
longer the case under the VP model. The reason for this is again
that the VP model acts as a “barrier” which is only activated
when the PUs’ interference tolerance is violated.

V. Conclusions

In this paper, we considered a game-theoretic formulation of
the problem of cost-efficient throughput maximization in multi-
carrier CR networks where SUs are charged based on the inter-
ference that they cause to the system’s PUs. We showed that the
resulting game admits a unique Nash equilibrium under fairly
mild conditions (and for both static and ergodic channels), and
we derived a fully distributed learning algorithm that converges
to equilibrium using only local SINR and channel measure-
ments (and, again, under both static and fast-fading channel
conditions). Our analysis shows that the choice of the exact
pricing scheme has a strong impact on the network’s achievable
performance (for both licensed and unlicensed users): in the
“soft-pricing” regime, the PUs’ requirements are violated in ex-
change for monetary reimbursement; by contrast, higher prices
safeguard the PUs’ requirements, but (somewhat surprisingly)
generate no revenue to the PUs. Moreover, thanks to the fast
convergence of the proposed algorithm, the system’s transient
(off-equilibrium) phase is minimized, so SUs avoid being un-
duly uncharged for relatively low throughput levels.
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